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Abstract
1.	 Species Distribution Models (SDMs) are vital tools for predicting species occur-

rences and are used in many practical tasks including conservation and biodi-
versity management. However, the expanding minefield of SDM methodologies 
makes it difficult to select the most reliable method for large co-occurrence 
datasets, particularly when time constraints make designing a bespoke model 
challenging. To facilitate model selection for practical out-of-sample prediction, 
we consider three major challenges: (a) the difficulty of incorporating multiple 
functional forms for species associations; (b) the limited knowledge on how char-
acteristics of co-occurrence data impact model performance; and (c) whether 
individual model predictions could be combined to obtain optimised community 
predictions without the need for bespoke models.

2.	 To address these gaps, we propose an ensemble method that uses descriptive 
features of binary co-occurrence datasets to predict model weightings for a set 
of candidate SDMs. We demonstrate how this method may be applied through a 
simple case study that uses five independent Joint Species Distribution Models 
(JSDMs) and Stacked Species Distribution Models (SSDMs) to predict out-of-
sample observations for a diversity of co-occurrence datasets. Moreover, we 
introduce a novel SSDM that offers the potential to include multiple functional 
forms for each species while delivering robust community predictions.

3.	 Our case study highlights two major findings. First, the ability for the feature-
based ensemble to offer more robust species co-occurrence predictions com-
pared to other candidate SDMs while providing insights into the data features 
that impact model performance. Second, the competitiveness of the novel 
SSDM method for forecasting species co-occurrences, even when using a 
simple univariate generalised linear model (GLM) as the base model prior to 
stacking.
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1  |  INTRODUC TION

Ecologists are increasingly faced with the task of fitting hundreds 
or thousands of species distribution models (SDMs) to large species 
community datasets for applied purposes such as biodiversity con-
servation and management (Palacio et al.,  2021; Velásquez-Tibatá 
et al., 2019). Such tasks require methods that offer reliable predic-
tions for unsampled areas under time constraints that inhibit the de-
sign of bespoke models, that is, models customised to a particular 
dataset. A major advance to aid in this task has been the develop-
ment of multivariate approaches, which more realistically capture 
the co-occurrence of species and their possible interspecific biotic 
associations (Araújo & Luoto, 2007; Heikkinen et al., 2007; Leathwick 
et al., 2006; Ovaskainen et al., 2017). Multivariate models that esti-
mate the occurrences of species jointly, that is, simultaneously for 
all species in a dataset, are referred to as joint species distribution 
models (JSDMs). JSDMs include nonparametric methods that learn 
from patterns in the data and utilise classification algorithms to 
predict species co-occurrence (Ingram et al., 2020), and parametric 
methods that model species' responses to environmental variables 
and account for co-occurrence patterns in the residuals (Norberg 
et al.,  2019; Pollock et al.,  2014; Wilkinson et al.,  2019) or esti-
mate them as joint responses to latent factors (Hui & Poisot, 2016; 
Ovaskainen et al., 2017; Warton et al., 2015). Alternatively, paramet-
ric and nonparametric methods that predict the occurrence of each 
species individually and aggregate the outcomes to enable multi-
species predictions are described as stacked species distribution 
models (SSDMs; Algar et al.,  2009; Calabrese et al.,  2014; Distler 
et al., 2015; Harris et al., 2018; Zurell et al., 2020). Selecting the most 
appropriate method for predicting species distributions is no simple 
task, requiring the user to navigate an expanding field of alternative 
approaches whose advantages and disadvantages are not imme-
diately clear. We consider three major gaps in the estimation and 
application of species distribution models for out-of-sample predic-
tion. First, it is challenging to incorporate different functional forms 
for each species while producing coherent community predictions. 
Second, there is little consensus on which aspects of observed data 
impact model performance. Finally, few studies have described how 
to combine model predictions into ensemble forecasts, a practice 
that is widely known to reduce prediction bias in other fields.

Although JSDMs can offer reliable predictions of species co-
occurrences in some ecological contexts (Franklin,  1998; Norberg 

et al., 2019; Thuiller et al., 2003), parametric methods often make 
assumptions about the functional form of species (Vayssières 
et al.,  2000). This can be problematic when estimating the occur-
rence of multiple species simultaneously, as this is not necessarily 
a characteristic that is uniform across all species. Nonparametric 
methods offer an alternative modelling approach by utilising classi-
fication algorithms that require no assumptions about the distribu-
tions of the data or model residuals, and thus better cater for species 
with various functional forms (Vayssières et al., 2000). However, a 
common pitfall of standard SSDMs is overpredicting outcomes 
by not accounting for shared responses between species (Dubuis 
et al., 2011; Guisan & Rahbek, 2011; Calabrese et al., 2014; D'Amen, 
Dubuis, et al., 2015; Zurell et al., 2020). A recent development fills 
this gap by allowing each binary vector of species occurrences to be 
modelled independently, using whichever base univariate model is 
appropriate, after which the predictions are aggregated (‘stacked’). 
The stacking is done by learning possible nonlinear multivariate 
associations (Xing et al.,  2020). The authors propose that a weak 
learner, that is, a method that performs better than random, is ap-
propriate for modelling the associations between the fitted values 
of other vectors in the dataset and the residuals of the focal vector. 
Adjusted predictions are then stacked to obtain multivariate predic-
tions (Xing et al., 2020).

