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ABSTRACT Cameras form an essential part of any autonomous surface vehicle’s sensor package, both for
COLREGs compliance to detect light signals and for identifying and tracking other vessels. Due to limited
fields of view compared to more traditional autonomy sensors such as lidars and radars, an autonomous
surface vessel will typically be equipped with multiple cameras which can induce biases when used in
tracking if a target is present in multiple image frames. In this work, we propose a novel pipeline for
camera-based maritime tracking that combines georeferencing with clustering-based multi-camera fusion
for bias-free camera measurements with target range estimates. Using real-world datasets collected using the
milliAmpere research platform the performance of this pipeline exceeded a lidar benchmark across multiple
performance measures, both in pure detection performance and as part of a JIPDA-based tracking system.

INDEX TERMS Sensor fusion, target tracking, situational awareness, autonomous surface vessel, experi-
mental validation.

I. INTRODUCTION
Autonomous surface vehicles (ASVs) are often equipped
with multiple heterogeneous sensors both for redundancy
and robustness purposes. Sensors with differing modalities
and operating principles can have complementary strengths,
increasing both the performance and the reliability of the
vehicle’s situational awareness systems. One such example is
how at shorter ranges a lidar, which provides very accurate,
high-frequency sensor data, complements a radar that has
a far greater range but at a lower frequency and with less
accurate sensor data [1]. If one of the sensors fails the vehicle
will also be able to maintain a reduced level of situational
awareness that might be enough for safe navigation.

In recent years imaging sensors such as daylight electro-
optical (EO) and infrared (IR) cameras have seen increased
use in autonomous systems. Compared to the commonly used
active sensors cameras can yield higher update frequencies
and greater resolution allowing the situational awareness sys-
tem to both detect and classify targets of interest within sensor
range. The automotive sector was an early adopter of imaging
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sensors, finding applications for both driver assistance sys-
tems [2] and autonomy [3]. Maritime applications typically
combine cameras with other sensors such as radar [4], [5] or
AIS [6], however, some applications of camera-only tracking
exist [7], [8].

Cameras are not without their challenges. Due to the
lack of active signal emission imaging data only encodes
the direction of the light that is gathered at a pixel and
not the distance to the light source. For sensor redundancy
purposes this presents some unique challenges when only
passive sensors remain functional. While several methods for
bearings-only tracking have been developed [9], [10], [11],
they all require the vehicle to perform a series of significant
maneuvers to induce observability. In many cases, this is
not desirable behavior due to energy efficiency, passenger
comfort, etc. Camera-based depth estimation has therefore
seen significant research focus in recent years. The advent of
deep learning has seen the introduction of several methods for
monocular depth estimation based on neural networks [12],
[13] with promising performance. However, these methods
rely on large datasets and can be computationally expensive,
often failing when encountering data significantly different
from their training set.
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Binocular depth estimation, also known as stereo vision,
is an alternate approach that relies on triangulating two cam-
eras with overlapping fields of view. Pixels in each image are
matched to each other using a wide range of methods from
classical [14] to deep learning-based [15]. These methods are
less reliant on large training data but can still be computation-
ally expensive and large baselines are typically required for
most distances encountered in a maritime context. They also
increase the cost and complexity of the sensor suite, requiring
twice the number of cameras for equivalent coverage. A third,
hybrid approach is structure-from-motion [16] which emu-
lates a stereo vision setup through the motion of a monocular
camera, yielding multiple views of an object from a single
camera. This removes the need for binocular cameras, but can
still require significant computation. Non-stationary objects
also pose an issue due to the time difference between the
matched images.

In contrast, active sensors such as radar and lidar will return
measurements of both the target range and bearing without
the need for complex processing or estimation. Cameras are
also typically equipped with lenses yielding limited fields of
view, requiring multiple cameras to provide sensor coverage
in all directions. In certain positions, a target might therefore
be partially present in the sensor frames of two or more
cameras. If the cameras are processed individually by the
tracking system, this will induce biases in the state estimates
as only parts of the vessel would be visible in any one frame.
If processed collectively as a single, virtual sensor, more
than one measurement would originate from the target in
question violating a common assumption in many tracking
methods [17], [18], [19].

In this work, we propose a multi-camera detection pipeline
that circumvents these issues. Adapting the georeferencing
method presented in [20] to a moving platform allows the
usage of implicit information to estimate target ranges from
image detections, eliminating the need for bearings-only
tracking or complex monocular or stereo-based depth estima-
tion. Clustering-based sensor fusion is then used to perform
measurement-level sensor fusion of the different cameras,
yielding only a single measurement from each target. This
approach also allows for multi-spectral, pre-tracking fusion
of IR and EO cameras. A real-world dataset is used to evaluate
the detection performance of this pipeline against a lidar
benchmark using two distinct targets equipped with accurate
GNSS ground truth sensors. We also integrate this pipeline
into a multi-target, multi-sensor tracking system based on
Joint Integrated Probabilistic Data Association (JIPDA) [21]
and evaluate it against the lidar benchmark.

II. SENSOR PLATFORM
The research platform milliampere shown in Fig. 1, is an
urban autonomous passenger ferry developed by the Auto-
ferry project at NTNU. The sensor system of the ferry is
described in detail in [1] and [22], this section repeats key
details used in this work.

FIGURE 1. Milliampere 1 (background) and milliAmpere 2 (foreground).

To maximize research potential milliAmpere is equipped
withmultiple exteroceptive and proprioceptive sensors. Navi-
gation is provided by a dual antenna GNSS navigation system
with real-time kinematic corrections from a land-based sta-
tion. milliAmpere is also equipped with multiple situational
awareness sensors where some have been used in this work.
The lidar benchmark utilizes a Velodyne VLP-16 sensor with
a maximum range of 100m. Imaging data is provided by
a 360◦ camera rig equipped with 5 EO and 5 IR cameras.
These cameras operate at 5 and 9 HZ with resolutions of
1224× 1024 and 640× 512 pixels.

III. IMAGE PROCESSING
Machine vision cameras typically equipped on ASVs do not
always yield sensor data readily processable by common
computer vision algorithms. In this section, we introduce the
pre-processing steps applied to milliAmpere’s camera data
before detection pipeline processing.

A. COLOR CONVERSION
Most commercially available RGB daylight cameras uti-
lize Bayer-type imaging sensors first described in a
1976 patent [23] by B. Bayer. These sensors consist of a
grid of photosensors corresponding to individual pixels where
each sensor only captures a single color, either red, green or
blue. Bayer aligned the photosensors in an alternating grid
with half green and a quarter red and blue sensors shown
in Fig. 2. This pattern was based on how the human eye
perceives light, more specifically the luminance, or bright-
ness, and the color, chrominance. Human eyes have greater
sensitivity to luminance than chrominance and the M and
L cones responsible for this are more responsive to green
than the other colors. Mimicking this sensitivity results in
higher luminance resolution and was expected to yield a
better-looking image compared to the equal color alloca-
tion which has greater chrominance resolution. The resulting
sensor output is known as a Bayer pattern image, which
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FIGURE 2. Bayer photosensor color alignment.

is, on a pixel level, monochrome. An example is shown in
Fig. 3a.

