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Abstract

One of the main limitations of ordinary Machine Learning (ML) is that it is executed
centrally. This implies that clients must send personal and possibly private data to
a central server where a model will be created. One approach to circumvent this
limitation is Federated Learning (FL), a distributed machine learning framework that
enables clients to train a model locally without sending their private data to a global
server. FL has several advantages, such as training models that are tailored to each
client while maintaining data privacy. However, it does come with some challenges.
One of these challenges is the issue of clients timing out. When clients time out during
the training stage, it may lead to accuracy degradation and inefficiency in terms of both
time and resources spent. This is because the global server will not receive all model
updates from the clients and might result in biases towards the ones who successfully
send in their updates. Furthermore, the global server might wait a really long time in
the hope that the timed-out client might send the update. Client timing out makes a
single communication round unnecessarily long as all the other clients and the server
wait for that one client.

This thesis tried to answer the question, ” How can we improve the communi-
cation success rate and minimize slow client outlier’s impact on learning effi-
ciency in Federated Learning with Independent and Identically Distributed
(IID) data?”.

The research question was answered by utilizing a Design Science Research (DSR)
framework to design and implement a proof-of-concept algorithm for dynamically set-
ting the timeout window for each communication round of FL. This novel algorithm,
Federated Dynamic Timeout Window (FedDyt), was tested and evaluated through
two classification experiments. The first experiment was classifying handwritten digits
with the MNIST dataset, and the second one was classifying images with the CIFAR-
10 dataset. The results of the experiments showed that FedDyt improved performance
both in terms of communication success rate and the efficiency of the FL network
when slow client outliers were present. Also, FedDyt contained the benefit of subsiding
alongside other FL implementations and strategies. Making it possible for future work
to implement it with their solutions and adjust it for their application, or to find an
appropriate timeout window.




Sammendrag

En av de stgrste nedsidene med vanlig maskinlaering (ML) er at det blir utfort sen-
tralt. Dette impliserer at klienter ma sende personlig og muligens privat data til en
sentral server hvor en modell blir generert. En metode for & unngé denne begrensnin-
gen er Federated Learning (FL), en distribuert maskinsleeringsrammeverk som tillater
klientene a trene modellen lokalt uten a sende deres private data til den globale serveren.
FL har mange fordeler, slik som a trene skreddersydde modeller til hver enkelt klient
imens man ivaretar personvernet for data. Likevel sa kommer det med noen utfordringer
ogsa. En av disse utfordringene omhandler problemet med at klienter bruker for lang
tid. Nar klienter bruker for lang tid under treningssteget kan det fgre til forverring av
ngyaktigheten og gjgre nettverket ineffektivt mtp. bade tidsbruk og ressurser brukt.
Dette skjer ettersom den globale serveren ikke mottar alle modell-oppdateringene og
kan fgre til partiskhet rettet mot de suksessfulle klientene som sendte inn oppdaterin-
gene. I tillegg, det kan hende at den globale serveren méa vente veldig lenge i hap om
at de trege klientene plutselig sender inn oppdatering. Noe som gjgr at en enkelt kom-
munikasjonsrunde tar ungdvendig lang tid imens alle de andre klientene og serveren
venter pa den tregeste.

Denne avhandlingen forsgker a svare pa spgrsmalet ” Hvordan kan vi forbedre
suksessraten til kommunikasjonsrundene og minimere effekten av ekstremver-
diene til trege klienter i Federated Learning med Uavhengig og Identisk
Fordelt (UIF) data?”.

Forskningsspgrsmalet ble svart pa gjennom a ta i bruk et Design Science Re-
search (DSR) rammeverk for a designe og implementere en konseptbevis-algoritme for
& dynamisk sette et tidsavbruddsvindu for hver kommunikasjonsrunde i FL. Denne
nyskapende algoritmen, Federated Dynamic Timeout Window (FedDyt), ble testet og
evaluert gjennom to klassifiserings-eksperiment. Det fgrste eksperimentet var klassi-
fisering av handskrevne tall med MNIST datasettet, mens det andre var klassifisering
av bilder med CIFAR-10 datasettet. Resultatet av eksperimentene viste at FedDyt
forbedret ytelsen bade mtp. suksess raten til kommunikasjonsrunden og effektiviteten
til FL-nettverket da det eksisterte ekstremverdier bland de trege klientene. I tillegg har
FedDyt fordelen av a4 kunne implementeres sammen med andre FL implementasjoner
og strategier. Noe som tilrettelegger for at fremtidig arbeid kan implementere den ved
siden av deres lgsning og justere den til deres applikasjon, eller til & finne et passende
tidsavbruddsvindu.
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2 Introduction

