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Abstract 

 

This study uses tree-based machine learning models for prediction of future stock returns of 

the constituents of the Oslo Stock Exchange All Share Index (OSEAX). Random Forest and 

Gradient Boosted Trees are measured against the benchmark as well as Logistic Regression, a 

less complex machine learning model extensively used in traditional econometric research. 

Long-short portfolios rebalanced both daily and monthly are constructed based on the 

predictions produced by the machine learning models. A diverse feature space is used for the 

monthly predictions, including established capital market anomalies found in the literature. 

The features for the daily predictions solely consist of pure momentum factors, utilizing 

lagged returns with varying intervals from the past trading year in addition to a few technical 

indicators. The result of the empirical research presents a nuanced picture of the usefulness 

machine learning models exhibit in return prediction. Backtesting the portfolios show that the 

daily portfolio is not able to outperform the OSEAX index after accounting for transaction 

costs, yielding a Sharpe ratio of 0.54, equal to that of the index. The monthly portfolio does 

however yield consistent excess returns, producing a mean annual Sharpe ratio of 0.68. This 

suggests that machine learning models utilizing a diverse feature set with a longer prediction 

horizon can capture information not incorporated in the stock price, thus challenging the 

views imposed by the efficient market hypotheses.
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1.  Introduction  

 

Accurately predicting future stock returns have long been a sought-after feat for practitioners 

and academics alike. Financial time-series are however notoriously difficult to predict with 

precision. The assertions of the efficient market hypothesis also contribute to shedding doubt 

about whether predicting future returns can ever be done with confidence, stating that all 

available information already is incorporated in stock prices, thus making any attempt at 

predicting future stock prices fruitless. This view is however increasingly being challenged by 

empirical evidence suggesting that there exist anomalies that might be exploited for 

generating consecutive excess returns.  

 

Recent years have seen a dramatic increase in both computational power and data availability, 

fostering the development of complex machine learning models as tools for stock price 

modeling and investment decision-making. The ability of machine learning models to capture 

complex and non-linear relationships in high-dimensional data justifies the investigation of the 

utility of these models to further improve academic empirical research and practical portfolio 

management. Earlier literature in the field of empirical asset pricing and return prediction have 

been dominated by classical econometric models such as the Capital Asset Pricing Model 

(CAPM), or different factor models such as the Fama-French five factor model. Time-series 

prediction have also been characterized by a few model configurations, such as the 

autoregressive integrated moving average (ARIMA) model. These models do however assume 

linearity in the relationship between stock returns and predictor variables, which poses 

constraints on available information that is able to be captured. The extension of traditional 

linear methods to machine learning methods might open for promising new research, improving 

the current understanding of stock returns and its drivers.  

 

The contribution of this thesis to existing literature is threefold. First, different prediction 

horizons are analyzed with deployment of both daily and monthly predictions, thus assessing 

the impact time have on predictive power. Second, machine learning models are assessed 

against classical models previously employed in traditional econometric research. Finally, the 

impact of market efficiency on return predictability are investigating through conducting 

empirical analysis the Norwegian equity markets, which can be considered less efficient than 

the U.S. markets which dominates previous research.  
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1.1   Problem Definition  
 

 

This thesis explores the utility of machine learning models for predicting future stock returns 

in the Norwegian equity market, considering constituents of the Oslo Stock Exchange All Share 

Index (OSEAX). The scope encompasses three main research questions.  

 

 

1. Can a machine learning driven investment strategy deliver consistent excess returns 

compared to the OSEAX index?  

 

2. How does prediction horizon impact the performance of machine learning models and 

the subsequent financial performance?  

 

 

3. How can non-linear machine learning models contribute to the existing status quo for 

return prediction that is mainly concerned with linear models?  

 

 

These research questions are deemed to give a holistic perspective of the added value that 

deployment of machine learning models can give to both practitioners and academics concerned 

with both quantitative portfolio management and empirical asset pricing. The objective of the 

thesis is to assess these questions through empirical analysis, exploring the role machine 

learning can play in future endeavors of stock return research. It also effectively serves as a test 

of the efficient market hypotheses in the Norwegian equities market, with an emphasis on the 

difference in market efficiency between more liquid stock markets and the Norwegian market.  
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1.2   Literature Review   
 

 

The recent popularity spike for machine learning would suggest that research on such methods 

applied to stock returns is relatively new. However, research in this field have been around for 

several years. One of the earliest examples is (Schöneburg, 1990), who analyzed the possibility 

of predicting intra-day stock prices for German stocks using neural networks fed with price 

data. (Kryzanowski et al., 1993) extended the use of neural networks by classifying one-year-

ahead returns to be positive or negative using macroeconomic and stock specific financial data. 

(K. Kim, 2003) introduced support vector machines to the problem of stock price prediction, 

attempting to predict the future direction of the Korea composite stock price index using a 

variety of technical indicators as features.  

 

Clearly, this has been a research area of interest for several years. However, earlier studies in 

this field have been heavily constrained by computational power and data availability. But as 

computational capacity is made more available for every year that passes, these limiting factors 

become less of an obstacle. This, as well as the increase of availability and focus on alternative 

data such as in (Rechenthin et al., 2013), (Junqué de Fortuny et al., 2014) and (Kumar & Ravi, 

2016) has given an exponential rise to the number of papers published on the topic. This is 

illustrated in figure 1.1, highlighting the number of papers published in a selected number of 

financial journals1 over the years. 

 

(Gu et al., 2020) studies the use of machine learning for return prediction using a large set of 

fundamental and macroeconomic variables, with an emphasis on the significance of their results 

relative to current empirical asset pricing literature. They compare multiple models, with neural 

networks and regression trees having the best performance. They also find that shallow neural 

networks perform better than deep neural networks and argue that can be due to the low signal-

to-noise ratio found in asset pricing problems. Their study investigates a machine learning 

approach whilst considering classical models and find that ML-models vastly outperforms 

ordinary least squares (OLS) models for prediction. They also discuss how machine learning 

problems can be useful for inference as well as prediction and emphasize this by showing that 

 
1 Journal of Financial Economics, The Review of Financial Studies, The Journal of Finance, Finance Research 

Letters, Journal of Corporate Finance, Journal of Banking & Finance, Research in International Business and 

Finance, Journal of Financial and Quantitative Analysis, International Review of Financial Analysis, Journal of 

Accounting and Economics, Journal of Financial Data Science, Journal of Portfolio Management. 
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the ML- models all agreed on a small set of important predictor variables that are well 

established in financial research, namely momentum, liquidity, volatility, and valuation ratios.  

 

 

 

 

Note: Number of studies published in a selected set of financial journals with the keywords “artificial intelligence”,              

“deep learning”, or “machine learning” in the title. 

 

 

(Moritz & Zimmermann, 2016) also investigates the usefulness of machine learning methods 

for developing established financial literature. They expand on techniques like portfolio sorts 

and Fama-MacBeth regressions by developing a strategy based on “deep conditional portfolio 

sorts”. Their features consist of decile ranks based on one-month return for all 24 months prior 

to portfolio construction. A random forest model is then used for predicting the year-ahead 

returns of the stocks in the portfolio. Regressed on a four-factor model from (Carhart, 1997), 

this strategy yields an excess monthly return of 2%. 

 

(Bao et al., 2017) studies the possibility for an LSTM model, which is a type of recurrent neural 

network with the unique ability of capturing long-term dependencies in sequential data, to 

predict the next day’s closing price for stocks using price history and macroeconomic variables. 

Their results shows that predictive performance is better in less developed markets and find that 
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Figure 1.1: Published articles on machine learning in financial journals 
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there is less predictability in the S&P500 index compared to the Indian Nifty 50 index. (Hao et 

al., 2023) also investigates predictability for different markets. They use a classification 

framework by predicting whether index constituents in the US, the UK, China, Canada, and 

Japan outperform the cross-sectional median return of their respective indices. Out of the 

models they deployed the portfolio based on predictions from the deep neural network yield the 

best results with an annualized return ranging from 27.9% and 255.17% before transaction costs 

between the different markets. They find that the financial performance is vastly better in the 

Chinese market compared with the US and UK.  

 

(Krauss et al., 2017) use deep neural networks, random forest, and gradient boosted trees for 

predicting directional movements of future stock returns. They use lagged returns as input 

features and a survivorship-bias free sample of constituents of the S&P500. They find that an 

ensemble consisting of one set of prediction from each model performs the best, with out-of-

sample daily returns of 0.45% before transaction costs. They also report that the models show 

better performance during times with high market volatility, but that predictability, and hence 

returns, seemed to decrease after the year of 2000.  (Fischer & Krauss, 2018) directly builds 

upon this study by deploying an LSTM model. They report a daily return of 0.46% and a 

Sharpe ratio of 5.8 prior to transaction costs. They also report findings of declining results in 

recent times, with a clear shift from 2010 and outwards. In analyzing this phenomenon, they 

find that stocks with high volatility and short-term reversal of returns are common pattern of 

stocks selected for trading.  

 

Other studies have had a focus on feature selection and its consequences for performance. 

(Huck, 2019a) includes over 600 predictors in their models and concludes that, despite the 

machine learning method’s flexibility and ability to generalize to high dimensional data, 

adding more predictors is not necessarily positive for model performance due to increased 

noise and risk of overfitting. (Carta et al., 2022a) has a significant focus on feature selection, 

in the end training 432 models with different feature sets based on combination of features, as 

well as stock- and sector specific features. They find that the extensive feature selection 

process improves both predictive and financial performance.  

 

Several other studies have applied machine learning to return- or stock-price prediction. Table 

1.1 below highlight some notable newer works.   
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Table 1.1: Overview over previous literature 

Note: DNN = Deep Neural Network, RF = Random Forest, GBT = Gradient Boosted Trees, SVM = Support Vector 

Machines, RNN = Recurrent Neural Network, LSTM = Long Short Term Memory, OLS = Ordinary Least Squares, PLS = 

Partial Least Squares, GLM = Generalized Linear Model, NN = Neural Network, SVR = Support Vector Regression, LR = 

Logistic Regression, KNN = k-Nearest Neighbour. LR = Lagged Returns, TI = Technical Indicators, F = Fundamentals 

 

Author 

 

 

Universe 

 

Models 

 

Horizon 

 

Features 

 

Prediction 

 

Hao et al., 2023 

 

US, UK, Asia 

 

DNN, RF, GBT 

 

Daily 

 

LR 

 

Classification 

Carta et al., 2022 S&P500 RF, GBT, SVM Daily LR, TI Classification 

H. Wang et al., 2021 US RF, GBM, SVR, 

RNN 

10-year Macro Regression 

Flori & Regoli, 2021 S&P500 LSTM 1, 5, 10 days LR, TI Classification 

Gu et al., 2020 US OLS, PLS, GLM, 

RF, NN 

Yearly F, LR, 

Macro 

Regression 

Nikou et al., 2019 UK NN, SVM, RF, 

LSTM 

Daily LR Classification 

Basak et al., 2019 US RF, GBT Multiple TI Classification 

Rasekhschaffe et al., 

2019 

International GBT, NN, SVM Monthly F Classification 

Huck, 2019 S&P500 NN, RF, Elastic 

Net 

1 and 5 days LR, Macro Classification 

Weng et al., 2018 US GBT, SVR, RF, 

NN 

1-10 days TI, AD Regression 

Henrique et al., 2018 Brazil, US, 

Asia 

SVR Daily TI Regression 

Fischer et al, 2018 S&P500 LSTM, RF, LR Daily LR Classification 

Chen & Hao, 2017 China SVM, KNN 1, 5, 10, 15, 20, 30 

days 

TI Both 

Bao et al., 2017 International LSTM Daily TI, Macro Regression 

Krauss et al., 2017a S&P500 DNN, GBT, RF Daily LR Classification 

Moritz et al., 2016 US RF Daily LR, F Regression 
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1.3   Thesis Structure 
 

The thesis is structured as follows: Chapter 2 will review the theoretical foundation needed 

for the analysis and subsequent discussion. Chapter 3 presents the data and how it was 

collected and preprocessed. Chapter 4 contains a detailed analysis of the methodology applied 

in this study. In chapter 5 the results and analysis are presented, first analyzing predictive 

performance before studying the financial performance of the constructed portfolios.  Chapter 

6 provide discussions regarding the results in relation to the efficient market hypothesis, as 

well as limitations in backtesting.  
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2.  Theoretical Framework  

 

2.1  Efficient Market Hypotheses  

 

The Efficient Market Hypothesis (EMH) has been a fundamental concept in economic theory 

ever since Eugene Fama’s influential paper “Efficient Capital Markets” was published in 

1970 (Fama, 1970). The theory outlines the ability for financial markets to reflect all currently 

available, and relevant, information in security prices. This suggests that markets are 

“efficient” and that all prices can be considered fair. According to the EMH only new 

information can move prices.  Since it is unknown when this new information is available it is 

therefore unpredictable, and thus will lead to unpredictable and random fluctuations in stock 

prices. This consequentially leads to that both technical- and fundamental analysis, two main 

frameworks for stock price prediction, is considered fruitless (Bodie et al., 2018).  

 

The EFM includes three forms of market efficiency: weak, semi-strong and strong. The weak 

form suggests that security prices reflect all available market information such as historical 

prices and trading volume, thus rendering technical analysis useless for prediction. The semi-

strong form builds on the weak form and adds that all publicly available information is 

reflected in the price. This includes stock specific information such as financial ratios or 

macroeconomic variables. This form of market efficiency suggests that neither technical nor 

fundamental analysis bear any meaningful merit. The last and most extreme form of market 

efficiency suggests that stock prices reflect all available information, including insider 

information (Bodie et al., 2018).   

