
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Carl Smestad

Minimizing the Effect of Client Timing
Out in Federated Learning Using
Federated Dynamic Timeout Window

Master’s thesis in Informatics
Supervisor: Jingyue Li
June 2023

Carl Smestad

Minimizing the Effect of Client Timing
Out in Federated Learning Using
Federated Dynamic Timeout Window

Master’s thesis in Informatics
Supervisor: Jingyue Li
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

One of the main limitations of ordinary Machine Learning (ML) is that it is executed
centrally. This implies that clients must send personal and possibly private data to
a central server where a model will be created. One approach to circumvent this
limitation is Federated Learning (FL), a distributed machine learning framework that
enables clients to train a model locally without sending their private data to a global
server. FL has several advantages, such as training models that are tailored to each
client while maintaining data privacy. However, it does come with some challenges.
One of these challenges is the issue of clients timing out. When clients time out during
the training stage, it may lead to accuracy degradation and inefficiency in terms of both
time and resources spent. This is because the global server will not receive all model
updates from the clients and might result in biases towards the ones who successfully
send in their updates. Furthermore, the global server might wait a really long time in
the hope that the timed-out client might send the update. Client timing out makes a
single communication round unnecessarily long as all the other clients and the server
wait for that one client.

This thesis tried to answer the question, ”How can we improve the communi-
cation success rate and minimize slow client outlier’s impact on learning effi-
ciency in Federated Learning with Independent and Identically Distributed
(IID) data?”.

The research question was answered by utilizing a Design Science Research (DSR)
framework to design and implement a proof-of-concept algorithm for dynamically set-
ting the timeout window for each communication round of FL. This novel algorithm,
Federated Dynamic Timeout Window (FedDyt), was tested and evaluated through
two classification experiments. The first experiment was classifying handwritten digits
with the MNIST dataset, and the second one was classifying images with the CIFAR-
10 dataset. The results of the experiments showed that FedDyt improved performance
both in terms of communication success rate and the efficiency of the FL network
when slow client outliers were present. Also, FedDyt contained the benefit of subsiding
alongside other FL implementations and strategies. Making it possible for future work
to implement it with their solutions and adjust it for their application, or to find an
appropriate timeout window.

i

Sammendrag

En av de største nedsidene med vanlig maskinlæring (ML) er at det blir utført sen-
tralt. Dette impliserer at klienter må sende personlig og muligens privat data til en
sentral server hvor en modell blir generert. En metode for å unng̊a denne begrensnin-
gen er Federated Learning (FL), en distribuert maskinslæringsrammeverk som tillater
klientene å trene modellen lokalt uten å sende deres private data til den globale serveren.
FL har mange fordeler, slik som å trene skreddersydde modeller til hver enkelt klient
imens man ivaretar personvernet for data. Likevel s̊a kommer det med noen utfordringer
ogs̊a. En av disse utfordringene omhandler problemet med at klienter bruker for lang
tid. N̊ar klienter bruker for lang tid under treningssteget kan det føre til forverring av
nøyaktigheten og gjøre nettverket ineffektivt mtp. b̊ade tidsbruk og ressurser brukt.
Dette skjer ettersom den globale serveren ikke mottar alle modell-oppdateringene og
kan føre til partiskhet rettet mot de suksessfulle klientene som sendte inn oppdaterin-
gene. I tillegg, det kan hende at den globale serveren m̊a vente veldig lenge i h̊ap om
at de trege klientene plutselig sender inn oppdatering. Noe som gjør at en enkelt kom-
munikasjonsrunde tar unødvendig lang tid imens alle de andre klientene og serveren
venter p̊a den tregeste.

Denne avhandlingen forsøker å svare p̊a spørsm̊alet ”Hvordan kan vi forbedre
suksessraten til kommunikasjonsrundene og minimere effekten av ekstremver-
diene til trege klienter i Federated Learning med Uavhengig og Identisk
Fordelt (UIF) data?”.

Forskningsspørsm̊alet ble svart p̊a gjennom å ta i bruk et Design Science Re-
search (DSR) rammeverk for å designe og implementere en konseptbevis-algoritme for
å dynamisk sette et tidsavbruddsvindu for hver kommunikasjonsrunde i FL. Denne
nyskapende algoritmen, Federated Dynamic Timeout Window (FedDyt), ble testet og
evaluert gjennom to klassifiserings-eksperiment. Det første eksperimentet var klassi-
fisering av h̊andskrevne tall med MNIST datasettet, mens det andre var klassifisering
av bilder med CIFAR-10 datasettet. Resultatet av eksperimentene viste at FedDyt
forbedret ytelsen b̊ade mtp. suksess raten til kommunikasjonsrunden og effektiviteten
til FL-nettverket da det eksisterte ekstremverdier bland de trege klientene. I tillegg har
FedDyt fordelen av å kunne implementeres sammen med andre FL implementasjoner
og strategier. Noe som tilrettelegger for at fremtidig arbeid kan implementere den ved
siden av deres løsning og justere den til deres applikasjon, eller til å finne et passende
tidsavbruddsvindu.

ii

Contents

Abstract i

Sammendrag ii

List of Figures vii

List of Tables vii

1 Acknowledgements 1

2 Introduction 2

2.1 Background and Motivation . 2

2.2 Research Question and Methodology . 3

2.3 Contributions . 3

2.4 Thesis Structure . 3

3 Background 5

3.1 Machine Learning . 5

3.1.1 What is Machine Learning? . 5

3.1.2 Machine Learning Approaches . 5

3.2 Federated Learning . 6

3.2.1 Types of Federated Learning . 7

3.2.2 Client Selection in Federated Learning . 8

4 Related Work 11

4.1 Secure Aggregation Methods . 11

4.2 Asynchronous Federated Learning . 11

4.3 Clients Performing Partial Work . 12

4.4 Free Riders . 13

4.5 Ensamble Methods . 13

4.6 Limitations of Related Work . 13

4.6.1 High Complexity . 14

4.6.2 Performance . 14

4.6.3 Non-Independent and Identically Distributed Data (Non-IID) 14

5 Research Design 16

5.1 Research Methodology . 16

iii

5.2 Problem Identification and Motivation . 17

5.2.1 Current State of the Problem . 17

5.2.2 Research Question . 18

5.3 Objectives for a Solution . 19

5.4 Design and Development . 19

5.5 Evaluation . 19

5.5.1 Explicate the goals of the evaluation . 19

5.5.2 Choose the evaluation strategy . 20

5.5.3 Design the individual evaluation episode(s) 21

5.5.4 Definition of Communication Success Rate 22

5.6 Communication . 23

6 Results 24

6.1 Design and Implementation of the Dynamic Timeout Window 24

6.1.1 Developer Interactions with FedDyt . 24

6.1.2 Implementation Details . 25

6.2 Experimental Setup . 26

6.2.1 Environment . 26

6.2.2 Server . 27

6.2.3 Clients . 28

6.2.4 Machine Learning Models . 29

6.2.5 Evaluation of Performance . 30

6.3 Experimental Results . 30

6.3.1 Baseline . 30

6.3.2 Performance with Clients Timing Out . 32

6.3.3 How does the communication success rate of FedDyt compare to the state-
of-the-art? . 34

6.3.4 How does the efficiency of FedDyt compare to the state-of-the-art when there
are slow client outliers present? . 36

7 Discussion 37

7.1 Comparison to Related Work . 37

7.1.1 Abstraction Layer . 37

7.1.2 Complexity . 37

7.2 Possible Applications . 37

7.3 Implications to Industry . 38

7.4 Implications to Academia . 38

iv

7.5 Threats to Validity . 38

7.5.1 Internal Validity . 39

7.5.2 External Validity . 39

8 Conclusion and Future Work 40

Bibliography 41

Appendix 47

A Circumstances for selecting evaluation strategy 47

B Applications of Federated Learning 48

v

Glossary

AI Artificial Intelligence. 5, 17

ASO-Fed Asynchronous Online Federated Learning. 12

CHFL Continual Horizontal Federated Learning. 7

CIFAR-10 Canadian Institute For Advanced Research. 21

CS Centralized Server. 6

DReS-FL Dropout-Resilient Secure Federated Learning. 11

DSR Design Science Research. i, ii, 3, 4, 19

DSRM Design Science Research Methodology. 16

EQ Evaluation Question. 30

EQs Evaluation Questions. 30

FedAdagrad Federated Adagrad. 32, 35, 36

FedAdam Federated Adam. 32, 35, 36

FedAvg Federated Averaging. 6, 14, 32, 36

FedAvgM Federated Averaging with Server Momentum. 32, 36

FedDrop Federated Dropout. 13

FedDyt Federated Dynamic Timeout Window. i, ii, vii, 4, 21, 22, 24, 29, 30, 34–40

FedOpt Adaptive Federated Optimization. 36

FedProx Federated Prox. 27, 36

FEDS Framework for Evaluation in Design Science. 20, 21

FedYogi Federated Yogi. 36

FL Federated Learning. i, ii, 2–14, 16–22, 24, 25, 27, 29, 30, 32, 34, 36–40

FTL Federated Transfer Learning. vii, 7, 8

HFL Horizontal Federated Learning. 7

IID Independent and Identically Distributed. i, 3, 14, 18, 35, 37–39

IoT Internet of Things. 2, 9, 12, 17, 18, 20, 25, 27, 28, 32, 37–40

IT Information Technology. 13

ML Machine Learning. i, ii, 2, 3, 5, 6, 9, 13

MLP Multi Layer Perceptron. 5

MNIST Modified National Institure of Standards and Technology. 21, 30

NLP Natural Language Processing. 37

Non-IID Non-Independent and Identically Distributed. 2, 8, 11, 14, 17, 18, 38–40

NTNU Norwegian University of Science and Technology. 1

vi

POC Proof-Of-Concept. 3, 16, 21

QFedAvg Quantum Federated Averaging. 32, 36

RA Resource Allocation. 9

RQ Research Question. 3, 18, 37

RQs Research Questions. 16

SLR Systematic Literature Review. 8

UIF Uavhengig og Identisk Fordelt. ii

VFL Vertical Federated Learning. 7

List of Figures

1 Overview of Machine Learning Approaches. Based on [15]. 6

2 Graphical illustration of FTL [56]. 8

3 Distribution of challenges reported from the primary studies 8

4 Illustration of Synchronous vs. Asynchronous [11] 12

5 Federated Learning with Non-IID data [82] . 14

6 Overview of the research design process [48]. 16

7 FEDS (Framework for Evaluation in Design Science) with evaluation strategies [70] 20

8 Ray Dashboard for Advanced Metrics . 26

9 Flow of Data Initialization . 28

10 Client normal distribution with mean 2 . 29

11 Baseline accuracy for MNIST dataset . 31

12 Baseline losses for MNIST dataset . 31

13 Accuracy vs. Communication Rounds when Clients Time Out 33

14 Accuracy and Loss with Dynamic Timeout Window 34

15 Accuracy vs Communication Rounds - CIFAR-10 35

16 Efficiency of FedDyt compared to synchronous strategies with outliers 36

17 Taxonomy for applications of federated learning across different domains and sub-
domain [59] . 48

List of Tables

1 Solutions compared to challenges . 9

2 Metrics compared to challenges . 10

3 Comparison of computation complexity, communication complexity, and dropout
resilience of secure aggregation algorithms . 11

vii

4 Overview of datasets used in experiments . 21

5 Federated Learning strategies with corresponding papers 22

6 Software used in the experimental setup . 26

7 Hardware used in the experimental setup . 27

8 Overview of parameters . 27

9 Overview of results when clients are timing out. s - number of successful rounds. . 34

viii

1 Acknowledgements

I would like to express my deepest gratitude and appreciation to my supervisor Prof. Jingyue Li
at the Department of Computer Science at the Norwegian University of Science and Technology
(NTNU) in Trondheim, for the opportunity to do this research. Thank you for the invaluable
support and guidance throughout the research and writing process of both this thesis and the
preparatory project. Despite the large geographical distance between Prof. Li and myself, he
was instrumental in providing remote assistance and demonstrated commitment to my academic
journey.

I would also like to extend my gratitude to the Department of Computer Science at NTNU in
Trondheim for providing a rich intellectual environment with all the necessities for the realization of
this research project, such as the necessary hardware and a place to conduct the experiments. The
interactions with fellow students and faculty members have been important, as they contributed
to improving my ideas and providing a supportive network along this journey.

Lastly, I would like to thank my friends and family for their unchanging support, encouragement,
and moral support throughout this process. Their belief in my abilities and constant encouragement
during this demanding process was invaluable and motivated me to put in the work. I could not
have done this without them.

1

2 Introduction

2.1 Background and Motivation

In recent years, Machine Learning (ML) has increased in popularity amongst businesses and re-
search and is now virtually anywhere you see. Also, the Internet of Things (IoT) has seen a
significant boom in both the number of devices and the amount of data that is being handled. IoT
is an interconnected network of devices that range from simple sensors and robots to high-power
computing devices. Recent statistics, performed by IoT, projected that 2023 would see a growth
of 18% to 14.4 billion, and by 2025 it could increase to more than 27 billion connected IoT de-
vices [63, 13]. There exist several ways to define IoT, but Lopez et al. [39] defined three required
components: smart things, network infrastructure, and backend servers. In essence, smart devices
are designed to interact with users and other devices through a connected network. They are not
required to interact directly with users but will generally collect data through some user activity.

This massive increase IoT devices gives a further concern regarding personal- and data privacy. To
solve this issue of data privacy, a new paradigm for machine learning arose named decentralized
learning, with the most prominent technique being Federated Learning (FL). FL allows client
devices to compute the ML models locally and send the model updates to a central server to be
aggregated. Thus, enabling collective training without sharing any private information. One of
the largest limitations of FL in IoT occurs due to the large differences in hardware specifications
which results in the different client devices spending very different amounts of time on one round
of learning.

While there exist some solutions to this problem, such as asynchronous FL, secure aggregation
methods, and partial work updating, these do come with several limitations:

• High complexity

• Performance degradation with many slow clients

• Performs poorly with Non-IID data

In regular FL, the timeout window is only set during initialization, which means that the network
does not alter this window anytime during learning. Thus, if a large number of clients do not finish
training within the time limit, the server will close the connection to those clients, and all the work
they conducted will not be aggregated into the global model. If there exist many of these clients,
it will lead to an increase in several major FL-challenges such as heterogeneity, communication
costs, and fairness.

Firstly, it exacerbates the issue of heterogeneity, especially in the case of Non-Independent and
Identically Distributed (Non-IID) data, where the unsuccessful clients might possess essential data
that the global model will perform poorly without. Secondly, if a lot of resources are being utilized
by the clients to train a local model and their results are not being aggregated to the global model,
then all of their work is being wasted. By default, communication costs are really expensive in
FL [68, 31]. Thus, unsuccessful communication rounds are very wasteful and should be avoided if
possible. Lastly, if slow clients are unable to finish training, then it implies that only the fastest
devices are allowed to participate. It might boost the training process in terms of time spent per
communication round, but as less data is involved, data diversity will not be guaranteed and might
hurt the performance of model training and, therefore, the fairness [24].

Instead of setting the timeout window ahead of training, it is possible to adjust it dynamically
during training. After each communication round, the server will have a number of successful and
unsuccessful clients. By utilizing this information, the server can adjust the timeout window for
the next communication round of training. Setting the timeout window dynamically addresses all
of the aforementioned challenges which might arise with a statical timeout window. It enables
slower clients to finish training as the timeout window will be adjusted to a large portion of them
being able to finish the computation.

2

It is possible to run FL without a timeout window, which would enable every client to finish
training. However, in the presence of slow client outliers, it would lead to a large increase in the
time spent per communication round. Furthermore, if a client does not finish training for some
reason, such as a loss of communication with the server, it would lead to the server halting learning
as it would wait for that client indefinitely. By taking advantage of setting the timeout window
dynamically, it enables the FL-network to adjust it up to a boundary such that these outliers are
omitted during training. Thus, increasing the efficiency of the network proportionally with the
magnitude of the outliers.

To the author’s knowledge, there has been no research to date into dynamically setting the timeout
window in a FL environment.

