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Abstract

We perform a search for a new dark matter aware gauge boson Z ′ in final states with

two leptons and missing transverse energy, predicted by dark Higgs and light vector

models. Monte-Carlo simulated events are analysed, corresponding to data from

the ATLAS detector taken during the full Run 2 at the LHC with
√
s = 13 TeV.

Signal regions are constructed by the standard method of making cuts on kinematic

variables as well as by use of neural networks. The neural networks are optimized

in order to reach a high accuracy in classification of signal and background events.

The methods are compared, and the neural networks are found to perform better

than the standard approach. However, the highest expected significances are in the

order of 10−1 for a coupling of Z ′ boson to leptons of gl = 0.01, which is too low for

a possible exclusion or discovery of the signals in the data from Run 2.
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Sammendrag

Vi gjennomfører et søk etter et nytt gaugeboson Z ′ i sluttilstander med to leptoner og

manglende transversal energi. Søket er basert p̊a hypotetiske mørk Higgs-modeller

og ”light vector”-modeller. Data generert av Monte-Carlo-simuleringer analyseres.

Disse korresponderer med data fra ATLAS-detektoren gjennom hele ”Run 2” ved

LHC med
√
s = 13 TeV. Signalomr̊ader konstrueres gjennom den tradisjonelle ”cut

and count”-metoden, basert p̊a å gjøre kutt p̊a bestemte kinematiske variabler, og

ved bruk av nevrale nettverk. De nevrale nettverkene optimeres, med mål om å

oppn̊a høyest mulig nøyaktighet i klassifiseringen av signal og bakgrunn. Metodene

sammenlignes, og de nevrale nettverkene viser seg å prestere bedre enn den tradis-

jonelle fremgangsm̊aten. Likevel er den forventede signifikansen i størrelsesordenen

10−1 n̊ar koblingskonstanten til leptoner er gl = 0.01, som er for lavt til at det er

mulig å ekskludere eller oppdage signalene i data m̊alt av detektoren gjennom Run

2.
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Introduction†

Theoretical physicists have for a long time attempted to come up with solutions

to the anomalies that arise in the Standard Model (SM) of particle physics, and a

large amount of ideas and new physics models beyond the SM (BSM) have been

proposed. However, one of the main difficulties over time has been the lack of new

experimental results in order to be guided in a specific direction. A possible ap-

proach to solving the problem is to search for evidence for BSM models in data from

the Large Hadron Collider (LHC). This may lead to a partial or full confirmation

of the model, it may give inconclusive results or in some cases falsify it, all of which

are useful results.

One of the main current pursuits in physics is to obtain a better understanding

of dark matter. Astronomical observations have in several cases shown deviations

from predictions based on currently accepted theories of gravity [2–4]. There are

many possible explanations of this, including that current theories of gravity need

modification or that the anomalies stem from the presence of large amounts of un-

known matter in the universe, so called dark matter (DM). There are clear evidences

of DM in the universe, but what it consists of is one of the mysteries in physics to-

day. Several theories propose that DM may arise from primordial black holes or

massive compact halo objects [5, 6]. Another popular theory is the existence of a

new invisible, massive particle or a sector of them, which are called weakly inter-

acting massive particles (WIMPs) [7, 8]. However, although it has been possible to

observe the effects of DM at large scales, one has not yet succeeded in detecting any

WIMPs in particle detectors. One of the main difficulties is that if WIMPs exist,

they do not interact with light or bind to atoms, but only interact through the weak

force (and gravity) [9,10]. Their masses are also in most cases expected to be large

compared to other SM particles, which makes them move slowly compared to the

speed of light and thus fulfills the requirement of being cold dark matter, as opposed

to e.g. neutrinos in the SM, which are light and represent what is known as hot

dark matter. WIMPs may be detectable, and there are ongoing attempts to detect

them indirectly, which will be discussed in this report.

In this thesis, we will consider two different models containing physics beyond

the Standard Model and use these in order to search for a new dark matter aware

†Adapted from [1].
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Z ′ boson. This will be done by analysing simulated Monte-Carlo samples, using the

standard cut and count method as well as a machine learning method. The aim of

the thesis is two-fold: Signal regions will be constructed using Monte-Carlo samples

in order to determine whether it will be possible to discover new physics or exclude

the models studied by later analysing real data. We also want to optimize both

search methods and compare them in order to see which of them obtains the highest

sensitivity.

The thesis begins by briefly introducing the Standard Model of particle physics

as well as mentioning some of its shortcomings, particularly the evidence of dark

matter. Chapter 2 provides information about the LHC and ATLAS. The search

strategy is laid out in chapter 3, and the signal and background processes are intro-

duced. In chapter 4 we introduce general machine learning concepts as well as the

theory of neural networks. Chapter 5 describes the data preparation and consider-

ations made before the search. In chapter 6, we perform a standard cut and count

analysis by making cuts on specific variables and measuring the expected sensitivity

to the signal models. In chapter 7, we optimize the neural networks before per-

forming a corresponding machine learning based analysis. The thesis is concluded

in chapter 8.

In some chapters, modified parts or full sections of an earlier work written by

myself are used, reference [1]. These are mainly theory or preparatory sections and

are marked by a † symbol and a footnote containing the reference.
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1 The Standard Model†

In this chapter, we briefly describe the main elements of the Standard Model. In

the first section, we introduce the different groups and types of particles and their

characteristics. The types of interactions that are currently included in the Standard

Model are described, as well as some phenomena and observations the SM has not

yet been able to describe. In section 1.1 and 1.2, we use references [11–19] (except

when other references are given). In the end, we provide some additional details

about dark matter, which is of importance to the motivation of the search that is

later performed.

The Standard Model is the theory describing the present-day understanding of

the elementary particles. It includes all of the currently observed particles, as well

as the interactions between them that we are aware of, except that it has not yet

been able to include gravity. It is based on quantum field theory, and many parts

of it have been experimentally verified with high accuracy.

1.1 The fundamental particles

The Standard Model includes 25 different elementary particles. These may be split

into two main groups: The fermions which constitute matter, and bosons which act

as force carriers (except in the case of the scalar Higgs boson). An overview of the

Standard Model particles is shown in figure 1.1.

1.1.1 Fermions

The fermions have a spin quantum number of 1/2, and may be categorized as ei-

ther leptons or quarks. The electron (e−), muon (µ−) and tau (τ−) have integer

electric charge, while the quarks have an electric charge of −1/3 or +2/3. The

neutrinos have zero electric charge. The quarks are also subject to the quantum

number color charge, while leptons are not. The fermions are divided into three

generations. In the first generation, there are the up (u) quark and down (d) quark,

as well as the electron (e−) and electron neutrino (νe), while the second and third

generations include copies of these that only differ by having a higher mass. The

second generation include the charm (c) and strange (s) quarks, as well as the muon

†Adapted from [1].
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(µ−) and muon neutrino (νµ). The third generation contains the top (t) and bottom

(b) quarks, the tau (τ−) and tau neutrino (ντ ). The mass of the particles increases

significantly in each generation. While quarks in the first generation have a mass

of a few MeV, the second generation contains masses of ∼ 100 Mev for the strange

quark and ∼ 1 GeV for the charm, and in the third generation the masses of the top

and bottom quark are 4.18 GeV and 173.1 GeV respectively. Each fermion particle

has a corresponding anti-particle with the same properties, except having opposite

electric charge, as well as other additive quantum numbers. Because fermions have

half-integer spin, they obey the Pauli exclusion principle, which means that two or

more identical particles cannot occupy the same quantum state at the same time.

Due to quarks carrying color charge, they are not observed individually as will be

discussed in section. Instead they are bound in colorless composite particles known

as hadrons. These are divided into two groups called baryons and mesons. Baryons

consist of an odd number of quarks. Examples of baryons include the proton (uud)

and the neutron (udd). The other type of hadrons are called mesons. These are

characterized by containing an equal number of quarks and antiquarks. Examples

of mesons are the charged pions (ud̄ and ūd).

1.1.2 Bosons

The bosons include the photon (γ), eight different gluons (g), the Z and W± bosons

and the Higgs boson (H) [14]. These are characterized by having integer spin quan-

tum number, with the Higgs boson having s = 0, making it a scalar boson. The

rest have s = 1 and are called vector bosons. As bosons are not subject to the Pauli

exclusion principle, they obey Bose-Einstein statistics. The vector bosons act as

force mediators. The gluons couple to particles with color charge, and are massless

and electrically neutral. However, they do carry color charge. Although gluons are

massless, the range of the strong force is only ∼ 10−15m, as they self-interact. The

photon is massless and electrically neutral. It couples to electrically charged parti-

cles through the electromagnetic interaction, which will be discussed in section 1.2.1.

As it is massless and stable, the range of the electromagnetic interaction is infinite.

The W± and Z bosons couple to weakly charged particles, as defined in section

1.2. These are massive particles, with masses MZ ≈ 91.2 GeV and MW± ≈ 80.4

GeV. The Higgs boson, which was discovered at the LHC in 2012 [15,20], exists as a

consequence of the Higgs field, which causes many of the Standard Model particles
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to acquire mass due to spontaneous symmetry breaking. If gravity is mediated by a

vector boson, the hypothetical graviton is expected to be the only boson with spin

s = 2.

Figure 1.1: Overview of the particles of the Standard Model, and their characteris-
tics. Figure taken from [21].

1.2 The fundamental interactions

The Standard Model describes the electromagnetic, weak and strong interactions.

It is a quantum field theory and treats particles as excited states of quantum fields.

The equations of motion for a field is found by solving the Euler-Lagrange equation

∂µ

(
∂L

∂(∂µϕ)

)
− ∂L
∂ϕ

= 0 (1.1)

for a Lagrangian L that describes the system, and is a function of quantum fields

ϕ(x) and their derivatives ∂µϕ. The Standard Model is based on gauge symmetries

that require the Lagrangian to be invariant under specific types of transformations.

According to Noether’s theorem, this leads to conservation laws. The Standard

Model obeys the internal symmetries of the unitary product group

GSM = SU(3)c × SU(2)L × U(1)Y (1.2)
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where the SU(3)c group represents quantum chromodynamics (QCD), which is

the theory of the strong interaction, and will be described further in section 1.2.2.

SU(2)L×U(1)Y represents the electroweak symmetry [19]. The subscript in SU(2)L,

which will be described further in section 1.2.3, refers to the weak isospin transfor-

mations being restricted to left-handed particles (and right-handed anti-particles),

thus incorporating parity violation in weak interactions. In addition to the contin-

uous gauge symmetries, the fields obey some discrete symmetries. These are parity,

referring to changing the sign of the spatial coordinates, charge conjugation, which

is changing the sign of the charge of particles and time reversal, which changes the

sign of the time coordinate.

1.2.1 Quantum electrodynamics

The electromagnetic interaction is described by quantum electrodynamics (QED)

and involves interactions between electrically charged particles, with the photon as

mediator. The starting point for arriving at the QED lagrangian is the lagrangian

of a free fermion field ψ with mass m,

L = ψ̄(iγµ∂µ −m)ψ (1.3)

where γµ are the four Dirac matrices and ψ̄ = ψγ0 is the conjugate of the fermion

field. This lagrangian is invariant under global U(1) transformations ψ(x) → ψ′(x) =

eiαψ(x). However, it is not invariant under local U(1) transformations. In order to

achieve local invariance, the derivative ∂µ is replaced by a covariant derivative

Dµ = ∂µ − ieAµ (1.4)

where Aµ is a gauge field that we require to transform as Aµ(x) → A′
µ(x) =

Aµ(x)− ∂µα(x). The QED lagrangian then becomes

LQED = ψ̄(iγµ∂µ −m)ψ + eψ̄γµψAµ −
1

4
FµνF

µν (1.5)

where Fµν = ∂µAν−∂νAµ. The term containing ψ, ψ̄ and Aµ indicates an interaction

between the fermion current and the gauge field. By interpreting the gauge field as

a massless photon, QED allows for interactions between the fermion field and the

photon field, as shown in figure 1.2.
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Figure 1.2: Basic QED vertices showing. a) shows a fermion-antifermion pair anni-
hilating into a photon. b) and c) shows a fermion/antifermion interacting with the
photon field, resulting in a change in its 4-momentum.

1.2.2 Quantum chromodynamics

The strong interaction is described in terms of quantum chromodynamics (QCD),

which involves interactions between fermions with color charge (quarks) and gluons,

of which there are 8 types. The three types of color charge are called red, green and

blue, and the corresponding charges that neutralize them are antired, antigreen and

antiblue. The mediating particle is a gluon, and the type of gluon depends on the

colors of the interacting particles. The strong interaction is responsible for forming

hadrons, such as the proton, neutron and different types of mesons.

QCD is symmetric under SU(3)c transformations, which is non-abelian and con-

tain 8 generators. The generators are 1
2
λa, where λa are the 3×3 Gell-Mann matrices

subject to the commutation relations

[λa, λb] = 2ifabcλc (1.6)

for a, b = 1, ..., 8, where fabc are the structure constants of SU(3).

As the strong coupling constant diminishes as energy increases, the quarks inter-

act weakly1 at high energies, known as asymptotic freedom, and strongly when the

energy is low, leading to confinement of quarks and gluons in composite hadrons. By

replacing derivatives with QCD covariant derivatives and introducing gauge fields

Gρ
µ, the lagrangian becomes

1Quarks also interact through the weak interaction. Here we mean that the interaction strength
is weak.
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Figure 1.3: Basic QCD vertices. a) shows an incoming quark-antiquark pair in-
teracting and becoming gluon, while b) shows a quark interacting with a gluon,
resulting in a change in its 4-momentum. Here, i = 1, 2, 3, which corresponds with
r, g, b. c) and d) show gluon self-interactions.

LQCD =
∑
q

(q̄(iγµ∂µ −m)q − gsq̄
λρ
2
qGρ

µ)−
1

4
GµνG

µν
(1.7)

where q̄ are the conjugates of the quark fields (q =
(

qr
qg
qb

)
is a color triplet) and gs is

related to the strong coupling constant by αs =
g2s
4π
. By interpreting Gρ

µ as the gluon

fields, the interaction terms show that the possible QCD interactions are interactions

between quarks, antiquarks and a gluon, as well as self-interactions between three

or four gluons, as shown in figure 1.3.

1.2.3 The electroweak theory

The weak interaction affects left-handed fermions. It may be split into two types,

called the weak charged current interaction and the weak neutral current interac-

tion. The weak charged current interaction, mediated by the W± bosons, only

applies to left-handed particles and right-handed anti-particles. The weak, neutral

current interaction, mediated by the Z0 boson, couple differently to left-handed and

right-handed particles. The weak charged current interaction is the only interaction
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that allows for change of flavour, and it is the only one that violates charge-parity

symmetry. The weak and electromagnetic interaction were initially considered to

be separate interactions. However, it was later discovered that they may be unified

into a single type of interaction, called the electroweak interaction. Examples of

electroweak interaction vertices are shown in figure 1.4.

As the weak interaction only applies to left-handed particles and right-handed

antiparticles, it is necessary to decompose the fermion field by applying the chiral

projection operators PR = 1
2
(1 + γ5)ψ and PL = 1

2
(1− γ5)ψ so that PRψ = ψR and

PLψ = ψL. The gauge symmetry in the weak charged interaction is the SU(2)L

group, which transforms the left-handed fermion field as

ψL(x) → ψ′
L(x) = eiga(x)·τ⃗ψL(x), (1.8)

where τ⃗ = 1
2
σ⃗ are the Pauli matrices that generate the SU(2)L group and g

is the weak coupling. The unification of the weak and electromagnetic interaction

assumes that the lagrangian is symmetric under SU(2)L × U(1)Y where Y is the

weak hypercharge, which is related to the electric charge Q and the third component

of the weak isospin (where the weak isospin is the generator of SU(2)L), T3, by

Y = 2(Q − T3). By applying a similar procedure as in QED and QCD, replacing

derivatives with covariant derivatives and introducing gauge fields, we get three

gauge fields W i
µ related to SU(2)L and one gauge field Bµ from the hypercharge

group U(1)Y . Left-handed fields are represented by weak isospin doublets with

T3 = ±1/2, (
νe

e−

)
L

(
νµ

µ−

)
L

(
ντ

τ−

)
L

(
u

d′

)
L

(
c

s′

)
L

(
t

b′

)
L

while right-handed fields are represented as weak isospin singlets with T3 = 0,

(uR,dR,...,e
−
R,νeR). The weak interaction also includes flavor mixing between d, s and

b. The probability of mixing between different states are described by the Cabibo-

Kobayashi–Maskawa (CKM) matrixd
′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b


Where d, s, b are mass eigenstates and d′, s′, b′ are weak eigenstates. The prob-
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Figure 1.4: Basic electroweak vertices. a), b) and c) are weak vertices showing
interactions between fermions and Z and W bosons. d) shows an electromagnetic
vertex. e) and f) show electroweak interactions between γ, Z and W bosons. The
vertices may be rotated in order to find other possible interactions.

ability of transition between the flavours i and j is proportional to |Vij|2. Writing

left-handed and right-handed terms separately, the electroweak lagrangian becomes

LEWK =
∑
f

ψ̄f
Lγ

µ
[
i∂µ + gτ⃗ · W⃗µ +

g′

2
Y Bµ

]
ψf
L +

∑
f

ψ̄f
Rγ

µ
[
i∂µ +

g′

2
Y Bµ

]
ψf
R

− 1

4
W⃗µν · W⃗ µν − 1

4
Bµν ·Bµν ,

(1.9)

where g and g′ are the coupling constants of SU(2)L and U(1)Y , respectively.

1.3 Shortcomings of the standard model

The Standard Model is a successful and precise theory. The lack of anomalies is

one of the reasons why it has been difficult to develop the theory further. However,

there are a number of phenomena the SM has not yet been able to explain or that

are not incorporated into the current theory.
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1.3.1 Gravity

The Standard Model includes three of the four known forces of nature, but it does

not incorporate gravity [11]. After the success of the other gauge theories, similar

methods were attempted in order to explain the gravitational force with a ”graviton”

as force mediator. However, these theories turned out not to be renormalizable [22].

This has led to the question of whether gravity is fundamentally different from the

other forces or if the framework of the Standard Model is flawed or incomplete. One

of the reasons it has been difficult to develop a quantum theory of gravity is that

the force is much weaker than the other interactions at the microscopic scale, and

the effects of it are not detectable at the LHC.

1.3.2 Dark matter

Several experiments and observations suggest that there is more matter in the uni-

verse than what is possible to optically and electromagnetically observe. One of the

evidences of this is the difference between the observed rotation curves of galaxies

and the theoretical predictions of how they should behave [2]. Other evidences of

dark matter include observations from gravitational lensing, the power spectrum of

the Cosmic Microwave Background, as well as dark matter providing an explanation

for the structure formation of the universe [3, 4]. The main hypothesis explaining

these observations proposes that there is a particle or a number of particles with

specific properties that are responsible for them. Another possible explanation is

that there is a flaw in the present theory of gravity over long distances, known as

modified gravity. A dark matter particle must have specific properties, including

zero electric charge and color charge and a non-zero mass, among other things [9].

In order to detect it, one searches for specific candidates, such as weakly interacting

massive particles (WIMPs) [7, 8]. The evidence of dark matter and its candidate

particles will be discussed further in section 1.4.

1.3.3 Neutrino oscillations and masses

In the SM, neutrinos are assumed to be massless [11]. However, in a multitude

of experiments it has been shown that neutrinos can oscillate, which means they

undergo a change of flavour [23, 24]. Although experiments have shown that the

neutrino mass must be very small, the oscillations require the neutrinos to have mass

and mix such that the weak eigenstates are combinations of the mass eigenstates.

Thus, some modification is necessary in the Standard Model to account for this.
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1.3.4 The hierarchy problem

In the calculation of the Higgs Boson mass, divergences appear [25]. To cancel out

these divergences, one needs to make a cut-off at the order of the Planck scale.

However, in order for the divergences to cancel, it is also necessary that the mass of

the Higgs boson is in the order of 1019 GeV, which is far from the observed value of

∼ 125 GeV [26]. This discrepancy is known as the hierarchy problem.

