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Nonequilibrium magnons from hot electrons in antiferromagnetic systems
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We describe a nonthermal magnon activation mechanism in antiferromagnetic (AFM) systems via locally
equilibrated spin-unpolarized hot electrons excited by an ultrafast intense laser pulse. We employ a quantum
kinetic equation that takes into account a direct electron-magnon scattering channel in either bulk AFM metal or
at the interface of the AFM/normal-metal heterostructure. The mechanism is responsible for the nonequilibrium
population of AFM magnon modes on a subnanosecond timescale, which are formed shortly after quasither-
malization of hot electrons by Coulomb interactions. Nonequilibrium magnon populations can be additionally
manipulated by applying an external magnetic field. Our work paves the way toward spin dynamics control in
AFM systems via the ultrafast manipulation of out-of-equilibrium magnon excitations.
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The discovery of ultrafast spin control by subpicosecond
laser pulses promises new opportunities for data storage and
processing [1–3]. At the same time ultrafast magnetization
dynamics involve nonequilibrium phenomena that lack com-
prehensive ab initio or model description. The field has no
shortage of experimental observations: ultrafast demagneti-
zation and magnetic switching as well as nonequilibrium
magnon population excitation.

The observed phenomena have obtained qualitative inter-
pretations based on the mechanisms of laser-induced heating
[4,5], magnetic exchange engineering [6–8], light-induced
fields [9–11], etc.

Ultrafast photophysical phenomena are often successfully
described within the phenomenological multitemperature
model that assumes thermalized distributions of electron,
magnon, phonon, and other subsystems [2]. Many experi-
ments with conducting magnets assume initial excitation of
nonthermal hot electrons and their energy transfer into ther-
malized spin and lattice degrees of freedom [12,13]. Such
energy transfer may, however, prompt nonequlibrium magnon
excitations on transient timescales of electron-magnon in-
teractions [14–16]. In particular, magnons in half-metal
ferromagnets may be nonthermally excited by laser-induced
hot electrons via nonquasiparticle (incoherent) states [15,17–
19]. In half-metal ferromagnets, the electrons are almost fully
spin polarized; hence, magnon excitations are facilitated by
some virtual scattering processes [15].

In this Letter, we consider antiferromagnetic (AFM) sys-
tems, where electron subbands are spin degenerate. We show
how nonequilibrium magnons are nonthermally activated via
a direct magnon-electron scattering channel. We assume that
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the strongly excited electron subsystem, by an ultrafast laser
pulse, is initially quasithermalized at some hot temperature.

Despite the vast literature on different aspects of electron-
magnon interactions and the diversity of correlated materials
with AFM ordering, there exists only a handful of studies of
AFM magnon excitation by electrons [20,21].

Typical resonance frequency in AFM systems is in the tera-
hertz range. This is in contrast to ferromagnetic (FM) systems
where it can hardly exceed a few gigahertz. This property
has been put forward as the basis for ultrafast AFM mem-
ory and computational devices [22]. Unlike FM systems, the
AFM materials are typically characterized by two circularly
polarized magnon modes with opposite polarizations [23].
Energy transfer from hot electrons may induce a nonequilib-
rium population of these modes on transient timescales. We
argue that such nonequilibrium magnon kinetics is generic for
AFM metals [24,25] and AFM-insulator/normal-metal het-
erostructures.

Below we consider an AFM semiconductor with two (A
and B) sublattices characterized by magnetic moments SAi

and SBi, where the index i numerates magnetic unit cells.
The AFM dynamics is described by the Néel vector L =∑N/2

i=1 (SAi − SBi ), where N is the total number of lattice sites.
The value of localized magnetic moments S is assumed to be
sufficiently large to justify the expansion in a small parameter
(2S)−1.

Starting from an effective s-d ( f ) model, we formulate a
Boltzmann kinetic equation [15,26–28] for nonequilibrium
magnons in the presence of thermalized hot electrons.