2.2 Research Question and Methodology

Given the limitations of the existing solutions brought the Research Question (RQ) of this the-
sis: ”How can we improve the communication success rate and minimize slow client
outlier’s impact on learning efficiency in Federated Learning with Independent and
Identically Distributed (IID) data?”. To answer this question, a Design Science Research
(DSR) framework was utilized to create and implement a Proof-Of-Concept (POC) algorithm,
which enables the FL network to dynamically find an appropriate timeout window to allow a
threshold amount of clients to successfully finish training.

To evaluate the approach, a baseline was provided by running seven aggregation strategies with
the following scenarios:

• Ideal Conditions (Unlimited Time & No Timeouts)

• Poor Performance (95% Clients Timeout)

• Medium Performance (50% Clients Timeout)

• Good Performance (5% Clients Timeout)

The experiments were classification problems run with the MNIST and CIFAR-10 datasets where
the neural network learned to classify handwritten digits and ten different classes of images, re-
spectively [2, 1]. The evaluation showed a significant improvement in terms of successful commu-
nications rounds between the server and the clients when utilizing the dynamic timeout window
algorithm compared to statically setting it. It was especially beneficial in scenarios where there
was a large degree of clients timing out such as for the poor performance scenario and medium
performance scenario, as the POC managed to include more clients per communication round.

2.3 Contributions

The main contribution of this thesis is the novel approach of dynamically setting a timeout window
in a general FL environment. It subsides alongside the other components of a well functioning FL
system such as client management, aggregation strategies, etc. which makes it simple to implement
alongside for future academia and possibly industry. It manages to include as many clients as
possible until a satisfactory threshold by dynamically adjusting the timeout window, which may
easily be set by the developers. The novel algorithm also gives the possibility for existing work to
find a suitable timeout window for their solution in the case where the developers are uncertain of
how much time is required for their clients to finish training in the FL network.

2.4 Thesis Structure

The thesis is structured as follows. Section 3 provides background information on Machine Learn-
ing (ML) and Federated Learning (FL) alongside common challenges. Section 4 reviews related

3

work on the topic of clients timing/dropping out in FL. Section 5 presents the research design
created using the Design Science Research (DSR) methodology. Section 6 shows the design and
implementation of Federated Dynamic Timeout Window (FedDyt) alongside the experimental
setup and results. Section 7 discusses how the novel algorithm compares to related work, possible
applications, implications to the industry and academia, and addresses possible threats to validity.
Section 8 summarizes the discoveries of this thesis, as well as proposes possible future directions
for further work on the proof-of-concept.

4

3 Background

This chapter will briefly explain the state of Machine Learning (ML) today, Federated Learning
(FL), and provide information about the most common challenges encountered when working with
FL.

3.1 Machine Learning

There is no doubt that machine learning has increased in popularity in recent years, as it can
be seen in virtually every field these days. Machine learning has proven effective for applications
within computer vision, prediction, information retrieval, and much more [62]. Even though the
field of machine learning is progressing steadily and new milestones are being achieved, businesses
report that they are still in the early stages of utilizing ML according to Schlögl et al. [58].

3.1.1 What is Machine Learning?

Machine learning is a subset of Artificial Intelligence (AI), where computational algorithms mimic
human intelligence by learning from the environment. These computational algorithms are some-
times referred to as ”soft coded” as they manage to adapt their internal structures to improve the
results of a desired task. This is the opposite of the traditional ”hard coded” algorithms, which are
literally programmed to produce a certain outcome [15]. The term ”machine learning” was coined
by Arthur Samuel from IBM and demonstrated that it was possible for computers to play checkers
[57]. Later, the early neural network architectures started developing through the invention of the
perceptron by Rosenblatt. Although it seemed promising, it was met with a lot of skepticism due
to being limited to only solving linear problems. It could not, for instance, solve simple nonlinear
problems such as simple XOR logic [54]. Many years later, it was discovered that it was possible
to solve nonlinear problems as well through the development of Multi Layer Perceptron (MLP).
Since then, there has flourished a plethora of different algorithms, such as decision trees, support
vector machines, ensemble learning, and deep learning to name a few [14, 47, 30].

3.1.2 Machine Learning Approaches

The different machine learning approaches can be divided into different categories based on the
data labeling: supervised, unsupervised, and semi-supervised. Supervised learning is trained with
labeled data where the mapping from input and output is known on the samples. It is then able
to predict an output from a given input. The most common supervised learning applications are
regression and classification. Regression manages to predict continuous values by finding a contin-
uous model. Classification excels at giving the output as discrete values [19]. Within supervised
learning, there exists the possibility of the model being overfitted. This happens when the ob-
served data does not generalize well to unseen data. In this scenario, the model performs well
on the training set, but while fitting on the testing set it performs poorly [76]. In unsupervised
learning, the algorithm only receives input samples without a corresponding answer. The most
common application of this approach is clustering, where the algorithm partitions the data into
subsets where the data is positioned in each subset based on a distance metric. In other words, it
groups similar objects into different groups [42]. Semi-supervised learning is a combination of the
previous methods; it uses labeled as well as unlabelled data to perform learning tasks. The most
common applications are text/image retrieval systems where the training data generally contain
both labeled and unlabelled data [69]. In addition to the aforementioned ML approaches, there
is the approach of reinforcement learning, where an agent learns behavior through trial-and-error
interactions with a dynamic environment. This is a common approach when learning from games
such as chess or Go [29].

A visual overview of these four ML approaches can be seen in Figure 1.

5

Figure 1: Overview of Machine Learning Approaches. Based on [15].

3.2 Federated Learning

Federated Learning (FL) is a decentralized ML paradigm that leaves the training data distributed
on the mobile devices and learns a shared model by aggregating locally-computed updates Ma
et al. [41]. Instead of sending private data to a centralized server (CS), the clients compute or
train a model on their device and send the update to the centralized server. This decoupling is the
main benefit of FL.

The algorithms may involve hundreds to millions of remote devices learning locally, and the goal
is generally to solve Li et al. [34]:

minwf(w) =

m∑
k=1

pkFk(w) (1)

where m is the total number of devices, pk ≥ 0,
∑

k pk = 1, and the local objective Fk’s can be
defined by empirical risks over local data.

This paradigm was first introduced by McMahan et al. [44] in 2017, where the centralized server
is responsible for coordinating the model training with the selected devices. The server randomly
selects a fixed-size subset of clients and provides them with an initial global model before they train
and send the updates as already described. The pioneering work was named Federated Averaging
(FedAvg) due to taking a weighted average of the client results when aggregating them on the CS.
The pseudocode of FedAvg is shown in Algorithm 1 [44].

6

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size,
E is the number of local epochs, and η is the learning rate.

Server executes:
initialize w0

for each round t = 1, 2, . . . do
m← max(C ·K, 1)
St ← (random set of m clients)
for each client k ∈ St in parallel do

wk
t+1 ← ClientUpdate(k,wt)

end for
wt+1 ←

∑K
k=1

nk

n wk
t+1

end for
ClientUpdate(k,w) ▷ Run on client k
β ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ β do
w ← w − η▽l(w; b)

end for
end for
return w to server

3.2.1 Types of Federated Learning

According to Prayitno et al. [50], FL can be divided into three categories depending on the type of
data partitions. These being Horizontal Federated Learning (HFL), Vertical Federated Learning
(VFL) and Federated Transfer Learning (FTL).

Horizontal Federated Learning (HFL)
HFL is the best-studied category amongst the FL-categories and it handles homogeneous features
spaces. It is commonly used in scenarios where each client has different samples but has the
same set of features [32]. For example, when patient data is separated by two hospitals situated in
different regions. One of the shortcomings of traditional HFL is that it assumes homogenous feature
space, which is not common in real-life scenarios. To circumvent this issue, Continual Horizontal
Federated Learning (CHFL) was proposed. CHFL takes advantage of the unique feature of each
client by splitting the network into two columns, common features, and unique features, and then
trains on the columns separately before aggregating the results [45].

Vertical Federated Learning (VFL)
In VFL, each client holds different feature data but belongs to the same set of samples. This
makes it more relevant compared to HFL in scenarios where for instance, companies have obtained
different features for the same customers. One of the main challenges of VFL is that usually,
only one party holds the labels to the data, and it makes it difficult for other parties to learn
collaboratively without privacy leakage. Some work has been done to address this issue, such
as Secure Bilevel Asynchronous Vertical Federated Learning [80]. Another challenge is the high
communication costs that occur when the different parties exchange intermediate results [73]. VFL
has many promising potential applications as it may train models on data from multiple locations
without sharing the data or trade secrets within the field, thus preserving privacy.

Federated Transfer Learning (FTL)
FTL is a special case of FL and was first introduced to address the problem of data isolation
in industries, as data often exist isolated between different organizations. It allows knowledge
to be transferred between domains that do not have many overlapping features or users. It has
many potential applications, such as personalized recommendation systems, fraud detection, and
predictive maintenance. In fraud detection, it may be used to train models on transaction data
between multiple banks without sharing the data [56]. A graphical illustration of FTL can be seen
in Figure 2. The figure shows only a small overlap in the feature and sample space of parties A
and B. In contrast to HFL, where there is a large overlap in feature space, and in VFL, where

7

there is a large overlap in sample space, FTL has a slight overlap in both.

Figure 2: Graphical illustration of FTL [56].

3.2.2 Client Selection in Federated Learning

Client selection is an essential term within FL and has seen hundreds of improvements since
the original random selection of clients as suggested by McMahan et al. [44]. Smestad and Li
[64] performed a Systematic Literature Review (SLR) investigating the state-of-the-art of client
selection in federated learning. The study performed forward- and backward-snowballing and ended
up with 47 papers being reviewed, and their findings are summarized in the following subsections:

What are the main challenges in Federated Learning?
The papers discovered in the SLR were divided into four categories depending on the main challenge
they were trying to solve. Results show that 23 studies tried to improve upon heterogeneity, 13
studies revolved around resource allocation, eight studies focused on communication costs, and
three studies had fairness as the main challenge. The distribution of the challenges can be seen in
Figure 3.

Heterogeneity

23

Resource Allocation

13

Communication Costs

8

Fairness
3

Figure 3: Distribution of challenges reported from the primary studies

The most common challenge is heterogeneity which stems from the training being executed on
the client’s local devices. This results in differences between the clients as they will have dif-
ferent datasets and availability. Ma et al. [40] conducted a state-of-the-art survey on solving
Non-Independent and Identically Distributed (Non-IID) data in FL and conducted that data het-
erogeneity could be divided into the following categories: feature distribution skew, label distri-
bution skew, same label (different features), same features (different labels) and quantity skew.
It might result in an inefficient trained model, performance- and accuracy degradation, increased
biases, and unnecessary exchange of information between clients.

The second most common problem is resource allocation. This is due to several reasons, but the
main one is the fact that the training process becomes inefficient when some clients have limited

8

computational resources [46]. Differences in resources and hardware will lead to clients using longer
time during computation or during model transmission, which results in the ”straggler effect” [51].

The third most occurred challenge was regarding communication costs. Every time the server
performs a global update, it needs to receive the local aggregation of all the selected clients, and
according to Tan et al. [68], the communication power required to reach convergence makes up
a large portion of the cost. Another fundamental concern regarding communication costs is the
limited energy from IoT-devices and other low-energy entities. It is imperative to improve the
energy efficiency of the systems to facilitate these devices.

The least common problem encountered was fairness, where only three studies reported it as the
main challenge which they tried to solve. However, fairness is a researched topic within several
similar fields, such as Resource Allocation (RA) and ML. For machine learning, it is typically
defined as the protection of some specific attribute(s) by, e.g., pre- processing the data to remove
information about the protected attribute [16]. In the context of FL, if the client selection algorithm
always selects the fastest devices, it might boost the training process. However, as stated by Huang
et al. [24]: ”But clients with low priority are simply being deprived of chances to participate at
the same time, which we refer to it as an unfair selection.” It might result in undesirable effects,
such as omitting some portions of data. Also, if there are less data involved, data diversity will
not be guaranteed and might hurt the performance of model training. An overview of the specific
FL-challenge compared to the corresponding solutions can be seen in Table 1.

Table 1: Solutions compared to challenges

Challenge Solution(s)

Heterogeneity

- Select subset of client to make up homogeneous dataset
- Measure degrees of non-IID data and select lowest values
- Balance out non-IID data through clustered FL
- Give clients an irrelevance score and base selection of that
- Select a subset of clients who represent the entire set
- Utilize cryptography and weight divergence

Resource Allocation

- Base selection on resource conditions
- Maximize the amount of clients by minimizing energy consumption
- Encourage clients to participate in model updating
- Utilize fuzzy logic by considering several resource factors

Communication Costs

- Joint client selection algorithm to reduce convergence time
- Distributed client selection where the clients decide to participate
- Only active clients should perform training
- 3-way hierarchical framework to improve efficiency
- Select the client with the most significant information each round
- Asynchronous FL

Fairness
- Fairness-guaranteed client selection algorithm
- Improve fairness through biased client selection
- Select honest clients

How are clients selected in federated learning?
There is no defacto standard for selecting clients in FL, and there exists a lot of different approaches
depending on the main underlying issue. To try to mitigate heterogeneity, which stems from
differences between selected clients, one might select clients who have small data heterogeneity,
which together forms a homogeneous subset, or measure the degrees of non-IID data present in
each client and choose the ones with the lowest degrees [41, 3, 81].

It is also possible to improve the issue of resource allocation through client selection. By managing
clients based on their resource conditions, the algorithm may maximize the number of clients
allowed to participate while minimizing the energy consumption [75, 77].

As communication cost is a vital and expensive part of FL, many attempts have been executed in
order to improve it. Focusing on selecting appropriate devices by allocating a suitable amount of
resources will reduce convergence time due to reducing communication costs. It is also possible to
make the client devices decide to participate in aggregation and let the remaining clients not do

9

any work [21, 31, 35]. Zeng et al. [78] proposed only selecting the clients who provide significant
information each round, which enables fewer clients to end up with better accuracy and, in turn,
lower total communication rounds and cost.

Focusing on fairness in client selection may lead to better accuracy but might sacrifice training
efficiency. One way to improve fairness is by selecting the clients with higher local loss [27, 24].

Which metrics are important for measuring client selection?
The relevant metrics in client selection depend on the problem it is trying to solve. The summary
of the findings can be seen in Table 2. The most common metric used in measuring the testing
accuracy against the number of communication rounds. In traditional machine learning, one gen-
erally uses the number of epochs, but the number of epochs in FL does not necessarily correspond
to the same thing. Client devices may have a multitude of local epochs during training but only
convey this information once during one round of communication. Every study utilizes this metric
as it clearly indicates how well the FL-network is performing. However, it may also be beneficial
to look at the number of communication rounds until threshold accuracy or look at the energy,
delay, and client consumption when trying to improve the issue of resource allocation.

Table 2: Metrics compared to challenges

Challenge Metric(s)

Heterogeneity
- Testing accuracy vs communication rounds
- Communication rounds until threshold accuracy
- Number of selected client able to finish training

Resource Allocation
- Testing accuracy vs communication rounds
- Energy, delay, and client consumption

Communication Costs
- Testing accuracy vs communication rounds
- Convergence time vs latency
- Cost of hiring clients

Fairness
- Testing accuracy vs communication rounds
- Availability of clients
- Long-term fairness constraints

What can be improved with the current client selection?
Smestad and Li [64] discovered a lot of possible future directions for client selection, but the most
relevant ones for this thesis were regarding optimizing resource allocation. It would be highly
beneficial to look into the effect of unsuccessful clients (or free-riders) and how to quantify the
impact [37, 52, 61].

10

4 Related Work

Much work has been conducted on the topic of handling slow clients. This section will discuss the
related work and conclude with the limitations of those.

4.1 Secure Aggregation Methods

As we know from the FL-background discussed in Section 3.2, server aggregation is an integral part
of a well-functioning learning network. A sub-category of these aggregation strategies is known as
secure aggregation, which focuses on protecting the privacy of each client’s individual model while
allowing for a beneficial global model update. These secure aggregation methods focus not only
on the aggregation’s security aspect but also on making it resilient to clients dropping out.