1.3.5 Accelerated expansion of the universe

From observations, it has been established that the universe is expanding, and that

the expansion is accelerating, which means that the velocity with which a distant

object moves away from an observer is increasing with time [27, 28]. The introduc-

tion of a cosmological constant accounts for this, which is equivalent to the presence

of dark energy [29]. This causes a repulsive force, resulting in the accelerated ex-

pansion. However, although it is included in cosmological models by hand, it is not

accounted for in the Standard Model and it is unknown where it comes from.

1.4 Dark matter

We will now elaborate on some of the evidences for dark matter mentioned in section

1.3.2 and present some of the candidates for dark matter.

1.4.1 Evidence

By studying velocity curves of stars orbiting galaxies, significant deviations from

expectations have been found [2]. If spherical symmetry is assumed, the orbital

average velocity of the stars may be written as a function of the distance from the

galaxy center by [30,31]

u(r) =
GNM(r)

r
,M(r) = 4π

∫
ρ(r)r2dr (1.10)

where GN is the gravitational constant. This means that the velocity should de-

crease as ∝ 1√
r
. However, the observed data show a distribution that is flat when

the radius increases, as seen in figure 1.5. Before accepting this as evidence of dark

matter, attempts were made to see if there were other possible reasons for the flat

curve. This was done by assuming that the stars in the galactic discs had as much

mass as would still be consistent with current theories [32]. However, contributions

from a dark matter halo turned out to be necessary at large radii, as shown in figure
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1.5.

Figure 1.5: Rotation curve velocity for the dwarf spiral galaxy NGC 6503. The dots
represent the observed data, while the dashed lines show the expected disk and gas
contributions in addition to the dark matter halo needed to obtain similar values to
the data. Figure taken from [33].

Another source of evidence of dark matter is the Cosmic Microwave Background

(CMB). The CMB was produced by photon freeze-out, which refers to the photons

generally persisting over time, rather than continously being created and annihilated,

which was the case in the early universe due to its higher density [29]. These photons

travel through space-time and have reached microwave frequency. They appear as

black-body radiation with a temperature of ∼ 2.755 K [34]. The CMB is isotropic

except from small temperature fluctuations. The angular scale and height of the

peaks of these fluctuations determine several cosmological parameters, including

the dark matter component. The power spectrum of the temperature fluctuation is

shown in figure 1.6. We will not go into the details of this measurement as it is based

on multipole expansions [29], but the oscillations are affected by gravity and photon

radiative pressure. The effect of dark matter increases the height of the third peak.

The results turn out to be in agreement with the lambda-CDM model [35], while
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being hard to reproduce with modified Newtonian gravitational models [36].

Figure 1.6: Cosmic microwave background temperature power spectrum showing
the temperature fluctuations as a function of the multipole moment l. Dark matter
effects are expected to increase the height of the third peak. Figure taken from [37].

1.4.2 DM candidates

Many types of dark matter particles have been proposed. However, although some

of its characteristics if it exists are known, there is too little experimental evidence

to have specific information about many of its properties. For example, it is not

known whether it is likely to be one type of particle or a sector of particles, as well as

what their masses are. However, some of the properties of DM can be inferred from

the observations discussed above [9]. First, as it is not visible, it does not interact

with light, which means that it is electrically neutral. As it does not bind to the

normal atoms, it does not have color charge, but it is possible that dark matter

particles can bind to each other. It must be massive and interact gravitationally,

as the evidence for it include the observation of a larger gravitational effect than

expected. Although it does not have electric charge or color charge, it may interact

with normal matter through the weak interaction, but it may also not interact at

all, except through gravitation. A large amount of hot dark matter in the universe

has also been shown to prevent the formation of galaxies, and therefore it is thought

to be cold.
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One of the popular candidates for dark matter are known as weakly interact-

ing massive particles (WIMPS) [7, 8]. These are massive, electrically neutral and

color neutral particles, meaning that they only interact through gravity and the

weak interaction. They may also interact through currently unknown interactions

weaker than the weak interaction. The exact properties of WIMPs are unknown,

and there does not exist a formal definition of them. They are however thought to

have large masses compared to SM particles, which would cause them to be slow

moving. When assuming a WIMP particle with a mass within the allowed range, it

results in the relic density that is necessary for dark matter. This is known as the

WIMP miracle [9].

Another possible candidate is the axion [38, 39]. It was postulated in 1977 as

a solution to the strong CP problem in QCD [40, 41]. This requires adding a new

global symmetry to the SM that is spontaneously broken, known as the Peccei-

Quinn symmetry. The spontaneously broken symmetry along with QCD effects

produce a cosmological population of cold axions. The axion is a boson with spin-0,

and is expected to have very low interaction cross sections for strong and weak forces.

These are only some of the many hypothetical particles with characteristics sim-

ilar to those that dark matter particles are required to possess. Some other can-

didates are sterile neutrinos [42], strongly interacting massive particles [43] and

self-interacting dark matter [44].

In this chapter, we have introduced the particles and interactions included in the

Standard Model of particle physics, as well as highlighting some of the shortcom-

ings of the theory. We will now move on to explain how the SM is tested at the LHC.
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2 LHC and ATLAS†

2.1 The LHC

The Large Hadron Collider (LHC) is the largest particle accelerator in the world,

with a circumference of 27 km. In the LHC, two particle beams travel in opposite

directions, resulting in proton-proton collisions with center-of-mass energy of up to

13.6 TeV. This energy was recently reached in the Run 3 period, which started

in 2022 [45, 46]. Particle beams are guided by superconducting electromagnets,

with four crossing points where the particles collide. These represent the four large

experiments, which include ATLAS, LHCb, ALICE and CMS. ATLAS and CMS

study a wide range of phenomena in proton-proton collisions, while LHCb specializes

in the study of the bottom quark through B-hadron interactions, and ALICE studies

heavy-ion physics. There are also several smaller experiments. For the Run 2, which

lasted from 2015 to 2018, the center-of-mass energy in the collisions was 13 TeV [47].

Figure 2.1: An illustration showing CERN’s accelerator complex. Figure taken
from [48].

2.2 The ATLAS detector

The ATLAS (A Toroidal LHC ApparatuS) detector is the largest detector con-

structed for a particle collider [49]. It has a cylindrical shape, with a diameter of

25m and a length of 46m. It consists of different layers and sub-detector systems,

the main ones being the inner detector, the calorimeters, the muon spectrometer,

†Adapted from [1].
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as well as the magnet system. An overview of the detector is shown in figure 2.2.

The inner detector is the innermost layer [49]. It consists of three different

systems that measure the direction, momentum and charge of electrically charged

particles. This is done by a solenoid creating a magnetic field of 2T, which bends

charged particles. The three systems are the pixel detector, the semiconductor

tracker and the transition radiation tracker. The pixel detector is the innermost of

them, and is located 3.3 cm from the beam line. It is made up of four layers of silicon

pixels. The semiconductor tracker surrounds the pixel detector and consists of sili-

con micro-strip trackers. In combination, the pixel detector and the semiconductor

layer are used to detect and reconstruct charged particle tracks, which is used to

determine the momentum of the particles. The transition radiation tracker consists

of straw tubes filled with a gas mixture. When charged particles pass through the

tubes, they ionise the gas, creating an electric signal. This detector therefore helps

identifying electrons.

Outside the inner detector are the calorimeters [50]. There are two different

calorimeters. These are the electromagnetic calorimeter also known as the Liquid

Argon (LAr) Calorimeter, and the Tile Hadronic Calorimeter. The LAr calorimeter

consists of layers of metal (tungsten, copper and lead). Electrically charged particles

are absorbed by the layers, causing them to emit electromagnetic showers of new,

lower energy e± and γ. These showers ionise liquid argon, which is between the

layers, producing an electric current. The Tile Calorimeter works in a similar way,

but consists of steel and plastic scintillating tiles. When hadrons pass through the

steel layers they produce showers of hadrons. The plastic scintillators then produce

photons which are converted into electric signals.

The Muon Spectrometer consists of precision detectors and fast-response detec-

tors [49,51]. The precision detectors use Monitored Drift Tube detectors, consisting

of aluminium tubes filled with a gas mixture. Muons passing through the tubes

interact with electrons in the gas, causing them to drift to a wire in the centre of

the tube, creating a signal. The fast-response detectors consist of Resistive Plate

Chambers and Thin-Gap Chambers, which both detect muons from ionisation of

gas and are used to trigger on muons.

ATLAS also has a trigger and data acquisition system which decides which
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events possess the characteristics that make them interesting for physics analy-

sis [52]. The first-level trigger system is hardware-based and works on information

from the calorimeters and the muon spectrometer, while keeping the event data in

storage buffers. The second-level trigger system is software-based and selects around

1000 events per second.

Figure 2.2: An illustration showing the main components of the ATLAS detector.
Figure taken from [53].

2.2.1 Particle detection

The characteristics of the detected particles are found from the way in which they

interact with the different layers [49,50]. When viewing a cross section of the detec-

tor, as shown in figure 2.3, the electric charge of a particle is measured by the curve

of its trajectory, the sign of the charge being identified by the direction in which

the curve is bent. The inner detector only detects electrically charged particles, like

electrons and protons. As a result, neutral particles like photons and neutrons do

not leave any trace.

The electromagnetic (EM) calorimeter measures all particles subject to the elec-

tromagnetic interaction [54]. Electrons and photons stop in this layer and produce

EM showers of particles. The profile of their energy deposits in the EM calorime-

ter therefore determine the direction of the particles, as well as their energy. The

hadronic calorimeter works in a similar way, but measures hadrons subject to the

strong interaction, like protons and neutrons, and these are identified in this layer.
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The hadrons stop in this layer due to hadronic showers, and are completely ab-

sorbed, which makes it possible to measure their energy. Although muons interact

with the EM calorimeter, they only loose a small amount of their energy, and pass

through. These are measured in the muon spectrometer, which is the outermost

layer of the detector [51]. The muon spectrometer does not stop the muons, but

instead measures their momenta from the curvature of their tracks. There are also

some particles that are not detected. Particles such as the electroweak (EW) bosons

and the Higgs boson decay before they reach the detector layers. The neutrinos are

considered stable particles, which means they reach through all of the layers, but

are not detected as they only interact through the weak interaction. This leads to

some expected missing energy and momentum.

Figure 2.3: An illustration of a cross section of the ATLAS detector, showing the
different layers and how different types of particles interact with them. Figure taken
from [53].

2.3 Physics at the LHC

2.3.1 Controllable and known parameters

Because protons are composite particles, one cannot control the energy of every sin-

gle quark. However, one can control the energy of the protons as a whole. This leads

to a number of parameters that may be controlled with a high degree of precision

for the incoming protons.
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The energy of a collision is usually considered in the center-of-mass frame, leading

to a center-of-mass energy, denoted by
√
s [13]. This may be found from the energy

and momentum of the particles by taking the square-root of the Lorentz-invariant

quantity

s =

(∑
i

Ei

)2

−

(∑
i

pi

)2

. (2.1)

The center-of-mass energy during the full Run 2 data-taking period at the LHC was
√
s = 13 TeV [55].

The interaction cross section σ measures the probability that two incoming par-

ticles will interact with each other and lead to some new particles being produced,

and is a parameter which may be calculated for the specific process one is interested

in [56]. The instantaneous luminosity, L, measures the ability of a particle collider

to produce a required number of interactions [57] per second, and is defined as

L =
1

σ

dN

dt
(2.2)

where σ is the cross section and dN
dt

is the number of events per time unit [58].

The unit of luminosity is cm−2s−1. For two parallel, approximately Gaussian proton

beams colliding, the luminosity is

L =
N1N2fNb

4πσxσy
, (2.3)

where N1 and N2 are the number of protons in the two colliding bunches, f is

the revolution frequency and Nb is the number of bunches in one beam. σx and σy

are the root-mean-square horizontal and vertical beam sizes.

The integrated luminosity L is the instantaneous luminosity integrated over a

time period,

L =

∫
L(t)dt. (2.4)

This quantity is of importance as it is related to the number of expected events

for some process with cross section σ,

L · σ = number of events. (2.5)
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The unit of integrated luminosity is m−2, and is usually given in the inverse unit of

barns, where 1 barn = 10−28 m2 [57].

2.3.2 Kinematic variables

As the protons are composite particles and only one of its partons typically takes

part in an interaction, the longitudal component of its momentum is not known.

However, because the protons travel in parallell with the beam line, the vector sum

of the transverse components of the momentum of the partons in the initial state is

zero. This is also true for the final state particles because of momentum and energy

conservation. Therefore, in the analysis of the kinematics of an event, the transverse

components of the variables are usually considered.

The 4-momentum of a particle may be reconstructed from variables that the

detector measures. These are usually collected in a 4-vector of the form

pµspherical = (E, pT , η, ϕ), (2.6)

where E is the energy and pT is the transverse component of the momentum. η

is the pseudo-rapidity, defined by η = −1
2
ln tan(θ/2), where θ is the polar angle and

ϕ the azimuthal angle [13]. An illustration of the coordinate system in the detector

is shown in figure 2.4.

Figure 2.4: An illustration showing the coordinate system used in the detector for
calculating properties of the observed particles. Figure taken from [59].

The missing transverse energy. Emiss
T . is the transverse energy that is expected
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to be detected due to conservation of energy, but that is not detected. It is therefore

the magnitude of the vector momentum imbalance in the plane perpendicular to the

beam [60]. This quantity is determined by

Emiss
T = ∥pmiss

T ∥, (2.7)

where
pmiss
T = −

∑
i

pT,i. (2.8)

is the missing transverse momentum, and the sum runs over all particles that are

detected, as well as good tracks which are not associated with any particle, called

soft terms.

It is often useful to distinguish between energy that is genuinely missing, and

that which is missing due to sources like object misreconstruction, finite detector res-

olution or detector noise. This issue is mitigated by defining the Emiss
T significance,

Emiss,sig
T , which is obtained from a likelihood formalism by

Emiss,sig
T ≡ 2 ln

(
L(ε⃗ =

∑
ε⃗i)

L(ε⃗ = 0)

)
, (2.9)

where ε⃗ is the true Emiss
T ,

∑
ε⃗i is the observed Emiss

T [61]. However, it may be

thought of in a more simplified way as Emiss
T in units of its experimental uncertainty,

Emiss,sig
T = Emiss

T /σ(Emiss
T ).

The invariant mass of a system of particles is a characteristic of the system’s

momentum and energy, and is invariant under Lorentz transformations [13]. It is

an important property in experimental particle physics because it tells you which

particle a number of final state particles may stem from. The square of the invariant

mass of a system of two particles is

m2 = (E1 + E2)
2 − ∥p1 + p2∥2

= m2
1 +m2

2 + 2(E1E2 − p1 · p2).
(2.10)

If one considers a particle with mass m decaying to two particles where one of

them is invisible, the transverse mass is sometimes a useful quantity. In this case,

the invisible particle only shows itself through the missing energy. The definition of

transverse mass used by particle physicists is somewhat different from the standard

definition, and is of the form
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m2
T = (ET,1 + ET,2)

2 − (p⃗T,1 + p⃗T,2)
2

= m2
1 +m2

2 + 2(ET,1 + ET,2 − p⃗T,1 · p⃗T,2),
(2.11)

where ET is the transverse energy of each of the daughter particles [62]. However,

in reality only one of the particles is detected, while the other is replaced by pmiss
T .

One may therefore rewrite the formula as

mT =
√

2(plTp
miss
T − pl

Tp
miss
T ), (2.12)

where pl
T represents the measured particle and pmiss

T is the magnitude of pmiss
T ,

as earlier defined. Also it is sometimes useful to measure the hadronic activity, HT ,

which is defined as the scalar sum of the momenta of the hadronic jets in an event

HT =
∑
i

∥pT,i∥. (2.13)

In this chapter, the main components of the ATLAS detector have been ex-

plained, as well as how the particles are detected and identified. The parameters

and kinematic variables that will be used later in our analysis have also been intro-

duced. We will now lay out the search strategy and introduce the signals that will

be searched for.
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3 Search strategy†

In this chapter, we will begin by outlining the general search methods. The signal

models for the search are then introduced, as well as the SM processes that contribute

to the background. In chapter 6 and 7, the ML method will be compared with the

cut and count method, which both will be introduced in this chapter, in order to

study its performance relative to a standard method. This chapter forms the basis

of both analyses.

3.1 General outline of search methods

In this thesis, we will search for a new gauge boson Z ′, decaying to a lepton-

antilepton pair, and dark matter through the process pp→ Z ′+χχ→ l+l−+Emiss
T ,

which means that the final state collected by the detector will be a lepton-antilepton

pair and missing transverse energy (Emiss
T ). The models which form the basis of this

process are discussed in detail in section 3.2.

In order to perform a search for hypothetical, new particles or processes in

proton-proton collisions with the ATLAS detector, one needs to know how such

processes would behave or look in the data. In classical physics, it is often possible

to perform calculations which yield a result that one may either verify or falsify.

Particle physics is subject to quantum uncertainty, which means that although it is

possible to calculate certain characteristics, one can often only calculate how often

the process will happen, given the initial conditions. One may also calculate the

characteristics of the final states when such a process occurs, which gives informa-

tion about what the detector will measure, although this is subject to quantum

uncertainty as well.

Because of the reasons stated above, it is usually not possible to identify the

process that has taken place from a single event, as each event of the same type of

process lead to different final characteristics. For example, the transverse momen-

tum and the angle of particles produced in specific processes will not be the same

every time, although they stem from the same process and similar initial conditions.

However, the statistical distribution of these variables may be estimated. Often,

there are other processes that can lead to the same final state being detected and

†Adapted from [1]
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with some of the same characteristics, which is referred to as background.

The strategy for searches for new particles has to take into account that the sig-

nal, which is the process that is searched for, may be hidden behind large amounts of

background. In addition, if the signal is there, it may only account for a small frac-

tion of the observed events. The first preparatory step in a search is to estimate the

amount of events that is expected from all of the processes in the Standard Model

that lead to the same final state particles, as well as their characteristics, meaning

the distributions of the kinematic variables the detector is expected to measure.

This must also be done for the signal that is searched for. The standard way to do

this is to perform Monte-Carlo simulations of each type of process, which takes into

account the randomness of quantum behaviour. This will be discussed further in

section 5.1.

Then, one may compare the data recorded by the detector with the expected

data produced by the simulations. If the simulations are performed correctly, and

assuming the Standard Model in general is an accurate representation of particle

physics, the difference between the recorded data and the simulations is expected

to be small in most regions, especially in those where a large number of events are

recorded.

However, if there is a flaw or something missing in the theory, there may be

detected an excess or lack of events, compared to simulations, in certain regions.

The region where a large amount of signal events are expected, is called the signal

region. If a larger amount of events are observed in the signal region than is expected

from the Standard Model, and the excess of events also is of a similar magnitude to

what is expected from the signal model, it will act as evidence for the signal model.

In other cases, the excess of events expected from the signal is not observed, and

this will act as evidence against the signal model describing reality. If the signal is

large enough, it can in principle be visible in the real data. However, as mentioned

earlier, the signal is often several orders of magnitude smaller than the background

and therefore not visible. Therefore, one needs to use a strategy that increases the

expected amount of signal in relation to the expected background. After this is

done, one may calculate the expected significance Z, which tells us how likely we

are to be able to claim a discovery if the signal model exists in nature, or if it may

be falsified if it does not exist. If the expected significance is too low, it is likely
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not possible to verify or falsify the theory. How the expected significance is mea-

sured will be explained in section 5.9. One may also use the results to set limits on

the parameters of the model. First, we will introduce the standard cut and count

method.

3.1.1 Cut and count method

One of the most common ways to increase the expected amount of signal relative to

background, is by making cuts on some kinematic variables, so that all events out-

side a certain interval are excluded. This is called the cut and count (C&C) method.

