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Abstract

Part I: Ideal Neutron Stars (project thesis)

In this project, we set out to describe a spherical compact star composed of cold, non-interacting neutron
matter. Along the way, we derive general equations which we can use later to build more complex, and
more realistic, neutron star models. The main goal is to calculate the mass-radius relations parameterised
by the central pressure of the star. The pressure, mass and radius are related by the Tolman-Oppenheimer-
Volkoff-equation, which we derive from the theory of general relativity. This equation alone is not enough
for a full description of a star — we need an equation which describes how the matter in the star behaves,
called an equation of state. We derive one such equation by considering a free fermionic gas at T'= 0. We
call it the ideal equation of state. Then we combine these results to calculate the mass-radius relations
for a sequence of ideal neutron stars. This reproduces the original work of Oppenheimer and Volkoff
from 1939. Finally, we investigate the stability of ideal neutron stars through perturbation analysis,
following the idea of Chandrasekhar from 1964. Although the ideal model is too simple to predict results
in accordance with observations, it will lay the foundation for more realistic models.

Part II: Quark, Hybrid, and Unified Hybrid Stars (Master’s thesis)

In part II, the Master’s thesis, we describe cold, spherically symmetric, compact stars with the two-flavour
quark-meson model. At first, we derive important thermodynamic quantities from quantum field theory
at finite chemical potential. Plugging the quark-meson Lagrangian density into this framework, we obtain
an equation of state for two-flavour quark matter, allowing us to model quark stars. With the Tolman-
Oppenheimer-Volkoff-equations, we calculate mass maxima in the range [1.77, 2.02] My (solar mass),
depending on the quark-meson model parameters. Introducing the Akmal-Pandharipande-Ravenhall
equation of state for nuclear matter, we also model compact stars consisting of both nuclear and quark
matter: Hybrid stars. For an abrupt transition from nuclear to quark matter in the star core, we find
maximum masses in the range [2.00, 2.08] Mg, again depending on the quark-meson model parameters.
Using an interpolating phase between the nuclear and quark matter instead of the abrupt transition, we
find that the range shifts to [1.67, 1.95] M. The choice of where to start and end the interpolating phase
significantly influences the maxima, hence the difference in the size of the intervals for the two hybrid
star models.

The cover plot displays a selection of the mass-radius relations we encounter throughout the project and
Master’s thesis.







Sammendrag

Del I: Ideelle ngytronstjerner (prosjektoppgave)

I prosjektoppgaven beskriver vi en sfaerisk kompakt stjerne som bestar av kalde, ikke-interagerende
ngytroner. Underveis utleder vi generelle likninger som vi kan bruke senere til a lage mer kompliser-
te og realistiske ngytronstjernemodeller. Hovedmalet er a regne ut masse-radius-relasjoner parametrisert
ved stjernens sentraltrykk. Trykket, massen og radien kobles sammen av Tolman-Oppenheimer-Volkoff-
likningen, som vi utleder fra generell relativitetsteori. Denne likningen alene er ikke nok til en fullstending
beskrivelse av en stjerne —vi trenger en likning som beskriver hvordan materien i stjernen oppfarer seg,
en tilstandslikning. Vi utleder en slik likning ved & betrakte en gass av frie fermioner ved 7' = 0. Vi
kaller denne likningen for den ideelle tilstandslikningen. Deretter kombinerer vi resultatene til & regne
ut masse-radius-relasjonene for en rekke av ideelle ngytronstjerner. Dette gjenskaper originalarbeidet til
Oppenheimer og Volkoff fra 1939. Til slutt undersgker vi stabliliteten til ideelle ngytronstjerner ved hjelp
av perturbasjonsteori. Denne delen er i trad med arbeidet til Chandrasekhar fra 1964. Selv om den ideelle
modellen er for enkel til & produsere resultater som stemmer overens med observasjoner, vil den legge
grunnlaget for mer realistiske modeller.

Del II: Kvark-, hybrid- og forente hybridstjerner (masteroppgave)

I del II, masteroppgaven, beskriver vi kalde, sfeerisk-symmetriske, kompakte stjerner med kvark-meson-
modellen med to kvarker. Til & begynne med utleder vi relevante termodynamiske stgrrelser fra kvante-
feltteori ved endelig kjemisk potensial. Vi bruker deretter dette rammeverket pa den fenomenologiske
kvark-meson-modellen for & finne en tilstandslikning for kvarkmaterie bestaende av de to letteste kvarke-
ne, u- og d-kvarken. Med TOV-likningene regner vi ut massemaksimum i intervallet [1.77, 2.02] M, for
kvarkstjerner. Maksimalverdien avhenger av parameterne vi bruker i kvark-meson-modellen. Ved hjelp av
Akmal-Pandharipande-Ravenhall-tilstandslikningen modellerer vi ogsa kompakte stjerner bestaende av
bade nuklezer- og kvarkmaterie: Sakalte hybridstjerner. Ved a bruke en bra overgang fra nuklesermaterie
til kvarkmaterie i stjernens kjerne, finner vi maksimalmasser i intervallet [2.00, 2.08] M. Pa ny avhenger
verdien av modellparameterne. Til slutt bruker vi ogsa en interpolerende fase mellom nuklezer- og kvark-
materien i det vi kaller en forent hybridstjerne. Da finner vi at maksimalmassene flyttes til intervallet
[1.67, 1.95] M. Maksimalmassene er fglsomme for hvor vi velger a4 begynne og slutte den interpolerende
fasen, og derfor spenner dette siste intervallet over flere verdier enn det forrige.

Tllustrasjonen pa fremsiden viser noen av masse-radius-relasjonene vi regner ut i lgpet av prosjekt- og
masteroppgaven.
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Notation

Throughout both Part I and Part II of this project, we will use the Einstein summation convention. This
means repeated indices are summed over. We say that we contract the indices. Greek indices, e.g. p and
v, denote spacetime indices and are consequently summed from 0 to 3. Latin alphabet indices, e.g. 7 and
n, denote Euclidean indices. These indices are summed from 1 to 3. This is, of course, unless anything
else is specified.

TH=TY+TY+T5+T% and T% =T, +T%+T% (0.1)
For the metric tensor, we will use the mostly negative convention. For a flat spacetime, this means that
the Minkowski metric 7, takes the form

1 0 0 0
0 -1 0 0

=10 0 -1 0 (0.2)
00 0 -1

To describe a spacetime vector, we will use both x and x*. The two notations are equivalent. For a spatial
3-dimensional vector, we will use the notation Z. As a shorthand for partial derivative of a spacetime

coordinate z#, we will write

0 10 9 o0 0

= =|-5 55 55 7= - (0.3)
oxH cOt’ Ozl Ox?’ 023

For the project thesis, we will, unlike many texts on general relativity and special relativity, we keep all

the natural constants as they appear, i.e. the speed of light ¢, Planck’s reduced constant & and Newton’s

gravitational constant G will not be set to unity.

However, in Part II, the Master’s thesis, we will take

h=c=1. (0.4)

Fermions and ~-matrices

Fermions are described by a complex 4-component vector ¥ = (U, ¥y, Uy, ¥U3). In the fermionic sector
of a Lagrangian density, the y-matrices appear. These matrices mix the components of fermion-vectors.
We denote them with Lorentz-indices. They satisfy the following anti-commutation relation

{27} =2 (0.5)
Explicitly, they read

o_ (010 0 (0090
7 ={o00-10 |> Y =10 -100)>
00 0 —1 -10 00
s (000T) (BB .
_(o00io0 — -
T =\1o0io00 )> T =\ -1000
—i00 0 010 0
In addition to these, we will encounter +°, which is defined as
5 0.1.2.3 0009
Y =YYy =11000 |- (0.7)
0100
5

the upper components, U9, !, with the lower two, U2, U3. The ~°-matrix has the property that it anti-
commutes with all the other v*. In addition, it is Hermitian and it squares to unity.

{+*,v*} =0, ()T =15, and VP95 = Lyxa. (0.8)

Although (7°)? is a matrix, we will favour writing simply 1 instead of 14x4. This is for brevity of notation,
as there are other indices to sum over as well, e.g. colour and flavour indices for quarks. Whenever quarks
enter the Lagrangian, they are represented by 4-component vectors, and we will not always be explicit
about this.
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Pauli Matrices

The Pauli matrices, 7;, are frequently occurring in physics, and this thesis is no exception. On matrix
form, the Pauli matrices read

L I O RS R

For us, they will be particularly important as the generators of the SU(2)-group, the group of all complex
2 x 2-matrices where a matrix Ut = U~!, with a determinant of absolute value 1. Being the generators
means that we can write any element U € SU(2) as U = exp(ia;7;). It also comes with the properties
of being Hermitian and traceless.

()t =1, and Tr(r;) = 0. (0.10)

In addition, it is possible to show that
TI'(TZ‘TJ‘) = 2(5”, (011)

where 6;; is the Kronecker delta. We will also encounter the Gell-Mann-matrices, which are the standard
matrices to represent the basis for the generators of the SU(3)-group. We denote these by T4, where
A€ {l,..., 8} These are, in some sense, the bigger brothers of the Pauli-matrices.

Conversion Factors and Useful Constants

As we use the unit convension in Eq. (0.4) in the Master’s thesis, we express e.g. masses, number
densities, and pressures in different powers of an energy scale, often with units of MeV. Consequently,
when we have performed all calculations, the answer is not expressed in terms of familiar SI-units. In
order to keep the numeric values low, we will also often use fr = 93 MeV as the energy scale. Restoring
the ¢ and A is a simple exercise when we know what SI-unit we are going back to. We need conversions
for energy densities, pressures and number densities. The most relevant conversions are

e Restore ¢ 9 74 % 1073 GeV fm ™3 = 1.56 x 103 Pa, (energy density, pressure) (0.12)

3 Restore A, ¢
%
Ix

0.1047 fm ™3, (number density) (0.13)

A practical scale to compare neutron star number densities against, is the nuclear saturation density, ny,
which is the number density in atomic nuclei. The neutron star masses are often comparable to the solar
mass, My. We use

no ~ 0.16 fm > 1==1 1,533, (0.14)
Mg = 1.988 x 103 kg, (0.15)

as their values, see Refs. [2] and [3].

We will mostly try to omit abbreviations, with some exceptions. The words we abbreviate will be
explained at their first occurrence in the main text. To have them all in one place, we list them here.

SR = Special relativity, GR = General relativity,
TOV = Tolman-Oppenheimer-Volkoff, QFT = Quantum field theory,
TFT = Thermal field theory, APR = Akmal-Pandharipande-Ravenhall.
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Chapter

Introduction

Stars have fascinated mankind for a long time. And for good reason, as our existence is dependent on
one. But not only are stars intriguing due to their importance to us, they also exhibit interesting physics
throughout their entire lifespan. From thermo-nuclear fusion processes, relativistic gravitational effects
to supernovae: The life of a star is certainly worthwhile giving a bit of extra attention. Trying to describe
a star forces us to combine many important branches of physics into one exciting description.

When thinking of a star, most people imagine luminous objects powered by fusion reactions in the core.
But this is just one part of the life cycle of a star. Every star evolves through several phases before ending
up as either a white dwarf, a neutron star or a black hole. In the beginning, a star forms as a cloud of
interstellar gas gathers into a cluster. Gravity attracts more gas into the cluster as time passes. The
gravitational energy released from the attraction is converted to thermal energy, and the temperature in
the cluster rises along with the energy density and the pressure. At a certain temperature, fusion processes
start at the core. At this point, the star has entered its luminous stage. We say that it has become a main
sequence star. During the luminous stage, the radiation pressure balances the gravitational pull. The
fusion processes start with hydrogen, until all the hydrogen has run out in the core. Then the core starts
to contract, enabling fusion of helium due to the increase in temperature. This goes on with heavier and
heavier elements, until the core can no longer reach the temperature to start the next fusion stage. For
the most massive stars, iron marks the end of the fusion processes, as iron can no longer produce energy
by fusion. This means that at some point, every star runs out of fuel and the fusion processes stop. Then
the star starts to contract due to the force of gravity. The next stage depends on the mass of the star. A
white dwarf is the end state for a star of relatively low mass. By relatively low, we mean stars with mass
< 8Mg. Much of the mass is lost in the process of becoming a white dwarf, as a white dwarf typically
has a mass of ~ 0.5Mg. The dwarf is a hot, compact object. A white dwarf usually has a radius of a
few kilometers, and a mass density about a million times higher than that of the earth. A massive star,
ie. M > 8Mg, may end up as a neutron star after a great explosion called a supernova. A neutron star
is smaller and way more compact than a white dwarf. A typical neutron star has a radius of about ten
kilometers and a mass of ~ 1.4M. This means that the neutron star is incredibly dense! In comparison,
the radius of the sun is about 70000 times larger than that of the average neutron star, and the masses
are comparable. We call both white dwarves and neutron stars compact stars. The most massive stars
create black holes, also after a supernova. We will not consider black holes here. For a more detailed
introduction to the life cycle of a star, see Ref. [4](pp. 62-69).

In this thesis, we are particularly interested in the compact remnants of a main sequence star. Both
the white dwarf and the neutron star will after their formation gradually cool down through thermal
radiation. Compact stars are dense objects where the force of gravity is balanced by an internal pressure.
Such a pressure can stem from the Pauli exclusion principle, which states that fermions cannot occupy the
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same state. We call this type of pressure the quantum pressure or the degeneracy pressure. The internal
pressure in a compact star can also be caused by repulsive forces between the particles. For instance,
in a low temperature white dwarf, the pressure comes from the quantum pressure from degenerate, non-
relativistic electrons. A neutron star is also sustained by the degeneracy pressure, but due to its large
internal energy it cannot be treated non-relativistically. The high mass densities are not suitable for a
Newtonian gravity-description. This means that matter should be treated with a relativistic description,
and the strong gravitational force should be described by the theory of general relativity. The compact
stars are interesting because of the extreme conditions imposed on the matter inside. This is particularly
true for a neutron star. In this thesis, we are going to describe a neutron star composed of cold non-
interacting neutron matter in the framework of general relativity and statistical physics. This is a
preliminary to the study of more complex neutron star models consisting of interacting matter with more
than one species of particle.




Chapter

General Relativity and the TOV-equation

The main goal of this chapter is to derive the Tolman-Oppenheimer-Volkoff-equation (TOV). This is
a differential equation which we will use to describe compact stars. To do so, we must first derive the
Einstein equation from general relativity. Then we solve the Einstein equation for a spherically symmetric
geometry. Although we assume the reader is familiar with GR, we give a quick recapitulation of the most
essential ideas and quantities. This also serves to explain the notation.

2.1 Deriving the Einstein Equation

In GR, and hence SR, we do not treat space and time separately. In the Newtonian description of
reality, we are used to treat space and time separately. We use 3-dimensional vectors for space, and
time is treated as an independent parameter. In GR, however, we treat space and time together, as one
4-dimensional vector in spacetime. A coordinate is then x = z# = (cz®, 2!, 22, 23), where we put the
time coordinate first. In a Cartesian coordinate system, this vector takes the form z# = (ct,z,y,z). In
addition to including the time coordinate to construct a 4-vector, we use a special metric when we take
the scalar product. This metric is called the Minkowski metric, and it is written out in Eq. (0.2). Taking
the scalar product of a vector with itself gives a measure of distance in spacetime. For an infinitesimal

vector, it reads

dx - dx = da'n,,dz” = 9y, det de”
= (cdz®)? — (dz")? — (da?)? — (da®)?
= 2dt? — da® — dy® — d2°. (2.1)

In the first line, we are free to move 7, around since it is just a number when we write the equation
in component form. Why is this a natural formalism? There are many reasons, and we shall consider
one particular example. We see that the positive term is equal to how far the speed of light can travel
during the time ¢. The sum of the negative terms is equal to the usual length of a 3-dimensional vector.
Form this, we see that a vector x with negative spacetime distance has a spatial component Z which is
longer than than the speed of light can travel during the time ¢. To see why this is useful, we now let x
and y describe two separate spacetime events. Imagine for instance that the event x = (¢, Z) is a light
signal being emitted at some point in space ¥ at a time ¢, and similarly for y. The difference between the
two events x — y describes their separation both temporally and spatially. If the length of the difference
x — y is smaller than zero, we know that the two events cannot be connected to each other, as the light
emitted from x would not have had the time to reach y or the other way around. This is due to the fact
that no signal can, of course, travel faster than light. This feature is very useful, as it easily allows us to
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determine whether two events are causally connected or not. In addition, the path of light will always
have a spacetime distance which is zero.

The case we have described above is only applicable to flat spacetime. We are interested in GR, where
spacetime is in general curved. We can generalise the flat spacetime formalism through the mathematical
description of spacetime as a Riemannian manifold. We will not go into detail about the mathematical
definition here, but a main feature of a Riemannian manifold is that at any point, it is locally flat. This
means that in a small neighbourhood, we can find a coordinate system in which the metric is Minkowski.
This property is called the equivalence principle. Physically, it means that in a neighbourhood, the laws
of physics from flat space are valid. This has the consequence that the analysis of a flat spacetime carries
over to the the general spacetime. In particular, the notion of distance we introduced above is valid in a
small neighbourhood around any point.

To describe a Riemannian manifold, we promote the Minkowski metric to a more general, spacetime
dependent metric 7, — gu (x). In a scalar product, we now use g,,. The distance between two
infinitesimally separated points, also called a line element ds?, now reads

ds* = g, dz"dz". (2.2)

The notion of distance holds for two infinitesimally separated points, because they belong in the same
neighbourhood. Eq. (2.2) is similar to the case for the flat spacetime Eq. (2.1), except for the change of
the metric. In order to measure distances between well-separated events, we would have to integrate the
line elements between the two events.

We see that the metric tensor can be taken to be symmetric in its indices: g,, = g,., because any
anti-symmetric component does not contribute to ds?.

Next, we are interested in performing coordinate transformations from one coordinate system described
by z* to another coordinate system described by z'# = 2/#(x). We can use the product rule to express
the transformation for an infinitesimal vector dz'#. We can also do this the other way around, for
xt =M (x’). We find

ox'* oxH
dz'* = ——dz¥ and dz* = ——dz". 2.3
oxv ox'v (2:3)
Going from one coordinate system to the other and then back again, we see that these transformations are

inverses of each other. Mathematically speaking, we write %:;/: g;f,i = 0¥, where 6 denotes the elements

of the identity matrix. We require that the line element is invariant under coordinate transformations.
Otherwise, there would be no properly defined notion of distance. Let now g;“/ denote the metric tensor
in the coordinate system described by coordinates z'#. Asserting the invariance of the line element in
Eq. (2.2) allows us to write

gl’wdx'“dx”’ = g(,[gdxadxﬁ
oz’ 9z'v

’ a0 a .0
gw—axa P dx®dz® = gopdz®dx”, (2.4)

or
dx® dzP

/
Juw = Jap o (2.5)

In going from Eq. (2.4) to Eq. (2.5), we have cancelled the equal differentials on each side, and we have
applied the inverse transformation to both sides to express g;“, in terms of g,, and the transformation.
We see that each index of the metric transforms inversely the vector dx*. This motivates us to define
tensors with covariant upper indices and contravariant with lower indices. A tensor is an object with one
or more indices, upper or lower, which abides specific transformation rules under a change of coordinate
systems. For a tensor with one index, also called a vector, the transformation property looks like

ox'+ ox”

i o v !
VE SV 77835”‘/ and V”%V‘Liax’“

V.. (2.6)
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. . . . I .
For a tensor with more than one index, each upper index * will transform as %”7, and each lower index

u as %“fl The metric tensor is an example of this, as seen in Eq. (2.5).
We define the metric tensor with upper indices, g*, to be the inverse of g,,,. This means that g,.g"" = d,;.
We confirm that the inverse property also holds after a coordinate transformation, which it should if the

transformation rules for tensors are properly defined.

da'* dz'? 0z’ Ox¥
65 = g”pgplf — g/upglpy = gaﬁ dr® dl'ﬁ Jow ox'P Ox'v
da'* dxv ozv
= 9?9505 T o = 52 o 5H. (2.7)

Going on, we use the metric tensor to lower and raise indices of tensors by contraction, e.g.
Ve=g,V" and VH=g"V,. (2.8)

This is also consistent with the tensorial transformation rules, of course. From the raising or lowering
property, we notice that the metric with one upper and one lower index is equal to the identity matrix,

guu = Guag®’ = 6Z

Until now, we have not mentioned any other vector quantities besides the position coordinates dx*. An
example of another vector, is the four-velocity w*. Here it is written in its contravariant form. The
4-velocity will be important later. Let r# denote some position 4-vector, and we would like to find its
velocity. Typically, one would differentiate with respect to the coordinate time. This will not work now,
as we want to preserve the tensorial transformation property of the position 4-vector r*. We know that
the time coordinate in general transforms, so differentiating a vector with respect to the time coordinate,
would in total not transform with the transformation property defined above, in Eq. (2.6). Both the
position 4-vector component and the derivative itself would transform under a change of coordinate
system, ruining the linear transformation property we want. We need to differentiate with respect to
something which is invariant with respect to a coordinate transform. We have already defined one such
quantity: The line element. From the line element, we can define the proper time 7.

ds?
dr? = —.
o2

(2.9)
The proper time has a nice physical interpretation. We imagine an observer moving along a spacetime
curve. This observer perceives it as the surroundings are moving, and that he/she is at rest. The time
this observer would measure going from one point on the spacetime curve to another, is the proper time.
We can use the proper time instead of ¢ to parameterise the differentiation. For a position vector r# with
non-zero dr, we define the four-velocity of as

14

drt dr® drl dr? drd
=S = e, S ). 2.1
dr (CdT’dT’dT’dT> (2.10)

We need a few more definitions before we can write down the Einstein equation. With the metric tensor,
we can write the Christoffel symbols, also called the metric connection, as

Db = 59" Ouios + Outins — Do) (2.11)
Firstly, we notice that the symmetry of exchanging the indices in g,,,,, implies a symmetry of interchanging
the lower indices in Fﬁu. We mentioned earlier that in GR, we can at any point erect a coordinate system
such that a neighbourhood around the point is described by the Minkowski metric. The Christoffel
symbols describe the connection between a locally flat coordinate system with another coordinate system.
From their definition, we see that the Christoffel symbols vanish if space becomes flat. This happens
because the metric then becomes independent of spacetime coordinates, and all partial derivatives in the
parenthesis vanish. Despite appearing to be so, the Christoffel symbols are not tensorial. However, they

7
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appear in the expression for the covariant derivative V,, which, when acting on a tensor quantity, is a
tensor.

VAT s = NI+ TR T s+ TR T o =TT, =TT e = (212)
Loosely speaking, the covariant derivative V,, generalises the partial derivative 9,. Going from a curved
spacetime to a flat one, the covariant derivative simplifies to the partial derivative because the Christoffel
symbols vanish. Now we are ready to introduce a very important principle: The principle of general
covariance. This principle states that any result valid in SR is valid also in GR with the exception that
the Minkowski metric 7, takes the form of the general metric g,, and partial derivatives J,, turn into

covariant derivatives V. This follows from the equivalence principle. A good discussion can be found in
[5], (pp. 385-387).

Acting with the covariant derivative upon the metric tensor gives 0, i.e. Vg, = 0. This can be found
by combining Eqgs. (2.11) and (2.12). Now everything is set up to define the Riemann curvature tensor

Rf;l,p. The Riemann curvature tensor arises from the fact that covariant derivatives no longer commute,
as ordinary partial derivatives do. We investigate the commutator acting on a vector
[V, VoV, = VYV, V, =V, V.V, = R}, Vi (2.13)

A

Lvp bakes the form

From the definition above, the Riemann curvature tensor R

R),,=0I;,—0,T

A a A a A
o 4T T) —ToT (2.14)

mp np™ va vpt pas

A discussion of the Riemann curvature tensor can be found in [6] (pp. 77-81). Flat space is equivalent to
the vanishing of the Riemann curvature tensor. If we contract the first index in the Riemann curvature
tensor with its third, we get the Ricci tensor R,,. Contracting the indices of the Ricci tensor gives the
Riemann scalar R.

Ry, = Ry and  ¢"“R,, = R*, = R. (2.15)

Finally, we have defined all tensors we need to state the equation which governs how matter and mo-
mentum curves spacetime. This equation is called the Einstein equation. A derivation of this from
physical principles can be found in [5] (pp. 405-407). In component form, it is

1 &G
R, — §Rg,“, =——"Tu, (2.16)

!
which is ten equations - one for each index combination, subtracting six of them due to the (u < v)-
symmetry. Note the minus sign on the right hand side. This is a consequence of our choice of the mostly
negative metric. T}, is the energy-momentum tensor. In general, we have to add another term Ag,, to
the left hand side, where A is called the cosmological constant. This extra term plays an important role
in the expansion of the universe, but close to a massive object, it is so small that we can neglect it.