To convert the Bayer pattern image to a full-color image
a process known as demosaicing must be applied. Many
algorithms exist for this purpose ranging from simple inter-
polation to more complex correlation-based methods [24].
Many machine vision cameras are capable of outputting
either raw, Bayer pattern images or demosaiced RGB color
images, shown in Fig. 3b. The latter shifts the responsibility
for implementing demosaicing from the user to the camera
and could also be more computationally efficient and faster
due to application-specific digital signal processors in the
camera. The former allows the user to choose between awider
range of demosaicing methods and also reduces the band-
width required to 1/3rd as the image can be transmitted as
monochrome, requiring only a single intensity for each pixel.
This is also the main motivation for outputting Bayer format
images from milliAmpere’s sensor rig which is connected by
a single 1Gb ethernet link with limited bandwidth.

B. DISTORTION CORRECTION
Most camera lenses yield a non-perfect projection of light
onto the image sensor, resulting in a deviation from the
expected versus the actual pixel a ray intersects with. This
phenomenon is known as lens distortion and primarily
appears in two forms, radial and tangential. Radial distor-
tion is approximately symmetric and causes straight lines
to appear curved. Tangential distortion appears when lens
elements are not perfectly aligned with the sensor plane,
resulting in some elements appearing closer than expected.
Radial distortion is typically modeled using two or three
distortion coefficients [25] according to

xd = x + k1r2 + k2r4 + k3r6 (1)

yd = y+ k1r2 + k2r4 + k3r6 (2)

r2 = (x2 + y2) (3)

where xd and yd are the distorted pixel coordinates of the
expected coordinates x and y while k1−3 are the radial distor-
tion coefficients. Tangential distortion is typically modeled

FIGURE 3. Pre-processing pipeline example of image captured in the
Trondheimsfjord from milliAmpere.
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using two coefficients according to

xd = x + 2p1xy+ p2(r2 + 2x2) (4)

yd = y+ p1(r2 + 2y2)+ 2 p2xy) (5)

where p1−2 are the tangential distortion coefficients. Com-
bining these yield

xd = x + k1r2 + k2r4 + k3r6 + 2p1xy+ p2(r2 + 2x2) (6)

yd = y+ k1r2 + k2r4 + k3r6 + 2 p2xy+ p1(r2 + 2y2).
(7)

Many open-source frameworks, including the Robot Operat-
ing System and OpenCV, estimate these parameters as part
of their camera calibration process and also include func-
tionality for correcting lens distortion. The end result of the
pre-processing steps is an RGB color image corrected for lens
distortion, shown in Fig. 3c.

IV. CAMERA DETECTION PIPELINE
For the raw imaging data to be useful in a target tracking sys-
tem, multiple processing steps must be performed, forming a
detection pipeline. In this section, we detail the various parts
of this pipeline used to generate sensor measurements from
this data.

A. DETECTOR
Sensor data from cameras is usually supplied in the form
of color images with three 8-bit channels per pixel, each
representing either red, green, or blue intensity corresponding
to the wavelength of light that hit that pixel. In contrast to
active sensors such as radar and lidar which typically do not
yield substantial returns from the ocean surface, a camera will
yield color information for all parts of a scene. Interpreting
this sensor data thus requires more complex detectors capable
of separating objects of interest from background noise.

Research interest in computer vision has increased rapidly
in the last decade. The commoditization of computing power
has made it possible to train highly accurate deep-learning-
based models with millions of parameters for the detection
and classification of objects in images. In this work we utilize
a detector based on the Yolo v4 architecture [26] trained
on the COCO dataset [27], however, the camera pipeline
described in this work is detector agnostic and any other
detector yielding a bounding box or segmented outline will
work. An example detection output is shown in Fig. 4.

B. RANGE ESTIMATION
Due to their passive nature, cameras do not natively supply
pixel ranges requiring further processing for range informa-
tion to be extracted. The key element in this process is to
utilize implicit information to estimate target ranges based
on pixel detections. For maritime path planning and collision
avoidance, only a certain subset of objects such as boats
and kayaks need actual tracking. These objects will almost
always be situated on the ocean surface, which in calmer
conditions can be modeled fairly accurately as a flat plane.

FIGURE 4. Yolo v4 detection output.

By placing the camera above this plane, the target position can
be estimated using triangulation without the need for more
complex stereo camera systems.

This process requires an accurate measurement of the cam-
era’s extrinsic parameters, i.e. its position and orientation
relative to a local NED coordinate frame. This information
is typically supplied by a vessel’s navigation where sensor
data from IMUs andGNSS receivers provide the vessel’s pose
and position. A simple, fixed transform from the vessel body
frame will then yield the extrinsic camera parameters. This
transform can easily be found using a 3Dmodel of the vessel,
physical measurements, or estimated based on the camera’s
intrinsic parameters and known object positions. We denote
this transform as a combined translation vector, twc , and a
rotationmatrix,Rw

c , from the camera frame c to the local NED
frame, w, given by

Rw
c = Rw

b (t)R
b
c (8)

twc = Rw
b (t)t

b
c + twb (t) (9)

where Rw
b (t) and twb (t) is the dynamic transform from body

frame b to the NED frame w at time t supplied by the
navigation system.

The camera’s intrinsic parameters according to the pinhole
camera model include the focal length of the lens, fx and fy,
as well as the optical center cx and cy. Combined with the
extrinsic parameters this is all that is necessary to project the
world point xw =

[
xw yw zw

]⊺ into pixel coordinates xp =[
xp yp

]⊺:
s
[
xp
1

]
= K[Rc

w|t
c
w]
[
xw
1

]
(10)

where s is a scale factor given by the depth of the point in the
camera frame and K is the intrinsic matrix given by

K =

fx 0 cx
0 fy cy
0 0 1

 . (11)
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Inversely, if one or more of the target origin coordinates are
known the pinholemodel can be reversed to recover the origin
point of a pixel. Denoting the combined camera matrix P as

P = K[Rc
w|t

c
w] =

p11 p12 p13 p14p21 p22 p23 p24
p31 p32 p33 p34

 (12)

the pinhole projection model of (10) can be rearranged to
yield [

xpp31 − p11 xpp32 − p12
ypp31 − p21 ypp32 − p22

] [
xw
yw

]
=

[
zw(p13 − xpp33)+ p14 − xpp34
zw(p23 − ypp33)+ p24 − ypp34

]
. (13)

For distances within the camera detection range the earth cur-
vature induced elevation change between the ownship and the
detected target is negligible,1zw < 0.02m for distances up to
500m, and the pixel origin elevation can therefore be assumed
to be identical to the ownship elevation. This elevation can be
supplied by the navigation system of the ownship, either as a
time-moving average to compensate for measurement noise
and heave motion or as the current instantaneous estimate.
This results in[

xw
yw

]
=

[
xpp31 − p11 xpp32 − p12
ypp31 − p21 ypp32 − p22

]−1
×

[
zw(p13 − xpp33)+ p14 − xpp34
zw(p23 − ypp33)+ p24 − ypp34

]
(14)

which yields the position of the pixel origin.