For example, if a model predicts the signal events to have a peak in the invariant

mass at 300 GeV, with few signal events having an invariant mass below 200 GeV

or above 400 GeV, one may exclude all events outside this region. The same may

be done for other suitable variables, which in total will reduce the background more

than it reduces the signal. There are also methods for deciding how to make the

most effective cuts, which we will not go into detail about here. The region that

is left after a set of cuts are made, is called the signal region, as discussed above.

Other cuts are often also made in order to construct control and validation regions.

The control regions are constructed in order to verify that the simulations represent

the data in a satisfactory way. The validation regions are used in order to confirm

that the background modelling inferred from the control regions is representative of

the background expected in regions closer to the signal regions.

3.1.2 ML classification

Another way of maximizing the expected amount of signal compared to background,

is by using machine learning (ML) methods. The most intuitive way to do this is

by using a binary classification method. While the cut and count method attempts

to find a region in the parameter space where it is expected to be a high amount

of signal in comparison to background, an ML classification method analyses every

single event separately in order to decide whether it is likely to be a signal or

background event. A signal region is then constructed by taking the set of events

receiving a probability above some threshold of being a signal event. Classification

methods will be discussed in more detail in section 4.1.1. We will now introduce the

signal models for the search, as well as the different types of background processes
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that lead to the same final state particles.

3.2 Signal models

We will search for evidence of new phenomena predicted by two different groups of

models, called Dark Higgs Models and Light Vector Models. They are different in

important ways, but also share some characteristics.

Both of the models have a mechanism of dark matter production, where the dark

matter particles are mediated by a new gauge boson, called Z ′ [63]. The models

thus produce a signal Z ′ + Emiss
T , where the missing energy is due to dark mat-

ter particles that are not detected. The Z ′ boson can decay to a pair of leptons

(l+l−), where l = e−, µ−, (which are the final state particles used in this search) or

to a quark-antiquark pair which may then lead to 2-jets (jj). It may therefore be

possible to observe a resonance in the dilepton mass spectrum, as well as elevated

levels of missing transverse energy. However, one should be aware that a dilepton

resonance combined with missing transverse energy does not necessarily require a

Z ′, as other processes could cause similar results, such as new scalar resonances and

colored resonances.

In both models, we assume that the Z ′ corresponds to a new U(1)′ symmetry

group and couples to quarks by the interaction term

L ⊃ −
∑
q

gq q̄γ
µqZ ′µ

(3.1)

where gq is the coupling strength between Z ′ and quarks. The couplings to leptons

are also vector couplings of the form

L ⊃ −glψ̄γµψZ ′µ, (3.2)

where ψ̄ and ψ represent the antilepton and lepton states.

3.2.1 Dark Higgs model

The Dark Higgs model [63] assumes there is a new massive scalar particle that cou-

ples to the Z ′, called the dark Higgs boson. As this particle couples to invisible states

(dark matter particles), one of the main strategies when searching for it could be to

search for missing transverse energy (Emiss
T ). The processes that are studied in our
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case have three free mass parameters. These are the mass of the Z ′ boson, the mass

of the darks sector fermion (χ) and the mass of the dark Higgs boson (hd). There

are also three coupling parameters, gD, gq and gl, which represent the coupling of

the Z ′ boson to the dark Higgs boson, the coupling of Z ′ to quarks, and of Z ′ to

leptons, respectively. In figure 3.1, a Feynman diagram representing a possible dark

Higgs process leading to two leptons is shown.

The model [63] is implemented by assuming a new U(1)′ symmetry with a charged

scalar field ΦD representing the dark Higgs field and a singlet scalar ϕX representing

dark matter states. These fields give the following contributions to the lagrangian

L ⊃ |DµΦD|2 + µ2
D|ΦD|2 − λD|ΦD|4 −

1

4
(F ′

µν)
2

+
1

2
(∂µϕX)

2 − λX |ΦD|2ϕ2
X − V (ϕX),

(3.3)

where V is the scalar potential and ΦD = 1
2
(vD + hD), where vD is the vacuum

expectation value for the dark Higgs field. λD and µD are constants analogous to λ

and µ in the Higgs potential. The coupling of hD to Z ′ is given by

QhgzMZ′hDZ
′
µZ

′µ ≡ ghD
MZ′hDZ

′
µZ

′µ (3.4)

where Qh is the charge of ΦD, which is absorbed when defining the effective

coupling ghD
. The dark Higgs boson may decay to the ϕX states through the λX

coupling. The mass of the dark Higgs boson is unknown, but it cannot be much

heavier than the Z ′ or lighter than the χ. We consider the two scenarios which

are within these ranges, which are labelled the light dark sector and the heavy dark

sector. The masses in the different scenarios considered, are listed in table 3.1.

q

q̄

l

l
χ

χ

Z ′
Z ′

hD

Figure 3.1: An example of a process in the dark Higgs model leading to two final
state leptons and a pair of dark matter particles.
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Dark Higgs Light Vector

Light
sector

mχ = 5 GeV mχ1 = 5 GeV
mhD

= 125 GeV mχ2 = mχ1 +mZ′ + 25 GeV

Heavy
sector

mχ = 5 GeV mχ1 = mZ′/2
mhD

= mZ′ mχ2 = 2mZ′

Table 3.1: Overview of the masses of particles in the light dark sector and heavy
dark sector in the dark Higgs and light vector model [63].

3.2.2 Light vector model

When the Z ′ is light, it may be produced from decays of a heavy dark sector particle

χ2. This scenario is called the light vector model [63]. An example of such a process

leading to a lepton-antilepton pair and two dark states χ1 and χ2 is shown in figure

3.2. In this case, the χ2 represents a heavier state decaying to a Z ′ and a lighter χ1

dark sector particle, which is a stable dark matter candidate. The processes that

are studied in our case have three free mass parameters, which are the mass of the

Z ′ boson and the masses of the two dark sector fermions, χ1 and χ2. This model

does not include a dark Higgs boson. There are also three coupling parameters, gD,

gq and gl, which in a similar way to the dark Higgs model represent the coupling of

the Z ′ boson to the dark sector fermions, the coupling of Z ′ to the quarks, and of

Z ′ to leptons, respectively.

In the mathematical description of the model, the Z ′ couples to a fermion χ,

which has both Dirac and Majorana mass. It initially has Dirac mass Md. A

Majoana mass Mm may then be generated from the vacuum expectation value of a

U(1)′ Higgs through an interaction yχΦχχ̄χ
c, so that

L ⊃ χ̄(i /D −Md)χ− Mm

2
(χ̄χc + h.c.). (3.5)

This leads to two Majorana states χ1 and χ2 with masses M1,2 = |Mm ±Md|.
The interaction between these states and the Z ′ are off-diagonal and is given by

gχ
2
Z ′

µ(χ̄2γ
µγ5χ1 + χ̄1γ

µγ5χ2) (3.6)

In this model, the cross section increases with lower χ1 mass. Therefore, the

light dark sector is an optimistic case with a light χ1, while in the heavy sector the

dark fermion masses scale with mZ′ . The masses in these scenarios are listed in

table 3.1.
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q

q̄

χ1

χ1

l

lZ ′ χ2

Z ′

Figure 3.2: An example of a process in the light vector model leading to two final
state leptons and dark matter particles.

3.3 Background contributions

The Standard Model includes many processes that may result in the detector mea-

suring two leptons and Emiss
T . We will now present the different types of processes

that contribute to the background and that will be modelled with Monte-Carlo (MC)

simulations.

3.3.1 Drell-Yan and Z+jets

A Drell-Yan (DY) process takes place in hadron-hadron collisions when a quark from

one hadron and an anti-quark from another annihilate in order to produce a virtual

photon γ∗ or a real or virtual Z/Z∗ boson which then decay to a lepton-antilepton

pair. This process is shown in figure 3.3 a). In our search for a new Z ′ boson, the

DY background is irreducible, as the Z ′ is produced through a similar interaction

qq̄ → Z ′ → ll̄, resulting in similar topology and kinematics. However, it does not

necessarily produce a similar distribution for all kinematic variables. For example,

the resonance in the invariant mass (mll) distribution will depend on the Z ′ mass,

which will likely deviate from the Z/Z∗ mass. The mll distribution for the DY

background instead has a large amount of events close to the Z/Z∗ mass, but also

a long tail due to virtual Z∗. When the process also results in jets from radiation

of the initial partons in the collision, it is usually called Z+jets. The DY/Z+jets is

the dominant background type in the processes we are searching for.

3.3.2 Top-antitop production

Another major background contribution is top-antitop production (tt̄). The tt̄ pairs

are produced from various gluon-gluon interactions and q-q̄ annihilation, before de-
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caying quickly due to the large mass of the top quark. Each top quark decays

through the weak interaction to a W boson and a bottom quark. The W may then

decay to a lepton-neutrino pair, where the presence of the neutrino can only be

inferred from the measured Emiss
T in the event. Since each top-quark will produce

one W each, these events may have two leptons and Emiss
T in their final states. An

example of a top-antitop production process is shown in figure 3.3 b).

3.3.3 Single top

Single top (ST) quarks may be produced through a variety of processes. An example

is shown in figure 3.3 c). As in the tt̄ background, the top quark may decay to a

W boson and a bottom quark where the W then decays to a lepton-neutrino pair

(or antilepton-neutrino pair). If the single top is produced in combination with a

W boson, it may therefore lead to a lepton-antilepton pair.

3.3.4 Diboson

Diboson processes are processes where two gauge bosons are produced in pairs (WW ,

WZ, ZZ or γZ) from two incoming quarks. Examples of such processes are shown

in figure 3.3 d) and e). If a W+W− pair is produced, they may both decay to a

lepton-neutrino pair. If a Z boson is produced, it may decay to a lepton-antilepton

pair or a neutrino-antineutrino pair. This background is small compared to the ones

mentioned above, but it is irreducible.

3.3.5 W+jets

W+jets background refers to the scenario where a single W boson is produced in

combination with jets. The W may decay to a lepton and a neutrino. Although

it will not result in a lepton-antilepton pair, the jet is sometimes misidentified as a

lepton, or a conversion of a radiated photon to an e+e− pair may occur, where one

of these are reconstructed as an electron or positron. Leptons may also come from

semileptonic decays within B-hadrons. The W+jets background is small, but still

part of the MC simulated background. An example of a W+jets process is shown

in figure 3.3 f).
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Figure 3.3: Examples of Feynman diagrams for some of the processes contributing
to the background: a) Drell-Yan Z∗/γ∗ production, b) top-antitop production, c)
single top production, d) ZZ or Z,γ diboson production, e)WW diboson production
and f) W+ jets. Final states with µ+µ− are also considered.
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Data Sample 2015+2016 2017 2018 Comb.

Integrated luminosity (fb−1) 36.2 44.3 58.5 139.0

Total uncertainty (fb−1) 0.8 1.0 1.2 2.4

Table 3.2: Integrated luminosity that was labelled good for physics during different
time periods of Run 2, as well as its total uncertainty [64].

3.4 Data sets

The data studied in this thesis are from proton-proton collisions recorded by the

ATLAS detector during the Run 2 at the LHC. The center-of-mass energy of the

collisions was
√
s = 13 TeV, corresponding to a beam energy of 6.5 TeV, with

an average of 1.1 × 1011 protons per bunch and a bunch-spacing of 25 ns [47, 55].

Run 2 took place from 2015 to 2018, and was divided into three periods, the first

one in 2015-2016, the second in 2017 and the third in 2018. Figure 3.4 shows the

integrated luminosity recorded during Run 2, as a function of time. The green

part is the total integrated luminosity delivered by the LHC, and the yellow part

shows the part of it that was recorded by the ATLAS detector. The blue part is

the integrated luminosity of the events that passed all data quality requirements.

This is the part that is used in our analysis, and it amounts to 139 fb−1 [64]. The

integrated luminosity and its uncertainty for each period is listed in table 3.2. The

real data will be compared with Monte-Carlo (MC) simulated events. This is done

in order to compare the data with predictions from the Standard Model, and to

search for deviations to new physics phenomena. This will be discussed further in

section 5.1. As a machine learning based analysis will be performed in chapter 7,

we will now introduce the theory of neural networks, which will be used to perform

in the analysis.

In this chapter, we laid out the two different search strategies that will be used

in the analyses in chapter 6 and 7. The signal models that will be searched for

were introduced, as well as the background contributions. In the following chapter,

machine learning and neural networks will be introduced, as these will be used in

the analysis in chapter 7.
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Figure 3.4: The integrated luminosity at the LHC during Run 2 as a function of
time. The green (including the area below it) is the amount delivered by the LHC,
while the yellow area is how much was recorded by the ATLAS detector. The blue
area is the amount that passed data quality requirements in order to be considered
good for physics. Figure taken from [53].
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4 Neural networks

Although the standard cut and count method is effective in many cases, there are

other methods that may sometimes yield better results. Machine learning (ML)

methods such as neural networks and XGBOOST (eXtreme Gradient Boosting)

have become increasingly popular alternatives. These possess several possible ad-

vantages. One of these is their ability to find correlations between variables for each

specific event. In the cut and count method, the same cuts are performed for all of

the events without knowing how they will affect the distributions of other variables.

Also, the cuts are usually made on a relatively small number of variables, which

means that possible information from other variables is not used. A machine learn-

ing model may analyze a large amount of parameters and find connections between

them.

There are however some disadvantages of using machine learning models. One

of them is the possibility of overfitting, which will be discussed in more detail in

section 4.1.3. This means that the ML model finds spurious relationships in the

training data, which will not be present when tested on a new data set. Another

problem, which applies to the cut and count method, is if the MC simulation of

the signal model does not exactly represent the way the real signal would look if

it exists in reality, as there are usually uncertainties in the free parameters. An

example of this would be if the simulations produce correlations between specific

features that are not present in the real signal if a version of it exists. This may lead

the ML model to classify the signal as background. Although this would also be an

issue when using the cut and count method, it often has a larger margin of error as

the cuts are usually relatively broad, while the ML model may have more specific

criteria to classify an event as signal. In order to reduce this problem, one should

attempt to avoid overfitting. We will now introduce some of the theory behind neu-

ral networks, which is the search method used in this thesis (in addition to the cut

and count method), as well as explaining some of the choices that have been made

when developing and training the neural networks. Specific optimization choices are

discussed later in chapter 7. This chapter mainly follows references [65,66].
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4.1 General ML concepts

4.1.1 Classification problems

Machine learning may be used for different kinds of tasks that would require differ-

ent machine learning methods. The task it will be used for in this thesis is called

classification, specifically binary classification. Classification problems are problems

where each data point belongs to a category, and the task of the ML model is to

decide which group it belongs to. The most common ML output for k different cat-

egories is a vector ⃗̂y = (t1, .., ti, ..., tk), where the value of each coordinate i represent

the probability of the data point belonging to category i. This is known as one-hot

encoding. However, if there are only two categories (k = 2), one may instead use

only a single target variable y = 0, 1, where y = 0 and y = 1 respectively represent

the two different categories C1 and C2, and the ML output ŷ will be somewhere in

between these values, ŷ representing the model’s assigned probability that the data

point belongs to C1 and 1 − ŷ the probability that it belongs to C2. It should be

noted that this kind of approach is a form of supervised learning, where each data

point is associated with a label or target, and these are known in the data set we

are using for training the model. In cases where we have data set without labels,

unsupervised algorithms are needed instead.

The problem of separating signal events from background events may be consid-

ered a binary classification problem, where signal events are assigned with a target

variable y = 1 and background events are assigned y = 0. The input for such a

model is an N×M matrix where each row (N) represents an event and the columns

(M) represent the different features, which may be kinematic variables or other

characteristic, such as flavor. The model then produces an output value y for each

event, representing the probability of it being a signal event and 1 − y represents

the probability of it being a background event.

4.1.2 Evaluation metrics

In order to optimize an ML model, a method for measuring the quality of its output

is necessary. As ML methods are used for many different types of problems, the

suitable evaluation metric will depend on the problem type. Here we will focus on

classification problems, specifically binary classification.

As there are only two target labels 0 and 1, the ideal output is one that is exactly
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the correct label, either 0 or 1. As the output will usually be somewhere in between

these values, the closer it is to the correct label, the better. A simple and often

effective method is to measure the accuracy of the model. The accuracy is defined

by

accuracy =
Number of correct predictions

Total number of predictions
=

TP + TN

TP + FP + TN + FN
(4.1)

where TP , FP , TN and FN respectively are true positives, false positives, true

negative and false negatives. A true positive is a data point that is correctly classi-

fied as the y = 1. FP , TN and FN are defined using the same reasoning. Whether

a data point is classified as positive or negative, in our case signal or background,

depends on the threshold required. A standard threshold is to use 0.5, meaning

outputs above 0.5 is classified as positives and outputs below 0.5 as negatives. It

should then be noted that although the accuracy will be between 0 and 1 (rep-

resenting 0% and 100% accuracy respectively), an ML model with no predictive

power will be expected to have an accuracy close to 50% in the case of binary classi-

fication, as there is a 50% chance of guessing the right label without any information.

A different way of testing performance, which is somewhat similar to accuracy, is

measuring the area under the Receiver Operating Characteristic (ROC) curve, also

known as Area Under Curve (AUC). A typical ROC curve is shown in figure 4.1.

The ROC curve is the True Positive Rate (TPR) plotted against the False Positive

Rate (FPR) at different thresholds between 0 and 1. The TPR and FPR are defined

as

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
. (4.2)

The AUC is the area under this curve, which is a number between 0 and 1.

When the AUC is 1, the model correctly distinguishes between all the positives and

negatives at different thresholds. If the AUC is 0, it predicts that the positives

are negatives and negatives are positives. As the AUC tests the model at different

thresholds, it provides more nuanced information about its output than the accuracy

does. It can often be useful to use these methods in combination as they provide

complementary information.
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Figure 4.1: A typical ROC curve (the blue line) for an efficient classifier. The
shaded area is the AUC. The orange line corresponds to a random classifier with no
predictive power. The figure is my own work.

As will be discussed in more detail in section 4.2, the neural network assesses the

error of its output on the training data for every epoch in order to optimize its weight

parameters. This is done by using the maximum likelihood principle, which involves

minimizing a loss function. The main role of the loss function is to determine the

error of the output. Which loss function to use depends on the type of problem. For

a linear regression problem, one would minimize the mean-squared error, while for

classification one uses the cross-entropy loss, in our case the binary cross-entropy

loss, as the task of separating signal and background is a binary problem. In the case

where we have a true probability or target variable y, a value ŷ predicted by the ML

model, the dissimilarity between y and ŷ is measured by the binary cross-entropy

loss is

H(y, ŷ) = −
∑
i

yi log ŷi = −y log ŷ − (1− y) log(1− ŷ). (4.3)

However, in the optimization stage, the loss is calculated for a large number of

events, so the average loss is needed. This is given by
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J(w) = − 1

N

N∑
i=1

H(yi, ŷi) = − 1

N

N∑
i=1

[yi log ŷi − (1− yi) log(1− ŷi)]. (4.4)

where w represents the vector of optimized weights (which will be discussed in

section 4.2) and N is the number of observations or events. J(w) is usually called

the cost function.

4.1.3 Training and testing ML models

In order to develop an optimal ML model, it is usually necessary to train and test the

model many times and test different features, such as hyperparameters (which will

be introduced in section 4.6) and network architectures (which will be described in

section 4.2) in order to achieve the best result, using the evaluation metrics defined

in section 4.1.2. In the process of training and testing, there are some practises that

should be followed in order to optimize efficiently and to make sure the results from

the model may be trusted.

The data set that will be analyzed should first be split into a training set and

test set. The main reason for this is that it is not necessarily difficult for an ML

model to learn the set it is training on and reach a high accuracy when tested on

the same set. The reason for this is that it can learn every single data point and

relate it to its target variable. The problem usually arises when it is tested on a

new data set (the test set), as the data points will be different, and small deviations

in the characteristics of each data point may lead to a large difference in output.

