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Abstract

Bacillus subtilis is a bacterial strain that is much used as a cell factory in biotechnological
industry [1]. It is typically cultivated with glucose as the carbon source [2], however it
has become of interest to find alternative carbon sources that do not compete with food
production. A promising alternative is methanol, which can be used as a carbon source
by so called methylotrophic microorganisms [3]. B. subtilis is not a natural methylotroph,
but it has been demonstrated that synthetic methylotrohpy can be induced in B. subtilis by
making it heterologously express a methanol dehydrogenase (Mdh) gene. However, the
synthetic methylotrophic B. subtilis strains that have been constructed so far are only able
to use methanol as a co-carbon source in addition to e.g. glucose [4]. In our work we have
conducted experimental and in silico analyses to confirm that B. subtilis is indeed able to
use methanol as a carbon source when Mdh is heterologously expressed. This was done
by conducting batch fermentations where an Mdh-expressing mutant strain, B. subtilis 168
pBV2mp mdhBm, was cultivated in minimal medium containing glucose and methanol.
The phenotype of the mutant was analyzed experimentally by measuring the biomass com-
position, amino acid distribution, growth rate, and uptake- and secretion rates of nutrients
and gas. The experimental data was also used to update the newest available genome-scale
metabolic model (GEM) of B. subtilis, which allowed us to study the phenotype of the mu-
tant in silico. The in silico analyses that were conducted were flux balance analysis (FBA)
and flux variability analysis (FVA), which were used to study the flux distribution through
the metabolic network of the mutant strain. The results from the experimental and in silico
analyses are in accordance with the findings of Gao et al. [4], and show that the mutant
strain can use methanol as a co-carbon source. Our results have also been used to propose
further analyses that can be conducted to bring us closer to a mutant B. subtilis strain that
can use methanol as the only carbon source.
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Sammendrag

Bacillus subtilis er en type bakterie som er mye brukt som cellefabrikk i bioteknologisk
industri [1]. Bakterien kultiveres vanligvis med glukose som karbonkilde [2], men det
har oppstått en interesse for å finne alternative karbonkilder som ikke konkurrerer med
matproduksjon. Et lovende alternativ er metanol som kan brukes som karbonkilde av
såkalte metylotrofe mikroorganismer [2]. B. subtilis er ikke en naturlig metylotrof, men
det har blitt vist at syntetisk metylotrofi kan induseres i B. subtilis ved å få den til å ut-
trykke genet methanol dehydrogenase (Mdh). De syntetisk metylotrofe variantene av B.
subtilis som har blitt fremstilt så langt, er imidlertid bare i stand til å bruke methanol som
co-karbonkilde i tillegg til for eksempel glukose [4]. I vårt arbeid har vi utført eksper-
imentelle og in silico analyser for å bekrefte at B. subtilis faktisk er i stand til å bruke
metanol som karbon kilde når Mdh er uttrykt. Dette ble gjort ved å utføre såkalte batch
fermenteringer, hvor den muterte varianten B. subtilis 168 pBV2mp mdhBm ble kultivert
i minimalt medium som inneholdt glukose og metanol. Fenotypen til mutanten ble anal-
ysert eksperimentelt ved å måle biomassekomposisjon, aminosyrefordeling, vekstrate og
opptaks- og sekresjonsrater av næringsstoffer og gasser. De eksperimentelle dataene ble
også brukt til å oppdatere den nyeste tilgjengelige genomskala modellen (GEM) av B. sub-
tilis, og den oppdaterte modellen ble brukt til å studere fenotypen til mutanten in silico. In
silico analyser som ble utført er analyse av fluksbalanse (FBA) og fluksvariabilitetsanal-
yse (FVA). Disse analysene ble brukt for å undersøke distribusjonen av fluks gjennom det
metabolske nettverket til mutanten. Resultatene fra eksperimentelle og in silico analyser
stemmer overens med funnene som ble gjort av Gao et al. [4], og viser at den muterte
varianten er i stand til å bruke metanol som co-karbonkilde. Vi har også brukt resultatene
våre for å foreslå videre analyser som kan utføres, for å føre oss nærmere en mutert variant
av B. subtilis som kan bruke metanol som eneste karbonkilde.
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Chapter 1
Introduction

Bacillus subtilis is a strain of bacteria that is much used as a cell factory in biotechnological
industry. This is because B. subtilis is able to efficiently produce and secrete heterologous
proteins that are necessary for medicine, agriculture, and industrial processes [1]. B. sub-
tilis is naturally a chemoheterotroph which uses glucose and malate as its preferred carbon
sources [2]. However, with a growing human population it has become of interest to find
alternative carbon sources that do not compete with food production. An example of such
a compound is the alcohol methanol, which is toxic to humans but can be used as a carbon
source by some microorganisms. Furthermore, the production of methanol is becoming
more efficient, which makes methanol an affordable carbon source to use for biotechno-
logical industry [3]. B. subtilis is not able to use methanol as a carbon- and energy source
naturally, and it is therefore of interest to introduce synthetic methylotrophy to the strain.
The definition of synthetic methylotrophy is introducing the ability to use C1-compounds
(organic compounds with one carbon atom) such as methane or methanol as carbon- and
energy sources [3]. Introducing synthetic methylotrophy to B. subtilis would make it pos-
sible to produce heterologous proteins necessary for medicine, agriculture and industry by
using a carbon source that is otherwise considered a waste product.

The alternative to synthetic methylotrophy is to use native methylotrophs as cell facto-
ries. Native methylotrophs grow quickly [7], however they typically have low production
rate of products of interest, and there are few available tools for genetic modification of
these strains [8]. B. subtilis, on the other hand, has high production rate, and there are
already many tools available for genetic modification of this strain. Furthermore, in theory
B. subtilis only lacks one gene to be able to use methanol as a carbon source [4]. The miss-
ing gene is the methanol dehydrogenase (Mdh) gene. Mdh allows the organism to oxidize
methanol to formaldehyde, which is the first step of methanol metabolism. Although B.
subtilis is not able to convert methanol to formaldehyde, it has the metabolic pathway that
is necessary to turn formaldehyde into biomass. One can therefore argue that it is easier to
induce synthetic methylotrophy in B. subtilis by heterologous expression of Mdh, than to
turn a native methylotroph into a cell factory as efficient as B. subtilis.
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In theory, the Mdh gene is the only missing link between B. subtilis and synthetic methy-
lotrophy. In practice, however, it turns out not to be that simple. It was namely demon-
strated by Gao et al. that B. subtilis is not able to use methanol as a sole carbon-source,
even when Mdh is heterologously expressed. The recombinant strain is however able to
use methanol when a co-substrate such as glucose is provided [4]. This gives rise to the
question of why the recombinant B. subtilis strain is still unable to use methanol as the
only carbon source? To look into this question we need to know what happens to the
methanol after it has been taken up by B. subtilis. Is it actually used for biomass pro-
duction? We know that the methanol is first converted to formaldehyde, as this has been
established by Gao et al. [4]. Furthermore, we know that the bacteria need to somehow
detoxify the formaldehyde, as formaldehyde in high concentrations is toxic to most cells
[9]. However, in B. subtilis the formaldehyde can be detoxified in two ways: either it is as-
similated, which means that it is incorporated in central metabolism and used for biomass
production, or it is dissimilated, which means that it is oxidized to CO2 and secreted by
the cell [10, 11, 6].

To investigate the question of how the formaldehyde is detoxified, we have used a genome-
scale metabolic model of B. subtilis. A genome-scale metabolic model (GEM) is a math-
ematical representation of all the chemical reactions that are known to take place in an
organism [12]. GEMs serve as useful resources to study the behavior, or phenotype, of
an organism under different environmental conditions. The GEM of B. subtilis should
therefore be able to give us insight to how the recombinant B. subtilis strain detoxifies
formaldehyde after it has been produced from methanol. However, there is a catch to this
plan. The GEM of B. subtilis has been built based on data from the wild type strain culti-
vated with glucose as the carbon source [13]. This model might therefore not accurately
reflect the behaviour of a recombinant B. subtilis strain with access to methanol as a carbon
source. Therefore, we have updated the current GEM of B. subtilis so that it better can be
used to study the phenotype of the recombinant strain.

To update the existing GEM of B. subtilis, we need to know a few things about the re-
combinant strain, such as the growth rate, biomass composition, and uptake- and secretion
rates of nutrients and other metabolites. These data have been gathered by cultivating
the recombinant B. subtilis strain in medium that contains methanol, and glucose as co-
substrate. The bacteria were cultivated in bioreactors, and growth rate, and uptake- and
secretion rates were measured. Furthermore, the bacteria were harvested in order to mea-
sure the biomass composition. All this data has been used to update the existing GEM of
B. subtilis, so that it more accurately represents the recombinant strain. Then the updated
GEM has been used to investigate how the formaldehyde is detoxified, which hopefully
will bring us closer to an answer to how recombinant B. subtilis could use methanol as a
sole carbon source.

2



Chapter 2
Background

2.1 Native methanol metabolism pathways
Wild type B. subtilis uses glucose as one of its preferred carbon sources [2]. Glucose is
used in glycolysis and the tricaboxylic acid (TCA) cycle to create reducing agents for en-
ergy production. Furthermore, glucose is used in the pentose phosphate pathway (PPP)
to create reducing agents necessary in several anabolic processes, and to form ribose-5-
phosphate, a key compound in nucleic acid synthesis. In this way, glucose is used by B.
subtilis as both a carbon and energy source [14].

Pathways of native methylotrophs are used as inspiration when creating synthetic methy-
lotrophic strains. One of the native pathways of methanol assimilation is the ribulose
monophosphate pathway (RuMP) [15]. To use this pathway, the methylotroph first needs
to oxidize methanol to formaldehyde, a process catalyzed by the methanol dehydroge-
nase enzyme (Mdh). Then, the RuMP cycle is used to convert formaldehyde to fructose
6-phosphate (F-6-P), a process catalyzed by two enzymes Hps and Phi. F-6-P is then in-
corporated in central metabolism to produce energy and biomass. Furthermore, some of
the F-6-P is used to regenerate a five carbon sugar needed too keep running the RuMP
pathway [16, 17]. The RuMP pathway shares several enzymes with the PPP [18], which
is one of the pathways used by B. subtilis for sugar metabolism. The enzymes that are not
shared are Mdh, Hps and Phi, which are key enzymes of the RuMP pathway [18]. B. sub-
tilis expresses the enzymes of the PPP, and it has been found that it also has enzymes with
similar enzymatic activity as Hps and Phi. This enables B. subtilis to run the RuMP cycle
when formaldehyde is present [10]. However, B. subtilis is unable to oxidize methanol
to formaldehyde as it does not have the Mdh gene. In theory, a mutant B. subtilis strain
that heterologously expresses the Mdh gene should be able to use methanol as carbon- and
energy source [4].
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Figure 2.1: A simplified illustration of the assimilatory RumP pathway gathered and modified from
He et al. [5]. The figure shows how methanol is oxidized to formaldehyde before it is incorporated
into the RuMP cycle by converting it to Hexulose-6-Phosphate (H-6-P) and further to Fructose-6-
Phosphate (F-6-P), which is used to produce biomass and to regenerate Ribulose-5-phosphate (Ru-
5-P). Alternatively formaldehyde can be oxidized to CO2.

It has been demonstrated by Gao et al. [4] in 2022, that it is possible to introduce synthetic
methylotrophy in B. subtilis by heterologous expression of Mdh. Gao et al. created several
synthetic methylotrophic strains, some which could use methanol as carbon source, and
some that were methanol dependent. However, none of the strains were able to grow on
methanol as a sole carbon source, and they were dependent on a co-carbon source such
as glucose, in order to grow and assimilate methanol [4]. This has been the case when
inducing synthetic methylotrophy in E. coli and C. glutamicum as well [18, 19, 20].

Formaldehyde is a toxic compound to cells, and most cells therefore have detoxifica-
tion systems to prevent formaldehyde from accumulating. B. subtilis is able to detoxify
formaldehyde via the assimilatory RuMP-cycle , as previously explained. However, B.
subtilis is also able to detoxify formaldehyde by dissimilation. This can either happen
with the dissimilatory RuMP pathway [10, 11], or with the bacillithiol (BSH)-dependent
formaldehyde oxidation pathway [6]. In both cases, formaldehyde is oxidized to CO2.
When formaldehyde is dissimilated, some energy is formed, but the carbon is secreted as
CO2 and is thus not used for biomass production [9].

2.2 Cryptic genes
Genes can become inactive due to accumulation of mutations. Different terms exist to de-
scribe such genes, such as pseudogenes, which are defined as a duplication of a functional
gene, but that has become inactive due to accumulation of mutations. Another example of
”silent” DNA sequences are cryptic genes. The cryptic genes, in similarity to the pseudo-
genes, are genes that are inactive due to mutations, however, they can become active due to
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the right mutational events. In this way the cryptic genes may serve as an advantage to the
host organism when it needs to adapt to a nutrient environment that requires the activity of
the cryptic gene [21, 22].

2.3 Bioreactor cultivation
Bioreactors are used in biotechnological industry to cultivate microorganism. Often the
microorganisms are used as cell factories that produce different products of interest. The
bioreactor allows for control of the environment of the cells in order to promote production
of the products of interest [23]. Bioreactors can be operated in different operation modes
[24]. Two of the modes, batch operation mode and chemostat operation mode, will be
described in more detail.

A picture of the type of bioreactor that was used is presented in Figure 2.2. A gas pump
is connected to the bioreactor to allow a continuous flow of gas through the reactor. The
medium is continuously agitated to ensure a uniform mixture of medium and bacterial
cells. Furthermore, during aerobic fermentation, the agitation ensures that the levels of
dissolved oxygen (DO) remain above a threshold level. The DO is monitored by a DO
electrode. The temperature is monitored by a thermometer, and a heating jacket and cool-
ing system is used to sustain the desired temperature. Furthermore, the pH of the medium
is monitored by a pH electrode. The pH is regulated by adding acid or base from the
acid/base pump.

Figure 2.2: A picture of the type of bioreactor that was used in this work.
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2.3.1 Batch operation mode

Before the cultivation can start, strain specific nutrient medium is aseptically added to the
bioreactor. The cultivation is then started by adding a small volume of inoculum to the
bioreactor. In batch operation mode, nothing is added or removed to the bioreactor af-
ter the cultivation has started, with three exceptions: a continuous flow of air is allowed
to flow through the system, acid or base can be added to regulate the pH, and anti foam
reagent can be added to regulate foam formation. The acid or base that is added is typically
of high concentration to remain a close to constant volume in the bioreactor. Nothing else
can be added or removed from the system, which means that no nutrients are added to the
reactor after the cultivation has started [24].

In batch cultures, bacterial growth follows an S-curve. After inoculation, the bacteria need
time to adjust to their new environment. This adjustment phase is called the lag-phase, and
during this phase the bacteria grow slowly. When the bacteria have adjusted to their envi-
ronment, they enter the exponential phase, where the bacteria use the available nutrients of
the environment to grow exponentially. When the nutrient environment becomes scarce,
the growth decreases and the bacterial cells enter the stationary phase. During this phase
the division rate and death rate of the cells are equal, and the total biomass is kept constant.
If no new nutrients are provided during this stage, the bacterial cells will eventually enter
the death phase, where bacterial cells die and lyse faster than they divide. During this
phase the biomass decreases. It is typical to harvest the cells during exponential phase or
early stationary phase [24].