 

Fama published a revised paper on the efficient market hypotheses in 1991, this time defining 

weak market efficiency as the concept of prices reflecting information up to the point where 

marginal benefits of acting on that information do not exceed the marginal costs (Fama, 

1991). At this time the dominance of the original theory presented in 1970 was far less 

prominent, as many financial researchers began publishing studies on the predictability of 

stock returns relating to psychological and behavioral elements, as well as stock specific 

anomalies such as financial ratios (Malkiel, 2003). Numerous other studies challenge the 

notion of the efficient market hypotheses. (Campbell et al., 1998) found that there exists 

short-term momentum in stock prices, rejecting the hypothesis that stock prices behave as true 
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random walks. (Fama & French, 1988a) and (Poterba & Summers, 1988) provides evidence 

of long term mean reversion in stock markets, suggesting that variation in returns over long 

holding periods can be predicted by considering the negative correlation with past returns. 

Predictability of future returns have also been explored using fundamental information, such 

as in (Fama & French, 1988b) where it is suggested that a large part of the variance in future 

returns can be explained by dividend yields.  

 

 

2.2   Machine Learning  

Machine learning is a tool in the statistical learning toolbox generally used to provide accurate 

predictions by utilizing historical data. Machine learning is based on algorithms that are 

effective at handling big data sets and that can produce accurate predictions (Foundations of 

Machine Learning, 2018). In general, machine learning algorithms are concerned with 

estimating a relationship, or mapping a function, f  between a quantitative response variable Y 

and a vector of p predictors 𝐗 =  (X1, X2 , … , Xp). This relationship can then be written as:  

 

 

 

Where f is an unknown function of X and 𝜖 is a random error term. This error term has a 

mean of zero, and is uncorrelated with X. There are two main areas of benefit that can be 

achieved by estimating f, namely inference and prediction (James et al., 2021). 

 

Prediction tasks estimates Y based on a set of predictors X as such:  

 

 

 

where 𝑓 is the estimate of the true relationship between Y and X, and �̂� is the prediction based 

on this estimate. The estimated function f often yields a black box, where one is not too 

concerned with the form of the function if it provides accurate predictions for Y. This 

accuracy is dependent on two numbers, namely the reducible and irreducible error. Since the 

true relationship is only estimated, some error is bound to exist. This error is reducible since 

there are steps that can be taken to reduce this quantity, for example choosing the correct 

model. However, even if 𝑓 were to estimate f  perfectly, there would still be some error 

(1) 

(2) 
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present because Y is also a function of 𝜖, which cannot be predicted using X. This quantity 

represents the irreducible error. Consider that both 𝑓 and X are fixed, so that the only source 

of variability is produced from 𝜖. Then: 

 

 

 

Where 𝐸[(𝑌 − �̂�)2] is the expected value of the squared difference between the actual value 

of Y and the estimated value of Y. The 𝑉𝑎𝑟(𝑒) represents the irreducible error, while 

𝑓(𝑥) − 𝑓(𝑥) represents the reducible error. Machine learning models generally estimate f 

with the goal of minimizing the reducible error (James et al., 2021) 

 

Inference is mainly concerned with dissecting the relationship between Y and the predictor 

variables X, while not necessarily trying to produce a prediction for Y. The estimated function 

𝑓 cannot be treated as a black box in this case, as its form is clinical for the task of inference. 

Applying machine learning methods for inference purposes can shed light on important 

questions, such as which variables provide predictive power over Y, or if the relationship 

between Y and X can be explained using linear models, or if more advanced models are 

needed (James et al., 2021). 

 

Machine learning can be split into two domains: supervised learning and unsupervised 

learning. During supervised learning the model is trained on a labelled dataset, so that the Y is 

known for each observation. This contrasts with unsupervised learning where there is no Y 

label being utilized in training, leaving the model to figure out relationships and structure in 

the data on its own (James et al., 2021). Supervised learning can further be split into two 

categories, namely regression and classification. Regression is concerned with predicting an 

exact quantitative number, while classification is used when Y is categorical rather than 

numerical, thus the prediction task becomes assigning an observation to a category (James et 

al., 2021).  

 

2.2.1   Tree-Based Methods 
 

Tree-based methods are machine learning algorithms with their main trait being that they 

segment the predictor space into several simpler sub-groups. Usually, the mean or mode 

response value for the training observations in the sub-group that a given observation belongs 

(3) 
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to is used for producing predictions. The rules that constitute the process of splitting the 

predictor space can explained with a tree- structure and are thus also known as decision trees. 

Decision trees can be used in both regression and classification, with the only difference 

being the output, taking a numerical or categorical value respectively. For each observation in 

a classification tree the prediction is based upon the most commonly occurring class of 

training observations in the sub-group that particular observation belongs. The classification 

tree is built by using binary splitting, guided by entropy or the Gini index. Entropy can be 

defined as: 

 

 

 

 

Where �̂�𝑚𝑘 represents the proportion of the training observations in the mth sub-group that 

are from the kth class. The entropy will adopt a small value if the mth node is small, because 

it can be shown that if the different values of �̂�𝑚𝑘 are near 0 or 1, the entropy will converge to 

0. This measure is used to guide the splitting, evaluating the performance of each split (James 

et al., 2021). 

  

2.2.2   Random Forest 
 

Decision trees generally experience high variance, meaning that applying a decision tree to 

two randomly split parts of a training set can yield very different results. This is an 

unfavorable trait, that can be mitigated through the process of bagging. This process is based 

on taking repeated samples from the training set, fitting a model to each sample, and then 

averaging the results as such: 

 

 

 

 

 

 

While bagged trees increase the performance from decision trees, the random forest algorithm 

introduces decorrelation of the trees, further increasing performance. Random forest builds 

decision trees like you would do in bagging, but during the building process of these decision 

trees the random forest algorithm takes a random sample of m predictors from the full set of p 

(4) 

(5) 
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predictors at each split. Assuming a dataset with a few strong predictors while the rest show 

moderate predicting power, all the trees in the bagged collection of trees would utilize the 

strong predictors in the top split, which results in all trees being similar. By only considering a 

subset of the variables at each split, the trees will contain different sets of variables, thus 

decorrelating the trees. This leads to the average produced by the different trees to exhibit less 

variance, making the result more robust.  

 

2.2.3   Gradient Boosted Trees 

 

Boosting is another technique for improving the performance of tree-based models. While 

bagging was based on taking repeated samples of the training set, fitting different decision 

trees and then combining all the trees, boosting grows the tree sequentially. This means that 

the trees are constructed one after the other, with each tree utilizing information from past 

trees. Boosted trees does not use the bagging technique, but rather fit each decision tree on a 

modified training set. Gradient Boosted Trees uses the gradient descent to minimize the loss 

function each time a new tree is constructed, hence the name Gradient Boosted Trees.   

 

2.3   Machine Learning and Return Prediction 
 

Research on stock price behavior have been a fundamental part of the financial science for 

many decades. (Fama F, 1965) famously studied the random walk characteristics of price 

behavior, followed up by the introduction of the efficient market hypothesis in 1970 (Malkiel 

& Fama, 1970). This research, that has been considered a cornerstone of financial theory 

since its publication, suggests that forecasting or predicting future asset prices is an 

impossible task. However, contrary to the efficient market hypothesis, numerous studies have 

shown that stock markets are predictable to some extent. Time series prediction have seen 

prominent use of parametric statistical models, such as the autoregressive moving average 

(ARMA) and the autoregressive integrated moving average (ARIMA) (Box et al., 2015). 

Several studies have been published showing that the autoregressive framework is plausible 

for short-term prediction tasks, such as in (Ariyo et al., 2014) and (Virtanen & Yli-Olli, 

1987b).  

 

Literature on stock level return prediction is traditionally concerned with models that explains 

differences in returns between stocks based on certain characteristics of these stocks. This 



13 

 

approach usually involves predicting future returns based on few historical stock 

characteristics using regression methods, like in (Lewellen, 2014). Traditional approaches like 

these are characterized by constraints that ML-methods can potentially mitigate, with the 

most important constraint being the ability to handle the vast amount of predictor variables 

that have shown up in the literature over the years (Gu et al., 2020). Asset pricing literature 

suggests a plethora of economic variables that affects returns, with the number of stock-level 

and macroeconomic characteristics reaching the hundreds (Harvey et al., 2016). Machine 

learning can add additional value and perform better than linear models in situations where 

high-dimensional data is present. 

 

Linear models are prone to overfitting when the number of variables is large in relation to the 

number of observations and perform poorly when the variables are closely correlated (Gu et 

al., 2020). The practitioner is therefore forced to only include a small subset of the variables 

potentially excluding vast amounts of conditional information and relying on the 

practitioner’s domain expertise to construct the functional form and identity relevant 

variables. This is unlike ML- methods that are much more robust to overfitting and do not 

require a pre-specified functional form, which allows for flexibility that can discover true but 

complex relationships that would be ignored in a linear model (H. Wang et al., 2021). Linear 

models on the other hand assume a linear relationship between variables, which often is not 

the case (Hoang & Wiegratz, 2022).  

 

While prediction problems are prominent in econometric research, it generally solves a 

different problem than machine learning. In economic analysis, the values of interest are 

usually the parameters 𝛽 that explains relationships between independent and dependent 

variables, making econometrics more concerned with inference rather than prediction, which 

is the main difference between machine learning and econometrics (Bzdok et al., 2018; Gu et 

al., 2020). While ML- methods can generate these parameters, they are usually inconsistent. 

Using a method meant for producing a prediction �̂�, and inferring information from their �̂� as 

you would in econometric models, can in many cases lead to misleading conclusions. Thus, 

machine learning is more useful in applications concerned with �̂�, rather than �̂� (Mullainathan 

& Spiess, 2017).  

 

The importance of inference in econometric research is exemplified in empirical asset pricing 

where the main goal is to deduce the behavior of risk premiums. This is because even if future 
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returns were completely observable, the behavior would still need to be explained by financial 

theory and tested empirically. Return variation is however often highly influenced by 

unforecastable news due to market efficiency, which makes it incredibly difficult to measure 

(Gu et al., 2020). ML- methods might excel traditional approaches in this context, due to both 

its predicting power and ability to extract valuable information about the predictor variables. 

This can aid in the problem of measuring risk premiums, and by extension enable further 

investigation into the cross section of asset pricing and economic mechanisms. Measuring risk 

premium involves approximating the equation: 

 

    

 

 

Where:  

𝑟𝑖,𝑡+1: 𝑅𝑒𝑡𝑢𝑟𝑛 𝑖𝑛 𝑒𝑥𝑐𝑒𝑠𝑠 𝑜𝑓 𝑟𝑖𝑠𝑘 − 𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑎𝑠𝑠𝑒𝑡 𝑖 

ℱ𝑡: 𝑇𝑟𝑢𝑒 𝑎𝑛𝑑 𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 

 

ML- models might perform approve upon this approximation, thus better explaining expected 

return behavior compared to linear models, through penalization and dimension reduction, 

which makes ML-methods useful nonetheless for understanding relationships (Gu et al., 

2020).  

 

2.3.1   Challenges Applying Machine Learning for Return Prediction 
 

One would believe that the many incredible tasks machine learning have mastered in different 

fields should imply the possibility for it to succeed in financial applications like return 

prediction. There are however several characteristics of financial data makes it notoriously 

challenging to work with (Israel et al., 2020). The first challenge of applying machine learning 

in the field of finance is the lack of big data. Israel et al. consider the regression in equation (7) 

to highlight the issue of small data for return prediction tasks.  

 

 

 

 

 

(6) 

(7) 



15 

 

This simple regression is trying to predict future returns 𝑦𝑡 with the help of (𝑥1,𝑡−1, . . . , 𝑥𝑁,𝑡−1)  

predictors. The authors argue that the limiting factor for return prediction never have been the 

number of predictor variables N, but rather the number of independent return observations, T.   

Big data is often thought about in conjunction with the number of predictors, and subsequent 

inclusion of variables that span from price data to satellite images. However, without a big 

enough sample of observations, the model is effectively constrained to be small. Assuming a 

monthly holding period for a few thousand equities that have data ranging from a few months 

to a few decades, the total number of observations for cross-sectional returns amount to a few 

hundred thousand. Relative to many other fields, this is a small number, and is even smaller 

when accounting for cross-sectional correlations. The only way to increase the size of this 

dataset, without generating synthetic data, is to wait, which differs from other fields where big 

data is readily available or can be generated synthetically through experiments (Israel et al., 

2020).  

 

The second challenge for predicting returns is the low signal-to-noise ratio. This ratio is 

important for the success of machine learning applications, and essentially describes the level 

of predictability that resides within a system. The low signal-to-noise ratio of the financial 

markets is due to the constant pressure of the economic forces of profit maximization, which 

serves as the basis for the efficient market hypothesis (Israel et al., 2020). 

 

Practitioners that seek to predict future returns is also concerned with understanding how this 

prediction came to be. Machine learning models are infamous for acting as black boxes, but for 

many asset managers it is important to be able to interpret the model that is being used (Gu et 

al., 2020). It is even stated in the EU General Data Protection Regulation (GDPR) that decision-

making systems that are automated should retain meaningful information regarding the logic of 

the system, as well as the impacts from these decisions (Goddard, 2017) . This means that 

practitioners of machine learning driven systems should be able to derive meaningful 

information about the underlying logic of decision- making. Practical use of machine learning 

is also constrained by the concern that the model commits fatal logical mistakes, such as loading 

up on concentrated sources of risk. ML- driven investment strategies are therefore less useful 

if they are not interpretable, and generally not suited for problems where it is necessary with an 

understanding of the economic mechanisms (Li et al., 2022). This concern has given rise to 

development in research regarding so called “explainable artificial intelligence”, as seen in 

(Adadi & Berrada, 2018; Gunning et al., 2019; Molnar et al., 2020) for the general domain, and 
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(Bussmann et al., 2021; Carta et al., 2022a) for financial applications. This subfield of AI and 

ML research seeks to control, discover, justify, and improve machine learning tasks, and is an 

important initiative for the widespread use of ML in finance (Carta et al., 2022a).  