C. DETECTION AGGREGATION
For each bounding box outputted by the detector, position
estimates are calculated for the pixel positions

[
xmin ymax

]
and

[
xmax ymax

]
corresponding to the bottom corners of

the bounding box. To maintain the consistency of the
clustering-based camera fusion described in section IV-E,
additional position estimates are generated between the two
corners using linear interpolation with a range of maximum
1m between subsequent estimates as shown in Fig. 5. This
distance was selected based on expected target separation.
Vessels are unlikely to operate at distances closer than this
which should avoid merging detections from distinct targets.
Denoting the position estimate of the left corner as x0w =[
x0w y0w

]⊤ and the right corner as x1w =
[
x1w y1w

]⊤, the range r
between the two estimates is given by

r =
√
(x1w − x0w)2 + (y1w − y0w). (15)

The total number of points needed to ensure the distance
threshold is maintained along the width of the bounding box
is then

Nw =
⌈
r
Td

⌉
(16)

where Td is the specified threshold and ⌈y⌉ the ceiling func-
tion of y. The difference in x and y between subsequent

estimates is given by

1x =
(x1w − x

0
w)

N
(17)

1y =
(y1w − y

0
w)

N
(18)

which yields the calculation

xiw =

x0w + i
1x

1y
0

 | i ∈ Z, 0 < i < Nw

 (19)

for estimate i. This process, including detection and range
estimation, is repeated for all cameras present in the system
and the estimates, including interpolations, are aggregated
into a single point cloud in the local NED frame.

1) TARGET HEIGHT ESTIMATION
Target height is also estimable using a similar approach.
Assuming all pixels are equidistant we can find the length
of a single pixel, lp, using the calculation

lp =
∥xNw − x0w∥
xmax − xmin

. (20)

While there will be some minor variations in pixel size as
the corners of the bounding box are further away than the
center, this assumption should be reasonably accurate within
the camera’s detection range. Once the average pixel size is
known the target height is estimated according to

ht = lp ∗ (ymax − ymin). (21)

The total number of vertical points required to ensure the
specified distance threshold is met is similarly calculated
according to

Nh = ⌈
ht
Td
⌉. (22)

Denoting x2w as the position estimate of the top right corner
and x3w as the top left corner of the bounding box, calculated
according to

x2w = x1w +

0
0
th

 (23)

x3w = x0w +

0
0
th

 , (24)

the points along the right side of the bounding box are gener-
ated according to

xiw =

x1w + i
 0

0
1z

 | i ∈ Z, 0 < i < Nh

 (25)

where

1z = ht/N . (26)
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FIGURE 5. Bounding box extent estimation, visualized as blue squares,
and lidar point cloud, colored dots.

Points along the top of the bounding box can be found accord-
ing to

xiw =

x3w + i
1x

1y
0

 | i ∈ Z, 0 < i < Nw

 (27)

and points along the left side of the bounding box according
to

xiw =

x0w + i
 0

0
1z

 | i ∈ Z, 0 < i < Nh

 (28)

D. DETECTION FILTERING
Littoral environments often contain moorings with multiple
stationary vessels. While technically still valid targets, track-
ing these vessels might put an unneeded computational strain
on the autonomy system with the possibility of real-time
performance degradation. This could drastically impact the
safety of the ownship, especially when maneuvering close to
other vessels. Moored vessels are also unlikely to move, and,
if tracked, more computationally efficient data association
methods might suffice. For these reasons, the possibility to
label or even filter out detections from these vessels is of high
usefulness in a tracking system.

1) OCCUPANCY GRID
Occupancy grids are a family of map-generating algorithms
based on noisy sensor data. Environments are represented as a
binary grid where each cell has a binary value corresponding
to either occupied, i.e. obstacle, or unoccupied. By generating
a local map, either through SLAM or other methods, where
unoccupied cells represent valid target positions, any detec-
tions falling outside these cells can be labeled or filtered out.

2) MAP GENERATION
Based on data from the NorwegianMapping Authority a base
map is generated fixed in a local NED frame. This base map
covers all land areas and is dilated slightly to compensate for
navigation and sensor uncertainty. Jetties and other poten-
tial mooring structures often extend further into the water

FIGURE 6. Occupancy grid of Trondheim area. White areas signify water,
black areas land.

than what the dilated base map covers, requiring additional
masking. This is done manually using freely available online
tools but could also be performed automatically using lidar
or visual SLAM to generate the additional masks. The end
result of this process is shown in Fig. 6.

E. CAMERA FUSION
In autonomous platforms with adjacent or overlapping cam-
era fields of view, situations might arise where a target is
visible for multiple cameras. If processed individually, the
resulting detection output could contain significant biases if
only parts of the vessel are visible. If processed collectively as
a single virtual sensor, this might also result in multiple mea-
surements per target. Both of these issues can be mitigated by
fusing detections using clustering.

The clustering algorithm used in this pipeline is based on
single link hierarchical clustering with k-d tree optimizations
and was first described in [28] for clustering radar data.
Each individual point gives rise to a cluster. Clusters are then
merged if any individual points in the two clusters i and j, pi
and pj, are closer than a specified distance threshold Tc

∥pi − pj∥ ≤ Tc ∀ (i ∈ Si, j ∈ Sj) (29)

where Si is the set of indexes for points in the cluster i.
One might assume that a similar threshold as the maximum
distance between generated points along the bottom bounding
box would suffice, however, this does not take into account
detection and navigation noise. At longer ranges, a few pix-
els of detection noise might induce a position difference of
multiple meters. Due to this, the distance threshold has been
set to Tc = 3m in this work. For other platforms utilizing
different detectors and navigation systems, this parameter
might require further tuning. The output of the camera fusion
process is visualized in Fig. 7.

1) MULTI-SPECTRAL FUSION
Another benefit of this approach is that measurements from
imaging sensors sensitive to other spectral bands, such as
infrared, can be fused into a single, more robust, detection.
EO cameras enjoy a significant price and resolution advan-
tage over most IR cameras. They are however more sensitive
to conditions such as fog and scene illumination. Infrared
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FIGURE 7. Fusion of detections from a target partially visible in two camera frames.

cameras, being sensitive to thermal radiation, will yield more
consistent performance across different conditions. Introduc-
ing infrared detections in the camera fusion process could
therefore yield a more robust sensing system and would
in practice result in a pseudo-multi-spectral camera system
realized through sensor fusion.

F. LIDAR BENCHMARK PIPELINE
The lidar benchmark pipeline utilizes the same land filtering
and clustering algorithm as described above. Lidar point
clouds, Fig. 9, are first converted from the lidar frame l to

a local NED frame according to

pwi = Rw
l p

l
i + twl . (30)

Occupancy grid filtering is then applied to remove land
returns and the resulting point cloud is then clustered to
generate a single measurement per target. This pipeline is
described in-depth in [1].

V. TRACKING SYSTEM
The tracking system used in this work is a single-sensor,
single-model version of the multi-sensor VIMMJIPDA.
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FIGURE 8. Multi-camera fusion output (blue cylinders) with GPS ground
truth (black spheres and text) and lidar point cloud (colored squares)
overlayed on occupancy grid.