In our experiments the goal of the batch cultivations was to cultivate B. subtilis cells that
could be used to analyse the biomass composition of the strain. Although the nutrient
environment is not kept constant during a batch cultivation, the changes in nutrient envi-
ronment are slow enough for the cells to reach metabolic steady state during exponential
phase [25]. The biomass composition is therefore also held constant during exponential
phase [26]. The bacterial cells were therefore harvested in late exponential phase before
the cells reach stationary phase.

2.3.2 Chemostat operation mode

The chemostat operation mode differs from the batch operation mode as fresh nutrient
medium is added to the system throughout the cultivation. As new medium is added,
bioreactor fluid is removed to keep the volume in the bioreactor constant [24]. The rate at
which new medium is added and old medium is removed is called the dilution rate [27]. In
chemostat the cells can be kept in exponential phase for far longer than in batch cultivation,
due to the constant supply of nutrients.

2.4 Measuring the biomass composition
The biomass composition of cells can be measured experimentally. In the following sec-
tions we will look into how the content of protein, lipid, DNA, and RNA can be measured.
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2.4.1 Protein extraction
Liquid phase protein hydrolysis can be used to hydrolyze the proteins of a cell sample into
their constituent amino acids. During liquid phase protein hydrolysis, boiling HCl is used
to break the proteins into free amino acids [28]. After liquid phase protein hydrolysis has
been conducted, the amino acids can be quantified with HPLC. The amino acid concen-
trations are used to calculate the relative amino acid distribution of the cell sample, and to
find the total protein content of the cell sample.

During liquid phase protein hydrolysis, boiling HCl is used to break the proteins into
free amino acids. The boiling HCl causes conversion of glutamine (gln) to glutamic acid
(glu) and asparagin (asn) to aspartate (asp). Furthermore, the cystein (cys), proline (pro),
tryptophane (trp) and methionine (met) are destroyed by the boiling HCl [29].

2.4.2 Lipid extraction
The lipid content of B. subtilis 168 was determined by using the lipid extraction method
developed by Folch et al. in 1951 [30]. Folch’s method uses a mixture of chloroform,
methanol and water to extract the total lipid content of a cell sample. First, the cell sample
is homogenized [30, 31] in a mixture of chloroform and methanol (2:1) (v/v). Both chloro-
form and methanol are organic solvents, however chloroform is non-polar, while methanol
is polar. A mixture of the two solvents allows both non-polar and polar lipids to be dis-
solved. After the homogenization step, water is added to the mixture, which results in an
aqueous phase and an organic phase. Non-lipid components and salts will be dissolved in
the aqueous phase, while the lipids are dissolved in the organic phase. The organic phase
is extracted, and the organic solvents are evaporated in order to quantify the lipid content.

2.4.3 DNA extraction
The DNA of a cell sample can be extracted by using a mixture of phenol and chloroform
(1:1) (v/v). Before the DNA of the cell sample can be extracted, the cells are lysed to
release the nucleic acids. When adding the phenol/chloroform mixture, the nucleic acids
dissolve in the aqueous phase, while lipids are mainly dissolved in the organic phase. The
proteins are found in an interface between the aqueous- and organic phase. The aqueous
phase with nucleic acids is extracted, and ethanol and salt is added in order to precipitate
the DNA. RNAse can be used to remove RNA from the sample. The concentration of the
precipitated DNA can be measured spectrophotometrically [32]. The DNA concentration
is used to find the total DNA content of the cells.

2.4.4 RNA extraction
The RNA of a cell sample can be extracted by using perchloric acid (HClO4) [33]. Be-
fore the RNA can be extracted, the cells are lysed to release the nucleic acids. When
HClO4 is added, RNA dissolves in the HClO4, while DNA and protein stay precipitated as
they are not soluble in HClO4. The concentration of the dissolved RNA can be measured
spectrophotometrically.
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2.5 Chromatography
Chromatography is a technique used to separate the compounds of a mixture. The separa-
tion process is based on the compounds interacting differently with a so-called stationary
and mobile phase. The stationary phase is always composed of a solid material and is held
in place. The mobile phase is composed of either a liquid (liquid chromatography) or a gas
(gas chromatography), and migrates through the stationary phase. The compounds to be
separated are applied onto the stationary phase and migrate through the stationary phase
with the aid of the mobile phase. The compounds can be separated based on their differ-
ence in affinity for the stationary phase. Compounds with low affinity for the stationary
phase will rapidly migrate through the system and will be detected early. Compounds with
higher affinity for the stationary phase take longer to migrate through the system and will
be detected later [34].

There are many types of chromatography, one of them being high-pressure liquid chro-
matography (HPLC). As the name implies, HPLC is a type of liquid chromatography
where high pressure is applied to increase the flow rate of mobile phase through the sys-
tem. This in turn speeds up the separation process, making HPLC an effective way of
separating and identifying the compounds of a mixture [34]. In this work, HPLC was used
to separate and quantify amino acids.

2.6 Mass spectrometry
Mass spectrometry is another technique that can be used to identify and quantify the com-
pounds of a mixture. In mass spectrometry the compounds of the mixture are first broken
down to smaller charged ions. Each ion is characterized by their molecular mass to charge
(m/z) ratio. The ions are sorted based on their m/z ratio, and a mass spectrum is created
with peaks that represent the m/z ratios that are present in the mixture. The size of a peak
is proportional with the quantity of the ions with the given m/z ratio. The resulting mass
spectrum can be compared to existing spectra to identify and quantify the compounds of
the mixture. In this work, mass spectrometry was used to analyze the composition of
output gas from the bioreactors.

2.7 Nuclear magnetic resonance (NMR)
Nuclear magnetic resonance (NMR) is used to identify and quantify the compounds of
a sample based on the behaviour of atomic nuclei within a molecule. An NMR sample
is first exposed to a strong magnetic field, to align the nuclei of the molecules. Then the
sample is exposed to radio frequency pulses, which excites the nuclei of the sample. When
the nuclei return to their lower energy state, the absorbed energy is emitted as radiation.
The radiation is detected and used to generate an NMR spectra. In an NMR spectra each
peak represents a type of nuclei, and the position of the peak reveals information about
the chemichal environment surrounding the nuclei. The size of the peak is proportional
to the quantity of said nuclei [35]. By comparing the NMR spectra to existing spectra,
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the compounds of the NMR sample can be identified. In this work, NMR has been used
to identify and quantify compounds of the bioreactor fluid during cultivation, in order to
calculate secretion and uptake rates of various compounds.

2.8 Uptake- and secretion rates
We differentiate between substrate uptake/secretion rate (us) and specific substrate up-
take/secretion rate (qs). us represents the rate at which substrate is consumed/produced,
while qs represents the substrate uptake/secretion rate per unit CDW. The sign of the rate
reveals if the rate is an uptake rate or a secretion rate. A negative sign shows that the
substrate is being removed, which means that the rate is an uptake rate. A positive sign
shows that the substrate is being produced, which means that the rate is a secretion rate
[36]. The sign of the rate is important when the rate is used to setting the constraints of
a GEM. However, in the result section, both uptake- and secretion rates are presented as
positive values.

2.8.1 Gas uptake- and secretion rates

Air is continuously flowing through the bioreactor during fermentation. The composition
of the gas leaving the system (the output gas) can be measured, in order to determine
specific uptake- and secretion rates of O2 and CO2, respectively. With the software that
was used in this work, the composition of the gas leaving the bioreactor is returned as
percentages of each gas present. For instance, the software could reveal that there is 20%
O2 in the output gas, meaning that 1% of the air has been taken up as O2 in this time
point (assuming there is 21% O2 in the air). By converting this 1% to a fraction, and using
the flow rate (Q) of air through the system, we can determine the volume of O2 that is
consumed per time unit. This rate can be given in number of moles O2 consumed per time
unit by using the concentration (N) of O2, as shown in Equation 2.1:

uO2
=

(O2out
− O2air

)

100
·Q ·N (2.1)

Here, uO2
represents the O2 uptake rate, while O2out

and O2air
represent the percentages

of O2 in output gas and air, respectively.

The specific O2 uptake rate (qO2) is found by dividing uO2, found with Equation 2.1,
by the CDW, as shown in Equation 2.2:

qO2
=

vO2

CDW
(2.2)

2.8.2 Uptake- and secretion rates of medium compounds

Substrate uptake/secretion rate of medium compounds us is calculated by finding the
change in substrate concentration per time unit, as shown in Equation 2.3:
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us =
c0 − c1
T1 − T0

(2.3)

where c0 and c1 are the substrate concentrations at time T0 and T1, respectively. The
specific substrate uptake rate (qs) is found by dividing us by the average CDW between
T0 and T1.

qs =
us∑T1

T0
CDW

2

(2.4)

2.9 Genome-scale metabolic modeling

A metabolic network is a graphical representation of a metabolic pathway. A network or
graph consists of nodes connected by links. The nodes and links of a metabolic network
represent metabolites and the interactions between them, respectively. A metabolic net-
work reconstruction of a pathway is built in a bottom-up-fashion, where one reaction is
added at the time. Metabolic network reconstructions of different pathways can be com-
bined to create more complex pathway maps. When a metabolic reconstruction includes
all the known reactions and pathways that arise from the genome of an organism, the re-
construction is considered a genome-scale metabolic network [12].

From the genome-scale metabolic network reconstruction, the genome scale metabolic
model (GEM) can be derived. While the genome-scale network reconstruction repre-
sents the metabolic network schematically, a GEM represents the information from the
network reconstruction mathematically. The information of the network reconstruction is
represented mathematically in a stoichiometric matrix, or S-matrix. In an S-matrix every
column represents a chemical reaction, while every row represents a metabolite [12]. For
instance, the hypothetical chemical formula A + B -> C, can be converted to the following
S-matrix:

( )A −1
B −1
C 1

(2.5)

In the S-matrix above the rows represent the stoichiometric coefficients of A, B, and C,
respectively. The negative coefficients of A and B show that they are used to produce C,
which has a positive coefficient. A coefficient of zero would imply that the metabolite does
not participate in the reaction. In a larger reconstruction, the S-matrix has one column for
every chemical reaction, and one row for each metabolite. That leaves us with an S-matrix
of size m × n, where m is the number of metabolites and n is the number of reactions [12].
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An example of an arbitrary S-matrix with m metabolites and n reactions is shown below:

1 2 3 (...) n


A −1 1 −1 0
B −1 1 0 0
C 1 0 1 0
(...)
m 0 −1 1 −1

When the GEM has been derived and is mathematically represented as an S-matrix, differ-
ent modeling approaches can be employed to study the genotype-phenotype relationship
of the organism. One approach is constraint-based metabolic modeling. With this ap-
proach, a set of constraints are defined, to reflect the in vivo constraints of the system.
For example, steady state constraints ensure that the production and consumption of each
metabolite is balanced, and mass balance constraints ensure that the mass that enters the
system equals the mass that leaves the system. Furthermore, nutrient uptake rates and
energy requirements can be defined as constraints [12]. The mass balance of the system
is ensured by the equation dx/dt = Sv. Here, x is a vector of length m containing all the
metabolite concentrations, S is the S-matrix, and v is a flux vector of length n which holds
the flux through each reaction. The steady state is ensured by the equation Sv = 0. This
equation gives a set of linear equations that must be satisfied for mass balance to be main-
tained. In a genome scale metabolic reconstruction, there are usually more reactions than
metabolites (n>m). The set of linear equations therefore defines a feasible solution space,
and there are more than one possible flux vector v that satisfy the set of linear equations
[37]. An example of what the Sv = 0 equation looks like is shown below with an arbitrary
S-matrix and v.

1 2 3 (...) n


A −1 1 −1 0
B −1 1 0 0
C 1 0 1 0
(...)
m 0 −1 1 −1




v1
v2
v3
...
vn

= 0

From this equation, the following set of linear constraints can be derived:

−v1 + v2 − v3 ... = 0

−v1 + v2 ... = 0

v1 + v3 ... = 0

...

−v2 + v3 ... − vn = 0
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In addition to the mass balance equation, each reaction has a lower- and upper flux bound
that restrains the possible flux through the reaction [38].

When the constraints have been defined, constraint based analysis methods can be em-
ployed to answer different questions about the system. Examples of such methods are flux
balance analysis (FBA), flux variability analysis (FVA) and minimization of metabolic ad-
justment (MOMA). FBA answers the question of what the optimal solution of the chosen
objective is [12]. To conduct FBA, first a model objective must be chosen. The model
objective can either be set to production of a metabolite of interest, or to biomass produc-
tion. If biomass production is chosen as objective, FBA will find the maximal flux that
is possible through the biomass synthesis reaction, in other words the maximal possible
growth rate, while maintaining the constraints that have been defined. FBA finds a flux
distribution through the metabolic network that yields this optimal solution. The flux dis-
tribution is given as a flux vector v. As mentioned before, the flux vector returned by FBA
is not necessarily unique, as different flux vectors could yield the same optimal solution
[37]. To summarize, FBA solves the following linear optimization problem:

max vobjective, subject to:

Sv = 0

lbi ≤ vi ≤ ubi

Where vobjective is the flux of the reaction chosen as objective, S is the S-matrix, vi are the
fluxes of flux vector v, lbi is the lower bound, and ubi is the upper bound for each reaction
i. FVA on the other hand, answers the question of what the minimal and maximal possible
flux of each reaction in the network is. This is done by iteratively solving two optimization
problems for each reaction of the network: one minimization and one maximization prob-
lem. Before solving the minimization and maximization problem for each reaction, the
optimal solution to the original objective function is found with FBA. Then the flux of the
objective function is set to a fraction of the optimum, for instance 0.99. Then the objective
is iteratively changed to maximize and minimize the flux of each reaction of the network.
In that way, FVA finds the flux range of each reaction that would yield the defined fraction
of the optimal solution [38]. The FVA problem can be written mathematically as follows:

max/min vi, subject to:

Sv = 0

vobjective ≥ γz

lbi ≤ vi ≤ ubi

Where vobjective is the flux of the original objective function, z is the original optimal so-
lution and γ is the fraction of the optimum (0 ≤ γ < 1) [38].

According to Segré et al.[39], FBA predictions are more accurate for wild type strains
than for mutant- or genetically engineered strains. This is because wild type strains typi-
cally have reached an optimal growth state due to evolutionary pressure over time. When
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a mutation is introduced to a strain, it usually takes several generations for the strain to
readjust and reach a new optimal growth state. FBA does not take this into account, and
might therefore not be the most suitable tool to study the flux distribution of a mutant- or
genetically engineered strain. Segré et al. have addressed this problem and developed a
method to find a sub-optimal solution as close to the FBA solution as possible, that takes
the mutational constraints into account. Their method is based on the assumption that the
metabolic flux of the mutant is initially rearranged as little as possible compared to the
wild type, hence the name minimization of metabolic adjustment (MOMA). As previously
explained, FBA finds a flux vector v in the feasible solution space that yields the optimal
solution to the chosen objective function. When introducing a mutation, the feasible so-
lution space is limited. The goal of MOMA is to find a flux vector x in the new solution
space that has minimal Euclidean distance to the flux vector v. Thus, MOMA searches to
minimize the following:

D(v, x) =

√√√√ n∑
i=1

(vi − xi)2

where D(v, x) is the Euclidean distance between vectors v and x. MOMA is solved as a
quadratic optimization problem [39].

These tools, and many more, make the GEM a valuable resource to study the genotype-
phenotype relationship in both wild type and mutant strains [12].