Shao et al. [60] proposed a Dropout-Resilient Secure Federated Learning (DReS-FL) framework,
based on Lagrange-coded computing to tackle both the challenge of Non-IID data and clients
dropping out. Using Lagrange-coded computing, the server can tolerate a certain number of clients
dropping out by reconstructing the missing data. This is an improvement on existing work, which
utilized secure aggregation protocols and was based on either a pairwise random-seed agreement for
mask cancellation or sharing random seeds to construct the dropped masks [28, 66, 7, 26]. These
methods were not optimal because they relied on recovering and aggregating the result of surviving
clients. Resulting in a possible decrease of performance in Non-IID-setting, as the surviving clients
may vary significantly.

Several dropout-resilient aggregation protocols are created to tackle the challenge of clients drop-
ping out. Liu et al. [38] summarize current aggregation protocols and contribute with a more
dropout-resilient protocol which is more efficient and claims to have better simplicity, making it
attractive for implementation and further improvements. It improves upon existing protocols,
which can be viewed in Table 3, by replacing communication-intensive building blocks with a seed
homomorphic pseudo-random generator.

The baseline for the comparisons is the SecAgg scheme based on the work performed by Bonawitz
et al. [7]. It improved the protocol efficiency by leveraging on pair-wise additive masking and
Shamir secret sharing. To improve the efficiency of SecAgg, several schemes have been proposed.
TurboAgg [65] communicate across only a subset of clients, while CCESA [12] and SecAgg+ [6]
replaced the star topology in SecAgg with random subgroups of clients. FastSecAgg [28] im-
proved upon SecAgg by utilizing a more efficient FFT-based multi-secret sharing scheme rather
than Shamir secret sharing. Other schemes try reducing communication costs by compressing the
gradient vector, such as SAFER [5].

Table 3: Comparison of computation complexity, communication complexity, and dropout resilience of
secure aggregation algorithms

Protocol SecAgg [7] TurboAgg [65] CCESA [12] SecAgg+ [6] FastSecAgg [28] HPRG [38]

Computation Server O(mn2) O(m log n log2 log n) O(mn log n) O(mn log n+ n log2 n) O(mn log n) O(n)

complexity Client O(n2 +mn) O(m log n log2 log n) O(n
√
n log n+mn) O(m log n+ log2 n) O(m log n) O(n2 +m)

Communication Server O(n2 +mn) O(mn log n O(n log n+m
√
n log n) O(mn+ n log n) O(n2 +mn) O(n2 +mn)

complexity Client O(m+ n) O(m log n) O(
√
n log n+m) O(m+ log n) O(m+ n) O(m+ n)

Dropout Scheme (t, n) (nl

2 , n1) (t, k) (t, k) (n− d, n) (t, n)
resilience Max drop n− 1 n

2 − 1 δn δn n
2 − 1 n− 1

Communication rounds 4 n/ log n 3 3 3 3
Privacy malicious semi-honest semi-honest malicious semi-honest malicious

4.2 Asynchronous Federated Learning

As discussed in Section 3.2, the FL-the scheme is by default synchronous, which might introduce
slow clients known as ”stragglers” and makes global synchronization difficult and/or slow. Simi-
larly, if a client drops or times out during learning, it will significantly impact the federated learning
as the global server is waiting for that client. Therefore, several algorithms for asynchronous FL
have been created to overcome the straggler issue [84, 9].

11

Asynchronous FL is a distributed decentralized machine learning method that enables collaborative
learning through aggregating a large number of models from client devices asynchronously. Usually,
the server waits for every client to finish training before performing the aggregation, but when
performing it asynchronously, it enables the server to finish the communication round before every
client has finished training. The results of the slow clients will then be aggregated in a later
communication round if they ever finish. A fully asynchronous FL network will, in theory, be able
to reduce a lot of waiting, both for the server and the clients, which leads to a very efficient and
robust distributed model. This method is very suited for applications such as IoT where there
generally are significant differences in computing capacities and network speed, which inherently
leads to much waiting [49]. Chen et al. [11] proposed the Asynchronous Online Federated Learning
(ASO-Fed) framework, where edge devices perform online learning with continuous streaming local
data, and a central server aggregates the central model asynchronously.

A graphical view of how these updates functions in practice can be viewed in Figure 4, which
compares the communication flows between the client devices and the central server for both
the synchronous and the asynchronous protocols. The version of the global model is denoted by
wtk and is distributed to client devices before local computation. In the synchronous example,
Device 1 has no network connection, and Device 3 needs more computation time. All aggregations
happen synchronously, forcing the server and Device 2 to wait before proceeding because the server
must receive all local updates before aggregation [10]. In the asynchronous example, the following
happens: Firstly, the global model wt0 is distributed to Device 1 and Device 2, and Device 1
finishes training first and sends the local model update w1 to the central server which is updated
to the new global model wt1 . Then Device 2 finishes training and send local update w2 to the
central server, which is aggregated to global model wt2 , which is then distributed to Device 3.

Figure 4: Illustration of Synchronous vs. Asynchronous [11]

Xie et al. [74] introduces the idea of adding a coordinator responsible for the asynchronous handling
of the learning network, and the server immediately updates the global model whenever it receives
a local model.

4.3 Clients Performing Partial Work

As discussed in section 4.2, in the synchronous protocol of FL, if clients drop out during learning,
it leads to severe degradation of the efficiency. Instead of waiting for the straggler or declaring the
communication round as a failure, some work discusses the possibility of clients performing partial
work. Li et al. [33] propose the framework FedProx which builds upon the original FedAvg
framework [44]. It also selects a subset of devices at each round, performs local updates, and
averages those to form a global update, but in addition, it tolerates partial work.

The main benefit of this solution is that when a communication round has hit a set timeout window,
and clients are not done with their local epochs, the partial results they have obtained can still be
aggregated into the global model. This leads to increased utilization of computing power, as partial

12

work will not be wasted as in ordinary synchronous FL, as well as the ability to not interrupt a
round of learning due to stragglers not responding at all.

However, these benefits do not come without a price. Firstly, if there exist many stragglers within
the network, it will perform poorly as the server then aggregates a lot of gradients from clients
who have performed few local epochs. Secondly, it is difficult to know how much time to set for
the timeout window or the number of local epochs for the clients to perform beforehand. Lastly,
it is not trivial to implement partial work as it is dependent on a lot of factors of the dataset,
data distribution, heterogeneity, and implementation details. For instance, the developer has to
manually set a proximal term β, which has to be estimated through trial and error.

4.4 Free Riders

Similarly to the topic of clients dropping out, where clients do not contribute to learning by
successfully delivering results, there are free riders. Free-riding is a familiar concept within the
field of economics and philosophy [18, 4], and in a general context, may be defined as:

A free rider, most broadly speaking, is someone who receives a benefit without con-
tributing towards the cost of its production.

In regards to Information Technology (IT), it is commonly researched and explored within peer-
to-peer systems. As those also rely on clients contributing together to form a functional system
[36].

Plain free-riders are clients who return the same model parameters to the global server as they
were initially served [17]. This is obviously a waste of resources as the network spends energy and
time through communication rounds with clients that do not contribute to the overall learning.
According to Sagduyu [55], the presence of free-riders potentially decreases global accuracy due to
a lack of contribution to global model learning.

4.5 Ensamble Methods

To the experienced reader, the term ”dropout” might be familiar within the context of ML. As
discussed in section 3.1, overfitting may become a significant issue, as large networks may be
slow, especially when combining predictions of several large neural networks. Dropout prevents
overfitting and makes it possible to combine exponentially many different neural networks (approx-
imately) by removing nodes temporarily during training. The term refers to dropping out both
hidden and visible units in a neural network [67].

One of the main challenges within practical FL is that the client devices struggle with computation-
intensive tasks due to resource constraints. One approach to tackle this issue is Federated Dropout
(FedDrop), a FL scheme that builds upon the classing random model pruning scheme as already
discussed. It reduces the communication overhead and devices’ computation loads compared to
traditional FL while also improving cases of overfitting [72].

Several works suggest improvements upon FedDrop. Bouacida et al. [8] proposes to tune the
dropout rate based on feedback from the training loss. Horváth et al. [20] proposes a method
called Ordered Dropout, where sub-models are selected in a nested fashion. This is meant to
improve learning, as clients can train models in proportion to their computational resources.

4.6 Limitations of Related Work

Although much work has been conducted to improve the issues of stragglers and/or clients dropping
out, they come with some limitations. This section will briefly discuss some of those limitations.

13

4.6.1 High Complexity

One of the main limitations of the related work is the high degree of complexity. The secure
aggregation methods rely on the secret sharing of the random seeds used for mask generation at
the user in order to be able to reconstruct and/or cancel the model updates of the clients who have
dropped out. The complexity of such an approach also grows substantially when the number of
dropped clients increases [66]. The complexity of implementing partial work from clients is one of
the main disadvantages of that solution. It is untrivial how to efficiently utilize the partial work
from clients, who might have a poor score due to few local epochs, against the results of high
epoch clients. In addition, aggregation might be difficult due to the dataset, data distribution,
heterogeneity, and implementation details. The solution also requires a timeout window to be set
for the clients, which depends on many factors. These factors are client performance, network
speeds, and task complexity. The developer also has to set a proximal term β, which has to be
estimated through trial and error.

4.6.2 Performance

One of the main limitations of asynchronous FL is the trade-off between model performance and
communications costs. The server might be the communication bottleneck as it has to aggregate
a lot of models, making it a high server-to-client communication delay. In theory, making it
asynchronous reduces the overall communication load on the server by allowing the clients to
wait on the server, but it comes with a high price. Client updates will be postponed to later
communication rounds, and it is not trivial to correctly use these updates in other communication
rounds [83].

The performance when clients are performing partial work will also substantially degrade when
there are a lot of clients not being able to finish within a given timeout window. This leads to a
high degree of unfinished work being aggregated into the global model.

4.6.3 Non-Independent and Identically Distributed Data (Non-IID)

In real-world applications, the data is seldom IID when the clients may collect data from many
different sources, through different tools, or only have access to partial/biased data. This will result
in shifts/drifts in the distribution of samples or features to the clients. For all of the aforementioned
related work, this might lead to poor performance and slower convergence [43] because when local
models focus on different features or even feature representations, they might not complement
each other well when being aggregated on the server. Furthermore, each client device will focus
on maximizing its local optima, which may differ significantly from the global optima.

Figure 5: Federated Learning with Non-IID data [82]

McMahan et al. [44] states that the FedAvg strategy might perform well even in a Non-IID setting,
but the work of Zhao et al. [82] shows a significant reduction of test accuracy in the case of skewed
data. They show that this accuracy reduction can be explained by the weight divergence, which

14

can be quantified by the distribution over classes on each device and the population distribution.
From Figure 5 it is apparent that the accuracy degrades close to 50% in the worst case as for the
KWS dataset.

15

5 Research Design

This section will identify the relevant research questions (RQs) and the motivation for answering
those.

5.1 Research Methodology

To correctly identify the problem, motivation, and solution while properly evaluating and demon-
strating the solution’s effectiveness, the Design Science Research Methodology (DSRM) by Peffers
et al. [48] was utilized. An overview of the research design process can be seen in Figure 6.

Figure 6: Overview of the research design process [48].

Peffers et al. [48] describes the DSRM as consisting of the following six stages:

Problem Identification and Motivation. As the problem definition will be used to create an artifact
that effectively provides a solution, it is essential to properly identify the problem and motivate
its relevancy and novelty. The problem will be identified and motivated in Section 5.2.

Objectives for a Solution. For the artifact to succeed, certain objectives must be in place. These
objectives are inferred from the problem definition, and successfully reaching the objectives will
lead to a better solution than the currently existing ones. The objectives for a solution are discussed
in Section 5.3.

Design and Development. The third step is regarding the artifact’s creation and its process. The
activity includes desired functionality, architecture, and the actual creation of the artifact. The
design and development will be discussed in Section 5.4.

Demonstration. The demonstration step uses the artifact to solve one or more instances of the
problem. In practice, it may be through simulations, case studies, etc. For the artifact of this
thesis, the demonstration of its effectiveness was through running FL simulations with the POC
and is shown in Section 6.

Evaluation. The functionality of the evaluation step is to observe and measure the successfulness
of the solution to the problem. There are several different types of possible evaluation methods
depending on the qualitative/quantitative nature of the solution. The different evaluation metrics
will be discussed in Section 5.5

Communication. The last step is to communicate the problem and its importance, the artifact,

16

its utility and novelty, the rigor of its design, and its effectiveness to researchers and relevant
audiences. This will be discussed in Section 5.6.

5.2 Problem Identification and Motivation

Society has seen a large boom in the usage and research of Artificial Intelligence (AI) in the past
decade. One of the largest contributions to this phenomenon is the amount of available data which
can be gathered through IoT (Internet of Things) as well as the practical benefits of, for example,
machine learning. However, amongst all this available information exists our private information,
such as social security numbers, addresses, banking information, etc. Ordinary machine learning
might require that some or all of this information be sent to a centralized server to create or update
models.

This emerging concern about data privacy has introduced a new field within machine learning
named Federated Learning. It is possible to train these models on the user’s device and then
synchronize the model to a central store Hu et al. [23]. While decentralized learning solves the
difficulties of data privacy and sensitive information in an elegant way, it does come with some
challenges. As these models are meant to be trained on smartphones and IoT devices, there is
a high risk of these devices dropping out during training due to, i.e., bandwidth or availability
constraints [61]. Similarly, there is the concept of free-riders introduced by Fraboni et al. [17],
where free riders are clients who use the global model but do not contribute to learning. This
results in those clients using valuable and limited resources and deteriorating the performance of
the federated learning network by contributing fake or low-volume data [52].

Clients timing out is a large problem in FL as it may exacerbate the Non-IID problem as the data
distribution among different rounds could vary greatly [60]. The issue is especially prominent within
applications of FL where there are large differences in hardware specifications of the client devices.
One such application is within the field of IoT, which consists of units such as robots, drone swarms,
and low-cost computing devices (e.g., Raspberry Pi) that may have limited processing ability, low
bandwidth, and power, or limited storage capacity [25]. The different possible steps which may
lead to clients timing out can be divided into:

1. Dissemination time (e.g., dataset size)

2. Local computation time (e.g., HW restrictions)

3. Upload time (e.g., High latency, network congestion)

The dissemination time refers to the time spent initializing phase of the FL-network before learning.
This possibly includes steps such as distributing datasets. The second step is the local computation
time which is the time each client uses for training. The third step is the upload time which is
the time spent on sharing model updates. IoT-devices may encounter problems within all of these
steps due to the possible limitations already mentioned. For instance, due to the limited storage
capacity, it may have issues during the dissemination step, or due to poor bandwidth/high latency,
it may spend a lot of time communicating the model updates. It is also very likely that there will
be large differences in the local computation time due to the differences in hardware specifications,
allowing some devices to finish training much faster than other low-cost devices.

One of the challenges within the topic of clients timing out in FL is that it is difficult to know
whether or not a client has timed out or if it is just spending a lot of time in any of the aforemen-
tioned steps. Thus, it is common to implement a timeout window where the server shuts down
communication with clients who have not reported any results within the given time.

5.2.1 Current State of the Problem

A lot of work has been put into FL for IoT, but the state-of-the-art mainly focuses on two topics:
solving the issue of heterogeneity and minimizing energy. Therefore, when viewing the state-of-

17

the-art solutions, the problem of clients timing out is still an issue that remains. Recent solu-
tions include ways to neutralize the problem of Non-IID through domain generalization and group
learning [79, 35]. As discussed in Section 4, asynchronous FL, secure aggregation methods, and
resource-aware FL have been suggested to improve the issue of straggling clients.

To summarize the current state of the problem, although several solutions exist to the problem of
clients timing out during FL, they do have several limitations. Firstly, the complexity is very high,
making it challenging to utilize in new applications. For instance, with asynchronous FL, when
clients are stuck many gradient updates behind due to perhaps slow computation, it is not trivial
to aggregate those results into the global model as the information might not be relevant anymore.
Secondly, the performance of the solutions halter, especially when a lot of clients do not manage
to finish training within the timeout window. Furthermore, none of the state-of-the-art solutions
for FL for IoT utilizes the existing solutions for solving the problem of clients timing out during
learning, which means that at the time of writing, there does not exist a defacto solution to this
problem.