There are several reasons why the method proposed by Xing 
et al. could be advantageous for species distribution modelling. First, 
it allows for different functional models for each species, meaning 
that users can freely incorporate relevant domain expertise without 
being restricted by a single set of assumptions. Incorporating differ-
ent functional forms for each species simultaneously in JSDMs is 
challenging, yet this could easily be accommodated by the stacking 
approach by fitting univariate nonlinear models to each species prior 
to aggregating the outcomes. Second, the stacking algorithm can po-
tentially estimate complex, nonlinear species' associations without 
the need for large variance covariance matrices or latent factors, 
both of which typically assume linearity and can be computationally 
demanding when modelling many species.

Another challenge in model selection is the limited understand-
ing on what aspects of observed data impact model performance. 
Studies that have compared different types of models to aid in the 
model selection process have found inconsistent results considering 
the predictive performance of SDMs, JSDMs and SSDMs (Baselga 
& Araújo,  2010; D'Amen, Pradervand, & Guisan,  2015; Harris 

4.	 We conclude that feature-based ensembles can provide ecologists with a use-
ful tool for generating species distribution predictions in a way that is reliable 
and informative. Moreover, the flexibility of the ensemble and the novel SSDM 
method both offer exciting prospects for incorporating a diversity of functional 
forms while prioritising out-of-sample prediction.

K E Y W O R D S
community modelling, conservation, co-occurrence, ensemble, feature-based, joint species 
distribution model, predictive modelling, stacked species distribution model.
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et al.,  2018; Leathwick et al.,  2006; Maguire et al.,  2016; Moisen 
& Frescino, 2002; Norberg et al., 2019; Zhang et al., 2018). In par-
ticular, a comparison between all three model types highlighted 
the need for researchers to undertake the computationally and 
time-demanding task of fitting subsets of data to various compli-
mentary models before undertaking analysis (Norberg et al., 2019). 
For tasks when time and data constraints are not an issue, bespoke 
modelling is a highly suitable approach. However, the applied ecol-
ogist working with continuously updated datasets that increase in 
size and complexity may require more feasible alternatives. In such 
cases, modelling large datasets without fitting customised models 
requires a deeper understanding of how variation in underlying data 
structures impacts model performance. While this has been done 
to understand the structural properties of the models themselves 
(Elith et al., 2006; Norberg et al., 2019; Wisz et al., 2008), few stud-
ies have delved into the structure of the observed data. Data struc-
tures can be quantified through features that measure species and 
community-level characteristics. These may include species charac-
teristics such as growth rate, elevational distribution range and max-
imum elevation (Guisan, Graham, et al., 2007; Guisan, Zimmermann, 
et al.,  2007), or extrinsic parameters, such as location error and 
sample size (Guisan, Graham, et al.,  2007; Guisan, Zimmermann, 
et al.,  2007; Norberg et al.,  2019; Wisz et al.,  2008), features of 
time-series data (Montero-Manso et al.,  2020), or network-based 
features (Azhagesan et al., 2018). These metrics can provide deeper 
insights into correlations between data structure and model perfor-
mance. For example, a dataset with a more sparsely connected co-
occurrence network may be more effectively modelled by univariate 
than multivariate methods. To our knowledge, extensive exploration 
on how data structures impact SDM predictive performance has not 
yet been undertaken.

Despite evidence that combining multiple models can im-
prove predictions in diverse scenarios (Atiya,  2020; Gneiting & 
Raftery, 2005; Murray, 2018; Wang & Srinivasan, 2017), few ecolog-
ical studies have applied ensemble methods (Araújo & New, 2007). 
Ensembles offer great advantages for ecological forecasting, as they 
allow the properties of multiple models to be combined into a sin-
gle weighted prediction that often reduces prediction error relative 
to any of its constituent models (Araújo & New, 2007). Moreover, 
combining models into an ensemble algorithm often allows for a fast 
approach to yield optimised predictions (Lemke & Gabrys, 2010). No 
SDM correctly captures the true data generating process, suggest-
ing it can be useful to hedge bets against model misspecification by 
combining predictions. This is especially true when using a diverse 
set of candidate models, as combinations from models with differ-
ent degrees of flexibility should, on average, outperform predic-
tions from individual models across heterogeneous environments. 
Determining appropriate model weights for ensemble models can be 
challenging. However, the calculation of features that describe struc-
tural differences among observed data offers a direct way to esti-
mate model weights (Kang et al., 2017). Recently, a promising novel 
time-series ensemble approach was proposed, which uses a suite 
of descriptive features for each response variable in a multivariate 