2.10 The biomass objective function

As explained in the previous section, the objective function can either be set to production
of a metabolite of interest, or to biomass production. When choosing biomass production
as the objective, FBA can be employed to find the maximal possible flux of the biomass
synthesis reaction. The biomass synthesis reaction, also called the biomass objective func-
tion (BOF) is a formulation of the content of macro-molecules such as protein, DNA,
RNA, and lipid that are required to form biomass. The energy that is required for growth
associated processes, are also expressed in the BOF, as ATP hydrolysis. The BOF can be
formulated in different ways. One way is to formulate the BOF in one single reaction,
where all the macro-moleculre constituents such as amino acids, nucleotide triphosphates,
fatty acids etc. are used as substrates to produce biomass directly. Alternatively, the BOF
can be formulated with the macro-molecules, such as protein, DNA, RNA, lipid, etc. as
substrates. In this case, each macro-molecule is given a corresponding synthesis reaction:
protein is synthesized from amino acids, DNA and RNA are synthesized from nucleotide
triphosphates, lipids are synthesized from fatty acids, etc. Independently of how the BOF
is formulated, the BOF should reflect the experimentally measured biomass composition
and energy requirements of the organism [40].
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2.11 Growth associated and non-growth associated main-
tenance

In a GEM, two types of energy requirements are formulated. The energy that is required
for growth related processes is called growth associated maintenance (GAM). Examples
of growth related processes are macro-molecule synthesis, and cell replication. The GAM
is formulated in the BOF as ATP hydrolysis. By connecting the GAM to the BOF, an in-
crease in biomass synthesis will simultaneously require more ATP hydrolysis. The GAM
can either be determined experimentally, or it can be estimated based on the energy re-
quirements for macro-molecule synthesis. The other energy requirement is that of non-
growth associated processes. This energy requirement is called non-growth associated
maintenance (NGAM), and include the energy requirements for processes such as turgor
pressure maintenance. The NGAM is represented as an ATP-hydrolysis reaction separate
from the BOF. The NGAM can be determined experimentally, or it can be estimated [41].

2.12 Genome-scale metabolic models of Bacillus subtilis
There are several available GEMs of B. subtilis 168, where three of them will be intro-
duced in this section: iYO844, iBsu1103, and iBsu1147 [13, 42, 43]. iBsu1147 is the
newest GEM of B. subtilis, and is based on the two previous GEMs, iYO844 and iBsu1103.
There are several differences between the three GEMs, however the difference that will be
highlighted in this section is the difference in how the BOF has been formulated in the
three models.

The first GEM of B. subtilis is called iYO844, and was published in 2007 by Oh et al.
[13]. The BOF of iYO844 is structured as one single reaction containing all the macro-
molecule constituents necessary to synthesize biomass [13]. A later reconstruction of B.
subtilis was published in 2009 by Henry et al. [42], and is named iBsu1103. The BOF of
iBsu1103 is based on the one constructed by Oh et al., but is structured differently. Henry
et al. have divided the constituents of the BOF into seven categories: protein, DNA, RNA,
lipid, lipoteichoic acid, cell wall, and cofactors and ions. The first six categories represent
the macro-molecules that are necessary to synthesize biomass, and have been given each
their synthesis reaction. The BOF takes in the products of the six synthesis reactions, as
well as the cofactors and ions that are necessary for biomass production and energy main-
tenance. Henry et al. chose to structure the BOF this way to make it more transparent, as it
makes it easier to understand what constituent that is necessary for what macro-molecule
[42]. The latest GEM of B. subtilis, called iBsu1147, was published in 2013 by Hao et
al. iBsu1147 is based on the previous GEM, iBsu1103, in addition to information from
KEGG and Uniprot. iBsu1147 uses the same BOF as presented in iBsu1103, but with
KEGG IDs where possible [43]. iBsu1147 is the model that has been used in this work
to investigate the genotype-phenotype relationship of the wild type and Mdh-expressing
mutant, as it is the newest GEM available for B. subtilis.
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The supplementary files that are reffered to in this Chapter can be found in my github
repository: https://github.com/linnsandvik/Supplementary-data-Master-thesis.
git.

3.1 The cryptFind algorithm
The cryptFind algorithm developed by Navid and Almaas [44] is developed to find po-
tential cryptic genes of a genome-scale metabolic model (GEM). The algorithm operates
in two steps. First the genes that are essential for growth on the selected carbon source
are found. Second, the genes that are essential for each of the carbon sources in a growth
medium list are found. The algorithm returns the essential genes that are unique for growth
on the selected carbon source. The algorithm was implemented as described by Snorre Sul-
heim in 2017. The code written by Sulheim can be found here. In our case, the selected
carbon source is methanol. The growth medium list contains 54 carbon sources that B.
subtilis is able to use in vivo, and that the iBsu1147 GEM can use in silico. How these
were found is explained in the next section

3.1.1 Finding carbon sources that B. subtilis can use for growth in
vivo and in silico

To use the cryptFind algorithm we need a list of carbon sources that B. subtilis grows on
in vivo [44]. Oh et al. have tested what carbon sources B. subtilis is able to use for growth
in vivo [13]. Then we have identified which of these carbon sources are represented in
exchange reactions in iBsu1147. A table of carbon sources that B. subtilis is able to use
for growth in vivo, and that are represented as exchange reactions in iBsu1147 can be
found in sheet 2 in file ”C sources in silico.xlsx”. To check which of the carbon sources
that can be used for growth by iBsu1147, we iteratively change the nutrient medium to be
limited by each of the carbon sources that were found. If the predicted growth rate that is
found with FBA is positive, it means that iBsu1147 can use the carbon source for growth.
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It was found that iBsu1147 is able to grow on all carbon sources listed except for one,
which is C00182: Glycogen.

3.2 Bacillus subtilis 168 and B. subtilis 168 pBV2mp mdhBm
The two bacterial strains that were used in this work are Bacillus subtilis 168 and B. subtilis
168 pBV2mp mdhBm. The expression plasmid that was used, pBV2mp, is a plasmid of
low copy number that originates from B. subtilis [45]. The Mdh gene was isolated from
the genomic DNA of Bacillus methanolicus in accordance to Eikmanns et al. 2013 [46].
In the rest of this work, the term wild type refers to B. subtilis 168, and the term mutant
refers to B. subtilis 168 pBV2mp mdhBm. The mutant strain was provided by Vivien
Jessica Klein, who is an engineer and PhD candidate for the Department of Biology at the
Faculty of Natural Sciences at NTNU. She also provided us with the empty plasmid strain
B. subtilis 168 pBV2mp, which was originally a strain we were going to use as a control
in addition to the wild type strain. Unfortunately, we were unable to make B. subtilis 168
pBV2mp grow, and it was therefore decided to use only the wild type as control.

3.3 LB medium
LB medium was used to create glycerol stocks, as described in Section 3.5, and precul-
tures, as described in Section 3.6. LB medium was made by dissolving tryptone, NaCl and
yeast extract in Milli-Q (MQ-H2O) to obtain the concentrations listed in Table 3.1. The LB
medium was sterilized by autoclavation for 20 minutes at 121°C. When LB medium was
used to cultivate B. subtilis 168 pBV2mp mdhBm, 50 mg/mL kanamycin stock solution
was added after autoclavation to obtain a final concentration of 5 µg/mL.

Table 3.1: Components used to make LB medium. The components were dissolved in Milli-Q
(MQ-H2O) to obtain the listed concentrations. Supplier and CAS number of each component are
provided.

Component Concentration (gL−1) Supplier CAS number
Tryptone 10 Sigma-Aldrich 91079-40-2
NaCl 10 VWR chemicals 7647-14-5
Yeast extract 5 Sigma-Aldrich 8013-01-2

3.4 Minimal medium
Minimal media were used for precultures, as described in Section 3.6, and during biore-
actor cultivation as described in Subsection 3.7.1. Two types of minimal media were
prepared, one with D-glucose as only carbon source, and one with both methanol and
D-glucose as carbon sources. Stock solutions of salts and carbon sources, trace mineral
solution (TMS) and phosphate buffer were prepared in advance to ease the preparation of
the minimal media.
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3.4 Minimal medium

3.4.1 Stock solutions
A stock solution is prepared by dissolving a component in MQ-H2O to obtain a desired
concentration. The components used to make stock solutions, and their final concentration
are listed in Table 3.2. The stock solutions were stored at room temperature.

Table 3.2: Components used to make stock solutions, and their final concentrations. The compo-
nents were dissolved in Milli-Q (MQ-H2O) to obtain the listed concentrations. Supplier and CAS
number of each component are provided.

Component Concentration (g L−1) Supplier CAS number
NaCl 50 VWR Chemicals 7647-14-5
NH4Cl 60 Sigma-Aldrich 12125-02-9
MgSO4 · H2O 246.5 Sigma-Aldrich 10034-99-8
D-Glucose 400 VWR Chemicals 50-99-7

3.4.2 Trace mineral solution (TMS)
The trace mineral solution (TMS) contains all the minerals that B. subtilis needs in order
to grow. TMS was made by dissolving the components listed in Table 3.3 in 5 M HCl to
obtain the listed concentrations. HCl was used instead of MQ-H2O to prevent precipitation
of the minerals. The TMS was stored in a 1000 mL Reagent Bottle covered in aluminum
foil in refrigerator at 4°C.

Table 3.3: Components used to make trace mineral solution (TMS). The components were dissolved
in 5 M HCl to obtain the listed concentrations. Supplier and CAS number of each component are
provided.

Component Concentration (g L−1) Supplier CAS number
FeCl2 · 4H2O 7.2 Sigma-Aldrich 13478-10-9
ZnCl2 0.5 Sigma-Aldrich 7646-85-7
CaCl2 · 2 H2O 0.5 Sigma-Aldrich 10035-04-8
CuCl2 · 2 H2O 1 Sigma-Aldrich 10125-13-0
MnCl2 · 4 H2O 0.2 Sigma-Aldrich 13446-34-9
CoCl2 · 6 H2O 0.05 Sigma-Aldrich 7791-13-1
Na2MoO4 · 2 H2O 0.01 Sigma-Aldrich 10102-40-6
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3.4.3 Phosphate buffer
Phosphate buffer (PO4-buffer) is added to the minimal medium to ensure stable pH. PO4-
buffer was made by dissolving disodium phosphate (Na2HPO4 · 7H2O) and monopotas-
sium phosphate (KH2PO4) in MQ-H2O to obtain final concentrations of 112 g L−1 and
30 g L−1, respectively. 4 M NaOH was used to adjust the pH to 7.2. The PO4-buffer was
stored at room temperature.

3.4.4 Preparing minimal medium
Minimal medium was prepared in two steps. First, components that can be autoclaved
without being degraded were dissolved in MQ-H2O. That includes sodium chloride (NaCl)
stock, ammonium chloride (NH4Cl) stock, PO4-buffer, L-trp and L-glu. This mixture was
sterilized by autoclavation for 20 minutes at 121 °C in the bioreactor. (Assembly of the
bioreactor is described in Section 3.7.1.) Secondly, TMS, magnesium sulfate (MgSO4· 7
H2O) stock and carbon source(s) were added to the medium in sterile cabinet. Magnesium
sulfate- and D-glucose stock were sterile filtered before adding them to the medium. TMS
and methanol were not sterile filtered, based on an assumption of no microbial growth in
these solutions. The final concentrations of each medium component are listed in Table 3.4
and Table 3.5. When both methanol and D-glucose were used as carbon source, methanol
was added in sterile cabinet to obtain a concentration of 200 mM in the final medium. Fur-
thermore, when minimal medium was used to cultivate B. subtilis 168 pBV2mp mdhBm,
50 mg/mL kanamycin stock solution was added in sterile cabinet to obtain a final concen-
tration of 5 µg/mL.

Table 3.4: Stock solutions and components used to make minimal medium. The concentration of
the components in stock solution and in minimal medium is given. Milli-Q (MQ-H2O) was used to
obtain the desired concentration of each component.

Stock solution/
component

Concentration
stock (g L−1 )

Concentration
medium (g L−1)

NaCl 50 0.5
NH4Cl 60 0.3
Na2HPO4* 112 11.2
KH2PO4* 30 3
L-trp** - 0.05
L-glu** - 2
TMS See Table 3.5 See Table 3.5
MgSO4·7H2O 246.5 0.493
D-glucose 400 10

* Na2HPO4 and NH4Cl are dissolved in the PO4-buffer as described in Section 3.4.3.
** L-trp and L-glu were added as solids.
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Table 3.5: Components of the trace mineral solution (TMS) and their concentrations (g L−1) in
TMS and minimal medium.

Component Concentration
TMS (g L−1)

Concentration
medium (g L−1)

FeCl2 · 4H2O 7.2 9.6 · 10−3

ZnCl2 0.5 6.7 · 10−4

CaCl2 · 2 H2O 0.5 6.7 · 10−4

CuCl2 · 2 H2O 1 1.3 · 10−3

MnCl2 · 4 H2O 0.2 2.7 · 10−4

CoCl2 · 6 H2O 0.05 7 · 10−5

Na2MoO4 · 2 H2O 0.01 1 · 10−5

3.5 Glycerol stocks

Glycerol stocks were prepared of B. subtilis 168. A 250 mL baffled shake flask with 50 mL
LB medium was inoculated with B. subtilis 168 and incubated for 16 hours at 200 RPM
and 37 °C. After incubation, the bacterial cells were harvested by transferring the culture
to a sterile 50 mL centrifuge tube and centrifuging it for 5 min at 4000 RCF and 4°C.
To create a concentrated cell solution, most of the supernatant was discarded to reach a
volume of 16 mL, and the pellet was re-suspended by gentle pipetting. To create glycerol
stock from the concentrated cell solution, 4 mL sterile 80 % glycerol was added, which
gave a final concentration of 16 % glycerol. The glycerol was mixed into the bacterial
culture by inversion. The glycerol stock was then divided over sterile cryotubes (1 mL per
tube) and snap-freezed in liquid nitrogen, before it was stored in the freezer at -80 °C.

3.6 Precultures

3.6.1 Wild type in glucose minimal medium

First, preculture using LB medium was made by inoculating 100 mL LB-medium in
250 mL baffled shake flask with 100 µL B. subtilis glycerol stock. The preculture was
incubated for eight hours at 37 °C and 200 rpm. After incubation, two new 250 mL baffled
shake flasks with 100 mL glucose minimal medium were inoculated with 75 and 150 µL
LB preculture, respectively. The minimal medium precultures were incubated over night in
37 °C and 200 rpm. The minimal medium preculture inoculated with 75 µL LB preculture
was used to inoculate the medium in the bioreactor.

3.6.2 Wild type in minimal medium with glucose and methanol

The precultures of B. subtilis 168 WT in minimal medium containing D-glucose and
methanol were made by following the same procedure as described in Section 3.6.1. In
these precultures, the minimal medium that was used contained methanol in addition to
D-glucose.
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3.6.3 Mutant in glucose minimal medium
First, preculture using LB medium was made by inoculating 100 mL LB-medium in a
250 mL baffled shake flask with 100 µL glycerol stock of the B. subtilis mutant strain.
The LB preculture was incubated at 37 °C and 200 revolutions per minute (RPM) for 8.5
hours. Then, a first minimal medium preculture was made by inoculating 100 mL glucose
minimal medium with 150 µL of the LB preculture. A 250 mL baffled shake flask was
used for the first minimal medium preculture, which was incubated at 37 °C and 200 RPM
for 12 hours. A second minimal medium preculture was made by inoculating a 150 mL
baffled shake flask containing 75 mL of glucose minimal medium with 750 µL of the first
minimal medium preculture. The second minimal medium preculture was incubated at 37
°C and 200 RPM for 7 hours. A third minimal medium preculture was made by inoculating
100 mL glucose minimal medium with 1 mL of the second minimal medium preculture.
A 250 mL baffled shake flask was used for the third minimal medium preculture, and it
was incubated for 17 hours at 37 °C and 200 RPM. The third minimal medium preculture
was used to inoculate the medium in the bioreactor.