The difference in error between the output for the training and test set, is called

the generalization error. A large generalization error is a sign of overfitting. One

should instead train the model on a training set and then check its performance

on a test set to see whether it has captured the broad trends and characteristics

that exists in the data. One may then make changes to the ML model and re-train

it in order to optimize its performance on the test set. Usually, the test set does

not need to be as large as the training set, although there are no specific rules for

this. The advantage of having a larger training set, is that one has more training

data which is expected to lead to better performance. However, it is important to

keep a large enough test set so that the performance metrics can be trusted. In

our analysis, we will be using 50% of the data for testing, is more than what is
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necessary in order to check its performance. However, this is the data set that is

used to perform the search, and therefore it should be as large as possible in order

to have enough statistics, without significantly affecting the ML model performance.

Figure 4.2: An illustration showing a typical loss or error curve as a function of
training epochs. Although the training loss (the blue, dashed line) keeps decreas-
ing, the generalization error (the green line) starts increasing after a while due to
overfitting. Figure taken from [65].

A problem that arises when optimizing for the test, is that one is still fine-tuning

the ML model in order to reach a high performance on that specific set. While the

negative effects of this often are small, it may be considered an indirect form of

overfitting. The problem may be solved by introducing a validation set. This is a

subset of the training set that the model will not train on, but that will be used

for testing the model during training. Because of the reason mentioned above, one

should therefore not use the test set for making changes to the network, but instead

use the validation set. After the model has been optimized for the validation set, it

is tested on the test set. The validation set is also useful for preventing overfitting

while training. Figure 4.2 shows a typical situation where the training loss keeps

decreasing while the validation loss (the blue, dashed line) decreases for some time,

before reverting and increasing due to overfitting (causing the generalization error,

which is the green line, to increase). It is useful to check the loss and and accuracy

for the training and validation set periodically during training. If the performance

on the validation set does not improve after a number of training epochs (which is

discussed further in section 4.6), while the performance on the training set keeps

improving, the network is likely overfitting. In this case, it is useful to initialize early
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stopping, which prevents the model from training further. However, this does not

protect the model from overfitting if it is designed in a way that causes it to overfit

easily.

4.2 Feed-forward neural networks

Artificial neural networks, from now on referred to as neural networks (NN), gener-

ally refer to a model that consists of nodes that are assembled in layers, and interact

with each other in order to perform a task. They loosely resemble the way neurons

function in a brain. Its general structure is shown in figure 4.3. The way the neural

network is structured, such as the number of layers and neurons per layer is referred

to as the network architecture.

We will focus on what is known as feed-forward neural networks, specifically the

multilayer perceptron, that attempts to approximate a multi- or single-variable func-

tion. It is called feed-forward because information from the input x flows through

the different layers in the network in order to produce an output. The network

consists of a number of input nodes, which equals the number of features in the

data samples, as well as a number of output nodes, depending on the desired type of

output. In the case of binary classification there is one output node, which produces

an output between 0 and 1. Between the input and output layer, there are a number

of hidden layers which determine the depth of the network, and a number of nodes

in each layer which determine the width. Each node in a layer interacts with each

node in the next layer.

In the multilayer perceptron, each layer, except the input layer, consists of an

activation function, taking a linear function wTxnodes+b as input, where xnodes ∈ Rp

is the input vector from nodes in the previous layer (p is the number of nodes in

the previous layer), w is a p× q matrix (q is the number of nodes in the next layer)

where its elements are called weights that the network attempts to optimize and

b ∈ Rq is a vector called a bias. The output from a layer is therefore of the form

h = g(wTxnodes + b) (4.5)

where g is an activation function and h ∈ Rq is a vector which becomes the input

of the next layer. Different types of activation functions are described in section 4.4.

In the multilayer perceptron, the layers are stacked in the following way:
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Figure 4.3: A typical neural network structure with 8 input features, 3 hidden layers
and 4 output parameters. In a classification problem, there is only one output
parameter. Figure taken from [66].

h0 = x

h1 = g1(w
T
1 h0 + b1)

...

hL = gL(w
T
LhL−1 + bL)

(4.6)

Once the model is trained, the weights are kept fixed and the data my be sent

through the network in order for it to produce an output hL.

4.3 Maximum likelihood estimation

In order for the ML model to learn, it needs a method to follow in order to achieve

a better accuracy. Different algorithms will be discussed in section 4.6. The under-

lying principle used in most machine learning algorithms, is the maximum likelihood

principle. The method attempts to find the weight parameters, discussed in section

4.2, that lead to the highest probability of producing the same output as the target

variable. This is done by maximising the likelihood function.

We assume that pmodel(x;θ) maps a configuration x, representing the N×M data

array, into an estimation of the true probability or target pdata(x). It is also assumed

that the data in x are independent and identically distributed. θ = [θ1, θ2, ..., θM ]T

represents the parameters that determine the distribution. In the case of neural

networks, these are the weights. The maximum likelihood estimator [65] for θ is
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θ̂ = argmax
θ

pmodel(x;θ) (4.7)

A convenient way to express the maximum likelihood estimator is by using the

logarithm, as it will not change the arg max. This is called the log-likelihood. The

expression may then be transformed to a sum

θ̂ = argmax
θ

M∑
i=1

pmodel(x
(i);θ), (4.8)

where the sum runs over the features. In a machine learning context, this may

be generalized to

θ̂ = argmax
θ

M∑
i=1

pmodel(y
(i)|x(i);θ) (4.9)

where y are the targets. The maximum likelihood principle may be interpreted as

minimizing the dissimilarity between the observed distribution pdata and the distribu-

tion produced by the neural network. This is best measured by the Kullback–Leibler

divergence (KL-divergence)

DKL(pdata||pmodel) =
N∑
i=1

pdata(x)[log pdata(x)− log pdata(x;θ)] (4.10)

Minimizing the KL-divergence is mathematically equivalent to minimizing the

cross-entropy loss. Therefore, a possible method for optimizing an ML model is

using an algorithm that minimizes this quantity. This will be discussed further in

section 4.6. However, we will first introduce the main types of activation functions.

4.4 Activation functions

The activation function gi, introduced in section 4.2, produces the output of a node.

It decides whether a neuron will fire or not, given some input, meaning it should

generally return a value close to zero if the information in the input is not considered

important to the output of the network. However, there are also activation functions

with a range beyond 0 and 1. It should be noted that it, in principle, is possible

to use the linear unit ŷ=wTh+b without any further treatment. However, activa-

tion functions possess some desirable qualities which will be discussed in this section.
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The type of activation function does not have to be the same in every node,

although it is common to use the same activation function in all the nodes in the

hidden layers and possibly a different one in the output layer, depending on the

desired output. We will now introduce the activation functions that will be used in

the ML analysis.

4.4.1 Sigmoid

The sigmoid function is a logistic activation function given by

σ(x) =
1

1 + e−x
. (4.11)

The sigmoid function ranges from 0 to 1 in an s-curved shape and saturates at low

and high values, as shown in figure 4.4 a). This means that it becomes flat and

insensitive to changes when the argument is far from zero in the positive or negative

direction. The sigmoid function is a natural function to use in the output layer for

classification, as its output between 0 and 1 may be interpreted as probabilities. If

the output contains several components, the element-wise sigmoid function is used,

defined by

a = σ(b) ⇐⇒ a = (σ(b1), σ(b2), ..., σ(bN))
T . (4.12)

The sigmoid function may be used in the hidden layers as well. However, the

calculation time of the exponential may make it an inefficient choice. Also, it is

subject to what is known as the vanishing gradient problem which may arise in the

calculation of the gradient when the number of layers is large [65]. Therefore, other

alternatives are often used in the hidden layers.

4.4.2 Rectified linear unit (ReLU)

The rectified linear unit (ReLU) function is defined by

ReLU(x) = max(0, x). (4.13)

The output is therefore zero for all negative input values and it returns the input

for positive input values, as shown in figure 4.4 b). Outputs from nodes using

ReLU are easy to optimize, as it is similar to the linear units, and solves some

issues that arise from negative values. One of the main reasons it is used is that it

solves the vanishing gradient problem. A drawback is that the network cannot learn
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from gradient-based network on data points where the activation function is zero,

as there will be no information flowing through the network. This does not mean

that features can not be negative, as they are first multiplied by the weights. For

multi-component output, an element-wise version of ReLU is used, similar to the

element-wise sigmoid, defined in equation 4.12.

(a) (b)

Figure 4.4: Plots showing the general shapes of the a) sigmoid and b) ReLU activa-
tion functions. Figure taken from [67].

4.5 Backpropagation

In most optimization methods, it is necessary to calculate the gradient of the cost

function with respect to the weights and the biases that were introduced in section

4.2. This may be done through a process known as back-propagation. The name

comes from the fact that information in this case flows from the end of the network

to the beginning.

We start by defining some quantities. The weights at each node are referred

to as wl
jk, which is the weight for the connection between the kth neuron in layer

(l− 1) and the jth neuron in layer l. For the biases and activation functions, we use

a similar approach, where bjl and ajl are the bias and activation function of the jth

neuron in layer l. The activation function ajl may then be written as

ajl = σ
(∑

k

wl
jka

k
l−1 + bjl

)
(4.14)

which may be used in order to find the quantity

zl = wlal−1 + bl (4.15)
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which is called the weighted input to the neurons of layer l. As backpropagation

measures how changing the weights and biases affect the cost function J (defined in

equation 4.4), we define the error of neuron j in layer l as δlj ≡ ∂J
∂zlj

. The components

of the error of the output layer L are then

δLj =
∂J

∂aLj
σ′(zLj ) (4.16)

where ∂J
∂aLj

measures how fast the cost is changing as a function of the jth activa-

tion output. σ′(zLj ) measures how fast the activation function changes at zLj . The

expression may be rewritten in matrix form as

δL = ∇aJ ⊙ σ′(zL) (4.17)

where ∇aJ is the gradient with components ∂J
∂aLj

and ⊙ is the Hadamard product,

which is the element-wise product of two matrices. If s and t are vectors, the

components of their Hadamard product are then (s⊙t)j = sjtj. It may be shown [66]

that once δl+1 is known, one may find δl by

δl = ((wl+1)T δl+1)⊙ σ′(zl). (4.18)

We will omit the proof of this expression, but it may be found in reference

[66]. One may think of this expression as moving the error δl+1 one layer backward

through the network. As we have an expression for δL, the error for any layer in the

network may be calculated. The rate of change of the cost in relation to the biases

is given by

∂J

∂blj
= δlj. (4.19)

The rate of change of the cost with respect to the weights follows from the chain

rule, and is given by

∂J

∂wl
jk

= al−1
k δlj. (4.20)

These equations are then combined in the following way in order to calculate

the gradient: We have an input x that flows forward through the network using

zl = wlal−1 + bl and al = σ(zl) for l = 2, 3, ...L. Then, the output error δL may be

computed by using equation 4.17. The backpropagation step consists of calculating

δl for l = L− 1, L− 2, ..., 2 using equation 4.18. The gradient of the cost function is
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then given by equation 4.20 and equation 4.19. In the next section, we will show how

backpropagation is used in order to optimize the weights and biases of the neural

network.

4.6 Optimization algorithms

The optimization algorithm is the method used in order to update the weights, thus

giving the neural network as high predictive power as possible. It should not be

confused with optimization of hyperparameters, network architecture etc. There

are many different possibilities, although they often are variations of each other.

We will now introduce some of the most common optimization algorithms.

4.6.1 Stochastic gradient descent

Stochastic gradient descent (SGD) [65] (and its variations) is likely the most used

optimization algorithm for neural networks. The goal of the method is to optimize

the weights in order to minimize the cost function. SGD uses a hyperparameter (a

static parameter chosen before training the network) known as the learning rate ϵ.

This affects how fast the network will learn, which means it determines how much

the weights will be changed in each step. Each step t is called an epoch. There are

drawbacks of having a too large or too small learning rate. A too large learning

rate may prevent the network from converging, while a too small learning rate may

prevent the network from learning efficiently. Therefore one usually needs to test

different values manually to find the one that gives the best result.

The first step of the algorithm is to initialize the parameter θt (at t = 0),

representing the weights at step t. A batch of m data samples {x(1),x(2), ...,x(m)}
with targets y(i) are then sent through the network, producing outputs ŷ(i). The

gradient

ĝ =
1

m
∇θ

(∑
i

L(ŷ(i),y(i))
)

(4.21)

is calculated using backpropagation. The the next step is to update the weights

to

θt+1 = θt − ϵĝ, (4.22)

where ĝ is the gradient calculated in equation 4.21. These steps are repeated
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until the network has finished training, either because it converges or because a

specific number of training epochs is reached.

4.6.2 Adam

The Adam optimizer is an extension of SGD and was introduced in 2014 [68]. Its

name is not an acronym, but derives from the phrase ”adaptive moments”. One of

the possible advantages of this algorithm is its adaptive learning rate, which makes

manual tuning of the global learning rate less important. Adam combines methods

from other optimization algorithms called Momentum and RMSprop and is supposed

to make use of the best features from these without inheriting their problems [68].

We will not go into the reasons for all the steps in the algorithm, but rather state

how it is implemented.

Adam uses what is known as first and second moment variables s and r which

are used when updating the weights. These have initial values of zero. As in SGD,

we have a parameter θt which represents the weights, as well as a learning rate ϵ.

In addition, we have hyperparameters ρ1 and ρ2 which are decay rates for the first

and second moments (s and r), which need to be in the range of [0, 1⟩. A small

constant δ is also needed. This is used for numerical stabilization and is usually

in the order of ∼ 10−8. The algorithm begins in the same way as SGD where we

sample a batch of m data samples with targets y(i) that produce outputs ŷ(i). The

gradient ĝ is then calculated using backpropagation as in equation 4.21. Then the

first and second moment estimates s and r are updated by

st+1 = ρ1st + (1− ρ1)g

rt+1 = ρ2rt + (1− ρ2)g⊙ g
(4.23)

these are then corrected with biases, so that

ŝt+1 =
s

1− ρt1

r̂t+1 =
r

1− ρt2

(4.24)

where ρt1and ρ
t
2 denote ρ1 and ρ2 to the power of t. The update is then computed

by

∆θ = −ϵ ŝ

r̂+ δ
(4.25)
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and the weights are updated to

θt+1 = θt +∆θt (4.26)

4.7 Regularization

As described in section 4.1.3, a common problem in ML is overfitting. This usually

leads to a model that performs poorly when tested with new data, even though

the main characteristics of the data are the same as in the training set. There are

different strategies in ML that aim to reduce the amount of overfitting. These are

called regularization methods, and may be defined as any modification made to the

network in order to reduce the generalization error, defined in section 4.1.3. Ideally,

these will do this without increasing the training error. However, in many cases it is

a good idea to use regularization to reduce the generalization error even if it leads

to a higher training error, as its real-world utility lies in its predictive power on

new data. In the broader definition of regularization, it could mean implementing

early stopping to avoid overfitting. However, specific methods for regularization

that are built into the network have also been developed. These are usually based

on regularizing estimators and often have the characteristic of trading increased bias

for reduced variance, which is defined as

σ2 =
N∑
i=1

(xi − x̄)2

N − 1
, (4.27)

where xi are the data samples, x̄ is the mean of the samples and N is the number

of samples. We will now introduce one of the most common methods known as L2

parameter regularization. This method aims to make the weights stay close to the

origin by adding a regularization term Ω(θ) = ∥w∥22 to the loss function, where

∥w∥22 = w2
1 + w2

2 + ... + w2
n is the square of the euclidean norm ∥w∥2. This means

that weights with a large magnitude will lead to a significantly larger regularization

term than those with a small magnitude. The term functions as a penalty, causing

a larger perceived loss when the weights are far from the origin. In order to control

how much the regularization influences the network, it is multiplied by a constant

λ so that the regularized loss LL2 becomes

LL2 = L+ λΩ(θ) (4.28)

Now that the main theoretical aspects of neural networks have been described,
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we will in the following section introduce a concept that is important to the inter-

pretation of the output, called feature importance.

4.8 Feature importance

When features are chosen for the neural network, one often have an idea of which

ones are likely to be most important for the predictions. However, when training

the neural network, it does not automatically provide information about which con-

nections it finds between each feature and the output, or between different variables

in combination. Although it in principle would be possible to analyze the weights

in the network, it is usually too many to discover useful information. However, it is

still desirable to obtain some information about which features the network uses the

most in order to predict the output, both because it may find new connections we

were not aware of before, and also in order to check whether it has found spurious

connections in some features that are not likely to have a significant connection to

the target variable. Therefore, a way to find the feature importance of the different

features is necessary. However, for neural networks it is not straightforward how this

should be done, and the methods usually only provide partial information. How-

ever, they may tell you something about which ones have a large impact and if some

features have no impact at all. The interpretation of feature importance that will

be used in the ML analysis will be described in section 7.5.

The method that will be used in the analysis is called permutation feature im-

portance. We start with a trained ML model f̂ and a test set x, as well as a cost

function J(y, ŷ) where ŷ is the output predicted by the model and y is the target.

The test set is tested on the model which produces an original cost Jorig. In order

to find the importance of a feature, we generate a new test set xperm where the

entries in one of the columns of x are permuted, resulting in the information from

that feature (column) becoming noise. The model is then tested using xperm, which

produces a new cost Jperm. If the feature is important for predictions in the model,

it is likely that Jperm > Jorig and if it is not important one expects Jperm ≈ Jorig.

The procedure is repeated for each feature. The permutation feature importance

for feature j may therefore be defined as

FIj = Jperm − Jorig (4.29)

In some cases the feature importance may be negative, meaning that the cost
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is lower when the feature is permuted. This may be a sign of overfitting for that

feature as it implies that the model has found connections between the feature and

the target that do not exist in the test set.

In this chapter, the theory of neural networks has been described, as well as

how it may be used in order to separate signal and background events, using binary

classification. We will now move on to discuss the data preparation for the analyses.
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5 Data preparation†

In this chapter, we will explain the preparatory steps for the main analysis, which

includes generating Monte-Carlo samples, event selection, plotting the signal distri-

butions and comparison of Monte-Carlo samples and real data. In section 5.9, we

will introduce the statistical tools that will later be used for performing the analysis

in chapter 6 and 7. We will also make the choice of which features to use in the ML

analysis.

5.1 Monte-Carlo simulations

5.1.1 Event generators

Monte-Carlo (MC) simulations are used in order to avoid performing complex cal-

culations for every process. These are necessary for comparing the theory with real

data. Different algorithms are combined into MC event generators. These usually

take the model parameters as input and generate output of four-vectors of the mo-

menta of final state particles. There are specialized theoretical groups that have

written MC event generators, which are usually the ones used in analysis. MC

simulations for both the signal and background processes that are needed for this

analysis have already been generated by the ATLAS collaboration, and these will be

used. We will now give a brief description of some of the most common MC event

generators.

SHERPA [69] is a general-purpose event generator for particle collisions. It may

be used to simulate all the SM processes that happen in hadron colliders, as well

as many beyond SM processes. It has two built-in matrix element generators. It

also has a parton shower model and a cluster hadronisation model. PYTHIA [70]

is another general-purpose event generator. It is often used for generating events

with several collisions, also known as pile-up events. MadGraph [71] is a matrix

element generator, generating the Feynman diagram and calculating the matrix el-

ement for a process specified by the user. It must be combined with a different

generator such as PYTHIA for simulation of the parton shower and hadronization.

MC@NLO [72] computes partonic hard subprocesses by including the full next-to-

leading-order (NLO) QCD corrections. MadGraph5 aMC@NLO [73] is a combina-

†Adapted from [1]
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tion of MadGraph and MC@NLO. Another generator is the POWHEG-BOX [74],

which uses a method called POWHEG [75] in order to perform NLO calculations.

5.1.2 Signal

The Monte-Carlo simulations for the signals use the parameters and framework

outlined in section 3.2. The couplings to quarks and leptons are assumed to be

the same, independent of generation. The LHC Dark Matter Working Group have

provided recommendations for the coupling constants in vector models with small

couplings to leptons, which apply to the models that are searched for here. These

recommendations are followed in the simulations, which are couplings of gD = 1,

gq = 0.1 and gl = 0.01 [76]. As the coupling to leptons is small, the cross sections

multiplied by the branching ratio of the signal processes is also low. As the masses

of the dark Higgs and the dark sector fermions have been fixed to the values in

table 3.1, the last free parameter is the mass of the Z ′ boson. The processes are

simulated separately for electron and muon final states and range from 130 GeV to

1500 GeV. The two lowest simulated masses are 130 GeV and 200 GeV and then

100 GeV steps are made between each simulation up to 1500 GeV. The signal events

are simulated with MadGraph using the NNPDF3.0LO [77] PDF set combined with

PYTHIA 8 [70] for hadronization and the parton shower.