5.2.2 Research Question

The RQ of this thesis is the following: ”How can we improve the communication success
rate and minimize slow client outlier’s impact on learning efficiency in Federated
Learning with Independent and Identically Distributed (IID) data?”.

The communication success rate, which will properly be defined in Section 5.5.4, is a highly impor-
tant metric for FL as it directly measures the number of successful clients for each communication
round. A low degree of success rate implies that clients are performing a lot of work that is not
going to be aggregated into the global model, due to them, for instance, not finishing training
within a given timeout window or connectivity issues. Likewise, a good success rate implies that
a lot of clients manage to finish training and get their results aggregated into the global model.

There are many potential downsides to clients timing out during learning, and the most promi-
nent ones are the high increase in communication costs and resource expenditure. The increased
communications costs stem from the high degree of communication which is being transmitted
between the clients and the server without bringing further results to the global model, while the
resource expenditure from the local training performed by the clients. In the case of IoT devices,
which are resource-constrained entities with limited computational power, storage capacities, and
batteries [25], it is crucial to utilize these precious resources without waste. In addition, if the
FL network has a high degree of Non-IID data, it will lead to accuracy degradation due to vital
information being omitted during learning. In the case of IID data, the effects on the accuracy
are not as prominent due to the results of one client being directly transferable to the others.
Thus, improving the communication success rate directly corresponds to more successful clients
each communication round and improves the communication costs and resource expenditure for
the FL network.

Because these IoT devices might have widely different hardware specifications, and the developers
do not necessarily know what these are beforehand, it might lead to slow client outliers - clients who
are much slower than the others. In the presence of such clients, regular synchronous FL without
a timeout window will spend much more time per communication round, as every client has to
finish training before aggregating the results and iterating to the next one. Therefore, minimizing
the impact of the slow client outliers on the efficiency is highly beneficial and especially relevant
within the field of IoT.

Both the communication success rate and the slow client outliers are important aspects to study
for IoT in FL, and the effectiveness of this thesis’ artifact will be shown in Section 6.

18

5.3 Objectives for a Solution

There are several objectives for a solution in regards to improving FL through minimizing the
effect of clients timing out. It already exists several attempts at solving this exact problem, but as
discussed in Section 4.6, these do not come without a heavy price tag.

Therefore, in order to improve existing solutions and fill a missing void within the field of FL, the
following list of objectives needs to be fulfilled for a successful and beneficial solution to exist:

1. Low complexity

2. Simplicity of integrating with existing solutions

3. Reduce the effect of clients dropping out

If the solution manages to have low complexity, it will be much easier for both academia and the
industry to implement and utilize further in their work. One of the biggest issues with existing
work such as asynchronous FL is the high degree of complexity which makes it really difficult to
implement on new datasets and for different hardware. Similarly, the solution does not bring much
value if it only works in an isolated environment with specific datasets or a single aggregation
algorithm. It is important that the solution has to integrate with existing solutions. Lastly, there
has to be a measurable improvement in minimizing the effect of clients dropping out. The solution
cannot be considered successful without there being physical evidence that the solution in some
way manages to improve learning when clients are timing out.

5.4 Design and Development

The artifact will be designed and created in the design and development stage. The artifact of this
thesis will be the implemented code alongside the overall abstract solution, which benefits learning.
The artifact development of this thesis was carried out in two iterations. In the first iteration,
related work was explored and reviewed to understand the current state-of-the-art problem and
to view the existing solutions. When it was clear that the problem was real and there existed a
need for a solution, the rest of the first iteration was used to implement a bare-bones server-client
architecture based on Federated Learning (FL). The second iteration revolved around creating the
artifact and adapting it in an FL-environment.

5.5 Evaluation

In the evaluation stage, it is paramount that the effects of the artifact are both observed and
measured [48]. The evaluation of design artifacts and design theories is a key activity in Design
Science Research (DSR) as it provides valuable feedback for further development and assures the
rigor of the research. Therefore, this thesis follows the steps provided by Venable et al. [70] in their
Framework for Evaluation in DSR. The design process consists of the following four steps:

5.5.1 Explicate the goals of the evaluation

Venable et al. [70] lists four competing goals when evaluating a project: rigor, efficiency, ethics,
and uncertainty/risk reduction.

Rigor : They explain that rigor has two senses. The first is that the artifact must cause an observed
outcome and not some confounding independent variable (efficacy). The second is establishing that
the artifact works in real-world situations (effectiveness). The created artifact of the thesis must
cause an observed effect, but it will be difficult to prove its effectiveness in a real-world scenario.
This is due to FL being an emerging technology and difficult for a single student to implement

19

Figure 7: FEDS (Framework for Evaluation in Design Science) with evaluation strategies [70]

across a multitude of actual IoT devices. Therefore, the evaluation of the rigor was set to moderate
due to this limitation.

Uncertainty and risk reduction: When design uncertainties are significant, it is key to reduce risks.
These may be divided into human social risks or technical risks. Human social risks regard the
artifact not fitting into the use case or social situations, while technical risks regard the artifact
not being made to function. The thesis is highly technical and it is very important to avoid as
many technical risks as possible. There was a high degree of design uncertainty when designing a
dynamic timeout window for FL, making the evaluation of the uncertainty and risk reduction set
to high.

Ethics: This step is especially important for safety critical systems and technologies and should
address risks towards animals, people, organizations, or the public, including future generations.
As the artifact is meant to improve FL for IoT-devices, it will not have any direct risks towards the
aforementioned groups. Even though it might be used alongside already existing solutions which
may be used in some unethical way, it was evaluated to be low.

Efficiency : This goal is created to balance the high-ordered goals against the resources available
for evaluation (e.g., time and money). This thesis was conducted by a single student during
one semester with virtually no budget. Thus, making efficiency very important in the artifact
evaluation. By utilizing these four goals given by Venable et al. [70], this thesis was given the
following priorities:

1. Rigor (moderate)

2. Efficiency (high)

3. Uncertainty and risk reduction (high)

4. Ethics (low)

5.5.2 Choose the evaluation strategy

The second step in FEDS is selecting one or more strategies for the evaluation. Figure 7 describe
strategies and implies a decision about why, when, and how to evaluate. A textual representation
can be seen in Appendix A. To summarize the different strategies:

20

The Quick & Simple Strategy. This strategy conducts little formative evaluation and progresses
quickly with relatively few evaluation episodes. The main benefit of this strategy is the low cost
and enables quick progression. It does, however, come with the drawback of being too quick in
terms of various design risks. It is well suited when the project scope is small with a simple design
and low risk.

Human Risk & Effectiveness Strategy. It emphasizes formative evaluations early in the process
while progressing quickly. It is beneficial for scenarios where there are major design risks related
to users and/or real-world scenarios where the utility is being evaluated. At the end of the strategy,
the artifact is rigorously evaluated based on its effectiveness.

Techincal Risk & Efficacy Strategy. The strategy utilizes iterative evaluations early in the process
in order to progressively move towards the goal. It is well suited for scenarios where the main
design risk is technical and when the goal of the evaluation is to establish the utility of the artifact.

Purely Techincal Strategy. The purely technical evaluation strategy is used when the artifact is
purely technical, without human users. It is comparable to the quick & simple strategy but focuses
more on artificial evaluations throughout the process and is generally well-suited for applications
that will not be deployed anytime soon.

This thesis utilizes the Purely Technical Artifact strategy as the challenges are completely technical
as opposed to social. Furthermore, as the artifact is a POC, it will not be deployed to a real-life
application anytime soon.

5.5.3 Design the individual evaluation episode(s)

The fourth step in FEDS is designing individual evaluation episode(s). This step is only possible
after a strategy has been chosen and determined what properties to evaluate of the artifact.

The evaluation was conducted by one master’s student after the artifact creation through simulation
in a FL-environment.

Federated Learning Dynamic Timeout Window

The first experiment used the Modified National Institure of Standards and Technology (MNIST)-
dataset 1 which contains a large database of handwritten digits commonly used in computer vision
and deep learning. The database consists of 60,000 examples of 28x28 black-and-white images [2].
The second experiment used the Canadian Institute For Advanced Research (CIFAR-10)-dataset2

which consists of 60,000 32x32 color images in 10 classes, with 6000 images per class [1]. An
overview of the datasets with the corresponding samples, features, and machine learning tasks can
be seen in Table 4.

Dataset Machinelearning task Samples Features
MNIST Classification 60,000 10
CIFAR-10 Classification 60,000 10

Table 4: Overview of datasets used in experiments

In addition to the aforementioned datasets, the simulations also required strategies to evaluate the
performance of FedDyt. These strategies were chosen out of the pool of available strategies in the
FL-framework, Flower, and a list of the chosen strategies together with the original paper can be
seen in Table 5.

1https://www.tensorflow.org/api docs/python/tf/keras/datasets/mnist/load data
2https://www.tensorflow.org/api docs/python/tf/keras/datasets/cifar10/load data

21

https://www.tensorflow.org/api_docs/python/tf/keras/datasets/mnist/load_data
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/cifar10/load_data

Author Title Strategy

McMahan et al. [44]
Communication-Efficient Learning of Deep
Networks from Decentralized Data

FedAvg

Hsu et al. [22]
Measuring the Effects of Non-Identical Data
Distribution for Federated Visual Classification

FedAvgM

McMahan et al. [44]
Communication-Efficient Learning of Deep
Networks from Decentralized Data

QFedAvg

Reddi et al. [53] Adaptive Federated Optimization FedOpt
Li et al. [33] Federated Optimization in Heterogeneous Networks FedProx
Reddi et al. [53] Adaptive Federated Optimization FedAdagrad
Reddi et al. [53] Adaptive Federated Optimization FedAdam
Reddi et al. [53] Adaptive Federated Optimization FedYogi

Table 5: Federated Learning strategies with corresponding papers

The pseudo-code for the Federated Dynamic Timeout Window (FedDyt) can be seen in Algorithm
2. After the server has set up the infrastructure and distributed the global model and datasets to
the client (noted by initialize w0), the learning happens in each round α. The intricacies of the
aggregation strategies, weight updating, and server-client communication have been omitted. The
main takeaway is that the number of successful clients, s, and the number of unsuccessful clients,
f , together with the current timeout window, t, is sent to the DynamicWindow -function, and the
result from that function is used to update the timeout window for the next communication round.

Algorithm 2 Federated Dynamic Timeout Window. s is the number of successful clients, f is the
number of failed clients, and t is the timeout window.

Server executes:
initialize w0

for each round α = 1, 2, . . . , n do
t← DynamicWindow(s, f, t)

end for
DynamicWindow(s, f, t) ▷ For each round α
ρ← s

s+f

if ρ <= 33% then
t = t ∗ 2

else if 33% < ρ <= 66% then
t = t ∗ 1.5

else if 66% < ρ <= 90% then
t = t ∗ 1.33
return t

end if

5.5.4 Definition of Communication Success Rate

As described in Section 5.2, a communication round in FL consists of three stages: dissemination,
local computation, and uploading. If the server has implemented a timeout window to ensure that
clients who are either unreasonably slow or have stagnated do not make a round continue forever
if not all clients are done when the communication round hits the given window, there will be a
portion of successful- and unsuccessful clients.

Therefore, for each communication round, the round success rate, ρ, is calculated. Let s be the
number of successful clients and f be the number of unsuccessful clients.

ρ→ s

s+ f
(2)

22

5.6 Communication

The last step is communicating the problem and its importance, the artifact, its utility and novelty,
the rigor of its design, and its effectiveness to researchers and other relevant audiences.

The problem and its importance were explained in Section 2.1, while its utility and novelty are
described in Section 6.1. The discussion of the rigorousness of the design, as well as the relevance
to researches and relevant audiences is described in Section 7.

23

6 Results

This section presents the design and implementation of the dynamic timeout window algorithm
named Federated Dynamic Timeout Window (FedDyt) in Section 6.1. Then the experimental
setup is described in Section 6.2, and lastly, the evaluation results are presented in Section 6.3.

6.1 Design and Implementation of the Dynamic Timeout Window

To achieve a successful dynamic timeout window algorithm in FL, it has to satisfy the following
requirements:

1. Low complexity

2. Easy to integrate

3. Improve efficiency when clients time out

The proof-of-concept must also perform as well as the state-of-the-art solutions during ideal situa-
tions where clients are not timing/dropping out, as well as keep the benefits of Federated Learning
(FL) such as maintaining data privacy.

6.1.1 Developer Interactions with FedDyt

One of the critical aspects of the artifact is the possibility of integrating it with existing solutions.
Therefore it has to be adjustable to suit the needs of the individual FL scenarios of the developer,
as well as be easy to integrate without increasing the complexity of their solution.

Adjust Parameters
The code was created in such a way that developers can easily adjust the inner parameters to
suit their needs and requirements for performance. There are two main attributes to adjust. The
first one is the lower, mid, and upper boundaries for when the solution should adjust the timeout
window. The second one is the degree of incrementation of the timeout window when the conditions
for a given boundary are met.

For each round of learning, the algorithm will find a round success rate, ρ, as shown in Equation
2 and compare it to the limits. By default, the algorithm contains the following boundaries:

• Low: ρ ≤ 1
3

• Medium: 1
3 < ρ ≤ 2

3

• High: 2
3 < ρ ≤ 9

10

Meaning that if the success rate of the clients is below 33%, it hits the conditions of the lower
boundaries, and if it is between 66% and 90%, it will be within the high condition. For each of
these conditions, the new timeout window is multiplied by a constant. The algorithm increases
the timeout window by a greater value if there are a lot of unsuccessful clients that round, as the
low boundary is met. Likewise, if there is a low degree of unsuccessful clients, the timeout window
will be incremented to a lower extent as many clients managed to finish training within the given
timeout window. The algorithm has the following defaults for adjusting the timeout window, t:

• Low: tn+1 = tn ∗ 2

• Medium: tn+1 = tn ∗ 1.5

• High: tn+1 = tn ∗ 1.33

24

• Else: tn+1 = tn

If the success rate is above 90%, the timeout window will not be adjusted. The developer has a
lot of possibilities in regard to tuning the algorithm to their needs. For instance, they might be
satisfied with 70% of the clients returning successful results in any given round and can adjust the
high interval to match that condition.

Implementation of Dynamic Timeout Window
In order for the dynamic timeout window code to work, it has to be properly integrated with the
already existing solution on the server. This process is relatively straightforward and might be
implemented like so: After the server has evaluated the model on a sample of available clients,
the amount of successful and unsuccessful clients may be evaluated and sent to the dynamic
timeout window algorithm to properly set the new timeout window. The algorithm then returns
the updated timeout window which the developer can utilize to update the next communication
round’s timeout window.

6.1.2 Implementation Details

The entire artifact was implemented with the programming language Python, as it is the most
common language within machine learning due to its simplicity and consistency. Instead of imple-
menting the entirety of the Federated Learning (FL)-system from scratch, the friendly federated
learning framework, Flower, was utilized. To quote Flower:

Flower is a unified approach to federated learning, analytics, and evaluation. Federate
any workload, any ML framework, and any programming language.3

The main benefit of the framework lies in that FL, evaluation and analytics require infrastructure
to move machine learning models back and forth between the server and the clients, and Flower
provides this infrastructure in an easy, scalable, and secure way. Furthermore, it provides several
guides to configure and set up custom strategies, servers, clients, and client managers, as well as
easy-to-read documentation.

The entirety of the solution was simulated by using Flower. In the context of the framework,
it means that the whole FL system (a single server and a multitude of clients) was run on a
single computer. It is not as simple in real-world FL systems for IoT where the client devices are
separated on different devices. This implies that a lot of the characteristics are not present such
as connectivity issues, network differences, and realistic hardware specifications.

There are two ways to set up the FL environment in Flower.

1. Create a server and client class. Spawn the server and then the number of clients through a
batch script.

2. Utilize the built-in simulation function of the framework. It requires many parameters, such
as the number of clients, resources, and client- and server configuration.