3.6.4 Mutant in minimal medium with glucose and methanol
LB preculture was made by inoculating a 250 mL baffled shake flask containing 100 mL
LB-medium with 100 µL glycerol stock of the B. subtilis mutant. The LB preculture
was incubated at 37 °C and 200 RPM for 10 hours. Then, 20 mL LB preculture was
centrifuged for 4 minutes at 4 °C and 4500 RPM, and the pellet was used to inoculate
75 mL minimal medium containing glucose and methanol. A 150 mL baffled shake flask
was used. The culture was incubated at 37 °C and 200 RPM for 12 hours. The minimal
medium preculture was used to inoculate the medium of the bioreactor.

3.7 Batch culturing in bioreactors

3.7.1 Cultivation
The B. subtilis cells were cultivated in 3.0 L New Brunswick™ BioFlo® 115 Benchtop
Bioreactor system. 1.5 L of minimal medium was used each cultivation. The system was
assembled as described in the manufacturer’s user manual.

The day before cultivation, the bioreactors were cleaned first with distilled water (dH2O)
and then with MQ-H2O. The components of the minimal medium that can be autoclaved
without being degraded were dissolved in MQ-H2O and added to the bioreactors, as de-
scribed in Section 3.4.4. The pH electrodes were calibrated between pH 4 and 7. The
dissolved oxygen (DO) electrodes was calibrated to 0 by sparging with nitrogen gas for
about 20 minutes. The reactors were then assembled and autoclaved at 121 °C for 20 min-
utes.

The rest of the medium components were added to the reactors in sterile cabinet the be-
fore cultivation. Then, the motor, heat jacket, sparge air, base pump and cooling water
were connected to each reactor. Before calibrating the DO-electrode to 100 % oxygen,
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3.7 Batch culturing in bioreactors

the agitation was set to 500, air flow to 1.5 L min−1 and the temperature was allowed to
stabilize at 37 °C. For the rest of the cultivation, the agitation ranged between 200 and
1000. The gas leaving the reactor (output gas) was measured using Thermo Scientific™
Prima BT Benchtop Process Mass Spectrometer and the data was processed by Thermo
Scientific™ GasWorks Process Analysis Software. New Brunswick™ BioCommand®
Software was used to track the agitation, pH, temperature, and amount of DO. The reactors
were inoculated with 50 mL preculture.

3.7.2 Sampling
Samples of the bacterial culture were collected several times throughout each cultivation.
This was done to track the cell growth and medium composition. The cell growth was
tracked by measuring OD600 and CDW, while the medium composition was analyzed
with NMR. The OD600 was measured of 1 mL culture, and minimal medium was used
as blank. To analyze the medium composition and determine the cell dry weight (CDW),
3 mL culture was collected from the bioreactor. The sample was centrifuged for 5 minutes
at 4 °C and 4500 RCF. The supernatant was sterile filtered and stored in freezer at -20
°C until further NMR analysis, described in Section 3.7.4. The pellet was resuspended in
3 mL Q-H2O and distributed over three pre-weighed aluminum pans. The aluminum pans
with content were dried in oven over night at 100 °C before they were weighed again to
determine the CDW.

Furthermore, proteomics samples of each fermentation were prepared when the cells reached
OD600 = 2. 3 mL sample was collected and distributed over three 1.5 mL eppendorf tubes
and centrifuged at 13.4k RPM for 5 minutes in table centrifuge. The supernatant was
discarded and eppendorf tubes with pellets were stored in freezer at -20 °C until further
proteomics analyses.

3.7.3 Harvesting and freeze-drying
The cultivation ended with harvesting when the OD600 had reached about 3. The exact
OD600 for each bioreactor cultivation is listed in Table 3.6. A syringe was used to empty
the bioreactor as much as possible, and the culture was divided over 50 mL centrifuge
tubes. The tubes were centrifuged for 4500 RCF for 5 minutes at 4 °C, the supernatant
was discarded and the pellet was washed twice with 15 mL 10 g/L NaCl. Both wash
steps were conducted by re-suspending the pellet in NaCl solution by vortexing, before
the samples were centrifuged and supernatant discarded. After the two NaCl wash steps,
a last wash step was conducted the same way, only with 20 mL MQ-H2O instead of NaCl
solution. The cell pellets were stored in the freezer at -80 °C before being lyophilized
using Christ Alpha 3-4 LSC basic freeze dryer with for 3 days. Then, the lyophilized cells
were stored in -80 °C freezer until further biomass analyses.
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Table 3.6: OD600 of each bioreactor cultivation when starting the harvesting.

Bioreactor cultivation OD600
WT in glucose 3.44
WT in glucose and methanol 4.00
MDH in glucose 2.99
MDH in glucose and methanol 3.00

3.7.4 Preparation of NMR samples

NMR samples were prepared from the frozen media samples that were collected through-
out the cultivations (described in Subsection 3.7.2). First, the samples were thawed and
vortexed. For each sample, triplicates of 800 µL sample was transferred into new 1.5 mL
eppendorf tubes, and 80µL D20-TSP solution was added. Each eppendorf tube was then
vortexed before 600 µL of the content was pipetted into NMR-tubes. The further NMR
analyses were carried out by Christian Schulz.

3.8 Biomass composition measurements

The biomass composition was measured to find the macromolecular biomass fractions of
proteins, RNA, DNA, and lipids.

3.8.1 RNA quantification

For this section, all centrifuge steps were conducted for 10 minutes at 4000 RCF and 4 °C,
except for the last centrifuge step where 4000 RPM was used.

Triplicates of 10 mg lyophilized cells were weighed into 15 mL centrifuge tubes. The
cells were washed three times with 3 mL 0.7 M HClO4. For each wash step, the cells were
re-suspended by vortexing, before the samples were centrifuged and the supernatant was
discarded. Then, the pellets were re-suspended by vortexing in 3 mL 0.3M KOH, followed
by 1 h incubation in a thermocycler at 37 °and 400 rpm. The samples were cooled down
to room temperature before adding 1 mL 3M HClO4. The samples were mixed by inver-
sion. Then the samples were centrifuged and the supernatants were decanted into 50 mL
centrifuge tubes. The remaining pellets were washed twice with 4 mL 0.5 M HClO4. For
both wash steps, the pellets were re-suspended by vortexing, before the samples were cen-
trifuged and the supernatant was decanted into the 50 mL tubes. Then 3 mL 0.5M HClO4
was added to each 50 mL tube to obtain a final volume of 15 mL, before the samples were
centrifuged to get rid of non-visible precipitates of KClO4. The concentration of RNA was
measured at 260 nm by using Thermo Scientific™ NanoDrop™ One spectrophotometer
with the single-stranded RNA setting. The absorbance ratios of 260 nm over 280 nm and
260 nm over 230 nm were also measured. 0.5 M HClO4 was used as blank.

22



3.8 Biomass composition measurements

3.8.2 DNA quantification

Triplicates of 10 mg dry biomass was weighed out and added to 1.5 mL eppendorf tubes.
Then 600 µL lysis buffer was added to each eppendorf tube, before the cell samples were
incubated at 55 °C for 30 minutes in a thermocycler. The samples were cooled down to
room temperature before 600 µL phenol/chloroform (1:1) (v/v) was added to each sample.
The samples were inverted until the phases were completely mixed. Then, the samples
were centrifuged at 13.4k RPM for 5 minutes, which resulted in a white protein layer be-
tween the aqueous and the organic layers. The upper aqueous phase was transferred to
new 1.5 mL eppendorf tubes by using 1 mL micropipette where approximately 2 mL of
the tip had been cut off, in order to avoid disturbing the protein layer. The steps from and
including adding 600 µL phenol/chloroform were repeated twice for the new eppendorf
tubes.

To remove phenol, 600 µL of chloroform was added to the tubes, and the tubes were
mixed by inversion before they were centrifuged at 13.4k for 5 minutes. Then, the aque-
ous phase was transferred to a new tube. Then, 40 µ L 3 M sodium acetate and 1 mL
ice cold ethanol (99%) was added and the samples were mixed gently by inversion. This
resulted in visual DNA precipitation. Then the tubes were stored overnight at -20 °C.

Then the samples were centrifuged at 13400 RPM for 15 minutes, resulting in a transpar-
ent DNA-pellet. The supernatant was discarded, and the DNA-pellet was rinsed with 1 mL
70 % ethanol. Then the samples were centrifuged at 13.4k RPM for 2 minutes, the super-
natant was carefully discarded, and the DNA-pellets were air-dried for one hour by placing
the open tubes in a thermocycler at 37 °C. The dry DNA-pellets were re-suspended in 50
µL TE-buffer by pipetting. Then, 1 µL of RNAse A was added and the samples were incu-
bated for 15 min at 37 °C in a thermocycler. The concentration of DNA at 260 nm, as well
as the absorbance ratios of 260 nm over 280 nm and 260 nm over 230 nm were determined
using Thermo Scientific™ NanoDrop™ One spectrophotometer and the double-stranded
genomic DNA setting. A mix of 50 µL TE-buffer with 1 µL RNAse was used as blank.

3.8.3 Lipid quantification

Triplicates of 40 mg lyophilized biomass was weighed into eppendorf tubes. 150 µL MQ-
H2O was added to each sample, and the samples were vortexed. 0.5 g zirconium beads
(1.4 mm) and 400 µL methanol were added to each sample. A homogenizer with settings
20 second interval, 2 cycles, at 5000 rpm were used for all samples, and samples were put
on ice in between cycles. 800 µL chloroform was added and the samples were vortexed
for 20 min. 100 µL MQ-H2O was added and the samples were vortexed for 10 min. The
samples were centrifuged for 4 min at 13.4k rpm using table centrifuge. As much organic
phase as possible was transferred with needle to dark MS-vials. 600 µL chloroform was
added to the bead-cell-solution and the samples were vortexed for 10 min, centrifuged for
4 min at 13.4k rpm, before again as much organic phase as possible was transferred to
the dark MS-vials. The chloroform was evaporated over the weekend before the MS-vials
were weighed to determine the exact weight of the extracted lipids. Supplementary data
for the biomass compositions can be found in ”Biomass data.xlsx”.
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3.8.4 Protein hydrolysis and HPLC

Triplicates of 10 mg lyophilized cells were weighed into schott flasks. 500 µL 6 M HCl
was added to each sample. The flasks were put to boil at 105 °C for 24 hours. After
24 hours the flasks were allowed to cool down to a handling temperature, before the sam-
ples were neutralized by adding 500 µL 6 M NaOH. The samples were mixed well before
they were filtered and transferred to empty eppendorf tubes by using syringe with filter
(0.22 µm) attached. The following dilutions were prepared of each filtered sample: 1:50,
1:100, and 1:250. 200 µL of each of the final dilutions were transferred to HPLC-vials
with solid caps. The samples were stored in the freezer (-32 °C) until the samples were
analyzed with HPLC by Siri Stavrum.

3.8.5 Calculating the amino acid distribution and total protein con-
tent

The amino acid content was measured by acid hydrolysis followed by HPLC. The HPLC-
results reveal the concentration (µmol/L) of each amino acid present in the HPLC sample.
The dilution factor, total volume of the sample, and the CDW used to prepare the sample
were used to calculate the molar fraction (mmol/gDW) of each amino acid.

Acid hydrolysis causes met, cys, pro, and trp to be degraded [29]. The concentration of
these amino acids was therefore predicted by using linear regression of the molar fractions
of the remaining 16 amino acids calculated from the HPLC results, against molar fractions
predicted from a script written by Vetle Simensen. A linear regression was conducted for
each fermentation. The script written by Vetle Simensen allows us to predict the molar
fractions of each amino acid based on the amino acid distribution derived from the protein
coding gene sequences of B. subtilis 168 (UniProt Proteome ID UP000001570). The script
can be found here.

Furthermore, during boiling in HCl, gln is converted to glu and asn is converted to asp
[29]. The HPLC results therefore return a higher concentration of glu and asp, while the
concentration of gln and asn is approximately zero. This means that the HPLC concen-
tration of glu actually represents the concentration of glu and gln combined. The same
goes for asn and asp. Furthermore, the concentration of glycine (gly) and arginine (arg)
is returned as a sum in the HPLC results. The same script was used to predict the molar
fraction of these amino acids, and the predicted molar fractions were used to find the ex-
perimentally measured molar fractions. For instance, the prediction the molar fraction of
asn and asp are 0.30 and 0.40 mmol/gDW, respectively. This means that from the mea-
sured Asp concentration, 57 % is asp while 43 % is asn. The molar fraction of asp, asn,
glu, gln, gly and arg were found with this strategy. Eventually, the mass fraction (g/gDW)
of each amino acid was calculated from the molar fractions (mmol/gDW) by using the
molar mass of each amino acid. The total protein content was found by summarizing the
mass fractions of all amino acids. The calculations of the amino acid distribution and total
protein content are attached in supplementary file ”protein synthesis reactions.xlsx”.
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3.9 Growth rates

3.9 Growth rates

R version 4.2.2 was used to fit linear regression models and to conduct Analysis of Vari-
ance (ANOVA). Triplicate measurements of the CDW were conducted throughout each
fermentation. For each fermentation, a linear regression model was fitted where y = CDW
on log scale, and x = time (h). The growth rate corresponds to the slope of the linear
regression model. R version 4.2.2 was used to fit linear regression models.

3.10 Finding the specific O2 uptake- and CO2 secretion
rates

Thermo Scientific™ Prima BT Benchtop Process Mass Spectrometer was used to mea-
sure the composition of the output gas, and the data was processed by Thermo Scientific™
GasWorks Process Analysis Software. For each fermentation, the flow of air through the
system was allowed to stabilize before inoculation of the reactor. The O2air

used in Equa-
tion 2.1, is calculated for each cultivation by finding the average O2 content of 10 output
gas measurements conducted after the air flow had stabilized and before inoculation. Fur-
thermore, the GasWorks Process Analysis Software returns the flow rate of air through
the system for each output gas composition measurement. This flow rate is used for Q,
in Equation 2.1. The CO2 secretion rate (uCO2 ) and specific CO2 secretion rate (qCO2 )
is found by using Equation 2.1 and 2.2, where O2out

and O2air
are replaced with CO2out

and CO2air
, respectively, and by using the concentration (N) of CO2 in air. The concentra-

tion (N) of O2 and CO2 that are used in Equation 2.1 are shown in Table 5.8 in Appendix 5.

To find the specific substrate uptake rate (qs), we need to know the CDW of B. subtilis
cells in the bioreactor. Triplicate measurements of the CDW were conducted at 6-7 time-
points per fermentation, as described in section 3.7.2. The average of each triplicate, as
well as the (log10) of the averages were found. Table 5.9 in Appendix 5 shows the Aver-
age CDW and log10 of the avg. CDW over time during the cultivation of B. subtilis 168
WT in glucose minimal medium, as an example. The log10 of the avg. CDWs have been
plotted against time, and a linear regression line has been fitted to the data points. Figure
5.2 in Appendix 5 shows the log10 of avg. CDWs over time for WT in glucose minimal
medium. The equation of the regression line (y = 0.357x - 0.986) can be used to predict
the CDW (mg/mL) for a specific time point of the cultivation. By using the volume of
minimal medium in the reactor in the given time point, we can find the total CDW (g)
in the reactor for that time point. Predicted CDWs were used to determine the specific
uptake- and secretion rates as close to the harvesting point as possible, and to compensate
for potential errors made during CDW measurements.