 

3.  Data  
 

This thesis uses equity data from constituents of the Oslo Stock Exchange All Share Index 

(OSEAX) from April 1999 to 31 December 2022. The noisy environment and continuity of 

financial time series demands the need to facilitate for as much historical memory as possible 

(Chourmouziadis & Chatzoglou, 2016), and ideally data should be collected from as far back 

as possible. This study collects daily and monthly data from 1999 since data before this year 

show clear signs of diminishing quality and missing values. The dataset includes daily 

observations of prices, trading volume, and shares outstanding, and monthly stock specific 

financial data from Thomson Reuters Datastream. Macroeconomic data like oil price, consumer 

price index and exchange rates are sourced from Bloomberg. The risk- free rate is collected 

from Norges Bank. Preprocessing of data and fitting of machine learning models are done with 

the Python programming language and the scikit-learn library.  

 

Table 3.1: Summary statistics 

Summary Statistics Investment Universe  

Min. number of constituents 153 

Max. number of constituents 251 

Total number of constituents 414 

Annualized return 13.49% 

Annualized standard deviation 18.61% 
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Note: Based on the Global Industry Classification Standard categorization for each stock, collected from 

Bloomberg.  

 

 

3.1  Data Preprocessing 
 

Common challenges working with financial data sets includes cleaning the data set in a 

consistent and robust way, handling missing values, and structuring the data such that predictive 

performance is maximized. This thesis utilizes cross-sectional times-series data, and one should 

therefore check for irregularities such as outliers and corporate actions (Kelliher, 2022). 

Corporate actions such as mergers and acquisitions, dividends, and stock splits might have an 

abnormal impact on the return of a stock. A stock might for example double its return overnight 

due to a reverse stock split, or dividends might play a big role in inflating returns such that the 

underlying attractiveness of the company is not fully reflected (Kelliher, 2022). Stock prices 

are therefore adjusted for corporate events, as this makes them more suitable for prediction 

tasks and return calculations. Further, in line with (Hou et al., 2011), monthly returns that are 

reported to be over 300% and reversed the next month are removed. Since Datastream repeats 

the last valid entry, all stocks that reports a monthly return of 0% twice in a row for the monthly 

                                       Figure 3.1: Index constituents by sector 
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predictions are removed, while the threshold is set to four consecutive trading days of 0% 

returns for the daily predictions.  

 

Constituents of an index will evolve over time, and companies are included or discarded for 

different reasons such as bankruptcy or mergers. Considering only the current constituents of 

the OSEAX would lead to so-called survivorship bias, which is based on the notion that current 

constituents are likely to have been historically successful. Excluding companies that have been 

removed from the investment universe might lead to inflated returns. To mitigate this, data is 

downloaded for all stocks that have ever been part of the OSEAX.  

 

Another bias that can affect backtesting performance is look-ahead bias, which means using 

information that would not yet be available at that point in time. Stock specific financial 

information are thus lagged by a period corresponding to its reporting frequency. For example, 

accounting ratios that are reported annually are lagged by one year. Furthermore, since the 

publication of macroeconomic data also is associated with a lag, this thesis follows (Qi & 

Maddala, 1999) by lagging macroeconomic variables by two months.  

 

Following (Tobek & Hronec, 2021a), liquidity filters are applied to reduce trading friction and 

to avoid high transactions costs, as well as to avoid micro-cap stocks that would be impossible 

to short. Considering the difference in liquidity and efficiency between the OSEAX and the 

S&P500, where most studies are conducted, this is deemed an important step and will help 

remove the impact of market microstructure on the results. We exclude stocks that fall below a 

market capitalization threshold, which is set to be the 20th percentile of the mean market 

capitalization across all stocks for that specific period. We further exclude stocks that exhibits 

low trading activity by following the same approach as with market capitalization, this time 

sorting by turnover. A stricter volume threshold is applied for the short portion of the portfolio 

to ensure lending availability and thus replicating a real-life scenario more accurately.  Lastly, 

a stock is excluded if the trade price falls below 10 NOK. These filters aid in creating a liquid 

universe of stocks, which further mitigates challenges regarding short-sale constraints, non-

viable trades, and high transaction costs. By constraining the universe to the most traded 

companies the desired characteristics of a less developed market are kept, while also retaining 

a viable level of market friction that can serve as a foundation for empirical research.  
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The models deployed in this study are not able to handle missing values, and thus stocks with 

missing values must either be excluded from the set of tradable stocks, or the values must be 

filled. Since one would like to preserve as much data as possible for the models, missing values 

are generally filled by forward interpolation. The primary motivation for using interpolation is 

its simplicity, as well as its suitability for filling small gaps in the data (quant python). When 

larger periods of missing values are present, in this case 10 consecutive observations, the stock 

is removed entirely. Estimates used for filling gaps only considers historical data, so that look-

ahead bias is avoided.  

 

Lastly, the observations are standardized as follows: 

 

 

 

 

 

Where i is a particular stock, n is the number of elements in the set of tradeable stocks, 

and train denotes that only training data is used to avoid look-ahead bias. The data consists of 

features that vary greatly in numerical size, both within the feature itself and with other 

features. This difference in scale can have a large impact on the prediction and might lead to 

a few features having a dominating influence on the results. By standardizing the variables to 

have a mean of 0 and a standard deviation of 1, the variables will be on a comparable scale,  

ensuring adequate robustness of the predictions.  

 

4.  Methodology  

 

Research on machine learning driven trading strategies in the Norwegian market is scarce. Most 

empirical applications are done on highly liquid and efficient markets such as the constituents 

of the S&P500 index. The term “academic home bias puzzle” coined by (Andrew Karolyi, 

2016) denotes that only 16% of financial research on asset pricing literature in the main finance 

research journals is conducted in markets outside of the US. While being a highly developed 

market, the Norwegian market is less mature than other markets such as in the US and UK. The 

Norwegian market is also affected by other factors than other highly efficient markets (Grobys 

& Huhta-Halkola, 2019) and is therefore an interesting entity to apply machine learning 

methods to.  

 

(8) 
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This thesis also investigates the implication of different prediction horizons, with both daily 

and monthly predictions. Two different portfolios are thus studied, one that rebalances every 

month and one that rebalances every day. (Lewellen, 2014) states that the accuracy of 

predictions generally will diminish the further the forecasting horizon. This can be attributed to 

the efficient market hypotheses, which states that stock prices need time for including all 

available information (Malkiel & Fama, 1970). This thesis applies two different sets of 

variables, one for daily predictions and one for monthly predictions. The daily predictions use 

lagged returns and technical indicators, while the monthly predictions use a range of features 

from fundamentals and momentum to macroeconomic variables.  

 

In short, the procedure for prediction and portfolio construction follows four steps. The primary 

step is to split the full dataset into training- and trading sets for different study periods, 

following a walk-forward approach. The training set is used for in-sample training and tuning 

of the different models, while the trading set is used for out-of-sample predictions. The trained 

models then produce trading signals and long-short portfolios are constructed. (Fischer & 

Krauss, 2018; Huck, 2019; Krauss et al., 2017) approach the prediction task as a classification 

problem. Additional support from (Enke & Thawornwong, 2005) and (Leung et al., 2000) has 

served as motivation for this thesis to also adopt this approach. The binary response variable is 

constructed by taking a value of 1 if a specific stock is predicted to outperform the OSEAX 

index at the rebalancing date, or 0 otherwise.  

 

This method is repeated for both daily and monthly predictions, except for the reduced feature 

vector step showed in figure 4.1, which only applies for monthly predictions. This is because 

the monthly feature vector has a length of 48, while the daily feature vector has a length of 13, 

making feature space reduction redundant. The following sub-chapters will go into greater 

depth of the features and models used for prediction, and will explain the trading setup, portfolio 

construction and performance analysis in more detail.  
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4.1  Features 
 

Choosing the correct type of features, as well as the number of features, is highly influential for 

predictive performance. The recent increase in available data with some degree of relevancy to 

the financial markets has resulted in a notably large potential feature space. Selecting features 

that are grounded in economic theory can increase the signal-to-noise ratio, thus only features 

that are related to future stock returns should be included in the model, as this will reduce 

overfitting and minimize runtime (Rasekhschaffe & Jones, 2019). In most previous studies 

using ML for return prediction the feature space consists of factors related to price data such as 

lagged returns and technical indicators (Fischer & Krauss, 2018; Huck, 2019a). Other studies 

include factors related to company specific financial ratios and the macroeconomic 

environment (Moritz & Zimmermann, 2016; H. Wang et al., 2021), or a combination of all (Gu 

et al., 2020). Some studies also include alternative data such as textual data (Junqué de Fortuny 

et al., 2014). This wide array of possible features to include might seem daunting, but a great 

advantage to ML-models is their ability to handle collinear data. Thus, many features can still 

be included without specifically knowing which ones have the greatest predictive power.  

 

The different features making up the feature space in this thesis can be categorized into three 

categories. The first is data based on historical stock price movements and trading volume.  The 

Figure 4.1: Overview of the methodology 
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other category consists of fundamental features. These are data points related to stock specific 

financial information, as well as macroeconomic measures. The last category are other variables 

such as day-of-the-week effect and an industry dummy classifier. In addition to what features 

have shown predictive power in previous literature, the decision of what features to include was 

also dependent on data availability.  

 

4.1.1  Fundamental features 
 

Research on asset pricing models have over the years identified different several hundred 

patterns in average stock returns (Feng et al., 2020). (Harvey et al., 2016) outlines 316 of them. 

It can therefore be a challenge to choose which features to include in the models. Information 

related to the financial status quo of a company, like profitability and cash-related measures, 

are often used to calculate the intrinsic equity value of a company, as well as to predict the cross 

section of average returns (Foerster et al., 2017).  Some notable stock specific characteristics 

that seem to exhibit a relationship with returns are size and value. (Banz, 1981) show the 

relationship between market cap and returns, (Basu, 1983) finds that book-to-market equity 

exhibits a relationship with average returns, while (Lakonishok et al., 1994; Rosenberg et al., 

1985) discovers that earnings over price, cash flow over price and past sales growth is related 

to average return. (Fama & French, 2006) reveals that profitable companies tend to have higher 

returns, while (Fama & French, 2018; Green et al., 2013) provides further insights into factors 

that may provide valuable information for future cross-sectional returns.  

 

This study includes 24 stock specific characteristics that are well documented in financial 

literature and that have performed well in newer studies such as in (Feng et al., 2020), as well 

as important features extracted using feature importance techniques, such as in (Gu et al., 2020). 

Variables representing stock specific information such as size, growth, valuation, and other 

financial metrics are included.  

 

The relationship between returns and the macroeconomic environment has also been 

extensively studied in the literature, e.g., in (Fama, 1981; Fama & Schwert, 1977; Kaul, 1987; 

Lee, 1992). The holistic behavior of the stock market is significantly influenced by 

macroeconomic variables, as they impact future investment opportunities and consumption 

patterns (S.-S. Chen, 2009). (Ratanapakorn & Sharma, 2007) finds that stock prices have an 

inverse relationship to long-term interest rates, but a positive relation to short-term interest rates 
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and industrial production, while (S.-S. Chen, 2009) finds that yield- curve spreads and inflation 

rates have predictive properties for predicting recessions in the U.S. stock market. A study 

performed by (Gjerde & Sættem, 1999) suggests that Norwegian markets responds to oil prices 

and real interest rates. The subspace of this study’s feature space consisting of macroeconomic 

variables include 10 variables outlined in (Gjerde & Sættem, 1999; Welch & Goyal, 2008), 

such as inflation, short- term interest rates, and oil price.  

 

The fundamental features are used for the monthly return predictions. They are not used for the 

daily predictions, as it is believed that these features hold very little predictive power in short-

term forecasting. They are thus excluded from the short-term model to reduce noise.  

 

4.1.2 Technical features 

 
Technical features are in this thesis regarded as information related to historical price 

movements, as well as trading volume. A much-debated topic in financial literature is the 

usefulness and predictable power of historical price data and technical indicators. Momentum 

factors are perhaps the features with the most supporting empirical evidence. Such factors are 

presented in (De Bondt & Thaler, 1985; Jegadeesh & Titman, 1993). The former finds that 

stocks with low long-term past returns exhibit higher future returns, while the latter argues 

that short-term trend in return tend to continue and that stocks with higher return in the past 

year show higher future returns. Empirical evidence of the effect of momentum on stock 

prices are also presented in (Carhart, 1997) and (Asness et al., 2013).  (Fischer & Krauss, 

2018) creates a momentum space consisting of lagged returns for the previous 20 trading 

days, and then the previous 11 months with a 20-day interval. This was used as input features 

in a machine learning driven trading system and was shown to significantly improve annual 

returns.  

 

Technical indicators are measures made by applying transformations to historical price and 

volume data to create more informative variables (Hsu et al., 2016). Their usefulness and 

predictive power for forecasting returns are heavily debated in the literature. (Lo et al., 2000) 

finds some technical indicators with predictive power, while (Brock et al., 1992) finds that a 

strategy based on technical indicators can produce excess returns. Studies by (Malkiel & 

Fama, 1970) and (Lesmond et al., 2004) dispute this, and argue that technical indicators bear 

little predictive power. Despite this, many papers concerned with return forecasting using 
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machine learning rely on either raw price data, technical indicators, or both. In contrast to 

traditional linear models, ML- models have the ability of dissecting nonlinear relationships 

and detecting complex variable interactions. Since ML-models are not common in financial 

literature, the predictive power of technical information might be underestimated (Hsu et al., 

2016). Thus, this study includes 10 variables related to momentum, volatility, and volume. 

 

Following (Fischer & Krauss, 2018), a lagged return feature space is also included for the 

short- term model. We define lagged return as:  

 

 

 

 

 

Where j denotes the number of days of which return is calculated. The purpose of this is to 

provide additional information about the return behavior in the recent past, i.e., 1-5 trading 

days, and the medium and long- term behavior, with {21, 61} and {126, 252} trading days 

respectively. In addition to lagged returns, 4 technical indicators are included. The full set of 

features and which prediction horizon they are used for are provided in table 8.1 in the 

appendix.  