FIGURE 9. Lidar point cloud, shown as colored squares, and land
occupancy grid. Square color is given by return intensity.

Algorithm 1 Detection Model
point_clouds← empty list
cameras← list of active cameras
for all camera in cameras do

bboxes← detect(image)
point_cloud ← range_estimation(bboxes)
point_clouds[camera]← point_cloud

end for
fused_cloud ← aggregate_pcl(point_clouds)
filtered_cloud ← occ_grid_filter(fused_cloud)
detections← cluster_pcl(filtered_cloud)

The VIMMJIPDA [29] multi-target tracker is a modern
formulation of the Markov-chain two JIPDA with Inter-
active Multiple Models (IMM). The multi-sensor VIM-
MJIPDA, described in [1], is a multi-sensor extension of
the VIMM-JIPDA with range-dependent sensor properties to
better support heterogeneous sensor fusion. In this section,
we describe the motion and sensor models used in this work
leaving the complete derivations to [1] and [29].

A. MOTION MODEL
A common motion model in the field of target tracking is the
constant velocity (CV) model. This assumes target velocities
are constant, modeling acceleration as a Gaussian white noise

process with zero mean. Target states are given by x =
[px , py, vx , vy] where p and v are positions and velocities in a
NED reference frame. For continuous time applications, the
model is given by the equation

ẋ = Ax+Gn. (31)

Target process noise, modeling acceleration, is given by n.
This noise is assumed to be white with diagonal covariance,
described by

n ∼ N (0,Dδ(t − τ )) D =
[
σ 2
a 0
0 σ 2

a

]
(32)

where σa describes the typical acceleration of the target. The
matrices A and G are given by

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 G =


0 0
0 0
1 0
0 1

 . (33)

For discrete-time applications, this model is discretized as

xk = Fxk−1 + vk vk ∼ N (0,Q) (34)

where F is the state transition matrix, xk the state at time-step
k and vk the discretized process noise with covariance Q.

B. LIDAR SENSOR MODEL
The lidar does provide 3-dimensional sensor data in the form
of point clouds, however, both ownship and target motion
is constrained to the ocean plane and elevation data can
therefore safely be discarded. Points in the point cloud are
given in Cartesian coordinates in a sensor-fixed frame based
on the range of the return, measured by time of flight, and the
angle of the return, measured by the receiver rotation. This
gives rise to a polar measurement model described by

f lz (xk ) =

[ √
p2x + p2y

arctan(py/px)

]
+ wl

k wl
k ∼ N (0,Rl) (35)

where fz is the measurement function and wk the sensor noise
for the lidar l with covariance matrix Rl . Due to the inter-
nal conversion from polar/spherical coordinates to Cartesian
coordinates, this would require the clustered detections from
the lidar pipeline to be converted back to polar coordinates.
Instead, the following sensor model is used

f lz (xk ) =
[
px
py

]
+ wl

k wl
k ∼ N (0, JRlJT) (36)

where J is the Jacobian of the polar to Cartesian conversion
of the measurement and R is the measurement noise in polar
coordinates.

C. CAMERA SENSOR MODEL
After the clustering-based camera fusion is applied the cam-
era detection pipeline outputs Cartesian detections. This
yields the same measurement function as the lidar:

f cz (xk ) =
[
px
py

]
+ wc

k . (37)
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D. MEASUREMENT NOISE
Ideally one would define the measurement noise in pixel
coordinates as this is where the actual detection takes place.
In the image plane, this measurement model takes the form
of

f pz (x
p
k ) =

[
xpk
ypk

]
+ wp

k wp
k ∼ N (0,Rp)). (38)

where xp and yp are the pixel coordinates, wp
k the measure-

ment noise with pixel covariance Rp and x
p
k the target state in

pixel coordinates obtained through the pinhole cameramodel.
One issue with this approach is that when random variables,
such as the pixel measurements, are transformed using a
non-linear function such as the reverse pinhole projection
of (14) we might introduce a bias in the transformed variable.
In the case of camera-based georeferencing, the image plane
will be roughly orthogonal to the ocean plane we project to
and from. The area in the ocean plane that a single pixel
covers will therefore depend on the distance from the camera
to the point in question.

One approach to verify the presence, or absence, of a
bias, is to approximate the transformed distribution using a
Taylor series expansion of the transformed distribution. The
distribution p of a pixel position xp is given by

p ∼ N (x̄p,Rp) (39)

Denoting the reverse pinhole transform as f −1p , the trans-
formed distribution is given by

f −1p (N (x̄p,Rp)) = f −1p (xp + wp
k ). (40)

Limiting ourselves to the first two degrees for simplicity,
the Taylor series expansion of this distribution around the
point xp is

f −1p (xp)+∇f −1p (xp)(xp − x̄p)

+
1
2
(xp − x̄p)⊺∇2f −1p (xp)(xp − x̄p). (41)

This approximation has the mean value µT of

µT
= E[f −1p (xp)+∇f −1p (xp)(xp − x̄p)

+
1
2
(xp − x̄p)⊺∇2f −1p (xp)(xp − x̄p)]

= f −1p (xp)+ E[∇f −1p (xp)(xp − x̄p)]

+
1
2
E[(xp − x̄p)⊺∇2f −1p (xp)(xp − x̄p)]

= f −1p (xp)+
[
tr(H1(f −1p (xp))Rp)
tr(H2(f −1p (xp))Rp)

]
(42)

where Hi is the Hessian of the i-th output of a function.
Using just a second-order approximation it is already clear
that the transformed distribution has a bias in its expected
value. To illustrate this we will consider a detection of a
target at a range of 100m directly in front of the camera,

xw =
[
100, 0

]⊺. Applying the pinhole model (10) to this
target t results in the pixel coordinates

xp =
[
610
709

]
. (43)

In the pixel plane, the probability of a noise-induced vertical
offset is equal in both directions assuming Gaussian noise.
For an offset of±5 pixels vertically the resulting position esti-
mates obtained through the reverse pinhole model, f −1p , are
roughly

xw1 = f −1p (
[
610
714

]
) =

[
89
0

]
(44)

xw2 = f −1p (
[
610
704

]
) =

[
116.5
0

]
(45)

The first pixel position has an offset of 11m while the second
has an offset of 16.5m, an increase of 5.5m. This effect
also induces the distribution bias observed in (42) when the
Gaussian pixel noise distribution is projected onto the ocean
surface. Fig. 10 shows the contour lines of this distribution
generated using a diagonal pixel covariance of

Rp =

[
207.446 0

0 66.3718

]
(46)

which was found by sampling 60 image detections from the
dataset. This covariance is also used to generate any addi-
tional distribution figures in this section.

The resulting distribution has a bias in its mean of nearly
6m along the range axis, estimated by random sampling,
compared to the true target state. Comparing the expected
(mean) values x̄w of the actual (sampled, 106 samples) and
Taylor approximated distributions with the true position (47)

x̄wsampled =
[
105.55
0.00

]
x̄wTaylor =

[
104.66
0.00

]
xw =

[
100.00
0.00

]
(47)

reveals that while close to the sample mean, a second-order
Taylor approximation is still not able fully capture the true
moments of the transformed distribution due to the high
non-linearity of the transform.