dataset as predictors when training a machine learning algorithm 
to predict the relative weights of simple forecast models (Montero-
Manso et al., 2020). The method won second place in M4, a highly 
competitive global forecasting competition (Makridakis et al., 2020) 
and has been applied to both aid in the selection of individual models 
and to build weighted ensemble models (Kück et al., 2016; Lemke & 
Gabrys, 2010; Talagala et al., 2018). However, while this method has 
been applied for economic forecasting purposes, to our knowledge, 
a similar approach has not been applied in ecological modelling. We 
propose that using binary community features to both understand 
why some models outperform others and to combine model predic-
tions into a weighted ensemble is a useful avenue of research for 
building better predictions for communities of species.

Our study explores the effects of the underlying data struc-
ture of binary datasets, and how this can be used to predict model 
weights within an ensemble model to optimise predictions of species 
distributions. We do this by evaluating the predictive performance 
of five candidate models and use the deviance residuals from each 
respective model to generate optimised model weights. Using the 
optimised weights as the response variables, we build an ensemble 
algorithm that learns from features describing the composition of 
the species communities to predict ensemble weights for generating 
out-of-sample forecasts, a novel approach not yet applied in the field 
of ecology. We suggest that our framework can be useful for applied 
modellers seeking to predict the distributions of large sets of species 
for practical tasks where it is not feasible to undergo the lengthy 
process of fitting bespoke models.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection and preparation

We used a total of 30 binary presence–absence co-occurrence data-
sets across pathogen, vegetation and animal communities. Datasets 
originally containing abundance or count measures for species oc-
currence were converted to binary data, where any species with a 
value equal or >1 was considered to be present, that is, assigned 
a value of 1. Descriptions, number of species and observations, 
median prevalence and prevalence range are summarised for each 
dataset in Table 1 (See Supplementary File 1 for more detailed de-
scriptions). To reduce the risk of overfitting, all covariates for each 
dataset were standardised using principal component analysis 
(PCA), and the first five principal components (PCs) were selected as 
predictors, unless fewer PCs were required to explain at least 80% 
of the variation in the covariate space, as per Norberg et al. (2019), 
or if fewer PCs were available (See Supplementary File 1 for descrip-
tion on number of PCs included for each dataset and the cumulative 
variation explained by these PCs). All individual models were fitted 
using the same PCs as covariates for each species. For each model 
apart from the GBM stacking models and the MVRF, covariates were 
included as additive linear effects. The MVRF can learn nonlinear ef-
fects, while the GBM models did not use covariates (the fitted values 
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and residuals from the univariate GLM were already conditioned on 
covariates prior to their inclusion in the GBM models).

Training our ensemble required measures of model predictive 
performance across a large number of datasets with a diversity of 
binary feature profiles. Training datasets were selected by stratify-
ing the number of species in each community, number of PCs and 
median prevalence into three groups (low, medium and high values). 
These values were used to select 10 of the 30 datasets to be with-
held for testing. One dataset from each combination of three strat-
ified variables was withheld. In cases where only one combination 
was present, the dataset was withheld as a testing dataset to en-
able extrapolation. Datasets retained for training and withheld for 
testing are described in (Table 1). A total of 20 datasets, containing 
1,622 binary vectors (64.67%) were used as training datasets, and 
10 datasets, containing 886 binary vectors (35.33%) were withheld 
as testing datasets for the final ensemble model. The median prev-
alence for the training and testing data was 5.23% (Q1  =  1.81%; 
Q3 = 13.34%) and 5.17% (Q1 = 1.61%; Q3 = 16.03%) respectively 
(See also Supplementary File 2 for a visualisation of feature diversity 
in training and testing datasets). Although we acknowledge that not 
every vector is necessarily a different species since some species 
may be present in multiple datasets, the features will vary at the spe-
cies level when measured in different communities, and therefore 
for clarity, binary vectors will be referred to as ‘species’.

2.2  |  Fitting multivariate models and obtaining 
predictive performance metrics

We fitted a total of five individual models to the 20 training datasets, 
to replicate what modellers may be faced with if modelling hundreds 
of species with limited resources. Three of the models will likely be 
familiar to quantitative ecologists. They included (a) a generalised 
linear model (Bernoulli outcomes with a logit link function) to be 
used as the univariate baseline predictions for comparison (GLM-
BASE), which was fitted by applying iteratively reweighted least 
squares; (b) a Multivariate Random Forest model (MVRF) fitted 
using the Fast Unified Random Forests for Survival, Regression and 
Classification function (Ishwaran et al., 2008), using a node size of 
8 to define the average number of observations in a terminal node; 
and (c) a Hierarchical Modelling of Species Communities model 
(HMSC; Tikhonov et al., 2021), which was fitted using two MCMC 
chains with a burn-in of 2,000 and 1,000 iterations, and with default 
priors for all model parameters (see Table 2 and Supplementary File 
3 for further descriptions on these methods and r packages used).