The different approaches both contain benefits and drawbacks. Approach 1) is the most realistic
one as it creates all the instances of the client’s devices and makes them wait for their turn to
train. Meaning that if the system creates 100 instances and only one is being selected for each
round of training, the other 99 are just waiting for their turn. Although this is how real-life FL
is performed, it is really resource-heavy for a single computer. With approach 2), however, the
clients are simulated through a function and are only executed once it is required to train. Thus,
being much less demanding in terms of resources required to execute. Furthermore, approach 2)
enables advanced real-time diagnostics through Ray Dashboard 4. A screenshot of the dashboard
can be seen in Figure 8.

3https://flower.dev/
4https://docs.ray.io/

25

https://docs.ray.io/

Figure 8: Ray Dashboard for Advanced Metrics

The dashboard requires configuration through Grafana and Prometheus, but once set up, it enables
very useful metrics for viewing active clients and the number of resources being taken up by each
client and in which state of training. In Figure 8, the first line corresponds to the application,
and information about the current state, id, CPU Usage, and Memory is given by the dashboard.
Furthermore, each client is registered as a node, and it is possible to view the status of the client
through the ”Host / Cmd Line” column. The figure shows four clients that are currently idle. The
dashboard further gives the possibility to view logs and stack traces for each individual client and
for separate jobs and events.

Based on the information above, approach number 2) was selected as it was highly beneficial to
reduce the number of hardware resources needed for all the simulations to be executed on a single
laptop computer, as well as the added benefits of a dashboard to follow the progress of each client
when debugging execution times for clients timing out.

6.2 Experimental Setup

6.2.1 Environment

The experiments were run on a 64-bit single desktop computer (Lenovo Thinkpad X1 Carbon
G10) with a 4.7GHz 12th Gen Intel Core i7-1260P, 32GB DDR4 RAM, running EndeavourOS with
Hyprland on kernel 6.2.12-arch1-1. To run the experiments, Python was used with TensorFlow,
Keras, and Flower. An overview of the software used can be seen in Table 6, and the hardware
specifications can be seen in Table 7.

Table 6: Software used in the experimental setup

Software Version Usage
Linux Kernel 6.2.12-arch1-1 Operating System
Python 3.10 Implementation Language
TensorFlow 2.9.1 Machine Learning Framework
Keras 2.11.0 Machine Learning API
Flower 1.3.0 Federated Learning Framework
Matplotlib 3.7.1 Python plotting package

26

Table 7: Hardware used in the experimental setup

Hardware Version Additional Info
Laptop Model ThinkPad X1 Carbon Gen 10 Architecture x86 64
Processor 12th Gen Intel Core i7-1260P 12-core (4-mt/8-st)
RAM 32GB DDR4 3200 MT/s
GPU Intel Alder Lake-P Integrated Graphics Driver i1915
Operating System Endeavour Hyprland as Wayland compositor

6.2.2 Server

The server has an integral role in FL as it is responsible for coordinating clients, resources and
aggregating the model updates received from the clients.

Table 8: Overview of parameters

Parameter Value
Number of clients 100
Fraction fit 0.1
Fraction evaluate 0.1
Min fit clients 3
Min available clients 10
Proximal mu 0.1
Initial parameters {}

For each round of learning, the server has
several responsibilities. It has to train
the model and replace the previous global
model with the new and improved one.
Then it has to evaluate the model based
on the implementation of a given strategy
(such as the strategies utilized in Table 5).
Then it evaluates the model on a sample of
the available clients.

To validate the artifact’s effectiveness, the
algorithm was executed and validated with
seven different strategies listed in Table 5.
For the purpose of keeping the performance as equal as possible between the different strategies,
each strategy was given the same parameters as far as possible. A list of the parameters can be seen
in Table 8. The number of clients corresponds to the total amount of clients during the simulation.
It was set to 100 to enable a large pool of clients to simulate a semi-realistic application scenario
for IoT, where there generally are many such devices. The fraction fit, and fraction evaluate
parameters correspond to the fraction of clients used during training and evaluation, respectively.
They were set to 0.1 to select ten clients in each communication round. To ensure that there
always were enough available clients, that parameter was set to ten. All the aggregation strategies
used the same number of clients, fraction fit, faction evaluate, min fit clients, and min available
clients, but the proximal mu was only required in the FedProx strategy. Li et al. [33] stated that
finding the proximal mu may be difficult, but they provided a candidate set of {0.001, 0.01, 0.1,
1}. Because this thesis did not investigate the accuracy of the different strategies, 0.1 was chosen
randomly without testing the potential gains of the others on the datasets in the experiments. The
initial parameters were set to an empty configuration object, thus forcing the server to get the
initial parameters from the clients.

By default, Flower does not give the accuracy from each round of training. Therefore, each strategy
needed an aggregation function in order to get the communication round results. The framework
stored the accuracy for each client from each round of training. A weighted average function was
created to get the communication round accuracy by multiplying the accuracy of each client by
the number of examples used and was then saved.

The server was also responsible for initializing the FL and distributing the datasets to the clients.
An overview of the flow can be seen in Figure 9. During the initialization phase, the server checks
whether or not the datasets have been downloaded and are situated in the cache. Otherwise, they
are downloaded using the Keras API. Instead of giving each client the exact same replica of the
dataset, the server partitioned the data into 100 sub-partitions (equal to the number of clients)
and distributed the unique sub-partitions to each of the clients. As the data came from the same
datasets, it ensured that each client received consistent data in terms of features and samples and
in the exact same format. The only difference existed in the training data with corresponding
classification labels. When the initialization phase was finished, and every client had received their

27

Figure 9: Flow of Data Initialization

individual dataset, the server started orchestrating the communication rounds and trained a global
model by aggregating the individual results of the clients.

6.2.3 Clients

To simulate the time spent by clients through communication and computing, a timeout value was
given to each client where they waited during the fitting process. To ensure different values, but
not entirely random, these values were normally distributed with the Gaussian function, shown in
Equation 3.

f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ)2 (3)

The f(x) corresponds to the probability density where σ is the standard deviation and µ is the
mean. The function has its highest value at the mean and gets wider when the standard deviation
increases. The main benefit of the equation lies in the increased probability of it returning values
that are close to the mean.

From the experimental setup, there are 100 clients, where in each round, ten are sampled. To
simulate differences in training time between the different clients, each was given a timeout during
training following the normally distributed probability function as shown in Equation 3. Although
the values of the training time are not important in this setup, the value has to be large enough to
allow clients to finish training within a given timeout window. Through experiments, the timeout
was set to two to allow for a quick training time. IoT-devices may have huge varieties in hardware
specifications, leading to huge differences in performance in terms of learning time. Therefore,
a large standard deviation time was set to one, a standard deviation of 50% of the experienced
training time. Therefore, the sample training time of the clients resulted in being set to two seconds
with a standard deviation of one second.

It would be beneficial to test how the default algorithms perform under challenging timeout win-
dows. To find appropriate timeout values we construct a 90%-confidence interval with α = 0.1
where X̄ = 2, Z = 1.645, σ = 1 and n = 100. Here X̄ is the sample mean, Z is the z-score, σ is
the standard deviation, and n is the number of clients. To construct the confidence interval, we
need to find the lower and upper limits:

=
[
X̄ − Z × σ√

n
, X̄ + Z × σ√

n

]

=
[
2− 1.645× 1√

100
, 2 + 1.645× 1√

100

]

=
[
1.836, 2.164

]

28

We know that 90% of the clients will exide within the range 1.836 and 2.164. A visualization of
the client distribution can be seen in Figure 10.

Figure 10: Client normal distribution with mean 2

Figure 10 shows a histogram of an example distribution of how the client training times were
distributed during one of the simulations. This distribution was unique for each simulation but
followed the same probability function and would therefore give very similar visual results every
time. Each client’s time was categorized into 40 bins and then divided by the total number of
counts and the bin width to obtain the density. The corresponding probability density function
of the clients was drawn in red, which shows the expected normally distributed result. The lower
and upper limits of the 90%-confidence interval were also added to the figure. The lower limit is
visualized with an orange line, while the upper limit is shown with a green line.

6.2.4 Machine Learning Models

The FedDyt-algorithm was used in two experiments to evaluate its compatibility with existing FL
solutions and show its promise for future solutions. Keras’s load function was used to load the
relevant datasets before initializing the machine-learning models if these were not already initialized
on the server and the clients.

MNIST Dataset Experiment
This experiment used the MNIST dataset, which contains 10 features and 60,000 samples. Each
sample consists of 28x28 black-and-white images separated into 10 classes consisting of handwritten
digits. It is commonly used in FL and is an excellent dataset for testing basic classification
functionality.

The Sequential5 model from Keras was used with four layers where the first layer had input shape
(28, 28), the second layer was relu-activation, the third level contained a dropout of 0.2, and the

5https://keras.io/guides/sequential model

29

https://keras.io/guides/sequential_model

last layer was softmax-activation. The model was compiled with Adam as an optimizer with sparse
categorical cross-entropy as the loss function.

CIFAR-10 Dataset Experiment
The second experiment used the CIFAR-10 dataset, which also contains 10 features and 60,000
samples. Each sample consists of 32x32 color images in 10 classes, with 6000 images per class. It
is similar to the MNIST dataset as it also classifies the model with ten possible outcomes.

The EfficientNetB0 6 architecture from Keras was used with the input shape as (32, 32,3), no initial
weights, and 10 classes. This model was also compiled with Adam as an optimizer and with sparse
categorical cross-entropy as the loss function.

6.2.5 Evaluation of Performance

To evaluate the performance of Federated Dynamic Timeout Window (FedDyt), two Evaluation
Questions (EQs) were defined:

• EQ1: How does the communication success rate of FedDyt compare to the state-
of-the-art?

• EQ2: How does the efficiency of FedDyt compare to the state-of-the-art when
there are slow client outliers present?

The first EQ obtains information about how the artifact of this thesis, namely FedDyt, compares
to the stat-of-the-art in terms of communication success rate. As discussed in Section 5.2.2, the
communication success rate is a highly important metric as it directly measures the number of
successful clients for each communication round, and if FedDyt manages to outperform the existing
solutions it would be very beneficial. To measure the communication success rate it was necessary
to obtain some basic metrics first. Firstly, there had to be a baseline for how the state-of-the-
art performed under ideal conditions and where each client had unlimited time to finish training.
Secondly, there had to be results of how the state-of-the-art performed under sub-ideal conditions.
These conditions were described in Section 6.2.3, and gave insights into how FedDyt possibly
improved upon existing solutions in those conditions. The result of EQ1 is shown in Section 6.3.3.

The second EQ gives insights into how FedDyt compares to the state-of-the-art in terms of efficiency
when there are slow client outliers present in the FL-network. These client outliers are client devices
that spend an abnormally long time during training, which in synchronous FL without a timeout
window is highly consequential as described in Section 5.2.2. To investigate the efficiency of both
FedDyt and the state-of-the-art, the experiments were run on the MNIST datasets where one
percent of the clients were given a large timeout. The result of EQ2 is shown in Section 6.3.4

6.3 Experimental Results

6.3.1 Baseline

To obtain a baseline for optimal results, several FL-algorithms were run on the MNIST dataset
with standardized parameters, no client timeout, and unlimited time in each round. The simulation
consisted of 100 communication rounds between the clients and the server, where each client
performed two local epochs. The server randomly selected ten clients within each round.

The accuracy of the baseline can be seen in Figure 11 and the corresponding losses in Figure 12.
From the graphs, it is clear that the different strategies all converge towards a high accuracy of
around 97% and a loss of around 0.15%. In a practical scenario, this means that the global model
is able to correctly identify the handwritten digit 97 out of 100 times. In addition, it is clear that
there are no significant gains from further communication rounds after round 60.

6https://keras.io/api/applications/efficientnet

30

https://keras.io/api/applications/efficientnet

(a) FedAvg, FedAvgM, QFedAvg, FedOpt (b) FedProx, FedAdagrad, FedAdam, FedYogi

Figure 11: Baseline accuracy for MNIST dataset

(a) FedAvg, FedAvgM, QFedAvg, FedOpt (b) FedProx, FedAdagrad, FedAdam, FedYogi

Figure 12: Baseline losses for MNIST dataset

31

6.3.2 Performance with Clients Timing Out

After knowing how several algorithms perform under ideal conditions and with unlimited time,
it is worth investigating the performance when clients cannot finish training within a given time
window. From the experimental setup, we know that the clients are normally distributed with a
mean of two seconds. We can use the constructed confidence intervals to investigate the effect of a
given percentage of clients within that given timeout window. From the obtained results from the
baseline experiments, it was apparent that the algorithms stagnated at a high accuracy and low
loss after around 60 communication rounds. To limit the total training time for each strategy, the
rest of the results were run for 60 communication rounds.

Lower Bound Timeout Window
From Section 6.2.3, we know that by setting the timeout window to 1.836 seconds it will exclude
approximately 95% of the clients due to them taking too long during the training phase. The
results can be seen in Figure 13a.

From the graph, it is clear that several disadvantages have been introduced to the overall efficiency
of the learning network. The most prominent is the number of successful communication rounds.
Out of the 60 communication rounds, the most successful rounds reported were 30 from the FedAvg
strategy, and the least successful being FedAdam with only five. This means that the efficiency
of the network in terms of successful rounds went from 100% down to the range [8.3%, 50%]. It is
apparent that QFedAvg (the green line in Figure 13a) got stuck in the accuracy range [76%, 85%],
and also managed to complete all 60 communication rounds of learning. It is unknown why it got
stuck in this accuracy loop without failing any communication rounds.

Mean Timeout Window
It was valuable to view how the algorithms performed when the timeout window was the same as
the client distribution mean of two seconds. In theory, this would lead to approximately half of
the clients finishing training within the given time window and the other half using too much time.
The result can be seen in Figure 13b.

From the graph, it is apparent that in terms of successful communication rounds, there is a sig-
nificant improvement from the results of the lower bound timeout window. First and foremost,
five out of the seven strategies managed to have more than 90% successful communication rounds.
While FedAdagrad and FedAdam only had 20 and 40 successful rounds, respectively. It is apparent
that FedAvgM (the orange line in Figure 13b) got stuck in the accuracy range [76%, 85%], and
also managed to complete all 60 communication rounds of learning. This is the exact same range
that happened with QFedAvg for the lower bound timeout window experiment.

Upper Bound Timeout Window
The higher bound was set to 2.164, as this number will include 95% of the available clients. The
results can be seen in Figure 13c. The graph shows that almost all the strategies managed to
complete close to all 60 communication rounds, with only a few failed ones. From the graph, it is
apparent that QFedAvg and FedAvgM both did not gain much accuracy from each communication
round, as a linear fit of their accuracy gives almost a constant accuracy. The best and worst
accuracy range is similar to the outliers of the lower and mean timeout window experiments,
which also included the same two FL-strategies.

To summarize the findings for when clients are timing out. When a large number of clients are
timing out, the efficiency of the FL-network substantially deteriorates as there is a very high degree
of unsuccessful communication rounds between the server and the clients. In the experimental
setup, the communication between the server and the clients is close to instantaneous, as the
clients are run as processes on a single computer rather than distributed over large distances,
as in a real-life scenario. The cost of communication in FL is very expensive [68] in the practical
applications where the client devices are widely spread apart, such as for IoT. Therefore, when more
than half of the communication rounds are unsuccessful, it is a lot of wasted bandwidth, energy,
time, and resources spent on both the server and client devices. When a significant portion of the
clients (more than half) manages to finish training, the results quickly improve. The server receives
enough results each communication round to aggregate them into the global model successfully.

32

(a) Lower Bound Timeout Window (b) Mean Timeout Window

(c) Upper Bound Timeout Window

Figure 13: Accuracy vs. Communication Rounds when Clients Time Out

33

Table 9: Overview of results when clients are timing out. s - number of successful rounds.

Strategy s - lower bound s - mean s - upper bound
FedAvg 27 55 60
FedAvgM 19 60 60
QFedAvg 60 60 60
FedOpt 17 60 57
FedProx - 60 60
FedAdagrad 6 21 60
FedAdam 4 40 56
FedYogi 1 60 60

An overview of the number of successful rounds under the different timeout conditions lower, mean
and upper can be seen in Table 9. From the table, it is clear that the strategies performed poorly
in the lowest conditions when there were a lot of clients timing out. It significantly improved when
the timeout window was set to match the expected timeout of the clients, as it resulted in a lot
of clients being able to finish training, thus giving results to be aggregated to the global model.
Finally, the number of successful rounds was close to 100% when the timeout window was set to
include most of the clients for each round of learning.