The model consists of an effective tight-binding Hamilto-
nian He for conduction electrons that is coupled to an AFM
Heisenberg model Hm for localized spins by a local exchange
interaction,

Hsd = −Isd

N∑
i=1

Si · c†
iσ σσσ ′ciσ , (1)
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where Isd is the s-d ( f ) exchange parameter, σ is the vector
of Pauli matrices, and ciσ (c†

iσ ) is the corresponding electron
annihilation (creation) operator at site i with spin-1/2 index σ

[29,30].
We diagonalize the electronic Hamiltonian He and linearize

the magnon Hamiltonian Hm with respect to its ground state
[see the Supplemental Material (SM) [31]]. The resulting
model reads H = He + Hm + Hsd , where

He =
∑
kσ

εk[c†
ckσ cckσ

− c†
vkσ c

vkσ
], (2a)

Hm =
∑

q

[ωα
qα†

qαq + ωβ
qβ†

qβq], (2b)

represent the bosonic and fermionic sectors of the model,
respectively [32–37].

The fermionic annihilation (creation) operators,
cmkσ (c†

mkσ ), are defined for conduction, m = c, and valence,
m = v, bands with the dispersion εmk = ±εk. Bosonic
annihilation (creation) operators αq (α†

q) and βq (β†
q )

refer to the two magnon branches with the dispersions
ω

α(β )
q = ωq ∓ � that are split by a Zeeman energy �. The

summations over k and q extend over the first Brillouin zone
that is defined with respect to the magnetic lattice (with the
double lattice spacing).

We consider a single-orbital tight-binding model of con-
duction electrons on a bipartite lattice with nearest-neighbor
hopping ta and a Heisenberg model of collinear AFM on the
same lattice [29,30,32,38], hence

εk =
√

S2I2
sd + z2t2

a |Fk|2, ωq = 2JzS
√

1 − |Fq|2, (3)

where J is the Heisenberg exchange energy, z is the coordina-
tion number, and Fk = z−1 ∑z

α=1 exp(ik · δα ) is the structure
factor, where the vectors δα are the translation vectors to the
nearest-neighbor sites. In our model, the AFM electron band
gap is set by 2S|Isd |.

We restrict ourselves to the lattice with the inversion sym-
metry and neglect spin-orbit interactions. For the sake of
definiteness, we set the Fermi level εF at the conduction band
and assume the limit εF � �. In this case the effect of exter-
nal magnetic field can be taken into account in the form of
Zeeman splitting of magnon modes only, while the splitting
of conduction electron bands and, hence, spin polarization
of itinerant electrons can be disregarded. We also neglect
nonlinear magnon-magnon interactions [37].

In the linear order with respect to Isd the electron-magnon
interaction of Eq. (1) can be rewritten as

Hsd = −
√

SIsd√
N

∑
m,n∈{c,v}

∑
k,q

{
Vα↑

mn α†
qc†

mk↑cnk+q↓

+ Vα↓
mn αqc†

mk↓cnk−q↑ + Vβ↓
mn β†

qc†
mk↓cnk+q↑

+ Vβ↑
mn βqc†

mk↑cnk−q↓
}
, (4)

where the dimensionless quantities Vγ σ
mn parametrize the inter-

(m 	= n) and intra- (m = n) band transfer rates that are defined
in the SM [31].

We apply the model of Eqs. (1) and (2) to describe magnon
dynamics in a nonequilibrium situation: the initial state is

formed by hot electrons, quasithermalized by Coloumb in-
teractions at an effective temperature T , and by a negligible
number of thermal magnons. Such a state is formed by a
femtosecond laser pulse on picosecond timescales. The next
nanosecond is dominated by energy transfer from an electron
to a magnon subsystem due to the interaction of Eq. (4).
This is the process that we aim to describe with the kinetic
approach. We find that magnon kinetics cannot be merely
reduced to heating. It is characterized instead by an anomalous
excitation of magnons with large momenta.

In order to construct a kinetic equation for magnon densi-
ties, we employ a perturbation formalism that was originally
developed by Fröhlich and Taylor [26] in the context of
electron-phonon interaction.

We use the Heisenberg picture to introduce time-dependent
magnon densities,

Nα
q (t ) = 〈α†

q(t )αq(t )〉, Nβ
q (t ) = 〈β†

q (t )βq (t )〉, (5)

and interband magnon transition probabilities,

Pαβ
q (t ) = 〈α†

q(t )βq (t )〉, Pβα
q (t ) = 〈β†

q (t )αq(t )〉, (6)

where the angular brackets represent the averaging over the
canonical ensemble at an initial moment of time. Our goal is
to derive a kinetic equation on these quantities to model their
time evolution.