To our knowledge, the two remaining models have not been 
previously used in ecological applications, hence we describe them 
in more detail here. These models take the original in-sample pre-
dictions from a univariate model (in our case, a generalised linear 
regression model) and learns from the errors in a stacking algorithm 
to adjust the out-of-sample predictions. In our approach the errors 
(i.e. residuals from a focal species' GLM) are modelled as a function 
of the fitted values from other species' univariate GLMs. This allows N
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the model to uncover potentially nonlinear species associations, 
avoids the need to parameterise a covariance matrix or set of latent 
factors, and ensures that out-of-sample predictions can be made 
for the entire community. We included two versions of the stacking 
model: one that uses the Pearson Residuals (PR) and another that 
uses Deviance Residuals (DR) as per Xing et al. (2020) from the indi-
vidual species as the outcome, with the fitted values from the other 
species included as features in the stacking algorithm. These resid-
uals are defined as:
Pearson Residual:

Deviance Residual:

where rik denotes the residual for the k-th outcome for the i-th sam-
ple in the univariate GLM model, P̂ik denotes the predicted probability 
from the GLM model and Yik denotes the binary outcome. Following 
the fitting of the GBM stacking model, the adjustment of the GLM 
original univariate predictions was made following Xing et al.  (2020). 
Both stacking models were fitted using the gbm package in r (Greenwell 
et al., 2020), and parameters were tuned using 50 trees, a maximum 
depth for each tree of 2, and the default shrinkage parameter of 0.1. 
We specifically used a weak learner to reduce overfitting and prior-
itise species associations that may be important for out-of-sample 
predictions.

Each of the training datasets were split into training and test-
ing folds, whereby 70% of the data was randomly selected for fit-
ting the models and the remaining 30% was used for evaluating 
model predictions. This process was repeated three times for each 
dataset to capture heterogeneity in model performance among 
testing folds. To measure predictive accuracy of the five individual 
models, we binarised predicted probabilities of occurrence into 
presence/absence using a standard threshold of 0.5 for simplicity, 
since our datasets contained a range of median prevalence val-
ues and species, and as models were not optimised to improve 
predictions for a particular community but rather compare model 
performance. Using the binarised predictions, we calculated out-
of-sample recall (the ratio of correctly predicted species present 
to all observations where the species is actually present), preci-
sion (the ratio of correctly predicted species present to the total 
species predicted to be present) and the F1 statistic (the weighted 
average of precision and recall). We used the F1 score instead of 
accuracy (total number of correctly predicted observations over 
the total number of observations) or area under the receiver oper-
ating characteristic curve (AUROC; uses the area under the ROC 
curve that plots sensitivity and specificity to quantify the perfor-
mance of a model) due to the likely unequal distribution of false 
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positives and false negatives resulting from the large proportion of 
rare species. This metric is calculated as:

2.3  |  Ensemble model

Our goal was to find a weighted ensemble of model predictions (on 
the probability scale) that could minimise an appropriate binary loss 
function. In practise, for each species in each evaluation set (i.e. con-
taining the with-held 30% of observations), we optimised weights 
that minimised the mean squared deviance residual. We accounted 
for class imbalance by weighting residuals for positive and negative 
observations by their respective frequencies in the test set when 
calculating the final mean residual. Optimisations of the unknown 
model weights were performed using the L-BFGS-B algorithm (Byrd 
et al.,  1995) in the R function optim of the stats package (R Core 
Team, 2021). For all species we used five separate optimisations with 
different random starting weights to ensure the parameter space 
was adequately explored. Final model weights for each species were 
calculated by taking the mean from the three sets used for training.

Our ensemble model was a multivariate random forest that was 
trained to predict optimal model weights for a set of binary obser-
vations based on features that described the structures and com-
munity contexts of those observations. We calculated 23 features 
to describe the characteristics of species individually and within 
their community, as well as features to describe the overall nature 
of community structure (Table  3). These features included three 
measures of prevalence, the numbers of observations and species, 
network analysis metrics, measures of species ‘uniqueness’, mea-
sures describing characteristics of the Markov Random Field (MRF) 
Networks, and features that describe the predictors and covariates 
for each of the datasets (See Supplementary File 4 for histograms 
showing the distribution of features across all, training, and test-
ing datasets). Note that this set of features is not exhaustive, and 
it would be fruitful and ecologically interesting to consider other 
features to describe variation among species' observation vectors.