6.3.3 How does the communication success rate of FedDyt compare to the state-of-
the-art?

To induce a scenario where clients were bound to time out, the initial timeout window was set to
0.1s while the clients followed the same distribution as described in Section 6.2.3. For each round,
the number of successful and unsuccessful clients was reported by the server during the evaluation
phase of the communication round. After these values were reported, the number of successful and
unsuccessful clients, together with the desired limits and adjustments, were sent to the FedDyt
algorithm. The algorithm’s output could then be used to dynamically update the timeout window
for each communication round as described in Section 6.1.1. Applying FedDyt to the FL-network
with the eight different synchronous aggregation strategies gave the corresponding accuracies and
losses, which can be seen in Figure 14.

(a) Accuracy vs. Communication Rounds (b) Losses vs. Communication Rounds

Figure 14: Accuracy and Loss with Dynamic Timeout Window

34

There were significant improvements by utilizing FedDyt on clients with the same distribution as
mentioned in Section 6.2.3. In the worst case, as few as only one or no communication rounds were
successful when many clients were timing out. FedDyt managed to push the timeout window such
that most of these clients managed to finish training before the communication between them and
the server was shut down.

In practice, this led to more clients being able to contribute to each round of learning, which in
turn led to a decrease in the relative cost of communication and an increase in overall fairness. As
the experiments were IID, there were not a lot of accuracy gains since the clients all have data
from the same dataset with the same features. If the experiments were IID, it probably would
have led to accuracy gains since the aggregation from the different clients would have been more
beneficial.

Figure 15: Accuracy vs Communication Rounds - CIFAR-10

To further validate the effectiveness of FedDyt, the algorithm was implemented alongside the
CIFAR-10 dataset. The experiment was run for twenty communication rounds on all aggregation
strategies, and the results can be seen in Figure 15. The figure shows that FedDyt used the
first ten communication rounds to dynamically find a timeout window which allowed the clients
to finish training within the deadline before timing out. The accuracy of the global model kept
increasing during the later rounds after finding an optimal timeout window for every strategy
except FedAdam and FedAdagrad. It is unknown why their accuracy was stuck at 0.1 with only
minor adjustments for each round of learning. However, FedDyt performed as expected on these
aggregation strategies as it managed to find a proper timeout window for all of the strategies.

To summarize, the performance of the dynamic timeout window algorithm outperforms the state-
of-the-art when there are clients that time out in the experimental setup. FedDyt used six com-
munication rounds in the MNIST experiment and ten communication rounds in the CIFAR-10
experiment to dynamically find a timeout window to allow clients to finish training. All of the
strategies were able to perform to the same degree as when they were allowed to run with unlimited
time under ideal conditions.

35

6.3.4 How does the efficiency of FedDyt compare to the state-of-the-art when there
are slow client outliers present?

As shown in Section 6.3.3, the accuracy matches the state-of-the-art running under ideal condi-
tions when implementing FedDyt alongside the various FL-strategies. However, it does not show
the differences in the time spent learning especially in case when there exists outliers within the
network. An outlier in this case meant a client who used a significantly longer time during learning.
Thus making the entire network more inefficient as both the other clients and the server has to
wait for that one client.

To illustrate this scenario, 1% of the clients were randomly given an additional 300 seconds during
the learning step. The experiments were run ten times with ten communication rounds and then
averaged in order to get a general result. The results can be seen in Figure 16.

Fe
dD
yt

Fe
dA
vg

Fe
dA
vg
M

Q
Fe
dA
vg

Fe
dO
pt

Fe
dP
ro
x

Fe
dA
da
gr
ad

Fe
dA
da
m

Fe
dY
og
i

0

200

400

600

800

T
im

e
(t
)

Figure 16: Efficiency of FedDyt compared to synchronous strategies with outliers

The reason that the synchronous protocols in the simulation cannot match FedDyt was that the
global servers were waiting for the outlier to return the model update before all the updates were
aggregated. From Figure 16 it is clear that in this experiment, the value of 300 seconds was almost
added flat onto the value of FedDyt as the likelihood of the network having an outlier was 1%, and
by selecting ten random clients out of a pool of 100 clients would mean that on average one round
would be delayed by the outlier’s amount. If, for some reason, there exists an outlier in each round
of training, this would result in each round taking 300 seconds longer and resulting in ten rounds
of learning being finished in a minimum of 3000 seconds.

The average of the eight synchronous protocols (FedAvg, FedAvgM, QFedAvg, FedOpt, FedProx,
FedAdagrad, FedAdam, FedYogi) was 391 seconds, compared to the result of FedDyt which was
78 seconds. It is worth noting that FedAdagrad used 50% longer than the other synchronous
protocols, and FedProx used 25% less time. This is due to the fact that the amount of slow client
outliers were randomly assigned to 1% of the client population, and for each round of learning, 10%
of the clients were randomly selected from the total amount of 100 clients. Therefore, during the
aforementioned simulations, the slow client outliers appeared less and more frequently simply by
chance. Thus, implementing FedDyt resulted in significantly improved results as it outperformed
the state-of-the-art with a multiple of five in this experiment.

36

7 Discussion

This section will discuss the experimental results from Section 6, compare the results to related
work, discuss implications to industry and academia, and address threats to validity.

7.1 Comparison to Related Work

Although FedDyt managed to answer the main RQ of this thesis ”How can we improve the
communication success rate and minimize slow client outlier’s impact on learning
efficiency in Federated Learning with Independent and Identically Distributed (IID)
data?” by managing to dynamically set the timeout window to reduce the effect of clients timing
out in regards to communication success rate and in terms of efficiency when facing slow client
outliers.

However, this thesis was not the first effort put into researching and minimizing the effect of clients
timing out in FL. It was the main topic for the related work, but this thesis and the related work
differ mainly in regard to the abstraction layer and the overall complexity.

7.1.1 Abstraction Layer

FedDyt differed from the related work through its abstraction from existing and future solutions. It
enables it to be implemented alongside other solutions. Whereas the related work is not possible to
integrate with other solutions necessarily. For instance, asynchronous FL [11, 74, 71] alters the flow
between the clients and the server, and it would not be possible to utilize synchronous aggregation
protocols alongside it. Similarly, with secure aggregation protocols [5, 6, 7, 12, 28, 38, 66, 65], it
would not be possible to combine it with existing solutions as it altered how the results from each
client should be securely aggregated to form a global model.

7.1.2 Complexity

Another large difference between FedDyt and the related work is the difference in complexity
between the solutions. Complexity is not, by default, a bad thing. However, when implementing
large neural networks between a multitude of clients with many moving parts, adding to this
complexity can quickly become difficult to maintain, troubleshoot and improve. Therefore, FedDyt
outperforms the related work in terms of complexity, where the solution may easily be implemented
alongside existing work.

7.2 Possible Applications

FL has seen a lot of promising domains for possible applications such as within recommender
systems, smart cities and autonomous industry, Natural Language Processing (NLP), edge com-
puting, and IoT. A complete figure of the taxonomy with corresponding subdomains can be seen in
Appendix B. Within certain domains, such as healthcare, biomedical and industrial, the developers
generally know the hardware specifications of the clients who are going to perform the learning.

The algorithm created and tested in this thesis, FedDyt, is very well suited for application domains
where there are large variations between the clients in terms of either network speed or connectivity,
hardware performance, or any factor which contributes to an increase the total time a client spends
from receiving the initial model to returning the computed model update. As discussed in Section
4.2, when there are large differences in the time which the client uses, it leads to stragglers who
are left behind and slows the entire communication round as the server is waiting for all the clients
before updating the responds synchronously to the global model.

37

Therefore, a very well-suited application domain for FedDyt is the growing domain in IoT. This
domain encompasses millions of devices that coexist with large heterogeneity both in terms of
hardware specifications, network, and possible datasets. Some clients are guaranteed to be signifi-
cantly slower than others due to these differences, making the algorithm very well-suited for this
domain.

7.3 Implications to Industry

While Federated Dynamic Timeout Window (FedDyt) is not ready to be deployed to real-life
applications in the industry, the artifact showed promising results through the experimental results.
Before being deployed to the industry, it has to be tested in a more well-suited environment
than a simulated FL network on a single computer. The simulated FL network lacks several of
the properties of a real-world environment, such as encryption, transportation time, connection
dropouts, and timeout (from hardware limitations instead of simulated), to name a few.

One of the main benefits of the artifact lies in the abstraction layer from other solutions. Instead
of being a specific aggregation protocol or similar FL-specific algorithm, it is possible to implement
alongside other protocols as a stand-alone improvement. This abstraction is highly beneficial to the
industry as it is not dependent on their current or future infrastructure or solution. Furthermore,
due to its low complexity, it would not require too much work to implement alongside its solution.
Thus, making it relatively simple to test in their use cases and possibly remove if not bringing
beneficial results.

Another valuable benefit of the artifact is that FedDyt finds a timeout window that meats the
threshold the developer sets (if not choosing the default intervals). The industry can use this
feature to find a timeout window for their environment and then utilize that window without
further using the artifact.

7.4 Implications to Academia

The experimental results showed that successfully adjusting the timeout window such that enough
clients managed to finish training led to a substantial increase in successful communication rounds
of learning. The effect of this meant that the communication costs decreased as there were fewer
communication rounds wasted rounds. Although this is beneficial in itself, the corresponding
results in accuracy between the ideal scenario and the worst-case scenario were not too different.
This is due to using IID data in the experiments, where each client has very similar data with
identical features. Therefore, if a low percentage of clients finish training, those results will still
be highly beneficial to the entire pool of clients as the results are directly transferable. Therefore
research into the effects of FedDyt with Non-IID data should be conducted.

Although FedDyt was designed with IoT-devices in mind, as it is a field with large differences
in hardware specification, further studies should be performed exploring the different application
areas where these differences exist.

As mentioned in Section 7.3, more work has to be conducted to test the practical applications of
FedDyt in a real-life scenario. Researchers should therefore implement and study the impact of
dynamic timeout window in a realistic setup. For instance, by implementing the client devices on
IoT devices and performing several aggregation strategies on a separate server.

7.5 Threats to Validity

For any research, it is paramount to threats to validity. If the research does not have high validity it
corresponds that it does not produce results that correspond to actual properties and characteristics
in the real-world. Section 7.5.1 explains the threats to internal validities, while Section 7.5.2 the
threats to the external validities

38

7.5.1 Internal Validity

One assumption made during the experimental setup is that the clients are normally distributed.
This assumption implies that the time spent to train a local model is symmetrically distributed
with little to no skew. This assumption was made because the researcher could not find any
scientific research on the distribution of IoT-devices. If the clients in a real-world scenario have
another distribution, it will undoubtedly lead to different results. One possible scenario is that a
large portion of the clients are much slower than the rest; perhaps they never even finish training.
In this scenario, FedDyt will, for each communication round, dynamically increase the timeout
window until a satisfactory amount of clients are included, which might be a considerable number
or never happen.

The thesis utilized the Flower framework for conducting the experiments as it would require too
much time to set up the entire real-world infrastructure. It certainly gave a lot of benefits in
terms of getting the infrastructure up quickly to start testing several strategies. However, it
might have brought a selection bias into the selection of FL aggregation strategies as all of the
tested strategies were chosen out of the available pool included in the framework. All of these
strategies were synchronous, which is relevant for most of the existing solutions, but it would be
more appropriate to include other types of strategies, such as asynchronous. The framework’s
infrastructure was built with synchronous strategies in mind, and therefore not possible to utilize
other types without building most of it from scratch. The student did therefore omit strategies
other than synchronous ones.

All the research and experiments were conducted by a single student during one semester. Therefore
it is a probability of biases and mistakes in all stages of the process. For instance, during the process
of finding related work and existing solutions to the problem, information may have been overlooked
or misinterpreted. A more robust approach would have been to utilize one or more researchers to
conduct the same research in parallel and then validate the results.

7.5.2 External Validity

The experiments performed in this thesis use the MNIST and CIFAR-10 datasets, which are
great for machine learning classification. As these are divided into equal parts and distributed
to the clients, it means that each client contains very similar data and an identical number of
samples which implies that they are Independent and Identically Distributed (IID). In real-world
IoT-applications, the datasets are seldom IID, and it is a large reason why most of the previous
work focuses on solving the Non-IID issues in FL. A more realistic approach would be to find
datasets that simulate these differences and distribute those to the clients. Nonetheless, as the
main benefit of the artifact of this thesis lies in its ability to be implemented alongside existing and
new strategies, it still brings novelty and possible benefits to future improvements, which improves
upon the challenge.

This thesis also assumes that FL is a rising methodology within machine learning that will largely
increase in the future. At the time of writing, when entering the search term ”Federated Learning”
into Google Scholar, about 17.000 results are being shown from the last year, which indicates that
a lot of research and interest is being conveyed on the topic. Still, there are very few practical and
successful applications in real life at the time of writing. One such application is Google’s GBoard
next word prediction algorithm [59]. Therefore, the value of the artifact and its novelty depends
on how the future manages to adopt FL on a much larger scale.

39

8 Conclusion and Future Work

This thesis presented a novel algorithm for setting a dynamic timeout window in FL, named
Federated Dynamic Timeout Window (FedDyt). The main benefit of the algorithm is that it
finds an appropriate timeout window to be able to include clients without sacrificing efficiency in
terms of time. A proof of concept was implemented to prove its effectiveness on eight existing
strategies. The experimental results firstly found a baseline for how the strategies performed in an
ideal scenario with unlimited time, then the efficiency when there were various degrees of clients
timing out, and lastly compared it when applying FedDyt.

The experimental results showed that when applying the algorithm in scenarios where the state-
of-the-art struggles due to client timing out, the efficiency of the network returns to the optimal
accuracy only after spending a few rounds to find the timeout window. Furthermore, in the
existence of slow client outliers, FedDyt drastically improved the efficiency compared to the state-
of-the-art synchronous protocols without a timeout window. Instead of waiting for the slow outlier
to finish training before aggregating the local result into the global model, FedDyt adjusted the
timeout window to exclude the outliers, which resulted in an improvement in efficiency directly
proportional to the time spent by the slow client.

Another benefit of FedDyt is its abstraction to other FL strategies and protocols while having
a low complexity of implementation, making it possible to implement alongside other solutions
efficiently. This makes it valuable for applications where the developers do not know how much
time each client device spends during training and can utilize the dynamic timeout window to get
a more efficient learning network. Furthermore, the developers do not need to use the dynamic
timeout window on every run of the FL-network but run it once to find a suitable timeout window
to be used on further experiments.

While the experimental results showed that applying FedDyt to existing algorithms is possible,
there are still many possible future directions both for development and verification. Firstly, it
would be very beneficial to view how it performs in a more realistic scenario with either Non-IID
data or on actual distributed IoT-devices. Furthermore, already existing solutions claim that one
of the limitations is having to set the timeout window manually for their clients. It would be
beneficial to see how FedDyt performs in junction with those solutions [33].

The FedDyt-algorithm functions as a proof-of-concept, and there are a lot of uncertainties re-
garding the best limits and adjustments of the dynamic timeout window. For instance, a deeper
convergence analysis of what the best adjustments towards an optimal upper limit within the nor-
mal distribution of clients would be highly beneficial; if normal distribution even is the correct
distribution for IoT-devices.

40

Bibliography

[1] CIFAR-10 and CIFAR-100 datasets, . URL https://www.cs.toronto.edu/∼kriz/cifar.html.

[2] MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges, . URL
http://yann.lecun.com/exdb/mnist/.

[3] S. Abdulrahman, H. Tout, A. Mourad, and C. Talhi. FedMCCS: Multicriteria Client Selection
Model for Optimal IoT Federated Learning. IEEE Internet of Things Journal, 8(6):4723–
4735, Mar. 2021. ISSN 2327-4662. doi: 10.1109/JIOT.2020.3028742. Conference Name: IEEE
Internet of Things Journal.

[4] W. J. Baumol. Welfare Economics and the Theory of the State. In C. K. Rowley and
F. Schneider, editors, The Encyclopedia of Public Choice, pages 937–940. Springer US, Boston,
MA, 2004. ISBN 978-0-306-47828-4. doi: 10.1007/978-0-306-47828-4 214. URL https://doi.
org/10.1007/978-0-306-47828-4 214.

