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Abstract  

 

The introduction of collaborative robots in assembly lines offers great potential to enhance 

productivity and reduce ergonomic risks for human operators. However, it leads to an 

increasingly complex environment. Therefore, in order to exploit the full potential, advanced 

solutions for task allocation and sequence planning are necessary. The use of reinforcement 

learning offers a promising approach to solving the optimization problem and enable real-time 

decisions. So far, the research in this area is mainly focused on economic factors such as a short 

completion time. The goal of this thesis is, firstly, to identify the state of the art of addressing 

the assembly line sequencing problem within this context by conducting a systematic literature 

review, and secondly, to develop an optimization model using reinforcement learning and 

taking economic as well as ergonomic factors into account. The objectives are to identify 

relevant literature, to evaluate their strengths and limitations, to derive areas where future 

research is needed, to develop an optimization model based on the previous findings, and 

finally, to train and test the model on an exemplary assembly task.  

In the systematic literature review, only a limited number of documents was found with 

minimized completion time as single objective for most models. One multi-objective model 

was identified taking completion time and task difficulty into account. The pure focus on 

ergonomics was not a subject of research so far. The within this thesis developed model aims 

to optimize the completion time as well as the ergonomic stress level of the human using multi-

agent reinforcement learning. The results show that multiple objectives can be considered and 

weighted by assigning rewards to multiple conditions. 

Limitations of the review lay in the low number of documents, the use of only one database in 

which solely English literature was considered and that a degree of subjectivity remains during 

the selection of the documents. Limitations of the developed model are the support of only 

cooperation between robot and human in one workstation, its limited capabilities to adapt to 

unforeseen behavior and its stochastic elements which might not always lead to the choice of 

the optimal solution. 

Keywords: assembly line sequencing, collaborative robots, reinforcement learning, 

ergonomics 
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Sammendrag 

 

Introduksjonen av samarbeidsroboter i samlebånd gir et stort potensial for å øke produktiviteten 

og redusere ergonomiske risikoer for menneskelige operatører. Men det fører også til et stadig 

mer komplekst miljø. For å utnytte det fulle potensialet er det derfor nødvendig med avanserte 

løsninger for oppgavefordeling og sekvensplanlegging. Bruken av reinforcement learning 

tilbyr en lovende tilnærming til å løse optimaliseringsproblemet og muliggjøre 

sanntidsbeslutninger. Så langt har forskningen på dette området først og fremst fokusert på 

økonomiske faktorer som kort gjennomføringstid. Målet med denne oppgaven er for det første 

å identifisere den nyeste teknologien innen håndtering av samlebåndssekvenseringsproblemet 

i denne sammenheng ved å gjennomføre en systematisk litteraturstudie, og for det andre å 

utvikle en optimaliseringsmodell som bruker reinforcement learning og tar hensyn til 

økonomiske samt ergonomiske faktorer. Målene er å identifisere relevant litteratur, vurdere 

deres styrker og begrensninger, utlede områder der fremtidig forskning er nødvendig, utvikle 

en optimaliseringsmodell basert på tidligere resultater, og til slutt trene og teste modellen på en 

eksemplarisk monteringsoppgave. 

I det systematiske litteraturstudiet ble det kun funnet et begrenset antall dokumenter med 

minimert gjennomføringstid som ett mål for de fleste modellene. En multi-objective modell ble 

identifisert som tok hensyn til gjennomføringstid og oppgavevanskelighet. Det rene fokuset på 

ergonomi har så langt ikke vært gjenstand for forskning. Modellen utviklet i denne oppgaven 

har som mål å optimalisere gjennomføringstiden samt det menneskelige ergonomiske 

stressnivået ved å bruke multi-agent reinforcement learning. Resultatene viser at flere mål kan 

vurderes og vektes ved å tildele belønninger til flere forhold. 