The goal is to find the specific O2 uptake rate (qO2
) and the specific CO2 secretion rate

(qCO2
) for each cultivation as close to the point of harvesting as possible. Therefore, the

10 output gas measurements conducted as close to the start of harvesting as possible were
used to determine the qO2 and qCO2 . For both of the cultivations of the mutant B. subtilis
strain, it was possible to use the 10 last measurements before harvesting. For the wild type,
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however, it seems like the filter was clogged towards the end of the cultivation, resulting
in no air flow out of the reactor during the last 18 minutes (WT glucose) and 13 minutes
(WT in methanol) of the cultivation. For the cultivations of WT we therefore used the 10
measurements closest to harvesting, where the air is still flowing through the system. The
qO2

for one cultivation is calculated as the average of the qO2
s found based on these 10

measurements. (Similarily, the qCO2 is calculated as the average of the qCO2s based on
the 10 measurements). Table 5.10 in Appendix 5 shows the 10 time points with O2out

measurements, flow rates and predicted CDWs used to calculate the avg. qO2
of B. subtilis

168 WT cultivated in glucose minimal medium, as an example. The raw data from the
gas composition measurements for each fermentation, as well as the specific gas uptake
calculations are shown in Supplementary material ”S2 - Gas uptake rates.xlsx”.

3.11 Finding the uptake- and secretion rates of medium
components

Triplicate medium samples were collected at 7-13 time points per cultivation, as described
in section 3.7.2, in order to determine the specific uptake- and secretion rates of the carbon
sources, L-glu, L-trp, and acetate during exponential growth phase. It is desired to find the
specific substrate uptake rates as close to the time of harvesting as possible. Therefore the
specific substrate uptake- and secretion rate is found as an average of the three calculations
closest to the harvesting time. The raw data from the medium composition measurements
for each cultivation, as well as the specific substrate uptake calculations are shown in
Supplementary material ”S3 - Medium uptake rates.xlsx”.

3.12 Conducting flux balance analysis (FBA) and flux vari-
ability analysis (FVA)

The flow chart presented in Figure 3.1 visualizes the steps that were necessary to conduct
FVA. The process illustrated in the flow chart was repeated for each fermentation. The
newest GEM available for B. subtilis, iBsu1147, was used. In the following sections the
steps of the flow chart will be explained in more detail.

3.12.1 Creating new synthesis reactions based on experimental data

The coefficients of the BOF were updated to represent the experimentally measured biomass
composition. Furthermore, the coefficients of the protein synthesis reaction were updated
to represent the experimentally measured relative amino acid distribution. The coefficients
of the remaining synthesis reactions (RNA, DNA, lipid, lipoteichoic acid, and cell wall)
were normalized. In addition, a synthesis reaction was made for cofactors and ions. The
updated synthesis reactions and BOF were added to the model and the old ones were re-
moved. The coefficients used for the new BOFs and protein synthesis reactions can be
found in Table 5.6 and 4.3, respectively.
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Create new synthesis
reactions based on
experimental data.

Does the predicted
growth rate match
the experimentally
measured growth

rate?

Replace old synthesis reactions. 

Update flux bounds based on
experimentally measured

secretion- and uptake rates. 

Conduct FVA directly. 

Use MOMA to find secretion- and
uptake rates that are as close to
the measured values as possible

while the measured growth rate is
maintained.

Conduct FVA based on
secretion- and uptake rates

found with MOMA. 

Yes No

Figure 3.1: A flow chart representing the steps conducted before conduction FVA for each fermen-
tation.

3.12.2 Updating flux bounds based on experimentally measured uptake-
and secretion rates

Secretion and uptake rates were measured for carbon source, O2, CO2, acetate, L-glu, and
L-trp. For the corresponding reactions in the GEM, the flux bounds were set to represent
the experimentally measured secretion and uptake rates ± 2 standard deviations (SD). For
the remaining compounds that were available in the nutrient environment, the flux bounds
were set to be unrestricted (-1000.0, 1000.0). For compounds that were not part of the
nutrient environment, only secretion was allowed (0.0, 1000.0).

3.12.3 Conducting flux variability analysis (FVA)

After the flux bounds were updated, FBA was used to predict the maximal feasible growth
rate. If the predicted growth rate matched the experimentally measured growth rate, FVA
was conducted directly. The flux bounds of the BOF were set to the experimentally mea-
sured growth rate ± 2SD, before FVA was conducted. However, if the predicted growth
rate was lower than the experimentally measured growth rate, setting the flux bounds of
the BOF to the experimentally measured growth rate would give an infeasible solution.
In these cases, FVA could not be conducted directly. Instead, minimisation of metabolic
adjustment (MOMA) was conducted first. MOMA finds an optimal flux distribution that is
as close to a reference (here, the measured uptake- and secretion rates) as possible, while
also maintaining the experimentally measured growth rate. Then the flux bounds of the
GEM were updated based on the uptake- and secretion rates found with MOMA, and FVA
was conducted.
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3.13 Adding bacillithiol dependent oxidation of formalde-
hyde to the model

The assimilatory- and dissimilatory RuMP pathways are present in iBsu1147, however,
the GEM lacks the BSH dependent pathway [6] for formaldehyde oxidation. This path-
way was therefore added. MetaCyc was used to find what reactions needed to be added to
the model. The BSH dependent oxidation of formaldehyde pathway is illustrated in Figure
3.2. The pathway consists of four reactions: first formaldehyde and bacillithiol (BSH) are
converted to S-(hydroxymethyl)-bacillithiol. Then S-(hydroxymethyl)-bacillithiol is con-
verted to S-formyl-bacillithiol. Then S-formylbacillithiol is converted to formate. Even-
tually formate is oxidized to CO2. The ModelSeed reaction ID of each reaction is pre-
sented above the reaction arrows. The metabolites and reactions that are not already
present in iBsu1147 are highlighted in orange. The three first reactions of the pathway,
with IDs rxn42075, rxn44708 and rxn46864, and the missing metabolites (bacillithiol, s-
(hydroxymethyl)bacillithiol and s-formylbacillithiol) were therefore added to the model.
It was verified that flux is allowed through all of the newly added reactions, by iteratively
changing the objective to each of the reactions and conducting FBA. The FBA solution
was greater than zero for each reaction.

S-(hydroxymethyl)bacillithiolformaldehyde

bacillithiol

S-formylbacillithiol formate CO2

NAD+ H+
NADH

H2O H+
bacillithiol

NAD+ NADH

rxn42075 rxn44708 rxn46864 R00519

Bacillithiol dependent formaldehyde oxidation

Figure 3.2: Figure: Illustration of the bacillithiol (BSH) dependent formaldehyde oxidation path-
way, which is present in B. subtilis [6]. The pathway consists of four reactions, and the reaction
IDs (ModelSeed or KEGG) are presented above each arrow. Metabolites and reactions that were not
already present in iBsu1147 are presented in orange.
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Chapter 4
Results and discussion

In the following sections, the measured growth rate, biomass composition, amino acid
distribution, and specific uptake- and secretion rates for each fermentation are presented
and discussed. Then the the experimentally measured data is used to update the GEM of
B. subtilis in order to analyze the flux distribution through the formaldehyde metabolism
pathways of for each fermentation. Eventually, we look into if our results can bring us
closer to an answer of why B. subtilis is unable to use methanol as the only carbon source.

4.1 Unraveling contradictions between the in silico and in
vivo behaviour of B. subtilis

Before delving into the results that are promised above, it was found a discrepancy be-
tween the in silico behaviour of iBsu1147 and the in vivo behavior of B. subtilis, that we
wanted to address. As previously explained, B. subtilis is not able to use methanol as the
only carbon source, even when expressing Mdh [4]. However, the GEM of the organism
is able to. We want to know what causes this contradiction between in vivo and in silico
behaviour. The cryptFind algorithm [44] was used to find the cause of the discrepancy. In
our case, cryptFind finds the genes that are essential for growth on methanol, but none of
the other 54 tested carbon sources. In other words, knocking out the resulting genes would
make the GEM unable to grow on methanol, but the GEM would still be able to grow on
the remaining carbon sources [44]. Two genes were found with cryptFind: transaldolase
and ribulose-phosphate 3-epimerase, suggesting that these two genes could be the reason
for the contradictionary behaviour.

The cryptFind algorithm was originally built to find potential cryptic genes in Yersinia
pestis [44]. However, in our case, the algorithm was used to find the cause of contradic-
tory behaviour of the GEM compared to the organism in vivo. In other words, although
transaldolase and ribulose-3-epimerase were found with the cryptFind algorithm, the genes
are not necessarily cryptic, which is what the name of the algorithm implies. It is actually
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unlikely that transaldolase and ribulose-phosphate 3-epimerase are cryptic, since there is
evidence that they both are expressed at the transcript and protein level in B. subtilis [47].
Both transaldolase and ribulose-phosphate epimerase are listed in F. Kunst et al.’s overview
of the protein-coding genes of B. subtilis, with the gene names rpe and ywlF, respectively
[47]. It could therefore be more likely that the function that are assigned to these genes in
the model differs from the true catalytic activity they serve in the organism in vivo. This
in turn gives the model the ability to grow with methanol as only carbon source, although
this is not (yet) possible in vivo.

4.2 An overview of the batch fermentations that were con-
ducted

We used bioreactors to conduct batch fermentations of both the wild type and mutant
strain. Two batch fermentations were conducted for each strain, one where the strain was
cultivated in glucose minimal medium, and one where it was cultivated in minimal medium
containing methanol and glucose. In total, four batch fermentations were conducted. Each
fermentation is assigned an abbreviation based on the strain and carbon source(s) that were
used, which are shown in Table 4.1. These abbreviations will be used throughout the rest
of the text, first to describe the fermentations, and later to describe the GEMs.

Table 4.1: Abbreviations that are assigned to each fermentation based on the Bacillus subtilis strain
and carbon source(s) that were used.

Strain Carbon source(s) Abbreviation
B. subtilis 168 wild type Glucose WTG
B. subtilis 168 wild type Methanol and glucose WTM
B. subtilis 168 pBV2mp mdhBm Glucose MDHG
B. subtilis 168 pBV2mp mdhBm Methanol and glucose MDHM

During each fermentation, the growth rate and specific uptake- and secretion rates of nu-
trients and gas were measured. Furthermore, the bacteria of each fermentation were har-
vested at the end of exponential phase. The harvested bacteria were used to measure the
biomass composition and amino acid distribution for each fermentation. The experimen-
tal data were used directly for phenotype analyses, and also to update the available GEM
of B. subtilis. For each fermentation, the measured biomass composition and amino acid
distribution was used to make a new BOF and protein synthesis reaction. The measured
growth rate, and specific uptake- and secretion rates for each fermentation were used to
adjust the constraints of the GEM. In total, four updated versions of the GEM iBsu1147
were made, one for each fermentation. The updated GEMs were used to conduct in silico
phenotype analyses of each fermentation.

The fermentations and biomass analyses were performed in cooperation with another mas-
ters student, Sofie Tande-Petersen. Both of us had to perform 4 to 5 batch-fermentations
for our individual projects, and we therefore decided to work together, as there is a signif-
icant amount of work in preparation for, and during batch-fermentations. The cooperation
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allowed for us to exchange ideas and help each other, while still independently planning
and carrying out the experiments for our individual projects.

4.3 The mutant strain grows significantly faster with methanol
as co-carbon source

The growth rate gives valuable information about the phenotype of each fermentation.
Furthermore, growth rate is one of the constraints that are defined before employing
constraint-based metabolic modeling on a GEM. The growth rate of each fermentation was
therefore measured, to update this constraint. OD600 and CDW was measured throughout
each fermentation. The OD600 measurements were mainly used to determine when the
bacteria should be harvested. The bacteria were harvested at an OD600 of approximately
3, which is at the end of the exponential growth phase. The OD600 was also plotted against
time to get a first idea of the growth rate of each fermentation. The OD600 measurements
are presented in Figure 4.1. The growth rate was estimated by conducting linear regres-
sion on the CDW measurements on log scale against time. The CDW measurements on log
scale are plotted against time in Figure 4.2A, and the estimated growth rates are presented
in Figure 4.2B. The estimated growth rates with SD, as well as the R2 of each regression
line are presented in Table 5.1 in Appendix 5.

1

2

3

4

0 3 6 9
Time (h)

O
D

60
0

Biomass 
 sample

WTG

WTM

MDHG

MDHM

Figure 4.1: Optical density at 600 nm (OD600) over time (h) for each fermentation. The bacteria
were harvested at an OD600 of approximately 3. (”Biomass sample” is used the same way as
”fermentation” is used in the rest of the text.)
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Figure 4.2: (A) Cell dry weight (CDW) on log scale plotted against time (h) for each fermentation.
Linear regression was used to decide the growth rate (h−1) of each fermentation, which are presented
in part B. (B) Estimated growth rate (h−1) for each Fermentation. (”Biomass sample” is used the
same way as ”fermentation” is used in the rest of the text.)
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4.4 The measured biomass composition varies according to the strain and nutrient
environment

The OD600 measurements show that the mutant strain grows slower than the wild type
strain. The same observation can be made by looking at the estimated growth rates. The
growth rate of the WT strain is 0.36 h−1± 0.03 when cultivated in glucose medium, and
0.35 h−1± 0.05 when cultivated in methanol medium. For the mutant strain however, the
growth rate is 0.13 h−1± 0.03 when cultivated in glucose medium, and 0.19 h−1± 0.02
when cultivated in methanol medium. ANOVA was used to conduct a pairwise comparison
of the growth rates of the four fermentations, to confirm if the growth rates are significantly
different from each other. According to the ANOVA analyses, the growth rates of WTG
and WTM are not significantly different from each other, however, the WT grows signifi-
cantly faster than the mutant. The mutant strain expresses a recombinant plasmid, which
can impose an extra metabolic burden on the cell [48, 49]. This could be an explana-
tion for the observed growth rate reduction of the mutant strain compared to that of the
WT. Interestingly, the growth rate of MDHM is significantly higher than the growth rate
of MDHG. The only difference between the two fermentations is that methanol is added
to the medium for MDHM. This suggests that the mutant strain is indeed able to use the
methanol for biomass production, which would confirm the findings of Gao et al.[4]. The
ANOVA result for each pairwise comparison can be found in Table 5.2 in Appendix 5.

4.4 The measured biomass composition varies according
to the strain and nutrient environment

The BOF of a GEM should reflect the biomass composition of the organism that the GEM
represents [40]. Therefore, the biomass composition of each fermentation was measured.
The biomass components that are present in the BOF of iBsu1147 are protein, RNA, DNA,
lipid, lipoteichoic acid, cell wall, and cofactors and ions, which together form one unit of
biomass. Out of these components, we experimentally measured the content of protein,
RNA, DNA, and lipid. The contents of lipotheichoic acid, cell wall, and cofactors and ions
were not measured. For these biomass components, the same coefficients as in iBsu1147
were used (0.030, 0.22 and 0.045 g/gCDW, respectively). The protein, RNA, DNA, and
lipid content that was measured for each fermentation is presented in Figure 4.3. The same
results are presented textually in Table 5.3 in Appendix 5.
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Figure 4.3: Biomass composition for each fermentation, shown as mass fraction (g/gDW) of each
component. Only the fractions of the biomass components that were measured are visualized.
(”Biomass sample” is used the same way as ”fermentation” is used in the rest of the text.)