2.4  |  Ensemble model performance

We used the 10 datasets excluded from the model training to test 
the predictive accuracy of our ensemble model relative to the indi-
vidual models. We again used a 70–30 split for validation. For the 
training dataset containing 70% of the data, we fit the candidate 
models as described above. We then calculated the 23 features to 
use as new data in the ensemble algorithm (‘ENS’) to predict weights 
for each species to generate weighted ensemble predictions. We 
also generated a null ensemble model (‘NULL-ENS’) for comparison 
that assigned equal weightings for each candidate model. We then 
calculated performance metrics as above for the five individual mod-
els as well as the two ensemble models.

As our case study aimed to describe a proof-of-concept, all 
models used in our study were fitted using default configurations. 
However, it is important to note that an ensemble could just as easily 
be fitted to bespoke models to capture domain knowledge and tune 
model parameters, which would likely increase prediction perfor-
mance. All models were implemented in the R environment, version 
4.0.2 (R Core Team, 2021).

3  |  RESULTS

3.1  |  Variability among individual model 
performance

Models were compared based on their predictive performance using 
classification metrics (recall, precision and F1) for a total of 1,622 
binary vectors (referred to as ‘species’ here), which we grouped into 
four prevalence groups for initial exploration: rare, with prevalence 
<10% (n = 1,110), uncommon (prevalence 10 to 30%; n = 339), com-
mon (prevalence 30 to 75%; n = 160) and very common (prevalence 
>75%; n = 13). For rare species, out-of-sample F1 performance was 
comparable between the GBM-DR and HMSC methods, which both 
performed substantially better than the GLM-BASE by 52.34% and 
48.11% respectively (Figure  1). Similarly, for uncommon species 
HMSC (70.50% average net improvement) and GBM-DR (59.88% 
improvement), along with the GBM-PR (44.54% improvement), per-
formed better than the base, while MVRF performed slightly worse 
(by 1.77%). The relative performances of HMSC and GBM-DR were 
highest for uncommon species and decreased as prevalence in-
creased, with GBM-DR performance falling below the GLM-BASE 
model performance for common species (by 6.25%) and for both 
GBM-DR and HMSC for very common species (by 84.62% and 
100.00% respectively). HMSC and GBM-DR both showed higher re-
call values compared to the GLM-BASE model across all prevalence 
categories except for ‘Very Common’, where they both performed 
significantly worse than the GLM-BASE in terms of recall (both by 
100.00%). HMSC and GBM-DR also showed improvements over the 
GLM-BASE in terms of precision for ‘Rare’ species (by 24.23% and 
35.67% respectively). See Supplementary File 5 for all comparisons 
for precision and recall, as well as values used to calculate percent-
ages of net improvement for F1 by prevalence category.

3.2  |  Predicted model performance based on 
data features

Across the datasets used to train the ensemble, the mean weighting 
as a percentage for each model in the ensemble were: 8.80% for 
GLM-BASE, 23.70% for GBM-DR, 7.95% for GBM-PR, 70.39% for 
HMSC and 10.52% for MVRF. Predicted response functions from 
the ensemble can be used to interrogate how model performance 
is related to particular features of a community dataset, providing 
useful insights for improving both domain knowledge and model 

F1score =
2(Recall × Precision)

(Recall + Precision)
.

 2041210x, 2023, 1, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13915 by N
tnu N

orw
egian U

niversity O
f Science &

 T
echnology, W

iley O
nline L

ibrary on [06/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  153Methods in Ecology and Evolu
onPOWELL-ROMERO et al.

performance. In our case study, prevalence, eigenvector centrality 
and degree centrality were the top three most important predic-
tors of variation in performance across all five models, while be-
tweenness centrality was the least informative (Figure 2).  Across 
all metrics, HMSC was consistently attributed the highest weights, 

however showed greatest variability across prevalence values. For 
rare species, HMSC was the clearly prioritised method  (Figure  3). 
For common species and, in particular, species with mid-range 
prevalence values, the differences in weights between HMSC and 
MVRF were much less pronounced  (See Supplementary File 6 for 

TA B L E  3  Description of features used to define community structures for inclusion in ensemble as predictors of model weights. Value 
range shows the min and max values for each feature across both training and testing datasets