Begrensningene i litteraturstudien ligger i det lave antallet dokumenter, bruken av kun én 

database hvor kun engelsk litteratur ble vurdert, og at det fortsatt er en viss grad av subjektivitet 

under utvelgelsen av dokumentene. Begrensningene til den utviklede modellen er at den kun 

støtter samarbeid mellom robot og menneske på én arbeidsstasjon, dens begrensede evne til å 

tilpasse seg uforutsett atferd og dens stokastiske elementer, som kanskje ikke alltid fører til en 

optimal løsning.    
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1 Introduction 

In this chapter, introductory remarks to this thesis are provided. To start, section 1.1 shows the 

background and motivation, followed by the detailed problem description in section 1.2. The 

research questions and the thesis scope are outlined in section 1.3. Lastly, section 1.4 explains 

the report structure. This thesis is based on the specialization project preceding this work, in 

which a systematic literature review on assembly line balancing and sequencing in the context 

of Industry 4.0 technologies was conducted (Kinat 2022). 

 

1.1 Background and motivation 

The world of manufacturing is revolutionized by the introduction of Industry 4.0 technologies 

such as collaborative robots. In assembly systems, collaborative robots lead to enhanced 

productivity while reducing ergonomic risks for human workers. Beyond that, the employment 

of human workers regardless of their abilities or their strength might be enabled. Humans can 

not only be supported, but substituted in dangerous or heavy tasks (Bragança et al. 2019). This 

is feasible in most of the common manufacturing environments. The use of human-robot 

collaboration can be highly beneficial. In addition, the utilization of collaborative robots offers 

a low-threshold option for implementing partial automation. A growing number of 

manufacturing companies aim to make use of this technology.  

However, the great potential of the technology is often not fully exploited. Its introduction 

leads to an increasingly complex environment with many parameters. Advanced approaches 

for system control and decision-making are necessary. The allocation of tasks to robot and 

human worker as well as the definition of the best task sequence come with extensive effort. 

Industrial planners might face issues when trying to solve these tasks with analytical methods 

such as mixed-integer linear programming. The implementation of machine learning such as 

reinforcement learning offers a solution for finding an optimized task allocation and sequence 

in this context. Until recently, reinforcement learning methods have been limited to low-

dimension problems. Nevertheless, thanks to advancements in deep learning, recent 

reinforcement learning algorithms can cope with highly complex problems (Yu at al. 2020).  

Assembly line sequencing has been studied for decades. Many mathematical models to solve 

the optimization problem with various objectives exist. Nevertheless, only a limited number of 

models were developed considering collaborative robots. The use of reinforcement learning to 

solve the assembly line sequencing problem in this context has become an emerging topic. So 

far, the research in this area is focused on economic factors such as a short cycle time. To also 

put the focus on ergonomic factors forms the basis for the motivation of this thesis. 
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1.2 Problem description 

This research aims to develop an optimization model to solve the assembly line sequencing 

problem in the context of collaborative robots using reinforcement learning and taking 

economic as well as ergonomic factors into account. The focus will be on workstations where 

one human worker and one collaborative robot complete tasks to reach a shared assembly goal. 

Starting point will be to study the state of the art in dealing with assembly line sequencing with 

collaborative robots using reinforcement learning. Assembly line sequencing refers to defining 

the order of tasks to be done taking objectives and constraints into account. In addition, a 

decision must be made about task assignment when a human worker and a robot can perform 

tasks. Collaborative robots are able to correct insignificant mistakes of the human during work 

(Alessio et al. 2022). However, by their implementation, additional complexity is introduced 

to the assembly process. Their utilization should be optimized. The following research 

objectives are derived from this demand: 

• Identification of relevant literature 

• Evaluation of strengths and limitations of the different approaches and identification of 

areas for further research 

• Development of an optimization model for assembly line sequencing with collaborative 

robots using reinforcement learning taking ergonomic factors into account 

• Training and testing of the model using an exemplary assembly task 

 

1.3 Research questions and thesis scope 

The formulation of the research questions is based on the previously defined objectives of this 

project. As a result, the following research questions are pursued: 

 

1) What is the state of the art of addressing the assembly line sequencing problem with 

reinforcement learning when using collaborative robots? 
 