 

4.1.3  Feature Selection 
 

The use of feature space reduction techniques in conjunction with machine learning models are 

popular in previous studies. These techniques have as their main goal to reduce the dimension 

of an 𝑛 ×  𝑝 data matrix 𝑋, where 𝑛 is the sample size and 𝑝 is the number of features (James 

et al., 2021), thus removing highly correlated features and reducing the number of features 

down to the ones that has the highest explanatory power. It also helps with computational cost, 

reduces the possibility of overfitting and mitigates the curse of dimensionality (Cai et al., 2012; 

Y. Kim, 2006; Marcos Lopez de Prado, 2018).  This can be done manually through hand- 

selection of features, or automatically through techniques. These automated techniques can be 

categorized under feature selection and feature extraction. Feature selection chooses a subset 

of existing features and uses this subset as input for a model, while feature extraction create a 

subset of new features generated from the data (Htun et al., 2023). Automated methods for 

dimension reduction can be advantageous in when applying machine learning to financial time- 

(9) 
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series for two reasons: First, separating between relevant and irrelevant features manually is 

infamously difficult due to the unclear dependencies that exists in the data (Carta et al., 2022b). 

Second, it can reduce the concerns of the machine learning models acting as black boxes 

through enhancing the model interpretation (Zhao et al., 2019). However, one should be careful 

that the introduction of these techniques does not excessively remove relevant information. 

(Smolander et al., 2019). 

 

Several studies on return prediction incorporates different feature selection techniques. (Enke 

& Thawornwong, 2005) use decision tree algorithm with integrated information gain analysis 

to select a feature subset. (W. Wang et al., 2020) use recursive feature selection, while (Long 

et al., 2019) use a convolutional filter in conjunction with a neural network. (Huck, 2019) 

combines random forest, and its integrated feature selection method. Most of these studies 

report better predictive performance with a smaller subset of important features. Hence, his 

study employs the Random Forest Feature Importance method2.  

 

The feature importance ranking from the random forest will be used in a two- step methodology 

combining the new subset of features with the machine learning models. The models will first 

be fed the full set of features, and then the reduced subset produced by the feature importance 

method. Note that this only applies for the monthly predictions, as previously discussed.  

 

4.2  Models 

 

Among the many statistical models available for predictive modelling this thesis considers three 

of them. The two most complex models are the Gradient Boosted Trees (GBT) and Random 

Forest (RF) algorithms. A simpler model, Logistic Regression, is included to enable the 

comparison between the predictive capabilities of models of varying complexity, and their 

ability to capture the information embedded in financial time-series.   

 

 

 
2 After training, the feature importance is calculated by averaging the information gain achieved by each feature 

over all the decision trees. The importance is thus assessed by looking at how much it improved the model’s 

performance.  
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Random forest models have been applied in numerous studies and have been shown to achieve 

a high out-of-sample classification accuracy, while also being relatively easy to implement and 

configure (Fischer & Krauss, 2018; Krauss et al., 2017; Moritz & Zimmermann, 2016). Logistic 

regression is a simpler method well suited for predicting binary variables. It has also seen 

extensive use in the field of econometrics, which makes it interesting for comparison. It is 

therefore used as a baseline for comparing predictive performance to the other more complex 

methods.  

 

 

Table 4.1: Overview of all models that produce predictions used for portfolio construction 

Model group LR RF GBT 

    

Short term LR RF - GBT - 

      

Long term LR RF RF_r GBT GBT_r 

 

 

4.2.2  Regularization and hyperparameters 

 

A main advantage of machine learning models is their ability to regularize and tune its 

hyperparameters such that overfitting is reduced, and predictive ability is enhanced. This 

section explains the steps taken for tuning hyperparameters for the different models.  

 

The random forest algorithm is built on the notion of combining many weak classifiers, i.e., 

decision trees, into one strong learner. While random forest does not require much 

hyperparameter tuning, three main parameters need to be considered when fitting the model. 

These are the number of decision trees, the maximum number of features to be evaluated when 

partitioning and the maximum depth of the decision tree.  To find the optimal parameters for 

the model a grid search3 is performed with the number of trees varying between 250 and 1000, 

and the depth between 5 and 30.  Following previous studies (Fischer & Krauss, 2018; Huck, 

2019) this study set the number of trees to 1000, while the depth is set to 20. As recommended 

 
3 A technique used to fine the optimal combination of hyperparameters for the Random Forest algorithm. It 

involves systematically assessing the performance for every possible combination of hyperparameters. 
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by (James et al., 2021) the maximum number of features to be evaluated is √𝑛 where 𝑛 is the 

total number of features.  

 

The gradient boosted trees algorithm is more susceptible to overfitting than the random forest. 

The hyperparameters set for this model is therefore stricter than for the random forest, 

decreasing the number of trees and a predefined low learning rate. The low learning rate means 

that it converges slower but can lead to better generalization. The maximum depth is set to vary 

between 3 and 10, not allowing it to be as deep as the random forest. This is also done to reduce 

the risk of overfitting.  

 

The logistic regression is fitted using L2, or ridge, regularization to encourage more evenly 

distributed coefficients. The regularization parameter, C, controls the regularization strength of 

the model, and is varied between 0.01 and 10 to prevent overfitting. The solver model is given 

four different options of solvers, or kernels, to maximize performance.  

 

 

Table 4.2: Overview of hyperparameters 

 GBT RF LG 

Learning rate 0.05 - - 

Number of trees 50 ~ 400 250 ~ 1000 - 

Maximum depth 3 ~ 10 5 ~ 30 - 

Subsample ratio n/2 - - 

Maximum features - √𝑛 - 

Criterion - Entropy - 

C - - 0.01~10 

Kernel - - [liblinear, newton-og, sag, lbfgs] 

Regularization   L2 

Maximum iterations   100 
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4.3  Portfolio Construction and Trading System 
 

 

4.3.1  Trading Signals and Execution 
 

The prediction phase of the proposed strategy starts by constructing a binary response variable 

𝑌𝑡+1
𝑠  for each stock 𝑠 at time 𝑡 for each study period. This takes the value of 1 if its one-period 

return 𝑅𝑡+1
𝑠  outperforms the benchmark at 𝑡 + 1, and 0 otherwise. Simple return for each stock 

𝑠 with price 𝑃  is calculated as:  

 

 

 

 

Thus, the response variable is defined as follows:  

 

 

 

 

 

Where 𝑅𝑡+ℎ is the return of the benchmark at time t + h, and ℎ is the prediction horizon. The 

value of ℎ is either 1 day or 1 month. Using binary cross-entropy, a loss function used for binary 

classification problems that measures the distance between the true binary class labels and the 

predicted probability estimates for those labels, a probability of stock 𝑠 being classified as 1 

can be obtained. Stocks are then sorted by this probability.  

 

Portfolios are created by going long the k stocks with the highest probability and short the k 

stocks with the lowest probability at the date of rebalancing. The middle-ranked stocks exhibit 

the highest directional uncertainty, a risk which is mitigated through only considering the top 

and bottom rankings. Portfolios constructed using 𝑘 ∈ {5, 10} are considered. Thus, for each 

probability forecast a portfolio is created consisting of k long positions and k short positions. 

The positions in the portfolio are equal-weighted, and an equal amount of capital is allocated 

the long and short portfolios. Equal- weighted portfolios are deemed favorable to value- 

weighted portfolios due to the large discrepancy in market capitalizations, where a few stocks 

(9) 

(10) 
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with high market capitalizations would dominate the returns. The return of a value-weighted 

portfolio could thus rely almost entirely on one or two stocks.  

 

Similar for all models, a holding of 100 000 NOK of cash is initiated at the beginning of the 

trading period for both the long and short portfolios. It is assumed that all stocks can be traded 

for the opening price on the date of rebalancing. Further, if a stock already present in the 

portfolio is predicted among the k best performers when rebalancing, the position in that stock 

is adjusted so that the portfolio is equal- weighted. The same process is done for short positions.  

 

4.3.2  Study Periods 
 

A study period is a full completion of the trading strategy pipeline. In other words, from training 

and prediction to trading. A training period and trading period is set to be 750 and 250 trading 

days respectively. These periods are selected in line with (Huck, 2019) and is equal to 

approximately 3 years of training, split between training and validation, and 1 year of trading 

assuming there are 21 trading days a month. This creates non-overlapping batches which are 

shifted 250 days to the right for every study period. This method for backtesting is called the 

walk-forward validation approach and is commonly found in the time-series prediction 

literature. By shifting forward the training and test sets with the length of the test period, 

continuous out-of-sample predictions for the entire 22-year period can be obtained, except for 

the first 750 days which are used for the initial training, as shown in figure 4.2. It also ensures 

that the model is trained on relevant market conditions, as these change over time. For each 

walk a vector of features are created, dependent on the prediction horizon. Furthermore, the 

investment universe is filtered through the liquidity filters explained in section 3.1, and thus the 

number of investable stocks varies throughout the study periods. Missing data also impact the 

size of the investment universe for a given study period.  
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4.3.3  Transaction Costs 
 

Transactions costs are notoriously difficult to replicate in backtests and return numbers can vary 

greatly based on the incorporated transaction costs. This thesis employs an observable 

transaction fee provided by Nordnet as a proxy. They charge a fee of 0.49% per transaction. A 

transaction cost of 0.5% have been used in earlier studies, e.g., in (Krauss et al., 2017). Applying 

a fee of 0.49% per share trade will therefore allow this study to compare its results with other 

studies, while also conforming to actual transaction costs seen in the Norwegian market.  

 

4.4  Performance Evaluation 
 

Both the performance of the predictions and the financial performance are analyzed using 

common performance metrics. This is necessary both for assessing the robustness of the 

models, as well as for comparability with implemented benchmarks and other studies.  

 

4.4.1 Model Performance 
 

Popular classification metrics are assessed for evaluating the predictive performance, including 

the log loss value which indicates the reliability of probabilistic predictions. The first metric 

that we use to analyze the predictive performance is the accuracy, which can be calculated as 

follows:  

Figure 4.2: Illustration of the walk-forward approach 
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We then assess the precision and recall. Precision, also known as positive predictive value, 

measures the ratio between correct positive predictions and total positive predictions. It thus 

provides information about how many predicted positive values were actually positive, 

indicating how confident the model is in its positive predictions. Recall, sensitivity or the true 

positive rate, measures the share of true positives that the model has been able to classify 

correctly. The F1 score is also assessed. The F1 score is the harmonic mean of precision and 

recall, providing a more balanced measure the model’s performance. These metrics can be 

calculated as follows:  

 

 

 

 

 

 

Finally, the log loss value, or cross-entropy loss, is presented. This is a binary classification 

metric that quantifies the accuracy of the model by penalizing false classifications. This metric 

allows the performance analysis to incorporate the probability of each classification, such that 

it is possible to assess the confidence of the predictions. This is an important feature for this 

study’s purpose as the portfolios are constructed based on predicted probabilities. A low log 

loss value is desirable, as this means the predicted probability is closer to the target. It can be 

calculated by the formula:  

 

 

 

 

 

Where 𝑃𝑛 is the predicted probability of the target being 1, 𝑌𝑛 is the actual target and 𝑁 is the 

number of observations.  

 

 

(11) 

(12) 

(13) 

(14) 
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4.4.2  Financial Performance 
 

Financial performance is analyzed through the classical risk-adjusted performance metrics 

Sharpe ratio and Sortino Ratio. Pure return and volatility numbers are also studies through 

return and standard deviation values. These are annualized to allow for better comparison 

between the monthly and daily portfolios. To study the risk profile of the portfolios, Value at 

Risk (5%) and Maximum Drawdown are also calculated. Formulas of the different measures 

are presented in table 4.3.   

 

 

 

Table 4.3: Performance metrics 

 

Metric Formula 

 

Annualized Return 

 

 

Standard Deviation 

 

 

Sharpe Ratio 

 

 

Sortino Ratio 

 

 

VaR(5%) 

 

 

Maximum Drawdown 

 

 

 

These measure gives a holistic view of the performance of the different portfolios and ensure 

that favorable return numbers are not due to excessive risk taking.  

 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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5.  Results and Analysis 
 

 

This section presents the results obtained from the predictions and the subsequent backtests. 

We start by analyzing the predictions results obtained from the different machine learning 

algorithms, before conducting a thorough analysis of financial performance.  

 

5.1  Prediction Results 
 

 

Table 5.1 shows an overview of the classification metrics outline in section 4.4.1 for Logistic 

Regression (LR), Random Forest (RF) and Gradient Boosted Trees (GBT) for both daily and 

monthly predictions. Performance for two additional monthly models, the RF and GBT fitted 

using a reduced feature set, is also presented.  

 

For short term predictions RF shows superior results, with an accuracy of 54.2%, indicating 

that it correctly predicts future outcomes more frequently than LR and GBT. Its precision value 

outperforms the other two models, implying that the positive predictions made are more likely 

to be actual positives. RF also yields the highest recall, which means that it performs better at 

identifying a higher proportion of true positives than the other two models. GBT and LR show 

very low recall values, indicating that the models missed many stocks that did in fact outperform 

the benchmark as defined by the independent variable. The ROC AUC- score measure the 

overall performance of the classification models, signifying that RF have better discriminative 

power than LR and GBT. The RF has the lowest log loss value, indicating that it provides better 

probabilistic outcomes, which is what we are most concerned with as these probabilities in the 

end decide what stocks are included in the portfolio.  

 

Table 5.1: Results for daily predictions 

 
Daily predictions 

 Accuracy Precision Recall F1-Score ROC AUC - Score Log Loss Value 

LR 0.51 0.51 0.12 0.19 0.51 0.76 

RF 0.54 0.58 0.37 0.45 0.59 0.69 

GBT 0.53 0.54 0.19 0.27 0.52 0.71 
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Table 5.2: Results for monthly predictions 

 

 

 

For the monthly predictions RF and GBT initially performs similarly with an equal accuracy, 

precision and recall. The reduced RF however show superior performance to the original RF 

and GBT models, as well as the reduced GBT. There is however less of a discrepancy between 

the models for the monthly predictions than for the daily predictions, with the log loss value 

sitting around 0.70 for all models. LR show a higher log loss value at 0.73, repeating the pattern 

from the daily predictions.  