No. Feature Description Level Value range

1 Prevalence Describes how rare or common a species is Species 0.001, 0.948

2 Prevalence Rank Describes how rare or common a species is relative 
to the other species within a community

Species 0.004, 1

3 Prevalence Standard Deviation Describes how much variation in prevalence there is 
within a community

Community 0.026, 0.326

4 Number of observations Describes how many sampling units are present in 
the dataset

Community 50, 8786

5 Number of Species Describes how many species are present within a 
community

Community 4, 242

6 Degree Centrality Describes the number of species with which one 
species co-occurs

Species 0, 1

7 Eigenvector Centrality Describes how influential one species is within the 
community

Species <0.001, 1

8 Betweenness Centrality Describes how influential one species is within a 
community

Species 0, 1.415

9 Modularity (Newman's Q) Describes the structure of the species network in 
terms of clustering

Community −1.459, 0.515

10 Mean Jaccard Distance Describes how unique individual species are relative 
to others

Species 0.659, 1

11 Mean Jaccard Distance 
Standard Deviation

Describes the variation in how unique species in a 
community are

Community 0.004, 0.119

12 Mean Sørensen–Dice Distance Describes how unique individual species are relative 
to others

Species 0.539, 1

13 Mean Sørensen–Dice Distance 
Standard Deviation

Describes the variation in how unique species in a 
community are

Community 0.010, 0.138

14 Mean Sørensen Index Describes the similarity between two samples of 
binary observations

Species 0.355, 0.962

15 Mean Sørensen Index Standard 
Deviation

Describes the variation of the Sørensen Index within 
the community

Community 0.093, 0.345

16 MRF Intercept Describes the probability of occurrence (on the logit 
scale) when all other species are equal to 0

Community −49.943, 4.066

17 MRF Network Information Describes how connected the MRF graph is overall. 
This metric is normalised by the number of 
species in the data

Community 0.641, 85.825

18 MRF Network Information 
Standard Deviation

Describes the variation in the MRF Network 
Information within a community

Community 0.134, 2.076

19 MRF Trace Describes the total amount of dispersion of the 
variables in the MRF network

Community −2.734, 4.387

20 Log Determinant Describes the correlations among pairs of variables 
in the MRF network

Community −0.943, 0.177

21 Number of Covariates The number of raw predictors in the dataset used to 
run the PCA to prepare covariates for analysis

Community 1, 53

22 Number of PCs The number of PCs included as covariates in the 
analysis

Community 1, 5

23 Cumulative Variation Explained 
by PCs

The cumulative variation explained by the PCs 
included in the analysis

Community 0.407, 1
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the response functions for the remaining 20 features included in 
our case study). With the exception of prevalence, which ranks as 
the most important predictor of model weighting for GLM-BASE. 
GBM-PR, HMSC and MRF, the most influential features on model 
weights were co-occurrence network features, with eigenvector 
centrality surpassing prevalence as the most important predictor for 
GBM-DR. GBM-DR and HMSC were most influenced by the 23 fea-
tures overall, with higher relative importance values across multiple 
features compared to the other models. In particular, the contrast 
between the two models in terms of feature importance highlights 
that individual features will influence performance differently for 
each model (Figure 2).

3.3  |  Ensemble model performance comparable 
with best performing models

We tested the predictive performance of our ensemble (ENS) and 
an equally weighted ensemble (NULL-ENS). Overall, the GBM-DR 
performed the best based on the F1 statistic, followed by the ENS 
and HMSC (Figure 4). Out of the 886 species included in the final 
validation set, the ENS had the greatest net improvement (51.13%), 
followed by HMSC (48.87%) and GBM-DR (46.50%; Table 4). Of all 

six models tested, GBM-PR and the ENS provided the most robust 
predictions by yielding the lowest number of F1 metrics that were 
worse than GLM-BASE (3.95% and 5.87% respectively), followed by 
the MVRF (7.79 %) and the GBM-DR (8.92%). The GBM-DR method 
showed the highest improvement in precision (34.20%), followed 
by ENS (33.30%) and HMSC (24.60%). In contrast, HMSC showed 
the highest improvement in recall (68.85%), followed by the ENS 
(59.26%) and the GBM-DR (48.98%; see Supplementary File 7 for 
the tabulated results for precision and recall values and boxplots, 
as well as results for accuracy and deviance residual performance 
metrics).

4  |  DISCUSSION

Given the overwhelming volume of SDMs available and their high 
variability in performance for predicting species distributions, se-
lecting an appropriate model for analysis is not a straight-forward 
task and often requires the lengthy process of fitting several mod-
els with complementary performance. This is not always feasible for 
ecologists seeking to model hundreds or thousands of species under 
time constraints. We proposed an ensemble approach that could be 
used to determine a weighted value for the performance of each 

F I G U R E  1  Relative performance of the compared models MVRF, HMSC, GBM-PR and GBM-DR (see Table 2 for details) measured using 
F1 metric, describing the weighted average of precision and recall, compared to the baseline GLM-BASE model by species prevalence for 
1,622 species. Species prevalence is classified into four categories: Prevalence <10% classified as ‘rare’ (1110 species), between 10% and 
30% as ‘uncommon’ (339 species), between 30% and 75% as ‘common’ (160 species), and >75% as ‘very common’ (13 species). Performance 
for HMSC and GBM-DR is highest for ‘rare’ species, highest for HMSC, GBM-DR and GBM-PR for ‘uncommon’ species, similar performance 
across all models for common species, and inferior performance of the HMSC and GBM-DR relative to GLM-BASE model for very common 
species.
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desired model based on features of the data. While initial training of 
the proposed ensemble also requires fitting individual models, and 
as such will be equally as time-consuming, a continuously trained 
ensemble model could significantly reduce computational times for 
practitioners. Ultimately, this model could bypass the need for all 
constituent models to be fitted to new datasets, which may then 
be used as a tool to select a single model best suited to the dataset. 
Alternatively, over time this model could also be used to select a 
subset of models to be fitted as an ensemble and their respective 
weights, as a platform for providing more robust predictions than 
individual JSDMs or SSDMs, as demonstrated by our case study.