2.1 Background and Motivation

In recent years, Machine Learning (ML) has increased in popularity amongst businesses and re-
search and is now virtually anywhere you see. Also, the Internet of Things (IoT) has seen a
significant boom in both the number of devices and the amount of data that is being handled. IoT
is an interconnected network of devices that range from simple sensors and robots to high-power
computing devices. Recent statistics, performed by IoT, projected that 2023 would see a growth
of 18% to 14.4 billion, and by 2025 it could increase to more than 27 billion connected IoT de-
vices [63, 13]. There exist several ways to define IoT, but Lopez et al. [39] defined three required
components: smart things, network infrastructure, and backend servers. In essence, smart devices
are designed to interact with users and other devices through a connected network. They are not
required to interact directly with users but will generally collect data through some user activity.

This massive increase IoT devices gives a further concern regarding personal- and data privacy. To
solve this issue of data privacy, a new paradigm for machine learning arose named decentralized
learning, with the most prominent technique being Federated Learning (FL). FL allows client
devices to compute the ML models locally and send the model updates to a central server to be
aggregated. Thus, enabling collective training without sharing any private information. One of
the largest limitations of FL in IoT occurs due to the large differences in hardware specifications
which results in the different client devices spending very different amounts of time on one round
of learning.

While there exist some solutions to this problem, such as asynchronous FL, secure aggregation
methods, and partial work updating, these do come with several limitations:

e High complexity
e Performance degradation with many slow clients

e Performs poorly with Non-IID data

In regular FL, the timeout window is only set during initialization, which means that the network
does not alter this window anytime during learning. Thus, if a large number of clients do not finish
training within the time limit, the server will close the connection to those clients, and all the work
they conducted will not be aggregated into the global model. If there exist many of these clients,
it will lead to an increase in several major FL-challenges such as heterogeneity, communication
costs, and fairness.

Firstly, it exacerbates the issue of heterogeneity, especially in the case of Non-Independent and
Identically Distributed (Non-I1ID) data, where the unsuccessful clients might possess essential data
that the global model will perform poorly without. Secondly, if a lot of resources are being utilized
by the clients to train a local model and their results are not being aggregated to the global model,
then all of their work is being wasted. By default, communication costs are really expensive in
FL [68, 31]. Thus, unsuccessful communication rounds are very wasteful and should be avoided if
possible. Lastly, if slow clients are unable to finish training, then it implies that only the fastest
devices are allowed to participate. It might boost the training process in terms of time spent per
communication round, but as less data is involved, data diversity will not be guaranteed and might
hurt the performance of model training and, therefore, the fairness [24].

Instead of setting the timeout window ahead of training, it is possible to adjust it dynamically
during training. After each communication round, the server will have a number of successful and
unsuccessful clients. By utilizing this information, the server can adjust the timeout window for
the next communication round of training. Setting the timeout window dynamically addresses all
of the aforementioned challenges which might arise with a statical timeout window. It enables
slower clients to finish training as the timeout window will be adjusted to a large portion of them
being able to finish the computation.




It is possible to run FL without a timeout window, which would enable every client to finish
training. However, in the presence of slow client outliers, it would lead to a large increase in the
time spent per communication round. Furthermore, if a client does not finish training for some
reason, such as a loss of communication with the server, it would lead to the server halting learning
as it would wait for that client indefinitely. By taking advantage of setting the timeout window
dynamically, it enables the FL-network to adjust it up to a boundary such that these outliers are
omitted during training. Thus, increasing the efficiency of the network proportionally with the
magnitude of the outliers.

To the author’s knowledge, there has been no research to date into dynamically setting the timeout
window in a FL environment.

2.2 Research Question and Methodology

Given the limitations of the existing solutions brought the Research Question (RQ) of this the-
sis: "How can we improve the communication success rate and minimize slow client
outlier’s impact on learning efficiency in Federated Learning with Independent and
Identically Distributed (IID) data?”. To answer this question, a Design Science Research
(DSR) framework was utilized to create and implement a Proof-Of-Concept (POC) algorithm,
which enables the FL network to dynamically find an appropriate timeout window to allow a
threshold amount of clients to successfully finish training.