[5] C. Beguier, M. Andreux, and E. W. Tramel. Efficient Sparse Secure Aggregation for Federated
Learning, Oct. 2021. URL http://arxiv.org/abs/2007.14861. arXiv:2007.14861 [cs, stat].

[6] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova. Secure Single-Server
Aggregation with (Poly)Logarithmic Overhead. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’20, pages 1253–1269, New
York, NY, USA, Nov. 2020. Association for Computing Machinery. ISBN 978-1-4503-7089-9.
doi: 10.1145/3372297.3417885. URL https://doi.org/10.1145/3372297.3417885.

[7] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ram-
age, A. Segal, and K. Seth. Practical Secure Aggregation for Privacy-Preserving Machine
Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’17, pages 1175–1191, New York, NY, USA, Oct. 2017. Association
for Computing Machinery. ISBN 978-1-4503-4946-8. doi: 10.1145/3133956.3133982. URL
https://doi.org/10.1145/3133956.3133982.

[8] N. Bouacida, J. Hou, H. Zang, and X. Liu. Adaptive Federated Dropout: Improving
Communication Efficiency and Generalization for Federated Learning, Nov. 2020. URL
http://arxiv.org/abs/2011.04050. arXiv:2011.04050 [cs].

[9] M. Chen, B. Mao, and T. Ma. Efficient and Robust Asynchronous Federated Learning with
Stragglers. Dec. 2019. URL https://openreview.net/forum?id=B1lL9grYDS.

[10] T. Chen, G. Giannakis, T. Sun, and W. Yin. LAG: Lazily Aggregated Gradient for
Communication-Efficient Distributed Learning. In Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper/2018/hash/feecee9f1643651799ede2740927317a-Abstract.html.

[11] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala. Asynchronous Online Federated Learning
for Edge Devices with Non-IID Data. In 2020 IEEE International Conference on Big Data
(Big Data), pages 15–24, Dec. 2020. doi: 10.1109/BigData50022.2020.9378161.

[12] B. Choi, J.-y. Sohn, D.-J. Han, and J. Moon. Communication-Computation Efficient Se-
cure Aggregation for Federated Learning, July 2021. URL http://arxiv.org/abs/2012.05433.
arXiv:2012.05433 [cs, math].

[13] T. Coughlin. IoT trends to keep an eye on in 2023 and beyond | TechTarget. URL https:
//www.techtarget.com/iotagenda/opinion/IoT-trends-to-keep-an-eye-on.

[14] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma. A survey on ensemble learning. Frontiers of Com-
puter Science, 14(2):241–258, Apr. 2020. ISSN 2095-2236. doi: 10.1007/s11704-019-8208-z.
URL https://doi.org/10.1007/s11704-019-8208-z.

[15] I. El Naqa and M. J. Murphy. What Is Machine Learning? In I. El Naqa, R. Li, and
M. J. Murphy, editors, Machine Learning in Radiation Oncology: Theory and Applications,
pages 3–11. Springer International Publishing, Cham, 2015. ISBN 978-3-319-18305-3. doi:
10.1007/978-3-319-18305-3 1. URL https://doi.org/10.1007/978-3-319-18305-3 1.

41

https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-0-306-47828-4_214
https://doi.org/10.1007/978-0-306-47828-4_214
http://arxiv.org/abs/2007.14861
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3133956.3133982
http://arxiv.org/abs/2011.04050
https://openreview.net/forum?id=B1lL9grYDS
https://proceedings.neurips.cc/paper/2018/hash/feecee9f1643651799ede2740927317a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/feecee9f1643651799ede2740927317a-Abstract.html
http://arxiv.org/abs/2012.05433
https://www.techtarget.com/iotagenda/opinion/IoT-trends-to-keep-an-eye-on
https://www.techtarget.com/iotagenda/opinion/IoT-trends-to-keep-an-eye-on
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1007/978-3-319-18305-3_1

[16] M. Feldman. Computational Fairness: Preventing Machine-Learned Discrimination. Thesis,
2015. URL https://scholarship.tricolib.brynmawr.edu/handle/10066/17628. Accepted: 2016-01-
19T17:37:36Z.

[17] Y. Fraboni, R. Vidal, and M. Lorenzi. Free-rider Attacks on Model Aggregation in Feder-
ated Learning. In Proceedings of The 24th International Conference on Artificial Intelligence
and Statistics, pages 1846–1854. PMLR, Mar. 2021. URL https://proceedings.mlr.press/v130/
fraboni21a.html. ISSN: 2640-3498.

[18] R. Hardin and G. Cullity. The Free Rider Problem. In E. N. Zalta, editor, The Stanford En-
cyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2020 edition,
2020. URL https://plato.stanford.edu/archives/win2020/entries/free-rider/.

[19] P. Harrington. Machine Learning in Action. Simon and Schuster, Apr. 2012. ISBN 978-1-
63835-245-7. Google-Books-ID: XTozEAAAQBAJ.

[20] S. Horváth, S. Laskaridis, M. Almeida, I. Leontiadis, S. Venieris, and N. Lane.
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered
Dropout. In Advances in Neural Information Processing Systems, volume 34, pages 12876–
12889. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
6aed000af86a084f9cb0264161e29dd3-Abstract.html.

[21] M. Hosseinzadeh, N. Hudson, S. Heshmati, and H. Khamfroush. Communication-Loss Trade-
Off in Federated Learning: A Distributed Client Selection Algorithm. In 2022 IEEE 19th
Annual Consumer Communications & Networking Conference (CCNC), pages 1–6, Jan. 2022.
doi: 10.1109/CCNC49033.2022.9700601. ISSN: 2331-9860.

[22] T.-M. H. Hsu, H. Qi, and M. Brown. Measuring the Effects of Non-Identical Data Distri-
bution for Federated Visual Classification, Sept. 2019. URL http://arxiv.org/abs/1909.06335.
arXiv:1909.06335 [cs, stat].

[23] C. Hu, J. Jiang, and Z. Wang. Decentralized Federated Learning: A Segmented Gossip
Approach, Aug. 2019. URL http://arxiv.org/abs/1908.07782. arXiv:1908.07782 [cs, stat].

[24] T. Huang, W. Lin, W. Wu, L. He, K. Li, and A. Y. Zomaya. An Efficiency-Boosting Client
Selection Scheme for Federated Learning With Fairness Guarantee. IEEE Transactions on
Parallel and Distributed Systems, 32(7):1552–1564, July 2021. ISSN 1558-2183. doi: 10.
1109/TPDS.2020.3040887. Conference Name: IEEE Transactions on Parallel and Distributed
Systems.

[25] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini. A Survey on Federated Learning
for Resource-Constrained IoT Devices. IEEE Internet of Things Journal, 9(1):1–24, Jan.
2022. ISSN 2327-4662. doi: 10.1109/JIOT.2021.3095077. Conference Name: IEEE Internet
of Things Journal.

[26] T. Jahani-Nezhad, M. A. Maddah-Ali, S. Li, and G. Caire. SwiftAgg+: Achieving Asymp-
totically Optimal Communication Loads in Secure Aggregation for Federated Learning, Sept.
2022. URL http://arxiv.org/abs/2203.13060. arXiv:2203.13060 [cs, math].

[27] Y. Jee Cho, S. Gupta, G. Joshi, and O. Yağan. Bandit-based Communication-Efficient Client
Selection Strategies for Federated Learning. In 2020 54th Asilomar Conference on Signals,
Systems, and Computers, pages 1066–1069, Nov. 2020. doi: 10.1109/IEEECONF51394.2020.
9443523. ISSN: 2576-2303.

[28] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran. FastSecAgg: Scalable
Secure Aggregation for Privacy-Preserving Federated Learning, Sept. 2020. URL http://arxiv.
org/abs/2009.11248. arXiv:2009.11248 [cs, math, stat].

[29] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement Learning: A Survey. Journal
of Artificial Intelligence Research, 4:237–285, May 1996. ISSN 1076-9757. doi: 10.1613/jair.
301. URL https://www.jair.org/index.php/jair/article/view/10166.

42

https://scholarship.tricolib.brynmawr.edu/handle/10066/17628
https://proceedings.mlr.press/v130/fraboni21a.html
https://proceedings.mlr.press/v130/fraboni21a.html
https://plato.stanford.edu/archives/win2020/entries/free-rider/
https://proceedings.neurips.cc/paper/2021/hash/6aed000af86a084f9cb0264161e29dd3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6aed000af86a084f9cb0264161e29dd3-Abstract.html
http://arxiv.org/abs/1909.06335
http://arxiv.org/abs/1908.07782
http://arxiv.org/abs/2203.13060
http://arxiv.org/abs/2009.11248
http://arxiv.org/abs/2009.11248
https://www.jair.org/index.php/jair/article/view/10166

[30] C. Kingsford and S. L. Salzberg. What are decision trees? Nature Biotechnology, 26(9):1011–
1013, Sept. 2008. ISSN 1546-1696. doi: 10.1038/nbt0908-1011. URL https://www.nature.
com/articles/nbt0908-1011. Number: 9 Publisher: Nature Publishing Group.

[31] H. Ko, J. Lee, S. Seo, S. Pack, and V. C. M. Leung. Joint Client Selection and Bandwidth
Allocation Algorithm for Federated Learning. IEEE Transactions on Mobile Computing, pages
1–1, 2021. ISSN 1558-0660. doi: 10.1109/TMC.2021.3136611. Conference Name: IEEE
Transactions on Mobile Computing.

[32] Q. Li, C. Thapa, L. Ong, Y. Zheng, H. Ma, S. A. Camtepe, A. Fu, and Y. Gao. Vertical
Federated Learning: Taxonomies, Threats, and Prospects, Feb. 2023. URL http://arxiv.org/
abs/2302.01550. arXiv:2302.01550 [cs].

[33] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated Op-
timization in Heterogeneous Networks, Apr. 2020. URL http://arxiv.org/abs/1812.06127.
arXiv:1812.06127 [cs, stat].

[34] T. Li, M. Sanjabi, A. Beirami, and V. Smith. Fair Resource Allocation in Federated Learning,
Feb. 2020. URL http://arxiv.org/abs/1905.10497. arXiv:1905.10497 [cs, stat].

[35] Z. Li, Y. He, H. Yu, J. Kang, X. Li, Z. Xu, and D. Niyato. Data Heterogeneity-Robust
Federated Learning via Group Client Selection in Industrial IoT. IEEE Internet of Things
Journal, 9(18):17844–17857, Sept. 2022. ISSN 2327-4662. doi: 10.1109/JIOT.2022.3161943.
Conference Name: IEEE Internet of Things Journal.

[36] J. Lin, M. Du, and J. Liu. Free-riders in Federated Learning: Attacks and Defenses, Nov.
2019. URL http://arxiv.org/abs/1911.12560. arXiv:1911.12560 [cs, stat].

[37] W. Lin, Y. Xu, B. Liu, D. Li, T. Huang, and F. Shi. Contribution-based Federated Learning
client selection. International Journal of Intelligent Systems, 37(10):7235–7260, 2022. ISSN
1098-111X. doi: 10.1002/int.22879. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/int.
22879. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.22879.

[38] Z. Liu, J. Guo, K.-Y. Lam, and J. Zhao. Efficient Dropout-resilient Aggregation for Privacy-
preserving Machine Learning. IEEE Transactions on Information Forensics and Security,
pages 1–1, 2022. ISSN 1556-6021. doi: 10.1109/TIFS.2022.3163592. Conference Name: IEEE
Transactions on Information Forensics and Security.

[39] J. Lopez, R. Rios, F. Bao, and G. Wang. Evolving privacy: From sensors to the Inter-
net of Things. Future Generation Computer Systems, 75:46–57, Oct. 2017. ISSN 0167-
739X. doi: 10.1016/j.future.2017.04.045. URL https://www.sciencedirect.com/science/article/
pii/S0167739X16306719.

[40] J. Ma, X. Sun, W. Xia, X. Wang, X. Chen, and H. Zhu. Client Selection Based on Label
Quantity Information for Federated Learning. In 2021 IEEE 32nd Annual International Sym-
posium on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 1–6, Sept.
2021. doi: 10.1109/PIMRC50174.2021.9569487. ISSN: 2166-9589.

[41] X. Ma, J. Zhu, Z. Lin, S. Chen, and Y. Qin. A state-of-the-art survey on solving non-IID data
in Federated Learning. Future Generation Computer Systems, 135:244–258, Oct. 2022. ISSN
0167-739X. doi: 10.1016/j.future.2022.05.003. URL https://www.sciencedirect.com/science/
article/pii/S0167739X22001686.

[42] T. S. Madhulatha. An Overview on Clustering Methods, May 2012. URL http://arxiv.org/
abs/1205.1117. arXiv:1205.1117 [cs].

[43] V. S. Mai, R. J. La, and T. Zhang. Federated Learning with Server Learning: En-
hancing Performance for Non-IID Data, Apr. 2023. URL http://arxiv.org/abs/2210.02614.
arXiv:2210.02614 [cs, math].

[44] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, pages 1273–1282. PMLR,
Apr. 2017. URL https://proceedings.mlr.press/v54/mcmahan17a.html. ISSN: 2640-3498.

43

https://www.nature.com/articles/nbt0908-1011
https://www.nature.com/articles/nbt0908-1011
http://arxiv.org/abs/2302.01550
http://arxiv.org/abs/2302.01550
http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1905.10497
http://arxiv.org/abs/1911.12560
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22879
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22879
https://www.sciencedirect.com/science/article/pii/S0167739X16306719
https://www.sciencedirect.com/science/article/pii/S0167739X16306719
https://www.sciencedirect.com/science/article/pii/S0167739X22001686
https://www.sciencedirect.com/science/article/pii/S0167739X22001686
http://arxiv.org/abs/1205.1117
http://arxiv.org/abs/1205.1117
http://arxiv.org/abs/2210.02614
https://proceedings.mlr.press/v54/mcmahan17a.html

[45] J. Mori, I. Teranishi, and R. Furukawa. Continual Horizontal Federated Learning for Heteroge-
neous Data. In 2022 International Joint Conference on Neural Networks (IJCNN), pages 1–8,
July 2022. doi: 10.1109/IJCNN55064.2022.9892815. URL http://arxiv.org/abs/2203.02108.
arXiv:2203.02108 [cs].

[46] T. Nishio and R. Yonetani. Client Selection for Federated Learning with Heterogeneous Re-
sources in Mobile Edge. In ICC 2019 - 2019 IEEE International Conference on Communica-
tions (ICC), pages 1–7, May 2019. doi: 10.1109/ICC.2019.8761315. ISSN: 1938-1883.

[47] W. S. Noble. What is a support vector machine? Nature Biotechnology, 24(12):1565–1567,
Dec. 2006. ISSN 1546-1696. doi: 10.1038/nbt1206-1565. URL https://www.nature.com/
articles/nbt1206-1565. Number: 12 Publisher: Nature Publishing Group.

[48] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee. A Design Science Research
Methodology for Information Systems Research, 2008. URL https://www.tandfonline.com/
doi/epdf/10.2753/MIS0742-1222240302?needAccess=true&role=button.

[49] P. Pinyoanuntapong, W. H. Huff, M. Lee, C. Chen, and P. Wang. Toward Scalable and
Robust AIoT via Decentralized Federated Learning. IEEE Internet of Things Magazine, 5
(1):30–35, Mar. 2022. ISSN 2576-3180, 2576-3199. doi: 10.1109/IOTM.006.2100216. URL
https://ieeexplore.ieee.org/document/9773089/.

[50] Prayitno, C.-R. Shyu, K. T. Putra, H.-C. Chen, Y.-Y. Tsai, K. S. M. T. Hossain, W. Jiang,
and Z.-Y. Shae. A Systematic Review of Federated Learning in the Healthcare Area: From
the Perspective of Data Properties and Applications. Applied Sciences, 11(23):11191, Jan.
2021. ISSN 2076-3417. doi: 10.3390/app112311191. URL https://www.mdpi.com/2076-3417/
11/23/11191. Number: 23 Publisher: Multidisciplinary Digital Publishing Institute.