In practical settings, SDMs for hundreds or thousands of spe-
cies are widely applied for management and conservation purposes 
(Palacio et al., 2021; Velásquez-Tibatá et al., 2019). In this case study, 
we illustrate a basic example of how a feature-based ensemble may 

be applied to a small subset of SDMs to improve species occurrence 
predictions. Our findings demonstrated a net improvement over 
GLM-BASE as measured by the F1 statistic of 51.13% for ENS model, 
2.26% higher than the second-best performing model, the HMSC, 
and 4.63% higher than the GBM-DR net performance (Table  4). 
These findings support the idea that combining predictions of multi-
ple models within an ensemble algorithm helps to reduce the biases 
from individual constituent models, offering predictions that are 
both robust and reliable (Araújo & New, 2007). The competitiveness 
of the ENS against the other models was also reflected across other 
performance metrics estimated from the binary predictions (preci-
sion and recall) as the second-best performing model, highlighting 
the ability for the ENS to detect true presence values. Similarly, the 
competitiveness of the ENS model was also highlighted by the per-
formance metrics estimated from probability predictions (deviance 

F I G U R E  2  Heatmap showing relative importance of each of the 23 features (see Table 3 for details) by the compared models GLM-BASE, 
GBM-DR, GBM-PR, MVRF and HMSC (see Table 2 for details) in predicting model weights by the ensemble model. Features are ranked from 
highest to smallest relative importance across all five models.
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residuals), however, performed relatively poorly in terms of accu-
racy, suggesting that the ENS may be unable to predict absences as 
accurately as other models (given that the median prevalence value 
for the testing datasets is 5.17%; See Supplementary File 7 for tab-
ulated results for the various performance metrics). These findings 
suggest that consideration of the most appropriate performance 
metric for the data is important when selecting a model for use.

To enable robust and optimised predictions, our methodological 
approach utilises simple descriptive features that describe species 
and their associated communities. As such, these features provide 
insights into why and when some models outperform others, im-
proving the interpretability of model performance. In particular, 
our findings highlight the importance of features that relate to the 
co-occurrence network (Figure  2). This is particularly evident in 
the response functions for several network metrics, which show 
the variability in attributed weights as the association between 

species differs (see Supplementary File 6). For example, it can be 
seen that for the ‘MRF Network Information’ feature value in-
creases, the attributed weighting to the GBM-DR model increases, 
while the weighting attributed to the HMSC model decreases within 
the ensemble (Supplementary Figure 6-17). This suggests that co-
occurrence datasets with more or stronger associations between 
species, that is, the presence of species has a higher influence on the 
presence or absence of another species, tend to favour the GBM-DR 
method more, while favouring the HMSC method less. This provides 
important and useful evidence that multivariate structure in the 
observed data can be a key indicator of which models are likely to 
perform best. While previous studies have attempted to interpret 
why some models outperform others in particular situations, usually 
by using post-hoc descriptive statistics (e.g. Norberg et al.,  2019), 
our study uniquely quantified these associations through features 
that describe characteristics of binary co-occurrence data. Thus, the 

F I G U R E  3  Model weight response functions for the three features with highest relative importance (prevalence, eigenvector centrality 
and degree centrality) for the GLM-BASE (pink), GBM-DR (blue), GBM-PR (green), HMSC (orange) and MVRF (yellow). Functions were 
estimated by holding all other feature predictors at their mean value and predicting from the ensemble random forest. (a) Trend shows that 
HMSC receives the highest model weighting by the ensemble model. MVRF is attributed the second highest weighting based on prevalence, 
and peaks at mid-range prevalence values. At a prevalence of 0.5, HMSC and MVRF are assigned mid-range weighting values (b) response 
function shows that HMSC is attributed highest weightings across all eigenvector centrality values peaking at lower values. GBM-DR is the 
second highest best performing model. (c) Response function shows that HMSC and GBM-PR are attributed the highest and second highest 
weightings across all degree centrality values, respectively, with complimentary performance for number of observations.
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results together with the valuable insights into how models perform 
relative to features offer promise for the feature-ensemble method's 
broader applications.