2.2 The Spherically Symmetric Star

The next goal is to solve Eq. (2.16) for the metric g, for a spherically symmetric star. In spherical
coordinates, we use spacetime coordinates z* = (ct,r,0,¢). Having a stationary spherical symmetry,
there should be neither time dependence nor angular dependence in the metric. In addition, the line
element ds? should be invariant under time inversion, ¢ — —t, and to independent inversions of the
spatial axes, namely § — 7 — 0 and ¢ — —¢. Performing these inversions corresponds to sending
dt — —dt, df — —df and d¢ — —d¢ in Eq. (2.2). In order for ds? to be invariant, we have to require
that grt, gro, gres 9i0, gts and gee all vanish. For the angular part, we should also have gogdb? +g¢¢d¢>2 =
f(r)[d6? +sin*(0)dp?] = f(r)dQ?, due to the spherical symmetry. This is the customary angular element
scaled with some function of the radial coordinate r. We are left with

ds® = Gupdxtdz” = gy (r Adt? + Grr (7 dr? — f(r d02. 2.17
i
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We still have the freedom to choose the radial coordinate. A convenient choice is 7' = r/(r) such that
r"?2 = — f(r), which makes the angular part of the metric the customary one from flat space in spherical
coordinates. We also rename " — r, g11(r) = a(r) and g, = —f(r). In this way, we have arrived at the
most general form for the metric for a spherically symmetric geometry

ds* = a(r)cdt* — B(r)dr? — r2dQ>. (2.18)
We also assume that the star is composed of an ideal fluid. In Appendix A, we discuss the ideal fluid and

derive its energy-momentum tensor. It reads

Uy Uy

Tl“’ = 2 (6 +p) — 9P, (219)

where u# denotes the 4-velocity. In the rest frame of the fluid, the four velocity squared is u,u” = c?,

with the three vector part @ = 0. Writing out the square of the velocity in the restframe gives us
& = uuu,g™" = alr)ud. (2.20)

Now, we insert the expression above into 7}, to find the energy momentum tensor T}, = a(r)(e+p)d560 —
PGy Writing it out in matrix form, we find

a(r)e 0 0 0
_| 0 Bp 0 0
Tw=| o 0 . (2.21)
0 0 0 r2sin?(0)p

The next task is to find the right hand side of Eq. (2.16). We start by calculating the Christoffel symbols
in terms of the unknown functions a(r) and 5(r). Since we know the form of g,,, and thus also know
g", we can express Eq. (2.11) in terms of o and 5. Since the metric is diagonal and only depends on
r and 6, there are not many non-zero Christoffel symbols. To exemplify the calculation, let us consider
rt,.

1 1
Pvtﬂt = igtg(argta + atgra - aogrt) = ggtt(argtt)

_1a(r)
2 a(r)’

(2.22)

where the prime ’ denotes the derivative with respect to r. Performing this calculational exercise for all
Christoffel symbols, one finds that there are 9, not counting the terms we know from symmetry of the
lower index-pair. They are

15 r
T =-= o
rr 2 ﬁa 060 /87
, 1d , rsin?(6)
Ftt:§§a Faba&:_Tv
ot 1047’ e _ cos(0) (2.23)
o) % sin(f)’
1 1
1% =~ e, ==
6 T’ T 7“7

%, = —sin(0) cos(0).

Next, we can insert these into Eq. (2.14) and contract as in Eq. (2.15) to find the Ricci tensor components.
Doing it explicitly for R, we get the following

Ry = 0,17, — 0,17, + TL T9, — Fftfgg

to™ pt
= —0, (F:t) + FETFZ + thrf"t - thrit - r:tr:r - F:trge - thrqu
/ ! / 2 ! " / ! / /
e T L i s (2.24)
20 26 \2a 1 20 26 28 \2a 28 rB
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In the same manner, we find R, and Rgy. Performing the calculation, we find

B o o /o g g

Rrr*g*ﬂ <20€+26> *@, (2.25)
1 o fd B

Rop = B + B (2& - 26) —1. (2.26)

In order to proceed, we wish to express R in terms of € and p. We can trace the Einstein equation (2.16),
i.e. contracting it with g"”. The energy-momentum tensor trace reads 7}, g"" = € — 3p. Consequently,
we find

(e 3p). (2.27)

As the next step, we substitute Eq. (2.27) into Eq. (2.16) and consider the three cases when (p,v) =
(t,t), (r,r) and (6,0).

8nG 1 4G

Ry = ==~ Tu + 5 Rgn = ——-alr) (e +3p), (2.28)
4G

R, =— e (T) (6 - p) ’ (229)
4G

Rge = —CTT2 (6 — p) . (230)

Now we are nearly at our goal, namely expressing [ in terms of the pressure p and the energy density
€. By making a particular linear combination of Ry, R, and Rgg, we can simplify the equations for «

and (. Firstly, we see that % + e = fﬁ - f?, where we only have first order derivatives. If we
additionally include Ryg, we can totally eliminate «, as in
Ry Ry Ro__ o 5 1 o § 1 _1 g 1
20 2f r2  2raB  2rB2 128 2raB  2rB2 12 123 rp2 2
2nG 8rG
= — 02 (6+3p+6—p+26—2p):—6746 (231)

In the second line, Egs. (2.28), (2.29) and (2.30) were used. This expression can be rearranged into

1 ! d 8rG

We can integrate both sides of this expression from 7’ = 0 to v’ = r. The left hand side immediately

’
_r_ r

evaluates to B0y lim,/ g Kok If we assume that 8 does not approach 0 (or at least that it approaches

0 more slowly than r) in the limit » — 0, the second term disappears, and we are left with % on the left
hand side.

r 2G [T e(r’)
—— =7+ [ dr'dmr”? . 2.33
30 r+62 ; ridmrt = (2.33)
We define the integral to be M (r). This has the interpretation of being the graviational mass, that is the
mass that curves spacetime and thus affects the path of other objects moving in space and time. Having
defined M(r), we can continue to solve for 3(r). We arrive at

1
p(r) = | _ 2GM()°

c2r

(2.34)

This is self consistent with the assumption of 8 not going to zero as r — 0. Now we have found one of
the metric functions, and it turns out that this is the only one we need an explicit expression for to derive
the TOV-equation. In order to proceed, we make use of energy-momentum conservation. We derive this
relation in Appendix B. In general relativity, the conservation law is expressed as

V,.T" = 0. (2.35)

10
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We consider this equation for v = r. Firstly, we raise the indices of T/w for an ideal fluid found in Eq.
(2.21). This has the effect of sending o — 1,8 — L. 7?2 — L and r%sin®(9) — Secondly, we
use the definition of the covariant derivative to ﬁnd

1
r2sin?(0)

VT = 9, T+ + ", T°" + I, T

po

=0, + <FT + Ftr + F&r + Fd)r) T+ F:rTM + F;tTtt + FgaTeg + F2¢T¢¢

B 8 o 2 o 2
8<6>+62p+ 2a8” T a" Tt 208 T 7P
1 /

=0+ (e+p)=0. (2.36)
=5 T 2ap TP
We gather the as on one side, and find that the above expression is equivalent to
/ )
a_r (2.37)
20 €e+p

which is the important energy-momentum conservation constraint. This will, in addition to its immediate
application, be applied in the case of radially perturbed stars. The final step to find the desired TOV-
equation, is to insert Eq. (2.37) into the expression for Rgp that we found in Eq. (2.26). Then, we apply
our other equation for Rgpg, namely Eq. (2.30).

1 r (=0 p 4rG
Rpg ==+ — —— ) -1=- re(e — 2.38
w=z+5(L-2 (e~ p) (2.3%)
Here, the derivative of p with respect to r appears, which is exactly what we want for a differential
equation describing p. Therefore, we isolate % and inbert 5 from Eq. (2 34). To make the second step
in the calculation easier to see, we note that 1 — E + L 5 B b = Cc*;]\f + 4Z4G er?
dp e+p [4nG , 1 rp
o i ) 1=
dr r6[04r(€ ?) +ﬁ 2/32
~ Ge+p M()+47rr2p 1
T2 r 2 |1-26M
GMe P 47tr3p 2GM]!
. 1 f} 1 1- . 2.39
c?r? [ T [ T en c2r (2:39)

Now, this is the TOV-equation that we have been so curious to find. It contains three unknown quantities:
€, p and M. In order to constrain all three quantities, we need another two equations. One of them, we
already defined. This is the equation for the gravitational mass M

M(r) = /07" dr’ 471'7"'26(;/). (2.40)

The final equation in the system is called an equation of state. This equation describes a relation between
the € and p. We will come back to this later. For now, we write it down, so we can see the system of
equations together,

€ = €(p). (2.41)

These are the equations which constitute the TOV-system of equations.

Although we now have achieved the main results, we have not completely finished treating a and 8. The
expressions we find here will be put in use later, when we consider the stability of neutron stars. Firstly,
we rewrlte £=. This can be done by rearranging Eq. (2.32). The rearranging yields

g1 e
25" 5(1—5)

erp. (2.42)

11
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Next, we tackle a. We have so far not found an expression which determines its behaviour. In order to
do this, we look at the linear combination

2Ry 2Ry ra’ 1
- - Ropg=—+-—-1. 2.43
o 25 + Rog Ba + 5 (2.43)
If we use Egs. (2.28), (2.29), and (2.30) for the left hand side and solve for %, we find
o  AnG 1

This is equivalent to inserting the Riemann-curvature R expressed in terms of a and [ into the rr-
component of the Einstein equation. In the time-dependent case, this will give an important constraint
on the perturbations. An equivalent, but also useful expression, is to substitute Eq. (2.39) into Eq.
(2.37). This procedure yields
/ 2 3

o ¢ GM + 4mrep (2.45)

2a0 Ar(c*r —2GM)
We need to determine the integration constant for this differential equation. We require that « is con-
tinuous everywhere. Outside the star, » > R, we can find an analytic form for both a and S by setting
the energy-momentum-tensor to zero. This means that we can take the equations derived above and set
p = € = 0. The differential equation for 8 becomes the same as for the interior derivation, Eq. (2.32),
except with the simplification of e = 0. As this is easier than the calculation above, we omit the explicit
calculation. We solve the differential equation for § and impose continuity at » = R to arrive at the

exterior solution for g
B 1
B = 1 _ 2GM >

c2r

r>R. (2.46)

M is no longer r-dependent, but is constant, M = M (R). We want to find the exterior solution for «, so
the next natural step is to set p = 0 and substitute the exterior solution for 5 given just above into Eq.
(2.44). We find a simple, separable differential equation

da:1<1 1 _1>dT: 2GMdr du 2.47)

a r ey A2 —2GMr  u(u—1)°

were we in the last equality have performed the substitution u = QCGQZTV[ We require that spacetime is flat

as as we move far away from the spherical star, r — oco. This allows us to integrate the left hand side
and set the integration constant to zero, while we integrate from w to oo on the right hand side

1n(a)=£lm=/:i—ullzln(1—i). (2.48)

Eliminating u in favour for r, we may conclude that « must take the form

_2GM

a=1
c3r

. r>R (2.49)

Finally, we have obtained the boundary condition for the interior solution for «, namely that

2GM
li =1—-—— 2.50
ror R (2:50)
With this condition, we can integrate Eq. (2.45) to find an expression for « inside the star. This will be
done numerically in the stability analysis later.

12



Chapter

Solution to the TOV-equation for an
Incompressible Fluid

The goal in this section is to familiarise ourselves with the TOV-equation. We will do so with a practical
example which is analytically solvable. The assumption we must make, is that the star is composed of an
incompressible fluid. Along the way, we will make some remarks that are true in general, not only for the
specific case we are considering in this section. We will also compare the solution of the TOV-equation
to the the solution from Newtonian gravity. We shall see that there are a few important qualitative
differences between the two of them. From the previous section, we collect the the important equations
we need

dr r2c?

dp __GM()e(r) [Hpm EHM((?U} {MGM”] (31)

M(r) = /O Tdr'47rr/2p(7“’): /O dr' ——~—=, (3.2)

e =¢(p). (3.3)

Solving this looks like a difficult task, but it turns out to quite manageable once we get our hands dirty.

3.1 TOV-solution for an Incompressible Fluid

The simplest case for solving the TOV-equation is to assume that the fluid of the star is incompressible.
This means that its energy density is the same throughout the entire star, no matter how high the pressure
becomes. The equation of state reads

e(r) = €. (3.4)

This is a quite unreasonable assumption, physically speaking. It means that the matter can withstand
any pressure without deforming. The assumption also breaks causality, as the speed of sound becomes
infinite. For two events to be related, we know that a signal must have travelled between them. We
know that no signal can move faster than the speed of light, c. When we consider the speed of sound in
a relativistic fluid [7] (p. 52), we find that it takes the form

v? = 02@ (3.5)

s Oe’

13
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This equation imposes a restriction on how e can depend on p. We will sometimes refer to it as the
causality condition for an equation of state. It reads

¢ > 1. (3.6)
op

This ensures that sound travels slower than light. There exists no signal that travels fast enough to
mediate a speed of sound larger than ¢, and any equation of state breaking Eq. 3.6 will therefore have
non-causal sound waves. Due to this, we must refuse any equation of state breaking this inequality. The
incompressible equation of state is an extreme example of this, as g—; = 0. Now we see why the speed
of sound becomes infinite, and an incompressible star is unphysical. Assuming incompressibility may
not be reasonable for a realistic model of a star, but it does serve as a warm-up exercise for solving the
TOV-equation. It will also show that general relativity predicts an upper limit of the ratio between the
total energy of the star and the radius. This limit does not appear in Newtonian gravity, as we shall see.

When we insert Eq. (3.4) into the equation for the gravitational mass, Eq. (3.2), we find

47eg
M(r) = 302 re

(3.7)

Now, this is certainly a simplification of the TOV-system of equations! Two of them are analytically
known for every r even before we have treated the TOV-equation. To find p(r), we insert Egs. (3.4) and
(3.7) into Eq. (3.1). We find

2
dp _ _4nGq s {1 + p] [1 + ?’p] . (3.8)
.

dr 3¢t 1-— 2G43”C§° €0 €0

We are happy to discover that we have reduced the system of equations into one separable first order
differential equation. This we can solve with a little work. After we gather every p on the left hand side
and every r on the right, the equation reads

9 dp ArGedrdr
€5 =~ 5 (3.9)
(e0 + p)(e0 + 3p) 3ct — 8rGegr

As with any first order differential equation, we need a boundary condition to establish a unique solution.
We find this condition from stating that the star ends where the pressure drops to zero. In other words,
the radius of the star R is defined from p(R) = 0. At zero pressure, there is no force to withstand the pull
of gravity, and there can be no more matter outside R for an equilibrium star. Thus, we introduce the
lower and upper integration limits for the pressure as p(r’) and 0, where 0 < r’ < R. Correspondingly,
the lower and upper radius limits are r = v’ and r = R. For later use, we also define the central pressure
pe = p(r = 0). We start by looking at the left hand side of Eq. (3.9). We integrate this expression with
the mentioned limits for p

/0 €2 dp _ € / 3dp  dp e [ln €0 T €0
ooy (€0t D)0 +3p) 2 Jppyeo+3p e+p 2 €0 + 3p(r’) €0 + p(r')

€0 € +p
= —1 . 1
2 n<60—|—3p> (3.10)

In the first equality, we have used a partial fraction decomposition to make the integrand easy to handle.
Next, we tackle the right hand side of Eq. (3.9). By making the substitution u = 2chi47reo7"2, the
integral becomes quite simple

B /R AnGedrdr € uB) gy
v 3¢t =8rGegr? 4 Jyy 1—u
€0 1-— QGQJK
=—In| —=5"—|. 3.11
1 (1 — 2802 (3.1)
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In the last equality, we have introduced the total gravitational mass of the star denoted by M. Explicitly,
it reads M = M(R) = 4™%2 R3. Now, we equate (3.10) to (3.11) and rename 1’ to r

3c?
1— 2GM
n (60 i) > SR k= ) (3.12)
€0 + 3p(r) 2 1255502

The rest is just a matter of isolating p(r). When we perform this calculation, we find

\/1 — 2MG/C2R _ \/1 _ QMGr2/02R3
P =« V1 - 2MGr?/c2R? — 3\/1 - 2MG/2R re s .

It is easy to see that the numerator vanishes as r — R, meaning that p(R) = 0 as it should. There is
only one more manipulation left before we are satisfied with the solution. It is common to parameterise
the star by its central pressure p., and thus replace €. Evaluating Eq. (3.13) at r = 0, we get

V1-2MG/?R -1 (3.14)

€0 .
1-3y1-2MG/R

Pc =

This allows us to eliminate ¢, from Eq. (3.13)

") 1-3y/1-2MG/?R \/1-2MG/?R — \/1 —2MGr?/c*R3
) = Pe
b Pe i 2MG/2R —1 /1 -2MGr?/c2R3 — 3,/1 —2MG /2R

Eq. (3.13) has an interesting property, namely that p(r) can take arbitrarily large values for certain
values of M/R. We shall see that in Newtonian gravity, we can choose any M/R, but the relationship is
constrained in the GR. The constraint arises from the fact that the denominator in Eq. (3.13) can vanish
for r € [0, R] for large enough M/R. This means that p diverges. Let the divergence of p take place at
roo. We set the denominator equal to zero to find

(3.15)

V1 —2MGr2 /2R3 = 3y/1 — 2MG/c*R. (3.16)
This we can solve for ro,. We find
RS
2 =9R? —4—. 1
roo = 9IR AUC (3.17)

To avoid problems with a diverging pressure, one must require that ro, does not take any real value. In
other words, p, must be finite and positive, which gives the restriction

M 4 2
0>1—3y1—2MG/R 228 3.18
> /Rc?  or R < 5C ( )

Here, general relativity predicts an upper limit of the mass-radius ratio. With a bit more work, this
limiting mass can be generalised to hold for any equation of state. This is shown in [8] (pp. 129-131).

For the incompressible star, the gravitational mass goes as M (R) o< R3. This means that the mass-radius
2
C

V3mGeg

ratio scales with R2, resulting in a maximum radius of Ryayx = . The larger the energy density is,

the smaller the radius can be.

3.2 Newtonian Gravity and an Incompressible Fluid

In this subsection, we shall derive the differential equation for the hydrostatic pressure in Newtonian
gravity for a spherically symmetric star. We shall see that there are some interesting differences between
the TOV-equation and the equation obtained by the following derivation.

In hydrostatic equilibrium, we must require that the net force on any volume element must be zero,
otherwise the volume element would accelerate, and the system would no longer be static. As we are
considering a spherically symmetric geometry, physical quantities can only depend on r. We imagine
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an infinitesimal volume element parameterised by the spherical coordinates r, ¢, 6. For simplicity, and
without loss of generality, we choose the coordinates § = 7/2 and ¢ = 0. This is illustrated in Figure 3.1,
with exaggerated size of the volume element for readability.

Figure 3.1: Volume element in spherical coordinates situated at a distance r from the centre. The force
exerted by the pressure in the radial direction on each face of the volume element is indicated in the
figure. The arrow lengths are not to scale, simply showing the direction of the force. The sum of these
radially directed forces is equal, but oppositely directed, to the force of gravity acting on the element.

There can be no net force in the 6 or ¢ direction, due to the spherical symmetry. Any net force from the
pressure must therefore be directed radially. Note that a normal vector on the side surfaces will have a
small radial component proportional to sin(d¢/2) or sin(df/2). This is why there is a force contribution
marked with dFy and dFy in the figure. We assume that the total magnitude of each force will be the
pressure at the centre point of the face multiplied by the area of the face. Any correction to this will be
one order higher in dr, which we neglect as it becomes unimportant when we let the volume element be
infinitesimal. With these considerations, we find

dF, = p(r)r’dedo, dFyigr = p(r+dr)(r + dr)*dedd,
dFy = p(r + dr/2)sin(df/2)rdrde, dFy = p(r 4 dr/2)sin(d¢/2)rdrdb. (3.19)

Next, we write the sum of the forces exerted by the pressure as dFj,, and insert the expressions written
just above to find

de =dF, 4+ 2dFy + 2dF¢, —dFy4ar
= p(r)r?dodd + 2p(r + dr/2) sin (d¢/2) rdfdr + 2p(r + dr/2) sin (d6/2) rd¢dr
— p(r +dr)(r + dr)*d¢dd
= by
= by

We have consistently thrown away higher order corrections in the differentials. For instance, in the third
equality, sin(...) has been Taylor expanded, and only the first order term is kept. In the last equality, we

r4dr) — p(r)]r2d¢d9 + 2p(r)%r

r+dr) — p(r)]ridedd = —dpridpdo. (3.20)

( dfdr + 2p(r) d?erqudT — 2p(r + dr)rdfd¢
(
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have used that dp = p(r + dr) — p(r). The gravitational pull on a volume element with mass density p at
a distance r from the centre is given by

GM (r)dm(r) _ GM (r)p(r)

dFg = r2drdpdd. (3.21)

T

M(r) is given as before, the gravitational mass. Equating Eq. (3.20) and Eq. (3.21), cancelling equal

terms on both sides and gathering the rest of the differentials on one side yields the desired equation
dp _ GM (r)p(r) _ GM (r)e(r) , (3.22)

dr r2 r2c2

where we have substituted the mass density p in favour for the energy density € in the last equality, with
2
€ = pc-.

From the case of general relativity in Eq. (3.1), one can recover Newtonian gravity. This is done by letting
¢ — 00, which reduces Eq. (3.1) to Eq. (3.22), as all the parentheses tend towards unity. For large ¢
we have p < e. This we will show is in fact the case later. Besides being more difficult to compute, we
can state some qualitative differences of the pressure as described by Eq. (3.1) compared to Eq. (3.22).
The pressure p, the energy density ¢ and the gravitational mass inside a radius r, M(r), are all positive.
From this we can conclude that the two first parentheses in the TOV-equation are larger than unity.
The last parenthesis would also be larger than one as long as r > 2GM (r)/c?. This will always be the
case. If we could find 7/ such that r’ = 2GM (r")/c?, the metric of our system would have a divergence
in g..(r') = —[1 —2GM(r")/c*r']~1. When this happens for the exterior solution of the spherical star,
we are dealing with a black hole. We therefore require that r > 2GM(r)/c? for a neutron star.

Thus, all the parentheses in Eq. (3.1) are larger than unity. This means that the pressure in the
GR description of hydrostatic equilibrium will always drop more rapidly as a function of r than in the
Newtonian description. This leads us to conclude that in GR, the pressure is always higher than in
Newtonian gravity if we assume the same equation of state and the same radius R.

If we again turn to the incompressible fluid, and substitute Eqgs. (3.4) and (3.7) into (3.22), we find

d GM 4 2
dp _ _GM(r)e(r) _ _tano,. (3.23)
dr r2¢? 3
This is also a separable first order differential equation, and it is even quite a lot easier to solve than
the one we found for the TOV case. We separate it, then we integrate both sides using the boundary

condition p(R) = 0 to obtain
2

p(r) = gew%‘;(pﬁ —r?). (3.24)

By making use of the expression for the gravitational mass Eq. (3.7), we can eliminate one power of €.
This leads to the expression

GM r?

Interestingly, and in contrast to the general relativistic case, Eq. (3.24) does not have any divergence
in the pressure. The Newtonian theory does therefore not predict any upper bound for the mass-radius
ratio. We can eliminate the final €y by using p. = e¢GM/2c¢*R, which gives

2

p(r) = pe (1 - R) | (3.26)

3.3 Comparing TOV and Newtonian Solution for an Incom-
pressible Fluid

For small GM/c?R, we expect the solution from general relativity to reduce to the Newtonian one. If
we start by fixing p., we can investigate the dimensionless quantity p/p.. For ease of notation, write
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u=2GM/c?R and x = r?/R?. Rewriting the Newtonian solution this way, we find

L]?j vowton 177D (3.27)

where the subscripts denotes which hydrostatic equation we have used. We know from Eq. (3.18) that
u=2GM/c*R < 8/9, which means we can Taylor-expand Eq. (3.13). Making use of the expansions to
second order

1 1 1
Vi-u=1- U~ §u2 +O(u®) and 0= 1+ u+u? 4+ O0(u?), (3.28)

we get from Eq. (3.13)

D C[1-31—-1/2u—1/8u?)] [ 1—1/2u—1/8u? — (1 — 1/2uz — 1/8u?z?)
L;JTOV { 1—1/2u—1/8u2 — 1 } L—1/2ux—1/8u2x2—3(1—1/2u—1/8u2)] +0(?)
_ [-2+43/2u+3/8u? (1—x)+1/4(1 — 2?)
B { 1+1/4u } {—2—1—1/2u(3—x)+1/8u2(3—x2)]
—(1—a)— %(:p — 2?). (3.29)

The leading order term is the same in Eq. (3.27) and in Eq. (3.29), which should be the case. Letting
¢ — o0, which is equivalent to u — 0, gives the same solution. The limit ¢ — oo reduces the TOV-
equation to the Newtonian hydrostatic equation, as well as the TOV-solution to the Newtonian solution,
which shows self-consistency. In addition, we see that the next to leading order term makes the pressure
drop more quickly compared to the Newtonian case. This is in accordance with the qualitative discussion
of the two equations in section 3.2.