Examining the cross-section of the sampled distribution
along the x-axis (range), Fig. 11, also reveals that the distri-
bution is no longer symmetric but has a significant tail which
results in the observedmean bias. This non-symmetricity also
implies the distribution is no longer Gaussian, however, the
distribution is still unimodal and a Gaussian approximation
might therefore still yield sufficient performance. Along the
y-axis, Fig. 12, the true distribution has a form that is much
closer to the Gaussian measurement assumption of the JIPDA
tracker with no observed bias in the mean.
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FIGURE 10. Contour lines of true measurement distribution.

FIGURE 11. Cross section of true measurement distribution, x-axis.

FIGURE 12. Cross section of true measurement distribution, y-axis.

1) DISTRIBUTION LINEARIZATION
Assuming wc

k is Gaussian white, the simplest solution that
retains the pixel parametrization of noise is to linearize
around the expected pixel measurement, given by the target

FIGURE 13. Contour lines of true distribution at ranges 50m, 100m and
150m.

state, and then convert the pixel noise to Cartesian coordinates
using a Jacobian transform given by

wc
k ∼ N (0, JRpJ⊺) (48)

where Rc is the measurement noise in pixel coordinates and
J is the Jacobian of the pixel-to-Cartesian conversion for the
measurement as done in [20]. Deriving an analytic expression
of the partial derivatives of the reverse pinhole equations (14)
is possible, however, the resulting expression is long and
numeric calculation might therefore be more attractive.

This approach increases the complexity of the mea-
surement model compared to a range/bearing or Cartesian
parametrization of noise and requires the tracker to have
knowledge of the camera matrixC. It does however allow for
amore accurate description of sensor uncertainty. Close to the
camera, a single pixel will only cover a small area, further
away this area increases. Describing uncertainty in pixel
coordinates and then converting to Cartesian will compen-
sate for this, increasing Cartesian uncertainty with the target
range. This approach does have some drawbacks requiring
the tracker to both be aware of the camera’s extrinsic as
well as intrinsic parameters to calculate the required Jacobian
matrices.

Comparing the resulting distribution and cross sections,
Figs. 14, 15 and 16 also reveal that this does not account
for the observed mean bias in the true distribution (47). The
distribution comparison at various ranges shown in Fig. 13
reveals that at shorter ranges this bias can be negligible, how-
ever, at a range of 150m this bias grows significantly where
linearization induces an error of roughly 25m which will sig-
nificantly affect the accuracy of the tracking estimates. One
could argue that in this particular case with a small, maneu-
verable ownship the actual impact on autonomous operations
would be negligible. However, for larger, less maneuver-
able vessels or maritime surveillance purposes where even
longer-range detections are typically required, the effects
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FIGURE 14. Contour lines of Jacobian transformed measurement
distribution.

FIGURE 15. Cross section of Jacobian measurement distribution, x-axis.

would be much larger. Using the Taylor approximation mean
value of (42) would remove much of this bias, however, the
required Hessian matrices do introduce additional complexi-
ties.

Another potential issue with linearization is the consis-
tency of the transformed covariance estimates. An estimate
of covariance is consistent if the inequality

Re − Ra ≥ 0 (49)

holds where e and a signify the estimated and actual covari-
ance of the transformed random variable. Using the same
target position and pixel covariance as previously, we find that
the actual (sampled) and linearized covariances are

Rl = JRpJ⊺
=

[
469.5 0.0
0.0 2.4

]
Ra =

[
808.3 0.1
0.1 2.9

]
. (50)

FIGURE 16. Cross section of Jacobian measurement distribution, y-axis.

The linearized covariance estimate is inconsistent along both
axes which will cause the tracker to place greater weight
on the already biased sensor measurements causing fur-
ther divergences. Linearizing around (42) reduces this error
slightly, yielding the still inconsistent estimate of

Re = JRpJ⊺
=

[
582.2 0.0
0.0 2.7

]
. (51)

Consistent covariance estimates will therefore require the
addition of stabilizing noise. In this case increasing the base
pixel covariance by a factor of 1.7 yields consistent estimates
when linearizing around the target position. Linearization
around (42) requires a slightly lower scaling of 1.4.

2) SCALED RANGE/BEARING NOISE
In contrast, a simple range/bearing parametrization of sensor
noise avoids this complication. An examination of the true
measurement distribution at various ranges, Fig. 13, reveals
that uncertainty grows along both axes with increased range.
A range/bearing parametrization, once converted to Cartesian
coordinates, will experience similar growth in uncertainty
along its bearing axis, however, the range uncertainty is con-
stant which is not ideal. An alternate approach is to model
measurement uncertainty as a range-scaled range-bearing
covariance where an increased target range yields a corre-
sponding increased range-bearing covariance. Target ranges
are easily calculable based on tracking output requiring only
the addition of a pre-specified covariance scaling function, fR,
resulting in

wc
k (x

t
k ) ∼ N (0, fR(xtk )). (52)

for the target t at time k . This is however not investigated any
further in this work.

3) UNSCENTED TRANSFORM
The Unscented transform [30], perhaps most known for its
usage in the Unscented Kalman filter [31], was developed
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as a way of estimating the outcome of a non-linear trans-
formation of a distribution. Suppose we have a random vari-
able, x, with mean µx and covariance Px which undergoes
a non-linear transform resulting in y = f (x) which has the
mean µy and covariance Py. When such a transform is part
of the system models in an Extended Kalman filter-based
system, the resulting distribution must be linearized. How-
ever, as observed previously, linearizing around the expected
value can introduce both inconsistent covariance estimates
and biases in the distribution mean.

The Unscented transform is an attempt to rectify these
issues, selecting a more representative linearization point
while reducing implementation complexity compared to the
EKF. Instead of computing or approximating the Jacobian
matrix of the transformation, the Unscented transform is
based around sampling a set of sigma points with identical
sample mean and covariance as the original distribution, µx
and Px . The non-linear transform f (x) is then applied to each
point and the results are then weighted and combined to
yield an estimate of the transformed mean and covariance,
µy and Py.
While several methods have been developed to sample

these sigma points [32], [33], [34], the original method
described in [30] is based around sampling 2n+1 points for an
n-dimensional variable. Denoting xi as the i-th sigma point,
these points are given by

x0 = µx

xi = µx +

(√
(n+ κ)Px

)
i

i ∈ Z, 1 < i ≤ n

xi+n = µx −

(√
(n+ κ)Px

)
i

i ∈ Z, 1 < i ≤ n (53)

where
(√

(n+ κ)Px
)
i is the i-th column of the matrix square

root
(√

(n+ κ)Px
)
and κ a free parameter, typically κ+n = 3

for Gaussian distributions [31]. The associated weights, Wi,
are given by

W0 =
κ

n+ κ

Wi =
1

2(n+ κ)
Wi+n = Wi (54)

The transformed sigma points, yi, are then given by

yi = f (xi) (55)

which are combined to yield the mean and covariance of the
transformed distribution according to

µy =

2n∑
i=0

Wiyi (56)

and

Py =
2n∑
i=0

Wi(yi − µy)(yi − µy)⊺. (57)

FIGURE 17. Contour lines of Unscented transformed measurement
distribution.