One-way ANOVA was used to determine whether there are significant differences in
biomass composition between the fermentations. Four ANOVA analyses were conducted,
one for each measured biomass component. The resulting p-values from the ANOVA anal-
yses are presented in Table 5.4 in Appendix 5. According to the ANOVA results, there are
significant differences in the content of all four biomass components between at least two
of the fermentations. The most apparent difference is that of the protein content, as we see
that the mutant strain has a significantly lower protein content than the wild type strain.
According to Dauner and Sauer, the protein content of B. subtilis strain RB50::pRF69 in-
creases with growth rate [50]. Our results comply to this finding, as both the growth rate
and protein content is significantly higher for the wild type than for the mutant.

It is worth noting that we have not been able to capture the same amount of the biomass
for each fermentation. For the four fermentations, we have been able to measure 67, 63,
54 and 52 % of the biomass, respectively. Moreover, it would be interesting to see if there
are significant differences between the relative content of each biomass component. For
this, the values have been normalized so that the sum of protein, RNA, DNA, and lipid
content for each fermentation equals one. When conducting the same ANOVA analysis on
the normalized results, we find significant differneces in RNA and DNA content between
at least two of the fermentations, while there is no significant difference in protein and
lipid content. The p-values of the ANOVA-analyses on normalized values are presented in
Table 5.5 in Appendix 5.
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environment

Since there are significant differences in the relative biomass composition between the
fermentations, a new BOF was created for each fermentation. When creating a BOF, the
sum of all the biomass components must be one. In that way the coefficients of the biomass
components of the BOF reflect the relative contribution of each biomass component to
biomass production [40]. That means that summarizing the protein, RNA, DNA, lipid,
lipoteichoic acid, cell wall, and cofactors and ion content should give one unit of biomass.
Therefore, the values were scaled to get a sum of one, for each fermentation. It should
be emphasized that only the protein, RNA, DNA, and lipid contents were scaled, as the
remaining values are derived from the BOF of iBsu1147, and are already scaled. The
scaled values are used as coefficients in the new BOFs, and are presented in Figure 4.4.
The figure also shows the coefficients of the BOF of iBsu1147 for comparison. The same
results are presented textually in Table 5.6 in Appendix 5.
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Figure 4.4: Scaled values of the protein, RNA, DNA, and lipid content (g/gCDW) that were used
to create a new BOF representing each fermentation. The corresponding coefficients that is used for
iBsu1147 are also presented. (”Biomass sample” is used the same way as ”fermentation” is used in
the rest of the text.)
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Previously, we have argued that the BOF should be updated, to represent the biomass
composition of the strain in vivo. However, before discarding the BOF of iBsu1147, we
should determine if the new BOF is actually different from the one already present in
iBsu1147.One-sample t-test was used to determine if the new coefficients are significantly
different from the old coefficients. The coefficients of the BOF of iBsu1147 were pairwise
compared to the coefficients of the new BOFs. The p-values from the t-tests are presented
in Table 5.7 in Appendix 5. There were not found significant differences in the protein
coefficients for any of the pairwise comparisons, however, there were found significant
differences in RNA, DNA, and lipid coefficients between all the new BOFs and the BOF
of iBsu1147. This suggests that the new BOFs are indeed different from that of iBsu1147

The most noticable difference is the difference in lipid content between our BOFs and the
one of iBsu1147. The lipid content is approximately 7 % in iBsu1147, while we measured
a lipid content of 2-3 % for all of our fermentations. The decrease in lipid content could be
explained by an insufficient lipid extraction. However, if we have been able to collect the
whole lipid content, the result highlights the importance of having reproduced the biomass
composition measurements, instead of relying on already existing data. Regardless of what
explains the difference in lipid content, there were still measured significant differences in
RNA and DNA content. Based on these results, it was determined that the new BOFs are
indeed different from that of iBsu1147, which supports our decision of discarding the BOF
of iBsu1147 and using the new BOFs instead.

4.5 The relative amino acid distribution varies according
to strain and nutrient environment

We have seen that there are significant differences in the biomass composition between the
fermentations, and when comparing the fermentations to iBsu1147. We also want to ana-
lyze potential differences in amino acid distribution. If there are significant differences in
amino acid distribution between the fermentations, the coefficients of the protein synthesis
reactions should be updated.

The content of all 20 amino acids were measured experimentally by protein hydrolysis fol-
lowed by HPLC, except for the content of cyt, pro, trp, and met. The four mentioned amino
acids are destroyed by the protein hydrolysis process [29], and the content of these amino
acids was instead estimated based on the amino acid distribution derived from the pro-
tein coding gene sequences of B. subtilis 168 (UniProt Proteome ID UP000001570). The
amino acid content for each fermentation are presented in Table 4.2. One-way ANOVA
was conducted to estimate if the content of each amino acid was significantly different
between the fermentations. The resulting p-values are presented in Table 4.2.
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environment

Table 4.2: Average amino acid content (g/gDW) for each fermentation. The total protein content
(g/gDW) is calculated as the sum of the content of all 20 amino acids. One-way ANOVA was
conducted to compare the content of each amino acid between fermentations, and the p-values are
presented. The average content of cys, pro, trp, and met was predicted based on the amino acid
distribution derived from the protein coding genes of B. subtilis. Only one number was predicted per
fermentation, and one-way ANOVA was therefore not conducted for these four amino acids.

Avg. amino acid content (g/gDW)
Amino acid WTG WTM MDHG MDHM p-value
Asp 0.028 0.025 0.019 0.018 6.8E-06
Glu 0.065 0.047 0.057 0.056 0.33
Asn 0.021 0.019 0.015 0.014 6.8E-06
His 0.009 0.008 0.006 0.005 8.2E-05
Ser 0.019 0.016 0.013 0.011 6.6E-06
Gln 0.034 0.025 0.030 0.029 0.33
Gly 0.032 0.022 0.018 0.017 1.1E-07
Arg 0.045 0.030 0.025 0.024 1.1E-07
Thr 0.030 0.039 0.019 0.021 0.15
Ala 0.046 0.042 0.043 0.043 0.030
Tyr 0.017 0.062 0.012 0.010 0.40
Val 0.033 0.031 0.023 0.022 5.2E-06
Phe 0.022 0.020 0.015 0.021 0.085
Ile 0.029 0.027 0.022 0.024 0.016
Leu 0.030 0.037 0.028 0.026 2.8E-05
Lys 0.044 0.040 0.032 0.030 1.9E-06
Cys 0.004 0.004 0.003 0.003
Pro 0.018 0.017 0.014 0.014
Trp 0.009 0.008 0.007 0.007
Met 0.018 0.017 0.014 0.014
Sum 0.55 0.53 0.42 0.41

According to the ANOVA results, there are significant differences in the content of 11
amino acids between at least two fermentations. However, the differences might reflect
the difference in total protein content rather than a difference in relative amino acid dis-
tribution. To address this, we compared the relative amino acid distribution between the
fermentations as well. To find the relative amino acid distribution, the values are normal-
ized so to get a sum of one unit protein. Then the same ANOVA analyses were conducted
as before. The relative amino acid distribution for each fermentation, as well as the re-
sults from the ANOVA analyses are presented in Table 4.3. When comparing the relative
amino acid distribution between fermentations, there were found significant differences in
the content of six amino acids, instead of in 11, which was found before normalizing the
values.
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Table 4.3: Average amino acid content (g/gProtein) for each fermentation. The total protein content
(g/gProtein) is calculated as the sum of the content of all 20 amino acids. One-way ANOVA was
conducted to compare the content of each amino acid between fermentations, and the p-values are
presented. The average content of cys, pro, trp, and met was predicted based on the amino acid
distribution derived from the protein coding genes of B. subtilis. Only one number was predicted per
fermentation, and one-way ANOVA was therefore not conducted for these four amino acids.

Avg. amino acid content (g/gProtein)
Amino acid WTG WTM MDHG MDHM p-value
Asp 0.051 0.046 0.046 0.044 0.602
Glu 0.117 0.088 0.138 0.136 0.021
Asn 0.039 0.035 0.035 0.034 0.602
His 0.016 0.014 0.014 0.012 0.163
Ser 0.034 0.030 0.030 0.028 0.161
Gln 0.062 0.046 0.073 0.072 0.021
Gly 0.058 0.041 0.044 0.042 0.003
Arg 0.081 0.056 0.061 0.058 0.003
Thr 0.054 0.073 0.046 0.052 0.494
Ala 0.083 0.079 0.104 0.105 0.001
Tyr 0.030 0.115 0.029 0.023 0.396
Val 0.060 0.057 0.056 0.055 0.861
Phe 0.040 0.038 0.037 0.051 0.135
Ile 0.053 0.050 0.053 0.058 0.345
Leu 0.054 0.070 0.066 0.063 0.012
Lys 0.080 0.075 0.077 0.074 0.963
Cys 0.007 0.007 0.008 0.008
Pro 0.033 0.031 0.033 0.033
Trp 0.017 0.016 0.017 0.017
Met 0.033 0.031 0.033 0.033
Sum 1.00 1.00 1.00 1.00

Although there were found fewer differences in amino acid distribution when the val-
ues were normalized, there were still differences in the relative amino acid distribution
between fermentations for glu, gln, gly, arg, ala, and leu. Therefore, it was decided to
construct protein synthesis reactions that are specific for each fermentation. The protein
synthesis reaction summarizes the content of all 20 amino acids to produce one unit of
protein. The relative amino acid distribution, which is presented in Table 4.3, was used to
construct new protein synthesis reactions for each fermentation.
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4.6 Both the wild type and the mutant strain seem to consume methanol

4.6 Both the wild type and the mutant strain seem to con-
sume methanol

The specific uptake- and secretion rates of nutrients and gas of an organism can be ex-
pressed as constraints to the GEM, in order to conduct constraint-based analyses. Fur-
thermore, the specific uptake- and secretion rates can give us valuable information about
the behavior of the organism. The specific uptake rates of glucose, methanol, L-trp and
L-glu was measured for each fermentation, as these are the carbon-containing medium
compounds. Furthermore, the specific secretion rates of CO2 and acetate were measured,
as these are carbon containing compounds secreted by the organism. Measuring the spe-
cific uptake- and secretion rates of the carbon containing compounds, allows us to check if
the carbon balance is maintained. In addition, the specific uptake rate of O2 was measured.
The specific uptake rates of glucose, methanol, L-glu, L-trp, and acetate and are shown in
Figure 4.5. The specific uptake- and secretion rates of O2 and CO2 are presented in Figure
4.6. The results are also presented in Table 5.11 and Table 5.12 in Appendix 5. One-way
ANOVA was used to determine if there are significant differences in the specific uptake-
and secretion rates between fermentations. Furthermore, Tukey’s HSD Test for multiple
comparisons was used to do a pairwise comparison. The ANOVA results are presented in
Table 5.11 and 5.12 in Appendix 5. The results from the Tukey’s HSD Test are presented
in Figure 5.3 and 5.4 in Appendix 5.
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Figure 4.5: Specific substrate uptake- and secretion rates (mmol/gDW h) for each fermentation.
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Figure 4.6: Specific uptake- and secretion rates (mmol/gDW h) of O2 and CO2 for each fermenta-
tion. Negative rates represent uptake rates, while positive rates represent secretion rates.

Previously, it was found that MDHM grows significantly faster than MDHG, and it was
speculated that the specific uptake of methanol could be the reason. There was not found
significant differences in the specific glucose, L-glu, or L-trp uptake rate between the two
fermentations, however, MDHM consumes methanol in addition to glucose. This suggests
that MDHM takes up more carbon than MDHG, which in turn could mean that the increase
in growth rate is caused by the uptake of the additional carbon from methanol. Further-
more, MDHM does not seem to secrete more carbon than MDHG, as the acetate- and CO2
secretion rates are not higher than that of MDHG. This suggests that MDHM was able to
assimilate the methanol to produce biomass.

A surprising result, however, is that also WTM seem to consume methanol, and that there
was not found a significant difference in the specific methanol uptake rate between WTM
and MDHM. We expected that MDHM would consume methanol, as it heterologously
expresses the Mdh gene. However, we did not expect to measure the same methanol up-
take rate for WTM, because the wild type strain does not have the Mdh gene, and should
therefore not be able to oxidize methanol to formaldehyde. The unexpected results could
suggest that the wild type strain is able to break down methanol, for instance by using
an unspecific or promiscuous alcohol dehydrogenase enzyme. Alternatively, the decrease
in methanol concentration could be caused by something else than bacterial activity. The
shape of the methanol concentration plotted against time can give an indication to what

40



4.6 Both the wild type and the mutant strain seem to consume methanol

is happening. During the exponential growth phase, we would expect to see exponential
decrease in the concentration of the nutrients that the bacteria use [24]. If the decrease
in methanol concentration follows an exponential shape, this would suggest that bacterial
growth causes the decrease. On the other hand, if the decrease is linear, the decrease might
be happening independently of bacterial activity. To address this, we fitted a linear model
and an exponential model to the data, to see which model best captures the variance of
the data. For both WTM and MDHM, the R2 values were too similar to determine if one
model captures the data better than the other (0.78 and 0.77 for WTM, and 0.89 and 0.88
for MDHM). What should have been done instead is to produce a new control where the
same conditions as for WTM and MDHM are used, but without bacteria, which would
reveal if the decrease in methanol concentration is dependent on bacterial activity or not.

In addition to the unexpected methanol consuption observed for WTM, we see that WTM
has a significantly higher acetate secretion rate than the other fermentations. Similarly,
WTM has a higher respiration rate as both the specific O2 uptake rate and CO2 secretion
rate are significantly higher than for the other fermentations. This could mean that the
extra carbon from the methanol has been secreted as CO2 and acetate, and has not been
used for biomass production. That would explain why there is no significant difference in
growth rate between WTG and WTM, although WTM seemingly takes up more carbon.
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4.7 The predicted growth rate is robust to changes in the
biomass- and protein synthesis reaction

Previously, we argued that the new BOFs and protein synthesis reactions are significantly
different to those of iBsu1147, and that the new synthesis reactions should be used to con-
duct in silico phenotype-analyses. However, we have not yet tested if the changes in the
BOF and protein synthesis reaction affect the predicted phenotype. To address this ques-
tion, we compare the predicted growth rates of iBsu1147, WTG, WTM, MDHG, MDHM
models, when the models have access to an arbitrary nutrient environment (glucose min-
imal medium was chosen). The nutrient environment that was used is presented in Table
5.13 in Appendix 5. The predicted growth rates are presented in Figure 4.7.
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Figure 4.7: Predicted growth rate of each model: iBsu1147, WTG, WTM, MDHG and MDHM,
when nutrient environment is kept constant.

The predicted growth rates are close to identical, despite all the five models having differ-
ent coefficients for their BOF and protein synthesis reaction. This shows that the predicted
growth rate is robust to variation in biomass and protein composition. This matches the
results of Dinh et al. who found that the predicted growth rate is robust to changes in
biomass composition [51].
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4.7 The predicted growth rate is robust to changes in the biomass- and protein synthesis
reaction

Furthermore, we have checked if the experimentally measured growth rate of each fer-
mentation is best captured by the BOF and protein synthesis reaction found in iBsu1147,
or by the new BOF and protein synthesis reaction which reflect the experimentally mea-
sured biomass and protein composition. We compared the predicted growth rate that we
get from using the old BOF and protein synthesis reaction, against what is predicted with
the new BOF and protein synthesis reaction, for each fermentation. The constraints were
updated to match the experimentally measured specific uptake- and secretion rate of each
fermentation. The predicted growth rates as well as the experimentally measured growth
rate of each fermentation is presented in Figure 4.8. The same results are presented in
Table 5.14 in Appendix
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Figure 4.8: Experimentally measured and predicted growth rate (h−1) for each fermentation. For
the predicted growth rates, ”BOF” means that the BOF and protein synthesis reaction of iBsu1147
were used, while ”mBOF” means that the new BOF and protein synthesis reaction specific for the
fermentation were used.