2) How can a reinforcement learning based optimization model be formulated to solve the 

assembly line sequencing problem with collaborative robots under consideration of 

ergonomic factors? 
 

The first research question deals with the current state of knowledge regarding assembly line 

sequencing in the specified context. A literature review is carried out regarding this topic. The 

review focuses only on publications that specifically addresses sequencing with collaborative 

robots. The scope of the review is further narrowed to research using reinforcement learning to 

solve the optimization problem as indicated in the research question. Only studies providing 

models to solve the sequencing problem in sufficient detail should be relevant. This criterion 
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is met when an optimization model is introduced. In addition, only literature regarding 

assembly workstations is relevant. To answer the first research question, a systematic literature 

review should be used as methodology. The defined scope serves as criterion for determining 

the relevance of the publications included in the review. 

As formulated in the second research question, an optimization model using reinforcement 

learning for solving the sequencing problem will be developed within this thesis. The model 

should be applicable for workstations with one human worker and one collaborative robot. The 

task allocation to human and robot should be included in the model. To sum up, the model 

should find the sequence of tasks as well as the allocation of the tasks to reach the assembly 

goal.  

 

1.4 Report structure 

The remainder of this thesis report is structured as follows. Next, in chapter 2, relevant 

theoretical background to the topic of this thesis is explained. Chapter 3 describes and justifies 

the used methodologies to answer the research questions in detail. This includes definitions of 

the assembly line sequencing problem and collaborative robots as well as a description of 

reinforcement learning. In chapter 4, a systematic literature review to answer the first research 

question is carried out: It includes the study selection, the descriptive analysis of the selected 

documents as well as the content analysis according to defined categories. Based on the 

findings of the literature review, the development of an optimization model follows in chapter 

5. The model is tested on an example assembly task and discussed in chapter 6. Finally, the 

conclusion of this thesis including a summary of the findings, limitations as well as an outlook 

on future research is given in chapter 7. 
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2 Theoretical background 

In this chapter, the relevant theoretical background on the main topics addressed in this thesis 

is outlined. It creates the basis for the literature review as well as the development of the 

optimization model which are both used to answer the research questions. Firstly, definitions 

for assembly line sequencing as well as collaborative robots are provided, as both terms are 

central to the research questions. Subsequently, reinforcement learning is explained in detail. 

 

2.1 Assembly line sequencing 

Assembly line sequencing is an active area of research faced in operations management with 

the goal of optimization. It impacts the productivity and thereby the cost-effectiveness of an 

assembly line. Sequencing refers to identifying an optimal task order to finish an assembly 

task. Defined objectives and constraints must be considered when finding a sequence. Often, a 

short cycle time achieved through, for example, a minimized idle time is the objective for 

optimization. Constraints can be given by, for example, dependencies of tasks, availability of 

resources, or product variations. There are various approaches to solving the assembly line 

sequencing problem. The choice of model is dependent on the specific characteristics of the 

assembly line as well as on the company's objectives. When developing a model, various 

factors should be considered: The assembly plan, as e.g. mixed, batched, or single, the physical 

line layout, as e.g. straight, parallel or U-shaped lines, the work transportation method, as e.g. 

conveyor or pallet-based, as well as variations in processing workstations, as e.g. manual, 

robotic or hybrid stations. (Kamal et al. 2011) 

 