As we have found both solutions analytically, it is easy to generate a plot to showcase the difference
between the relativistic and the Newtonian solution. This is done in Fig. 3.2. We see that any ratio %
in the Newtonian solution gives the same normalized pressure profile, while this is not the case for the
TOV-solution. What the normalised pressure profiles fail to show, is the difference in the central pressure

for the two distinct solutions for a given ratio %. For %g = %, the central pressure for the TOV-solution
is about 30% larger than for the Newtonian solution. Increasing the ratio further, to fc‘ﬁg = %, the

TOV-solution is more than three times larger than the Newtonian solution. Despite having quite similar
pressure profiles, we see that the GR-approach gives a significantly larger central pressure. The difference
only amplifies further. At Jc\fg = %, the TOV-solution gives a 300 times larger central pressure than
the Newtonian solution! From the pressure profiles, we see clearly that the pressure drops faster with
the TOV-equation than the Newtonian hydrostatic equilibrium, as the curve for the newtonian pressure
profile dominates the curves from TOV. This supports the discussion we had earlier, in comparing the

equations.

18



CHAPTER 3. SOLUTION TO THE TOV-EQUATION FOR AN INCOMPRESSIBLE FLUID

Normalised pressure profiles, incompressible star
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Figure 3.2: Normalised pressure p/p. as a function of /R. For a low mass-radius ratio compared to the
limiting ratio as given by Eq. (3.18), the relativistic TOV-solution deviates little from the Newtonian
solution. Even MG/c?R = 3/9 has a quite similar shape to the Newtonian solution. Closer to the limiting
mass-radius ratio, the pressure profiles from the TOV-solution and the Newtonian solution qualitatively
deviate from each other. This is clear as we compare the black Newtonian pressure profile to the yellow

TOV pressure profile.
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Chapter

Equation of State for an Ideal Fermi Gas

In this section, we are searching for a more realistic equation of state than Eq. (3.7), the incompressible
equation of state. We will do so by considering a cold non-interacting neutron gass. This will lead us to
the ideal equation of state.

4.1 Fermion Statistics and the Ideal Equation of State

Neutrons are fermions. Therefore, we consider quantum statistical physics for fermions in order to arrive
at an equation of state (EoS). Combined with the assumption of non-interacting neutrons, we can write
the Hamiltonian for the system of N particles, H, as a sum of Hamiltonians for each individual particle.
For a system of free particles with equal mass m, we have

N N

H= ZHl 22\/m2c4+l_c?02, (4.1)

i=1 i=1

where k; denotes the momentum of the particle (we avoid using the customary p to omit ambiguity
between pressure and momentum). H; is a realisation of some energy level E;. Each energy level E;
can either be occupied by zero or one particle due to the Pauli exclusion principle. Let now {c; }évzl
denote a set of N unique indices telling us which of the energy states are occupied. Now, we can write
the Hamiltonian as a sum of energy levels E; over all indices in our index set, i € {ozj}j-v:l.

Higyy, = Y, B (4.2)

ie{ay }?,:1

The subscript in Hy,, 3~ ) tells precisely which state the Hamiltonian is valid for. Using this, the canonical
s
partition function Zy for the system reads

ZnN = Z exp{—,@H{aj}j_v:l] (4.3)

{Ufj}évzl

The sum in Eq. (4.3) is taken over all possible index sets {a;};_,. We say that the sum is constrained,
because we limit ourselves to considering N particles. 8 = 1/kgT, where kp is the Boltzmann constant
and T is the temperature, as usual. As this sum is difficult to solve with its restriction of N particles,
we make use of the grand partition function ©. © is defined as the sum of Zy weighted by a factor of
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exp[BuN] over all particle numbers N

0= explfuN|Zy =3 S exp[BuN] exp[~FH oy |

N=0 N=0 {a]‘};\jzl

—Y Y | Y sE-w). (4.4
NZO{O‘j}é\]:l

ie{oy i,

Here we have defined p as the chemical potential, telling us how favourable it is for the system to contain
particles. For instance, a positive p means that the system favours having more particles. The advantage
of using the grand canonical formalism is that we sum over all particle numbers N. This means that in
total, we sum over all possible configurations. The sum now goes over all states either being occupied or
not, independently of the occupancy of other states, that is, the sum becomes unconstrained. Let now
an arbitrary configuration be labeled by {a}. Thus, we can continue from Eq. (4.4) and get

0= Zexp Z —B(E; — H [1+ exp[— - )] (4.5)

{e} ie{a}

From the grand partition function one derives the thermodynamic properties of the system, namely the
pressure p, the average particle number (V) and the average energy (E) as functions of the temperature
T and the chemical potential p

p _In®
kel ~ V (4.6)
0ln®©
(N)=kgT o (4.7)
(E) =ty - 257 (4.9

V denotes the volume of the system. Substituting Eq. (4.5) into Egs. (4.6), (4.7) and (4.8) we get the
desired expression for a fermionic system. Additionally, we eliminate kT in favour for 8 and divide Eqgs.
(4.7) and (4.8) by V to get the number density n = (N)/V and the energy density ¢ = (E)/V. Finally,
we introduce a degeneracy factor g = 2, which takes into account that each fermion has two spin states

% > (exp[~B(E; —p)] +1) = (2733713 / P (exp[~BEF) ] +1),  (49)
N _ 9y _ 9 d*k
TV Ty ; exp[f u)] +1 (2m)3h3 / exp {5(}3(12) —u)] 1 (4.10)
= @ — 9 - 1Y 9 >
€= Vv Vv = exp[ﬁ(Ei Vv z:; E; /‘)} T1

E
= a8 / K f k) .
(2m) exp [ﬂ(E(k) - ,u)} +1
In the final equality in the equations above, we have used that summing over the energies corresponds to

summing over the momentum states. In this case, an energy level F; depends on the momentum k; as it is
g1ven in Eq. (4.1). In addition, we know from quantum mechanics that summing over momentum states

(4.11)

k; can be approximated by an integral over momentum space and multiplying by a factor of V/(2rm)3h3
when the limit that volume grows towards infinity. We call this the thermodynamic limit. Written

explicitly
Zi:f(Ei) = %:f(E(E)) and ; - (%Vw,)/d%. (4.12)
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f(E;) denotes some function depending on the energy. Eq. (4.9) can be partially differentiated by S,
yielding finally:

p= gs 3 /d3 £ qE(k) : (4.13)
(2m)*h exp |B(E(R) - )] +1
In all the Egs. (9.4), (9.6) and (9.3), the expression
1

exp |B(B(R) - )] +1

(4.14)

appears. It is called the Fermi-Dirac distribution. In the expression for the particle density Eq. (9.4) we
integrate Eq. (4.14) over all momentum space. This gives it the interpretation of being the probability
distribution of particles in terms of their energy and chemical potential. States with energy lower than
the chemical potential p is favoured. Especially for low temperatures, i.e. when [ is large, there is a
sharp drop in probability for an energy state to be occupied as the energy grows larger than the chemical
potential. In the extreme limit 7" — 0, the distribution simplifies

1 .
Jim L —0(j— B(R) = {
0 o B(E®) -] 1

k .

In other words, the Fermi-Dirac distribution turns into the Heaviside step function 6(p — E(E)) The
Fermi energy Er is defined as the energy of the most energetic occupied state at T' = 0. From this
definition, we see that Er = p. This allows us to define an upper momentum magnitude over which no
states are occupied, the Fermi momentum kp. Using the energy for free fermion Eq. (4.1), the Fermi

momentum reads 1
kp = =/ u?—m2ct. (4.16)

c
We can now calculate the energy density e using Egs. (9.6) and (4.15). The energy only depends on the
magnitude of k, so we go to spherical coordinates. Integrating over all angles immediately gives a factor
47, leaving

4
e= %9 / dk k2/m2ct + k2¢2

(2m)3h3

F
- M/ de a1+ 22

272h3

gmicd QxF\/l+xF+xF\/1+xF—arcsmh(xF) (4.17)

272h3 8

From the first to the second line, the substitution = k/mc was made. To ease the notation a little,

we define g, = %. g denotes the degeneracy factor. For a spin—% particle, we have g = 2. We also
note that €4 is a dimensionful quantity corresponding to energy density. As energy density and pressure
have the same dimension, this factor will precede both € and p. In turn we can define the dimensionless
energy density € and the dimensionless pressure p as € = = and p = X. This enables us to analyse the

behaviour of € and p without considering a particular unit system. For the case of SI-units and using the
neutron mass my, the value of ¢4 will be

g, =1.65 x 10*kgs™2m™'. (4.18)

We can follow a similar reasoning for the number density n. Inserting Eq. (4.15) into Eq. (9.4), we get

kr 3 F
n:L/ dk k2 = gmc/ d 22

272h3 2m2h3
3.3
gm>c” s €g 3
= = . 4.19
6m2h3 TF 3mc? TF ( )
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Later, we will eliminate the dimensionless quantity x g in favour of the number density n in the expressions

for € and p. Express z in terms of n
1
3 2\ 3
Tp = < e ) ns. (4.20)

€g

Finally, we perform the same procedure for p. Insert Eq. (4.15) into Eq. (9.3), eliminate pu with Eq.
(4.16) and make the substitution as above

kr
p= 273713 / dk k* [\/m%‘l + k%.c? — \/m204 + k%cQ}

4.5
—%/ dme{w/l—i—:v%—\/l—i—xQ}
7T hg 0
., lx%\/l + x4 N arcsinh(zp) — xpy/1 + 2%

4.21
12 8 ( )

Note that the dimensionless energy density = and the dimensionless pressure = P only depends on zp. As

we have found how € and p behaves with respect to xr, we have found an 1nd1rect way of expressing e(p).
This is the ideal equation of state. We will sometimes refer to the the expressions for € and p given by
Egs. (4.17) and (4.21) as the analytic equation of state. By this, we simply mean that we are considering
the expression of the analytic solution, and not the expansions in either small or large p.

Later, we will be interested in differentiating the pressure with respect to the energy density. As we have
already warmed up with calculating e and p, we easily evaluate the derivative with Eqgs. (4.17) and (4.21)

4
€9Tp

dp ——
9P _ Zor Witk T (4.22)

de o d‘iEF o ‘ngF‘/1+wF 3(1+.’E%—v)

Differentiating this once more with respect to the pressure gives

d (dp\ _dxp d % 31 + 2% 2t 2z%,
dp \de) — dp dep \3(1+22)) ezt 31+ 2%)  3(1+2%)?
2 2
_ _ - (123)
eIt an(1+a2)  3(e+p)(1+a%)

The last equality is obtained by noticing that e + p = %Egac%\/l + 4. At the moment, these two last
calculations might seem a bit arbitrary, but they will be needed later when we are considering a radially
perturbed ideal neutron star.

4.2 Limiting Behavior of the Ideal Equation of State

We now consider two limiting cases: The non-relativistic limit (NR limit) and the ultrarelativistic limit
(UR limit). For non-relativistic Fermionic matter, we have kr < mc which implies that the dimensionless
substitution variable xp < 1. Taylor-expanding the expressions (4.17) and (4.21) allows us to find € and
p up to any desired order of xr. Using the Taylor-expansions

2 3x% b’

. __r 5 x? 2t b
arcsinh(z) = x 5 0 10 and 1+4+22=1 +2 3 + + 0(2%),  (4.24)

we find the expression for € and p for small z g

3 5 7

Tp [ Tp Ip 9
I K N ) 42
€ sg{g +10 56}4—0(%{7)’ (4.25)
N +O®Y) (4.26)
P=% 195 " 49 Tr) :
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Define also exr and pngr as the energy density and the pressure in the non-relativistic limit. The non-
relativistic limit means that we keep the first and second leading order terms in the xp-expansion for €
and the first leading order term for p

3 5
x x
F F
ENR = &4 |:3 + 10:| R (427)
5
X
F
DPNR = 5gT5- (4.28)
(a) e(zr) (b)  plzp)
0.07
= Analytic € = Analytic p
0.4 4 — NR limit & 0.06 4 = NR limit p
= Small zp-expansion of € = Small zp-expansion of p
0.3 1
u?
~
© 0.2 1

Tp g

Figure 4.1: (a) displays the dimensionless energy density € = é for zp € [0,1] for a free Fermi gas. The
analytic expression is plotted alongside the expansion given in Eq. (4.25) and the non-relativistic limit
given in Eq. (4.27). The deviation from the expansion and the analytic solution is small even as xp — 1.
Similarly, (b) displays the dimensionless pressure p = %. The deviation between the expansion for small
xp as given by Eq. (4.26) is good up to xp ~ 0.8. The non-relativistic limit starts deviating at xp ~ 0.6.

In Section 3.2, we argued that for large ¢, i.e. the non-relativistic case, p < e. We see now that this
is correct for a free Fermi gas. The pressure pxg is suppressed by a factor x2, compared to the energy
density exg. We can eliminate xp in favour of the number density n

2
3 [mc?\? 5

=mc®n+ — [ — Zns 4.29
ENR mcn—l—lO(Eg)mcn, (4.29)

2

1 2\ 3
DNR = ¢ (mc ) me®n3 . (4.30)

5\ &g

We recognize that the leading order term for € is the rest mass energy density mc?n. This is the reason
we kept also the next to leading order term for the energy density. In non-relativistic physics, we often
disregard the rest mass energy density, since it plays no role in the further calculations. The next-to-
leading order term represents the first correction to the energy density from the momenta of the particles.
Omitting the rest mass energy density, we see that p = %e in the non-relativistic limit.

On the other hand, if the fermionic matter is relativistic at the Fermi energy, we have xz > 1. Then we
can approximate their expressions by making use of

arcsinh(zp) = In <xp +4/1+ x%) =In(zp)+O(1) and /14 2% =zp+ %x;l +O(xz?). (4.31)
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Inserting Eq. (4.31) into Eqs. (4.17) and (4.21), we find the following

e=¢, [x%(xi b ln(gF)] +0(1), (4.32)
. [x%(foQ— D 1n(;cF)} L o), (4.33)

Now we define the ultrarelativistic limit for the energy density eyr and the pressure pyr as the limit
where we only keep the leading order term. This gives

Th
€UR = €977 (4.34)
4
T
PUR = 5gT§' (4.35)

In the expressions above, we can see that both eyr and pyr contain x‘}m as the highest power of z . This

means that for an ultrarelativistic free Fermi gas the energy density and the pressure are comparably

large, € ~ p, unlike the case for the non-relativistic free Fermi gas. In this limit, we get the relation
1

p= 56.

(a) é(xp) (b)  plzr)

= Analytic € = Analytic p

20 4~ UR limit € 64— UR limit p

= Large xp-expansion of € = Large xp-expansion of p

1.0 1.5 2.0 2.5 3.0

Figure 4.2: (a) shows the dimensionless energy density € = =

as a function of xp. In this case, the
analytic solution and the expansion for large xp given in Eq. (4.32) coincide, even for values of zp
close to unity. The difference between the ultrarelativistic limit Eq. (4.34) and the analytic solution is
increasing with increasing =, however, the error relative to the value of € is decreasing with larger xp.
(b) shows the dimensionless pressure p = % as a function of zp. The large xp-expansion of p given in
Eq. (4.33) is again coinciding with the analytic expression. Similarly to the case in (a), the error of the
ultrarelativistic limit given in Eq. (4.35) relative to the analytical value of p is decreasing with zp.

Our goal in this section was to find an equation of state e = ¢(p) for the free Fermi gas in order to close the
TOV-system of equations, that is, Eqs. (3.1) and (3.2). If we consider the non-relativistic exg = enr(p)
and the ultrarelativistic limit eyr = eur(p), we get

2 153/5
exn(p) = & —5—p° 4.36)
6UR(p) = 3p. (437)
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Analytically expressing ¢ = €(p), we will not attempt here. We will, however, do it numerically. That
is, for any given value of p, we numerically calculate xr and then insert this value into e¢(zp). This is
possible because Eq. (4.21) is monotonically increasing. In figure 4.3 we compare the this numerically
inverted equation of state with the non-relativistic and the ultrarelativistic equations of state.

(a) €(p) (b)  €&p)
1.6 4 = Analytic €(p) = Analytic €(p)
= UR limit é(p) 14 4 — UR limit é(p)
1.4 4 — NRlimit &p) = NR limit €(p)
12 1
1.2 1
10 =
1.0 1
w w 84 ,,»:'ﬁ/
0.8 //
/ 6 1 ﬁﬁ,,f" -
0.4 4 1 4 A P -
0.2 1 7 2

L~

()() T T T T T () T T T T T
0.00 0.05 010 015 020 0.25 0.30 1.0 1.5 2.0 2.5 3.0 3.5 4.0

p p

Figure 4.3: (a) depicts the dimensionless energy density € = é as a function of the dimensionless pressure
p= % for small p. The blue line shows the equation of state using the analytical expressions Eqs. (4.17)
and (4.21). The non-relativistic is only a good approximation for very small p. The ultrarelativistic limit
is at best a crude approximation for small values of p. In (b) the values of p range from 1 to 4, which gives
an idea of the asymptotic behaviour. It becomes apparent that the NR-limit is a poor approximation
in this regime. The error of the UR-limit is increasing, however, the relative error is decreasing. The
relative error tends toward 0 asymptotically.

For the small and large xr expansions, we can consider an additional term in the equation of state
€(p), that is, also taking into account O(z%) for the small xp-expansions and O(x%) for the large -
expansions. We arrive at the improved equations of states in the two cases

215%/5 18
e=¢gg 3 Pt + =P (small zp) (4.38)
€ =3p+ /34D (large zp) (4.39)
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Figure 4.4: (a) shows the dimensionless energy density € = = as a function of the dimensionless pressure
g

p = Eﬂ for small p. As above, the blue line shows the anélytical solution. Both the small and large

p-expansions approximate the analytic solution better than the limiting approximations in figure 4.3.
The small p expansion starts deviating around the value 0.05. (b) displays the same plot for larger values
of p. Here, it is easier to see the asymptotic behaviour, namely that the large p-expansion has a small
almost constant error. The other expansion has an increasing error, however, it is significantly smaller
than for the NR-limit.
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TOV-solutions for the free Fermi gas

In this section, we will use the equation of state derived in the previous section in the TOV-system of
equations. We will look at the UR-limit, the NR-limit, the large p-expansion, the small p-expansion as
well as for the analytic € and p expressed in terms of zp.

5.1 TOV Solution for an Ultrarelativistic Equation of Dtate for
a Free Fermi Gas

We start by considering the ultrarelativistic equation of state. This is because it is analytically solvable,
unlike the others. In order to find the solution, we first make the ansatz

p(r)=rr % 0<a<3. (5.1)

Here, k is some constant. The values of a are limited to the above for the following reasons: A negative
a would give rise to a star with a pressure which increases with r. We already know from our discussion
of the TOV equation that this cannot be the case. We have already treated the case where a = 0, which
corresponds to the equation of state where the energy density is constant. Inserting Eqs. (4.37) and (5.1)
into Eq. (3.2) with @ > 3, we find that the gravitational mass M (r) diverges for any r > 0. We cannot
accept an infinite mass. Restricting 0 < a < 3, we can calculate M (r) with the ansatz and find

" ! 127kr3=2
M — /4 12 E(r) — . 2
(r) /0 dr' 4mr = G_ac (5.2)
Substituting Eq. (5.1) into the left hand side of Eq. (3.1), we find:
d
d—f = —kar— (@D, (5.3)
Making use of Eqgs. (4.37), (5.1), and (5.2), we find for the right hand side of Eq. (3.1)
dp  GM(r)3p(r) T 47r3p(r) | 2GM(r) -t
dr r2c? 3 M(r)c? rc?
367Gr? | 5,4 3—a 247Gr 4 -t
= PP 12 g 2T @y SR - 5.4
(Bfa)c‘lr 3 [ * 3 } { (3fa)c4r ] (54)

We note that the r-dependence drops out in the last bracket if we set @ = 2. This results in the same
total r-dependence above as in Eq. (5.3). Comparing to the left hand side Eq. (5.3), we find that the
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ansatz is a solution for a suitably chosen value of k. Now, we can equate Eq. (5.3) and Eq. (5.4) with
a = 2 to obtain

. 641GK? .
-3 _ -3
72/{7’ = 7m’r (55)
We solve this for «,
32mK2 | c* — 247Gk
K= —m8M —
ct — 247Gk K
¢t — 247Gk = 327k
4
c
et (5.6)

Finally, we insert this back into Eq. (5.1) together with @ = 2 to find the solution for an ultrarelativistic
free Fermi gas as

This is clearly not a physical solution for a compact star. Firstly, we see that the pressure approaches
zero in the limit » — oco. From our definition of the radius of a star, p(R) = 0, the ultrarelativistic
solution gives a star with infinite radius. In addition, the pressure diverges in the limit r — 0. We can
trace the origin of these problems back to our equation of state Eq. (4.37). This equation is only valid
when xp > 1, which cannot be the case for values of r close enough to R. At some r, matter stops
behaving relativistically, and another equation of state must be used.

5.2 Numeric Solution to the TOV-equation for the Free Fermi
Gas

We consider the NR limit, the small p-expansion, the large p-expansion and the analytic equation of
state numerically. The procedure is to choose the central pressure p. as the boundary value for p and
integrate the TOV-equation until we find p(R) = 0. In this way, we find the stars of mass M and radius
R parameterised by different values of p..
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Mass-radius relations for ideal neutron stars
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Figure 5.1: Numerical solutions to the TOV-equation with the analytic equation of state, in the NR limit
and in the large p-expansion. My denotes the solar mass. The respective maxima of the masses M are
marked with the corresponding radius R and the parameterising central pressure p.. The NR limit and
the analytic mass-radius curve have a quite similar shape, while the large p-expansion equation of state
produces a qualitatively different curve.

Figure 5.1 displays these solutions, with the exception of the small p-equation of state, which is plotted
below, in Figure 5.2. The NR-limit equation of state predicts the most massive stars, of nearly 1Mg.
The NR-limit results are similar to the analytic results for central pressures p. up to p. ~ 1032 Pa,
corresponding to p. ~ 6 x 107°. In this regime, we certainly have p < 1, as is required for the validity of
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the NR-limit equation of state. We can check with figure 4.3 that this is where the NR-limit approximates
the analytic solution well. Note that even for the maximal mass M = 0.97Mg, p. = 6.5 x 1072 is still
quite small. However, at these values, Figure 4.3 shows that both the UR-~ and the NR-limits are quite
poor approximations.

For the analytic equation of state, the upper limit for M is M4, = 0.71Mg. This is the same result as
Oppenheimer and Volkoff predicted already in 1939 [9]. Many of the observed neutron star masses are
clustered around 1.4M¢ [4] (p. 67). Therefore, we must conclude that assuming an ideal neutron star is
not a very good approximation to a physical neutron star. This is not very surprising, as nuclear physics
tells us that a non-interacting fermion gas is not very realistic. However, it is interesting that such a
simple model gives a prediction which is in the right order of magnitude. Observations from gravitational
waves from binary neutron stars have led to a prediction of an absolute limiting mass of M = 2.3M,
[10]. Compared to this, the ideal neutron star model is off by about a factor 3. Another point of interest
is that solving the TOV-equation sets maximal mass which is quite different from the general upper limit
in Eq. (3.18). Converting to SI-units, we find

2

Minax 26 1 4e 26 -1
=15x10kgm " < — =6.0x 10°°kgm™". 5.8
R & 9G & (58)

The limiting mass-radius ratio in the analytic case is only about i of the absolute upper limit. We also
note that p. = 3.6 x 103* Pa gives a central energy density e, = 3.8 x 103° Pa, which corresponds to
a mass density of p. = 4.2 x 101¥kgm=3. To compare with a familiar dense metal: This is 14 orders
of magnitude larger than the mass density of lead peaq = 1.13 x 10 kgm™3. Another number we can
compare this density to, is the nuclear saturation density, psats = ngm,., where ng is the nuclear saturation
number density and m,, is the atomic mass unit. Nuclear saturation number density has been found to
be ng = 0.16 fm ™. This is the density that describes matter solely composed of nuclei held together by
the strong force. The nuclear saturation density is then pg.; = 2.5 x 101" kgm™3. This is immensely
dense! However, it is not as dense as the core of the ideal neutron star of maximum mass. Given that
we cannot pack nuclei tighter than the nuclear saturation density, this is a hint we must apply another

model to describe the interior of a realistic neutron star.

Another interesting energy density threshold, is the energy density at which deconfinement occurs. By
deconfinement, we refer to the breakdown of nuclei into quark constituents. At energy levels lower than
the deconfinement thershold, quarks only occur in bound states, such as neutrons. Above this energy
density, quarks can exist on their own as free particles. At zero temperature, quarks start to deconfine at
baryonic chemical potential, i.e. the chemical potential for neutrons, at fiquark = 0.93 GeV = 1.49x 107107
[11]. We calculate the chemical potential inside the maximum mass neutron star by numerically solving
Eq. (4.21) for zp at p = 3.6 x 103* Pa. The solution is x7 = 0.83. Next, we solve Eq. (4.16) for x and
insert zx to find p = 1.2GeV = 2.0 x 10719 J. The chemical potential inside the star is higher than the
chemical potential at which deconfinement starts to occur! This means there should be quarks inside the
neutron star as well as neutrons, yet again telling us that the ideal neutron star model is too simple.