 

While the accuracies shown are not very large in terms of classical machine learning 

performance evaluation, this is to be expected. All models do however show a accuracy higher 

than 50%, indicating that it is better than picking stocks at random. 

 

5.2  Portfolio Analysis 
 

This section will analyze the results produced from backtesting the machine learning driven 

investment strategies. The following sections will first analyze the effect of different portfolio 

sizes for both horizons and all models. Following, different performance metrics related to 

return and risk while considering the effect of transaction costs are assessed, before taking a 

closer look at the long and short portions of the portfolios. Then an analysis of performance 

during sub- periods follows, before finally we analyze the specific stock positions taken. This 

study also dedicates a section to analyzing feature importance, with performance metrics before 

and after feature selection. 

 

Monthly predictions 

 Accuracy Precision Recall F1-Score ROC AUC - Score Log Loss Value 

LR 0.51 0.51 0.51 0.49 0.53 0.73 

RF 0.53 0.51 0.52 0.49 0.54 0.70 

GBT 0.53 0.51 0.52 0.49 0.53 0.70 

RF_r 0.55 0.52 0.53 0.52 0.53 0.69 

GBT_r 0.53 0.52 0.52 0.49 0.54 0.70 
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5.2.1  Portfolio Size and Initial Results 
 

Monthly and daily long-short portfolios with varying holding sizes are considered, one with 

five stocks both legs and one with ten stocks in both legs. We start by analyzing the effect of 

the different holding sizes, visualized in figure X, as well as the performance by the different 

models. Figure X shows the mean return and mean standard deviation per rebalancing period, 

i.e., daily mean for the daily portfolio and monthly mean for the monthly portfolio.   

 
Both the daily and monthly portfolios show better performance with a holding size of 5 stocks 

each for the long and short portfolios. The best performing daily portfolio yields a mean daily 

return of 0.166% while the portfolio keeping 10 long and short positions yields a mean daily 

return 0.115%. Like the daily portfolio, the monthly portfolio also reports better performance 

for the portfolio with k = 5, with a mean monthly return of 1.78% as opposed to 1.20% for 

Figure 5.1: Mean values for monthly and daily portfolios 
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k = 10. Increasing k will decrease the directional certainty of the stocks that are included in the 

portfolio. This can explain the difference in return, as including 10 stocks in both the long and 

short positions would lead to holding more stocks that have a less certain probability of 

outperforming the benchmark. Another factor that could explain the higher return for k = 5 is 

the volatility, as all portfolios exhibits a higher mean standard deviation than its  

k = 10 counterpart. This behavior is expected, as established portfolio theory states that 

increasing the diversification of a portfolio, which in this scenario is done by adding more 

assets, reduces the volatility (Bodie et al., 2018). 

  

The portfolio based on logistic regression shows the worst performance across the board, with 

a higher standard deviation and lower return in all portfolios, except for the monthly portfolio 

with k = 10 where the random forest model reports a higher standard deviation. This is in line 

with the results from (Gu et al., 2020) and conforms to what was expected beforehand, as it is 

the simplest model of the three which consequently should result in inferior performance. It is 

however interesting to note that the short portfolios based on predictions from logistic 

regression perform much better than the long portfolios. This can be seen in tables 8.2 and 8.3 

in the appendix, which showcase full return statistics for all portfolios. For both the daily and 

monthly portfolios the mean return from the short positions is close to the other more complex 

models, even outperforming both random forest and gradient boosted trees for the monthly 

portfolio with k = 10. The notable performance difference between logistic regression and the 

other two models for the long positions and the lack of for the short positions might serve as 

evidence that the short predictions are more spurious and less accurate.  
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Note: Full lines represent portfolios with k = 5, while dotted lines represent k = 10 

 

 

 

As can be seen in figure 5.2, the portfolios based on predictions from the random forest- and 

gradient boosted trees algorithms have similar performance. Both models seem highly 

correlated with each other, especially for the daily portfolio, which is to be expected since they 

trade on the same relatively small universe of stocks. For k = 5, the daily portfolio based on 

random forest slightly outperforms gradient boosted trees, while the opposite is true for the 

monthly portfolio. This difference is negligible for k = 10, with a 0.02% difference in mean 

Figure 5.2: Portfolio values for daily and monthly portfolios before transaction costs 
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daily return and a 0.0004% difference in mean monthly returns in favor of random forest. All 

models produce statistically significant positive returns when testing for the null hypothesis: 

 

 

 

 

 

 

Where �̅� is the mean return and 𝛼 = 0.054. This is true for both daily and monthly holding 

periods, and all holding size variations. When accounting for transaction costs however, only 

the random forest with k = 5 produce statistically significant positive returns for the daily 

holding period. All portfolios with a daily holding period are greatly affected by transaction 

costs, exemplified by the dramatic drop in the t-statistic values before and after transaction costs 

for all portfolios with k = 10.  From table 8.2 in the appendix we can see that mean daily returns 

decreased from 0.07%, 0.12% and 0.11% to -0.07%, -0.07% and -0.08% for logistic regression, 

random forest, and gradient boosted trees respectively after accounting for transaction costs. 

For the monthly holding period all portfolios with k = 5 produce statistically significant positive 

returns both after and before transaction costs, while for k = 10 none of the portfolios exhibit a 

statistically significant return above 0.   

 

The further analysis will focus on the daily portfolio based on random forest predictions with  

k = 5, and the monthly portfolio based on predictions from gradient boosted trees, also with 

k = 5. 

 

5.2.2  After Transaction Costs 
 

While the machine learning driven strategies at first glance might yield abnormally high returns, 

they quickly diminish when considering transaction costs, since all strategies have a relatively 

high turnover. For the portfolio with daily rebalancing the high turnover is logical, as the models 

driving the trading activity makes decisions based on previous price history and tries to exploit 

any existing irregularities. This also applies for the monthly portfolio as a large portion of its 

model’s variables are related to price history. Table 5.3 presents various risk- return metrics 

that provides a holistic view of portfolio performance both before and after transaction costs 

 
4 𝛼 (Alpha) denotes the significance level. Critical value at 𝛼 = 0.05 is 1.96. 

(21) 
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for the best performing model in both holding segments. These metrics are compared against 

the OSEAX index.  

 

 

Table 5.3: Performance metrics for daily and monthly portfolio 

Note: Portfolios based on random forest and gradient boosted trees for the daily and monthly holding periods 

respectively. Risk-free rate used in calculation of ratios is proxied by the yield on the 3-year Norwegian 

Government Bond. 

 

 

The daily portfolio exhibits an impressive, annualized return before transaction costs of 

50.14%, significantly higher than the 22.24% return of the monthly rebalanced portfolio. This 

indicates the potential for the daily rebalanced portfolio to generate significant return numbers 

and might suggest that the daily predictions are able to capture short-term price irregularities. 

However, after accounting for transaction costs annual return decreases significantly to 10.78%. 

This showcases the impact of transaction costs on a portfolio with a high turnover, and its 

sensitivity to transaction costs. Annualized returns from the monthly rebalanced portfolio are 

less sensitive to transaction costs, decreasing from 22.24% to 14.13%, thus outperforming the 

daily portfolio. The monthly portfolio also outperforms the benchmark slightly, yielding an 

excess annualized return of 0.64%. The daily portfolio however struggles to outperform the 

benchmark after considering transaction costs.  The cumulative returns for the portfolios are 

shown in figure 5.3, where the eroding effect on returns from frequent transaction costs are 

clearly visualized.  

 Daily Monthly OSEAX 

Annualized Before  After Before After - 

      

Return 0.5014 0.1078 0.2224 0.1413 0.1349 

Std dev 0.1351 0.1353 0.1565 0.1557 0.1861 

Sharpe 3.45 0.54 1.20 0.68 0.54 

Sortino 5.21 0.82 2.25 1.20 0.63 

MDD 0.2533 0.3252 0.2382 0.3093 0.5259 

VaR 5% -1.4570 -0.2752 -0.1668 -0.2163 -0.2504 
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Note: Dotted lines represents the cumulative returns after accounting for transaction costs. Full line represents 

cumulative returns prior.  

 

 

The daily portfolio does on the other hand exhibit favorable standard deviation values, which 

is a measure of portfolio volatility, at 13.53% after transaction costs. This might be attributed 

to its frequent adjustment of its holding which offsets price volatility, the fact that daily 

rebalancing allows the portfolio to frequently realign with its target allocation, thus reducing 

drift from desired risk levels, and more frequent adjustments to market movements. The 

annualized standard deviation for the monthly portfolio is slightly higher than the daily portfolio 

at 15.65% but is still smaller than the standard deviation for the benchmark.  

 

Before transaction costs the daily rebalanced portfolio exhibits a notably higher Sharpe ratio at 

3.45 compared to the monthly rebalanced portfolio at 1.20, which implies a superior risk-

adjusted performance. It also delivers a higher Sortino ratio at 5.21, suggesting a better 

downside risk-adjusted performance. However, the transaction costs again lead to severe 

reductions in performance, with the Sharpe ratio decreasing to 0.54, and the Sortino ratio 

decreasing to 0.85. This is on similar levels with the benchmark despite that the daily portfolio 

Figure 5.3: Cumulative return before and after transaction costs 
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delivers inferior returns, which can be attributed to the exhibited volatility as discussed above. 

The monthly portfolio again shows a stronger robustness to transaction costs when considering 

risk-adjusted metrics, outperforming both the daily portfolio and the benchmark with Sharpe- 

and Sortino ratios of 0.68 and 1.20 respectively after transaction costs, a relatively small 

reduction from the 1.20 and 2.25 values before transaction costs.  

 

Maximum Drawdown (MDD) and Value at Risk (VaR) are two important risk metrics in 

portfolio analysis, each providing information on potential losses a portfolio might endure 

during adverse market conditions. MDD quantifies the largest observed loss from a peak-to-

through of a portfolio, capturing the worst potential loss an investor could have experienced 

during a specific period. The daily rebalanced portfolio experiences a similar MDD to that of 

the monthly rebalanced portfolio after transaction costs with 32.35% to 30.93%, both 

outperforming the benchmark with quite a large margin. This suggests that the machine learning 

driven investing strategies fare better at managing exposure to large peak-to-trough losses. The 

Value at Risk metric is also used to measure risk within specific time frame and estimates the 

maximum potential loss given a level of confidence, which in this case is 5%. Both the daily 

and monthly portfolios show a higher VaR after transaction costs, implying that transaction 

costs not only reduce returns but also increase the risk of extreme losses. The daily portfolio 

shows a VaR of -145.7% before transaction costs, which means that, with 95% confidence, the 

portfolio will not lose more than 145.7% of its portfolio value. The VaR decreases to -27.52% 

after accounting for transaction costs which means that the maximum expected loss decreases 

when introducing transaction costs. While this might seem counterintuitive, a possible 

explanation might be that transaction costs have a dampening effect on the portfolio’s return 

distribution by reducing the number of extreme positive and negative returns. The daily 

portfolio relies on a strategy that exploits sharp, short-term price movements which might not 

be profitable after transaction costs. This leads to a more symmetrical return distribution, which 

decreases the VaR.  

 

The monthly portfolio exhibits an opposite behavior with the VaR increasing from 16.68% to 

21.63% after transaction costs, which implies that it gets more sensitive to extreme losses. This 

increase can possibly be explained by increased exposure to adverse price movements and 

market volatility compared to the daily portfolio due to its longer rebalancing period, which is 

further exacerbated by the transaction costs. Since rebalancing is only done once a month, the 

portfolio might be exposed to higher risk sectors for longer, causing the portfolio to drift away 
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from its target allocation, which are stocks with the highest probability of outperforming the 

benchmark. In other words, stocks that are predicted to beat the benchmark at time t might at 

time T - 
𝑡

2
  no longer exhibit the traits that prompted the machine learning model to give it a 

high probability in the first place. This might also lead to missed opportunities mid-holding 

period to capitalize on potential profitable stocks but is less of a concern as the monthly 

portfolio yields a higher return and Sharpe ratio than the daily portfolio.  

 

5.2.3  Long/Short Analysis 

 
We have up until now only considered the total daily and monthly portfolios. It is however 

interesting to assess the constituents of the total portfolios and dissect the long and short 

portions. Table 5.4 presents the same risk-return metrics as the previous chapter for the long 

and short positions after transaction costs.  

 
Table 5.4: Performance metrics for long and short portfolios 

 

 
The most obvious observation from the table is the difference in return between the long and 

short portions of both portfolios. The long positions comfortably outperform the short positions 

with regards to annualized return, with the daily short portfolio yielding a negative annualized 

return and the monthly short portfolio yielding an annualized return close to zero. The risk-

adjusted performance ratios for the short portfolios also deliver disappointing results, with both 

 Daily Monthly OSEAX 

Annualized Long Short Long Short - 

      

Return 0.2251 -0.0517 0.2176 0.0116 0.1349 

Std dev 0.2908 0.2481 0.3154 0.2456 0.1861 

Sharpe 0.65 -0.35 0.58 -0.09 0.54 

Sortino 0.91 -0.50 0.89 -0.15 0.63 

MDD 0.2357 -0.8483 -0.6489 -0.8553 0.5259 

Var 5% 0.3296 -0.7629 -0.4922 -0.5125 -0.2504 
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the Sharpe- and Sortino ratio dropping to the negatives for both holding periods. The short 

portfolios also experience higher risk, as can be seen by the MDD and VaR values, especially 

for the short portion of the daily portfolio. The superior performance of the long positions might 

be due to the general upward trend in the OSEAX index since the beginning of trading, resulting 

in fewer and less certain shorting opportunities. Furthermore, analyzing the long and short 

portfolios individually without considering the total effect neglects an important feature of a 

long-short portfolio, namely market- neutrality and reduction of volatility. As seen in table 5.4, 

the long portfolios exhibit higher standard deviations than the benchmark. In the previous 

subchapter it was shown that both the daily and monthly total portfolios had less standard 

deviation than the benchmark, thus experiencing less volatility. Figure 5.4 visualize the Net 

Asset Value (NAV) for the long and short positions, which serves as evidence that the short 

portfolio offsets some of the market volatility in times with high turmoil. 