Applying the Unscented transform to the reverse pinhole
model (14) results in the distribution shown in Fig. 17. Com-
pared to the linearized distribution, Fig. 14, the Unscented
transform has virtually eliminated the mean bias,

x̄wsampled =
[
105.55
0.00

]
x̄wlinearized =

[
100.00
0.00

]
x̄wunscented =

[
105.70
0.00

]
. (58)

This has also shifted the distribution along the x-axis, shown
in Fig. 18, which better accounts for the large tail of the true
distribution, Fig. 10. The y-axis cross-section, Fig. 19, has
changed little.

Considering consistency, the Unscented transform delivers
a marked improvement compared to linearization,

RU =

[
802.6 0.0
0.0 2.5

]
Ra =

[
808.3 0.1
0.1 2.9

]
. (59)

Along the x-axis, the standard deviation is underestimated by
0.1m resulting in a minor covariance difference. Along the
y-axis the difference in standard deviation is almost identical,
however, due to the low base value the difference in percent-
age is much greater.
Another benefit of the Unscented transform is that it

can account for the effects of uncertainty in vessel pose
if provided by the navigation system. For an active sensor
such as the lidar, this uncertainty will have minor effects
on the accuracy of the measurements as the sensor itself
directly measures range and direction. In contrast, the reverse
pinhole-based approach described in this work is much more
dependent on accurate pose measurements. In its current
implementation, milliAmpere’s navigation system decouples
position and pose estimation. Position estimates are provided
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FIGURE 18. Cross section of Unscented measurement distribution, x-axis.

FIGURE 19. Cross section of Unscented measurement distribution, y-axis.

by the dual antennaGNSS compass alongwith vessel heading
using RTK-corrected measurements which results in highly
accurate positioning. Vessel pose however is provided by a
simple α − β filter operating on IMU measurements which
does not result in uncertainty measures. This filter also oper-
ates asynchronously with the cameras resulting in greater
uncertainty in vessel pose.

VI. EXPERIMENTAL SETUP
This section describes the experimental setup used for the
validation of the camera pipeline described in this work. Data
collection took place in December in Trondheim, Norway.
Due to the high latitude daylight intensity is quite weak in this
period and is limited to roughly 5 hours per day. Combined
with grey and overcast weather the lighting conditions were
therefore quite challenging for the cameras.

A. REFERENCE TARGETS
Two reference targets were used in the data collection to
enable multi-target scenarios with potential measurement
ambiguity.

FIGURE 20. Milliampere 2 during data collection.

1) TARGET 1
milliAmpere 2, Fig. 20, is a full-scale prototype of an
autonomous urban passenger ferry designed from mil-
liAmpere 1. milliAmpere 2 is larger both in length and width
to accommodate up to 12 passengers. Just like its smaller
sibling, the vessel is highly maneuverable due to its four
fixed-position thrusters, one in each corner. This also allows
milliAmpere 2 to reach a higher top speed compared to mil-
liAmpere 1. milliAmpere 2’s sensor package is similar to mil-
liAmpere 1with 8 electro-optical cameras, two in each corner,
as well as a maritime radar and two lidars. milliAmpere 2
operated under manual control during these experiments,
however, an all-autonomous trial operation with passengers
was conducted in September 2022 in the same area, Fig. 22.

2) TARGET 2
Elfryd, Fig. 21, is a small leisure craft with a low-profile
wooden hull. This makes the vessel hard to detect both in
radar and lidar data due to material properties and low cross-
sectional area. Elfryd has been converted to electric power
and is equipped with a single propeller powered by a battery
pack located in the vessel hull. Speed-wise Elfryd is fairly
slow and, due to its size and construction, is less maneuver-
able than most leisure crafts of similar size.

B. EXPERIMENTAL AREA
Shown in Fig. 22, the data collection took place in the canal
between Brattøra, on the north side, and Ravnkloa, on the
south side, in Trondheim, Norway. This is an urban envi-
ronment with multiple jetties and mooring sites filled with
vessels along both sides. Each scan will therefore contain
multiple detections that should ideally be removed or labeled,
making this an ideal stress test of the land filtering part of the
pipeline.

C. SCENARIO 1
In this scenario, milliAmpere 2 starts to the west in the canal
traveling eastwards. Elfryd starts to the east traveling in the
opposite direction, intersecting roughly in the middle. The
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FIGURE 21. Elfryd as captured by milliAmpere’s sensor rig. The image has
been post-processed to improve visual clarity.

FIGURE 22. Experimental area, shown as a blue polygon, and the planned
route of milliAmpere 2, shown as a black dotted line. Map data is
provided by the Norwegian Mapping Authority (Kartverket).

ownship is stationary at Ravnkloa. A visualization is shown
in Figure 23.

D. SCENARIO 2
This scenario is similar to scenario 1 with both targets trav-
eling along the canal albeit from mirrored starting locations.
The ownship starts at its docking location at the Brattøra side
but travels out into the canal towards Ravnkloa when both
targets have passed. A visualization is shown in Figure 24.

E. SCENARIO 3
This scenario is similar to scenario 1, however, instead of
staying at the Ravnkloa dock, the ownship is stationary in
the middle of the canal. Both targets maneuver around the
ownship to their starboard, one on each side, intersecting with

FIGURE 23. Scenario 1. Circles signify starting positions, stars end
positions.

FIGURE 24. Scenario 2. Circles signify starting positions, stars end
positions.

each other during this maneuver. A visualization is shown in
Figure 25.

F. SCENARIO 4
This scenario is a repeat of scenario 3 but with ownship
movement. Crossing from Ravnkloa to Brattøra, the ownship
intersects both targets in the middle of the canal. Each target
performs a maneuver to its starboard to avoid a collision.
A visualization is shown in Figure 26.

G. SCENARIO 5
Once again each target starts on individual sides of the canal
traveling straight towards the ownship which is stationary in
the middle of the crossing. At a distance of roughly 50m,
milliAmpere 2 performs a stop to avoid a collision, letting
Elfryd perform a starboard turn to avoid colliding with the
ownship. Once passed, milliAmpere 2 resumes its journey
passing the ownship to the south as shown in Fig. 27.
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FIGURE 25. Scenario 3. Circles signify starting positions, stars end
positions.

FIGURE 26. Scenario 4. Circles signify starting positions, stars end
positions.

FIGURE 27. Scenario 5. Circles signify starting positions, stars end
positions.

H. SCENARIO 6
This scenario, Fig. 28, repeats scenario 5 but with ownship
movement. Starting fromBrattøra, the ownship travels slowly

FIGURE 28. Scenario 6. Circles signify starting positions, stars end
positions.

FIGURE 29. Scenario 7. Circles signify starting positions, stars end
positions.

south towards Ravnkloa. Both targets intersect the ownship
in the middle where they perform the same maneuvers as
described in scenario 5.

I. SCENARIO 7
Starting to the west, both targets travel towards the ownship
in a line with Elfryd obscured directly behind milliAmpere 2.
A stationary ownship is then passed to the north by both
targets as shown in Fig. 29.