Using nonequilibrium field theory [31], we can cast these
equations in the following form:

∂t N
γ
q (t ) = [

1 − (eω
γ
q /kBT − 1)Nγ

q (t )
]
Iγ γ

q (t ), (7a)

∂t P
αβ
q (t ) = Pαβ

q (t )Iαβ
q (t ) − [

1 + Pαβ
q (t )

]
Iβα

q (t ), (7b)

∂t P
βα
q (t ) = [

1 + Pβα
q (t )

]
Iαβ

q (t ) − Pβα
q (t )Iβα

q (t ), (7c)

where T is the effective temperature of hot electrons, kB is
the Boltzmann constant, Iγ γ

q and Iγ γ̄
q represent intra- and in-

terband collision integrals, γ = {α, β}, and γ̄ 	= γ . Intraband
collision integrals are defined as

Iαα
q = 2πSI2

sd

N

∑
m,n,k

∣∣Vα↑
mn

∣∣2
[1 − f (εmk )] f

(
εmk + ωα

q

)

×An
k+q↓

(
t, εmk + ωα

q

)
, (8a)

Iββ
q = 2πSI2

sd

N

∑
m,n,k

∣∣Vβ↓
mn

∣∣2
[1 − f (εmk )] f

(
εmk + ωβ

q

)

×An
k+q↑

(
t, εmk + ωβ

q

)
, (8b)

while the interband collision integrals Iγ γ̄
q (t ) are given by

Iαβ
q = πSI2

sd

N

∑
m,n,k

∣∣Vα↑
mn

∣∣2[
f
(
εmk + ωβ

q

)
An

k+q↓
(
t, εmk + ωβ

q

)

− f
(
εnk+q − ωβ

q

)
Am

k↑
(
t, εnk+q − ωβ

q

)]
, (9a)

Iβα
q = πSI2

sd

N

∑
m,n,k

∣∣Vβ↓
mn

∣∣2[
f
(
εnk+q − ωα

q

)
Am

k↓
(
t, εnk+q − ωα

q

)

− f
(
εmk + ωα

q

)
An

k+q↑
(
t, εmk + ωα

q

)]
, (9b)
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where

Am
kσ (t, ε) = 1

π

�σ
mk(t, ε)/2

(εmk − ε)2 + [
�σ

mk(t, ε)/2
]2 (10)

is the electron spectral function. Here, the inverse quasipar-
ticle lifetime �σ

mk(t, ε) is defined by the electron-magnon
scattering in the adiabatic approximation. Its dependence on
the evolution time t originates in the time dependence of
magnon density. f (ε) = (e(ε−εF )/kBT + 1)

−1
is the equilibrium

Fermi-Dirac distribution function of hot electrons in a qua-
sithermalized state with temperature T .

The scattering rate �σ
mk can be represented as sum intra-

(m = n) and inter- (m 	= n) band contributions

�σ
mk(t, ε) = 2πSI2

sd

N

∑
n,q,γ

�γσ
mn (k, q; t, ε), (11)

where �
γσ
mn (k, q; t, ε) is a dimensionless scattering rate for

an electron with spin σ and momentum k, while q is the
transferred momentum to or from a magnon,

�α↑
mn = ∣∣Vα↑

mn

∣∣2[
Nα

q + f (εnk+q)
]
δ
(
ε + ωα

q − εnk+q
)
,

�α↓
mn = ∣∣Vα↓

mn

∣∣2[
1 + Nα

q − f (εnk−q)
]
δ
(
ε − ωα

q − εnk−q
)
,

�β↑
mn = ∣∣Vβ↑

mn

∣∣2[
1 + Nβ

q − f (εnk−q)
]
δ
(
ε − ωβ

q − εnk−q
)
,

�β↓
mn = ∣∣Vβ↓

mn

∣∣2[
Nβ

q + f (εnk+q)
]
δ
(
ε + ωβ

q − εnk+q
)
.

In the absence of a magnetic field, � = 0, one finds Nα
q = Nβ

q ,
�α↓

mn = �β↑
mn , and �α↑

mn = �β↓
mn , which reflects the degeneracy of

magnon bands.
The variation of the nonvanishing component of the Néel

vector δL(t ) = Lz(t ) − Lz(0) is directly related to the magnon
density Nγ

q (t ) as

δL(t ) =
∑

q

(|uq|2 + |vq|2)
(
Nα

q (t ) + Nβ
q (t )

)
, (12)

where uq and vq are Bogoliubov coefficients, defined in the
SM [31].