5.1.3 Background

As the signal processes produce two leptons and missing transverse energy (Emiss
T ),

all the background contributions included in section 3.3 must be simulated. The

neutral current Drell-Yan/Z+jets process background are simulated with SHERPA

2.2.1 using the NNPDF3.0NNLO PDF set [77]. Backgrounds from top-antitop pro-

duction (tt̄) and single top quarks are generated with POWHEG-BOX, combined

with PYTHIA 8 for the parton shower and hadronization, using the NNPDF3.0NLO

PDF set [77]. Diboson production is simulated with SHERPA 2.2.1 for semi-

leptonic final states and with SHERPA 2.2.2 for fully leptonic final states, using the

NNPDF3.0NNLO PDF set. The W+jets background is simulated with SHERPA

2.2.1, using the NNPDF3.0NNLO PDF set. The generators used for each type of

background are listed in table 5.1.
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Process Generator PS + hadronization Cross section
Drell-Yan SHERPA 2.2.1 SHERPA 2.2.1 NNLO
Z+jets SHERPA 2.2.1 SHERPA 2.2.1 NNLO
tt̄ POWHEG-BOX v2 PYTHIA 8 NLO

Single top POWHEG-BOX v2 PYTHIA 8 NLO
Diboson (semi-leptonic) SHERPA 2.2.1 SHERPA 2.2.1 NNLO

Diboson (leptonic) SHERPA 2.2.2 SHERPA 2.2.2 NNLO
W+jets SHERPA 2.2.1 SHERPA 2.2.1 NNLO

Table 5.1: Event generators used for the different background types.

5.2 ROOT and data files

The data from the detector, as well as the MC simulated samples are reconstructed

and made available as nTuples, put together by the ATLAS analysis groups in .root

files. ROOT [78] is a c++ based object-oriented data analysis framework developed

at CERN. The nTuples include the final state particles of the accepted events, as

well as relevant variables from each accepted event. The nTuples in ROOT contains

TTrees, and behave like an array of a data structure on storage. The trees may

be divided into branches. A branch consists of values of any type that is known to

ROOT’s type system, such as vectors, floats and booleans. One may choose which

branches to read when reading a tree. In a tree, each entry represents an event,

while the branches represent variables. ROOT provides ways to read the data in

the trees, as well as other functions specifically suited for physics analysis, such

as built-in functions to calculate invariant mass once the (E, pT , η, ϕ) vectors of an

event are known. In addition, it provides the possibility of filling histograms with

events and various ways of plotting them.

The data used in our case consists of both data from the detector, the MC

background simulations, as well as MC simulations of the new physics signals. These

come in separate files and are read individually. The data from the detector is

separated into files for each year from 2015 to 2018. Each of these are divided into

files of ”minitrees” corresponding to different periods throughout each year, which

must be read separately, but are combined afterwards. The MC samples are also,

both for the signal and background, divided into sub-campaigns, although the 2015

and 2016 samples have been combined. These are divided into files corresponding

to each type of process, which are then divided into a group of minitrees, which are

the files that are read.
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5.3 Event selection

The data files include many different types of events corresponding to all possible

final states, most of which are not relevant for the analysis that is performed, and

acts as extra background. In order to select the relevant events and organize them

for further use, the event selection algorithm is used.

First, one needs to decide which trees are to be read. To link them together, a

TChain (which is a ROOT object), can be created, which the trees are added to.

This creates a chain of trees, which may be read as a single tree. Separate chains

are usually created for the data from the detector and the MC samples. Also, it is

possible to create separate chains for each year and each process in the MC samples,

which is done in our case. Then, the variables one wants to read must be defined

and linked to the corresponding branches of the tree. This may be done by using the

TTreeReader function in ROOT, which is done in our analysis, or by using SetBran-

chAddress. Then histograms may be defined for every variable of interest, with the

number of events on the y-axis, and separate histograms are defined for the electron

and muon channels. Instead of doing this using ROOT, we will first fill new trees

with the selected events which is a necessary preparation for the ML analysis. The

histograms are later filled from these trees using Matplotlib [79]. As the final state

of interest is that of two leptons the same flavor and opposite charge, we create a

TLorentzVector, which is the ROOT version of a 4-vector, for each of them, as well

as a dilepton vector for their sum.

The first step in the event selection is creating a loop over every event, with some

data quality cuts to ensure the events are of high quality. The first main selection

in our study is done in order to ensure that there are exactly two leptons of the

same flavor (ee or µµ). As these are features in the data, one skips the loop if the

criteria are not met, and if it is met, the lepton’s characteristics are added to each

of the 4-vectors and kept in the new tree. The components added to the 4-vectors

are (E, pT .η, ϕ), as defined in section 2.3.2. When these are added together, vari-

ables such as the invariant mass may be calculated. Then it is possible to make

cuts on other variables, such as mll, pT and Emiss
T , which decide which events are to

be kept in the analysis. The cuts used in our analysis will be described in section 6.1.

The real data may be added to the histograms after using the new trees to fill
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them. However, the MC events need to be scaled before this is done. The MC sample

files include a larger amount of events than the number of real events. This is done

in order to make the results more realistic and reduce the statistical uncertainty

by simulating more events in regions where few events are expected. Therefore, all

events in the MC samples are associated with different kinds of weights. There are

three different sets of weights. First, theoretical weights from the LO and NLO

QCD/EW correction, generator weights etc. Then there are weights for scaling

each event to its theoretical cross-section. In addition, we need weights (usually

distributed around 1) to account for minor discrepancies observed in the acceptance

and efficiencies of the various objects between data and simulations. We also have

pile-up weights to correct the pile-up distribution in the simulations to be equal to

the one in data, since the simulations were made before the data was taken and

one had to guess on the pile-up distribution. Finally the events must be multiplied

by the integrated luminosity for each period and divided by the sum of the weights

corresponding to the type of process the events belongs to.

5.3.1 Preselection

Before analyzing the data sets, they must be cleaned as much as possible in order

to get rid of unnecessary background, as discussed above. This is done by using

the event selection algorithm before the main analysis begins. In the cut and count

method one could also include these in the main cuts as the result would be the

same. However, we do not have the ability to implement cuts directly in the neural

networks. We also make cuts on small values of mll > 70 GeV in order to filter out

regions where the agreement between the real data and MC simulations is not as

good. On the final state leptons, we make cuts of pT > 30 GeV, as well as |η| < 2.5.

In addition, we make a cut on the momentum of jets of pT,jets > 20 GeV. The

precuts are shown in table 5.2.

5.4 Preparing data for ML environment

Once the event selection algorithm has selected the events of interest, they may be

analyzed by ML methods. Although there exist some ML tools in ROOT, we are

using PyTorch [80] in this thesis.

PyTorch is a machine learning library that is based on the Torch library which

was originally developed by Meta AI [80]. It contains features for tensor computing
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Variables Precuts

Number of leptons 2
Flavour Same flavour
Charge Opposite charge
mll > 70 GeV

pT (leptons) > 30 GeV
pT (jets) > 20 GeV

|η| (leptons) < 2.5

Table 5.2: Precuts used in the first event selection.

as well as for deep neural networks. It specifically contains features for automatic

back-propagation, defined in section 4.5, as well as different standard optimization

algorithms. This makes creating neural networks more efficient, as many of these

features would be time-consuming to program and are similar in every neural net-

work. PyTorch stores arrays of numbers in tensors, which are similar to NumPy [81]

arrays in their structure.

It is not straightforward to convert a ROOT tree to a PyTorch tensor, as trees

have different structure. Also, the trees contain a larger number of variables than

those that are needed for the ML analysis. However, libraries have been developed

that are specifically designed to convert trees to NumPy arrays with the possibility

of selecting the necessary features. The NumPy arrays may then be converted to

PyTorch tensors easily as their structures are similar.

5.5 Choice of features

Although one would prefer to put all the data into a neural network and let it at-

tempt to find connections, this not the most efficient strategy and may also produce

spurious results. For example, as the processes that are searched for produce ex-

actly two leptons, it is not necessary to train the network on events with different

final states, as these will act as noise. Also, it is not necessary to train on every

feature, as many of the available features likely have no predictive power in relation

to whether an event is a signal or background event. Although the neural network

ideally ignores these features after training, the risk of it finding spurious results in

these features is there. Every feature added also increases the time and computing

power needed to train the network. In addition, for some variables the simulations

do not resemble the real data as well as for other variables. This may lead the
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neural network to perform well when tested on the simulated samples as well as the

background data, but lack the ability to find the signal events in data if they exist.

Because of this, carefulness is necessary when choosing the features. Only the fea-

tures where the simulations resemble the real data should be chosen. Additionally,

in order to find features with high predictive power, one may compare the signal

distribution to background in order to find features with large discrepancies between

the two.

Because of the reasons stated above, we choose to consider a limited number

of features compared to the number of possibilities for the ML analysis. Some of

these are known as low-level features, which are features that are measured directly

or are not a combination of other features. High-level features are features that are

found by combining other features, such as mll. The features include some that are

expected to be important from fundamental reasons, which are mll, E
miss
T , Emiss,sig

T

and pT . The invariant mass are important because they contain information about

the mass of the Z ′. The same applies to pT , as a higher Z ′ mass in general results

in a higher energies for the final state particles. Emiss
T and Emiss,sig

T are important

because the signal processes produce dark matter particles which are expected to

result in an elevated amount of missing transverse energy. We will also use flavor

and the charge of the first and second particle, as there may be differences in the

electron and muon channel. The number of b-tagged jets is useful for filtering out

top background, while mT may be used in order to filter out W background. In

addition, we will consider some other features where the neural network may find

useful information. These are η, ∆ϕ(l1, l2), ∆ϕ(l, E
miss
T ) and HT . We will keep these

features even if their distributions do not show signs of usefulness, as ML methods

analyze each event separately and may find connections that are not visible in the

distributions as a whole. Because we have chosen a small number of such features,

they are not as likely to cause overfitting. However, it is still necessary that the MC

samples and data are in agreement for all features.

5.6 Signal model distributions

In order to get an idea of the main characteristics of the different signal models, we

plot their distributions after making the preparatory cuts discussed in section 5.3.1.

The results influence which features which will be useful for the ML analysis, as

features with a similar shape to the background distribution usually are less useful.
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They also influence the choice of cuts in the cut and count analysis. Although we

will be using signal samples for many different values of Z ′ mass in the ML analysis,

we will here only show some of them in order to have a general idea of their charac-

teristics at different mass levels. The signal MC samples in each model are plotted

separately for the electron and muon channel for mll and E
miss,sig
T after making pre-

cuts, as shown in figure 5.1-5.4. Plots for other variables are shown in appendix A.

For mll in both models, a peak is observed at the Z ′ mass of the signal, followed

by a sharp decrease at higher values of mll. However, in both models we observe a

longer tail in values lower than the Z ′ mass. In the light vector model, the decrease

is sharper before making a tail, while in the dark Higgs model for the light dark

sector (LDS), there is a second peak before it decreases steadily. Because of this,

the mass resonance is less distinct in this case than in the heavy sector and in the

light vector models. For Emiss
T , the signals peak in different areas, providing the

possibility of distinguishing between them if observed in the data, as well as the

possibility of optimizing the cuts for a specific scenario. The peaks are more blunt

in the muon channel than in the electron channel for mll, due to the electrons having

higher resolution. This strengthens the reason to use flavor as a feature in the ML

analysis. It should also be noted that the behaviour seen in the mll distribution is

a characteristic of the models that are studied, as the Z ′ in figure 5.1-5.4 can also

be virtual.
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(a) (b)

(c) (d)

Figure 5.1: Electron (left) and muon (right) channel MC signal distributions of mll

and Emiss
T in the dark Higgs LDS with precuts.
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(a) (b)

(c) (d)

Figure 5.2: Electron (left) and muon (right) channel MC signal distributions of mll

and Emiss
T in the dark Higgs HDS with precuts.
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(a) (b)

(c) (d)

Figure 5.3: Electron (left) and muon (right) channel MC signal distributions of mll

and Emiss
T in the light vector LDS with precuts.
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(a) (b)

(c) (d)

Figure 5.4: Electron (left) and muon (right) channel MC signal distributions of mll

and Emiss
T in the light vector HDS with precuts.
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5.7 Comparison of data and MC

It is common to plot the background divided into the various processes and stacked

on top of each other to represent the complete expected background from the SM.

The real data and the signals are plotted individually. For the MC background, all

histograms corresponding to a type of background are added together. These are

divided into Drell-Yan (including Z+jets), single top, top quark pairs (tt̄), diboson

and W+jets. The sum of the SM backgrounds can be compared to data.

In order to determine whether there is any discrepancy between the data and

the simulated background, and how large it is, we also plot the data divided by the

MC background. This is ideally as close to 1.0 as possible, but some discrepancy is

expected, especially in regions with few events or in areas where the agreement is

known not to be perfect. Usually, adding systematic uncertainties cover for these

effects. There may also be larger discrepancies in variables that are not well under-

stood, which should be kept in mind when training machine learning models on the

SM.

Plots of MC background alongside real data after precuts in the electron channel

for the variables that are considered for the ML analysis are shown in figure 5.5,

5.6 and 5.7. Corresponding plots for the muon channel are shown in appendix B.

These are plotted alongside the simulated contributions from the dark Higgs LDS

simulations for reference. The ratio of the data to the total MC background is plot-

ted below the histograms, where the grey bands show the sum of the statistical and

assumed systematic uncertainties of 20%.

The MC samples are in reasonable agreement with the real data, suggesting that

the data have been handled correctly and that the MC simulations has captured the

main characteristics of the variables that are considered. Some large discrepancies

are observed, but these occur in regions with few events, in some cases one event,

which increases the uncertainty and statistical errors of the data points. There is

also a relatively large discrepancy at small values (< 0.5) of ∆ϕl,l, which should be

kept in mind if using it specifically. Also, as almost all regions are included, there is

a large amount of background compared to the simulated signal. The background

peaks between 107 and 108 events per bin for mll, with large regions containing more

than 103 events per bin. The highest peak of the signal models shown is between
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10 and 102 events per bin. Because of this, it should not be possible to be sensitive

to the signals predicted by the models considered without a significant reduction of

the SM background. Cuts on some of the variables defined earlier or a reduction of

background from ML classification are therefore necessary for improving the sensi-

tivity.
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(a) (b)

(c) (d)

Figure 5.5: Electron channel distributions for a) mll, b) pT1, c) pT2 and d) Emiss
T

with precuts. Data is shown along with MC background and MC signals in the dark
Higgs model (LDS).
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(a) (b)

(c) (d)

Figure 5.6: Electron channel distributions for a) Emiss,sig
T , b) number of b-tagged jets,

c) ∆ϕEmiss
T ,ll and d) ∆ϕl,l with precuts. Data is shown along with MC background

and MC signals in the dark Higgs model (LDS).
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(a) (b)

(c)

Figure 5.7: Electron channel distributions for a) η, b) mT c) HT with precuts. Data
is shown along with MC background and MC signals in the dark Higgs model (LDS).

5.8 Systematic uncertainties

There are statistical uncertainties in both the MC data and the real data due to

the limited number of collisions occurring and the fact that the resulting final states

in each case are subject to a high degree of randomness. In regions with a large

number of events, the statistical uncertainties will be small, and large in areas with

few events occurring. However, there are also sources of systematic uncertainties
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both in the theory and MC simulations. Estimating these to a high precision is

beyond the scope of this thesis, and a constant value of systematic uncertainty of

20% will be assumed instead. Anyhow, we will here present some of the systematic

uncertainties which are believed to dominate in this analysis.

5.8.1 Theoretical uncertainties

There are uncertainties in the MC simulations of the background due to the choice

of the parton distribution function (PDF) of the colliding protons, in addition to

the choice of parameters with theoretical uncertainties. These include parameters

such as the coupling constants and the cross sections for different processes. The

cross-sections are affected by which order is used in perturbation theory as well as

the renormalization and factorisation scales used. In addition, there are uncertain-

ties due to the choice of event generator, as there will be some discrepancy in the

results depending on which one is used.

5.8.2 Experimental uncertainties

The experimental uncertainties arise due to possible imperfections in the resolution

of different parts of the apparatus and in the handling of data. These come from

a variety of different sources. Some of these are the integrated luminosity, pile-up

re-weighting and trigger-related uncertainties. There are also uncertainties in the

reconstruction, isolation and identification efficiency of different particles.
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5.9 Statistical analysis method

The goal of the analysis is to find out whether we may expect to be able to detect

the signal in the signal region if it exists or to exclude it if it is not there. The

goal is also to see whether the cut and count or ML method leads to the highest

sensitivity. For the first part, we need a method in order to know whether a model

may be expected to be confirmed or excluded when analysing real data, in this case

for different values of mZ′ . The sensitivity in particle physics is usually measured

using significance or p-values for the signal regions.

When searching for a signal, two different hypotheses are tested. These are

known as the background only (b) hypothesis and the background+signal (s+ b) hy-

pothesis. The b hypothesis acts as a null hypothesis and corresponds to the SM as it

is currently understood, with no additional signal. The s+b hypothesis corresponds

to the SM with the additional signal that is searched for. In this case, a larger num-

ber of events are expected in the signal region compared to the number predicted

by the SM. However, there may be an excess of events in the signal region even if

the b hypothesis is correct due to randomness and systematic uncertainties. The

extra number of events must therefore be large enough in order to be reasonably

sure that it did not happen by chance. It is therefore common to use p-values to

determine how likely it is that a number of events of a certain magnitude or larger

is observed, given that the b hypothesis is true. In particle physics, the probability

of observing n events if the predicted number of events is ν is given by the Poisson

distribution [82]

P (n|ν) = ν

n!
e−ν (5.1)

As the p-value is the probability of measuring the observed number of events

nobs or higher the p-value is given by

p = P (n > nobs|ν) =
∞∑

n=nobs

ν

n!
e−ν

(5.2)

In particle physics, the p-value is usually converted into a significance Z. Z may

be found from the p-value by [83]

Z = Φ−1(1− p) (5.3)
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where Φ−1 is the inverse of the cumulative distribution of the standard Gaussian.

Z corresponds to the number of standard deviations, σ, that a Gaussian variable

is observed from its mean, which has an upper-tail probability p. The norm for

claiming a new discovery is an observed significance of 5σ, corresponding to a p-

value of ∼ 3 · 10−7, meaning that the chance of the observation occurring given the

b hypothesis is approximately 1 in 3.5 million. In our case we will not use the real

data to measure the significance, but instead use the MC simulations. In this case,

the median number of extra events produced by the simulations lead to an expected

significance under the s+ b hypothesis.

The goal of a search is often not only to attempt to make a discovery, but to

exclude the theory fully or in specific regions. In this case, the p-values are used

as confidence levels. This measures the probability, given the s+ b hypothesis, that

the number of observed events is equal to or less than the number observed. The

confidence level for the s+ b hypothesis is

CLs+b = P (n < nobs|s+ b) =

nobs∑
n=0

(s+ b)n

n!
e−(s+b) (5.4)

where s is the number of signal events and b is the number of background events.

This may be converted to an expected significance ZN by

ZN = Φ−1(1− CLs+b) (5.5)

It is common to exclude the signal model if CLs+b ≤ 0.05, and the probability

to falsely exclude an existing signal(+background) is then 5%, corresponding to a

significance ZN ≤ 1.64σ. However, if the signal model produces a very small amount

of events, it may not be possible to exclude the model, and using the CLs+b method

may be inappropriate, as the b and s+ b hypotheses are almost identical. Then one

may use the CLs method [84] instead.