2.2 Collaborative robots 

Collaborative robots, also called cobots, are robots developed to operate alongside human 

workers in a shared workplace. When applied in an assembly line, they can support the human 

workers in physical as well as in cognitive tasks. The implementation of collaborative robots 

in an assembly line has several advantages. As they are capable to work alongside humans 

without physical barriers, they can work together with the human worker to complete an 

assembly task. For example, they could be used to adapt tools according to the movements of 

the human worker. Additionally, they can support or even substitute humans in dangerous or 

heavy tasks, as the handling of heavy loads. Human can be supported in cognitive tasks, for 

example, by the visualization of alternative decisions. Collaborative robots can lead to an 

enhanced productivity and efficiency, reduce operation costs, improve the product quality, as 

well as the ergonomic working conditions for the human workers. However, there are also 
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potential disadvantages to consider. The implementation of collaborative robots can come with 

high cost as it may require significant investments in training as well in as infrastructure. In 

addition, due to possible limitations in handling certain types of materials or working in certain 

environments, collaborative robots might not be able to perform all tasks that human workers 

can. These technological limitations need to be compensated by the human workers. They need 

to adapt to the new working environment by acquiring and improving certain skills, for 

example IT skills. (Bragança et al. 2019) 

 

2.3 Reinforcement learning 

Reinforcement learning is an active area of research and commonly used to train artificial 

intelligence systems to perform tasks such as playing games or controlling robots. The solution 

of complex optimization problems that are difficult to solve with traditional algorithms is 

possible. Reinforcement learning is one of three broad areas of machine learning alongside 

with unsupervised and supervised learning. Unlike the two other frameworks, the goal of 

reinforcement learning is not to cluster or label data, but to train an agent to take actions to 

maximize a reward. There is no information provided about which action to take, instead the 

agent must discover which actions yield the highest reward in what situation by trying them 

out. The taken actions define the reward as well as the situation change. The basic principle of 

reinforcement learning is illustrated in figure 2-1. In the following, the main basic elements of 

a reinforcement learning system are described. The information in this section provides an 

introduction to reinforcement learning and can be looked up in detail in Sutton and Barto 

(2018).  
 

 

Figure 2-1: Basic reinforcement learning system. 

 

Environment 

The environment is the system being controlled by the agent. It might be a real physical 

environment the agent interacts with, or a simulated model of the environment. Often, for 
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training the agent, simulated environments are used. The environment provides observations 

and reward resulting from an action of the agent. At each time step, the agent receives an 

observation and chooses an action. The environment responds by transitioning to a new state 

and providing a scalar reward signal. For the definition of the state, the framework of Markov 

decision processes (MDPs) is typically used. Sequential decision-making can be formulated 

with MDPs, in which actions have an impact not only on the immediate reward but also on 

following states, and consequently on the overall long-term rewards. 

 

Model 

It is possible to provide a model of the environment to the agent, independent from if a real or 

simulated environment is used. This allows the agent to make inferences about the behavior of 

the environment. Agents can be categorized in model-based and model-free agents. Model-free 

agents learn by pure trial-and-error, while model-based agents already have knowledge of parts 

of the environment. 

 

Policy 

The policy defines the behavior of the agent at a point in time. During training, the agent 

updates its policy based on the reward it received for an action in a specific state of the 

environment. In the next time step, the new policy is then used to determine the action 

considering the recent environment state. By that, the agent should learn a policy that 

maximizes the cumulative reward over time. Policies can be represented by simple functions 

or lookup tables, however, for increasingly complex problems, neural networks are used. A 

neural network is generally a universal function approximator and consists of a group of 

connected nodes. The higher the number of nodes and connections, the more complex functions 

can be approximated, but the longer the identification of parameters takes. Policies are, simply 

said, a function from the environmental state to actions. They are the core of reinforcement 

learning agents as they determine the behavior. Usually, policies are stochastic and specify a 

probability for each action. The training of the agent has the goal to find the best policy 

parameters. 

 

Reward signal 

The environment provides the reward to the agent as a single number on each time step based 

on the state transition of the environment. The state transition is a result of the action that the 

agent took before. The only objective of the agent is the maximization of the total reward over 

time. Usually, reward signals are stochastic functions of the environment state and the taken 

action. 
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Value function 

The value of a state of the environment is determined by the total accumulated reward that the 

agent can expect in the future. While the reward signal defines the immediate desirability of 

the current environmental state, the value indicates the long-term desirability considering the 

states and corresponding rewards to follow. For example, it is possible that the current state of 

the environment provides a low reward, however, its value might be high when it is regularly 

followed by states with high rewards. The value of a certain state is estimated and re-estimated 

by the agent from the observations it made throughout the previous training. As the agent seeks 

to maximize the provided reward over time, or with other words, to achieve states with a high 

value, the efficient estimation of the value of a certain state is crucial for most of the 

reinforcement learning algorithms.  