In contrast to the UR-limit, the large p-expansion results in a star of finite radius. However, the mass-
radius relation is quite different from the analytic solution. This is due to the fact that it is not approx-
imating the analytic solution for small p. As commented on in Section 5.1, the matter of any star will
behave non-relativistically close to the edge, as a consequence of the decreasing energy density. Therefore,
this approximation will always be poor sufficiently close to the surface.

Note that p ~ 1 for p. ~ 1.7 x 1036 Pa. This means that only central pressures that parameterise stars
beyond the maximum mass for will have p > 1. Thus, it is hardly necessary to make use of the large
p-expansion, as the stars with a central pressure larger than the value which parameterises the maximum
mass will be unstable. This will be discussed in the next section.
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Mass-radius relations for ideal neutron stars
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Figure 5.2: Comparison between the analytic and the small p-expansion equation of states. The analytic
and the approximated case result in similar mass-radius relations. For smaller values of p., the curves
coincide.

In figure 5.2 we see the mass-radius curves of the analytic equation of state and of the small p-expansion,
for p. € [1034,3.2 x 10%°] Pa. The expansion equation of state gives a maximum mass of M = 0.71M,
with R =9.1km and p. = 3.7 x 1034 Pa, quite similar to the values predicted by the analytic one.
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Chapter

Stability of Compact Stars

In our derivation of the TOV-equation, we assumed that there was no time dependece in the metric,
i.e. the star is in hydrostatic equilibrium. All the configurations calculated in the previous section
are in equilibrium, however, not all these equilibria are stable. For an unstable configuration, a small
perturbation would be enough to cause the force exerted by the pressure to win over the inward pull of
gravity, and the star would explode. The picture is comparable to a pendulum pointing upwards. One
small push, and its configuration will change dramatically. For the star, the other way around is also
possible: Some small perturbation could cause the gravitational pull to be greater than the force exerted
by the pressure, and the star would collapse. In this section, we aim at finding conditions for when a star
is in a stable equilibrium.

6.1 Qualitative Argument for Stability

This subsection is inspired by [4]. Imagine that a neutron star of mass M in equilibrium is perturbed
slightly in a way such that its central pressure is increased. The equilibrium configuration to the new
internal pressure would be M’. This is illustrated in Fig. 6.1, where M denotes the region where the
mass is increasing as a function of p., and M_ the region where the mass is decreasing as we increase
pe. The perturbed star would lie in the bend of the arrow between the masses M and M’, marked on

the curve. We first consider a mass M where the slope =2 - — dM L g ogitive, that is M. This

dlog(pe) ~ dpe pe
is equivalent to stating % > 0. In Fig. 6.1, this is illustrated in the blue part of the plot. The inner
pressure would correspond to an equilibrium state of larger mass, i.e. the system is deficit of gravitational
pull due to the perturbation. This would cause the star to expand and the inner pressure to decrease.
Qualitatively, we have that a perturbation towards larger inner pressure would be counteracted, driving
the system back towards its original state. If we, on the other hand, consider a star where the slope
#”{pc) is negative (equivalent to % < 0) and we perturb the equilibrium towards a slightly higher
pressure, we find a different behaviour. This behaviour is illustrated in Fig. 6.1 by the green part of the
curve. The star of mass M_ now has a central pressure p. which corresponds to a smaller M’ . This
time, as the mass is in excess, the gravitational pull is stronger than the force exerted by the pressure.
The star would start to contract, resulting in an even higher internal pressure. The perturbation would
be amplified by the star’s contraction, resulting in an internal pressure which corresponds to an even
smaller equilibrium mass. The perturbation is self-amplifying. Thus, a slightly perturbed star in this
region would start to collapse. From this qualitative discussion, we arrive at the following criterion for

stable compact stars

dM
dpe

> 0. (6.1)
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[deal equation of state
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Figure 6.1: The total mass M as a function of log(p.) for an ideal EoS. The values chosen are log(p.) €

[33.5, 35.6], which are values that parameterise the masses around the maximal mass M = 0.71M,. Note

that #]‘{p) has the same sign as ZTM7 since dl%fpc) = pi > 0. The graph is divided into a region where

the neutron star would be stable, and one region where the neutron star would be unstable.
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6.2 Stability Analysis Through Perturbation Theory

After the previous qualitative discussion of stability, let us dive into a more formal approach. We will
consider a radially pulsating star in perturbation theory.

6.2.1 Defining the Radial Perturbation

This means that we need a new, time dependent metric to describe the pulsations. We find the Christoffel
symbols and Ricci tensor components, which are calculated similarly to the ones for the time independent
Schwarzschild metric, in Appendix C. We will follow [5] and [12], and in order to keep a similar notation
we now rename the following quantities

a —exp(2rv) and B — exp(2)), (6.2)
where A and v will be functions of ¢t and r. To be specific, the line element now reads
ds* = exp(2v)c?dt? — exp(2\)dr? — r2dQ>. (6.3)

All the earlier expressions written in terms of « and 8 can now be expressed in terms of v and A by
direct substitution. Since we are considering infinitesimal perturbations around the equilibrium solution,
let the subscript o denote the a solution to the unperturbed system as described by the TOV-equations.
The perturbed quantities read

6(7", t) = 6O(T.) + (56(7", t)a p(’f‘, t) = pO(T) + 5p(7‘, t)v
v(r,t) = vo(r) + ov(r,t), Ar,t) = Ao(r) + A(r, t).

Note that exp(2Xg) = 3 as it is expressed in Eq. (2.34). Similarly, the conditions we derived for « holds
for exp(2vp). Importantly, we also note that the only time dependent part of the functions above, is
the perturbation. This means that applying a partial derivative with respect to time leaves only the
perturbatrion, i.e. 9\ = A = d\. In addition, we define &(t,r) as the radial displacement of a fluid
element in the pulsating star compared to a fluid element in the equilibrium star. £ also counts as one
order of the perturbation. This is the only dynamical degree of freedom. dJe, dp, dv, S\ and dn will
depend on &, and we shall find the equations determining their behavior through the Einstein equation
and general considerations of relativistic fluids. Having introduced &, we write the coordinates of a fluid
element the perturbed system

at = (ct,r,0,0) = (ct,r +£(t,7), 0, 9). (6.4)

As we allow for radial motion expressed by &, the four-vector velocity obtains a radial component u” of

infinitesimal size
ut = (u',u",0,0), (6.5)

which is subject to the normalisation condition
¢® = uut = exp(2v)(u')? — exp(2X) (u")2. (6.6)

We wish to express u” in terms of the displacement £(¢,r). To this end, we recall from Eq. (2.10) that

ut = c% and u" = %, where the r is kept fixed, as it expresses a radial coordinate in the unperturbed

system. Taking their ratio gives
wr At _ldr+¢§ ¢ (6.7)
c dt c ’

— = o
u cd'r

For our stability analysis, we are only interested in the first order of the perturbations. As ¢ is infin-
itesimal, and hence £ too, we see that u” is infinitesimal compared to u*. We now use this fact with the
normalisation of the four-velocity in Eq. (6.6) to isolate u! to the first order of the perturbation.

(u')? = exp(—2v) + O(5?), (6.8)
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where O(62) denotes terms of order two and higher in the perturbations. From now on, we omit writing
the O(62). This means that each "equals” is only valid to the zeroth and first order of the perturbation.
Taking the square root of the above equation and neglecting the terms we do not care about, we find u’.
In addition, we use Eq. (6.7) find u".

u' = cexp(—v), and (6.9)
u = %ut = Eexp(—v). (6.10)

We aim at finding the energy momentum tensor 7}, for the perturbed system. After T}, is found, we
consider the Einstein equation (2.16) to constrain the perturbations. After all, the only degree of freedom
we have, is the displacement £, and all the other perturbations follow. Lowering the indices of u* enables
us to find T}, for the perturbed system

up = grou® = exp(2v)u’ = cexp(v), and (6.11)
Up = Grotl® = —exp(2\)u” = —E exp(2\ — v). (6.12)

Now, we recall Egs. (2.19) and use the expressions for u; and u, above in order to obtain T},,. In its full
matrix-form glory, it reads

“zt (e +p) —exp(=2v)p “a=(e+p) 0 0
T, = Ut (e +p) “z=(e+p) —exp(=20)p 0 0
i 0 0 r2p 0
0 0 0 r2sin*(f)
exp(2v)e —c'eexp(2N)[e+p] 0 0
—c 1€ exp(2))[e + p] exp(2A\)p 0 0
_ 6.13
0 0 r2p 0 ( )
0 0 0 r2sin0p
In the exact same fashion, we find the energy-momentum tensor with upper indices
exp(—2v)e cexp(—2v)[e+p] 0 0
—1¢
AL Eexp(—2v)[e + p] exp(—2\)p 0 0 . 6.14
0 0 r2p 0 ( )
0 0 0 (rsin(9))™2p

An important result we used when we searched for the TOV-equation, was the condition imposed by
energy-momentum conservation, namely Eq. (2.36). The energy momentum tensor T” has, as we can
see above, picked up some new terms as a consequence of the perturbation. Additionally, we found three
new Christoffel symbols in Eq. (C.2). Therefore, we investigate how the energy-momentum conservation
condition change. To make the substitution of the Christoffel symbols clearer, we write the ones containing
« and 8 with v and A

I}, = exp(2v — 2\)V/, Il =v= ov

Tf = exp(2X — 20)A = exp(2\ — 20)0N, Tt =1/, (6.15)
ho = —rexp(—2\), .=\, ’

6o = T sin?(#) exp(—2X), Iy = A=A\

Now we have all the Christoffel symbols and components of the energy-momentum tensor to find an
explicit expression from energy-momentum conservation.

VMT;LT‘ — auTu'r + FZUTUT + FZUT;I,O'
= T 40,17 + (L4, + T7,) T + (T, + Iy, + T, + T, ) T + I}, 1"
+ Ty T + T, T 4+ T, T + Ty T% + 17, T9°. (6.16)
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We note from Eq. (6.15) that T'%,, T, and I, are linear in the perturbation. Multiplying these terms
with the off-diagonal components of the energy-momentum tensor gives rise to terms that we neglect
here. Substituting in the expressions for all components, we find

, 1
v, T = 9,T"" + (Fgr yorT 4+ TY 4 r‘ﬁ) T + D5 % + T3, 7% + T + 0T
2exp(—2A
(=23 )

2
= 0, (exp(—2)\)p) + (u’ +2) + r) exp(—2\)p — "
+exp(2v — 2p)v" exp(2v)e + 0, <C€2 exp(—2vo)(eo + po))

= exp(—2\)p’ + exp(—2\)/ (e + p) + c% exp(—2vp)(€eg + po)
0. (6.17)

To zeroth order, the above expression is equivalent to what we found for an equilibrium star, Eq. (2.36).
This time, however, we consider the linear terms in the perturbation. Multiplying the expression above
with exp(2\), we get the expression into its tidiest form. In this way, energy-momentum conservation
gives the constraint

c%exp(Q)\O —215) (€0 + po) = — (€0 + po)dv’ — dp’ — v (de + dp). (6.18)

We have derived the first of five constraints. This equation determines the dynamics of £. After we
manage to eliminate 0v/, de and dp, this will be the governing equation for how the perturbation ¢
evolves. We find the second constraint from considering the rt-component of the Einstein equation. In
Appendix C, we calculate R,;, Eq. (C.8), which we can rewrite with A instead of 5. Inserted into the
Einstein equation together with T,; from Eq. (6.13), the calculation leads to

20\ 87G ¢
= - STE S exp(220) <o + po). (6.19)

cr

In this equation, we have a time derivative on both sides. To remove the derivative, we integrate both
sides, but this comes at the cost of introducing an integration constant. We need to determine this
constant. If we set the perturbation £ to zero, the system should recover its original equilibrium form,
i.e. 60X = 0. If we have a non-zero integration constant, this would not be the case. Therefore, we can
set the integration constant to zero. Thus, we have found the second constraint on the perturbation

S\ = —

4:4G€7" exp(2X0)(€o + Po)- (6.20)

oA will appear in the following constraints, and we will need this expression to substitute away d\ in
favour for £&. The third constraint is found from Eq. (2.44). In Appendix C we argue that this result is
also valid for the time-dependent case. Firstly, we rewrite the equation in terms of v and A. This leads
to

4 1
V= %Frp exp(2A) — Z(l —exp{2A}) | - 2rexp(—2AX))
2r exp(—2\)v/ = 8:—4(;7“2;0 —exp(—2\) +1
2r exp(—2Xo) (1) — 240\ + 0V') = 8:—46;7‘2(])0 + dp) + exp(—2Xg)(1 — 26\) — 1. (6.21)

As before, we look at the terms linear in the perturbation. We isolate §v’ to arrive at the third constraint

47 G

ov' = ——rexp(2X0)dp + 2040\ + 5—>\ (6.22)
c 7
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The two last constraints we find from thermodynamic analysis on relativistic fluid dynamics. This is
done in Appendix A. We are going to make use of the energy momentum conservation condition and the
expression for the adiabatic index ~

utVe = —(e+p)V,ut, (6.23)
e+p (Op

= — ] . 6.24

T (36)5 (624

First, let us consider the energy-momentum conservation, Eq. (6.23). We know the expressions of u*, €
and p, so we can start inserting these quantities. Let us first treat the left hand side of this equation.
The result is

t . .
utV e = (ucat + —l—urar) (€0 + d€) = exp(—v) (56 + 665) : (6.25)

The right hand side gives quite a few terms to calculate

(e p)V,ut = (e + p){a’%t + 0" + (Tl + T3+ (T, + 17, + T4, + 15, ) u'}
= —(e+p){ — exp(-v)i + exp(—v)(€ ~ V'E) + (5 + A) exp(~v)
+ (1/ + N+ i) éexp(—l/)}
= —(e0 + po) exp(—v) {g” O+ A€+ fg} (6.26)

In the last line, we have noticed that the curly brackets contain only terms that are first order in the
perturbation, and we are therefore allowed to include only the zeroth order of the energy density and the
pressure, (e +p) — (€9 + po). We equate Eq. (6.25) and Eq. (6.26) and then multiply both sides with
exp(v) to find the relation for de

e = —(co +p){€ + 1+ Né + 26} — . (6.27)

This looks promising, and we can even simplify it further. On both sides of the equation, each term has
a time derivative acting upon it. Thus, we may integrate in order to remove the time derivatives, at the
cost of an integration constant. As in the case for d)\, we set this constant to zero. The reason we can
do this, is that the perturbation in € should disappear if we set £ to zero. From the discussion above, we
know that d\ vanishes as & — 0. With this, we conclude that de only vanishes if the integration constant
is zero. The fourth constraint on the perturbations has finally been derived as

2
de = —(eo + po) {5/+5A+)\6£+ rf} — €€ (6.28)
The only missing piece now is to determine dp. In order to achieve this, we have to evaluate % at

constant entropy. To this end, we must discuss what an observer moving along the flow of the fluid would
measure. In Eq. (6.4) we define what the perturbations look like for an observer fixed in the coordinate
system. This is what we call an Eulerian change. However, this change is not the same as an observer
moving along with the perturbed fluid would measure. This observer would experience both the eulerian
perturbation, and a slight change due to the radial displacement £. The change an observer moving with
the fluid would measure is called a Lagrangian change. To distinguish the two of them, we denote a
Lagrangian change by a A. The measured energy density for the observer in the rest frame of the fluid
element will be € = ¢y + Ae. In the end, we want to express everything in the terms of the Eulerian
change . We see how the Eulerian and the Lagrangian change relate to each other if we consider Figure
6.2.
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Fixed observer Flowing observer
Radial perturbation flow . .
a'=(t, r, 0, 0) 2 =(t, r+&, 0, 0)
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Eulerian change Lagrangian change
r r+§&

Figure 6.2: An illustration of a fixed observer measuring the FEulerian change and a flowing observer
measuring the Lagrangian change in the radially perturbed equilibrium star. When the perturbation &
is small, we can Taylor-expand e(r + &) around r to obtain a relation between the Eulerian variation §
and the Lagrangian variation A.

In the rest frame of a fluid, i.e. for the flowing observer, we must evaluate the energy density €,.s at
radial coordinate r 4+ £. We Taylor-expand € around r, and arrive at

€rest (B, 1) = €(t,r + &) = €o(r) + Ae(t,r) = e(r,t) + Ope(r, t)€
= €o(r) + Or(€0)& + de(r, t). (6.29)

We can now see that the infinitesimal changes are related by an extra term proportional to the radial
perturbation &.
Ae = de + €y€. (6.30)

Now that we have considered the relation between a fixed observer with an observer moving with the
streamlines, we can evaluate Eq. (6.24) expressed in terms of Ae and Ap, and then in turn express dp.
Eq. (6.24) tells us how the change of pressure is related to the change in energy density at constant
entropy. This corresponds to Ap over Ae, because A describes how quantities infinitesimally change
along the streamlines, which is exactly what the derivative at constant entropy describes. Therefore, we
write

e+pAp

= . .1
(v (6.31)

This allows us to write

D
Ap =~v——Ae
4 fye-l—p

5p + phé = Wﬁ(ée e, (6.32)

In order to make use of this, we need to evaluate 7 to zeroth order, ~y. We can do this by simply inserting
the equilibrium quantities into Eq. (6.24). This procedure yields

€0 + po Opo
po  Oeg

Yo = (6.33)
This is easy to evaluate for a given equation of state. Finally, we have found the fifth and last equation

to constrain the perturbations
Po

€0 + Po

op =0 (0¢ + €58) — POt (6.34)

6.2.2 Constraining the Radial Perturbation

In the previous subsection, we derived five constraints for the perturbations in the radially pulsating star.
Here, we shall combine them in order to find a dynamical constraint in the radial perturbation £. Since
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we only considered the first order in the perturbation, these equations form a set of linear differential
equations

f—zexp(Q)\o —21p) (€0 + po) = — (€0 + po)ov' — dp’ — vy(de + dp), (6.35)
4nG

5X = — =1 exp(2X0) r€(eo + po). (6.36)
o = 47r4G exp(2Xg) 70p + 2150\ + 5—>\, (6.37)

c r

2
de = —(eo + po) {5/ + 0N+ A€ + 7’6} — €€, (6.38)

. Po / o

= P (e + €5€) — ppé. (6.39)

In addition, we will need the equilibrium conditions on v, and Aj. These are easy to read off from Egs.
(2.37), (2.44), and (2.42)

/
! —Po

_ 7 6.40

7 €0 + Do ( :
1 4rG

vy = g(exp@/\o) -1)+ —a exp(2Xo0) 7po, (6.41)
1 4G

Ao = 5, (1 = exp(2X0)) + —= exp(2Xo) réo. (6.42)

The seek an equation with only & and derivatives acting on it, the spatial coordinates and the known
equilibrium quantities. The work ahead is frankly looking a little messy. Starting with the good news:
O is already expressed solely with &, r and unperturbed quantities. In addition, we notice that we can
write d\ in a compact form by utilising Eq. (6.41) and (6.42)

4G 4G
4

oA =—¢ (04 exp(2Xg) rep + exp(2Xg) rpo) = —£(vy+ A)- (6.43)

C

The next step is substituting this expression into Eq. (6.38) to make Je independent of perturbations
except for €.

de =~ ) {€ = 605+ %)+ g + 2 - e
= —(€o + po) {5’ + %6 - V{Jé‘} — €. (6.44)

Now we can substitute de into Eq. (6.39) to find dp expressed by the desired quantities

op = Y0 pro <—(€0 +p) {5’ + %ﬁ - V6£} - 66§+66£> — poé

= —YoPo {5’ + %5 - Véé} — pok. (6.45)

We note that de and dp have the same dependence of the curly brackets, and hence will also §v’ contain
the same bracket, as it can be expressed in terms of dp. In the dynamical constraint on &, Eq. (6.35), we
see all these quantities appearing in addition to the radial derivative on dp. Therefore, we have ample
motivation to write the bracket in a more compact form in order to save a lot of writing,

{fl + %5 _ 1/6} _ (r*€ exp(—=10))’ _ eXP(VO)C/7 (6.46)

r2 exp(—1p) r2

where ¢ = r2€ exp(—1yp).
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Using ( instead of ¢ to express the radial perturbation simplifies the equations by reducing the amount
of terms. Therefore, we find the dynamics of ( instead of £&. Anywhere & appears, it is an easy task to
substitute in (. We begin by substituting ¢ back into our last expression for dp.

exp(v exp(v
5p = —Y0Po (2 O)C’ — Do r(2 O)C
exp(v
=—2¢' -} T(Q e, (6.47)
where  Z = vyopo exp(Quo). (6.48)
T

As mentioned, we are going to evaluate the radial derivative acting on dp, and renaming the prefactor in
front of ¢’ to Z will simplify this expression. Now we are in a position to express de in terms of ¢ instead
of £

, exp(vo)

exp(vo) e (6.49)

(56 = —(60 +pO)TC/ — €

The last expression we need is dv’. Again we use the equilibrium conditions to find a compact expression,
in addition eliminating dA and ép by Egs. (6.43) and (6.47)

r_ 1 / / _ / 1
o' = P (W) + Ao)op — | 21y + . IA

V(IJ + )‘6 / ) / ’ / 1 eXp(l/o)
— DTy _ AN
o+ 1o {Z¢" + por—? exp(ro)C} — (vy + Xo) ( 205 + - 2 ¢
V(/J + )‘() / / / / 1 eXp(Uo)
=——7( — A - . 6.50
€0 + Po ¢ = (o tdo)(vo+ r r2 ¢ ( )

In the last line, we have used the condition from equilibrium energy-momentum conservation, Eq. (6.40).

Finally, we are ready to insert everything in the dynamical equation for £ which we express in terms of
¢. At first we motivate a little as to where we are headed. On the left hand side of Eq. (6.35), we have
two time derivatives acting on . This means, that we should be able to write this side of the equation
as X C , where X is a function we must determine. The right hand side of the same equation contains ¢”
(from the term —dp’), ¢’ and ¢, and it is linear in each of these terms. As a consequence, it should be
possible to write the right hand side in the form A{” + B{’ + C(¢, where A, B and C' are functions that
we must determine. As the terms will be quite long, we handle the left hand side of Eq. (6.35) by itself
first

€ + Po
C2T2

exp(2ho — 19)¢ = XC. (6.51)

C%exp(Q)\O —2ug)(e0 +p) =

Here, we have identified X = 62;% exp(2Xo — o). It will soon, however, be practical to multiply both
sides of the dynamical equation with a factor of exp(2vg + Ag). This will soon be justified. For now, let
us apply everything we have derived in this section to the right hand side of the dynamical constraint.
To be specific, we substitute Eqs. (6.47), (6.49) and (6.50) into Eq. (6.35). This yields a quite large
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expression, which fortunately tidies itself up as we collect the terms

X( = — (€0 + po)dv' — 6p' — v (de + Op)
(Vs + M) ZC' + (60 +po) (vh + Np) (vé + i) oD00) - 4 i 4 207 + ( eXI:é”“) ¢
ex ( 0) .

/ exp( 0)

¢+ (€0 +po)—5—¢ +

+p66x( sty [ZC +p ’exf;( )g}

:ZC”-FC’{Z’ + (W) +X)Z+vyZ + 'exi( )+l/0(€ +p )exi(;/[))}

exp(o)
T2

1 2
# B ot o) ) (64 1 ) 06+ vt~ >+ 0 + )]

eXP(Vo)
r2

=Z"+ {7+ 2vf+ \)Z} + ¢ 21/6] )

(6.52)

1
(0 + po) {(1/6 +A0) (V(l) + r) -y - (1/6)2 +

To obtain the last equality, we have again used the condition from energy-momentum conservation for
the equilibrium state. Next, we consider the terms containing " and ¢’. With a slight rewriting, we may
bring the terms with radial derivatives of ¢ to the form [P{']" = P{” 4+ P'(’. We are free to multiply both
side of the equation with a common factor, meaning that we can chose P = fZ, where f is an arbitrary
function. Comparing this form of P to the equation above, we get the following requirement

(P¢) = PC"+ P'C = 2"+ f2¢C + f'ZC = fZ¢" + fZ2'¢ + (3vg + No) f ZC. (6.53)

The statement just above, is equivalent to the condition f’ = (2v9 + Ag)f. This simple differential
equation has the solution f = exp(2vy + A\g). Earlier we stated that we want to multiply both sides of
the dynamical equation by exp(2vy + Ag), and this is the reason. Doing so, we can write the dynamical
constraint on ( as

W¢ =[P +Qc. (6.54)

We have deliberately chosen the same function notation as in [5], in order to make it possible to check
that the calculation performed here matches their results. The functions W, P and @ are given by

€0 1+ Po

W= 22 exp(ro +3X0), (6.55)
exp(3rp + A
P = ’VOPOWa (6.56)
exp(3vg + A 1 20}
Q= (eo+ ) 2T [ 3 (4 1) = of -y + 28] (657)

Cleaning up the terms for Q is another calculational exercise at the end of this quite long perturbation
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the end

1 4G '
—yy = — (W(exp@)\o) -1)+ o exp(2)\o)7”po>

1 exp(2Xo) 4rG 1 1
4rG 1 1 4rG
T A exp(2Ao)po — ﬁ(eXP(Q)\O) -1+ ﬁ(exp(”\o) -1)— i exp(2Xo) 7P

1 DY 1 4G
= (o) - 1) = 20 23 (5 (e (220) - 1) + T exp(ha)rm

1 /1 4G 4rG
- <2T(exp(2)\0) -1+ - exp(2/\0)7’p0)) + V(/)CT exp(2Xo)r (€0 + po)

1 )\’ 1
= 3 (exp(2X0) = 1) = 22 = 2215 — —v + (v + Ao)
1 1
= g(exp(2A) — 1) + 2(5)? = (vp + A0) (v + ) (6.58)

This expression we substitute back into Eq. (6.57). We find

exp(3vo + A I 1
Q = (eo +Po)w |:(l/(/))2 + 70 + T—Q(exp(2)\0) - 1))]
exp(Buo + o) [ (p)*  4py 871G
= 2 wtp v exp(2X0)po(€o + po) | - (6.59)

This is the form it is the easiest for us to evaluate @), given that we have already found the equilibrium
solution.