Scattering rates �σ
mk(t, ε) do increase with time due to the

fact that magnon densities are increasing. Such an increase
has, in turn, a strong effect on electron-magnon collisions
that become more probable. This phenomenon goes beyond
quasiparticle approximation that assumes time-independent
scattering rates.

Due to the Lorentzian shape of the spectral function in
Eq. (10) the scattering rates �σ

ik(t, ε) make sense only in a
vicinity of the mass shell ε = εmk. In our numerical analysis
below we do, however, explicitly perform integration over
energy.

For the sake of illustration, we apply the kinetic theory de-
veloped above to an AFM metal on the cubic lattice assuming
that the conduction electron Fermi energy is sufficiently far
from the half filling (see the inset in the lower panel of Fig. 1).
For a stronger s − d ( f ) interaction close to the half-filling
limit, see the SM [31].

To be more realistic, we assume a uniaxial easy-axis
magnetic anisotropy of Kz ∼ 10−6εF, that enters the AFM res-
onance frequency and opens up a band gap, �ani ∼ 10−2 εF,

FIG. 1. The scattering rate of hot electron quasiparticles in the
conduction (top panel) and valence (bottom panel) bands at energy
ε = 1.5 εF from magnons as a function of the wave number. Solid
lines correspond to � = 0 for kBT = 0.2εF (blue) and kBT = 0.4εF

(orange). Dashed lines show �
↑
mk (blue) and �

↓
mk (red) for � ∼

�ani = 10−2εF and kBT = 0.2εF, which practically coincide with the
solid blue line. We set Isd = 0.03ta, S = 5/2, and εF = 1.2ta. The
inset shows the dispersion of electronic (blue) and magnonic (green)
bands, in the unit of ta, in the absence of a magnetic field, while the
dashed red line in the inset corresponds to the Fermi energy.

in the magnon spectrum [31]. Magnon dispersion is also il-
lustrated at the inset of Fig. 1 but the gap is too small to be
visible.

We perform a numerical simulation of magnon kinetics for
two different temperatures of hot electrons: kBT = 0.2εF and
kBT = 0.4εF . We also illustrate the effect of Zeeman coupling
� by comparing the case with two degenerate AFM magnons
� = 0, and the case close to the AFM spin-flop transition
� ∼ �ani [31].

In Fig. 1 we plot electron-magnon scattering rates �
↑
mk and

�
↓
mk shown with dashed blue and dashed red lines, respec-

tively, as a function of the wave vector k. The field � = �ani

is still too small to induce any reasonable effect on the scat-
tering rates. The contribution of the interband scattering to the
total scattering rate is further reduced by increasing the Fermi
energy and the electronic band gap.

The conduction electron scattering rate �σ
ck has two peaks

at two Fermi wave vectors, while the valence scattering rate
�σ

vk has a single peak at the bottom (top) of the conduction
(valence) band.

We assume that at an initial moment of time t = 0,
quasiequilibrium hot spin-unpolarized electrons are described
by the Fermi-Dirac distribution with an effective temperature
T , while there is no nonequilibrium magnon Nγ

q (t = 0) = 0
in the system. We then apply the Boltzmann equations of
Eqs. (1) to compute nonequilibrium magnon excitations for
each magnon band, Eq. (7a), and for the interband magnon
scattering probabilities, Eqs. (7b) and (7c).

In the absence of a magnetic field, both magnon modes
are degenerate, and the number of magnons increases
monotonously with temperature. In the presence of a mag-
netic field, the degeneracy of magnon modes is lifted. As a
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FIG. 2. Nonequilibrium magnon density Nγ
q (top panel) and its

quasiparticle approximation Nγ ,Q
q (bottom panel) as a function of the

magnon wave number at dimensionless time t = 0.85/Iαα
q0(kBT =

0.2εF, � = 0). Solid blue and solid orange lines show magnon dis-
tributions in the absence of a magnetic field where both magnon
modes are degenerate at kBT = 0.2εF and kBT = 0.4εF, respectively.
Close to the spin-flop field, � = �ani  10−2εF and kBT = 0.2εF,
magnon distributions of the α and β modes are presented by red and
blue dashed lines, respectively. The parameters are the same as for
Fig. 1. Black dotted curve in the top panel represents the thermal
magnon number from the Bose-Einstein distribution for kBT = 0.4εF

and � = 0. We divided the actual numbers into nγ

q=0 ≈ 40.8 to
make the curve in the same scale of the nonthermal magnons. The
inset shows the time evolution of the normalized Néel vector field,
δL̃ = δL/(|uq=0|2 + |vq=0|2). The blue and orange lines correspond
to kBT = 0.2εF and kBT = 0.4εF in the absence of a magnetic field,
respectively, while the green line corresponds to kBT = 0.2εF in the
presence of a magnetic field close to the spin-flop field.