5.9.1 Calculating significance in a counting experiment

In a particle physics context, it is desirable to obtain a formula for the expected

significance, given a number of expected signal events and background events, pos-

sibly including the uncertainty σb. A Poisson distribution with mean s + b may

be approximated by a Gaussian variable with mean s + b and standard deviation
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√
s+ b, where s and b here represent the number of signal and background events,

respectively. Using the likelihood function for a Poisson counting experiment, it is

possible to obtain the so-called Asimov approximation formula [85]

ZA =

√
2
(
(s+ b) ln

(
1 +

s

b

)
− s
)

(5.6)

Expanding the logarithm in s/b, one finds

ZA =
s√
b
(1 +O(s/b)) (5.7)

The first formula is more precise and is recommended, but the s√
b
approximation

gives good results when s ≪ b. In the analyses in chapter 6 and 7, we will use

equation 5.6 to calculate the expected significance. It is also possible to generalize

equation 5.6 to include the background uncertainty σb. The formula then becomes

ZA =

[
2

(
(s+ b) ln

[
(s+ b)(b+ σ2

b )

b2 + (s+ b)σ2
b

]
− b2

σ2
b

ln

[
1 +

σ2
bs

b(b+ σ2
b ))

])]1/2
. (5.8)

In this chapter, we explained the different data preparation stages. These in-

cluded Monte-Carlo simulations of the signal and background events, event selection,

as well as verifying that there is agreement between the simulated and real data. We

also discussed the systematic uncertainties, and introduced the statistical methods

that will be used in the analyses in chapter 6 and 7. We are now ready for the main

analyses, and we will start with the cut and count analysis.
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6 Cut and count analysis

As the MC samples and the real data are in good agreement (except for some dis-

crepancies commented on in section 5.7), as shown in section 5.7, the MC samples

may be used for modelling the background in the analysis. A cut and count analysis

is performed in order to later compare its sensitivity with the ML analysis. It should

be noted that it may be possible to further improve the sensitivity using more so-

phisticated methods, such as significance scans for the cuts on each variable, as well

as making a larger amount of signal regions with cuts specifically chosen for each

variable. However, such improvements are likely marginal and unlikely to affect the

main results. Also, in the ML analysis the networks are not trained specifically for

each Z ′ mass, which makes the analysis method similar.

In this chapter we will begin by explaining the considerations made when choos-

ing the cuts. Signal regions are then constructed by applying the cuts that are

chosen. The effectiveness of the cuts are discussed and the expected significances

are measured in order to find out whether it may be possible to discover or exclude

the signals with real data using the signal region that is constructed.

6.1 Cuts

The cuts are made with the intent of removing as many background events as pos-

sible while keeping as many signal events as possible. Considering the distributions

shown in the previous sections, there are several kinematic variables with large dif-

ferences between the signal and background distributions. These are mll, E
miss
T ,

Emiss,sig
T , pT1, pT2 and to some extent ∆ϕEmiss

T
, ∆ϕl,l and the number of b-jets. For

η, the signal and background distributions are similar. It is also necessary to keep in

mind that some of the variables are correlated, meaning that if cuts are made on both

of them, it is likely that a large amount of the same events are removed in both cuts.

A cut is made on mll, as the distributions in the signal regions are relatively

narrow around the Z ′ mass, allowing the possibility of searching for resonances. We

want a cut that includes most of the Z ′ masses in the signal models while removing

a large amount of the background. We also want to filter out the Z mass, as it is

a source of irreducible background. Therefore, a cut that also filters out the model

with Z ′ mass of 130 GeV is necessary in order to be reasonably far away from the
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Variable Cut

mll > 180 GeV

Emiss,sig
T > 8

Number of b-jets 0

Table 6.1: Cuts used in the cut and count analysis. In combination with the precuts,
these define the signal region.

Z peak. In order to keep the rest of the signals, a cut of mll > 180 GeV is made.

This cut filters out the mll peak of the background.

In addition, we want to make use of Emiss
T , as an elevated amount of missing

transverse energy is expected from the production of dark matter. However, it is

also possible to use Emiss,sig
T . This is expected to be a more effective variable to cut

on, as a larger decrease in the signal models are observed in the distributions when

approaching zero, while the background peaks when approaching zero, as shown

in figure 5.6 and B.2. Most of the signal models peak between Emiss,sig
T = 8 and

Emiss,sig
T = 12, and a large amount is found from Emiss,sig

T = 5 and above. However,

a cut at 5 will not filter out the same amount of background. Therefore, a cut of

Emiss,sig
T > 8 is made. Another possibility would be to split this variable into several

signal regions depending on where each signal is largest. However, as explained

earlier, we will only make one signal region in this case, which is expected to be

effective for most of the signals. In addition, a cut is made on the number of b-

tagged jets by setting it equal to zero. Although the distributions for the signals

and backgrounds are relatively similar for this variable, it is an effective way to filter

out the top background. The cuts are summarized in table 6.1.

6.2 Dark Higgs model

The results for the signal region in the LDS are shown for mll in figure 6.1 and

for Emiss,sig
T in figure 6.2. The corresponding plots for the HDS are shown in ap-

pendix D. There is a significant reduction in background events. The number of

background events before making cuts peaked at ∼ 108 events per bin for mll while

peaking below 104 events per bin in the signal region. There is also a reduction in

signal events, as some signal events will fall outside the signal region. However, the

signal reduction is significantly smaller than the background reduction in relation

to its original amount. The same is observed in the Emiss,sig
T plots. Therefore, the
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cuts have succeeded in improving the sensitivity of the expected signal. However,

as seen in the signal plots before the cuts, the amount of expected signal is very

small, where the highest peaks reach only a few events for the Run 2. This makes

it unlikely that it is possible to discover these models in the data at the current stage.

Almost all of the Drell-Yan/Z+jets backgrounds are removed, which is likely

mostly due to the Emiss,sig
T and mll cuts. The Z

′ resonances are still seen in the mll

distribution, which opens for the possibility of searching for such resonances in the

data at a later stage. However, the resonance would likely not be exactly the same

as any of the simulated signals as the mZ′ mass is a free parameter in the model.

Also, we observe that the mz′ = 130 GeV signal is almost completely filtered out

due to the mll cut. To search for this signal, a wider mll range in the signal region

is necessary.

(a) (b)

Figure 6.1: Dark Higgs LDS signal regions for mll in the a) ee and b) µµ channel.

The expected significances are listed in table 6.2 for the ee and µµ channels.

As expected, the significance for mZ′ = 130 GeV is the smallest, at the order of

10−5. The highest is achieved between mZ′ = 200 GeV and mZ′ = 700 GeV in a

range between 1.7 · 10−2 and 7.6 · 10−2, before gradually decreasing for increasing Z ′

masses. The expected significance is generally somewhat lower in the µµ channel

than in the ee channel, possibly partly due to the signal model having somewhat

sharper peaks in the ee channel for mll (due to higher resolution). As the expected

significances are very small, we do not expect to be sensitive enough to exclude the
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(a) (b)

Figure 6.2: Dark Higgs LDS signal regions for Emiss,sig
T in the a) ee and b) µµ

channel.

signal by analysing real data. This is mainly due to the low cross section of the

signals, which is a result of the choice of the coupling to leptons, gl. However, it

may be possible to obtain a more sensitive signal region. We will later compare the

expected significances with those found using the ML method to find out whether

it leads to a higher sensitivity.
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Dark Higgs LDS

ee channel µµ channel

mZ′ (GeV) Expected significance (Z)

130 1.9 · 10−5 3.3 · 10−5

200 5.3 · 10−2 4.7 · 10−2

300 4.2 · 10−2 3.6 · 10−2

400 3.1 · 10−2 2.5 · 10−2

500 3.2 · 10−2 2.6 · 10−2

600 2.2 · 10−2 1.7 · 10−2

700 7.6 · 10−2 5.4 · 10−2

800 1.2 · 10−2 8.6 · 10−3

900 8.9 · 10−3 6.0 · 10−3

1000 7.8 · 10−3 5.1 · 10−3

1100 4.8 · 10−3 3.1 · 10−3

1200 3.8 · 10−3 2.2 · 10−3

1300 2.8 · 10−3 1.6 · 10−3

1400 2.1 · 10−3 1.1 · 10−3

1500 1.7 · 10−4 7.9 · 10−4

Table 6.2: Expected significances for the dark Higgs LDS at different Z ′ masses in
the ee and µµ channel using the cut and count method.
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6.3 Light vector model

The results for the signal region in the light vector LDS are shown for mll in figure

6.3 and for Emiss,sig
T in figure 6.4. The corresponding plots for the HDS are shown in

appendix E. The reduction in background is the same as for the dark Higgs model

as the cuts are the same. However, the reduction of signal is different, depending on

how effective the cuts are for each signal. Most signal peaks are reduced by a factor

of ∼ 10, which is significantly less than the reduction in background, where peaks

are reduced by a factor of ∼ 104. This suggests that the cuts have been effective.

Similar patterns are observed for the expected significance as in the dark Higgs

model. The expected significance at mZ′ = 130 GeV is 0, as it is completely filtered

out by the mll cut. The highest expected significance occur at mZ′ = 200 GeV in

the ee channel at Z = 8.9 · 10−2, as shown in table 6.3. It then generally decreases

with increasing Z ′ mass until the lowest value of Z = 5.6 · 10−5 in the µµ channel

mZ′ = 1500 GeV. The expected significance is somewhat lower in the µµ channel

than in the ee channel for most of the signals. For most signals, the expected

significance is lower than in the dark Higgs model. This may be partly due to the

effectiveness of the cuts, but most is due to a lower number of total expected events

because pf the low cross section. Similarly to the result for the dark Higgs model, the

expected significances are not large enough to be sensitive to the signal by analysing

real data in this signal region.

(a) (b)

Figure 6.3: Light vector LDS signal regions for mll in the a) ee and b) µµ channel.
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(a) (b)

Figure 6.4: Light vector LDS signal regions for Emiss,sig
T in the a) ee and b) µµ

channel.

In this chapter we performed a standard cut and count analysis by making cuts

on specific variables in order to construct signal regions. The sensitivity to the signal

was measured by calculating the expected significances. We will now move on to

the machine learning based analysis, in order to compare its sensitivity to the cut

and count approach.
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Light vector LDS

mZ′ (GeV) Expected significance (Z)

ee channel µµ channel

130 0 0
200 8.9 · 10−2 8.1 · 10−2

300 2.4 · 10−2 7.9 · 10−2

400 1.9 · 10−2 2.0 · 10−2

500 5.2 · 10−3 3.9 · 10−3

600 5.9 · 10−3 3.9 · 10−3

700 4.2 · 10−4 2.8 · 10−4

800 2.1 · 10−3 1.4 · 10−3

900 1.4 · 10−3 8.4 · 10−4

1000 4.1 · 10−4 2.2 · 10−4

1100 6.2 · 10−4 3.3 · 10−4

1200 4.3 · 10−4 2.1 · 10−4

1300 3.2 · 10−4 1.4 · 10−4

1400 2.2 · 10−4 8.6 · 10−5

1500 1.6 · 10−4 5.6 · 10−5

Table 6.3: Expected significances for the light vector LDS at different Z ′ masses in
the ee and µµ channel using the cut and count method.
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7 Machine learning analysis

As was found in chapter 6, the cut and count approach was successful in removing

a significant amount of background and increasing the sensitivity to the signals.

However, it was far from sensitive enough to reach a level where the signal may be

discovered or excluded. In this chapter, we will use an ML-based approach to find

out whether it can be used to increase the sensitivity further. We will begin by

explaining some of the methodical aspects of the analysis in section 7.1-7.3. Then,

we explain the optimization process in section 7.4. The training and performance of

the neural networks are then discussed for the dark Higgs and light vector models,

before measuring the expected significances they achieve. The ML-based approach

is compared with the cut and count method in section 7.8. For theoretical parts of

this chapter, we use references [65,66].

7.1 Method

In order to be able to compare the ML results with the cut and count results, sepa-

rate analyses are performed for each Z ′ mass, and separately for the ee channel and

µµ channels. This is done separately for each model and for the light dark sector

(LDS) and heavy dark sector (HDS). However, some of these will be combined in

the training process. Each network is trained on one of the models (dark Higgs

or light vector) and either the LDS or HDS, while training on both the ee and µµ

channels as well as all Z ′ mass signals combined. As flavor is a feature used in the

training, the network may still distinguish electrons and muons. There are several

advantages to this approach. It increases the number of signal events the model can

be trained on, which may result in better performance, although the network will

have to learn a larger variety of models. Furthermore, for possible further use of the

neural networks on data, it is better if it recognizes a larger variety of signals, as it

is expected that any signal found in the data may deviate from the exact models

studied in this analysis.

We will define the signal region as the region where the classification score is

above 0.90. Although it is likely that the expected significance from the MC samples

will be higher if we choose a smaller region, for example above 0.99, one should keep

in mind that if the signal is observed in the physical data, there will be deviations in

the free parameters which may cause it to receive a lower classification score, that

would place it outside the signal region.
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7.2 Event weights

A common problem in ML classification problems is that the amount of available

data often is not equally distributed among the different classes, meaning that some

classes may contain a significantly larger number of events to train on than others.

If the network trains on such a data set without any modification, it will learn the

classes with more statistics better than the ones with less statistics. This is because

each data point has a similar effect on the loss, which means that the impact of a

class on the loss will depend on the number of samples for that class. If the statistics

is much smaller in one of the classes, the effect on the loss will become negligible

and the network will not learn from that class.

In our case, a data set containing a significantly larger amount of background

events than signal events is used, with a ratio of ∼ 1000/1. In this case, the network

will learn to recognize background events better than signal events, or may not learn

to recognize signal events at all. Therefore the effect of background events on the

loss must be scaled down in order for both types to have the same impact during

the training. Each event is therefore associated with a weight, which is a constant

that the loss contribution from the event is multiplied with.

The contribution to the event weights that compensates for the data imbalance

is called the class weight. The class weight is given by

classweight = 1− nclass

ntotal

, (7.1)

where nclass is the number of samples in the given class, and ntotal is the total

number of samples. Even though this solves the imbalance problem, it is still neces-

sary that the data set for the signal events is sufficiently large in order to represent

the variety of event characteristics within that class.

In addition to the class weights, the background events are scaled with the event

weights calculated in the event selector algorithm in section 5.3 in order for the

distribution of events the network is trained on to resemble the distribution of events

in the real data.
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7.3 Normalization of data

In gradient-based optimization algorithms, problems may arise when the magni-

tudes of the features are in different ranges. This is because the value of the feature

influences the step size. This means that features within a range of high values will

influence the network more than features with smaller values, although the features

are equally important. If the features with the largest values turn out not to be

important for predicting the target value, it may result in the network not learning

at all or not using important, available information from other features. However,

the exact values of the features of each data point are not important in order for the

network to learn. Instead, the relation of the values to each other are important,

as the network learns the patterns. Therefore, it is common to use normalization

methods. These are methods used to make sure that the different features are in

the same range, while conserving the characteristics of the data. It is common to

normalize the data set in order for the features to stay within the ranges of [0, 1] or

[−1, 1]. This must be done to both the training and test sets, as the model will only

learn to recognize data within these ranges.

One of the most common normalization methods is called standardization. In

this method, the distribution for each feature is centered at 0 while setting the

variance to 1. This is done by setting

X ′ =
X − X̄

σ
(7.2)

where X is an array containing all the training data points for a feature, X̄ is the

mean of the distribution, σ2 is the variance and X ′ is the new, normalized array. A

different method is linear scaling. In this case, the features are scaled to the range

of [0, 1] for every data point x of a feature, setting

x′ =
x− xmin

xmax − xmin
(7.3)

where xmax is the maximum value of the feature in the data set, xmin is the minimum

value and x′ is the new value of the data point. As these methods are variations of

each other and the main goal of both is to transform the features to a similar scale,

the difference in performance between the two are expected to be small. In our case,

the linear scaling is used.
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7.4 Network architecture and hyperparameters

The neural network consists of 13 input nodes (one for each feature), as well as

one output node. The activation function used in the input layer and the hidden

layers is the rectified linear unit (ReLU), defined in section 4.4, in order to avoid the

vanishing gradient problem. In the output layer, the sigmoid function (introduced

in section 4.4) is used. This is used in order for the network to produce an output

between 0 and 1. The Adam optimization algorithm (introduced in section 4.6) is

used, due to its advantage of having an adaptive learning rate.

As it is not possible to decide the optimal hyperparameters by using a formula,

they must be determined by manual testing. There are often limitations for some

of the hyperparameters because of the time it takes to train the network. The pa-

rameters that have a significant effect on training time are the number of hidden

layers, the number of neurons per layer and the number of epochs. The batch size

may also have an impact. As the number of MC events are in the order of 107,

we meet computing time constraints when these parameters are large, even though

supercomputers are used. It is therefore necessary to make a trade-off to decide the

limit on each hyperparameter and then optimize within that region. If only one

hidden layer is used, it is possible to use a few hundred neurons in the layer without

significant computing time. However, when the number of hidden layers increases,

the computing time increases significantly. A general rule is that it is often better to

prioritize a deeper network (more hidden layers) rather than a wider (more neurons

per layer), although this is not true in every case. We decide to test a maximum

of fur hidden layers with a maximum of 100 neurons per layer, as time constraints

become significant at this point. Also, we decide to use a maximum of 50 epochs

with the possibility of early stopping for the same reason, since the network usually

has converged at that point. However, a higher number of hidden layers and neurons

per layer are not necessarily better, and different combinations should therefore be

tested. We also use a batch size of 10% of the training set in order to make sure there

is a large number of signal events in each batch, as the training set is imbalanced.

Other hyperparameters include the learning rate (ϵ) and the L2 weight decay

(λ) for regularization, which were introduced in section 4.6 and 4.7, in order to

prevent overfitting. These do not have a large impact on computing time and may

be tested across a wide range of values. Common default values that may be used
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as starting points are ϵ = 10−2 and λ = 10−5. However, there is no specific reason

for choosing these values, as they may not be optimal for the network constructed

for our task. Values around these will therefore be tested, in addition to testing

how increasing or decreasing them impact the performance. A too small value of ϵ

may result in the network not changing the weights of the model enough to reach a

global minimum for the loss. A too large ϵ may result in the weights not converging.

As we are using the Adam optimizer, defined in section 4.6.2, the choice of learning

rate is not expected to be as important as when using stochastic gradient descent

(because of its adaptive learning rate), but it still has an impact. A low value of

λ may result in overfitting, as this is what the regularization technique attempts

to avoid. However, a too large value may result in underfitting which prevents the

model from learning efficiently. We decide to test ϵ = {10−4, 10−3, 10−2, 10−1} as

we then test the default value as well as deviations from it in both directions. For

the same reason, we test λ = {10−6, 10−5, 10−4, 10−3}. For the number of layers, we

test from 1 to 4 hidden layers, as well as number of neurons = {5, 10, 50, 100}. The
effect of these parameters are expected to be smaller than the effect of the choice of

ϵ and λ, as networks often may reach a high accuracy with only one hidden layer

and a limited number of neurons, although this depends on the complexity of the

problem. For the hyperparameters that are specific to the Adam optimizer, we will

use the default values [68], which are ρ1 = 0.90, ρ2 = 0.99 and δ = 10−8, defined in

section 4.6.2.

The parameters are tested by grid searches, which means that we train the net-

work with different combinations of hyperparameters and test the performance. The

combination that leads to the best performance are then usually chosen. However,

one may also use other types of reasoning (such as checking for overfitting). We

test ϵ and λ in combination, as well as the number of hidden layers and neurons

per layer in combination. Although the number of neurons per hidden layer does

not have to be the same in all layers, we keep it constant if the results are good, as

variations only lead to small deviations in the results. Grid searches are performed

for each model in case there are differences in performance. The hyperparameters

are therefore chosen separately for each model. The grid search is first performed for

ϵ and λ and then for the number of hidden layers and neurons. The combinations

of the optimized hyperparameters may therefore lead to a difference between the

performance seen in the grid searches and in the final networks. In section 7.6.1

and 7.7.1, the grid searches are shown using accuracy, defined in section 4.1.2, as
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measure. The grid searches using AUC are shown in appendix C. These are both

considered when choosing parameters, but the deviations in AUC are much smaller,

and the accuracy therefore gives a clearer answer to which parameters result in the

best performance.