6.2.3 Finding the Eigenfrequencies of the Radial Perturbation

In this subsection, we treat Eq. (6.54) to show that neutron stars parameterised by central pressures
larger than p/, will be unstable with respect to radial perturbations. To start, we use our favourite
technique to solve partial differential equations: Assuming separability. Specifically, we assume that we
can write ¢ as a product of one time dependent function T' = T'(¢) and one function dependent of the
radial coordinate u = u(r)

C(t,r) =T(t)ulr). (6.60)

We substitute this into Eq. (6.54), with the goal of gathering all time dependence on one side of the
equation, and all the radial dependence on the other. We find

1
WTu

WTu="T[Pu] +TQu |

T [P Q 2
Z ~ — A, .61
T W —|—W w (6.61)

The last equality follows from the usual separability argument: One side is only dependent on ¢ and the
other is only dependent on r, and the equation holds for all ¢ and r. We may conclude that each side is
equal to a constant, which we have named —w?. For T, this is a very familiar differential equation with
the solution

T(t) = Ay exp(iwt) + A_ exp(—iwt), (6.62)

where Ay and A_ are constants. This form of T' enforces a constraint on the values of w. If —w? > 0,
w becomes purely imaginary and 7' increases unboundedly as we let ¢ — oo and t — —oo. At some
"largeness” of (, the first order perturbation analysis will break down. What happens to the star, we do
not know, but we may conclude that the star is sensitive to sensitive to slight radial perturbations, i.e.
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it is unstable. As the differential equation governing ( is a linear one, we must accept linear combination
of solutions. A general perturbation will take the form

(=D Gu= Tulthun(r), (6.63)
n=0 n=0

where each T,, corresponds to one w,. Any real perturbation will contain contributions from each (,.
For a neutron star to be stable, we must therefore require that —w? < 0 for each n. Returning to Eq.
(6.54) for one particular n, we divide it by T}, and substitute in T}, /T}, = —w?. The resulting equation is
only dependent on the radial coordinate r

[Pul] + [Q + Ww2] u, = 0. (6.64)

Equations of this form are called Sturm-Liouville equations, and w? is called the eigenvalue of the eigen-
function or normal mode u,. In order to give the Sturm-Liouville equation a unique solution, we need
to impose two boundary conditions. We find the first condition from noting that the perturbations de
and dp should be finite as r — 0. Counsidering Eq. (6.38), we see that £ must approach zero at least
linearly for » — 0 in order to avoid a divergence in de. Thus, we may conclude that ¢, and hence u,
must be proportional to 73 for small . The second boundary condition stems from the fact that the
pressure vanishes where the star ends, at R + £(¢, R). This condition can be mathematically expressed
as p(R+ &) = po(R) + Ap(t, R) = Ap(t, R) = 0. This is equivalent to

Ap = 5p+p6ex1:;7(2yo)c =-z¢ =0. (6.65)

From these two considerations, we can write the boundary conditions for the Sturm-Liouville equation
in terms of the u as

u(r) < r® when r—0 and «/(R)=0. (6.66)

Sturm-Liouville problems are well known, and they have some key properties. The most useful to us is
the Sturm-Liouville theorem [15], which states that the Eigenvalues come in a discrete sequence

Wi <wi<ws <., (6.67)

each eigenvalue with a corresponding eigenfunction ug, 41, us, . ... The eigenvalues do not have an upper
bound, however, there exists a lower bound, which is w?. An eigenfunction u, has n zeros, also called
nodes. This theorem is important, because we can use it to numerically approximate w? and u, by the
help of the shooting method. The idea is to start by letting u = r3 for when % is very small. Then we
calculate how u evolves by numerically evaluating Eq. (6.64) until we reach r = R. Having found a guess
for u,,, we can count the number of nodes. If the number of nodes exceed n, we have guessed w? to be too
large. If the number of nodes are less than or equal to n, the guess for w? was too small (or maybe exactly
correct, if we are very lucky). Starting with a small w,, and a large one, we know that the true solution
lies in the interval between them. Then we use the bisection method until we have found a sufficiently
small interval in which we know the true solution must lie. This is one of the methods for finding w?
and w,, listed in [13]. The shooting procedure is excellently explained in [1] (p. 165-166). As discussed
above, a stable neutron star cannot have any unstable eigenmodes. Therefore, if we guess w3 = 0, and
we find n nodes for the numerically integrated ug, we know that there exist n unstable modes for the
perturbations.

Next, we massage Eq. (6.54) into a form we can perform numeric calculations upon. We divide by P in
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order to isolate u”. The expression reads

//:_gu/_gu _w2Wu
{76+p6+(3,+x> 2} )1 [(%)2 Ao 837G @Ae)polco + po)
= ¢ X — 1% - =%, - — | — — — — —¢€X € Unp,
Y Do O T [ T Sopo Leo +po A OO0
2
— w—gme){p@)\o — 2ug)un
¢” Do
A 0 3 exp(2A 4G
—_ X P2 P(2X0) + —— exp(2X0)7(3po + €0) ¢ uy,
Yo Po T r c
1 (pp)?  4py, 887G w2 (e
- |Mes o ZRA 2\ n——= | =— 2X0 — 2 n- 6.68
YoPo Lo +po T ct exp(2A0)po(co +po) | v ez \ dpo p(2o = JoJun.  (6.68)

Everything in the expression above are known quantities, except for the occurrence of 7). We investigate
how we can write 7, in terms of known expressions

/
9po
dyo  d (€ +podpo o € +Py P (660)
dr dr 0

po  Oeg €0+po Do g%
0

deg
g2+ 1 A o [0 0
1 Opo Do / Po €0
= = = dp— =)=, 6.69
o (po €0+DPo Do Po Opo (860) Opo ( )

df(po) __ dpo 9f(po)
dr

where we have used that . Now, the rest is just a matter of substituting Eq. (6.69)

dr  9po
into (6.68) and calculating g—;’) and % (%) from the equation of state.

6.3 Stability of Ideal Neutron Stars

In this subsection, we apply the equations from the stability analysis to an ideal neutron star. In Section
4, we derived the equation of state and the expressions

Opo _ z2 and 9 Opy 2

g 3(1+a2) dpo Deo 3(eo + po)(1 + %)’

(6.70)

With this we have everything we need to integrate u and count the number of nodes. We calculate
the four lowest eigenfrequencies for ideal neutron stars parameterised by central pressures in the range
pe € [1031, 10415] Pa. In this range, we find that all the four lowest frequencies obtain negative values,
as seen in Fig. 6.3.
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«10° Smallest eigenfrequencies w? for ideal neutron stars
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Figure 6.3: A display of the four lowest eigenfrequencies for ideal neutron stars. We see that for large
enough central pressures, each frequency becomes negative, resulting in one additional unstable normal
mode.

Here we get a rough idea of where the zeros for the eigenfrequencies lie. Next, we use the bisection
method to find more accurately which central pressure yields w2 = 0. For the four frequencies in the
plotted in Figure 6.3, we find

- wi at p. = 3.6 x 103 Pa,
- w? at p. = 2.1 x 10%7 Pa,
- w2 at p. = 7.2 x 1038 Pa,
- w3 at p. = 4.5 x 104 Pa.

With these values, we can re-plot the mass-radius curve for an ideal neutron star, colouring each segment
after how many unstable normal modes which exist. An inspection of Fig. 6.4 reveals that the lowest
normal mode becomes unstable at the maximum mass of the neutron star. This is in accordance with
the qualitative argument we gave in Section 6.1. With this analysis, however, we get some additional
information. From the figure, it seems that every time a new node becomes unstable, the curve is at a
local extremal value. We also see from Fig. 6.3 that for higher pressures, the squared eigenfrequencies
which are already negative, drop quickly. This results in an even more unstable star, as the normal mode
would grow more quickly as the time-coordinate grows.
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Mass-radius relations with number of unstable modes
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Figure 6.4: A plot of the mass-radius relations for ideal neutron stars in which the number of unstable
modes are indicated on the graph. An unstable mode has an eigenfrequency w? < 0. As shown in Fig.
5.1, the central pressures increase as we follow the curve from its lower right end towards the spiral.
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Chapter

Summary and outlook

7.1 Summary

In this thesis, we started out from the theory of general relativity and relativistic fluid dynamics to derive
the Tolman-Oppenheimer-Volkoff system of equations that governs spherically symmetric equilibrium
stars. These three equations are:

- The TOV-equation, which describes the change of pressure with respect to the radial coordinate,
- the gravitational mass equation, which describes the gravitational mass inside a radius r, and
- the equation of state, which provides a relation between the energy density and the pressure.

With these equations, we can parameterise a sequence of stars by the central pressure. We have seen that
2
the TOV-equation predicts an upper bound for the mass-radius ratio % < ‘é%, which is stricter than the

limit imposed by the Schwarzschild radius.

To get some hands on experience with the TOV system of equations, we have derived the equation of
state for cold non-interacting neutron matter through a statistical physics model for fermions. Although
non-interacting, matter resists a gravitational collapse due to the degeneracy pressure. A star composed
of such matter is called an ideal neutron star. Having solved the system of equation numerically, we
found a maximal mass M = 0.71Mg, with the corresponding radius R = 9.2km. This reproduces the
famous result found by Oppenheimer and Volkoff [9] as early as in 1939. To our dismay, astronomers
have observed more massive neutron stars, which means that we must turn to another equation of state
in hope to realistically describe neutron stars. Our efforts so far have not been in vain, however, as we
can use the equations and numerical methods we have developed for the ideal neutron stars for more
complex equations of state as well.

The final main topic we have treated in this thesis is stability analysis of neutron stars. Here we followed
the idea of Chandrasekhar [12], who originally investigated the stability in 1964. We started by assuming
a slight radial perturbation which induces slight perturbations in the energy density, the pressure and the
metric functions. Throwing away all terms which were more than linear in the perturbations, we found a
dynamic constraint for the radial displacement. Decomposing the radial displacement into normal modes
with specific eigenfrequencies, we can find when a neutron star has one or more unstable normal modes.
Such stars will be unstable and will not be observed. To apply the analysis to a specific problem, we
turned again to the cold, non-interacting neutron model. We found that ideal neutron stars parameterised
by central pressures larger than 3.6 x 103*Pa have at least one unstable normal mode and are unstable.
This critical central pressure also parameterises the ideal neutron star of the maximum mass.
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7.2 Outlook

We know from the discrepancy between the maximum mass of the ideal neutron star and the measured
masses of real neutron stars that we need to improve our model into a more complex one. There are
several ways to add more complexity to our model. One of them is to introduce rotation, breaking the
spherical symmetry. Some neutron stars rotate rapidly, and this inclusion should be made to describe
them realistically. A rotation would add new terms to the metric tensor, and the derivation of the TOV-
equation would no longer hold. Solving the rotating system might yield exciting corrections for rotating
stars.

We could also modify the non-rotating model by looking at other equations of state, allowing us to keep
the TOV-system of equations. This is perhaps even more interesting than adding rotation, as the ideal
equation of state suffers from several weaknesses which we can amend in this way. First of all, we know
that neutrons undergo a process of inverse 8 decay through the process

n—p+e + .

Taking this into consideration, we need to add a content of neutrons and electrons to the star. However,
this correction actually decreases the maximum predicted mass [4] (pp.107-108). Although giving a more
correct model, it might not be the correction we are looking for.

Secondly, we know that particles interact with each other, which modifies the relation between the energy
density and the pressure. How would interactions quantitatively change the mass-radius relations? An
example of how to model interactions is the o — w-model, or the Walecka-model [14]. In this model, we
add a scalar particle o and a vector particle w,. These particles mediate the forces between the neutrons

Thirdly, the ideal neutron star model gives hints that there might be other phases of matter in the interior
of the neutron star. We have seen that the pressure and energy density inside an ideal neutron star can
be immensely large. They can, in fact, be so large that nucleons decompose into their quark constituents,
so-called deconfinement. A star consisting of hadronic and quark matter is called a hybrid star. The
possibility of deconfinement begs the question: How would a quark phase inside the neutron star affect
the mass-radius relations? Another interesting question which arises in this regard is the transition from
hadronic matter at the star surface where the energy density is low, to the deconfined quarks closer to
the star centre. The simplest model would be a sudden change at some 7 in the interior of the star. But
we could also investigate the possibility of a mixed phase, where hadronic matter coexists with quark
matter. Will allowing for a gradual transition significantly change the mass-radius relation as compared
to the abrupt transition? Quark deconfinement is another example of introducing more than one particle
in the neutron star system.

Finally, we have so far been working with a cold star model, i.e. T'= 0. After a neutron star is formed,
it starts to cool down, as there is no more fusion reactions which produce energy. However, the interior
of the star will remain warm for a long time. Will introducing finite temperature significantly modify the
maximum mass?

The work done to solve the toy model of the ideal neutron stars paves the road to consider more advanced
models of neutron stars. As there exists observational data on neutron stars, we can compare the observed
neutron star masses to the predictions of the models we can perform calculations upon. If we predict
a maximum mass less than the maximum observed mass, we know that we must modify the model to
match observations. As exemplified above, there are several particles we can introduce to the neutron stars
system in an attempt of getting better predictions. Adding too many of them will give a very complicated
system. Which layers of complexity should we add to our neutron star model to give predictions which
are consistent with the observed data? Trying to answer all these questions is a monumental task. In
the second part of this document, the Master’s thesis, we will look into hybrid stars, trying to figure out
how different phase transitions affect the mass-radius relations.
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Chapter

Introduction

In this thesis, we will study three types of compact stars: Two-flavour quark stars, hybrid stars, and
hybrid stars with a unified equation of state. A quark star consists solely of quark matter, while a hybrid
star is composed of a nuclear matter mantle and a quark core, see. Fig 8.1. In order to describe how
matter inside these stars behaves, we will dive into quantum field theory at finite chemical potential.
After this, we will ascend with an equation of state: An equation which relates the energy density and
pressure. In particular, we will use the phenomenological quark-meson model to describe two-flavour
quark matter. This will enable us to model quark stars — curious objects consisting only of quark matter,
despite the fact that free quarks have never been observed in Nature. From there, we will move on to
describe hybrid stars. We will use the Akmal-Pandharipande-Ravenhall equation of state [44] to model
the nuclear matter. Approaching the core of the star, the energy density can grow large enough for the
nuclear matter to turn into deconfined quarks, enabling us to use the quark-meson model in the hybrid
star as well. Furthermore, we will discuss two different methods of bridging the nuclear and quark phases.
The first way is to construct an abrupt transition from nuclear to quark matter, referred to as a first-order
phase transition, while the latter is to introduce an interpolating phase between the two types of matter,
referred to as a unified equation of state.

In the project thesis, we considered ideal neutron stars. We found that the ideal neutron star-description
predicts an upper mass-limit of approximately ~ 0.7Mq. This is not large enough to match observational
data of neutron stars. The models we discuss in this thesis take into account several particle species and
interactions between them, making the models better at predicting neutron star properties. We shall see
that the predicted maximum masses will land around ~ 2Mg, which is a large improvement over ideal
neutron stars.
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Project thesis Master's thesis
Ideal neutron stars Quark stars First-order phase transition
Two-flavour model between nuclear and
quark matter

Nuclear matter

Hybrid stars
Nuclear matter mantle
Two-flavour quark core

Interpolating phase between
nuclear and quark matter

(Domains not to scale)

Nuclear matter

Figure 8.1: A schematic overview of the star models we discuss throughout this thesis. Neutrons are
denoted by n, whereas u, d, and e refer to the up quark, down quark, and electron, respectively.

In the beginning, neutron stars were only available to us through theoretical physicists’ calculations.
Luckily for the astrophysically inclined, this changed after the first observation of a neutron star in
1967 [16]. Today, we have many observations of neutrons stars, and for some of them, we have precise
measurements of masses and radii. This gives empirical data for us to test our theoretical models against.
According to [17], the neutron stars’ masses typically lie in the range 1.17Mg to 2.0Mg, with the
most common value being about 1.4M. Observed radii typically lie between 9.9km and 11.2km. The
observations of neutron stars come from radio, X-ray or gamma radiation from rapidly rotating neutron
stars called pulsars. Examples of such observations are provided in Ref. [18]. Of all the observed pulsars,
many of them are isolated. For these, we cannot measure the masses. However, some pulsars form binary
systems. Based on the orbital motion of binary systems, it is possible to determine the masses of the
stars orbiting each other. In particular, we are interested in the heaviest neutron stars, as these pose the
strictest constraints on possible equations of state. Among the observations of heavy-weights, we find the
massive star with the scientific-sounding name PSR J0348-0432 [19]. The observed mass of this pulsar
is 2.01 £ 0.04M. This is not a lone outlier — there are other massive pulsars with masses around two
solar masses. PSR J1614-2230 [20] is just behind with a mass of 1.97 4+ 0.04 M. Third and last of our
heavy pulsar-examples is PSR J0952-0607 [21]. This is the heaviest known neutron star, and it ticks
in at a whopping 2.35 £ 0.17M. Producing neutron stars as heavy as these three requires a very stiff
equation of state, which qualitatively means that the matter can support itself from the pull of gravity
by producing a large pressure.

To find masses and radii for compact star models, we integrate the TOV-equations, as we discussed in
the project thesis. For completion, we re-state the equations with our new unit conventions

M(r) = /07" dr'dnrp(r’) = /07" dr'dmre(r’), (8.2)
€=€(p). (8.3)

The interesting question remains: Will the equations of state we discuss be able to predict maximum
masses which lie in the interval of uncertainty for the heavy stars listed in the previous paragraph?
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Chapter

Quantum Fields at Finite Chemical Potential

The ultimate goal of this thesis is, of course, calculating mass-radius relations for compact stars with
the help of the TOV-equations. This chapter will be concerned with the third of them, Eq. (8.3),
the equation of state. Specifically, the goal in this chapter is to derive thermodynamical quantities for
particles described as fields. In the end, we will have developed a formalism into which we can insert the
quark-meson model. In contrast to what we did in the project thesis, the framework we will develop here
will be able to handle particle interactions, making it a better tool to find thermodynamical quantities.
The strategy will be quite similar: We must identify the grand canonical partition function ©. Through
it, we will find the grand potential, from which we can derive the number density for each particle species,
the total energy density, and the total pressure. The procedure we develop here, is what we refer to as
quantum field theoy (QFT) at finite chemical potential. Textbooks referring to thermal field theory
(TFT) handle the same topic, however, we consider cold compact stars, T' = 0, and are not focusing on
the finite temperature corrections. Therefore, we say QFT at finite chemical potential instead of TFT.
This chapter will be quite technical, but it does in no way attempt to be rigorous or comprehensive. For
the reader who is familiar with this topic or who is only interested in compact stars, this chapter may
be perused or skipped. This chapter is inspired by Ref. [22]. For a more thorough walkthrough of the
quantum states, see Ref. [23].

9.1 Deriving Thermodynamical Quantities from the Grand Po-
tential

First of all, we recall the relations from statistical physics which we will need. The grand canonical
partition function © is defined as

© = exp(Bu;N; — BH), (9.1)

where the sum goes over all configurations and all particle numbers N;. The subscript ¢ enumerates the
particle species. In the thermodynamic limit, we find that the grand canonical partition function [24] (p.
119) can be written

QV = —kpTn(0) = E—TS - j;N; = —pV. (9.2)

Q denotes the grand potential. From the grand potential, or equivalently In(©), we can derive all the
thermodynamic quantities we are interested in. We note that the grand partition function is a function
of the chemical potentials u; and the temperature T, namely © = ©(u;,T). To find the pressure p, we
can simply divide both sides of Eq. (9.2) by V. Secondly, to calculate the particle numbers, N;, we can
perform a partial differentiation with respect to p;. Thirdly, we perform a partial differentiation with
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respect to 7" in order to express the entropy, S, in terms of ©. Written out explicitly, we have

_ kpTIn(©) 1In(O)

o -sP - a (9.3)
b N _ksTO(©) _ 1 am(e) _ o o)
14 Vo Ow BV Opi Opi
_ S _19(kgTIn(®)) kg kgT oln(®) 1 (In(®)  JIn(o®)
VSV o v Oty T\l T ) 09

In all of the lines above, we have introduced 8 = Im% We have also chosen to express the densities

instead of the extensive quantities by dividing by the volume. The last line states the entropy volume
density s, which we can use to express the energy density € = % We isolate E in Eq. (9.2), divide by V
and eliminate s by substituting in Eq. (9.5). This procedure yields

k’BT k’BT 6111(@) ,ZCB’T2 8111
e=-tot 1n<@>+—v <1n<@>+T ) + = o
~ 1omm(® w; 0ln(© 3(69) 15.9)
="V op ZBV (m S (66)

In the first to the second line, we have eliminated the number densities n; by substituting in Eq. (9.4).
Having expressed both € and p, in terms of the grand potential, the next task is to identify the grand
potential.

9.2 The Grand Canonical Partition Function from a Quantum
Field Theory Description

We will derive the partition function both for bosons and fermions in terms of a path integral. In the
project thesis, we did not explicitly treat the particles as quantum states. The quantum pressure arose
from simply imposing the Fermi exclusion principle. Now, we will start from quantum states and physical
observables as operators — a proper quantum treatment. We will quickly recapitulate some relations from
quantum mechanics before we look at the corresponding relations in a quantum field theory.

From quantum mechanics, we are familiar with promoting observables to operators, and calculating their
expectation values. When we perform many experiments, we expect averaging over the measurements to
yield the same results as the calculated expectation values. The expectation value of an operator O for
a state |1) reads

(O)y = (W|O[y). (9.7)
We are looking for the grand canonical partition function, which means we wish to calculate the expect-
ation value for exp (,uZJ\A/'Z — 6f[ ) over all states, as seen from the classical equivalent in Eq. (9.1). We

write

© =Tr[6] = Tr exp(Buili = BH )| = > (vl exp(BuslV; — BH) [0) (9.8)
P

The sum over ¥ goes over all states. Before we can tackle this expression, we need to develop some
understanding of quantum fields. We start by looking at some standard quantum mechanics for particles,
before we motivate how the theory carries over to fields.

As physical quantities are described by operators and not numbers, their ordering is of great importance
as they no longer commutes in general. If we let g, be the coordinate degrees of freedom in our system
described by a Lagrangian L = L(¢y, ¢, ), we know from classical mechanics that we define the canonical
momentum p,, as

oL

Pn = Era (9.9)
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After we promote the coordinates and momenta to operators, ¢, — ¢, and p, — p,, they do no longer
commute. Instead we impose the following commutation relations

where the d,,,, is an element of the identity matrix, also called the Kronecker §. These are called the
canonical commutation relations.

The position operators ¢, and momentum operators p,, have eigenstates |q1, ..., qn,...) and [p1,...pp, .. .),
such that
Gn Q1 Qs o) = @ |q1y - qny .-y and  Pu|P1y - Dnsevo) = Pn D1y s Dnyevo) - (9.11)

For simplicity, we will now write an eigenstate for a collection of particles with coordinates ¢, simply
as ¢, which means that |g1,...,¢n,...) = |g). The coordinate eigenstates are orthonormal and form a
complete set. Let |¢) and |¢’) be two coordinate vectors. Orthonormality and completenes can be written
as

Qldy ={q1, - quy QY@ ) = Hé(qm —q,)=0q—7), (9.12)

n:/dq|q><q\ :/dq1...dqn...|dq17...,dqm...><dqh...,dqm...|. (0.13)

1 denotes the identity operator. As the next step towards a path integral description, we must figure
out how to calculate the inner product of the canonical coordinates, (¢q|p). This we can do using only the
canonical commutation relations given in Eq. (9.10). To do so, we start by acting on a state |¢) with the
operator exp(iep) and investigate how |¢) changes. When we omit the subscript on p, it means that it is
acting on every component p,, in |p).

i esplicn) o) = i S D |g). (9.14)
n=0 :

Here, we have simply written the exponential the way it is defined. We know the commutation relation
between ¢§,, and p;, which means that we can move §¢,, to the right in order for it to act upon the state
|¢). To make the calculation easy to see, we perform it for one particular n > 1.