 

Reinforcement learning algorithms 

The learning process of an agent is guided by a reinforcement learning algorithm. There are 

various reinforcement learning algorithms which are often already implemented in commercial 

software such as Matlab. Simplified, they can be categorized in three groups: policy-based, 

value-based, and actor-critic approaches. Policy-based algorithms train a neural network with 

the state as input and the action as output. This neural network is called actor as it determines 

the action to take. One of the challenges when using policy-based algorithms is that they can 

converge on a local maximum reward rather than the global maximum reward.  

Value-based algorithms train a neural network with the state and one possible action as input 

and the value of the state as output. This network is called critic as it criticizes the action of the 

agent. As the network has no action as output, which is needed to represent a whole policy, 

another step is necessary. The value of every possible action is checked and then the action 

with the highest value is finally chosen. However, this makes value-based algorithms not 

suitable for continuous action spaces as it is not possible to calculate the value of an infinite set 

of actions. 

The combination of policy-based and value-based algorithms is called actor-critic. Then, the 

critic only defines the value of the action that the actor chose. Hence, continuous action spaces 

are possible. Afterwards, the critic determines the accuracy of its value prediction based on the 

reward provided by the environment for the chosen action and updates its network. The actor 

updates its network based on the corrected value of the chosen action provided by the critic. In 

other words, it uses the value provided by the critic instead of the reward to update its policy. 
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3 Methodology 

In the following, the methodology used in this thesis is described in detail. Section 3.1 explains 

how to conduct a systematic literature review. This methodology is used to answer the first 

research question. In section 3.2, the methods modeling and simulation are outlined. They are 

used to answer the second research question

 

3.1 Systematic literature review 

A systematic literature review is performed to investigate the state of the art of addressing the 

assembly line sequencing problem within the defined scope. This methodology was chosen to 

answer the first research questions as it offers a replicable, scientific and transparent process 

with minimized bias (Tranfield et al. 2003). By the identification of the available knowledge, 

the evaluation of strengths and weaknesses and the determination of literature gaps, the first 

research question can be fully answered. The recommendations of Tranfield et al. (2003) to 

perform the systematic literature review in three steps are followed in this thesis. The three 

steps are described in the next sections, starting with Planning the review. Conducting the 

review is the second step explained subsequently. The last step, Reporting and dissemination 

of the results, is outlined lastly. The information provided in these sections originates from 

Tranfield et al. (2003), Snyder (2019) as well as Seuring et al. (2020) and can be found there 

in further detail. 

 

Planning the review 

The first step to plan a systematic literature review is to form a review panel. It has the task of 

directing the process as well as resolving disputes about the inclusion or exclusion of 

documents. The members of the review panel should be experts in the study area and the 

methodology itself.  

After forming the review panel, the review protocol is specified. It is composed of the research 

questions, the chosen database or databases as well as the keywords for the literature search, 

and the inclusion and exclusion criteria. The review protocol ensures objectivity by 

documenting all decisions on these items. The clear definition of the research questions is 

crucial as it guides the remainder of the review. The number of used databases as well as the 

selection of keywords depends on the review scope. The keywords are defined based on the 

research questions. Their selection is fundamental as it determines the review quality. For 

example, too broad terms lead to the finding of numerous publications beyond the review 

scope. On the other hand, the selection of too specific terms results in the non-identification of 
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potential relevant documents. The existing knowledge of the research topic can then not be 

assessed completely. This may lead to inaccurate conclusions, as for example regarding 

literature gaps. The terms are searched, for example, in the title, abstract as well as the 

keywords of a study. Often, various groups of terms are specified and then combined in a search 

string. Then, one term of each defined group must be found in order to include the 

corresponding publication in the review. The identified documents are then filtered according 

to the inclusion and exclusion criteria. Only documents meeting the inclusion criteria and not 

meeting any of the exclusions criteria are relevant for the review. Often, the subject area, the 

year of publication, the language or the type of document such as, for example, journal article 

or conference paper, are used as criteria. 