Again, we see that the variations in the BOF and protein synthesis reaction has little effect
on the predicted growth rate, which complies with the results of Dinh et al. [51]. We could
therefore ask ourselves if changing the BOF and protein synthesis reaction is necessary at
all? However, it was found by Dinh et al. that although the growth rate predictions seem
to be robust to variation in the BOF, the corresponding flux distribution that is predicted is
more greatly affected by variation in the BOF. Unfortunately, due to time limitations, the
effect of the biomass- and protein composition on flux distribution was not investigated.
But, based on the results of Dinh et al., we would expected to see greater variation in the
predicted flux distributions than what was observed for the predicted growth rates. Based
on this assumption, we choose to conduct the further FVA analyses with updated BOFs
and protein synthesis reactions.

43



Chapter 4. Results and discussion

The growth rate predictions are seemingly robust to changes in the BOF and protein
synthesis reaction, however, the predictions are not necessarily accurate. For WTG and
MDHM the predicted growth rate is lower than the measured growth rate. The inaccuracy
of the growth rate predictions could be caused by uncertainty in the specific uptake- and
secretion rate measurements. When chemostat is used, the bacteria are allowed to adjust
to a constant nutrient environment, and the secretion- and uptake rates will stabilize over
time [24]. In this work, the bacteria were cultivated in batch operation mode, where the
nutrient environment changes throughout the fermentation. It is assumed that growth rate
and uptake- and secretion rates stabilize during exponential growth of the batch fermenta-
tion [24]. However, using chemostat could likely have given more reliable results of the
uptake- and secretion rates. MOMA was used for WTG and MDHM to find the specific
uptake- and secretion rates that would allow the measured growth rate. In both cases the
specific uptake- and secretion rates had to be increased. Another possible explanation to
the predicted growth rates being lower than the measured growth rate could be that the
non-growth associated maintenance (NGAM) requirements of the model are too strict.
Removing the NGAM requirements for WTG and MDHM results in the predicted growth
rates matching the experimentally measured growth rates. However, it is unreasonable to
assume that the bacteria do not need any energy for non-growth associated processes. Fur-
thermore, strict NGAM requirements would not explain why the predicted growth rate of
WTM and MDHG are higher than the measured growth rates.

Furthermore, we see that the growth rate predicted for WTM is higher than what was
measured experimentally. That could be because the GEM is able to use methanol as a
carbon source, which increases the growth rate, while that might not be the case in vivo.

4.8 FVA results suggest that formaldehyde is assimilated
into the RuMP pathway when methanol is available

B. subtilis has three pathways that can be used for formaldehyde detoxification, which
are the assimilatory RuMP-pathway, the dissimilatory RuMP-pathway [10, 11], and the
BSH-dependent oxidation of formaldehyde [6]. We want to see where there has to be flux
in order to meet the biomass composition, and growth-, uptake-, and secretion rates that
were measured for each fermentation. FVA was used to analyze the flux distribution of
the formaldehyde detoxification pathways. FVA predicts the minimal and maximal flux
that is possible for each reaction, while satisfying the constraints that have been defined.
In other words, FVA gives the possible flux range of each reaction [38]. Since we want
to know what reactions that must have flux through them, we look at the reactions that
have a flux range that does not span zero. The FVA-results for WTG, WTM, MDHG, and
MDHM are presented in Figure 4.9, 4.10, 4.11 and 4.12, respectively. The figures show
a pathway map built by Vetle Simensen, representing the assimilatory- and dissimilatory
RuMP pathway. MetaCyc was used to build the pathway map. The reactions that have a
flux range that does not span 0 are highlighted. The FVA results for WTG, WTM, MDHG
and MDHM are also attached in the excel file called ”FVA.xlsx”.
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4.8 FVA results suggest that formaldehyde is assimilated into the RuMP pathway when
methanol is available

According to the FVA results for WTG, methanol is not converted to formaldehyde, and
subsequently, formaldehyde is not incorporated into neither the assimilatory- nor the dis-
similatory RuMP pathway. This meets our expectations, as no methanol was available
during this fermentation. However, we do see that flux is suggested in other parts of
the assimilatory RuMP pathway. Flux is suggested in the reactions where D-fructose-
6-phosphate (F-6-P) and D-glyceraldehyde-3-phosphate (G-3-P) are used to generate D-
ribose-5-phosphate (R-5-P). F-6-P and G-3-P are both intermediates of the glycolytic path-
way, while R-5-P is an intermediate and product of the pentose phosphate pathway (PPP).
The glycolytic pathway and PPP are both in use when glucose is used as the carbon source.
The flux that is observed for WTG in these reactions could therefore likely be explained
by activity in these pathways, and that these reactions are shared between the glucose
metabolism pathways and the assimilatory RuMP pathway.

For MDHG, however, we do not see the same activity as in WTG, although the nutri-
ent environment is the same. In MDHG, the only reaction where flux is suggested is in
the reaction, where D-ribulose-5-phosphate (Ru-5-P) is oxidized to R-5-P. This reaction is
shared between the PPP and RuMP pathway, and the suggested activity could yet again be
explained by activity in the PPP.

For both WTM and MDHM, on the other hand, flux is suggested through reaction R05338
and R05339 which are the reactions where formaldehyde is incorporated into the assimi-
latory RuMP pathway by conversion to F-6-P. Furthermore, Ru-5-P is regenerated, which
allows more formaldehyde to be incorporated into the assimilatory RuMP pathway. How-
ever, according to the FVA results, there does not have to be flux through the dissimilatory
RuMP pathway. When we discussed the specific uptake- and secretion rates of WTM, we
saw that WTM had a significantly higher secretion rate of acetate and CO2. We speculated
that this could suggest that the extra carbon from methanol was oxidized to CO2. This
does not seem to be captured by the FVA results. However, that does not necessarily mean
that there is no flux through this pathway in vivo. But, because biomass production was set
as the objective, the formaldehyde must be assimilated into the RuMP pathway in order to
maximize biomass production so that the growth rate constraints are satisfied. It could be
the case that some of the formaldehyde is dissimilated in vivo. Alternatively, the carbon
from formaldehyde can be incorporated into the assimilatory RuMP pathway to produce
products that are further fermented, which could explain the increase in CO2 secretion rate.
It should be noted that we for now only can speculate in how the methanol has been used
by WTM, as the wild type strain should not be able to consume methanol. For MDHM,
we observed an increase in growth rate compared to MDHG, while the secretion rate of
acetate and CO2 remained similar. This suggests that the carbon from methanol was used
for biomass production, which seems to be captured by the FVA results as well.

The BSH-dependent oxidation pathway is not presented in the pathway map. This path-
way was not originally present in the B. subtilis GEM, but was added in order to analyze
the possible flux ranges of the reactions in this pathway as well. However, we encoun-
tered complications when we tried to conduct FVA after the pathway was added. We
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could not find an obvious reason for this, as flux is possible through the pathway, and
the mass balance for each reaction was verified. Therefore, only the FVA results for the
assimilatory- and dissimilatory RuMP pathway are presented. Although the flux through
the BSH-dependent pathway was not analyzed, we would expect that the flux of formalde-
hyde remains through the assimilatory RuMP pathway, as this seems to be necessary to
meet the growth rate constraints.

Figure 4.9: FVA results for WTG. The figure shows a graphical representation of the assimilatory-
and dissimilatory RuMP pathway present in the GEM of B. subtilis. The nodes represent metabolites,
and the edges represent the interactions between the metabolites. The name of each metabolite and
the reaction ID of each reaction is presented. The reactions that have a flux range that does not span
0, are highlighted in pink. The reaction ID and flux range of these reactions are also highlighted. The
remaining reactions have a flux range that spans 0. All the reactions that are presented are defined as
reversible in the GEM, which is why the reaction arrows point both ways. The direction of the flux
follows the direction of the filled arrows.
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methanol is available

Figure 4.10: FVA results for WTM. The figure shows a graphical representation of the assimilatory-
and dissimilatory RuMP pathway present in the GEM of B. subtilis. The nodes represent metabolites,
and the edges represent the interactions between the metabolites. The name of each metabolite and
the reaction ID of each reaction is presented. The reactions that have a flux range that does not span
0, are highlighted in pink. The reaction ID and flux range of these reactions are also highlighted. The
remaining reactions have a flux range that spans 0. All the reactions that are presented are defined as
reversible in the GEM, which is why the reaction arrows point both ways. The direction of the flux
follows the direction of the filled arrows.
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Figure 4.11: FVA results for MDHG. The figure shows a graphical representation of the
assimilatory- and dissimilatory RuMP pathway present in the GEM of B. subtilis. The nodes repre-
sent metabolites, and the edges represent the interactions between the metabolites. The name of each
metabolite and the reaction ID of each reaction is presented. The reactions that have a flux range
that does not span 0, are highlighted in pink. The reaction ID and flux range of these reactions are
also highlighted. The remaining reactions have a flux range that spans 0. All the reactions that are
presented are defined as reversible in the GEM, which is why the reaction arrows point both ways.
The direction of the flux follows the direction of the filled arrows.

48



4.8 FVA results suggest that formaldehyde is assimilated into the RuMP pathway when
methanol is available

Figure 4.12: FVA results for MDHM. The figure shows a graphical representation of the
assimilatory- and dissimilatory RuMP pathway present in the GEM of B. subtilis. The nodes repre-
sent metabolites, and the edges represent the interactions between the metabolites. The name of each
metabolite and the reaction ID of each reaction is presented. The reactions that have a flux range
that does not span 0, are highlighted in pink. The reaction ID and flux range of these reactions are
also highlighted. The remaining reactions have a flux range that spans 0. All the reactions that are
presented are defined as reversible in the GEM, which is why the reaction arrows point both ways.
The direction of the flux follows the direction of the filled arrows.
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Chapter 5
Conclusion and Outlook

So far it has been established that B. subtilis is able to use methanol as a carbon source
when a co-carbon source such as glucose is provided [4]. These findings are supported by
the results of our work. We have analyzed the phenotype of B. subtilis 168 pBV2mp mdhBm,
which is a mutant strain that expresses the Mdh gene heterologously. The mutant strain
was cultivated in medium containing glucose, and in medium with both glucose and
methanol available. The phenotype of the mutant strain was analyzed both experimen-
tally by measuring specific metabolite uptake- and secretion rates, including the methanol
uptake rate, and by measuring the growth rate. The results show that the mutant strain
takes up methanol and that it grows significantly faster when methanol is available in
addition to glucose. This strongly suggests that the methanol that is consumed is assim-
ilated to produce biomass. Furthermore, no increase in CO2- or acetate secretion rates
was observed, which further supports that the carbon from methanol is used for biomass
production rather than being secreted.

Furthermore, the biomass composition and amino acid distribution was measured and used
to update the BOF and protein synthesis reaction of the GEM of B. subtilis. The measured
uptake- and secretion rates, as well as the growth rate were defined as constraints. The
updated GEM was used to analyze the in silico phenotype of the mutant strain in medium
with glucose and methanol. FVA was used to analyze the flux distribution through the as-
similatory and dissimilatory RuMP pathways, and the results are in accordance with what
was found experimentally: the formaldehyde is incorporated into the assimilatory RuMP
pathway and is used to produce biomass.

These results show that B. subtilis 168 is able to use methanol for biomass production,
when the Mdh gene is heterologously expressed. However, it does not answer our ques-
tion to why the strain cannot use methanol as the only carbon source. A possible reason
could be that not enough Ru-5-P is regenerated to sustain the RuMP pathway, as Ru-5-P
is regenerated both in the RuMP pathway itself, but also in the PPP. It is likely that the
activity of the PPP is limited when there is no glucose to metabolise. Similarly, other
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intermediates or products generated by glycolysis, the TCA cycle, or PPP could be lim-
ited. If any of the limited compounds are essential to growth, that could explain why B.
subtilis is unable to grow on methanol without an additional co-substrate to keep these
pathways active. To address this question, further analyses of the phenotype of the mu-
tant strain could be conducted. Examples of experimental measurements that could be
done are metabolomics measurements, which would reveal if products from glycolysis,
the TCA cycle, or PPP are limited when the strain grows with methanol compared to when
it grows with only glucose as the carbon source. Furthermore, proteomics analyses would
reveal if enzymes of the glucose metabolism pathways are underexpressed, compared to
when glucose is used as the carbon source. In addition, further in silico analyses could
be conducted to find reactions that are possible bottle-necks of the assimilatory RuMP
pathway. For this it would be a good idea to use a GEM where enzyme constraints are
implemented. In the GEM that we used, the flux of each reaction is constrained by flux
bounds which do not reflect possible constraints imposed based on enzyme efficiency. If
any of the reactions of the RuMP-pathway are catalyzed by enzymes of low efficiency,
these reactions could be targets to try and increase the flux through the RuMP pathway.
Such reactions could be revealed by using an enzyme-constrained metabolic model of B.
subtilis [52]. Hopefully this would bring us closer to a synthetically methylotrophic B.
subtilis strain which can use methanol as the only carbon source.

Although the synthetic methylotrophic strains of B. subtilis that have been generated so
far cannot use methanol as the sole carbon source [4], using methanol as a co-carbon
source will still ensure that less glucose is needed in production [53]. The next chapter
would then be to start using the synthetic methylotrophic B. subtilis strain as a cell factory
for production of products of interest.
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[39] Daniel Segrè, Dennis Vitkup, and George M. Church. Analysis of optimality in
natural and perturbed metabolic networks. Proceedings of the National Academy of
Sciences, 99(23):15112–15117, 11 2002.

[40] Adam M Feist and Bernhard O Palsson. The biomass objective function. Current
Opinion in Microbiology, 13(3):344–349, 6 2010.

[41] Ines Thiele and Bernhard Ø Palsson. A protocol for generating a high-quality
genome-scale metabolic reconstruction. Nature Protocols, 5(1):93–121, 1 2010.

[42] Christopher S Henry, Jenifer F Zinner, Matthew P Cohoon, and Rick L Stevens.
iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED
annotations. Genome Biology, 10(6):R69, 2009.

[43] Tong Hao, Binbin Han, Hongwu Ma, Jing Fu, Hui Wang, Zhiwen Wang, Bincai Tang,
Tao Chen, and Xueming Zhao. In silico metabolic engineering of Bacillus subtilis
for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol.
Molecular BioSystems, 9(8):2034, 2013.

[44] Ali Navid and Eivind Almaas. Genome-scale reconstruction of the metabolic net-
work in Yersinia pestis, strain 91001. Molecular BioSystems, 5(4):368, 2009.

[45] Marta Irla, Tonje M. B. Heggeset, Ingemar Nærdal, Lidia Paul, Tone Haugen, Si-
mone B. Le, Trygve Brautaset, and Volker F. Wendisch. Genome-Based Genetic
Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating
Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadav-
erine Production. Frontiers in Microbiology, 7, 9 2016.