7.5 Interpretation of the feature importance

Permutation feature importance, defined in section 4.8, will be used in order to find

information about how the network has learned and which features have a large

effect on its predictions. However, one should be aware that permutation feature

importance for neural networks provides an imperfect result when used to evaluate

how well each feature may be used to predict the class of an event. This is because

it measures the increase or decrease in loss when the events are permuted for a

specific feature. Therefore, if a feature is highly correlated with another or several

other features, a large amount of the same information may still be contained in

those features, which leads to a smaller increase in the loss. This may be the

case for variations of Emiss
T , such as Emiss,sig

T . Because of this, the exact value

of the permutation feature importance is not necessarily a precise measure of the

importance of a feature. However, it may still be an indication of whether a feature

has some utility for predicting the class or not. If the feature importance is close to

zero, the network has most likely not found information in the feature that may be

used for prediction. In the following sections, we will perform the optimization of

the neural networks for each model, measure their performance for each model, as

well as their expected significances.

7.6 Dark Higgs model

7.6.1 Hyperparameters

A grid search measured using accuracy for the Dark Higgs LDS model is shown in

figure 7.1. The same grid searches using the area under the ROC curve (AUC),

defined in section 4.1.2, are shown in appendix C. The optimal parameters are

found to be ϵ = 10−2 and λ = 10−6. However, as the difference in accuracy between

λ = 10−5 and λ = 10−6 is negigible, we decide to use λ = 10−5 in order to prevent

overfitting. The optimal number of layers and neurons per layer are found to be at

least 3 hidden layers and at least 50 neurons. However, no improvement is achieved

by increasing the parameters further, as seen in figure 7.1. Instead, the accuracy is
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Dark Higgs LDS

Hyperparameter Value

Number of hidden layers 3
Neurons per layer 50
Learning rate (ϵ) 10−2

L2 weight decay (λ) 10−5

Epochs 50
Batch size 10% of training set

Exponential decay rate (ρ1) 0.90
Exponential decay rate (ρ2) 0.99
Stabilization constant (δ) 10−8

Table 7.1: Hyperparameters used for training the neural network on the dark Higgs
LDS.

maintained at the same level of ∼ 0.980. Similar results are observed when using

AUC, as shown in appendix C. Therefore, 3 hidden layers and 50 neurons per layer

are chosen for efficiency purposes. All of the hyperparameters used for training the

network on the dark Higgs model for the light dark sector are listed in table 7.1.

(a) (b)

Figure 7.1: Grid searches for optimal hyperparameters a) L2 weight decay (λ) and
learning rate (ϵ), and b) number of hidden layers and neurons per layer for ML
training on the dark Higgs LDS using accuracy as measure.

7.6.2 Performance

The loss on the training and validation set during training for each epoch is shown in

figure 7.2. The training and validation loss decreases quickly until epoch 10, before
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decreasing slowly and converging. However, a large drop in the validation loss and a

corresponding increase in training loss is observed around epoch 30− 35. Although

the opposite is usually a sign of overfitting, which therefore likely is not happening

in this case, the network may be moving away from the global loss minimum. As

the training loss increases, the network recognizes it as a mistake and corrects it,

before converging.

Figure 7.2: Training and validation loss as a function of epochs during training on
the dark Higgs LDS.

The performance of the trained network is tested on the test set using equal

amounts of signal and background events in order to measure its performance on

both types. The accuracy and AUC obtained for each signal are shown in table 7.2

and the ROC curves for some of the Z ′ masses are shown in figure 7.3. The network

achieves an accuracy above 0.93 for all Z ′ masses, and significantly higher for most

signals, suggesting the network has learned to recognize the main characteristics of

signal and background events. The difference in performance between the models

is best captured using accuracy rather than AUC as the AUC reaches a level close

to 1.0 quickly. The accuracy and AUC generally increase with increasing mZ′ until

mZ′ ∼ 700 GeV where it converges and maintains a similar performance for further

increasing mass. The highest accuracy is 0.989 for mZ′ = 1100 GeV and mZ′ = 1400

GeV in the ee channel. The performance is somewhat better for the ee channel than

the µµ channel, but the difference is relatively small.
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(a) (b)

Figure 7.3: ROC curve plots for a selection of Z ′ mass signals in the a) ee and b)
µµ channel in the dark Higgs LDS.

Dark Higgs LDS

ee channel µµ channel

mZ′ (GeV) Accuracy AUC Accuracy AUC

130 0.933 0.991 0.931 0.989
200 0.970 0.995 0.965 0.993
300 0.955 0.994 0.947 0.992
400 0.979 0.997 0.975 0.997
500 0.984 0.998 0.979 0.998
600 0.986 0.999 0.983 0.999
700 0.987 0.999 0.984 0.999
800 0.988 1.0 0.985 0.999
900 0.988 1.0 0.985 0.999
1000 0.988 1.0 0.985 0.999
1100 0.989 1.0 0.987 0.999
1200 0.988 1.0 0.986 0.999
1300 0.988 1.0 0.987 0.999
1400 0.989 1.0 0.987 0.999
1500 0.989 1.0 0.987 0.999

Table 7.2: Accuracy and AUC achieved by the neural network for different Z ′ mass
signals in the dark Higgs LDS.
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7.6.3 Results

The feature importance for the features used in the ML model are shown in figure

7.4. The Emiss,sig
T has a significantly larger feature importance than the other fea-

tures, meaning that the model loses a significant amount of predictive power when

events are permuted for this feature. It may also suggest that it contains some

information that is not contained in Emiss
T , which has a relatively large, but much

smaller feature importance. This may be due to the two features being correlated,

and it is possible that Emiss
T had a larger feature importance if Emiss,sig

T was not used

during training. The invariant mass and the number of b-jets also have a relatively

large feature importance, while pT1, pT2, the transverse mass and HT have small

positive values. The flavor, charge, ∆ϕEmiss
T ,ll, ∆ϕl,l and η have negligible values.

This suggests that the network did not find important information in these features

which could help distinguishing the SM background and the signal. Also, that the

feature importance is not negative for these features suggests that they have not

contributed to overfitting.

Figure 7.4: Permutation feature importance of the features used to train the neural
network for the dark Higgs LDS.

As shown in figure 7.5, the model produces similar output for the physical data

as it does for the MC background, suggesting that the model works properly. The

real data is cut off at classification scores above 0.60 in order not to show the data

in the signal region. The signal region is defined as events receiving a score above
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0.90. The amount of background increases exponentially when the classification

score approaches 0, while the same happens to the signal when approaching 1. The

DY and Z + jets are mostly filtered out, while a larger amount of the other back-

ground types are within the signal region. As the model performs well for all of the

Z ′ mass signals, it is likely that it would be able to identify a signal where the Z ′

mass deviates somewhat from the masses the network is trained on.

(a) (b)

Figure 7.5: Classification score distributions for the background and signal for the
neural network in the dark Higgs LDS. The results are shown in the a) ee and b)
µµ channel and compared with real data outside of the signal region.

The expected significance is plotted for each Z ′ mass in figure 7.6. These are

calculated for each bin (from 0.0 to 0.1, etc.), and show that the highest expected

significance is obtained in the signal region (from 0.9 to 1.0). As the expected

significance is undefined in some of the regions with low classification score when

using the full equation 5.6 (due to negative values in the square root), we instead plot

the expected significance Z = s√
b
as this is a good approximation when s ≪ b. As

expected, the expected significance increases when the classification score increases

for all of the signals and is significantly higher in the signal region (above 0.90) than

outside it. In table 7.3 we list the expected significance for each Z ′ mass and both

the ee and µµ channels using the full formula, defined in section 5.9. The highest

expected significance is 0.13 for mZ′ = 700 GeV in the ee channel. As the mass
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variations are tested using the same neural network, they have the same amount

of background events in the signal region and varying amounts of signal, which

depends on the performance of the network on each signal and the total amount

of expected signal. The expected significance is generally decreasing with larger Z ′

mass although the performance of the network increases.

(a) (b)

Figure 7.6: Expected significance for the different signals in the dark Higgs LDS at
different classification scores in the a) ee and b) µµ channels. The approximation
Z = s√

b
is used in order to prevent undefined values.
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Dark Higgs LDS

ee channel µµ channel

mZ′ (GeV) Expected significance (Z)

130 5.3 · 10−2 5.2 · 10−2

200 7.1 · 10−2 6.6 · 10−2

300 7.0 · 10−2 6.0 · 10−2

400 6.0 · 10−2 5.2 · 10−2

500 5.6 · 10−2 4.7 · 10−2

600 3.8 · 10−2 3.1 · 10−2

700 1.3 · 10−1 1.0 · 10−2

800 2.1 · 10−2 1.7 · 10−2

900 1.6 · 10−2 1.2 · 10−2

1000 1.4 · 10−2 1.1 · 10−2

1100 8.9 · 10−3 6.9 · 10−3

1200 6.9 · 10−3 5.2 · 10−3

1300 5.2 · 10−3 3.9 · 10−3

1400 4.1 · 10−3 3.0 · 10−3

1500 3.1 · 10−3 2.3 · 10−3

Table 7.3: Expected significances for different signals in the dark Higgs LDS for the
ee and µµ channels.
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Light vector LDS

Hyperparameter Value

Number of hidden layers 3
Neurons per layer 50
Learning rate (ϵ) 10−2

L2 weight decay (λ) 10−6

Epochs 50
Batch size 10% of training set

Exponential decay rate (ρ1) 0.90
Exponential decay rate (ρ2) 0.99
Stabilization constant (δ) 10−8

Table 7.4: Hyperparameters used for training the neural network on the light vector
LDS.

7.7 Light vector model

We will now present the results for the neural networks trained on the light vector

model. We will here show the results for the light dark sector, while results for the

heavy dark sector are shown in appendix G.

7.7.1 Hyperparameters

Grid searches measured using accuracy for the Dark Higgs LDS model are shown

in figure 7.7. The same grid searches using the area under the ROC curve (AUC),

defined in section 4.1.2, are shown in appendix C.3. The hyperparameters resulting

in the highest accuracy and AUC are at least 3 hidden layers with 50 neurons

per layer, as well as a learning rate of ϵ = 10−1 and L2 weight decay λ = 10−6.

However, as shown in figure 7.8, the network then has problems converging, likely

because of a too large step size (learning rate). Therefore, this parameter is changed

to ϵ = 10−2 in order for the network to converge more easily. The difference in

accuracy obtained using these values in the grid search is marginal. The final choices

of hyperparameters are listed in table 7.4.
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(a) (b)

Figure 7.7: Grid searches for optimal hyperparameters a) L2 weight decay (λ) and
learning rate (ϵ), and b) number of hidden layers and neurons per layer for ML
training on the light vector LDS using accuracy as measure.

Figure 7.8: Training and validation loss as a function of epochs during training on
the light vector LDS, when testing ϵ = 10−1.
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7.7.2 Performance

The loss on the training and validation set during training for each epoch are shown

in figure 7.9. The training and validation loss decrease quickly until approximately

epoch 10. After that, there is a large spike in both training and validation loss, be-

fore they converge. There is a smaller increase in training loss around epoch 40-45,

which is quickly corrected. The gap between training and validation loss is small,

which suggests that the network generalizes well.

The accuracy and AUC obtained for each signal are listed in table 7.5, and the

ROC curves are shown in figure 7.10. The lowest accuracy achieved is 0.881 for

mZ′ = 130 GeV in the ee channel, which means that the network has learned the

main features of the signal. However, this is not a satisfactory result, as it means

that ∼ 12% of events will be misclassified. However, as the Z ′ mass increases, the

performance improves quickly, with an accuracy of > 0.980 for all signals with Z ′

mass of 400 GeV or more. The highest accuracy reached is 0.989 for mZ′ = 1400

GeV in the ee channel. The AUC quickly exceeds 0.999, which means that the per-

formance appears perfect when using this metric, and the difference in performance

between the different signals is not as clear when using this metric in this case. The

accuracy achieved in the ee channel is generally somewhat higher than in the µµ

channel, except at the lowest Z ′ masses.

Figure 7.9: Training and validation loss as a function of epochs during training on
the light vector LDS.
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(a) (b)

Figure 7.10: ROC curve plots for a selection of Z ′ mass signals in the a) ee and b)
µµ channel in the light vector LDS.
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Light vector LDS

ee µµ

mZ′ (GeV) Accuracy AUC Accuracy AUC

130 0.881 0.983 0.888 0.980
200 0.965 0.994 0.965 0.991
300 0.979 0.997 0.977 0.996
400 0.982 0.998 0.982 0.998
500 0.986 0.999 0.982 0.998
600 0.988 1.0 0.983 0.999
700 0.987 1.0 0.984 0.999
800 0.988 1.0 0.985 0.999
900 0.989 1.0 0.985 0.999
1000 0.987 1.0 0.987 1.0
1100 0.989 1.0 0.987 0.999
1200 0.989 1.0 0.988 1.0
1300 0.988 1.0 0.988 0.999
1400 0.989 1.0 0.987 0.999
1500 0.988 1.0 0.985 0.999

Table 7.5: Accuracy and AUC achieved by the neural network for different Z ′ mass
signals in the light vector LDS.
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7.7.3 Results

The feature importance for the features the ML model is trained on, are shown in

figure 7.11. Similarly to what was the case in the dark Higgs LDS, the Emiss,sig
T

has a significantly higher feature importance than the other features. The invariant

mass and Emiss
T also have relatively high feature importance. As these are the ones

expected to be most important in classifying events as signal or background, the

result is a sign of the network working properly. It also indicates that the method

of measuring feature importance provides real information about the neural net-

work. The features that have a small positive feature importance, are the number

of b-tagged jets, pT1, pT2 and the transverse mass. The feature importance of pT2 is

higher than that of pT1. However, these are expected to be highly correlated, which

may result in either of them having a very low feature importance, as some of the

information is still contained in the other feature. The flavor, charge, HT , η, ∆ϕl,l

and ∆ϕEmiss
T ,ll all have a negligible feature importance, meaning that the network

has not found information in these features that may be used for classifying events

as signal or background for this signal model.

Figure 7.11: Permutation feature importance of the features used to train the neural
network for the light vector LDS.

Figure 7.12 shows the output of the neural network for the different background

types and some of the signals. The outputs show that the network classifies the

signals with a high Z ′ mass better than those with a low mass, as their curves
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are steeper when approaching a classification score of 1.0. However, the amount of

events in the signal region is still higher for mZ′ = 130 GeV than for most other

signal due to a higher total number of expected signal events. The amount of signal

is significantly higher in the bin with the highest classification score than in the

ones below, which means that the expected significance achieved would be higher

if the signal region was more narrow. The Drell-Yan and Z+jets backgrounds are

almost completely filtered out in the signal region, wile a larger fraction of the other

background types are misclassified as signal.

(a) (b)

Figure 7.12: Classification score distributions for the background and signal for the
neural network in the light vector LDS. The results are shown in the a) ee and b)
µµ channel and compared with real data outside of the signal region.

The expected significance for some of the signals at different classification scores

is shown in figure 7.13, using the approximation Z = s√
b
in order to avoid undefined

values at the low classification scores. The expected significance for all of the sig-

nals increase with increasing classification scores, but the increase is steeper for the

highest masses, as expected from the results observed in figure 7.12. The expected

significances obtained in the signal region for all of the signals are listed in table

7.6, using the full formula for Z, introduced in section 5.9. Although the accuracy

obtained generally is higher for the signals with a larger Z ′ mass, the expected signif-

icance is highest for mZ′ = 130 GeV with Z = 8.5 · 10−2 in the ee channel, and then
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generally decreasing with increasing mass due to a lower number of total expected

events. The expected significance is also somewhat higher in the ee channel than

in the µµ channel. Although the network achieved a relatively high accuracy, the

expected significances are still very small, and the signal regions are not sensitive

enough to discover or exclude the signals by analyzing real data. This is mainly due

to a low number of total expected signal events. However, the expected significance

could be improved further by removing a larger amount of background.

(a) (b)

Figure 7.13: Expected significance for the different signals in the light vector LDS
at different classification scores in the a) ee and b) µµ channels. The approximation
Z = s√

b
is used in order to prevent undefined values.
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Light vector LDS

mZ′ (GeV) Expected significance (Z)

ee channel µµ channel

130 8.5 · 10−2 8.1 · 10−2

200 1.2 · 10−2 1.1 · 10−2

300 3.6 · 10−2 3.0 · 10−2

400 3.0 · 10−2 2.4 · 10−2

500 8.2 · 10−3 6.5 · 10−3

600 9.0 · 10−3 7.1 · 10−3

700 6.7 · 10−4 5.2 · 10−4

800 3.5 · 10−3 2.6 · 10−3

900 2.3 · 10−3 1.7 · 10−3

1000 6.8 · 10−4 5.0 · 10−4

1100 1.1 · 10−4 7.8 · 10−4

1200 1.1 · 10−3 5.6 · 10−4

1300 5.5 · 10−4 3.9 · 10−4

1400 3.9 · 10−4 2.8 · 10−4

1500 3.0 · 10−4 2.0 · 10−4

Table 7.6: Expected significances for different signals in the light vector LDS for the
ee and µµ channels.
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7.8 Comparison of methods

We will now compare the cut and count method and the ML method by evaluating

the expected significances achieved. There are however a few things that should be

mentioned before making a judgement on which method is performing better. In the

cut and count method, we chose to make only one signal region which was expected

to give a high sensitivity to most of the signals, except the one with mZ′ = 130 GeV.

Dividing it into two or tree regions would likely increase the sensitivity to some of

the signals. One could also have made a mass cut for each mZ′ which would also

likely give a high sensitivity to each of them. However, as the aim of the cuts is to

search for the signals in the data at some point and because there are several un-

known free parameters in the models, the signal region should not be made too tight,

as this could cause the real signal to fall outside the signal region. Therefore, it is

often a good idea that each signal region is sensitive to a range of signals. The same

consideration is made in the ML analysis, where a tighter signal region could have

been chosen, which would increase the sensitivity to the MC samples, as observed

in figure 7.5. Therefore, one should not only judge the methods by the expected

significance they obtain, but also how well they generalize when some parameters

are modified. However, in both approaches, a conservative signal region is chosen,

which generalizes well for all of the mZ′ signals (except mZ′ = 130 GeV in the cut

and count method). Therefore, it is reasonable to judge their performance by the

expected significance when the first criterion is met by both methods.

The ratio of the expected significances ZNN/ZC&C obtained by the neural net-

work and the cut and count method are listed in table 7.7. Similar tables for the

other signal models are shown in appendix H. We observe that the neural net-

work consistently reaches a higher expected significance for the signals. Excluding

mZ′ = 130 GeV, the ratio is between 1.34 and 18.2. The higher performance of

the neural network relative to the cut and count method generally increases with

increasing mZ′ and is mostly higher in the µµ channel. The difference between the

ee and µµ channels may indicate that the cuts where more effective in the ee chan-

nel, as the neural network generally obtained a slightly higher accuracy in the ee

channel than the µµ channel. For mZ′ = 130 GeV, the ratio is of the order of 103,

but this is because the signal is almost completely filtered out by the mass cut in

the cut and count method. However, it should be noted that the neural network is

able to perform well on this signal while also performing better on the other signals.
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Dark Higgs LDS

mZ′ (GeV) Expected significance (ZNN/ZC&C)

ee channel µµ channel

130 2.79 · 103 1.58 ·103
200 1.34 1.40
300 1.67 1.67
400 1.94 2.08
500 1.75 1.81
600 3.17 1.82
700 1.71 1.85
800 1.75 1.98
900 1.80 2.00
1000 1.79 2.16
1100 1.85 2.23
1200 1.82 2.36
1300 1.86 2.44
1400 1.95 2.72
1500 1.82 ·101 2.91

Table 7.7: Ratio of expected significance ZNN/ZC&C obtained by the neural network
(NN) and cut and count (C&C) method for the dark Higgs LDS.