(iep)™
n!

0= 965 10) = 0 ({15 + ") )

=...= (23" (inp™ " + gmp") la) = <i2€((i;ﬁ)n1_)! +Gm (ienﬁl)n) lq) - (9.15)

m

Above, we have consistently moved ¢, to the right, until it acts on |¢) and produced a scalar g,,. Once
for each p, we get a term of ip" ! due to the canonical commutation relation. In total, » such terms
arise. For n = 1, we trivially get ¢, |¢) = ¢m |q). If we again consider the sum over n, we arrive at

imexplien) o) = 3 (4 "B - LIS

n=0

) 19) = (g — €) explics) |q) - (9.16)

We see that the state exp(iep)|q) is an eigenstate of §,,, but compared to |g), the eigenvalue is shifted
from ¢, = ¢ — €. If we change the sign in the exponential operator, we get a positive shift. These two
facts allow us to write

exp(—iep) |¢) = |g+¢€), and thus
(q+el=lg+ e = (exp(—iep)[q)" = (gl expliep). (9.17)
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We can remove the dagger from p in the last equality, because p is an Hermitian operator. Expressing a
shift in |g) in this way is very useful, as it allows us to write down a differential equation for the inner
product, using the definition of the derivative operator

q e—=0 € e—0 € e—0
=ip(qlp) - (9.18)

This is a simple differential equation with an exponential solution. We can write

(alp) = exp (ip- q) = [ exp (ipngn),  which implies (9.19)

n

(plg) = exp (=ip- q) = [ [ exp (—ipngn) - (9.20)

The second line follows from the inner product property {(g|p) = <p|q>T. Next, we can investigate whether
we can construct an identity operator from the outer product of |p) states.

/dp Ip)pl = /dqdq’ dp |g) (qlp) (pld") {d'| = /dqdq’ dp exp (ip- (¢ — ¢')) la)Xd'] - (9.21)

We recognise the integral over p combined with the exponential as the Fourier representation of the Dirac
d-function. Using this, the expression above takes a simpler form

/dp lp)Xpl = /dqdq’ 210(q — q') lgXd'| = ZW/dQ\qXQ\ = 2. (9.22)

This is a nice result, as it shows us that we can write the identity operator also in the form of an outer
product of |p). It reads

1= [ L. (9.23)

So far, we have been dealing with a collection of coordinates ¢ = q1,...,¢n,--.. An example of such a
system which is easy to visualise, is to let each coordinate ¢, describe to the displacement of a particle
situated at location nAx along a spatial axis x. All the coordinates constitute a string of particles.
The mass of the string is distributed among massive point particles. A continuous string would be the
corresponding field to this discrete system. Here, the mass of the string is distributed along line segments
with a certain mass density. If we imagine adding more coordinates to the collection g while keeping the
length and total mass of the string fixed, the massive points of the string will lie closer and closer as
well as becoming lighter and lighter. This will make the string resemble a continuous string when the
particles lie close enough to each other. Fig. 9.1 illustrates this string system. Naturally, this model is
also possible to imagine in dimension D > 1. For particles living in space, we imagine this model where ¢,
is replaced by gy, where ¢ = 1,2,3. A discussion of going to discrete to continuum may be found in Ref.
[25], chapter 1, where also the bosonic path integral is derived. Notationally, we can go from the discrete
system with coordinates labelled by n to a field by letting the coordinates be denoted by a continuous
index, e.g x. We will omit the vector notation Z, but  may be thought of as a three dimensional vector.
We will be explicit about dimension in the measure d*z. We now also change the notation away from ¢
to distinguish that we are dealing with fields. The results above carries over to the continuous limit

Gn = &(x) and thus () [9) = 6(x) |¢), (9-24)
P, — 7(z) and thus #(z)|7) =n(z)|7). (9.25)

The commutation relations change only slightly

[$(@),6(w)] = 7). 7 ()] = 0 and |$(@), ()| = i6( — ). (9.26)
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(a) Discrete coordinates g, at x, (b) Continuous field ¢(x)

1
@

Displacement g,,, arb. units
Displacement ¢, arb. units

0 —0
T T T T T T T T T T T T T T T T T T
Ty Xy X3 Ty Ty Tg Ty Ty Ty Tl L1l

nAx

Figure 9.1: (a) illustrates a collection of N = 11 particles situated at z,, = nAz. Each particle has some
displacement, described by ¢,. The string of particles has a total length of L = NAxz and a total mass
M = mN, where m is the mass of each particle. Keeping L and M fixed while we let N — oo, we can
imagine the discrete string assumes the shape of a continuous string, as illustrated in (b). In this case,
each line segment has a mass density.

The discrete Kronecker d,,, has turned into its continuous cousin, the Dirac é(z — y). In particular, we
also have

(¢|T) = exp (z / d3x¢(ac)7r(x)> . (9.27)

The Lagrangian for fields is calculated as the spatial integral of the Lagrangian density, L= f d3zL. The

Hamiltonian is calculated similarly H= Ik d3z#L. The same goes for the particle number N. With these
notions from going from discrete quantum mechanics to a continuum, we have developed what we need
to tackle Eq. (9.8) for fields by the help of the path integral.

9.2.1 Grand Partition Function for Bosons

Particles with spin 0, e.g. the Higgs boson, and with spin 1, e.g. the force mediating particles as
photons and gluons, are bosons. This means that when we treat them quantum mechanically, we impose
the commutation relations as written down above. Next, we assume that both N; = f d3zN; and

H= Ik d32H can be written as functions of field operators and the canonical momenta, namely that

Ni = Ni(,7), (9.28)
H=H(d, 7). (9.29)

In addition, we assume that these operators are ordered in such a way that all the field operators (5
stand to the left, and all the momentum operators are to the right. This is called Weyl-ordering. In the
classical case, we can choose the ordering of the fields freely. This means that when we quantise, there
is an ambiguity to the ordering of the operators. Here, we have made a choice. Thirdly, we let the fields
vary with 5. By this, we mean that

o(x)|6(8)) = 8z, B) [(B)) , (9.30)

and similarly for |7). We allow the states to evolve with 8, which corresponds to the Heisenberg picture
for time dependent states. Next, we perform a ”trick” to calculate © as given in Eq. (9.8): We partition
B into N pieces

N
B=ABN=> AB. (9.31)

n=1
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This partitioning of £ into a sum of small Af is necessary for us to do an expansion of exp (Aﬁ (ui]\ﬁ -H ))

into orders of Af. This exponential operator will appear quite a few times later, so it is advantageous to
give it its own operator symbol. We define

AO = exp (Aﬂ{uiNZ— — fI}) (9.32)
= exp (AB / &Pz {ui/\?i —~ ”H}) (9.33)
=1+ A3 / Ba(uN; — H) + O0((AB)?). (9.34)

If we keep B fixed and letting N — oo, we can throw away higher orders of Af3, as they turn smaller
and smaller. To give the above operator some interpretation, we may compare it to the quantum mech-
anical propagator. In quantum mechanics, we describe how a state [1)) evolves in time by applying the

propagator exp(—z'ﬁt). A state at a time ¢ > ¢( is calculated by

() = exp(=i (t —to) ) (ko)) (9.35)

Comparing the propagation operator to Eq. (9.32), we may interpret A asa” grand canonical propag-
ator”. The Hamiltonian with a negative sign —H is replaced with the u; N; — H, which also takes into
account the energy contribution from the particle number. We also have the replacement it — Af. This
allows us to think of AS as a curious ”time step” of imaginary value. Thus, applying A© to a position
state |¢(8;)), may be interpreted as evolving the parameter 3; to 3; + AS.

Returning to the expansion of A© in Eq. (9 34): The exponential operator simplifies to just two terms:
the identity and one term linear in N and H. This, in combination with inserting identities Eqs. (9.13)
and (9.23) for the fields and finally the inner product Eq. (9.27), allows us to derive the path integral in
thermal field theory. We let [¢)) be some state we sum over in the trace of ©.

(1| exp (5/61335 {,U/i/\A/‘z((b ) — H(g, )}) [1) (Split 8 into N pieces of Af)

:<¢|exp(AB/d3x }+...+Aﬁ/d3x {umfi —H}) 1)
<¢|exp<A5/d 2 Lk }> ~...~exp(AB/d3x {uifvi 7—[}) 1) (apply Eq. (9.33))
— (| AD...AD|p). (9.36)

So far, we have simply written the original exponential operator as a product of the operator A®O. The
next step is to start inserting identities between each of the N different A© operators. To the left, we
insert [ d¢ |¢)(¢|, and to the right, we insert [ 2= |7 )(r|.

(W (AS)Y )
/d¢1 Aon T N L1161} (1] A6 ) malé) (- Imv ) {mv-116) (] A8 ) (o}
(9.37)

The line above is quite a beast, but we can treat one term at a time. At first, we notice that we have
obtained N terms of inner products between momentum states and field states. These we know from Eq.
(9.27).

(ralonit) =exp (=i [ om@)o0la)). (9.38)

In Eq. (9.37) we also find N occurrences of terms on the form (¢y| AO|m,). To express these differently,
we make use of the expansion of AO in Eq. (9.34). In addition, we need to use the assumptions on Egs.
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(9.28) and (9.29) and the Weyl ordering. With these assumptions, we are allowed to let the operators N;
and H act on (¢,| and |m,). Thus, we may rid ourselves of the operators in favour for their eigenvalues
of the fields and the momenta.

(001 86 7) = (6] 1+ 5 [ @ {niki(d,7) ~ HG. )} Im) + O((45)°)
= (onlr) (1488 [ @ (k0 m) — Hl6n )} ) + O((5F)
~exp (z / d3x7rnqbn> exp (Aﬁ / B (N () — ’H(qﬁn,ﬂn)}) L O((AB))
= exp ( / P {imndn + ABUN (G, ™) — ABH(¢n, wn)}) +0((AB)?). (9-39)

In going from the second to the third equality, we have used Eqgs. (9.27) and (9.34) to rewrite the multiple
terms as one exponential. This only introduces an error on the order of O((A3)?). From now on we
will omit writing O((Af)?) as we will let N — oo in the end, rendering those terms unimportant. The
last terms we need to calculate are (¥|¢1) and (my ). In calculating ©, we are interested in taking the
trace over ©. This means that we sum over all external states, which in the case for fields means that we
introduce an integral over . If now rename ¥ — ¢n11, we see that we may write the curly brackets of
Eq. (9.37) as one product from n = 1 to n = N. Using these relations, the calculation proceeds as

/d¢N+1 (dn+1] (AO)N [pns1)

N

d¢N+1H dn (22| (owsalon) L ({601 26 1m) (mafonss)
= faova I a0 (52 ( )

N

= [ dbxsibonsi - o) 1 {[aon (2 )] exo( [ oiman + 00Ni(60.m0) — (60,

exp(—/d?’xiwn(ﬁnH)}
N
:A o H {|: On (dﬂ-n)] exp<AB/d3$ﬂz (qbnyﬂn) — Ty ¢n+;ﬂ i - H(¢n,ﬂ'n))}
N+1=P1 —1

N d N (b (b
:/¢N+1—¢1 [H don, (27::)] eXP(A;ﬁ/d3x/~LiM(¢mﬂn)—i Tn n+i5 n _H(an,wn)). (9.40)

n=1

Quite a few things happened in the lines above. Notably, we used the field equivalent of Eq. (9.12) to
obtain the d-function. Integrating this out identifies ¢y 1 to ¢1, which we have indicated by the subscript
under the integral sign. This is the same as imposing periodic boundary conditions. This is important:
The bosonic path integral in thermal field theory is periodic. Keeping g fixed and letting N — oo we
also let A — 0, which sends the error O((AB)Q) — 0. We also see that we can rewrite the middle term
in the exponential

lim —i?Tn ¢n+1 ¢n

A NG = T bn- (9.41)

The dot over ¢ now denotes the derivative with respect to 5. Note that the sign changes in the last
equality, as 8 increases with smaller n. Had we reversed the numbering of the identities we inserted, we
would not have changed the sign. Now we are at the point when things get really interesting. We take
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the continuum limit, and find

H d¢n continuum Dd), (942)
n=1
0o dn 00 )
H M H dﬂ'n continuum wﬂ', (943)
1 2m n=1

eXp<ABz]j:/d3x{...}> Mexp</jdﬁ/d3x{...}>. (9.44)

Two remarks about the above limits are in order. Firstly, we have introduced a slash-notation in the
differential, i.e. d, 7. By this, we simply mean that we absorbed a factor of % into each degree of
freedom, saving us some writing. Sometimes, the bar in d is difficult to spot. If there is suspicion of
whether factors of i are missing, have an extra look at the differentials! Secondly, had we used the
substitution 7 = —if, we get exaxtly the shape of the path integral i QFT, with the exception that we
are integrating imaginary time. Combining our result so far, we may compactly write

6 =T (6)

- j[mﬂpw exp </05 dp / dPx NG (6, ) + i — H(¢, w)) (9.45)

This is a path integral. Now ¢ does no longer denote a single ¢,-state, but it denotes all the degrees of
freedom, which in the countable case corresponds to the collection {¢,, }52 ;. Taking this to the continuous
limit, it means that ¢ = {¢g}, where 8 varies continuously. The same goes for 7. We have also indicated
that this is a closed loop integral, as a consequence of the periodic boundary.

A path integral is a quite lofty concept, so how may one think of it? Qualitatively, we have a field in
some start configuration, and as 3 evolves, the field configuration changes. In the end, we find with the
same configuration we started with, due to the periodic boundary condition we stated earlier. For one
particular evolution of ¢(3) and w(8), the exponential in Eq. (9.45) returns a weight for that particular
configuration. The path integral returns us the sum of all these weights. When we integrate, we sum over
all the different paths ¢ and m may take as we evolve the parameter 5. We have illustrated a discrete
partitioning of an interval 8 and their contiuous equivalent in Fig. 9.2, to try to visualise the continuum
transition.
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(a) Discrete partitioning AS3, ¢y, (b) Continuum limit, ¢g
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Figure 9.2: (a) is an illustration of four configurations of a discretly partitioned /3. Before we take the
continuum limit, we may think of these as what the field looks like. Integrating one ¢, sums over all
values the point at [, can have. Instead of thinking of 8 as a generic coordinate, it can be instructive
to think of it as a time parameter. In this case, the "string” represents how one massive particles moves
around at different time steps. (b) shows how the discrete strings may look in the continuum limit. In
principle, everything works the same way: One field configuration may be thought of as how one particle
moves around with time. In the continuum case, however, the space of all configurations is vastly larger
than for the discrete string.

To highlight the similarity to the QFT path integral, we now eliminate 8 in favour of 7 = —if5. To
avoid having to write two integrals, we may adopt a new measure d*z.. The "¢’ stands for Euclidean,
as introducing an imaginary time gives back the four-dimensional Euclidian metric, as opposed to the
Minkowski metric. Keep also in mind that we integrate the time-component from 0 to —i3. Using this
formalism, we write the path integral as

foovnes(i [ atenio.m +xb—Hiom), (9.46)

which is certainly similar to the standard version from QFT. The dot now denotes a derivative with
respect to 7.

Having derived the path integral is well and all, however, it is of little use to us if we cannot use it for
calculation. We would not like to leave this problem unattended, and in Appendix E, we look at the
procedure of calculating Gaussian path integral as the continuum limit of an N-dimensional Gaussian
integral.

9.3 Grand Partition Function for Fermions

In this section, we seek to develop a path integral formalism also for fermionic particles. Paul Dirac
famously described relativistic fermions with the Dirac equation [26], which we can derive from the free
fermion Lagrangian density

L =V(iy"d, —m)¥ (9.47)
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Here, a fermion field ¥ can be visualised as a complex 4-component vector. ¥ denotes U4, As usual,
we calculate the canonical momentum

oL
(0 V)

= = i Win040 =t (9.48)
This relations will be useful again at the end of this subchapter. When we quantise the fermions, we
assign operators to the fields as for bosons. These fermionic operators anti-commute, in contrast to the
bosonic operators and their commutation. This is the reason why we could not just use the derivation
of the path integral for bosons for both types of particles. The derivation relied upon the commutation
relation of the field operator ¢ and its canonical momentum #. The new derivation will rather rely on
the soon-to-be-introduced anti-commutation relations. First of all, we must define the anti-commutator
of two operators. For operators A and B, we write the anti-commutator.

{A, B} — AB + BA. (9.49)

From this definition, we see that when the anti-commutator is equal to zero, we can swap the ordering of
the operators at the cost of adding a negative sign. Thus, two adjacent equal anti-commuting operators
yields zero. We quantise the fermionic field operator and its canonical momentum in the ordinary way,
except now we use the anti-commutator. For a discretely labeled fermionic operator, we impose

{\i:i, \I';f} =55, (9.50)

where d;; is the Kronecker delta. Going from a discrete pair of labels ¢ and j to a continuous pair = and
y (recall that we omit the vector notation Z, %), the anti-commutation changes slightly

{9@),#1()} = 6@~ y). (9.51)

Just as in the commutation relations for the bosons, Eq. (9.10), the other anti-commutators give zero.
This is equivalent to

{\I/(ac), @(y)} - {\iﬁ(x), \iﬁ(y)} —0. (9.52)

So far, the new commutator relations seem harmless. However, a problem arises once we let the anti-
commutator between ¥(z) and ¥(x) act upon an eigenstate of the field operator |¥). We will describe
this eigenstate |¥) more later, but for now, we just allow it to produce eigenvalues from the operators W.

0= {¥(2), b(y) } |9) = (W(@) () + V(1) ¥(@)) [9). (9.53)

After we have let the operator \il(x) act upon its eigenstate, it produces a "number” ¥(z). Above,
we assumed that the eigenvalue commutes with the operator. However, when we have imposed the
anti-commutation relations as given in Eq. (9.52), we see that the "numbers” ¥(z) and ¥(y) cannot
behave like ordinary scalars. For the anti-commutation relations to make sense, we must require that the
eigenvalue "numbers” the operators produce also anti-commute. Such "numbers” are called Grassmann
numbers. We will need to develop an understanding of how the Grassmann numbers behave in order to
derive the fermion path integral.

9.3.1 Grassmann Numbers

In this subchapter, we will develop the notions we need about Grassmann numbers to perform calculations
on fermion states. There are several good textbooks which also explain Grassmann numbers, see e.g.
[27], chapter 9. First of all, two Grassmann numbers &; and & are anti-commuting

{€1,&2} =0 which means §;&s = =661 (9.54)
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Notably, we have that a Grassmann number squared is equal to zero. This also holds for sums of
Grassmann numbers. We can write it mathematically as

N n
<Z §,~> =0, forany n>2. (9.55)
i=1

In addition, ordinary numbers commute with Grassmann numbers. In addition, Grassmann numbers
anti-commute with fermion operators, in order for Eq. (9.53) to be consistent. Finally, we make a mental
remark that pairs of Grassmann numbers commute. The take-home message is that pairs of Grassmann
numbers behaves like ordinary numbers. In the following, we will denote Grassmann numbers with greek
letters, while ordinary numbers will be denoted by latin letters. With the notion of Grassmann numbers,
we can develop an understanding of Grassmannian functions and integration. We define a function of
a Grassmann variable in terms of its power expansion. For a function of one Grassmann variable, this
means that we can write

f§) = Zan% =ap +ai€. (9.56)
n=0 '

Any higher order of the expansion will disappear due to the anti-commutation of equal Grassmann
numbers. A function of several Grassmann numbers will have more terms. Let £ denote a collection of
N single Grassmann numbers &;. We may write f as

N N
f(€) =ao+ Zai&‘ + Z bij&&i + ...+ eNENEN—1 .. &y (9.57)
=1

i,j=0

Note that for the final term, we define the number ¢y for when the Grassmann variables are decreasing.
We also note to ourselves that in the continuum limit, we exchange the discrete indices, n, with a
continuous one, x, specifically &, — £(z). Grassmann numbers may be complex, too. In that case, we
treat £ and its complex conjugate £* as two independent numbers. We define the complex conjugation
of Grassmann numbers

(£1&2)" = &3¢ (9.58)
We shall see why this is sensible later on. One particularly important function is the exponential function.
At first we might be discouraged to find that

exp(§)exp(n) = (1+&(1+n) =1+E+n+En# 1+ +n=exp(§+1). (9.59)

Does this mean that all the nice properties of the exponential function are ruined? Partially, yes. However,
we remember that pairs of Grassmann numbers commute, i.e. behaves like ordinary numbers. Therefore,
we may use the customary property of the exponential as long as at least one of the exponentials contains
solely Grassmannian pairs. For example, we have

M N 1 (M N k
(36t Tam) 1+ 3 4 {36 o
i=1 i=1 k=1~ \i=1 i=1

o 4 N k M N ket
= 1+Zg (ZCM) +kY & D G
k=1 i=1 i=1 j=1
M © 1 (X k M N
= <1+Z§i> 1+ 5 {Zcim} :eXP<Z€i> eXP(Zsz)’
i=1 k=1~ \i=1 i=1 i=1
(9.60)

which is the desired property. To reach the second line, we have made use of Eq. (9.55). After we have
eliminated any higher power of the sum over &;, we move all &; terms to the right. Had both exponentials
only containted Grassmannian pairs, we would be able to treat both of them as ordinary exponentials.
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Next, we define the derivative. We define the derivative through the expansion

d
f(E+dg) = f(&) + dfgf(é)df

-+ a6+ d) = a0+ x6 + e F(Q) (9.61)
Note that above, we have made a choice to set d€ to the right of f/(£). Had we chosen set d€ to the left
and let f depend on another grassmann number &, the difference between the left and right choice is
a minus-sign in the terms containing an odd number of Grassmann variables. From the above, we may
conclude that the derivative reads
df (€)

Té_ = aj (962)

The definition is readily generalisable to a function of N Grassmann numbers, but we must be careful
about the signs and our definition of the derivative in the case of several variables. We are nearly at
the end of definitions for Grassmann numbers, but before we can stop, we need to know integration
over Grassmann numbers. We want the integral to be linear and that the integral over total derivatives
disappear. For a function of one Grassmann variable, the integral must read

0= [de 10 = [t

—a / de . (9.63)

The Grassmann integral over an ordinary number is zero. We also define

/dgg =1. (9.64)

In the end, we are interested in integrals over all &, and exponential functions. At first we notice that
when we integrate a function over all Grassmann variables ¢;, we find

[ s = [ der...aenrie)

(9.57) N
= /dfldf]\]{ao—i-zalfl—f—+CN£N€1}
i=1

9.63 9.64
(:)cN/dfl...difN...fl(:)cN (9.65)

Now we see why we chose to order &; in a decreasing order in the index, such that we would not have to
anti-commute them around in order to perform each integration. Now we only lack one final piece before
we know everything we need to know about Grassmann integration: Performing linear transformations.
If we let £ = A&, where A is an N x N-matrix with components a;;. With this we can write the integral

/dif(Sl) = /dfl codénven(an + .o+ ainén) - (ani& F - Favwén)

CN/d§1---d€N Z (=17)a15(1)60(1) - - - AN (N)Ea (N)

oceESN

= cy det(A) (9.66)

In the first equality, we have simply inserted the linear transform £ = A€ and only taken into account
non-zero contributions. The second equality is a bit harder to see. At first, we must take into consideration
that only terms containing all &, will give a non-zero integration. When we consider all such terms, we
find that these terms are all the permutations of the N indices. This is what we indicate with the sum.
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o is a permutation of IV elements, or in other words, ¢ is an element of the permutation group Sy. By
(—=19), we mean —1 if o is an odd permutation or 1 if ¢ is an even permutation. This factor stems from
the fact that we must order the Grassmann numbers before we can integrate. Why did we perform all
of this rewriting? As it turns out, this is exactly how we calculate the determinant of a matrix. Thus,
arrive at the last equality.