To evaluate the approach, a baseline was provided by running seven aggregation strategies with
the following scenarios:

o Ideal Conditions (Unlimited Time & No Timeouts)
e Poor Performance (95% Clients Timeout)
e Medium Performance (50% Clients Timeout)

e Good Performance (5% Clients Timeout)

The experiments were classification problems run with the MNIST and CIFAR-10 datasets where
the neural network learned to classify handwritten digits and ten different classes of images, re-
spectively [2, 1]. The evaluation showed a significant improvement in terms of successful commu-
nications rounds between the server and the clients when utilizing the dynamic timeout window
algorithm compared to statically setting it. It was especially beneficial in scenarios where there
was a large degree of clients timing out such as for the poor performance scenario and medium
performance scenario, as the POC managed to include more clients per communication round.

2.3 Contributions

The main contribution of this thesis is the novel approach of dynamically setting a timeout window
in a general FL environment. It subsides alongside the other components of a well functioning FL
system such as client management, aggregation strategies, etc. which makes it simple to implement
alongside for future academia and possibly industry. It manages to include as many clients as
possible until a satisfactory threshold by dynamically adjusting the timeout window, which may
easily be set by the developers. The novel algorithm also gives the possibility for existing work to
find a suitable timeout window for their solution in the case where the developers are uncertain of
how much time is required for their clients to finish training in the FL network.

2.4 Thesis Structure

The thesis is structured as follows. Section 3 provides background information on Machine Learn-
ing (ML) and Federated Learning (FL) alongside common challenges. Section 4 reviews related




work on the topic of clients timing/dropping out in FL. Section 5 presents the research design
created using the Design Science Research (DSR) methodology. Section 6 shows the design and
implementation of Federated Dynamic Timeout Window (FedDyt) alongside the experimental
setup and results. Section 7 discusses how the novel algorithm compares to related work, possible
applications, implications to the industry and academia, and addresses possible threats to validity.
Section 8 summarizes the discoveries of this thesis, as well as proposes possible future directions
for further work on the proof-of-concept.




3 Background

This chapter will briefly explain the state of Machine Learning (ML) today, Federated Learning
(FL), and provide information about the most common challenges encountered when working with
FL.

3.1 Machine Learning

There is no doubt that machine learning has increased in popularity in recent years, as it can
be seen in virtually every field these days. Machine learning has proven effective for applications
within computer vision, prediction, information retrieval, and much more [62]. Even though the
field of machine learning is progressing steadily and new milestones are being achieved, businesses
report that they are still in the early stages of utilizing ML according to Schlogl et al. [58].

3.1.1 What is Machine Learning?

Machine learning is a subset of Artificial Intelligence (AI), where computational algorithms mimic
human intelligence by learning from the environment. These computational algorithms are some-
times referred to as "soft coded” as they manage to adapt their internal structures to improve the
results of a desired task. This is the opposite of the traditional "hard coded” algorithms, which are
literally programmed to produce a certain outcome [15]. The term ”machine learning” was coined
by Arthur Samuel from IBM and demonstrated that it was possible for computers to play checkers
[67]. Later, the early neural network architectures started developing through the invention of the
perceptron by Rosenblatt. Although it seemed promising, it was met with a lot of skepticism due
to being limited to only solving linear problems. It could not, for instance, solve simple nonlinear
problems such as simple XOR logic [54]. Many years later, it was discovered that it was possible
to solve nonlinear problems as well through the development of Multi Layer Perceptron (MLP).
Since then, there has flourished a plethora of different algorithms, such as decision trees, support
vector machines, ensemble learning, and deep learning to name a few [14, 47, 30].

3.1.2 Machine Learning Approaches

The different machine learning approaches can be divided into different categories based on the
data labeling: supervised, unsupervised, and semi-supervised. Supervised learning is trained with
labeled data where the mapping from input and output is known on the samples. It is then able
to predict an output from a given input. The most common supervised learning applications are
regression and classification. Regression manages to predict continuous values by finding a contin-
uous model. Classification excels at giving the output as discrete values [19]. Within supervised
learning, there exists the possibility of the model being overfitted. This happens when the ob-
served data does not generalize well to unseen data. In this scenario, the model performs well
on the training set, but while fitting on the testing set it performs poorly [76]. In unsupervised
learning, the algorithm only receives input samples without a corresponding answer. The most
common application of this approach is clustering, where the algorithm partitions the data into
subsets where the data is positioned in each subset based on a distance metric. In other words, it
groups similar objects into different groups [42]. Semi-supervised learning is a combination of the
previous methods; it uses labeled as well as unlabelled data to perform learning tasks. The most
common applications are text/image retrieval systems where the training data generally contain
both labeled and unlabelled data [69]. In addition to the aforementioned ML approaches, there
is the approach of reinforcement learning, where an agent learns behavior through trial-and-error
interactions with a dynamic environment. This is a common approach when learning from games
such as chess or Go [29].