It is clear that the ML method has been most successful in this case. However, it

is still not sensitive enough for the signal model to be expected to be discovered or

excluded if searched for by analyzing real data.

We begun this chapter with explaining the implementation of the neural net-

works for the analysis, including the optimization of the network architecture and

hyperparameters. The networks were trained, and were successful in separating sig-

nal and background with a relatively high accuracy. The expected significances of

the signals were calculated and compared with the cut and count method, and the

neural networks turned out to reach higher sensitivities.
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8 Conclusion

In this thesis, we have searched for a new gauge boson Z ′, decaying to a dilepton

pair, and dark matter, measured as missing transverse energy (Emiss
T ). This was

done by studying Monte-Carlo simulated signal events based on two different mod-

els, namely the dark Higgs model and the light vector model in combination with

the Standard Model background. We begun by comparing the MC background with

real data recorded by the ATLAS detector during the full Run 2 at the LHC in order

to check that it is an accurate representation of the real event distributions. Signal

regions were then constructed in order to maximize the sensitivity to the two mod-

els by using two different methods. First, the standard cut and count method was

used, by making cuts on some of the variables in order to remove a large amount

of background while keeping as much signal as possible, and then measuring the

expected significance for each signal model. Signal regions were also created by

training neural networks to classify events as either signal or background. This was

done by first carefully selecting variables that were expected to be useful for the

classification, and then optimizing the network in order for it to perform as well

as possible. The neural networks performed well, consistently reaching an accuracy

above 0.98 for most of the signals. The expected significance was then measured

and compared with the ones obtained by the cut and count method. The neural

networks performed better for almost all of the signals, and significantly better for

some of them, even though the signal region could have been made narrower in order

to increase the significance further.

However, by looking at the expected significances, it is clear that a search using

real data and the signal regions used in this analysis will not be sensitive enough to

either discover or exclude the signals. This is due to the signal models predicting

a very small amount of events. This is partly a result of the choices of the free

parameters that were used for simulating the signals. In future studies, it may

therefore be useful to also consider signals with higher coupling constants. In the cut

and count method, which here was used in order to be compared with the machine

learning method, one may also create several signal regions designed to be more

sensitive to each of the signals. It may also be possible to train neural networks on

several different signal models that share some of the main characteristics in order to

be able to detect a larger variety of possible signals in the data. This would be useful,

as there are several uncertainties in the free parameters of the signals, if the signals
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exist. However, a trade-off must be made between making the network general and

making it precise as generalization may result in a lower accuracy. Although the

sensitivity is not high enough to exclude or discover the signals used in this study,

we have seen that it may be possible to discover dark matter particles at the LHC if

they exist, as they may be involved in processes leading to specific characteristics in

the final states that may be recognized, for example by a neural network, especially

if they result in an increased amount of Emiss
T . It will therefore be possible to use the

methods used in this thesis to search for other dark matter signal models as well as

other new physics processes. Run 3 at the LHC will increase the amount of available

data further, which increases the possibility of new discoveries. Another aspect that

may be useful to study further is how neural networks and other machine learning

methods may best be used in particle physics. Although the main aspects of it are

understood, it may be possible to make breakthroughs in order for them to remove

a significantly larger amount of background. However, there will likely be a limit

to how precise they can become, as some of the background events for most models

will be very similar to the signal.
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A Signal model distributions

Below are the dark Higgs and light vector signal distributions (with precuts) for pT1,

pT2, E
miss.sig
T , the number of b-jets, ∆ϕEmiss

T ,ll, ∆ϕl,l, η and HT in both the ee and

µµ channels.

A.1 Dark Higgs model

A.1.1 ee channel

(a) (b)

(c) (d)

Figure A.1: Dark higgs model signal distributions for a) pT1, b) pT2, c) E
miss,sig
T and

d) number of b-jets in the ee channel with precuts.
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(a) (b)

(c) (d)

Figure A.2: Dark higgs model signal distributions for a) ∆ϕEmiss
T ,ll, b) ∆ϕl,l, c) η

and d) mT in the ee channel with precuts.
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Figure A.3: Dark Higgs model signal distribution for HT with in the ee channel with
precuts.
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A.1.2 µµ channel

(a) (b)

(c) (d)

Figure A.4: Dark higgs model signal distributions for a) pT1, b) pT2, c) E
miss,sig
T and

d) number of b-jets in the µµ channel with precuts.
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(a) (b)

(c) (d)

Figure A.5: Dark higgs model signal distributions for a) ∆ϕEmiss
T ,ll, b) ∆ϕl,l, c) η

and d) mT in the µµ channel with precuts.
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Figure A.6: Dark Higgs model signal distribution for HT with in the µµ channel
with precuts.
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A.2 Light vector model

A.2.1 ee channel

(a) (b)

(c) (d)

Figure A.7: Light vector model signal distributions for a) pT1, b) pT2, c) E
miss,sig
T

and d) number of b-jets in the ee channel with precuts.
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(a) (b)

(c) (d)

Figure A.8: Light vector model signal distributions for a) ∆ϕEmiss
T ,ll, b) ∆ϕl,l, c) η

and d) mT in the ee channel with precuts.
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Figure A.9: Light vector model signal distribution for HT with in the ee channel
with precuts.
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A.2.2 µµ channel

(a) (b)

(c) (d)

Figure A.10: Light vector model signal distributions for a) pT1, b) pT2, c) E
miss,sig
T

and d) number of b-jets in the µµ channel with precuts.
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(a) (b)

(c) (d)

Figure A.11: Light vector model signal distributions for a) ∆ϕEmiss
T ,ll, b) ∆ϕl,l, c) η

and d) mT in the µµ channel with precuts.
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Figure A.12: Light vector model signal distribution for HT with in the µµ channel
with precuts.
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B Comparison of MC and data for µµ channel

Below are plots of MC background alongside real data after precuts in the muon

channel for the variables that are considered for the ML analysis. These are plot-

ted alongside the simulated contributions from the dark Higgs LDS simulations for

reference. The ratio of the data to the total MC background is plotted below the

histograms, where the grey bands show the sum of the statistical and assumed sys-

tematic uncertainties of 20%.
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(a) (b)

(c) (d)

Figure B.1: Muon channel distributions for a) mll, b) pT1, c) pT2 and d) Emiss
T with

precuts. Data is shown along with MC background and MC signals in the dark
Higgs model (LDS).
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(a) (b)

(c) (d)

Figure B.2: Muon channel distributions for a) Emiss,sig
T , b) number of b-tagged jets,

c) ∆ϕEmiss
T ,ll and d) ∆ϕl,l with precuts. Data is shown along with MC background

and MC signals in the dark Higgs model (LDS).
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(a) (b)

(c)

Figure B.3: Muon channel distributions for a) η, b) mT c) HT with precuts. Data is
shown along with MC background and MC signals in the dark Higgs model (LDS).
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C Grid searches using AUC

Below are grid searches for the optimal values of the L2 weight decay (λ), learning

rate ϵ, the number of hidden layers and neurons per layer. These are used for

optimizing the hyperparameters and network architecture.

(a) (b)

Figure C.1: Grid searches for optimal hyperparameters a) L2 weight decay (λ) and
learning rate (ϵ) and b) number of hidden layers and neurons per layer for ML
training on the dark Higgs LDS using AUC as measure.

(a) (b)

Figure C.2: Grid searches for optimal hyperparameters a) L2 weight decay (λ) and
learning rate (ϵ) and b) number of hidden layers and neurons per layer for ML
training on the dark Higgs HDS using AUC as measure.
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(a) (b)

Figure C.3: Grid searches for optimal hyperparameters a) L2 weight decay (λ) and
learning rate (ϵ) and b) number of hidden layers and neurons per layer for ML
training on the light vector LDS using AUC as measure.

(a) (b)

Figure C.4: Grid searches for optimal hyperparameters a) L2 weight decay (λ) and
learning rate (ϵ) and b) number of hidden layers and neurons per layer for ML
training on the light vector HDS using AUC as measure.
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D Dark Higgs HDS cut and count

In this section, we show the mll and Emiss,sig
T signal regions in the the ee and µµ

channels for the dark Higgs HDS, as well listing the expected significances of the

signals.

(a) (b)

Figure D.1: Dark Higgs HDS signal regions for mll in the a) ee and b) µµ channel.

(a) (b)

Figure D.2: Dark Higgs HDS signal regions for Emiss,sig
T in the a) ee and b) µµ

channel.
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Dark Higgs HDS

ee channel µµ channel

mZ′ (GeV) Expected significance (Z)

130 5.3 · 10−5 0
200 1.9 · 10−2 1.7 · 10−2

300 6.4 · 10−3 5.2 · 10−3

400 1.6 · 10−3 1.4 · 10−3

500 6.9 · 10−3 5.6 · 10−3

600 2.5 · 10−4 2.0 · 10−4

700 3.9 · 10−4 2.9 · 10−4

800 5.6 · 10−5 4.4 · 10−5

900 3.1 · 10−5 2.2 · 10−5

1000 1.9 · 10−5 1.2 · 10−5

1100 9.2 · 10−6 6.0 · 10−6

1200 5.0 · 10−6 3.2 · 10−6

1300 2.9 · 10−6 1.5 · 10−6

1400 1.6 · 10−6 9.8 · 10−7

1500 1.1 · 10−6 0

Table D.1: Expected significances for the dark Higgs HDS at different Z ′ masses in
the ee and µµ channel using the cut and count method.
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E Light vector HDS cut and count

In this section, we show the mll and Emiss,sig
T signal regions in the the ee and µµ

channels for the light vector HDS, as well listing the expected significances of the

signals.

(a) (b)

Figure E.1: Light vector HDS signal regions for mll in the a) ee and b) µµ channel.

(a) (b)

Figure E.2: Light vector HDS signal regions for Emiss,sig
T in the a) ee and b) µµ

channel.
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Light vector HDS

mZ′ (GeV) Expected significance (Z)

ee channel µµ channel

130 0 0
200 1.3 · 10−2 1.1 · 10−2

300 3.4 · 10−3 2.9 · 10−3

400 7.8 · 10−4 6.4 · 10−4

500 3.1 · 10−4 2.4 · 10−4

600 1.0 · 10−4 7.7 · 10−5

700 1.7 · 10−5 1.2 · 10−5

800 1.9 · 10−5 1.4 · 10−5

900 8.6 · 10−6 6.3 · 10−6

1000 4.3 · 10−6 3.0 · 10−6

1100 2.2 · 10−6 1.3 · 10−6

1200 1.0 · 10−6 8.3 · 10−7

1300 6.1 · 10−7 4.9 · 10−7

1400 6.7 · 10−7 7.3 · 10−7

1500 8.2 · 10−7 5.9 · 10−7

Table E.1: Expected significances for the light vector HDS at different Z ′ masses in
the ee and µµ channel using the cut and count method.
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F Dark Higgs HDS ML analysis

In this section, we show the results of the ML analysis for the dark Higgs HDS,

corresponding to the steps in the light dark sector analysis in section 7.6.

F.1 Hyperparameters

Dark Higgs HDS

Hyperparameter Value

Number of hidden layers 3
Neurons per layer 50
Learning rate (ϵ) 10−2

L2 weight decay (λ) 10−6

Epochs 50
Batch size 10% of training set

Exponential decay rate (ρ1) 0.90
Exponential decay rate (ρ2) 0.99
Stabilization constant (δ) 10−8

Table F.1: Hyperparameters used for training the neural network on the dark Higgs
HDS.

(a) (b)

Figure F.1: Grid searches for optimal hyperparameters a) L2 weight decay (λ) and
learning rate (ϵ), and b) number of hidden layers and neurons per layer for ML
training on the dark Higgs HDS using accuracy as measure.
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F.2 Performance

Figure F.2: Training and validation loss as a function of epochs during training on
the dark Higgs HDS.

(a) (b)

Figure F.3: ROC curve plots for a selection of Z ′ mass signals in the a) ee and b)
µµ channel in the dark Higgs HDS.
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Dark Higgs HDS

ee channel µµ channel

mZ′ (GeV) Accuracy AUC Accuracy AUC

130 0.896 0.991 0.887 0.989
200 0.968 0.997 0.966 0.997
300 0.984 0.999 0.981 0.998
400 0.990 0.999 0.988 0.999
500 0.990 1.0 0.989 1.0
600 0.992 1.0 0.991 1.0
700 0.992 1.0 0.990 1.0
800 0.992 1.0 0.991 1.0
900 0.994 1.0 0.992 1.0
1000 0.992 1.0 0.991 1.0
1100 0.993 1.0 0.991 1.0
1200 0.993 1.0 0.993 1.0
1300 0.993 1.0 0.990 1.0
1400 0.993 1.0 0.993 1.0
1500 0.993 1.0 0.991 1.0

Table F.2: Accuracy and AUC achieved by the neural network for different Z ′ mass
signals in the dark Higgs HDS.
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F.3 Results

Figure F.4: Permutation feature importance of the features used to train the neural
network for the dark Higgs HDS.

(a) (b)

Figure F.5: Classification score distributions for the background and signal for the
neural network in the dark Higgs HDS. The results are shown in the a) ee and b)
µµ channel and compared with real data outside of the signal region.
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(a) (b)

Figure F.6: Expected significance for the different signals in the dark Higgs HDS at
different classification scores in the a) ee and b) µµ channels. The approximation
Z = s√

b
is used in order to prevent undefined values.

Dark Higgs HDS

ee channel µµ channel

mZ′ (GeV) Expected significance (Z)

130 4.9 · 10−2 4.5 · 10−2

200 2.9 · 10−2 2.6 · 10−2

300 1.4 · 10−2 9.3 · 10−3

400 3.1 · 10−3 2.5 · 10−3

500 1.4 · 10−3 1.3 · 10−3

600 5.4 · 10−4 4.3 · 10−4

700 8.1 · 10−4 6.5 · 10−4

800 1.3 · 10−4 1.0 · 10−4

900 6.8 · 10−5 5.3 · 10−5

1000 4.1 · 10−5 3.1 · 10−5

1100 2.1 · 10−5 1.6 · 10−5

1200 1.2 · 10−5 8.6 · 10−6

1300 6.8 · 10−6 5.1 · 10−6

1400 4.2 · 10−6 2.6 · 10−6

1500 2.5 · 10−6 2.0 · 10−6

Table F.3: Expected significances for different signals in the dark Higgs HDS for the
ee and µµ channels.
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G Light vector HDS ML analysis

In this section, we show the results of the ML analysis for the light vector HDS,

corresponding to the steps in the light dark sector analysis in section 7.7.

G.1 Hyperparameters

Light vector HDS

Hyperparameter Value

Number of hidden layers 3
Neurons per layer 50
Learning rate (ϵ) 10−2

L2 weight decay (λ) 10−6

Epochs 50
Batch size 10% of training set

Exponential decay rate (ρ1) 0.90
Exponential decay rate (ρ2) 0.99
Stabilization constant (δ) 10−8

Table G.1: Hyperparameters used for training the neural network on the light vector
HDS.

(a) (b)

Figure G.1: Grid searches for optimal hyperparameters a) L2 weight decay (λ) and
learning rate (ϵ), and b) number of hidden layers and neurons per layer for ML
training on the light vector HDS using accuracy as measure.
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G.2 Performance

Figure G.2: Training and validation loss as a function of epochs during training on
the light vector HDS.

(a) (b)

Figure G.3: ROC curve plots for a selection of Z ′ mass signals in the a) ee and b)
µµ channel in the light vector HDS.
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Light vector HDS

ee channel µµ channel

mZ′ (GeV) Accuracy AUC Accuracy AUC

130 0.883 0.989 0.867 0.989
200 0.970 0.996 0.963 0.996
300 0.985 0.999 0.93 0.998
400 0.988 0.999 0.988 0.999
500 0.989 1.0 0.991 1.0
600 0.989 1.0 0.990 0.999
700 0.992 1.0 0.990 1.0
800 0.992 1.0 0.991 1.0
900 0.991 1.0 0.992 1.0
1000 0.992 1.0 0.991 1.0
1100 0.993 1.0 0.992 1.0
1200 0.992 1.0 0.991 1.0
1300 0.992 1.0 0.991 1.0
1400 0.993 1.0 0.991 1.0
1500 0.993 1.0 0.992 1.0

Table G.2: Accuracy and AUC achieved by the neural network for different Z ′ mass
signals in the light vector HDS.
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G.3 Results

Figure G.4: Permutation feature importance of the features used to train the neural
network for the light vector HDS.

(a) (b)

Figure G.5: Classification score distributions for the background and signal for the
neural network in the light vector HDS. The results are shown in the a) ee and b)
µµ channel and compared with real data outside of the signal region.
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(a) (b)

Figure G.6: Expected significance for the different signals in the light vector HDS
at different classification scores in the a) ee and b) µµ channels. The approximation
Z = s√

b
is used in order to prevent undefined values.

Light vector HDS

mZ′ (GeV) Expected significance (Z)

ee channel µµ channel

130 3.3 · 10−2 3.1 · 10−2

200 1.8 · 10−2 1.6 · 10−2

300 5.9 · 10−3 4.9 · 10−3

400 1.4 · 10−3 1.2 · 10−3

500 5.8 · 10−4 4.5 · 10−4

600 2.0 · 10−4 1.6 · 10−4

700 3.4 · 10−5 2.6 · 10−5

800 3.9 · 10−5 3.0 · 10−5

900 1.9 · 10−5 1.4 · 10−5

1000 9.4 · 10−6 6.9 · 10−6

1100 4.5 · 10−6 3.3 · 10−6

1200 2.4 · 10−6 2.0 · 10−6

1300 1.9 · 10−6 7.5 · 10−7

1400 0 1.3 · 10−6

1500 1.5 · 10−6 8.9 · 10−7

Table G.3: Expected significances for different signals in the light vector HDS for
the ee and µµ channels.
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H Comparison of methods

Below, we show the ratio of the expected significances obtained by using neural

networks to the expected signifcances obtained by the cut and count method in the

dark Higgs HDS, light vector LDS and light vector HDS.

Dark Higgs HDS

mZ′ (GeV) Expected significance (ZNN/ZC&C)

ee channel µµ channel

130 6.23 · 102 -
200 1.52 1.53
300 2.18 1.79
400 1.93 1.79
500 2.01 2.32
600 2.16 2.15
700 1.45 2.24
800 2.32 2.27
900 2.19 2.41
1000 2.16 2.58
1100 2.28 2.67
1200 2.40 2.69
1300 2.34 3.40
1400 2.63 2.65
1500 2.27 -

Table H.1: Ratio of expected significance ZNN/ZC&C obtained by the neural network
(NN) and cut and count (C&C) method for the dark Higgs HDS.
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Light vector LDS

mZ′ (GeV) Expected significance (ZNN/ZC&C)

ee channel µµ channel

130 - -
200 0.13 0.14
300 1.50 3.80
400 1.58 1.2
500 1.58 1.67
600 1.53 1.82
700 1.60 1.86
800 1.67 1.86
900 1.64 2.02
1000 1.66 2.27
1100 1.77 2.36
1200 2.56 2.67
1300 1.72 2.79
1400 1.77 3.26
1500 1.88 3.57

Table H.2: Ratio of expected significance ZNN/ZC&C obtained by the neural network
(NN) and cut and count (C&C) method for the light vector LDS.

Light vector HDS

mZ′ (GeV) Expected significance (ZNN/ZC&C)

ee channel µµ channel

130 - -
200 1.38 1.45
300 1.73 1.69
400 1.79 1.88
500 1.87 1.88
600 2.00 2.08
700 2.00 2.17
800 2.05 2.14
900 2.21 2.22
1000 2.19 2.30
1100 2.05 2.54
1200 2.40 2.41
1300 3.11 1.53
1400 0.00 1.78
1500 1.83 1.51

Table H.3: Ratio of expected significance ZNN/ZC&C obtained by the neural network
(NN) and cut and count (C&C) method for the light vector HDS.
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