In calculating ordinary integrals, we are often helped by the appearance of Dirac é-functions. Therefore,
we are motivated to explore what the d-function looks like for Grassmann integrals. For a one-dimensional
integral it is quite easy to see that

/ de (6 — ) f(€) = / de (€ — n)(ao + ar€) = / d¢ (Eao + arén) = ap + arn = £ (). (9.67)

9.3.2 Path Integral Tools for Fermions

Now we are ready to tackle fermionic operators and states, now that we know how the eigenvalues
behaves. At first, we will need to define the so-called coherent fermion states, or the eigenstates of the
fermion field operator \i/(x) Earlier in Eq. (9.53), we shamelessly used such an eigenstate without asking
ourselves what it may look like. Here, we will justify the eigenstate’s existence. To do so, we introduce
the normalised ground state as |0). It satisfies the following relations

U(z)|0) =0 and therefore (0| ¥f(z) =0, (9.68)
(0]0) =1 (9.69)

for all x. To see how the fermi exclusion principle arises from the anti-commutation relations and the
vacuum state, we consider the simplest fermionic operator, without any index. We can now see what
states we can build from the vacuum, letting only one fermionic Ut act on it. There are not many states
to build from only Ut We write

Ut oy = (1) and AR 2RI (9.70)

For only one fermion state, the only states are the vacuum and the state with one ”fermionic occupant”.
This fact enforces the Pauli principle. However, things get a little more involved and interesting when we
add Grassmann numbers into the mix. We now wish to construct the coherent state by letting an operator
act on the ground state. We ask ourselves what the operator to create such a state must look like, when
we consider that we will apply one operator \il(x) on it. The operator creating the coherent state should
contain \iﬁ(y) to stop us from being able to commute \i/(:v) straight past. It needs to integrate over every
spatial coordinate y in order not to be bypassed by any z. In addition, it needs to be an infinite sum of
increasing orders of ¥T as the anti-commutation removes one order of ¥T. Our favourite way to construct
such a sequence, is using the exponential, so let us try

&) = exp(— / d3y£<y>¢*<y>) 0) (continuum) (0.71)

N N
I€) = exp (- 3 gﬁi) 0)=]] (1 - giﬁlj) . (discrete) (9.72)

1=

&(x) is a Grassmann number, and we hope for it to be the ”eigen-Grassmann-value” of the fermionic field
operator \if(x), or U, for the discrete case. In the last equality of the second line, we have expanded the
exponential. We have foreseeingly added a negative sign to cancel a sign from anti-commutation. We
apply the field operator to Eq. (9.71) and find

#(0)19) = ¥(e)exp - [ Eye¥ ) 10

(o) (1= [ @rei) 4ot S [P )P0 )8 ) ) 0
(9.73)
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To solve this, we must move \il(:z:) past every term in the expansion of exp(...). To do so, we handle the
n-th term, where n > 1.

W) S [ @y € ¥ ) ) P ) 0

z% / Pyr oy ) ({0, ¥ w0) )~ ) T(@)) €l ¥ w2) 10)

:ﬂf(x) / d3y2 cen dsyn f(yg)\iJT(yZ) s g(yn)\iﬁ(yn) |O>

n!
+ E8 [y )W )P0 02) ) () 0)
=...= wﬁ(w)/d%y..d%ﬂ1£(y1)‘fﬁ(y1)--~£(yn1)@T(yn1)|0>- (9.74)

In the first equality, we have simply anti-commuted \i/(;zc) and \ifT(yl), as well as having picked up a sign
from the anti-commutation of £(y1). In the second equality, we have used Eq. (9.51) and integrated out
the d-function. We are left with one term of n — 1 integrations over &(y;)¥(y;), and one term equal to
what we started with, except that W(z) has been moved one step closer to |0). Every &(y;) that turns
into &(x) after integrating out the d-function can be commuted past the even number of terms until it
is outside the integral. Thus, no sign is picked up from moving it outside the integral. Continuing the
anti-commutation procedure yields n equal terms after we rename the integration variables. In the end,
we see that we end up with the £(x) multiplied by the n — 1-th term of the expansion of the exponential.
Performing this for every n, and summing up all the terms, we find that

() €)= if(x)exp(— / d3y5<y>¢*<y>) 0) = £() exp<— / d3y5<y>@*<y>) 0)
£@)le). (9.75)

Our state |£) was in fact the coherent state! From the calculation above, we also see that

€ = (0 exp< / dSy@<y>s*<y>) where (€] ¥1(z) = (€] € (y). (0.76)

Above, we have used that the dagger operator exchange positions of a Grassmann number and a fermionic
operator (W) = W¢*. This is why we defined complex conjugation as interchanging the ordering of two
Grassmann numbers in Eq. (9.58). For the discrete case, the state reads

N

N
(€l = (0l exp (— Z ‘Eﬁf) = (o[ - &) (9.77)

i=1

In the derivation of the path integral for bosons, we inserted many identities. We need to know how to
express the identity operator also in the fermionic case. With this goal in mind, we first calculate the
inner product between two coherent fermion states |¢) and |€)

(le) = Olexp(~ [ @@ ) exn( - [ Pyewiion) 0
— (0| (1—/d3x®(x)<*(x)+...> (1—/d3yg(y)@(y)...) 10). (9.78)

Before we move on, we note that only terms containing an equal number of U and U will survive. If
there is more of one or the other, we will always end up with either ¥ acting on |0) or ¥T acting on (0|
after we have done all the anti-commuting. The only terms we are interested in are thus of the n-th order
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in both ¢ and ¢*. We consider one such term, and we are glad we can reuse the calculation done in Eq.
(9.74). We can merge the prefactors = )

from each term and write the total expression as

1
(n!)?
:<0| n /dszldByl d Tp— 1d Yn— 1d3f£n

{u
|

/dgxldByl o Dy U ()¢ () - (@) C () ) B (1) - () T (ya) 0)

0

n!)2

U(21)¢" (1) -+ (1) (@n1)C (20)E(2)E(y1) ¥ (31) - ~§(yn—1)¢”(yn—1)} 10)

= = L 3.’E1... 3$ *1'1 T1). .- *xn Tn
_..._<0|(n!)2/d @, ¢ (21)E(2) . ¢ (@) () [0)

Ly P @) C e n). (9.79)

n'

from the first to the second line, we have moved \i!(xn) past (*(x,), picking up a minus sign. Next, we
recognise that the left part of the integral is exactly what we calculated in Eq. (9.74), which we then
substitute in directly. We have obtained a factor n, removed the n-th pair of ¥ and ‘iﬁ, and picked up
another negative sign, cancelling the first. One integration over d®z,, survives. Repeating this procedure
until we have eliminated all operators, we can make the ground states meet. We must also keep track
of all the signs which appear from anti-commutation. Doing everything carefully, we see that the last
expression is the n-th term of an exponential. Thus, we can puzzle together all terms to find

(clé) = exp( / d%c*(x)g(x)). (9.50)

We now see that the naive guess of an identity operator as [ d¢ |£)(¢| would not work for fermion states.
To resolve the apparent problem, we must add a term to counteract the exponential and in return give
us a Jd-function. We suggest the following operator to be the identity, and prove that it is in fact the case.

Mo = [ de*(2)de() i) exp ( / d%aw)g*(m)) ( (9.81)

Notice the ordering of the differentials, which is important for this relation to hold. Proving that this
is the identity operator is perhaps easiest to do with a discrete index n running from 1 to N, and then
understand the relation above as the continuum limit. We know that this operator is the identity if it
sends any state |n) to |n). So, let us apply our proposed identity operator Lgrass to |n) and see what

happens
N N
LGrass [n) = / (H £:d5n> |§>exp<25nf:;> (€l¢)
r
1l

-/ ( f?;dfn> ) exp<2 i £n>

- / (ﬁda’;d@z) exp<§j<f g >exp< > e ) (9.82)

n=1 n=1

From the first to the second line, we have applied Eq. (9.80) for a case of N Grassmann variables, and
commuted 7, and & in the second exponential giving a sign change. In addition, we have merged the
two exponentials together. From the second to the third, we have commuted the exponential past the |)
state, and written the state in terms of an operator acting on the vacuum. The exponential actually acts
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as a 6(&, —n,). Continuing from above, we can write the exponentials as products on the following form

N N N
Larass |’I7> = / (H dg*d§n> H (1 + §7€]* - n7€J*) H (1 o gllllj) |0>
= 1=1
N N
( de d£n> 1+agr —mé) (1-avl) [T+ ¢ —mg) TT (1 -&vi) 10)
i—2 i=2
N N ] N
_ (H de: d5n> Q=m0 +&& —nig )H(I*&‘I’I) 107
n=2 Jj=2 =2
N N
—...=1] (1 - mqﬁ) 0) = exp< Z ) =|n). (9.83)
1=1 i=1

Of course, this holds for any |n). This concludes the proof that we indeed stated the identity operator
for Grassmann states in Eq. (9.81). Going to the second line, we pulled the first term in each product
to the front. This we can do, because all terms only contains pairs of Grassmann variables (in this case,
the fermionic operator behaves just like a Grassmann number). Then we integrate, and only two of the
in total six combinations gives non-zero contributions, leading us to the third line. Keep in mind that we
need the right ordering before integration, giving a negative sign in front of 7, \Iﬂ; This procedure we can
perform until we have exhausted the products, as indicated by .... At last, we recognise the remaining
product as a new exponential, creating a |n)-state.

Next, we need to know how to take the trace. Taking the trace, we want to ”"sandwich” an operator o
between equal states, and then sum over every state. As an example, for the single fermion state, the

trace reads Tr (@) = (0]O|0) + (1| O|1). To express the trace in terms of an integral over Grassmann

numbers and coherent state, we cannot just use the most naive guess. In finding the trace, it is perhaps
easiest to consider a discrete amount of Grassmann coordinates, as for the identity operator. So far, we
have been dragging along many Grassmann numbers. Let us for the sake of variety also just include two
grassmann numbers, making us able to write out every term. Maybe it will also shed some light on the
more involved calculations with N Grassmann numbers. We can produce a state from this Grassmann
number just like before. We imagine we have some operator O, and we consider the expression

/dff d&y dg5 &y exp(&165 + &85) (&1, —&| O &1, &) (use (9.72) + (9.77))
- / 45 dey dg dés (14 E67)(1+ &) (0, 0] (1 +0160)(1 + F265)0 (9.84)

(1- &) - &), 0)

In the expression above, we search for the terms where all of the Grassmann numbers §; and £ appear.
The others vanish under integration. There are four non-vanishing terms in total. Where we can integrate
immediately, we do so. Continuing the calculation above, we are left with

(0, 0[O0, 0) - / des dy (0, 0 Faes O &5 10,0) — / de; de, (0, 0],6; 06,0 [0, 0)

+ / det dey dey des (0, 00,6 By O £, 10,0)
=(0,0[010, 0) + (0, 1] 010, 1) (1, 0] O |1, 0) + (1, 1] O |1, 1)
1 1
= Z Z (n1, ng| O |ny,ng) = Tr(@). (9.85)
77,1:0712:0

To arrive at the equality, we move the Grassmann numbers past the fermionic operators. In the two
terms with the negative signs in front, we see that the anti-commutations in total cancel these signs.
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Note that we have tacitly assumed that the operator o only contains terms where fermionic operators
occur in pairs. Otherwise, @ picks up signs in some terms, which is certainly undesired behaviour, and
ruins the trace. This shows that the expression we introduced in the beginning of Eq. (9.84) is, in fact,
the trace! Note in particular the minus sign we introduced in the (—&;, —&|. It is discrete, but very
important: It leads an anti-periodic boundary. This will be important later, and it is a key difference
between the bosonic and the fermionic path integral.

Finally, we have developed every tool we need in order for the path integral derivation. The derivation
goes along a quite similar fashion to the bosonic path integral: We start by splitting the § into smaller
pieces and then separate © into pieces of AO. Remember that for the bosonic case, we assume Weyl-
ordering. This time, we choose the opposite convention, namely that in N, 0) and H(PT, ¥), all
the ¥ are standing to the right, while all the Ut operators are standing to the left. Using this ordering
scheme, we may replace the operators with Grassmann numbers.

o=m{6}= [ dfodfoeXp< / d3xso£o)< o] (AO)NH |gy)

1
— / d&gdéo <H df:d&) exp(— / d%ez;fo) (—&l a0 en) | T1 exp(— / d3x£j£j) (&1 201¢-1)
i=1 j=N
(9.86)

To arrive at the second line, we have inserted N identities, Eq. (9.81), just like we did for the bosonic
case. We have then moved all the differentials to the left. They come in pairs, so we may freely do so
without picking up any signs in the end. In the last expression, we have some inner products we must
calculate. Take the n-th one, where 1 <n < N

exp(— / d%f:;sn) (60 AO [ 1)

:exp(— [ e - s:;fnl) exp (AB [ Ernni(ngn - H(&:@nl)) L o((a8))

—oxp( 88 [ Er i) - 655 MG &) ) +O((85)) (9.87)

From the first to the second line, we simply inserted the expression for AB. Then, we expanded the
exponential to linear order in AS, let the operators act, and written it as an exponential again. This
picks up an error of (AB)%. The states meet after the operators have done their job, and we use Eq.
(9.80). Now we are at the second to last line. Finally, we just write everything in one exponential. We
need to pay a little extra attention for n = N. If we write —§o = {n 41 and —§5 = £, |, we may include
also the j = N + 1 in the sum. Continuing, we neglect the higher order terms in Af and insert the
remaining expression into Eq. (9.86). We continue directly from the final expression in order to find

1

/ f[(d&:d&) [T oo~ [ @) 6126160

¥ -
/H dgidé;)exp | AB Z /d?’x,uz (& &-1) — fjg Agj - = H(E 1) . (9.88)
= s

Now we are nearly at the end. Taking the continuum limit, the sum goes to a an integral, and the difference
goes to a derivative. In addition, we have been a little sloppy with * and . In the previous derivation, the
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Grassmann numbers were single numbers. However, fermions are described by four component vectors —
we therefore upgrade the Grassmann numbers to occurs in vectors of four, which we indicate by * —T.
We also add a minus sign-subscript to the integral to remind ourselves of the anti-periodic boundary

B .
o- ]{ DeDet exp< /0 a8 / B pNi(€T,€) — €16~ n(et ,£>>. (9.89)

This looks remarkably similar to the bosonic case. If we take into consideration the free fermion Lag-
rangian and its canonical momentum we find 1 = —i7, making the similarity complete.

As commented at the end of the derivation of the bosonic path integral, we are not much impressed by
deriving equations we cannot use. Therefore, we have also included a way of understanding Gaussian
fermionic path integral as the continuum limit of the N-dimensional Grassmannian Gaussian integral
in Appendix E.2. As a peak ahead, we will later also calculate the path integral for quarks in the
quark-meson model using Matsubara frequency summation. Stay tuned for subchapter 11.1.1.
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9.4 The Number Density Operator N

Up until now, we have not discussed the term of ,ulZ\A/z We are already familiar with the Hamiltonian
and the Lagrangian, but how do we implement the number density? In QFT, a chemical potential p;
is associated with a conserved charge );. Such conserved charges are found from conserved currents,
j*. The conserved currents stem from continuous symmetries of the Lagrangian, as stated by Noether’s
theorem (for a brief discussion, see Appendix F). In terms of equations, we write a conserved charge Q;
if there is a conserved current j# such that
o o om0 o dQ

oujl =0, which implies a charge Q= /d xj; with o 0. (9.90)
We have seen conserved charges before in quantum mechanics, when an operator commutes with the
Hamiltonian. In some sense, this is the field-theoretical equivalent. When we construct a Lagrangian, we
couple conserved currents to gauge fields. For instance, in quantum electrodynamics the electrons couple
to the photon fields through an interaction term that we can write as A, j#, where A, is the (gauge)
photon field and j* is the conserved current from the U(1) symmetry, i.e. ¥ — exp(if)¥. If we identify
Q; with N;, we see that

pilNi = /dgl’m/\/i = /d3$Hv:j?- (9.91)

The chemical potential couples to the zeroth component of a conserved current, and therefore, we may
interpret it as the zeroth component of a gauge field. Later, we will consider Lagrangians with a fermionic
sector UT(ig) — m)¥. For Lagragians where W1 appears together with ¥, we always have the global
symmetry transformation ¥ — exp(i6)¥, just like in quantum electrodynamics. Noether’s theorem gives
from this (as calculated in Appendix F)

. oL

0 _ v, = _—uhiy,
]f— 8(80\I/f)2\11f \I/f\:[/j. (992)

This look a bit like a mass term, but it is in fact not. Notice that the mass term is mUW¥ = mWT~0W,
whereas the current has no 4° between the fermions.
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o 10

Two-Flavour Quark-Meson Model

In this chapter, we will discuss the quark-meson model (QM model) as an effective model of quantum
chromodynamics (QCD). We will see how the same symmetries and symmetry breaking patterns occur
in both QCD and in the QM model. Noteworthy, the QM model is a phenomenological model which tries
to capture the behaviour of QCD, for instance in the mapping of the QCD phase diagram, see e.g. [28]
or [29].

10.1 From QCD to the Quark-Meson Model

We have spent some time developing the path integral formalism. Now it is time to put it into practical
use. To do so, we must define the Lagrangian density we are going to work with. In the rest of this
thesis, we will be interested in the two-flavour quark-meson model (QM model). This model is a so-called
effective model of quarks. The full theory of quarks goes under the name of quantum chromodynamics
(QCD), which is a complicated theory. Being an effective model means that the QM model tries to capture
certain aspects of QCD, without necessarily having to deal with all the calculations and difficulties of a
full theory of quarks. The philosophy of developing an effective field theory/model is described in Ref.
[30]. The overall goal in this chapter is to prepare us to find the equation of state from the QM model,
which ties all the field theory we have gone through to the TOV-equations. The reason we write the QM
model and not the QM theory, is that the QM model is phenomenological in nature, and not a systematic
expansion like e.g. chiral perturbation theory [31]. We save the explicit expression for the QM model for
the next subchapter.

Before starting with the QM model, we must consider the theory it tries to describe, QCD. It is defined by
the QCD Lagrangian. There are several good textbooks containing chapters on QCD, so we will just rush
through. For instance, Refs. [27] chapters 15 and 16, and [32] chapter 26 discuss the QCD Lagrangian
and its properties at length. We will just qualitatively and briefly summarise some of its main properties.
As a side remark, the mentioned chiral perturbation theory is also an effective description of QCD which
has proved particularly important. In its full glory, the QCD Lagrangian reads

. / ro 1 y
EQCD = q(]; (’L’Y”Dmabisff — Mff/(sab) ‘Jz{ - ngyg“ ’A, where (10.1)
Gp, = 0uA) — 0,A7 +igf*POABAT, and Dy ab = 0ab0y — igAL T (10.2)

This surely needs a proper explanation for all the new symbols and indices. The fermions here are the
quarks, described by ¢f. The quarks come in different flavours, denoted by the flavour index f. For our
purposes, the three lightest quarks are the most relevant, namely the up, down and strange. This means
that f, f' € {u, d, s}. My denotes the mass matrix, which is diagonal, with the masses of the quark

7
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flavours along its diagonal. The subscript a is the color index. This means that in addition to flavour,
each quark comes in three colours, meaning that a,b € {1, 2, 3}. We may think of the three colours
as three versions of each quark. They interact with one another and a gluon through the 74 matrices,
which are in general not diagonal. The T matrices are the generators of the gauge group SU(3), and are
called the Gell-Mann matrices. There are eight of them, i.e. A € {1, ..., 8}. The generators of SU(3)
constitute the Lie-algebra su(3)', which brings us on to the structure constants fA5¢. These constants
describe the algebra and are defined from the commutator (Lie-bracket) between two algebra elements
[TA7TB] as

[T4, TP = ifABeTC. (10.3)
Aﬁ denotes the vector boson mediating the force between the fermions, in other words, the gluons. g;j‘y
is the gluon field strength tensor. As we can see from Eq. (10.2), the field strength tensor contains a
term which is quadratic in the gluon field Alf. When we contract the field strength tensor with itself
in the Lagrangian density, we will have gluon self-interactions. This fact makes QCD-calculations very
complicated. Therefore, we have ample motivation to try to introduce a simpler theory which reflects
the properties of this theory. Another very important remark which arises from renormalising this
Lagrangian, is that the coupling constant between the fermions and the gluons g grows larger at lower
energies, while at high energies, g decreases. This property is famously known as asymptotic freedom [32].
We will discuss renormalising later, in the context of the QM model. Asymptotic freedom means that for
very large energies, perturbative QCD calculations will not need to take into account many perturbative
terms in order to obtain good results. It also means that for smaller energies, perturbative calculations
break down as g grows large. Later, we will be working with energies which are too low QCD to be
practical, and therefore we need the QM model. The large coupling at low energy is also the reason why
we never observe free quarks. The coupling between them is so strong that they bind to form hadrons,
e.g. nucleons and mesons.

Many of the defining characteristics of a Lagrangian come from its symmetries, so the symmetries of the
QCD-Lagrangian are essential. The first symmetry group we mention is the SU(3).-gauge transformation-
symmetry. This symmetry acts on the colour indices, and therefore we call it SU(3).. The Lagrangian in
Eq. (10.1) is in fact constructed to be SU(3).-symmetric. In a sense, enforcing a SU(3).-gauge symmetry
fixes the interaction terms of the theory. In this case, the interactions refer to the quark-gluon interaction
and the gluon-gluon interactions. The word gauge means that the transformation is z-dependent, or
local. For convenience in expressing the transformation, we define the 3 x 3-matrix A, = A4T4. A
general SU(3).-gauge transformation may be written in terms of a matrix U(z) = exp(ia(z)AT#). The
eight z-dependent a”(x) parameterise the transformation. With these definitions, the quark and gluon
fields transform like

g SUQcmmze 1l (104)

SU(3).-gauge
ST, 17 (1) Ay eally (2) — = [0uUne(2)] UL (). (10.5)

A;L, ab - 3

g
In the QM-model, we avoid the difficulties the gluons bring with their self interactions. The QM-model
is colour neutral: The colours only contribute to a factor of N, = 3 as we sum over the colour indices.
This means that the SU(3).-gauge transformation does not carry over to the QM-model, as this is where
a lot of the calculational difficulties lie.

Next, we look at global symmetries, meaning that they are not z-dependent. Ref. [32], chapter 28 goes
more in depth into this global symmetry-topic. The first one we call the vector symmetry. It is a global
U(1)-symmetry which we will denote by U(1)y. Under the vector symmetry, the quark fields transform

as

q Y, exp(ia)q!, (10.6)

where the z-independent « is a constant parameterising the specific transformation. It is quite easy to
see that this transformation is a symmetry by simple insertion into Eq. (10.1). In fact, if we assume that

1Symmetry groups and Lie-algebras are worthwhile studying themselves, but such a discussion is certainly outside the
scope of this thesis. For Lie-algebras, definitions and clarifying examples may be found in Ref. [33].
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the quark masses are equal, we may promote U(1)y — U(Ny)y = SU(Ny)y x U(1)y. To parameterise
an element from the SU(Ny)y-group, we add the generators for the SU(Ny) to the exponential, e.g
U= exp(iaATA) € SU(3). Assuming that the quarks are massless, My = 0, we also have an azial
symmetry, denoted by U(1)4 (the A must not be confused with the generator index). From now on, we
will assume that the quarks are massless. Under it, the quarks transform like

qf: M exp(ia’y‘r’)q}:. (10.7)

Recalling that the v° matrix commutes with all 4# and that g/ = (¢/)'7°, we see that this is also a
symmetry when the mass matrix vanishes. This symmetry may also be promoted 1 — Ny. When the
Lagrangian is symmetric under both vector and axial transformations, we write that it is symmetric under
U(1l)y x U(1)a. Having defined the vector and axial symmetries, we can define the chiral symmetries.
For this we need the right and left handed projection operator, P

1
PR/L:§(1i’)/5) and QR/L:PR/Lq' (108)

The projection operator has several important properties, which are easy to show using Eq. (0.8). One
finds that

1 1 ..
PI%/L = Z(l + 75) (1 + 75) = 1(2 + 275) = Pr/1, (projection property), (10.9)
1
Pr/LPr/r = Z(l +9°)(1F4°) =0 (orthogonal projections), (10.10)
1 5 L 1 5 L :
Pr/iy" = 5(1 +9°)H = At 3 (1F7°) =+"Prr (commutation property), (10.11)
Pr+ P =1, and Pr— P =1". (10.12)

If we write ¢ = (Pr, + Pr)q = q1 + qr, we can split the Lagrangian into one part containing only the
right handed quarks, gr, and the other one containing only left handed quarks, ¢g7,. The cross terms, e.g.
containing gr and gy, vanish due to orthogonality property of the projection operators. Furthermore, we
may write an infinitesimal symmetry transformation from U(1)y x U(1)4 as

exp(ioy) exp(icay’) = (1+ioy)(1+iaay®) =1+ i(ay +aay®)
Hﬂhﬂ

eU()v cU(1)a
(10.12) . .
= PR+PL+ZOzv(PR+PL)JrZOéA(PRfPL) (10.13)
= (14 ifoy + aa])Pr + (1 + ifoy — aa]) Pp
= exp(ar)Pr + exp(ar)Pr. (10.14)

In the last equality, we defined ag = ay + a4 and ay = ay — aa. The calculation above shows that we
may write a vector-axial symmetry-transformation as a sum of two transformations, each transformation
acting only on either the left or right handed quark. From this, we see that a U(1)y x U(1)a-symmetry
is equivalent to a U(1)g x U(1)-symmetry where the U(1)g acts only on gg and U(1), acts on qr,. The
left- and right-handed symmetries can be promoted from U(1) — U(Ny). As we are interested in the
two-flavour QM model, we set Ny = 2. The global symmetries can be written

In QCD, the ground state has a non-zero expectation-value
0 # (qq) = ((¢'(PL + Pr)Y"(PL + Pr)q) = (4" PLr°Prq + q' Pry°Prq) = (qrqr) + (qrqr).  (10.16)

This expression is not invariant under SUg(2) x SUL(2). When the vacuum breaks the symmetry in
this way, we say that the symmetry is spontaneously broken. If L € SU(2);, and R € SU(2)g, then we
must require L = R for the vacuum to remain unaffected by a transformation, which is the same as a
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SU (2)y-transformation. Therefore, we say that only the vector symmetry SU(2)y is conserved in the
vacuum. This is what is known as chiral symmetry breaking. Chiral perturbation theory is built around
this symmetry-breaking pattern. In the same way, the QM model must have an inherent chiral symmetry
breaking. The magnitude of the symmetry breaking, i.e. the vacuum expectation value, will be used to
fix the symmetry breaking parameter in the QM model, linking QCD to the effective model. In addition
to spontaneous symmetry breaking, there is explicit symmetry breaking. This happens when we have
a term in the Lagrangian density which violates a symmetry. For example, introducing a mass matrix
where the elements along the diagonal are equal explicitly breaks the SU(2)4-symmetry. Similarly, as
the quark masses are not exactly the same, a mass matrix with different masses along the diagonal is an
example of an explicit symmetry breaking of U(2)y down to a U(1)y.