result, the number of left-handed α magnons becomes larger
than the number of right-handed β magnons, as shown in
Fig. 2. Since circularly polarized magnon modes carry spin
angular momentum, the electron-magnon scattering generates
a net nonequilibrium spin polarization in the system. To com-
pare magnon number distribution of nonthermally activated
magnons and thermal magnons at hot electron temperature,
we plot Bose-Einstein distribution nγ

q = (eω
γ
q /kBT − 1)

−1
in

Fig. 2. The number of thermal magnons at hot electron tem-
perature is an order of magnitude larger than the nonthermally
activated magnons. The effective temperature of nonequilib-
rium magnons is in the order of Isd/2. The wave-number
dependency of equilibrium and nonequilibrium magnons is
different at large wave numbers. We do not expect a pop-
ulation of a significant amount of thermal magnons in the
subpicosecond timescale.

It is instructive to consider a “classic” limit for nonequi-
librium magnon distribution Nγ

q by formally replacing the
Lorentzian spectral function of Eq. (10) with the Dirac delta
function, Am,Q

kσ
(ε) = δ(εmk − ε). Such a quasiparticle approx-

imation corresponds to the time-dependent Fermi golden rule.
The corresponding magnon densities, Nγ ,Q

q , are plotted in the
bottom panel of Fig. 2. One can see that the quasiparticle
approximation generally underestimates magnon densities.

FIG. 3. The interband transition probability between two
magnon modes as a function of magnon wave number. Solid blue and
solid orange lines show the scattering rate in the absence of a mag-
netic field, where interband scattering probabilities are degenerate at
kBT = 0.2εF and kBT = 0.4εF, respectively. For � = �ani  10−2εF

and T = kB0.2εF, the interband scattering probabilities Pαβ
q and Pβα

q
are presented by red and blue dashed lines, respectively. The param-
eters are the same as those for Fig. 2.

Interband magnon transition probabilities between two
AFM magnon modes are shown in Fig. 3. In the absence of
a magnetic field, both interband probabilities are equal and
decrease with temperature. In the presence of the field, the
scattering probabilities Pαβ

q and Pβα
q become different and

may, in principle, acquire a nonmonotonous temperature de-
pendence.

The nonequilibrium AFM magnons can be activated via
interfacial electron-magnon scattering [14,39,40]. To describe
such processes within our formalism, one should only replace
the bulk Isd in Eq. (4) with the corresponding interface inter-
action.

Nonequilibrium magnons excited in the AFM layer can
be detected by different methods, e.g., electrically by means
of the inverse spin Hall effect in an AFM–heavy metal het-
erostructure or direct optical measurement of the AFM Néel
vector. The activation of the nonthermal magnons is equiva-
lent to tilting the Néel vector from its equilibrium direction,
which is a measurable quantity by optical techniques. The
dynamics of the Néel vector δL for different temperatures and
in the presence of a magnetic field are plotted in the inset
of Fig. 2. In the absence of magnetic field, δL increases but
saturates very quickly after quenching (see blue and orange
lines in the inset of Fig. 2), while in the presence of mag-
netic field, δL increases continuously as a function of time
(see green line in the inset of Fig. 2). It will be thermal-
ized and saturated over longer timescales by magnon-phonon
interactions.

In summary, we developed quantum Boltzmann equa-
tions for nonthermal AFM magnon densities in the presence
of hot electrons. We showed that one may activate and control
nonequilibrium AFM magnon populations with an external
magnetic field. We discussed the qualitative importance of
electron scattering on magnon evolution and compared our
results to magnon quasiclassic approximation. Considering
electron-magnon scattering rates beyond quasiclassical ap-
proximation, one suppresses the effects of temperature but
enhances those of magnetic field. These results show that non-
thermal magnon distribution can be activated by hot electrons
in AFM systems. Our results pave the way for the emerging
field of AFM spintronics, AFM magnon condensation [41],
and ultrafast spin dynamics in correlated systems.
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