While our example highlights the utility of ensemble model-
ling without necessarily having to fit a bespoke model, the flexi-
bility of this approach means that users could incorporate more 
bespoke, knowledge-driven models. Bayesian models with context-
specific prior information can readily be included (Clark et al., 2017; 
Ovaskainen & Soininen, 2011), as well as models that rely solely on 
expert opinion to estimate species occurrence (Velásquez-Tibatá 
et al.,  2019). Beyond ecology, ensembles that combine a diversity 
of expert-driven predictions have demonstrated their superiority 
compared to individual models in many settings, such as forecasting 
weekly deaths from COVID-19 in the USA (https://viz.covid​19for​
ecast​hub.org/). Evaluating the performance of the feature-based 

ensemble method using more specialised individual models offers 
exciting avenues for future investigations.

Our findings also highlight some of the strengths and limita-
tions of the individual constituent models. Of particular note is the 
GBM-DR method, whose competitive performance offers some 
valuable insights into the importance of learning from other species 
to predict the occurrence of a focal species, adding to the growing 
body of evidence regarding the importance of accounting for biotic 
associations in species distribution modelling (Araújo & Luoto, 2007; 
Heikkinen et al.,  2007; Leathwick et al.,  2006; Ovaskainen 
et al., 2017). While our GBM-DR model only used GLMs as the base 
models for all species and a weak GBM learner as the stacker, in prin-
ciple, a wide variety of models could be applied to each individual 
species prior to stacking. The flexibility of the approach means that 
users can potentially incorporate any model of any form, so long as 

F I G U R E  4  Relative performance of Null Ensemble (NULL-ENS), MVRF, HMSC, GBM-PR, GBM-DR and the Weighted Ensemble (ENS) 
relative to the base GLM model (GLM-BASE) as measured by the F1 statistic, describing the weighted average of precision and recall. GBM-
DR, HMSC and ENS model perform significantly better than the GLM-BASE.

TA B L E  4  Improvement of predictions over the GLM-BASE for each method based on the F1 statistic for 886 species in the test datasets

Method
Positive difference (adj. 
F1 > 0.02)

No difference (adj. F1 –0.02 
–0.02)

Negative difference (adj. 
F1 < −0.02)

Net improvement 
(positive – negative)

ENS 505 329 52 453

NULL-ENS 52 695 139 −87

GBM-DR 491 316 79 412

GBM-PR 207 644 35 172

MVRF 209 608 69 140

HMSC 540 239 107 433
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they can generate fitted values and residuals, and there is opportu-
nity to use other learners to optimise the stacking predictions (Xing 
et al., 2020).

Another advantage of the SSDM approach is the ability to esti-
mate nonlinear species associations, rather than relying on additive-
only associations described by loadings on latent factors, such as the 
HMSC approach, or estimated from the full covariance matrix (Clark 
et al., 2018; Ovaskainen et al., 2016), which can be slow and ineffi-
cient for large and complex datasets (Norberg et al., 2019; Pichler 
& Hartig, 2021). Inclusion of covariates within the stacking learner 
could also be done, which could in-principle capture how species as-
sociations change across environmental gradients. This ability to use 
recent advances from machine learning for the stacking model co-
incides with the rising need for interpretable machine learning pro-
cesses to interrogate and understand these models. For example the 
recently developed Multi-response Interpretable Machine Learning 
(MrIML) framework offers a flexible approach that compares the 
performance of multivariate models and delivers interpretable out-
puts, which could be used to better understand the associations es-
timated in the stacking model (Fountain-Jones et al., 2021).

Beyond our case study, the feature-based ensemble framework 
could be manipulated to suit different end user requirements. For 
example, while we used deviance residuals to obtain the initial model 
weights to train the ensemble model, different loss functions includ-
ing Pearson residuals or even classification metrics such as F1 scores 
could be used instead. Incorporating uncertainty could also be used 
by optimising on a penalised prediction interval rather than on a 
point metric such as the deviance residual, although this approach 
is more challenging when considering methods such as GBM-DR 
and GBM-PR as there is no convenient way to quantify prediction 
uncertainty. Alternatively, identifying more precise ways than using 
posterior means to calculate point predictions from Bayesian pos-
terior distributions (as we did here) could allow for optimisation of 
the Bayesian methods where models do not allow for quantification 
of prediction uncertainty. For simplicity in our model, we optimised 
the binarisation threshold for species predictions to 0.5, but this ar-
bitrary value could also be optimised to improve each model's pre-
dictive ability.

5  |  CONCLUSIONS

Improving the predictability and interpretability of species distri-
bution model for practical applications requires more than com-
parisons between model performance across ecological contexts: it 
requires a deeper understanding of how co-occurrence data drives 
model performance and better ways for accounting for variations in 
species associations. In our study, we have demonstrated the util-
ity of a flexible feature-based ensemble approach with the capacity 
to retrieve accurate and robust predictions rapidly over a range of 
ecological contexts, without necessarily needing to fit highly spe-
cialised models. Within our case study used to highlight the potential 

applications of our ensemble, we have also introduced a new SSDM 
approach with great potential for future applications in ecological 
modelling.
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