 

Note: Net Asset Value calculated by multiplying portfolio value at time t=0 with cumulative returns at time t. 

 

The short positions effectively offset the largest drawdowns in the broad market, as seen in for 

example the large positive trend around the financial crisis in 2008. The short portfolios seem 

to be effective at exhibiting an inverse relationship with the broad market, thus reducing the 

Figure 5.4: Net Asset Value for long and short portfolios 
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overall volatility of the total portfolios. Table 5.5 provides beta values for the different 

portfolios. Beta is a measure of the systematic risk exposure of a portfolio in relation to the 

broad market, thus quantifying the portfolio’s sensitivity to market movements. Since a long-

short portfolio generally aims to be market-neutral, a beta value of 0 is deemed desirable as this 

means that the portfolio value is not at all correlated with the market and is therefore 

theoretically less volatile than the market. A beta value of 1 means the opposite and suggests 

the value of a portfolio will move in tandem with the market. Both the monthly and daily long 

positions exhibit a positive correlation to the OSEAX index, but the total portfolio correlations 

are offset by the short positions.  

 

 

Table 5.5: Beta values for long and short portfolios 

 

 

 

 

 

 

 

 

 
Note: Beta values obtained by regressing the return series of the daily and monthly portfolios onto the return 

series of the OSEAX using Ordinary Least Squares. 

 

 

 

Interestingly, the daily short portfolio starts a downwards trend after 2008, while the opposite 

is true for the monthly portfolio which regains traction around 2010 and continues to produce 

relatively constant positive returns. From figure 5.4 we can see that both short portfolios are 

highly correlated from the beginning of trading until 2012, before they start to exhibit an inverse 

relationship. As stated in (Lewellen, 2014), the predictability of stock returns seems to 

gradually vanish as we get closer to today. The large discrepancy between the two short 

portfolios, which are based on predictions from models of equal complexity, suggests that this 

holds true also for Norwegian markets when exploiting short term price history for predicting 

shorting candidates. Another explanation might be that predicting candidates for shorting with 

a relatively high precision is a much harder task than predicting candidates for long positions. 

Equity markets, including the OSEAX index, usually experience an inherent upward bias over 

the long term which means that stocks in general tend to appreciate over time. This again leads 

 Daily Monthly OSEAX 

 Long Short Total Long Short Total - 

β 

 

0.044 

 

0.010 

 

0.027 

 

0.172 

 

-0.276 

 

-0.052 

 

1 
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to more successful long candidates than short candidates, which can explain the difficulty in 

identifying shorting opportunities that generate positive returns.  

 

We see however that the monthly short portfolio has been performing better than the daily short 

portfolio, indicating that there is some predictability to be captured. The monthly portfolio 

utilizes variables such as financial ratios and macroeconomic statistics. These factors are 

seemingly better at explaining negative performance for individual stocks. This can be because 

negative price reactions often follow poor earning calls (Fama & French, 2006), and since 

individual stocks are shown to exhibit momentum effects (De Bondt & Thaler, 1985; Jegadeesh 

& Titman, 1993), even though the financial information are lagged by its reporting frequency, 

the model might still capture the long- term repercussions of the negative earning calls. Another 

contributing factor to the better performance of the monthly short portfolio can be its inclusion 

of macroeconomic variables. The OSEAX index is heavily tilted towards sectors that directly 

reacts to the macroeconomic environment, such as energy and industrials, which constitutes 

that the portfolios hold stocks from these sectors, leading to improved predictability.   

 

5.2.4  Sub-period Analysis 

 
The trading performance of the monthly and daily portfolios are further analyzed during three 

different time periods. The first period is from 2002-2009, representing times of turmoil with 

the aftermath of the dot-com bubble and the global financial crisis of 2008. The second period 

is 2009-2019, characterized by recovery from the 2008 financial crisis, quantitative easing from 

central banks and low interest rates. In the last period, 2019-2022, financial markets were in 

large degree dominated by the Covid-19 pandemic and its subsequent attempt to recover, 

resulting in significant market volatility, as well as an interplay between escalating inflation 

and interest rate hikes from central banks.  
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Table 5.6: Performance metrics during selected time-periods. 

 
  2002-2009 2009-2019 2019-2022 

 Annualized Portfolio OSEAX Portfolio OSEAX Portfolio OSEAX 

 Return 0.2287 0.2156 0.0471 0.0940 0.0072 0.0969 

 Std dev 0.1417 0.2425 0.1163 0.1291 0.1817 0.1992 

Daily Sharpe ratio 1.37 0.75 0.10 0.46 -0.15 0.31 

 Sortino ratio 2.16 0.83 0.16 0.67 -0.21 0.36 

 MDD -0.1556 -0.5259 -0.2645 -0.0904 -0.2949 -0.2306 

 VaR 5% -0.3029 -0.3584 -0.1401 -0.0668 -0.1746 -0.1082 

        

 Return 0.0668 0.2156 0.1335 0.0940 0.3614 0.0969 

 Std dev 0.1463 0.2425 0.1642 0.1291 0.1390 0.1992 

Monthly Sharpe ratio 0.22 0.75 0.60 0.46 2.34 0.31 

 Sortino ratio 0.39 0.83 1.05 0.67 3.39 0.36 

 MDD -0.3093 -0.5259 -0.1030 -0.0904 -0.0819 -0.2306 

 VaR 5% -0.2585 -0.3584 -0.2376 -0.0668 0.0850 -0.1082 

 

 
Some interesting findings emerge when considering the portfolios during different time periods. 

Earlier studies (Fischer & Krauss, 2018; Huck, 2019) show that returns from machine learning 

driven investment strategies deteriorate with time, likely because of increased market 

efficiency. These results conform to the previous finding to some degree, with the daily 

portfolio showing decreasing returns. However, the monthly portfolio shows a strong positive 

uptrend, with a Sharpe ratio of 0.22, 0.6 and 2.34 in the periods 2002-2009, 2009-2019 and 

2019-2022 respectively. The monthly portfolio shows an inverse relationship with the OSEAX 

index, suggesting that the increase in performance is due to other factors than positive trends in 

the market. It also displays a risk profile that is highly favorable relative to the OSEAX index 

with a MDD of only 8.19% and a VaR of 8.5% in 2019-2022, compared to 23.06% and 10.82% 

for the index.  

 

The daily portfolio performs well in earlier years, gaining an excess return of 1.31% annually 

between 2002 and 2009 over the OSEAX index. This number decreases to -4.69% and -8.97% 

for the periods 2009-2019 and 2019-2022 respectively, following the same trends as reported 

in earlier literature. The somewhat disappointing performance between 2019-2022 might well 

be attributed to increased market efficiency. There are however other factors to consider, such 
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as the length of the period and the state of the financial markets during these years. This period 

only spans 3 years, making it hard to tell if the trend is actual or if it was fueled in large by the 

Covid-19 pandemic. The variables included in the daily return predictions cannot be expected 

to bear any predictive power of the effect the pandemic had on stock prices, which in turn 

affects the return of the selected stocks from the model in an unpredictable fashion.  

 

The different development of performance for the daily and monthly portfolio indicates that 

predicting stock prices using a wide array of fundamental variables, thus creating a feature 

space with a holistic view of individual stocks, and macroeconomic variables is beneficial. The 

results suggests that the market has become more efficient, but that there still is predictability 

to be captured in company anomalies reported in literature. This might especially be true for 

Norwegian stocks, as it is deemed less of an efficient market than the U.S., both because of less 

trading activity and competition, but also because it reacts slowly to anomalies published in 

financial literature. It can as a result contain opportunities for medium term return prediction, 

utilizing said anomalies as predictors. 

 

Table 5.7 shows an overview over the worst drawdown periods. While one might initially 

expect that the portfolios would perform worse during times of financial turmoil, this seems to 

only be partially true. This is also logical considering the low beta values for the daily and 

monthly portfolios. The table shows that the worst drawdown periods for the monthly portfolio 

was between February 2004 and November 2008 spanning 1736 days and yielding a total 

drawdown of 38.71%. The daily portfolio saw its worst period start in December 2008 before 

recovering in July 2020, just after the initial effects of the Covid-19 pandemic. Its third worst 

drawdown period started just 16 days later, suggesting that the exit from the first drawdown 

period was in large due to positive index returns between the months of April and July5. 

Notably, none of the portfolios experienced a serious drawdown in relation to the financial 

crisis in 2008, but rather in much less volatile periods. This suggests that the model is better at 

exploiting mispricing during times of high volatility, while less so when the markets are not 

experiencing irregularities.  

 

 

 

 
5 The return for the OSEAX Index was 9.02%, 2.79%, -0.3% and 3.75% in the months of April, May, June and 

July respectively in 2020.  



48 

 

Table 5.7 Drawdown statistics 

 

Note: The OSEAX index had an average drawdown of 8.39% with average drawdown days of 239. Daily 

drawdown statistics for the daily portfolio, monthly for the monthly portfolio. 

 

 

 

5.2.5  Feature Importance  

 
Through the integrated feature importance method in the random forest algorithm the predictive 

power of the different features is quantified. We start by analyzing the feature importance for 

the daily rebalanced portfolio, before moving on to the monthly rebalanced portfolio where we 

assess both the feature importance and two new portfolios utilizing a reduced feature set.  

 

The results from the feature importance extraction are what was expected. Like in (Huck, 2019) 

the most recent returns are the most important features and the returns from the previous two 

trading days make up approximately 28% of the predictability that exists in the variables. The 

10-day estimated moving average is the technical indicator that is the most important, while the 

rest of the indicators seem to not contribute as much as reported in (Lesmond et al., 2004). 

Figure 5.5 indicates that returns become less important the more distant they are.  

 

Monthly 

Started Recovered Drawdown Days 

29/02/2004 30/11/2008 -38.71% 1736 

30/06/2014 30/04/2016 -20.18% 670 

30/06/2018 30/11/2019 -17.12% 518 

Avg. Drawdown Avg. Drawdown Days 

-7.35% 225 

    

Daily 

Started Recovered Drawdown Days 

11/12/2018 14/07/2020 -32.53% 581 

11/10/2013 20/06/2016 -26.46% 983 

30/07/2020 27/04/2022 -23.68% 636 

Avg. Drawdown Avg. Drawdown Days 

-2.53% 39 
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Next, we investigate the importance of the individual variables included in the monthly 

portfolio, reported in figure 5.6. The most important variable seems to be, by a great margin, 

size. Then follows short-term reversal (m1), also containing a great deal of the available 

predicting power in the feature set. The next features are also related to momentum, with stock 

momentum the last year (m12) and the last 6 months (m6) being among the most important 

variables. These four variables have in previous literature experienced much attention for its 

predictive power for future stock returns, making these results not surprising.  

 

The most important variables after the mentioned four are all related to stock specific financial 

ratios, liquidity, and price history. Turnover (turn), beta, price-to-earnings (pe), change in short-

term reversal, ebitda-to-ev (eb_ev), change in six-month momentum (m6), medium-term 

reversal (m3), earnings per share (eps), change in long-term momentum (m12) and price-to-

book (pb) are all ranked higher than the first macroeconomic variable in the feature set. The 

Consumer Price Index (cpi) is the most important macroeconomic variable, followed by the 3-

month NIBOR rate. Variables related to oil seem to play little part in explaining future returns, 

with oil trading volume (oil_v) being among the weakest predictors. The oil price (oil_p) falls 

behind the 3-year Norwegian Government bond yield (gb3y), while other macroeconomic 

variables such as the NOK/USD exchange rate, gold price (gold_p) and the 10-year Norwegian 

Government bond are among the least important variables. 

Figure 5.5: Feature importance for the daily portfolio 
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These results are like those found in (Gu et al., 2020) where features related to momentum and 

liquidity, as well as size, are the most important for U.S. stocks.  Our results also conform with 

several other studies on market anomalies, suggesting that these are pervasive across different 

markets and geographies. The size factor however seems to be much more prominent for 

Norwegian stocks than for U.S. stocks. The size effect is well documented in financial literature 

and implies that smaller companies usually outperform larger companies.  The importance of 

the size variable in our analysis compared to the studies performed on U.S. stocks might be 

caused by the Norwegian equity market containing more small cap stocks. Norwegian markets 

can be assumed to also be less competitive than the U.S. market, leading to a less effective 

reaction to published anomalies. The U.S., however, is characterized by quick responses to 

financial research, resulting in greater arbitrage activity and thus declining returns to stock 

specific variables.   

 

Another reasons might be that the Norwegian market is likely to be less efficient than the U.S., 

thus opening for the size effect to persist. The U.S. market is however highly efficient, which 

Figure 5.6: Feature importance for the monthly portfolio 
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means that capitalizing on anomalies such as size are quickly arbitraged away, which might 

explain that the size variable is not as dominant in studies conducted on U.S. stocks. This is 

consistent with results presented in (Lesmond et al., 2004) and (Hou et al., 2005) where 

predictive power of firm characteristics mainly exists among stocks with arbitrage opportunities 

or high transaction friction.  Beta, another important variable, is related to the market risk of a 

stock and is found in classical factor models such as the Capital Asset Pricing Model (CAPM) 

and seems to exhibit predictive power over future returns. Further, the price-to-earnings (P/E) 

variable suggests that there exists a value effect where lower P/E stocks tend to outperform 

higher P/E stocks.  

 

Next, the analysis of feature importance is taken one step further, fitting two new models using 

only the ten most important features. We then compare the financial performance for monthly 

rebalanced portfolios produced by the new models with the portfolios produced by models 

using the full feature set.  