 

Conducting the review 

After the planning of the review, it is conducted starting with a literature search according to 

the defined review protocol. With help of the search string, a list of publications is obtained 

from the chosen database or databases. This list is then filtered regarding the defined inclusion 

and exclusion criteria. There are various approaches to scan the remaining documents. In case 

a low number of publications is retrieved, reviewers might choose to read the full text of each 

document. On the one hand, this leads to accurate decisions regarding the relevance for the 

review. On the other hand, it is time-consuming. Therefore, in particular when the number of 

retrieved documents is high, reviewers might choose to proceed in stages. Firstly, the title and 

the abstract of the publications are read and articles being clearly out of the scope of the 

conducted review can be excluded. Finally, in the second stage, the full text is read and the 

ultimate decision on the relevance of the article is taken. The documentation of the selection 

process including the number of publications excluded at each stage as well as the reason for 

exclusion is important for full transparency. However, the decision on the relevance of an 

article remains relatively subjective. For this reason, it is beneficial if more than one reviewer 

selects the documents. In case of disagreements between the reviewers, the review panel can 

be consulted. 

 

Reporting and dissemination 

The identified relevant publications are analyzed in the third step of a systematic literature 

review. The analysis can be divided into two parts starting with the descriptive analysis. It 

includes, for example, the display of the distribution of publishing years, journals, the type of 

study, and the authors. This is followed by the content analysis or also called thematic analysis. 

Per category, the content of the chosen publications is outlined, the level of shared consensus 

among researchers is assessed, and emerging themes are identified. To do so, the documents 

are categorized first. There are two main approaches to determine the categories. When the 

deductive approach is chosen, the categories are specified from existing theories before the 
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analysis. This should be done when there are already many theories of the research topic 

existing. Otherwise, or if there are only a few theories, the inductive approach can be selected. 

Then, the categories are defined during the analysis of the relevant documents under constant 

review and comparison in an iterative process. As the categories are directly derived from the 

publications, they are constantly extended and adapted. 

The output of descriptive and content analysis can differ depending on the scope of the review. 

For example, it might be a timeline for predicting where a research area is headed, a comparison 

of different concepts that could serve as a basis for the development of a theory, the 

identification of new theories, research agenda, or research propositions, or the disclosure of 

literature gaps. The contribution of the literature review can provide a foundation upon which 

the area of study can be further advanced. 

 

3.2 Modeling and simulation 

To answer the second research question of this thesis, a model to solve the assembly line 

sequencing problem will be designed. A reinforcement learning algorithm will be used to solve 

the optimization problem and is further described in section 2.3. In order to apply the algorithm, 

a model of the environment is required which can be used for simulating the assembly process. 

This is necessary in order to evaluate the outcome of an assembly process. The information is 

used by the reinforcement learning algorithm to find the best sequence of tasks.  

Modeling and simulation are quantitative methods. They are used to predict how a system will 

behave under certain conditions. Robinsons (2008a) defines conceptual modeling in his 

research. A model is abstracted from a real or proposed system and corresponds to a 

simplification of the system. Assumptions about the real world might be taken regarding 

uncertainties. Modeling and simulation have the advantages that large and complex situations 

can be analyzed in a short time and with low cost in comparison to real world experiments. 

However, the simulation results are highly dependent on the extent to which model and reality 

deviate from each other. A certain degree of inaccuracy is always present as simplifications 

and assumptions were made. 