Of course, a quark-meson model will in the end yield an equation of state where matter consists of quarks
and mesons. This means that we will in fact describe a quark star. As previously mentioned, we never
actually observe free quarks, so trying to describe a compact star composed by them does certainly seem
strange at first glance. To justify spending time on quarks through the QM model, we present two
arguments. The first one regards the strange matter hypothesis, which is discussed in Refs. [35] and [34].
The idea is that nucleons may not be the most stable form of matter. In particular, quark matter with up,
down, and strange quarks might actually form matter with less energy per baryon than nuclear matter.
It is the addition of strange quarks which gives the hypothesis its name. Quark matter consisting of only
up and down quarks must be less stable than nuclear matter. Accepting the strange matter hypothesis,
there might exist strange compact stars, making a quark star model-study worthwhile. To formulate a
quantitative version of the strange matter hypothesis, we let €3, and np, 3, denote the energy density and
baryonic number density of three flavour quark matter (¢ € {u, d, s}), respectively. We let €3, and np, 24
denote the same two quantities for two flavour quark matter (¢ € {u, d}). Then, the strange matter
hypothesis reads

€3¢ €2¢

< 931 MeV < . (10.17)
npB,3q npB,2q

The energy densities are to be evaluated at zero pressure. Sandwiched between the quark matter energy
densities per baryon, is the energy per baryon in the most stable nuclear matter, Fe®® [4].

The second and perhaps more convincing argument as to why the QM model is useful to us, is the
concept of a hybrid star. Inside a compact star, the energy densities may be very large, as illustrated in
the project thesis in the discussion about ideal neutron stars. Therefore, there might be quark matter
in the core of the compact star. When the energy density grows large enough, the quarks will deconfine
as a result of asymptotic freedom. The relevant degrees of freedom in the large-energy density core of
a star will therefore be quarks, not nucleons. Towards the end of this thesis, we will discuss two hybrid
star models in which we use the QM model to describe the quark core.

In Table 10.1 we list the masses and baryon numbers of the up and down quark. Particularly, we see
that the baryon numbers are % This is why we introduce this factor when we start discussing baryonic
number densities.

Flavour | Mass [MeV] | Baryon number
u 2.2

d 4.7

|l

Table 10.1: Masses and baryon numbers of the quarks we consider. Baryon numbers are from [4]. The
masses are listed in Ref. [36], p. 32.

The masses we refer to here, are the lone masses. This means that it is the mass of a quark without the
contribution from the gluons. When the quarks are bound in a hadron, much of the hadron mass comes
from the gluon contribution. The the up and down quark masses are quite small, and they are therefore
often assumed to be zero.
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10.2 The Two-Flavour Quark-Meson Lagrangian

We will now look explicitly at the two-flavour quark-meson model. In contains the two quarks, denoted
by ¢y, three pseudo-scalar pions, which will be denoted by a three-component vector 7, and one scalar
particle o [37]. We will suppress the flavour and colour indices in the following. The pions and the scalar
are the so-called mesons. The Lagrangian density reads

Loy =qlid+p° —glo+i T -m)] g+ = (8 o0*o + 0, o+ m) — % (0% + m? —v2)2 + ho.  (10.18)

The vector 7 = (71, T2, 73) are the generators of the SU(2)-group, the familiar Pauli-matrices. Note also
that the mesonic potential V(o,7) is the negative of the last parenthesis and the negative of the last,
linear term —ho. Isolated, it reads

V(o, ) = 2 (0% + 7% — v2)2 — ho. (10.19)

In the previous subsection, we argued that an effective model must contain the symmetries and the
symmetry breaking patterns of the full theory. How does chiral symmetry breaking appear here? The
derivation is discussed in Ref. [38], and we will follow along the same lines here. At first we must impose
chiral symmetry. The quarks transform as in the previous section. To find the transformation property
of the mesons, we start by a little rewriting of the quark-meson interaction term using the projection
operator

Glo+iv°1T -m)q = q([Pp + Pglo + [Pr — PLliT - )q
= q(Prlo + it - w]+ PLlo —iT - w])q
q(PrS + PpY")q = G(PrEPr + PLEPL)q
= q.5qr + rE gL (10.20)

In the second to third line, we have defined the 2 x 2-flavour space matrix

(10.21)

Y =1loyso+iT -m™= <a—|—m3 ml—i—ﬁz).

1T — Ty O — 1M3

Let now a chiral SU(2) g-transformation be denoted by R and a chiral SU(2)-transformation be denoted
by L. A chiral transformation will change the interaction terms as

SU(Z)L XSU(?)R

qrYqr + GrX qr LY Rqr + GrRY(X1) Lgy  which imposes ' = LYR'. (10.22)

This yields chirally symmetric quark-meson interaction terms. We must check that these transformation
properties give a chirally symmetric mesonic sector as well. In order to do so, the next task is expressing
the potential in terms .

1 1 1 .
3 Tr[ETE} =3 Tr[(Laxeo — it - ) (Laxao +iT - )] = 3 Tr[Lox20? + (7 - 7)?] (011) (02 + 7).
(10.23)

Apart from the linear term in the mesonic potential, we can write V in terms of %Tr(ETE). In exactly
the same fashion, one can show that the kinetic terms are possible to write as %Tr (auzTauz). The trace
is invariant under the imposed transformation in Eq. (10.22)

SU(2)RXSU(2)L
Y

Tr [21y] Tr [(LRY) LERT| = Tr [RETLTLERT] = e[Sy, (10.24)

In the last equality above, we have used the cyclic property of the trace, Tr(AB) = Tr(BA) to make R and
R meet and cancel. This shows that the Lagrangian density is symmetric under chiral transformation,
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apart from the linear term ho, which is clearly not invariant. The fact that we can accept h # 0 is related
to the fact that also QCD had explicit symmetry breaking terms.

Having discussed the chiral symmetry transformations, we turn to chiral symmetry breaking. Importantly,
the mesonic potential is not minimised for o = m; = 0. This means that we will find vacuum expectation
values (o) and () which are generally non-zero. Due to this, we write o and 7 as the vacuum expectation
value and the fluctuations around the minimum

o= (o) + o1, = (7) + m. (10.25)

We let o1 and 7r; denote the fluctuations. As the vacuum corresponds to no fluctuations, we note that
the fluctuations describe the particle content, namely that o7 and 7 are the particles of the model. To
find (o) and (sr) which minimise the potential, we calculate

oV(o, ) oV(o, )
—_— =0 d —_— =0. 10.26
9o |o=() o om  |o=(o) (10.26)
T=(7) =(7)
Starting from the conditions for 7;
M) ({(0)? + (m)? —v?) =0 which enforces (m;) =0 or ((o)?+ (m)? —2v?) =0. (10.27)
Looking at the condition for o,
o) ((0)? + (m)? —v*) —h =0, (10.28)

we see that for h = 0, (o) = 0 is a solution. However, this represents a maximum, not a minimum. The
minima lie at ()% + (7)? —v? = 0. This is the famous Mexican hat-potential. An illustration of the
potential is given in Fig. 10.1. The black point marks the solution where (o) = (w) = 0, and it is very
clear that these are local maxima. In the case of h = 0, the minima lies on a ring, a ”vacuum circle”.

Vacuum ring, h =0 Unique vacuum, h # 0

(o) (o)

Figure 10.1: The mexican hat potential with and without a linear term h{o). We see that the addition
of a linear term fixes a unique vacuum, while h = 0 gives a whole ring of minima.

This ”vacuum circle” is invariant under the symmetry transformations. However, when we pick a partic-
ular vacuum, which we may chose to be whatever point along the vacuum circle, the SU(2)g x SU(2) -
symmetry is broken into SU(2)y-symmetry. In the figure, we indicate by the red dot that we choose

(6)#0  and  (m) =0, (10.29)
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to be the vacuum configuration. In the case of h # 0, we no longer have the option: It must be this way.
To verify our symmetry breaking claim, we write ¢ in terms of ¥ and apply a chiral transformation.

1 SU2)rxSU@2)r, 1
o= 7 Tr[0+ 57 O, Sy |

1
LYR' + RYTLT] = 2 Tr [RRTL + STLTR]. (10.30)
The above transformation is a symmetry if L = R, as the unitary transformations would then cancel. This
is exactly the vector transformations, SU(2)y. This shows that the chiral symmetry is spontaneously
broken in the QM model. This serves to justify the Lagrangian in Eq. (10.18) as an effective model of
quarks.

Inserting Eq. (10.25) with a non-zero (o) back into the mesonic potential we generate new interaction
terms, and modify the already existing square terms.

V(oy, 1) = 2( 1+ ()% + oin?) + Mo (of + o17?) +% A3(0)? —v?) o] + %)\(<0>2 — %) w?
Lini(o1,m) ms mi
£ (Ao) — o + 3 ({0)? =)  hio)
= Lint(01, ™) + m—%‘af + ﬁﬁg +ha + é(<a>2 —?)? = (o). (10.31)

2 2 4

Above, we have defined the masses m2 and mZ, in addition to a b’ = A(o) — h. In order to produce any
physical results from this Lagrangian density, we must of course find a value for the constants we have
introduced, e.g. (o). This is a task we will deal with later.

The simplest approximation we can make to proceed, is the mean-field approximation for the mesonic
sector. By the mean-field approximation, we mean that we neglect any fluctuations in the fields — we
only consider the mean-field value, (o). In practise, this means that the mesonic sector of the Lagrangian
density only contributes with the potential

V(0, 0; (o), A\, v?, h) = V((o) = (o) +

2 4
2 o AV (10.32)

where we defined m? = —\v?. In addition, the couplings between the mesons and quarks turn into a

dynamic mass term, proportional to (o).
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Quark Stars with the QQM-model

With the mean-field approximation for the mesonic sector, we will calculate the grand potential for the
two-flavour QM model. Going from there, we find expressions for the energy density, pressure, and
number density. These quantities are all we need to find an equation of state. With the QM model
equation of state, we will calculate mass-radius relations for two-flavour quark stars: Our first compact
star-results in this thesis.

11.1 The Grand Potential in the Mean-Field Approximation

The first interesting property of the non-vanishing mean field value (o) # 0, is that it effectively gives a
mass term to the quarks, m, = g(o). This mass term is called a dynamic mass, as it changes with (o),
making it quite a lot more interesting than a fixed mass, as we shall see. Neglecting the fluctuations, we
may write the full Lagrangian density as

A

2
Lau =Ly =V((0) = Lu = 50} + %(@2 + (o). (11.1)

Writing out the Lagrangian density concerning the fermions, Lg, we find
Ly =Vy(id = pn° = 9(0))¥q = Vo (ir°0 + iv'0; — p° — g(0)) ¥, (11.2)

We have reinstated the notation of ¥ in order to make the notation compatible to the Chapter 9.3. To
remember that we are dealing with quarks we have added the subscript ¢ which denotes which fermion
we take into account, namely the up and down quark, in each of their colours. For ease of notation, we
omit the summation over colours 271:/;?37 as adding a colour index only further clutter the notation. £
is independent of the colour indices, and in the end the sum will only contribute with a factor N.. Thus
we may write the Hamiltonian density

Hy = 1,00V, — Lo =V, (—iv'0; + py° + glo)) ¥, with Ty = i\I/(TJ. (11.3)

This Hamiltonian density we can plug back into Eq. (9.89). We find that we must calculate the following
Grand partition function

B _ .
0= % D\II:;D\I/q exp (/ dT/d?’x\Ilq(—'yOBT + iy 0 — uy° — glo)) ¥, — V({o), O))
- 0

= exp (—BV((U}) /d%) f_pxygqu exp (/OB dT/d?’x\T/q(—’yOaT +iy'0; — p° — g(a))\Ilq>

(11.4)
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Above we have used that V((J)) is independent of space and 7, so we may replace the integral over 7
with a factor 8 and pull V outside the spatial integral. We see that we can factor © into a product of
simpler terms. Therefore, we name O,y = exp(—ﬁV((a)) fd3:lc). Next, we turn to the fermionic path
integral. We will also consider just one fermion species, omiting the subscript q. Each fermion species
contributes with one ©,.

As we know from Chapter 9.3 and our minus-subscript by the integral, the fermionic fields are anti-
periodic in 8. Due to this, we know that we can decompose the function into its Fourier modes in 7-space
which are anti-periodic, i.e.

U(x,7) = % > Pa(x) exp<27ZT {n+ ;}). (11.5)

n=—oo

In space, we do not have periodicity, but there is a nifty trick we can use, namely box quantisation. By
this, we mean that we put the field inside a box of volume V = L? and impose anti-periodic boundary
conditions. Since the system is not actually in a box, the idea is to let the volume V' — oo, that is, taking
the thermodynamic limit. The box allows us to write

box
Oo) 225 Oy, v = exp (= BVV((0))). (11.6)
More importantly, the box allows us to decompose 1, (x) as well, yielding a full decomposition

U(x,7) = \/% Z Zqﬁn(k) exp(ix - k) exp(

n=—occ k

2

5 {n+ ;}), (11.7)

Uh(x,7) = i 3" (k) exp(—ix - k) exp AT ), (11.8)
VBV B
n=—oo k

. . .2 N
In the equation above, we have introduced a sum over k = (2”{“7 ”L”J, Q”L"’“), where n;, n; and ny are

integers. Keep in mind that QZIL and 7]1” are still four component vectors. The periodic boundary restricts
the number of modes to a countable amount. In sending the volume to infinity, we must let the sum go
to an integral. The sum is dimensionless, but the integral comes with a measure d>k. We must therefore

add a constant in the transition between sum and integration. We realise that the volume of the boxes

2m

7 )3, meaning that

we sum over, are of the size AV = (

3
> a/% = V/dgk. (11.9)
k 3

L

The advantage of box quantisation, is that we may work with a discrete sum over k instead of a continuous
integral. When we integrate over all functions, we are thus back to integrating over all values v, (k) may
take. With discrete k this allows us to write

DU =[[dpn(k) and DU =][]dd) (k). (11.10)
k,n k,n

The anti-periodic boundary conditions are now encoded in the decomposition of ¥ and ¥f. We now
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consider the contents of the exponent, to see how it behaves under our rewriting of the fields
B 7 _
/ dr BT (=8, +i7°v'0; — p —A%g (o)) T
0 —

B
:/Od77d3 ﬁvzszk’eX<

oo k’

W 3 Y ik exp(%;{mg}ﬂx.k)

n=—oco k

5VZZW (k') ( 2 {n+ - ki—u—v°9<0>)1ﬁn(k)

n,n’ k,k’

2

|t ol

B} =i K ) (<00 %20~ =9l

:ﬂén,n/ :V(Sk Kk’

DA (Qm{w b 440k + 1% (0 ) S Y (00 A )i (1)

n=—oo k n=—oo k

(11.11)
Notice that we absorbed the negative sign into our definition of A. To abbreviate the expression a little,
we rename w, = %’T {n + %} To proceed the calculation, we need to use what we know about the

~v-matrices. We listed them in the beginning of this document, in the Notations section. After a straight-
forward substitution of Eq. (0.6) into Eq. (11.11), we find that the matrix A between the four-component
Fourier modes reads

—A(k,n) =iw, + 7' k; + .+ 1 g(o)
iwn+u+g<0> 0 k‘3 kl —’ik‘g
_ 0 iwn + p+ g{o) ki 4 iko —ks
- ks k1 — iko iwn, + p— g(o) 0 (11.12)
Ifl +Zk2 —kg 0 iwn +/J—g<0'>

Now we just need to combine the results from Eqs. (11.10) and (11.11) to find the grand partition
function for a system with one fermion of flavour f and one colour c inside a quantisation volume V.
We denote it @{/’C. The partition function the whole system with box quantisation, Oy, is simply the
product of @{;C and O, v. In total, it reads

Ov =0uy v H@@C
f,c

% H/ 1 dvn(k)dijf () exp Z > 0l o (K)diaer O Aap(k,n)tn g(k) [ (11.13)
k, k/ n,n’ kk’
n,n’ =—o0
We know just how to solve this type of integral! We derive it in Appendix E.2, and it turns out to be the
determinant of the matrix between the Grassmannian numbers z/;;rl,,a (k') and ¢, s(k). This is expressed
in Eq. (E.23). The matrix is already diagonal in n, n’ and k,k’ which means that the determinant over
those indices just returns a product over n and k. However, A,g is not a diagonal matrix, and hence we
must find its determinant. This is precisely why we calculated —A explicitly in Eq. (11.12). We need not
consider the sign in the determinant, as A is a 4 X 4 matrix, and pulling out the minus sign of A yields
a factor (—1)* = 1.
Oy = exp(—BVV) [T ] [ det [A(k,n)]. (11.14)

q,c kn
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Remembering way back to Egs. (9.3) and (9.6), we see that we are in fact only interested in the logarithm
of the grand partition function divided by V. Taking the limit V' — oo changes the sum over k to an
integral and introduces a factor V', which cancels the division. This removes the problem of dealing with a
diverging volume factor. Taking the logarithm now is convenient, as it turns the product into a sum. We
divide by 8 too, which allows us to identify that we are in fact calculating the negative grand potential,
—Q.

In @V 1 -
= i Y 3 P e (k)
Voo, %Z OC /d3kln [det (A(k,n))], (11.15)
f n=—oo

where we used Eq. (11.9). We have also used that A is independent of colour, and replaced that sum with
N.. We are now taking into account that the different fermions may not have the same chemical potential
pey. In order to avoid a very cluttered notation, we will suppress the subscript f as there are already
quite a few sub- and superscripts to take into account. But we will keep the summation, reminding us
that we do in fact have different 1. The more faint of heart might use a computer program to proceed,
but we try our luck at this 4 x 4-determinant calculation. But first, we define DF = iw, + u =+ g(o) (D
for diagonal) and ki = ki & iko, with ki k_ = k? + k3. This implies that k? = k, k_ + k3. Armed with
this simplifying rewriting, we find

Df 0 ks k_

) Df kY -k 0 Df —k 0 Df &k
+ _ n 3 n 3 n +
/2 in g—t (?3 =Dy k- D, 0 |+kslks k- 0 |—k_|ks k- D,
’ k Y _k?’ 0 D; k+ _kS Dg k+ —kg 0

k. —ks 0 D
=D} D, (D}D, — ki —kik_) — ki (D} D, —kj—kik_)
— kik_ (D} D, — k3 — kyk_)
= (D} D;)? — 2D} D k* + kK’k* = (D D, — k?)? (11.16)

Luckily, that determinant turned out to simplify quite a lot. Plugging Eq. (11.16) back into Eq. (11.15),
we find that we must calculate

In[@] 2N, - - 12
v TV="3 Zf:/dgkn;wln[DnDn ~ k%
= 2NCZ a3k i In [(iwy, + p)? — g*(0)? — k?]
f n=—oo
2N, 5. N ~ 2 2
=3 S| @k > In[(iwn + p)® — Eg) (11.17)
f n=—oo
The term (iw, + u)? contains all dependencies of n, and Ex = +/¢%(c)2 + k2, which contains all de-

pendencies of k. Ej has the same form as the relativistic energy, E = y/m?2 + p2. To proceed from
here, we need some clever tricks. The first one is to split the expression above into two sums. Then we
reorder the second sum such that it runs in a decreasing fashion, from oo to —oo. Thirdly, we notice that
wy, = 2 {n + 2} =—-Zd{—-(n+1) 2} = —w_,_1. The index shift does not matter, as the sum goes
over all integers. Flnally, we can merge the two sums together again and use the logarithm multiplication
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property to obtain

2 Y Inf(iw, +p)® - Bl = > Inf(iwn+p)? - Eg] + Y In[(iw), +p)* - B
= Z In [(iwy, + p)* Z In [(—iw_p—1 + p)* — Ef]
(let n = —n’ — 1 in the second term) = Z In [(iwy, + p)* Z In [(—iw, + p)* — EZ]

= i ln[ ’Lwn—F,u Ek}{ an'i'/‘ Ek}]

n=—oo

(11.18)

Now, the game is simply to multiply out the parentheses. We perform the calculation to find

{(iwn + p)* — EZ} {(—iwn + p)? — Ep} = (iwn + p + Ex) (iw, + o — Ex) (—iwp, + p+ Ex) (—iwy, + p — Ex)

= {(M+Ek)2+wi}{(M—Ek)2+wi}. (11.19)

The dotted underline indicates which parentheses we have multiplied together. In the end, we have
managed to isolate the w, to only appear squared. The next trick is write the logarithm in terms of an
integral. Note that we neglect whatever integration constant which may appear, as adding a constant to
the logarithm of the partition function © does not change any of the thermodynamic properties. We now

define Elf = Fx £ p to find

lnﬂ[‘?]__wrz/daknz;oo (In [B2 +wi] +In [B2 + wi])
:_V+Z/d3knzoo(/dE;2E+2 / aE, E. +w2>
:_V“Lz/dgknzoo (/dEk E+2 /dEl:E2E+w2) (11.20)

As a notational clarification here: The integral over momentum k goes over all possible momenta
k1, ko, ks € (—o00,00), while the integral over Ef is an indefinite integral, which we introduced out
of calculational convenience to remove the logarithms.

11.1.1 Matsubara Frequency Summation

So far, we have done a lot of manipulations in order to get the grand fermionic partition function to
a calculable form. The next step is called Matsubara frequency summation. At first we exchange the
ordering of taking the sum over n and the integral over Ef in Eq. (11.20). The problem at hand is
to calculate the infinite sum over all n. In this section, we assume familiarity with complex analysis,
specifically familiarity with residue calculation.

The idea is to write the sum as a complex contour integral. We are therefore going to use Cauchy’s
theorem the other way than it is ordinarily used — we are going from a sum to a closed contour in the
complex plane. It may seem that we in this way are making the problem more convoluted. However,
translating the problem into a complex integral actually allows us to reduce the number of summands
from infinitely many to only two! We shall shortly see how this is the case. At first, our task is to find a
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complex function g(w) such that

oo

1 =
> ey =2 L e o) = f dgto) (1121

n=-—oo n n=-—0o0o

The curve we integrate along in the complex plane needs to contain infinitely many poles in order for
this strategy to work. As we sum over w, = %’T {n + %}, we look for a function which has poles at
Pn = %“ {n + %}, or alternatively at p,, = % {n + %} for every n. By thinking a while of functions with
such a periodic pole behaviour, we may suggest

1

We notice how the denominator approaches zero whenever w approaches % {n + %}, just like we wanted.
Everywhere else, f(w) is analytic. Now we need to find the residue of this function around one particular
pole p,,. From complex analysis, we know that the residue is the coefficient in front of the % in the Laurent-
expansion. Therefore, we investigate how f(w) behaves close to a pole, that is at w = % {n + %} + €

2mi 1 _ 1 B 1
f ( B {n + 2} + 6) 1+ exp(?m’ {n + %} + 65) 1+ exp(27in) exp(i7) exp(Be)
1 1 1 1
T T (1 Bt OPE) ~ Belt O  pe o) (11.23)
e—0

where h(B¢) ——= 1. We may conclude that f(w) has simple poles at p,,, with the coefficient +. If we
now let C,, denote a closed curve containing one pole p,, and that the curve is oriented counter-clockwise,
we find from Cauchy’s integral formula that

Res f() = 5 do () = lim Sh(Be) =

W=Wn 27TZ

1

3 (11.24)

With our f(w), we have found a complex function with poles which are situated where we want them,
but the values of the residues are not what we want. However, if we modify f(w) with an extra term
which is analytic close to the imaginary axis, we may get the residues we seek. We take

B fw)

OB —w? 2w

g(w) (11.25)

We see that g(w) now has two new poles al