A visual overview of these four ML approaches can be seen in Figure 1.
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Figure 1: Overview of Machine Learning Approaches. Based on [15].

3.2 Federated Learning

Federated Learning (FL) is a decentralized ML paradigm that leaves the training data distributed
on the mobile devices and learns a shared model by aggregating locally-computed updates Ma
et al. [41]. Instead of sending private data to a centralized server (CS), the clients compute or
train a model on their device and send the update to the centralized server. This decoupling is the
main benefit of FL.

The algorithms may involve hundreds to millions of remote devices learning locally, and the goal
is generally to solve Li et al. [34]:

min,, f(w) = Y ppFy(w) (1)
k=1

where m is the total number of devices, pr, > 0, Y, pr = 1, and the local objective F}’s can be
defined by empirical risks over local data.

This paradigm was first introduced by McMahan et al. [44] in 2017, where the centralized server
is responsible for coordinating the model training with the selected devices. The server randomly
selects a fixed-size subset of clients and provides them with an initial global model before they train
and send the updates as already described. The pioneering work was named Federated Averaging
(FedAvg) due to taking a weighted average of the client results when aggregating them on the CS.
The pseudocode of FedAvg is shown in Algorithm 1 [44].




Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size,
E is the number of local epochs, and 7 is the learning rate.

Server executes:
initialize wg
for each round t =1,2,... do
m <+ max(C - K, 1)
S¢ + (random set of m clients)
for each client k € S; in parallel do
wy,, < ClientUpdate(k, w;)
end for
Wit = Yy Hwfy
end for
ClientUpdate(k, w) > Run on client k£
B <« (split Py into batches of size B)
for each local epoch i from 1 to E do
for batch b € 8 do
w <+ w — nVI(w;b)
end for
end for
return w to server

3.2.1 Types of Federated Learning

According to Prayitno et al. [50], FL can be divided into three categories depending on the type of
data partitions. These being Horizontal Federated Learning (HFL), Vertical Federated Learning
(VFL) and Federated Transfer Learning (FTL).

Horizontal Federated Learning (HFL)

HFL is the best-studied category amongst the FL-categories and it handles homogeneous features
spaces. It is commonly used in scenarios where each client has different samples but has the
same set of features [32]. For example, when patient data is separated by two hospitals situated in
different regions. One of the shortcomings of traditional HFL is that it assumes homogenous feature
space, which is not common in real-life scenarios. To circumvent this issue, Continual Horizontal
Federated Learning (CHFL) was proposed. CHFL takes advantage of the unique feature of each
client by splitting the network into two columns, common features, and unique features, and then
trains on the columns separately before aggregating the results [45].

Vertical Federated Learning (VFL)

In VFL, each client holds different feature data but belongs to the same set of samples. This
makes it more relevant compared to HFL in scenarios where for instance, companies have obtained
different features for the same customers. One of the main challenges of VFL is that usually,
only one party holds the labels to the data, and it makes it difficult for other parties to learn
collaboratively without privacy leakage. Some work has been done to address this issue, such
as Secure Bilevel Asynchronous Vertical Federated Learning [80]. Another challenge is the high
communication costs that occur when the different parties exchange intermediate results [73]. VFL
has many promising potential applications as it may train models on data from multiple locations
without sharing the data or trade secrets within the field, thus preserving privacy.

Federated Transfer Learning (FTL)

FTL is a special case of FL. and was first introduced to address the problem of data isolation
in industries, as data often exist isolated between different organizations. It allows knowledge
to be transferred between domains that do not have many overlapping features or users. It has
many potential applications, such as personalized recommendation systems, fraud detection, and
predictive maintenance. In fraud detection, it may be used to train models on transaction data
between multiple banks without sharing the data [56]. A graphical illustration of FTL can be seen
in Figure 2. The figure shows only a small overlap in the feature and sample space of parties A
and B. In contrast to HFL, where there is a large overlap in feature space, and in VFL, where




there is a large overlap in sample space, FTL has a slight overlap in both.
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Figure 2: Graphical illustration of FTL [56].

3.2.2 Client Selection in Federated Learning

Client selection is an essential term within FL. and has seen hundreds of improvements since
the original random selection of clients as suggested by McMahan et al. [44]. Smestad and Li
[64] performed a Systematic Literature Review (SLR) investigating the state-of-the-art of client
selection in federated learning. The study performed forward- and backward-snowballing and ended
up with 47 papers being reviewed, and their findings are summarized in the following subsections:

What are the main challenges in Federated Learning?

The papers discovered in the SLR were divided into four categories depending on the main challenge
they were trying to solve. Results sho