[51] Z. Qu, R. Duan, L. Chen, J. Xu, Z. Lu, and Y. Liu. Context-Aware Online Client Selection
for Hierarchical Federated Learning. IEEE Transactions on Parallel and Distributed Systems,
33(12):4353–4367, Dec. 2022. ISSN 1558-2183. doi: 10.1109/TPDS.2022.3186960. Conference
Name: IEEE Transactions on Parallel and Distributed Systems.

[52] S. Rai, A. Kumari, and D. K. Prasad. Client Selection in Federated Learning under Imperfec-
tions in Environment. AI, 3(1):124–145, Mar. 2022. ISSN 2673-2688. doi: 10.3390/ai3010008.
URL https://www.mdpi.com/2673-2688/3/1/8. Number: 1 Publisher: Multidisciplinary Dig-
ital Publishing Institute.

[53] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný, S. Kumar, and H. B.
McMahan. Adaptive Federated Optimization, Sept. 2021. URL http://arxiv.org/abs/2003.
00295. arXiv:2003.00295 [cs, math, stat] version: 5.

[54] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review, 65:386–408, 1958. ISSN 1939-1471. doi: 10.1037/h0042519.
Place: US Publisher: American Psychological Association.

[55] Y. E. Sagduyu. Free-Rider Games for Federated Learning with Selfish Clients in NextG
Wireless Networks. In 2022 IEEE Conference on Communications and Network Security
(CNS), pages 365–370, Oct. 2022. doi: 10.1109/CNS56114.2022.9947274.

[56] S. Saha and T. Ahmad. Federated Transfer Learning: concept and applications, Mar. 2021.
URL http://arxiv.org/abs/2010.15561. arXiv:2010.15561 [cs].

[57] A. L. Samuel. Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of
Research and Development, 3(3):210–229, July 1959. ISSN 0018-8646. doi: 10.1147/rd.33.0210.
Conference Name: IBM Journal of Research and Development.

[58] S. Schlögl, C. Postulka, R. Bernsteiner, and C. Ploder. Artificial Intelligence Tool Penetra-
tion in Business: Adoption, Challenges and Fears. In L. Uden, I.-H. Ting, and J. M. Cor-
chado, editors, Knowledge Management in Organizations, Communications in Computer and
Information Science, pages 259–270, Cham, 2019. Springer International Publishing. ISBN
978-3-030-21451-7. doi: 10.1007/978-3-030-21451-7 22.

44

http://arxiv.org/abs/2203.02108
https://www.nature.com/articles/nbt1206-1565
https://www.nature.com/articles/nbt1206-1565
https://www.tandfonline.com/doi/epdf/10.2753/MIS0742-1222240302?needAccess=true&role=button
https://www.tandfonline.com/doi/epdf/10.2753/MIS0742-1222240302?needAccess=true&role=button
https://ieeexplore.ieee.org/document/9773089/
https://www.mdpi.com/2076-3417/11/23/11191
https://www.mdpi.com/2076-3417/11/23/11191
https://www.mdpi.com/2673-2688/3/1/8
http://arxiv.org/abs/2003.00295
http://arxiv.org/abs/2003.00295
http://arxiv.org/abs/2010.15561

[59] M. Shaheen, M. S. Farooq, T. Umer, and B.-S. Kim. Applications of Federated Learning;
Taxonomy, Challenges, and Research Trends. Electronics, 11(4):670, Jan. 2022. ISSN 2079-
9292. doi: 10.3390/electronics11040670. URL https://www.mdpi.com/2079-9292/11/4/670.
Number: 4 Publisher: Multidisciplinary Digital Publishing Institute.

[60] J. Shao, Y. Sun, S. Li, and J. Zhang. DReS-FL: Dropout-Resilient Secure Federated Learning
for Non-IID Clients via Secret Data Sharing, Oct. 2022. URL http://arxiv.org/abs/2210.02680.
arXiv:2210.02680 [cs].

[61] F. Shi, C. Hu, W. Lin, L. Fan, T. Huang, and W. Wu. VFedCS: Optimizing Client Selection
for Volatile Federated Learning. IEEE Internet of Things Journal, pages 1–1, 2022. ISSN
2327-4662. doi: 10.1109/JIOT.2022.3195073. Conference Name: IEEE Internet of Things
Journal.

[62] P. P. Shinde and S. Shah. A Review of Machine Learning and Deep Learning Applications. In
2018 Fourth International Conference on Computing Communication Control and Automation
(ICCUBEA), pages 1–6, Aug. 2018. doi: 10.1109/ICCUBEA.2018.8697857.

[63] M. Silverio-Fernández, S. Renukappa, and S. Suresh. What is a smart device? - a con-
ceptualisation within the paradigm of the internet of things. Visualization in Engineer-
ing, 6(1):3, May 2018. ISSN 2213-7459. doi: 10.1186/s40327-018-0063-8. URL https:
//doi.org/10.1186/s40327-018-0063-8.

[64] C. Smestad and J. Li. A Systematic Literature Review on Client Selection in Federated
Learning. June 2022. doi: https://doi.org/10.1145/3593434.3593438.

[65] J. So, B. Güler, and A. S. Avestimehr. Turbo-Aggregate: Breaking the Quadratic Aggregation
Barrier in Secure Federated Learning. IEEE Journal on Selected Areas in Information Theory,
2(1):479–489, Mar. 2021. ISSN 2641-8770. doi: 10.1109/JSAIT.2021.3054610. Conference
Name: IEEE Journal on Selected Areas in Information Theory.

[66] J. So, C. J. Nolet, C.-S. Yang, S. Li, Q. Yu, R. E. Ali, B. Guler, and S. Avestimehr. Light-
SecAgg: a Lightweight and Versatile Design for Secure Aggregation in Federated Learn-
ing. Proceedings of Machine Learning and Systems, 4:694–720, Apr. 2022. URL https:
//proceedings.mlsys.org/paper/2022/hash/d2ddea18f00665ce8623e36bd4e3c7c5-Abstract.html.

[67] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
Simple Way to Prevent Neural Networks from Overfitting. 2014.

[68] X. Tan, W. C. Ng, W. Y. B. Lim, Z. Xiong, D. Niyato, and H. Yu. Reputation-Aware Feder-
ated Learning Client Selection based on Stochastic Integer Programming. IEEE Transactions
on Big Data, pages 1–12, 2022. ISSN 2332-7790. doi: 10.1109/TBDATA.2022.3191332. Con-
ference Name: IEEE Transactions on Big Data.

[69] J. E. van Engelen and H. H. Hoos. A survey on semi-supervised learning. Machine Learning,
109(2):373–440, Feb. 2020. ISSN 1573-0565. doi: 10.1007/s10994-019-05855-6. URL https:
//doi.org/10.1007/s10994-019-05855-6.

[70] J. Venable, J. Pries-Heje, and R. Baskerville. FEDS: a Framework for Evaluation in Design
Science Research. European Journal of Information Systems, 25(1):77–89, Jan. 2016. ISSN
1476-9344. doi: 10.1057/ejis.2014.36. URL https://doi.org/10.1057/ejis.2014.36.

[71] Q. Wang, Q. Yang, S. He, Z. Shi, and J. Chen. AsyncFedED: Asynchronous Federated
Learning with Euclidean Distance based Adaptive Weight Aggregation, June 2022. URL
http://arxiv.org/abs/2205.13797. arXiv:2205.13797 [cs].

[72] D. Wen, K.-J. Jeon, and K. Huang. Federated Dropout—A Simple Approach for Enabling
Federated Learning on Resource Constrained Devices. IEEE Wireless Communications Let-
ters, 11(5):923–927, May 2022. ISSN 2162-2345. doi: 10.1109/LWC.2022.3149783. Conference
Name: IEEE Wireless Communications Letters.

45

https://www.mdpi.com/2079-9292/11/4/670
http://arxiv.org/abs/2210.02680
https://doi.org/10.1186/s40327-018-0063-8
https://doi.org/10.1186/s40327-018-0063-8
https://proceedings.mlsys.org/paper/2022/hash/d2ddea18f00665ce8623e36bd4e3c7c5-Abstract.html
https://proceedings.mlsys.org/paper/2022/hash/d2ddea18f00665ce8623e36bd4e3c7c5-Abstract.html
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1057/ejis.2014.36
http://arxiv.org/abs/2205.13797

[73] Z. Wu, Q. Li, and B. He. Practical Vertical Federated Learning with Unsupervised Repre-
sentation Learning. IEEE Transactions on Signal Processing, 70:1–16, 2022. ISSN 1053-
587X, 1941-0476. doi: 10.1109/TSP.2021.3129364. URL http://arxiv.org/abs/2208.10278.
arXiv:2208.10278 [cs].

[74] C. Xie, S. Koyejo, and I. Gupta. Asynchronous Federated Optimization, Dec. 2020. URL
http://arxiv.org/abs/1903.03934. arXiv:1903.03934 [cs].

[75] J. Xu and H. Wang. Client Selection and Bandwidth Allocation in Wireless Federated Learning
Networks: A Long-Term Perspective. IEEE Transactions on Wireless Communications, 20
(2):1188–1200, Feb. 2021. ISSN 1558-2248. doi: 10.1109/TWC.2020.3031503. Conference
Name: IEEE Transactions on Wireless Communications.

[76] X. Ying. An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series,
1168(2):022022, Feb. 2019. ISSN 1742-6596. doi: 10.1088/1742-6596/1168/2/022022. URL
https://dx.doi.org/10.1088/1742-6596/1168/2/022022. Publisher: IOP Publishing.

[77] L. Yu, R. Albelaihi, X. Sun, N. Ansari, and M. Devetsikiotis. Jointly Optimizing Client
Selection and Resource Management in Wireless Federated Learning for Internet of Things.
IEEE Internet of Things Journal, 9(6):4385–4395, Mar. 2022. ISSN 2327-4662. doi: 10.1109/
JIOT.2021.3103715. Conference Name: IEEE Internet of Things Journal.

[78] Q. Zeng, Y. Du, K. Huang, and K. K. Leung. Energy-Efficient Radio Resource Allocation
for Federated Edge Learning. In 2020 IEEE International Conference on Communications
Workshops (ICC Workshops), pages 1–6, June 2020. doi: 10.1109/ICCWorkshops49005.2020.
9145118. ISSN: 2474-9133.

[79] L. Zhang, X. Lei, Y. Shi, H. Huang, and C. Chen. Federated Learning for IoT Devices with
Domain Generalization. IEEE Internet of Things Journal, pages 1–1, 2023. ISSN 2327-4662.
doi: 10.1109/JIOT.2023.3234977. Conference Name: IEEE Internet of Things Journal.

[80] Q. Zhang, B. Gu, C. Deng, and H. Huang. Secure Bilevel Asynchronous Vertical Feder-
ated Learning with Backward Updating, Mar. 2021. URL http://arxiv.org/abs/2103.00958.
arXiv:2103.00958 [cs].

[81] W. Zhang, X. Wang, P. Zhou, W. Wu, and X. Zhang. Client Selection for Federated Learning
With Non-IID Data in Mobile Edge Computing. IEEE Access, 9:24462–24474, 2021. ISSN
2169-3536. doi: 10.1109/ACCESS.2021.3056919. Conference Name: IEEE Access.

[82] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra. Federated Learning with Non-
IID Data. 2018. doi: 10.48550/arXiv.1806.00582. URL http://arxiv.org/abs/1806.00582.
arXiv:1806.00582 [cs, stat].

[83] Z. Zhou, H. Chen, K. Li, F. Hu, B. Yan, J. Cheng, X. Wei, B. Liu, X. Li, F. Chen, and
Y. Sui. A Novel Optimized Asynchronous Federated Learning Framework, Nov. 2021. URL
http://arxiv.org/abs/2111.09487. arXiv:2111.09487 [cs].

[84] H. Zhu, J. Kuang, M. Yang, and H. Qian. Client Selection with Staleness Compensation
in Asynchronous Federated Learning. IEEE Transactions on Vehicular Technology, pages
1–6, 2022. ISSN 1939-9359. doi: 10.1109/TVT.2022.3220809. Conference Name: IEEE
Transactions on Vehicular Technology.

46

http://arxiv.org/abs/2208.10278
http://arxiv.org/abs/1903.03934
https://dx.doi.org/10.1088/1742-6596/1168/2/022022
http://arxiv.org/abs/2103.00958
http://arxiv.org/abs/1806.00582
http://arxiv.org/abs/2111.09487

Appendix

A Circumstances for selecting evaluation strategy

D
S
R

e
v
a
lu
a
tio

n
stra

te
g
ie
s

C
irc

u
m
sta

n
c
e
se
le
c
tio

n
c
rite

ria
Q
u
ick

&
S
im

p
le

If
sm

all
an

d
sim

p
le

con
stru

ction
of

d
esign

,
w
ith

low
so
cial

an
d
tech

n
ical

risk
a
n
d
u
n
certain

ty
H
u
m
an

R
isk

&
E
ff
ectiven

ess
If
th
e
m
a
jor

d
esign

risk
is

so
cial

or
u
ser

orien
ted

an
d
/or

If
it

is
relatively

ch
eap

to
evalu

ate
w
ith

real
u
sers

in
th
eir

real
co
n
tex

t
an

d
/or

If
a
critical

goal
of

th
e
evalu

ation
is

to
rigorou

sly
estab

lish
th
a
t
th
e
u
tility

/b
en
efi
t
w
ill

con
tin

u
e
in

rea
l
situ

a
tion

s
a
n
d
over

th
e
lon

g
ru
n

T
ech

n
ical

R
isk

&
E
ffi
cacy

If
th
e
m
a
jor

d
esign

risk
is

tech
n
ically

orien
ted

an
d
/or

If
it

is
p
roh

ib
itively

ex
p
en
sive

to
evalu

ate
w
ith

real
u
sers

a
n
d
real

sy
stem

s
in

th
e
real

settin
g

an
d
/or

If
a
critical

goal
of

th
e
evalu

ation
is

to
rigorou

sly
estab

lish
th
a
t
th
e
u
tility

/b
en
efi
t
is

d
u
e
to

th
e
artifa

ct,
n
ot

som
eth

in
g
else

P
u
rely

T
ech

n
ical

A
rtefact

If
artifact

is
p
u
rely

tech
n
ical

(n
o
so
cial

asp
ects)

or
a
rtifa

ct
u
se

w
ill

b
e
w
ell

in
fu
tu
re

a
n
d
n
o
t
to
d
ay

47

B Applications of Federated Learning

Figure 17: Taxonomy for applications of federated learning across different domains and sub-domain [59]

48

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Background and Motivation
	Research Question and Methodology
	Contributions
	Thesis Structure

	Background
	Machine Learning
	What is Machine Learning?
	Machine Learning Approaches

	Federated Learning
	Types of Federated Learning
	Client Selection in Federated Learning

	Related Work
	Secure Aggregation Methods
	Asynchronous Federated Learning
	Clients Performing Partial Work
	Free Riders
	Ensamble Methods
	Limitations of Related Work
	High Complexity
	Performance
	Non-Independent and Identically Distributed Data (Non-IID)

	Research Design
	Research Methodology
	Problem Identification and Motivation
	Current State of the Problem
	Research Question

	Objectives for a Solution
	Design and Development
	Evaluation
	Explicate the goals of the evaluation
	Choose the evaluation strategy
	Design the individual evaluation episode(s)
	Definition of Communication Success Rate

	Communication

	Results
	Design and Implementation of the Dynamic Timeout Window
	Developer Interactions with FedDyt
	Implementation Details

	Experimental Setup
	Environment
	Server
	Clients
	Machine Learning Models
	Evaluation of Performance

	Experimental Results
	Baseline
	Performance with Clients Timing Out
	How does the communication success rate of FedDyt compare to the state-of-the-art?
	How does the efficiency of FedDyt compare to the state-of-the-art when there are slow client outliers present?

	Discussion
	Comparison to Related Work
	Abstraction Layer
	Complexity

	Possible Applications
	Implications to Industry
	Implications to Academia
	Threats to Validity
	Internal Validity
	External Validity

	Conclusion and Future Work
	Bibliography
	Appendix
	Circumstances for selecting evaluation strategy
	Applications of Federated Learning