 
Table 5.8: Performance measures for reduced models 

 

 
Table 5.8 reports the usual performance metrics. The portfolios constructed based on 

predictions from both GBT and RF perform better after including only the most important 

variables, with the GBT showing the most improvement yielding an extra 2.37% annualized 

return. While only including the set of variables with the highest predictive power increase 

returns, it also results in higher volatility with the standard deviation increasing with 0.63% and 

2.04% annually for RF and GBT respectively. Despite this, both models produce a higher or 

equal Sharpe and Sortino ratio. The MDD and VaR metrics show poorer performance for the 

 Random Forest Gradient Boosted Trees 

Annualized RF RF_r GBT GBT_r 

Return 0.1178 0.1180 0.1413 0.1650 

Std dev 0.1884 0.1947 0.1557 0.1761 

Sharpe ratio 0.43 0.43 0.68 0.74 

Sortino ratio 0.86 0.90 1.20 1.64 

MDD -0.2536 -0.3059 -0.3093 -0.2811 

VaR 5% -0.2366 -0.3353 -0.2163 -0.2225 
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reduced Random Forest model, while the reduced Gradient Boosted Trees models show an 

improvement of MDD but a less favorable VaR. The reduced GBT portfolio does however 

exhibit a general increase in performance, while the RF does not. This might be due to the 

resistant nature of the RF model to overfitting. The GBT model is more prone to overfitting, 

which means there is more potential for increasing performance when reducing the feature 

space. Discarding variables with little predictive power reduces noise in the data, resulting in 

the model being less complex and thus less prone to overfitting. Reducing the feature space 

increases the probability of the model to generalize better, which might explain the increase in 

results for the reduced GBT portfolio.  

 

5.2.6  Stock Analysis 

 
Analysis on holding size, model choice, and transaction costs have all been conducted with an 

emphasis on its effect on portfolio performance. This sub-chapter will take a closer look at the 

core driver of return, namely the individual stocks that have been included in the different 

portfolios. As discussed previously, machine learning driver investment strategies tend to act 

as black boxes basing decisions on reasons unknown to the practitioner. This section is an 

attempt delve into this black box and shed light on the trading decisions made by the machine 

learning algorithms.  

 

 

Figure 5.7 shows an overview of stocks that were held for the most trading periods, i.e. trading 

days for the daily portfolio and months for the monthly portfolio. They are split into two 

categories; one for the long and short portion of the portfolios. Some stocks are frequently held 

Figure 5.7: Most held stocks  
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both for the monthyl and daily portfolios. Tomra Systems, Golden Ocean Group and Royal 

Caribbean Cruises are all recurrent stocks for the long portion of the portfolios, while 

Kongsberg Gruppen and SpareBank 1 SR-Bank frequently are chosen for the short portfolios. 

Interestingly, the daily portfolio has the most long positions in Kongsberg Gruppen, while it 

also being a favorite for the short portfolio. Tomra Systems also seem to be a favorite in both 

portions of the daily portfolio. Furthermore, while Telenor is a repeating stock in holding for 

the long portion of the monthly portfolio, it is among the top held stocks for the short portion 

of the daily portfolio. The monthly portfolio also does not have any stocks in both the top long 

and top short stocks, unlike the daily portfolio. To further gain insights into what has driven the 

machine learning algorithms we start by dissecting the mean values of all the most important 

features of both the monthly and daily portfolios just prior to prediction. This will give 

indicators as to what values the different features had that made the machine learning 

algorithms choose said stocks.   

 

We analyze the monthly portfolio first. Table 5.9 show mean feature values per stock prior to 

prediction for the five most important features of the monthly portfolio, size, 1- month 

momentum, 6-month momentum, 12-month momentum and turnover. Analyzing the table 

below reveals some noteworthy observations about mean characteristics of the most traded 

stocks. First, the mean size value for the long positions is at 34950 million NOK much larger 

than that for the short positions, with approximately two thirds of the value at 21032 million. 

This value is however skewed by a few companies, namely Telenor and Royal Caribbean 

Cruises for the long portfolio, and DNB and Kongsberg Gruppen for the short portfolio. The 

median value gives a fairer measurement, with the long positions returning a median size of 

6423 million NOK compared to 5949 million NOK for the short positions. While this is not a 

very large discrepancy, it shows that the long portfolio prefers smaller companies providing 

some evidence that the machine learning model have unraveled the size effect from the data. 

The momentum features show that the short portfolio prefers stocks that have exhibited big 

long term positive returns, showing a mean 12-month momentum at 17.3% in comparison to 

the long portfolio’s 8.6%. The 6-month (3.7%) and 1-month (0.8%) momentum variables are 

also lower for the long portfolio. The lower long-term momentum for the long portfolio is in 

line with the reversal effect found in (De Bondt & Thaler, 1985), where it is reported that stocks 

with low long-term past returns exhibit higher future returns. The model also seems to prefer 

stocks with positive short-term momentum, which is in line with short-term momentum effect 

reported in (Jegadeesh & Titman, 1993). The short portfolio however seems to also prefer 
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stocks with a positive short-term momentum, suggesting that the model did not capture such a 

relationship between future returns and short-term momentum.  

 
Table 5.9: Overview of mean feature values prior to prediction – monthly portfolio 

 

 

Another interesting observation is that, for the short portfolio, stocks that show negative mean 

short- and long-term momentum prior to prediction also exhibit a low turnover. This indicates 

that the model has captured an interaction effect between turnover and momentum, where low 

turnover and negative momentum might result in negative future returns. There is however 

contradicting evidence, as GC Rieber Shipping and Olav Thon Eiendom both have high 

negative returns and low turnover while being in two separate legs of the portfolio, which makes 

it difficult to conclude anything. These stocks can though serve as evidence that the model 

capture other effects than size and momentum, such as value, where it is assumed that stocks 

that have underperformed in the past are undervalued and therefore have potential for positive 

future performance. Finally, the long portfolio tilt more towards stocks with a higher turnover 

       

 Stock Size M1 M6 M12 turn 

Long       

 PhotoCure 768.2 0.001 0.01 -0.011 28 

 Tomra Systems 6115.4 0.005 -0.011 -0.075 1416 

 Golden Ocean Group 4991.4 0.012 0.082 0.221 961 

 GC Rieber Shipping 941.7 -0.021 -0.118 -0.212 0.66 

 Royal Caribbean Cruises 51424 0.017 0.024 0.093 9166 

 Telenor 199750 -0.003 0.050 0.053 7933 

 Bonheur 6730.6 0.050 0.148 0.599 143 

 Atea 8878.8 0.061 0.114 0.024 487 

 Mean 34950 0.015 0.037 0.086 2516 

 Median 6423 0.008 0.037 0.038 724 

Short       

 DNB  130812 0.029 0.174 0.375 5483 

 Arendals Fossekompani 4193.7 0.019 0.112 0.237 21 

 Kongsberg Gruppen 12714.5 0.025 0.084 0.167 119 

 Petrolia 235.8 -0.03 -0.087 -0.123 48 

 Gaming Innovation Group 1150.9 0.028 0.256 0.233 51 

 Olav Thon Eiendom 11245.2 -0.046 -0.091 -0.095 24 

 Sparebank 1 SR-Bank 7704.4 0.033 0.217 0.337 124 

 Voss Veksel- og Landmandsbank 206 0.01 0.135 0.258 0.72 

 Mean 21032.8 0.0085 0.100 0.173 733 

 Median 5949.0 0.022 0.123 0.235 49.5 
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than the short portfolio, indicating that good liquidity is an attractive characteristic for possible 

future returns.  

 

Table 5.10: Overview of mean feature values prior to prediction – daily portfolio 

 
 

Table 5.10 is based on the same logic as the previous table, this time presenting data for lagged 

returns for 1, 2, and 3 trading days. The mean values for the long portfolio are lower than that 

of the short portfolio for R1 and R2, while higher for R3. This indicates that the model does not 

necessarily favor stocks that have exhibited high past returns, but rather apply a contrarian 

strategy expecting stocks that have low or negative returns to exhibit positive returns in the near 

future (De Bondt and Thaler, 1985). The high R1 and R2 for the short portfolio compared to 

the near-zero R1 and R2 values for the long portfolio indicates that the model expects stock to 

exhibit mean-reverting behavior. This is however difficult to conclude, as identifying mean-

     

 Stock R1 R2 R3 

Long     

 Kongsberg Gruppen 0.0039 0.0062 0.0043 

 Frontline -0.0038 -0.0060 0.0145 

 PGS 0.0021 0.0018 0.0071 

 Norske Skogindustrier -0.0008 -0.0038 0.0328 

 Golden Ocean Group 0.0006 -0.0041 0.0048 

 Tomra Systems 0.0007 0.0025 0.0018 

 Royal Caribbean Cruises -0.0008 0.0002 -0.0051 

 Stolt-Nielsen 0.0020 0.0039 0.0047 

 Mean 0.0005 0.0000 0.0081 

 Median 0.0006 0.0010 0.0047 

Short     

 SpareBank 1 SR-Bank 0.0010 0.0021 0.0009 

 Schibsted 0.0026 0.0058 0.0059 

 Veidekke 0.0050 0.0080 0.0048 

 Kongsberg Gruppen 0.0041 0.0066 0.0055 

 Telenor 0.0036 0.0048 0.0043 

 Tomra Systems 0.0019 0.0039 0.0029 

 Ekornes 0.0024 0.0071 0.0103 

 Norsk Hydro -0.0003 -0.0021 0.0006 

 Mean 0.0025 0.0045 0.0044 

 Median 0.0025 0.0053 0.0045 
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reversion usually includes deeper analysis the relation between past and future returns. For a 

slightly longer period back in time the model seems to anticipate that stocks that have a high 

return will demonstrate stronger return continuation, as the mean R3 for the long portfolio is 

almost double that of the short portfolio, showing evidence of a momentum effect for slightly 

longer periods.  

 

Table 8.4 in the appendix display additional stock specific information, including the biggest 

winners and losers for both the long and short portions of the daily and monthly portfolios.  

 

 

6.  Discussion  
 

 

6.1  Machine Learning for Return Prediction  
 

While research on return prediction using machine learning is an important future endeavor of 

financial research, there are some challenges that exists that should be discussed. This is 

especially true for less liquid markets, where it can be challenging to perform a proper and 

robust backtest without inflating, or deflating, results. The daily rebalanced portfolio is 

especially sensitive to trading friction and transaction costs, as many trades conducted in this 

study might very well never have been possible to complete due to a plethora of factors. The 

high sensitivity to transaction costs exhibited by the daily portfolio was made clear when 

analyzing performance before and after considering transaction costs, and even a basis point 

additional transaction cost could alter the annual performance metrics considerably. It is 

important to note that this study conducts empirical research assuming conditions that might be 

unrealistic in a real-life scenario. Factors such as lending availability, implementation shortfall 

and price impact will in practice make the machine learning driven investing strategy much 

harder to implement. While this study deploys an observable transaction cost of 0.49% per 

trade, it does not account for the bid-ask-spread which also might affect the reported return 

numbers, especially for the daily portfolio. It is however less of a prominent problem for the 

monthly portfolio. Furthermore, the earlier years of the deployed strategy would also be 

characterized by less computing power and a less developed electronic trading infrastructure, 

which might have increased the transaction costs. Finally, it is also important to note that while 
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the portfolios generated results greater or equal to the benchmark, it cannot be fully excluded 

that this performance is due to pure luck and randomness.  

 

While there clearly exists challenges that accompanies deploying machine learning driven 

strategies, the unique ability to capture non-linear relationships and complex dynamics in 

financial time-series still justifies its place in the financial literature. Short-term fluctuations 

and price irregularities are often complex and can only partly be described by high-dimensional 

data. Development in empirical research utilizing non-linear models can help close the gap 

between the traditional linear models that have dominated financial research and the complex 

reality of financial markets. Furthermore, as discussed previously, the quantification of an 

asset’s risk premium is inherently a problem of prediction. The proposed set of variables that 

can be used for this prediction task has in recent years grown to an unmanageable size for linear 

models. Machine learning models can complement the established linear models, contributing 

to further understanding of the drivers of returns by capturing subtle patterns and relationships 

in large datasets. This study utilized a feature importance method embedded in the Random 

Forest algorithm, extracting valuable information about the predictive power of the individual 

variables that would be difficult to replicate with linear models. The feature importance analysis 

identified that established anomalies such as size, momentum and value possess predicting 

power for future stock returns. In addition to providing evidence for the predictive abilities of 

these features in the Norwegian equities market, they were also utilized to produce superior 

risk-adjusted performance relative to the OSEAX index. The ability of machine learning models 

to both identify potential anomalies and capture non-linear relationships in financial data 

showcases its usefulness for both practitioners and academics.  

 

6.2  Results in relation to the Efficient Market Hypotheses 
 

The results generated from portfolios constructed from predictions using machine learning 

methods seem to partially challenge the assertions of the EMH. The weak form of the EMH 

suggests that all available information regarding historical market data is fully incorporated in 

the current stock price, and therefore it is not possible to achieve superior consistent excess 

returns deriving relationships and patterns from past price movements. This seems to hold true 

for the Norwegian equity market, as the financial performance from the daily portfolio 

delivered a risk-adjusted performance after transaction costs on par with that of the OSEAX 



58 

 

index, implying that there is not enough predictive power in the historical price movements of 

stocks when considered in isolation.  

 

The monthly portfolio, however, challenges the semi-strong form of the EMH. This form of 

efficient markets asserts that all publicly available information, like financial statement 

information and macroeconomic events, is incorporated into the current stock prices. Yielding 

an annual Sharpe ratio 0.68, the monthly portfolio outperforms the Sharpe ratio of the 

benchmark at 0.54. The machine learning driven investment strategy appears to contradict the 

notion of the semi-strong form of the EMH, and the result from the monthly portfolio suggests 

that the Gradient Boosted Machine was able to successfully identify and exploit information 

that were not fully reflected in the stock price. The risk-adjusted performance of the monthly 

portfolio suggests that the market may not fully reflect all publicly available information, 

opening for quantitative strategies to exploit inefficiencies and generate consistent excess 

returns, disputing the semi-strong form of the EMH in the Norwegian equity markets. 