VII. PERFORMANCE MEASURES
A series of performance measures covering multiple aspects
of the system’s performance is critical for an accurate eval-
uation of the performance of the detection system. In this
work, we reuse the performance measures presented in [1] to
simplify comparison with the complete sensor fusion system.
Evaluations are performed automatically based on recorded
GPS ground truth from both target vessels. Detections and
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tracks are assigned to their closest target if the Cartesian dis-
tance is less than a distance threshold of 10m. This association
is then used to compute the following metrics.

A. RMS ERROR
The root mean square error (RMSE) is a basic metric yield-
ing information about the average error of the detection or
tracking output. The square element of this metric punishes
large outliers to a greater degree than a simple mean and is
calculated according to

RMSE =

√√√√1
n

n∑
i=1

|ei|2. (60)

where ei is a form of error, e.g. position or velocity. This
metric is calculated for both detection errors and for tracking
errors in terms of position

1) MEASUREMENT NOISE
Another important metric when it comes to sensor perfor-
mance and system tuning is the measurement noise of a
sensor. Higher measurement noise implies a greater degree of
inaccuracy which has implications for how the tracking sys-
tem weighs the prediction and measurement when updating
states. Detection noise is reported as the measurement error
covariance matrix, given by

R =
1

n− 1

n∑
i=1

(zi − fz(xj))(zi − fz(xj))T (61)

where fz is the measurement function of the sensor and n the
set of indexes for measurements with an associated target. zi
and xj are then individual measurements and their associated
target states.

B. DETECTION PROBABILITY
Tuning the tracking system also requires the detection prob-
ability of a sensor which yields information about the likeli-
hood of a target being detected in a single sensor scan. While
useful for comparing sensor performance, this information
is also used in the data association process of the tracker
when computing association probabilities for the tracks and
measurements.

In any received sensor scan a target is assumed to be
detected if a measurement is assigned to it. We can then
calculate the detection probability, PD, as

PD =
n∑
i=1

nidet
nitotal

(62)

where ndet is the number of targets detected in scan i and ntotal
the number of targets present. We compute this information
in range-specific bins to allow the tracking system to account
for varying sensor performance across different ranges and to
add additional information for evaluating the performance of
the sensor system.

C. CLUTTER INTENSITY
The final sensor-specific tuning parameter is related to the
number of false alarms, or clutter, that we can expect to be
present in any single scan or region. In any received scan the
unassociated measurements are assumed to be false alarms.
We can then calculate the clutter intensity according to

λ =
1

πr2max

∑n
k=1 m

free
k

nk
(63)

where rmax is the maximum range of the sensor given by the
evaluation of PD or the spec sheet, nk is the total number of
time steps, and mfreek is the number of unassociated measure-
ments at time-step k . Similar to detection probability, false
alarm intensities are also evaluated both as uniform across the
entire sensor range and in range-specific bins for the active
sensors.

D. ANEES
An important property of any estimator is the statistical
consistency of the reported estimates. In this work, we use
the average normalized estimation error squared (ANEES)
which reports the relationship between the magnitude of the
estimation errors and the covariance according to

NEESk = x̄iP−1i x̄i (64)

where ANEES is given as the average of this across all time
steps,

ANEES =
n∑

k=1

NEESk . (65)

E. ESTABLISHMENT LENGTH
Establishment length measures the amount of time from the
start of a scenario to the establishment of a track on a target.
We report this measure as the mean time across both targets
and all datasets.

F. TRACK BREAKS
Once established, the tracking system should ideally keep
valid tracks alive while within sensor range. This is not
always the case, obscurement by other vessels or objects and
a series of missed detections could reduce the existence prob-
ability of individual, valid tracks to a level that causes their
termination. The track break performance measure reports
this information in the form of both the number of track
breaks and the total time of track breaks.

G. FALSE TRACKS
Another important aspect of track management is dealing
with false tracks. False tracks are tracks that are not asso-
ciated with a valid target, originating from clutter measure-
ments. These tracks can interfere with the operation of an
autonomous vessel in multiple ways. The motion planning
part of the system could be induced to take unnecessary action
due to the presence of these tracks and they also increase the
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computational complexity of the tracking. Additionally, they
could also prevent valid tracks from forming in their vicinity.
False tracks are reported both as the total number of tracks
and their total length in time.

H. GOSPA
A more modern performance measure for tracking systems
is the general optimal subpattern assignment (GOSPA) [35].
This measure accounts for several aspects of the tracking
process in a single measure, including position errors, false
tracks, andmissed targets.We define the set of tracks at time k
asXk = [x1k , . . . x

m
k ] and the set of truths asYk = [y1k , . . . y

n
k ].

GOSPA is then given by

GOSPA =

(
min

π∈
∏
n

m∑
i=1

d (c)(xik , y
π (i)
k )p +

cp

α
(n− m)

) 1
p

(66)

where
∏

n is the set of all permutations of {1, . . . , n}.
d(x, y) is a metric for track-truth distance and d (c)(x, y) =
min(d(x, y), c) the distance cut-off given by the parameter c.
We use a Cartesian distance function with a cut-off of 10m.
The rest of the parameters are set to α = p = 2. The GOSPA
metric exists both in a labeled and unlabeled form where the
labeled form penalizes tracks switching from one target to
another. In this work, we use the unlabeled GOSPA. This
is motivated by the fact that basic collision avoidance does
not care about track switching, only that a target is actually
tracked. In more complex systems designed to track specific
features such as target type or to be compliant with maritime
maneuvering rules the labeled GOSPA is more appropriate. s

VIII. RESULTS
Based on the automatic evaluation system and performance
measures presented in section VII and the datasets from
section VI, the performance of the sensing and tracking sys-
tem is examined in this section.

A. DETECTION PERFORMANCE
An evaluation of the detection performance of the various
sensors has already been performed in [1]. This evaluation
was, however, based on a different set of data with the
cameras providing bearing measurements. This dataset uses
a different set of targets where milliAmpere 2 is quite far
from a traditional boat shape while Elfryd has both a low
cross-sectional area and a color that provides low contrast
with the ocean surface. This might impart lower detection
probability for both targets using the cameras and for Elfryd
using the lidar. For this reason, we re-evaluate the detection
performance of the sensors using this dataset.

From Fig. 30 we observe almost identical detection proba-
bility within the specified lidar max range of 100mwith some
differences starting to show close to this threshold. At further
ranges, the lidar provides no detections while the cameras still
provide sporadic measurements. In terms of clutter intensity,
Fig. 31, the differences between the sensors are much greater.

TABLE 1. Detection performance. R is the diagonal elements of the
sensor noise matrix (covariance), defined in range/bearing for the lidar
and pixels for the cameras (range/bearing in parentheses). RMSE is in
Cartesian coordinates. Detection probability is the average value within
either 100m or the max detection range (in parentheses).

The lidar performs as one would expect from an active sensor.
At closer ranges where the signal intensity is higher, we also
receive a greater number of false alarms. At further ranges,
this drops off. In contrast, the cameras have virtually no false
detections at close ranges peaking instead in the mid ranges
around 75m-100m.