[46] B. J. Eikmanns, N. Thum-Schmitz, L. Eggeling, K.-U. Ludtke, and H. Sahm. Nu-
cleotide sequence, expression and transcriptional analysis of the Corynebacterium
glutamicum gltA gene encoding citrate synthase. Microbiology, 140(8):1817–1828,
8 1994.

56



[47] F. Kunst, N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, M. G.
Bertero, P. Bessières, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans,
M. Braun, S. C. Brignell, S. Bron, S. Brouillet, C. V. Bruschi, B. Caldwell, V. Ca-
puano, N. M. Carter, S.-K. Choi, J.-J. Codani, I. F. Connerton, N. J. Cummings,
R. A. Daniel, F. Denizot, K. M. Devine, A. Düsterhöft, S. D. Ehrlich, P. T. Emmer-
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Appendix - Supplementary data
5.1 Growth rate measurements
The growth rate was estimated for wild type and mutant cultivated in glucose and methanol
minimal medium, by conducting linear regression on CDW measurements on log scale
plotted against time. The estimated growth rates are presented in Table 5.1.

Table 5.1: Growth rate (h−1) for each biomass sample. The growth rate corresponds to the slope
of the regression line found by conducting linear regression of cell dry weight (CDW) on log scale
plotted against time (h). Standard deviation (SD), as well as the R2 value of each regression line are
provided.

Biomass sample Growth rate SD R2

WTG 0.36 0.03 0.91
WTM 0.35 0.05 0.73

MDHG 0.13 0.03 0.59
MDHM 0.19 0.02 0.78

ANOVA was used to conduct a pairwise comparison of growth rate between the four fer-
mentations, and the results are presented in Table 5.2.

Table 5.2: ANOVA results from a pairwise comparison of growth rate between the four fermenta-
tions. The critical value is calculated based on a significance level of 0.95, numerator degrees of
freedom (df) = 1 and denominator df = 4. When the F-value is greater than the critical value, there
is a significant difference in growth rate between the two fermentations.

Compared fermentations Critical value F-value
WTG WTM 7.708647 0.108
MDHG MDHM 7.708647 8.107
WTG MDHG 7.708647 109.44
WTM MDHG 7.708647 48.703
WTG MDHM 7.708647 64.421
WTM MDHM 7.708647 26.857

5.2 Biomass composition
The biomass composition was measured for each fermentation, and the results are pre-
sented in Table 5.3.
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Table 5.3: The biomass composition for each biomass sample shown as mass fractions (g/gDW) of
each biomass component. The amount of protein, RNA, DNA and lipid was measured experimen-
tally, and is shown with standard deviation. The amount of lipoteichoic acid, cell wall, and cofactors
& ions are assumed to be the same as for iBsu1147. Furthermore, the sum of the mass fractions is
given at the bottom of the table.

Cellular Content (g/gDW)
WT
Glucose

WT
Methanol

MDH
Glucose

MDH
Methanol

Protein 0.55 ± 0.027 0.53 ± 0.096 0.42 ± 0.008 0.41 ± 0.002
RNA 0.069 ± 0.002 0.049 ± 0.004 0.071 ± 0.001 069 ± 0.002
DNA 0.023 ± 0.002 0.026 ± 0.001 0.032 ± 0.009 0.023 ± 0.0002
Lipid 0.026 ± 0.002 0.024 ± 0.003 0.023 ± 0.001 0.019 ± 0.001
Lipoteichoic acid 0.030 0.030 0.030 0.030
Cell wall components 0.22 0.22 0.22 0.22
Cofactors & ions 0.045 0.045 0.045 0.045
Sum 0.97 0.93 0.84 0.82

One-way analysis of variance (ANOVA) was used to decide if there are significant differ-
ences in biomass composition between the four biomass samples. Four ANOVA analyses
were conducted, one for each of the biomass components that were measured: protein,
RNA, DNA and lipid. The p-values from the ANOVA analyses are presented in Table 5.4
Tukey’s HSD Test for multiple comparisons was used to find what groups that are signif-
icantly different from each other. The Tukey’s HSD test results for protein, RNA, DNA
and lipid content are presented in Figure 5.1 A, B, C and D, respectively.

Table 5.4: p-values from one-way ANOVA analysis comparing the protein, RNA, DNA an lipid
content between fermentations.

Biomass component p-value
Protein 0.0119
RNA <2e-16
DNA 0.000385
Lipid 0.0289
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Figure 5.1: Tukey’s HSD test for multiple comparisons was conducted to decide if there are sig-
nificant differences in protein, RNA, DNA and lipid content between biomass samples. The figure
shows the Tukey’s HSD test results for A) protein content, B) RNA content, C) DNA content and
D) lipid content. The results are presented as 95 % family-wise confidence intervals. Confidence
intervals that do not span 0.0 represent significant difference. For instance there is a significant dif-
ference in protein content between WTG and MDHG, as the confidence interval does not span 0.0.

The measured content of protein, RNA, DNA, and lipid was scaled to get a sum of one
for each fermentation. One-way ANOVA was used to compare the relative content of the
biomass components, and the results are presented in Table 5.5.

Table 5.5: p-values from one-way ANOVA analysis comparing the scaled values of protein, RNA,
DNA, and lipid content between fermentations. The values have been scaled in order to get a sum
of one.

Biomass component p-value
Protein 0.65
RNA <2e-16
DNA 1.86e-06
Lipid 0.325

The measured biomass composition was used to create a new BOF. This was done for
each of the four fermentations. First, the contents of the biomass components was scaled
to give a sum of one unit of biomass. The scaled values are presented in table 5.6. The
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scaled values (without SD) are used as coefficients in the new BOFs. The coefficients used
in iBsu1147 are also presented in Table 5.6, for comparison.

Table 5.6: The biomass composition for each fermentation after scaling the data to get a sum of one.
The content of protein, RNA, DNA, and lipid were measured experimentally and are shown with
SD. The contents are presented in g/gDW.

Cellular Content (g/gDW)
iBsu1147 WTG WTM MDHG MDHM

Protein 0.53 0.58 ± 0.03 0.59 ± 0.11 0.54 ± 0.01 0.55 ± 0.003
RNA 0.066 0.072 ± 0.002 0.054 ±0.004 0.092 ± 0.002 0.093 ± 0.003
DNA 0.026 0.024 ± 0.002 0.029 ± 0.001 0.041 ± 0.012 0.031 ± 0.0003
Lipid 0.076 0.027 ± 0.002 0.026 ± 0.004 0.029 ± 0.002 0.026 ± 0.001
Lipoteichoic
Acid 0.030 0.030 0.030 0.030 0.030

Cell Wall
Components 0.22 0.22 0.22 0.22 0.22

Cofactors &
Ions 0.045 0.045 0.045 0.045 0.045

Sum 1.00 1.00 1.00 1.00 1.00

The coefficients of the new BOFs were pairwise compared to the coefficients of the orig-
inal BOF of iBsu1147. One-sample t-test was used for the comparison, and the resulting
p-values are presented in Table 5.7.

Table 5.7: p-values from pairwise comparison of the coefficients of the new BOFs (WTG, WTM,
MDHG and MDHM) to those of the original BOF of iBsu1147. The p-values were found by using
one-sample t-test.

p-value
Biomass component WTG WTM MDHG MDHM
Protein 0.1047 0.6019 0.1206 0.05312
RNA 1.39E-06 2.04E-08 1.08E-12 7.55E-11
DNA 3.87E-14 2.20E-16 0.0001046 2.20E-16
Lipid 0.001081 0.003139 0.0006226 0.0002856
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5.3 Specific uptake- and secretion rates
The density, molar mass, and concentration of O2 and CO2 are shown in Table 5.8, and
were used to calculate the specific uptake- and secretion rates of O2 and CO2, respectively.

Table 5.8: Density, molar mass, and concentration (N) of O2 and CO2.

Compound Density (g/L) Molar mass (g/mol) N (mol/L)
O2 1.43 32.00 0.0447
CO2 1.98 44.01 0.0450

Table 5.9 shows the average CDW measurements of the wild type cultivated in glucose
minimal medium. The CDW measurements were used to find the growth rate by linear
regression. The linear regression line is presented in Figure 5.2. The growth rate was in
turn used to predict the CDW in time points used for calculations of uptake- and secretion
rates of O2 and CO2.

Table 5.9: Average CDW, mg mL−1) and the common logarithm (log10) of the average CDW over
time (h) for B. subtilis 168 wild type cultivated in glucose minimal medium. For each time point,
triplicate measurements of the CDW were conducted and averaged. Standard deviation (SD) of each
triplicate is found by using the log10 value of each replicate.

Time (h) Average CDW (mg mL−1 ) log10 Average CDW SD
2.83 1.05 0.0226 0.0333
3.18 1.30 0.114 0.0450
3.35 1.80 0.254 0.0653
3.60 2.08 0.317 0.0415
3.88 2.35 0.370 0.0668
4.15 3.16 0.500 0.0255

Table 5.10 shows the 10 time points with O2out
measurements, flow rates and predicted

CDWs used to calculate the avg. qO2 of B. subtilis 168 WT cultivated in glucose minimal
medium.
The uptake- and secretion rates of nutrients and gases were measured for each fermenta-
tion. The uptake- and secretion rates for carbon source, L-glutamic acid, L-tryptophan and
acetate are presented in Table 5.11. The uptake rates of O2 and the secretion rates of CO2,
as well as the respiratory quotient (RQ) are presented in Table 5.12.
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Figure 5.2: Common logarithm (log10) of the average CDWs over time (h) for B. subtilis 168
cultivated in glucose minimal medium. A linear regression line has been fitted to the datapoints, and
the equation and R2 are displayed on chart.

Table 5.10: Specific O2 uptake rate (avg. qO2) based on 10 output gas measurements conducted
during the cultivation of B. subtilis 168 WT on glucose minimal medium. The 10 measurements
are conducted towards the end of the cultivation, before the filter was clogged. Each qO2 has been
calculated by using Equation 2.1 and 2.2. The value of O2air needed for Equation 2.1 is based on 10
output gas measurements conducted before inoculation of the reactor, and was found to be 20.895.

Time
(h)

Predicted
CDW (g)

Flow rate
(mL min−1)

O2out

(%)
qO2

(mmol/gCDW h)
avg.
qO2

SD

3.75 3.32 659 19.9203 -5.18
3.78 3.39 659 19.9040 -5.17
3.80 3.44 649 19.8887 -5.09
3.82 3.50 661 19.8678 -5.20
3.85 3.57 649 19.8476 -5.10 -5.14 0.110
3.87 3.64 637 19.8251 -5.01
3.89 3.71 663 19.8187 -5.15
3.92 3.78 689 19.7980 -5.35
3.94 3.86 656 19.8088 -4.95
3.97 3.94 646 19.7271 -5.14

Table 5.11: Uptake- and secretion rates (mmol/gDW h) of glucose, methanol, L-glu, L-trp, and
acetate for each biomass sample. The values presented are the average rates +- SD.

Substrate uptake rate (mmol/gDW h)
Compound WTG WTM MDHG MDHM p-value
Glucose 3.0 ± 0.83 3.1 ± 0.94 1.8 ± 0.37 1.3 ± 0.24 0.0262
Methanol 0 2.7 ± 0.72 0 2.1 ± 0.36 0.337
L-glu 1.7 ± 0.53 0.5 ± 0.18 1.1 ± 0.27 0.7 ± 0.13 0.00706
L-trp 0.070 ± 0.02 0.016 ± 0.005 0.010 ± 0.002 0.003 ± 0.001 6.07e-05
Acetate 3.8 ± 0.17 5.7 ± 0.15 2.7 ± 0.08 2.2 ± 0.13 6.69e-09
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Table 5.12: Specific uptake- and secretion rates (mmol/gDW h) of O2 and CO2, and respiratory
quotient (RQ) for each biomass sample. Negative and positive rates represent uptake and secretion,
respectively.

Specific substrate uptake rate (mmol/gDW h)
Compound WTG WTM MDHG MDHM p-value
O2 -5.16 ± 0.11 -9.27 ± 0.33 -4.83 ± 0.18 -3.58 ± 0.05 <2e-16
CO2 5.22 ± 0.12 9.56 ± 0.36 4.76 ± 0.64 3.60 ± 0.08 <2e-16
RQ -1.01 -1.03 -0.99 -1.01
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Figure 5.3: Tukey’s HSD test for multiple comparisons was conducted to decide if there are signif-
icant differences in specific uptake- and secretion rate between fermentations. The figure shows the
Tukey’s HSD test results for A) specific glucose uptake rate, B) specific acetate secretion rate, C)
specific L-glu uptake rate, D) specific L-trp uptake rate, and E) specific methanol uptake rate. The
results are presented as 95 % family-wise confidence intervals. Confidence intervals that do not span
0.0 represent a significant difference.
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Figure 5.4: The figure shows the Tukey’s HSD test results for A) specific O2 uptake rate, and B)
specific CO2 secretion rate. The results are presented as 95 % family-wise confidence intervals.
Confidence intervals that do not span 0.0 represent a significant difference.
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5.4 Using the B. subtilis GEM for analysing the phenotype
of the organism

The predicted growth rate of iBsu1147, WTG, WTM, MDHG, and MDHM were measured
and compared, and the nutrient environment that was used is presented in Table 5.13.

Table 5.13: Nutrient environment used to compare the predicted growth rates of iBsu1147, WTG,
WTM, MDHG and MDHM. The components that are listed represent the components that were
available during experimental cultivations. The corresponding exchange reaction for each compo-
nent, and the chosen flux bounds are given. A flux bound of (-1000.0, 1000.0) represents unrestricted
flux. For D-glucose, l-tryptophan and l-glutamic acid, the uptake rate has been restricted to -1.8, -
0.5 and -1.0 respectively. For exchange reactions that are not visualized in the table, the flux bounds
were set to (0, 1000.0).

Component Exchange reaction ID Lower bound Upper bound
Na+ E00160 -1000 1000
NH4+ E00006 -1000 1000
HPO42- E00003 -1000 1000
K+ E00084 -1000 1000
Mg2+ E00103 -1000 1000
SO4

2 – E00023 -1000 1000
Fe2+ E00217 -1000 1000
Zn2+ E00015 -1000 1000
Ca2+ E00030 -1000 1000
Cu2+ E00027 -1000 1000
Mn2+ E00013 -1000 1000
Co2+ E00067 -1000 1000
MoO42̂- E00200 -1000 1000
O2 E00002 -1000 1000
H2O E00001 -1000 1000
H+ E00033 -1000 1000
D-glucose E00096 -1.8 1000
L-tryptophane E00032 -0.5 1000
L-glutamic acid E00009 -1.0 1000

Furthermore, we checked if the experimentally measured growth rate of each fermentation
was better explained by the old BOF and protein synthesis reaction from iBsu1147, or
by the fermentation-specific BOF and protein synthesis reaction. The predicted growth
rate for each fermentation when using the old BOF and protein reaction compared to the
new BOF (mBOF) and protein reaction are presented in Table 5.14. The experimentally
measured growth rate for each fermentation is also presented.
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Table 5.14: Measured and predicted growth rate (h−1) for each fermentation. Here, ”BOF” means
that the BOF and protein synthesis reaction of iBsu1147 were used, while ”mBOF” means that the
new BOF and protein synthesis reaction specific for the fermentation was used.

Growth rate (h−1)
Fermentation Predicted (BOF) Predicted (mBOF) Measured

WTG 0.231 0.234 0.36 ± 0.03
WTM 0.438 0.437 0.35 ± 0.05

MDHG 0.188 0.188 0.13 ± 0.03
MDHM 0.122 0.113 0.19 ± 0.02
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