 

6.3  Limitations and Further Research  
 

While the results obtained from constructing machine learning driven portfolios were decent, 

even more complex models could push the performance even further. Deep learning has gained 

traction in the empirical literature for return prediction in recent times, with the Long Short 

Term Memory (LSTM) model especially yielding promising results. The LSTM model was 

planned to be included in this study but was cut due to lacking computational capacity, which 

showcases one of the forementioned challenges of applying complex non-linear models. Other 

machine learning methods can also be investigated and compared to the ones used in this study, 

such as the Support Vector Machine, Naïve Bayes, k-Nearest Neighbors or ensemble methods.  

 

The set of variables used for prediction have also played a central part in this study. While at 

first it was planned to utilize most of the predictor variables outlined in (Gu et al., 2020) for 

the monthly portfolio, it quickly became apparent that lack of available data made this 

unfeasible. In addition to this, for the variables that there were available data the quality often 

was subpar, especially in the earlier years of the study period. This reduced the scope of the 

predictor set considerably, but with data becoming more available for every year that passes 

future research might deploy many more variables, thus exploiting the full capacity of 

machine learning models to handle many variables. This study also assessed the individual 
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importance of the used variables using the integrated feature importance technique from the 

random forest algorithm. Future research could assess other methods for extracting variable 

importance and compare these with the RF method. This would check the robustness of the 

feature importance produced by the RF. Additionally, clustering methods such as Principal 

Compent Analysis can be utilized to extract features automatically from the data.  

 

In terms of backtesting, there are further work that could both enhance performance and 

increase realistic feasibility. Due to the strict constraints placed on required liquidity, many 

stocks are excluded from the investment universe of tradeable stocks every study period. This 

leads to all models being subject to a relatively small set of stocks, which further decrease the 

difference in performance they could have exhibited if the number of tradeable stocks was 

bigger. Further, this study does not deploy any advanced portfolio optimization techniques, 

which could potentially enhance performance. Future work could look at portfolio optimization 

in conjunction with machine learning, utilizing for example mean-variance optimal portfolios. 

Further, as discussed, further work can be done to increase the accuracy of the backtesting 

process, more closely replicating a realistic trading environment.    

 

7.  Conclusion 
 

This study has analyzed three main problems in relation to applying machine learning for return 

prediction. First, two different prediction horizons have been investigated. Second, the 

empirical extension of linear models to non-linear models in financial research. Lastly, this 

study investigated the difference between machine learning applied to more efficient markets 

such as the U.S. and less efficient markets such as in Norway, effectively testing whether the 

EMH holds in the Norwegian equity markets.  

 

Three different machine learning models of varying complexity produced a total of ten long-

short portfolios, five each for the daily and monthly prediction. Two different long-short 

portfolios were constructed per model, differing in holding size. Results show that holding ten 

stocks in each the long and short portion increases diversification, and thus volatility, but are 

not able to outperform a holding size of five stocks per portfolio when assessing the risk-return 

relationship. This holds true for both daily and monthly rebalancing. The portfolios produced 

by the logistic regression model perform poorly compared to random forest and gradient 
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boosted trees, suggesting that the more complex models can capture non-linear relationships 

that the logistic regression cannot. This suggests that non-linear models might play a more 

central part in the empirical financial literature in the future. For the daily predictions the 

random forest performed the best, while for the monthly portfolios the gradient boosted trees 

model produced the most impressive results.  

 

The daily rebalanced portfolios generate an impressive mean return of 0.22% per day, 

indicating that it can exploit information gained from short-term price history. While this might 

sound promising, the returns are quickly eroded once accounting for transaction costs, 

exemplified by the annual Sharpe ratio decreasing from 3.45 before transaction costs to 0.54 

after transaction costs, thus no longer outperforming the OSEAX index. The monthly 

rebalanced portfolio initially shows less impressive results with a Sharpe of 1.20 before 

transaction costs, but its sensitivity to transaction costs is nowhere near that of the daily 

portfolios. While the Sharpe ratio is close to half of its value after accounting for transaction 

costs, it still yields an annual Sharpe of 0.68, thus outperforming the index.  

 

Finally, this study finds that the most important variables for predicting future stock returns in 

large degree conform to what has previously been reported in the financial literature. Size and 

momentum seem to be the most dominant factors for the monthly portfolio. Size is the most 

important variable, which differs slightly from Gu et al. where momentum is deemed the most 

important variable. It is discussed that this might be due to the difference in efficiency between 

the Norwegian and U.S. stock markets. For the daily portfolio the most recent returns seem to 

be the most important predictors, outperforming technical indicators and returns from further 

back. This is in line with what has been reported in krauss, huck.  

 

In summary, this study shows that applying machine learning for return prediction can generate 

value both for the practitioner, delivering consistent excess returns, and for the academic, 

analyzing anomalies and drivers of return. This study suggests that there are opportunities in 

the Norwegian equity markets for exploiting market- and stock specific anomalies that are not 

fully incorporated in the stock price, effectively disputing the semi-strong form of the efficient 

market hypothesis.  
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8. Appendix 
 

 

 

Table 8.1: Full overview of predictor variables 

 
 Feature Explanation Found in 

 

Daily Predictions 

   

 Returns Lagged returns over different intervals the 

last trading year 

(Krauss et al., 2017) 

 EMA10 10-period exponential moving average - 

 MACD Moving average convergence divergence - 

 ROC Rate of change - 

 RSI Relative strength index - 

 

Monthly Predictions 

   

  Fundamentals 

 

 

 size Stock price times shares outstanding (Banz, 1981) 

 eps Earnings per share - 

 ps Price to sales (Barbee et al., 1996) 

 pe Price to earnings (Basu, 1977) 

 pb Price to book (Brennan et al.,1998) 

 ev_ebitda ev to ebitda - 

 roe Return on equity (Chen et al., 2011) 

 roa Return on assets (Balakrishnan et al.,2010) 

 beta  Beta relative to index (Fama & Macbeth, 1973) 

 beta2 Beta squared (Fama & Macbeth, 1973) 

 cash Cash holdings (Palazzo, 2012) 

 cf Free cash flow - 

 stdcf Cash flow volatility (Huang, 2009) 

 sale_cash Sales to cash (Ou & Penman, 1989) 

 sale_g Sales growth (Lakonishok, 1994) 

 cr Current ratio  (Ou & Penman, 1989) 

 qr Quick ratio  (Ou & Penman, 1989) 

 rd_mc R&D to market capitalization (Guo et al., 2006) 

 rd_s R&D to sales (Guo et al., 2006) 

 rd_i Increase in R&D (Eberhart et al., 2004) 

 mc_cf Market cap to free cash flow - 

 shar_c Change in shares outstanding (Pontiff et al., 2008) 

 div_p Dividend to price (Litzenberger et al.,1979) 

 turn Turnover  (Datar et al., 1998) 

 turn_std Liquidity volatility (Chordia et al., 2001) 

   

Price 

 

 

 m12 12- month momentum (Jegadeesh, 1990) 

 m6 6- month momentum (Jegadeesh et al., 1993) 

 m3 3- month momentum (Jegadeesh et al., 1993) 

 m1 1- Month momentum (Jegadeesh et al., 1993) 

 mmr Max monthly return (Bali et al., 2011) 

 m12_c Change in 12-month momentum (Gettleman et al., 2006) 

 m6_c Change in 6-month momentum (Gettleman et al., 2006) 
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 m3_c Change in 3-month momentum (Gettleman et al., 2006) 

 m1_c Change in 1-month momentum (Gettleman et al., 2006) 

 m_ind Industry momentum (Moskowitz et al., 1999) 

 ret_vol Return volatility (Ang et al., 2006) 

   

Macroeconomics 

 

 

 nr Three-month NIBOR rate  (Gjerde & Sættem, 1999) 

 gov_10y 10-year government bond yields (Welch & Goyal, 2008) 

 gov_5y 5-year government bond yields (Welch & Goyal, 2008) 

 gov_3y 3-year government bond yields (Welch & Goyal, 2008) 

 gov_1y 1-year government bond yields (Welch & Goyal, 2008) 

 nok_usd NOK to USD currency rate - 

 gp Gold price (Jones and Kaul, 1996) 

 infl Inflation measured by the Consumer Price 

Index (CPI)  

(Welch & Goyal, 2008) 

 oil Spot prices on Arabian Light crude oil (Gjerde & Sættem, 1999) 

 oil_v Oil trading volume - 

   

Other 

 

 

 ind Industry classifier (Hong et al., 2007) 

 dw Day of the week  (Gibbons et al., 1981) 

 my Month of the year (Ariel, 1990) 
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Table 8.2: Statistics for daily portfolio 

 

 

 

 

 

 

 

Daily Portfolio 
 

   

Before Transaction Costs 

 

 

After Transaction Costs 

  LR RF GBT LR RF GBT 

 Mean return (long) 0.0012 0.0022 0.00187 0.0002 0.0010 0.0006 

 Mean return (short) 0.0010 0.0011 0.00094 0.0001 0.0000 -0.0002 

 Mean return 0.0011 0.0017 0.0014 0.0001 0.0004 0.0002 

 Minimum -0.0679 -0.0664 -0.04092 -0.0697 -0.0678 -0.0429 

k = 5 Max 0.0738 0.0914 0.07165 0.0734 0.0909 0.0712 

 Standard deviation 0.0093 0.0085 0.0085 0.0093 0.0085 0.0085 

 Standard error 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

 t-statistic (NW) 8.47 13.96 12.24 0.79 3.73 1.40 

 Skewness 0.04 0.37 0.46 0.02 0.38 0.46 

 Kurtosis 4.35 6.79 4.38 4.42 6.88 4.44 

        

        

 Mean return (long) 0.00097 0.0016 0.0015 -0.0003 -0.0003 -0.0005 

 Mean return (short) 0.00042 0.0007 0.0007 -0.0011 -0.0012 -0.0012 

 Mean return 0.00069 0.0013 0.0011 -0.0007 -0.0007 -0.0008 

 Minimum -0.04822 -0.0401 -0.0277 -0.0504 -0.0434 -0.0292 

k = 10 Max 0.06112 0.0484 0.0646 0.0606 0.0479 0.0641 

 Standard deviation 0.00652 0.0060 0.0060 0.0065 0.0060 0.0061 

 Standard error 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

 t-statistic (NW) 7.67 13.87 13.29 -7.90 -9.01 -10.38 

 Skewness 0.36 0.35 0.63 0.31 0.36 0.64 

 Kurtosis 4.80 3.83 5.19 4.89 3.85 5.25 
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Table 8.3: Statistics for monthly portfolio 

 

 

 

 

 

 

 

 

Monthly Portfolio 
 

   

Before Transaction Costs 

 

 

After Transaction Costs 

  LR RF GBT LR RF GBT 

 Mean return (long) 0.0189 0.0271 0.0261 0.01379 0.0220 0.0207 

 Mean return (short) 0.0089 0.0050 0.0096 0.0034 -0.0006 0.0034 

 Mean return 0.0139 0.0161 0.0178 0.0086 0.0107 0.0130 

 Minimum -0.1334 -0.1356 -0.0949 -0.1399 -0.1458 -0.1009 

k = 5 Max 0.2319 0.4551 0.1557 0.2247 0.4515 0.1497 

 Standard deviation 0.0506 0.0544 0.0451 0.0504 0.0544 0.0449 

 Standard Error 0.0032 0.0035 0.0029 0.0032 0.0035 0.0029 

 t-statistic (NW) 4.24 4.56 6.10 2.63 3.03 4.14 

 Skewness 0.59 2.34 0.22 0.58 2.34 0.20 

 Kurtosis 2.04 17.62 0.14 2.07 17.96 0.18 

        

        

 Mean return (long) 0.0121 0.0234 0.0208 0.0040 0.0144 0.0122 

 Mean return (short) 0.0044 0.0006 0.0027 -0.0043 -0.0085 -0.0069 

 Mean return 0.0083 0.0120 0.0118 -0.0001 0.0029 0.0026 

 Minimum -0.0835 -0.0898 -0.0750 -0.0880 -0.1098 -0.0816 

k = 10 Max 0.1643 0.2509 0.1360 0.1530 0.2419 0.1280 

 Standard deviation 0.0380 0.0376 0.0332 0.0381 0.0380 0.0335 

 Standard error 0.0024 0.0024 0.0021 0.0024 0.0024 0.0021 

 t-statistic (NW) 3.37 4.92 5.47 -0.07 1.19 1.21 

 Skewness 0.58 1.17 0.32 0.53 1.09 0.24 

 Kurtosis 1.30 6.85 1.17 1.23 6.82 1.15 
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Table 8.4: Winners and losers for the long and short portfolios 

 

Note: These percentages are acquired by taking the sum of return contribution.  

 

 Monthly Daily 

 Stock Return Stock Return 

Long Portfolio     

Winners Akastor 175.08% Kongsberg Gruppen 362.48% 

 TGS 173.50% Ekornes 302.34% 

 NRC Group 172.25% SpareBank 1 SR-Bank 299.90% 

Losers Ensurge Micropower -111.80% Norwegian Air Shuttle -132.73% 

 XXL -91.04% Magnora -68.83% 

 Aker Solutions -65.88% PCI Biotech -48.47% 

Short Portfolio     

Winners StrongPoint 131.78% Atea 250.53% 

 Norwegian Air Shuttle 122.19% Petrolia 193.74% 

 Arribatec Group 86.33% Equinor  95.35% 

Losers Petrolia -254.54% Royal Crbn. Cruises -131.40% 

 Aker BP -181.10% Tandberg -96.27% 

 Wilh Wilhelmsen -81.57% Opticom -75.02% 