This effect is due to instability in the range estimation,
likely caused by poor navigation estimates of the vessel
pose. In turn, this causes detections from moored and docked
boats along the canal to oscillate in and out of the land map
used to filter detections. One could argue that these are not
strictly speaking false detections as they are potential valid
targets. However, due to their large number, this would be
very computationally expensive and could cause real-time
performance degradation in the situational awareness system.

For pure detection accuracy, the lidar outperforms the cam-
eras slightly. RMS detection error, Table 1, is 30% lower
compared to the RGB cameras. Improving the navigation
estimates should reduce this error somewhat, especially at
mid to long-range. This difference is also reflected in the
sensor noise covariance where the lidar has a much smaller
uncertainty in range. Interestingly the RGB cameras seem to
better be able to estimate target bearings. This might be due
to the low spatial density of the lidar points at longer ranges.
If only a target only generates a few returns the accuracy of
the bearing measurement will be very dependent on the distri-
bution of these points. Unless the target is perpendicular to the
lidar it is likely that points will be unevenly distributed along
the hull, potentially causing the observed effect. In contrast,
the camera detector will for the most part generate a bounding
box that covers the entire target regardless of orientation.

B. TRACKING PERFORMANCE
From a system-level perspective, the detection performance
of the sensing system is less important than the resulting
tracking performance it can deliver. Both path planning and
collision avoidance systems operate on tracking estimates,
both current and predicted, not pure detections. In this section
we explore this tracking performance, comparing the lidar
benchmark to the camera pipeline using the metrics presented
in Section VII. The tracking system is based upon the sensor
models presented in Section V with camera sensor noise
described in pixel coordinates. Unscented transforms are then
applied to yield the predicted Cartesian measurements and
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FIGURE 30. Detection probability.

FIGURE 31. Clutter intensity.

covariances for the various tracks, also accounting for vessel
pose uncertainty. Tuning parameters, shown in Appendix X,
are for the most part based on [1] to avoid coloring the results
with scenario-specific tuning. The only exception to this is the
camera sensor noise and clutter intensities due to the change
from bearing measurements to Cartesian measurements.

Starting with track management performance we find that
both sensors are virtually identical when it comes to track
establishment, Table 2. This result is not as expected based on
the long-range detection performance, Fig. 30, which implies
that track establishment lengths should be shorter for the
cameras. A likely explanation is that the detections at these
ranges are not stable enough to actually establish a valid
track. Further tuning of the track initialization process might
improve this performance somewhat, however, any track
established at these ranges would have large uncertainties

TABLE 2. Tracking performance. Due to space constraints units have
been excluded. Establishment lengths (Est.L) and break lengths (Break.L)
are in seconds while position RMS error (posRMSE) is reported in meters
per target. GOSPA is reported as RMS.

and therefore less useful for other parts of the autonomy
system. Track break lengths are perhaps for the same reason
longer with camera-based tracking compared to the lidar.
This variation in detections at longer ranges can reduce track
existence probability, potentially to a level where the track
is terminated. False tracks are also an issue for the same
reasons. Unsynchronized and noisy navigation estimates will
cause larger variations in the detection ranges for the camera
pipeline compared to the lidar. For docked boats this results
in a position estimate that dips in and out of the land filtering
area to a much greater extent, causing increased clutter inten-
sity at medium ranges and a corresponding increase in false
tracks.

On the other hand, the tracking performance of the cam-
eras appears to be roughly equal to the lidar depending on
the metric in question. For pure positioning accuracy, the
cameras actually halve the RMS error compared to the lidar
benchmark, reversing the result observed in the detection
evaluation. This result is also not limited to a single target
as one might expect considering the low cross-sectional area
of Elfryd. Compared to previous evaluations of the lidar [1]
we also observe a significant degradation in both consistency
and accuracy on these datasets suggesting that further tuning
work might be necessary. Statistical consistency, ANEES,
is also poor. Both sensors underestimate the errors in the state
estimates, the cameras to a much larger degree than the lidar.
GOSPA, which accounts for both tracking accuracy as well
as track management, is similar for both sensors with slightly
better lidar performance.

IX. DISCUSSION AND FUTURE WORK
The camera detection pipeline has shown promising perfor-
mance, offering performance that exceeds the lidar in several
benchmarks. Accurate land filtering retains its status as an
issue from [1], this time also applicable to camera detections.
This issue is exacerbated by milliAmpere’s pose estimates.
Improved accuracy and camera synchronization can offer
large performance benefits in this effect, reducing the num-
ber of clutter measurements and improving range estimates,
especially at further ranges.

Statistical consistency also requires further work and is
likely dependent on both improved tuning and improved
detection performance. A Kalman filter-based navigation
system will provide uncertainty estimates that can be used in
the Unscentedmeasurement transform. Combinedwith better
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TABLE 3. Sensor tuning parameters. R is given as the diagonal elements
of the covariance matrix, lidar in polar coordinates and EO in pixel.

TABLE 4. Range dependent false alarm intensities (λ).

pose estimates this should have a significant positive effect on
both consistency and accuracy and reduce the number of false
tracks. An alternative approach is to augment the noise model
with fixed, stabilizing noise to improve consistency. This is
more of an ad-hoc approach that increases the tuning com-
plexity andmight not generalize to other scenarios but it could
reduce the observed inconsistencies. We briefly investigated
this with additive range/bearing parametrized noise and while
consistency improved significantly, both position RMSE and
GOSPA suffered and it was therefore not included as part of
this work.

Dynamic land filtering, as opposed to the current
pre-determined static approach, is another aspect that could
improve performance. The dynamic nature of the operating
environment requires constant updates to the land map for
optimal performance. Three medium-to-large vessels moored
outside each other in a row, extending 10s of meters into the
canal, might be gone the following day freeing up a large
area for targets to maneuver in. Static land maps must thus
weigh extending the map into valid areas to filter unwanted
static detections from moored boats against the removal of
potentially valid targets in these areas. A dynamic land map
based on Simultaneous Localization and Mapping could be a
solution to this.

A closed-loop collision avoidance experiment using mil-
liAmpere 2 will be reported in a forthcoming publication.
MilliAmpere 2 is equipped with a state-of-the-art navigation
system synchronized with sensor readings, providing more
accurate pose estimates for the cameras. On the other hand,
the cameras are mounted lower which will increase mea-
surement uncertainty compared to milliAmpere 1’s mounting
location.

X. CONCLUSION
A novel detection pipeline for maritime target tracking with
georeferencing-based range estimation and multi-camera
fusion was described in this work. Real-world data eval-
uation showed comparable performance to a lidar bench-
mark across many performance metrics but with superior

TABLE 5. Range dependent detection probabilities.

TABLE 6. JIPDA tuning parameters.

long-range detection performance. Several issues with the
experimental platform were uncovered that could result in
even better performance if fixed, however, even in its current
state the pipeline offers value both as an additional sensor in
a sensor fusion system and as a backup collision avoidance
sensor in case of active sensor failures.

APPENDIX A TUNING PARAMETERS
The various tuning parameters used in this work are shown
in Tables 3, 4, 5 and 6 and are based on the sensor evaluation
from environment 1.
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