Robinsons (2008b) proposes a framework for conceptional modeling consisting of five key 

activities. The first step is to understand the problem situation. From this, the aim of the model 

and the general project objectives are derived. In the next steps, the model outputs and the 

model inputs are identified. The model outputs correspond to the response of the system and 

the model inputs to the experimental factors. Finally, the model content in terms of its scope 

and level of detail is specified. The identification of simplifications and assumptions is done 

during the process. 
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From the conceptional model, the computer simulated model is derived. Within this thesis, the 

model code is developed in the programming environment Simulink based on the programming 

language Matlab. The developed model of the environment is described in detail in section 5.2. 
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4 Systematic literature review on assembly line sequencing with 

collaborative robots using reinforcement learning  

In order to answer the first research question and to build up a foundation to develop an 

optimization model which is used to answer the second research question, a systematic 

literature review is carried out. To identify already developed models using reinforcement 

learning in the context of collaborative robots as well as potential literature gaps, the existing 

research in this context needs to be reviewed. The methodology of a systematic literature 

review, which is carried out in this chapter, is described and justified in detail in section 3.1. In 

the following, section 4.1 documents the selection of studies with the final list of relevant 

documents as output. The descriptive analysis of these documents follows in section 4.2 and 

the content analysis per category in section 4.3. 

 

4.1 Studies selection 

This section documents the process of study selection according to the first two steps of the 

selected methodology, Planning the review and Conducting the review, which are described on 

a general level in section 3.1. The first step is to form a review panel. As the scope of the review 

is limited, it consists of only one member, namely the supervisor of this thesis, Mirco Peron. 

In the next step, the review protocol is defined. It can be found in appendix A. It contains, 

among other, the first research question of this thesis which should be answered by this review, 

see also section 1.3. 

What is the state of the art of addressing the assembly line sequencing problem with 

reinforcement learning when using collaborative robots? 

As database for the literature review, Scopus is chosen. It offers an interdisciplinary 

compilation of peer-reviewed literature and is one of the main sources for citations (Mongeon 

and Paul-Hus 2016). The keywords, which are used for the literature search on the database, 

are listed in table 4-1.  

 

Table 4-1: Search keywords. 

Group 1 Group 2 Group 3 

“assembly” “sequenc*” “cobot*” 

 “ALSP” “collaborative robot*” 

  “co-bot*” 

  “human-robot collaboration” 

  “HRC” 
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The search keywords are based on the research question. They contain synonyms and 

abbreviations of the main terms. If only the base of a term is searched for, a star is added in the 

end of the word base. Quotation marks indicate loose phrases. There are three groups of 

keywords. In the first one, only “assembly” is defined as the review is limited to this context. 

The second group contains the word base and abbreviation of sequencing as this is the main 

topic of this review. In the third group, terms to describe collaborative robots are stated. In 

total, the chosen keywords cover the entire scope and lead to a specific output of documents 

from the database without being too broad. The search string for the database is stated in the 

review protocol in appendix A. It is generated by combining the keywords using Boolean 

operators based on the defined groups. In that way, one match with a keyword of each group 

is necessary.  

As last point, the review protocol outlines the inclusion and exclusion criteria which are used 

to filter the obtained list of publications from the database. Only articles published in English 

are taken into consideration, while the subject areas are restricted to engineering, computer 

science, decision sciences, business, management and accounting, as well as economics, 

econometrics and finance. To ensure the high-quality of publications, the document type is also 

considered as a criterion, with journal articles being the preferred choice. However, due to the 

anticipated limited number of relevant studies, conference papers will also be included in the 

review. 

The Scopus database search identified 89 documents. They were filtered according to the 

inclusion and exclusion criteria. Within this process, 17 articles were excluded. The title and 

abstract of the remaining 72 publications were read to assess whether they are within the review 

scope leading to 62 exclusions. Finally, the full text of the remaining 10 documents was read 

and 4 final articles were identified to be included in this review. Documents were excluded 

based on the scope defined in section 1.3, for example, because of insufficient study details, 

such as the absence of a developed model to address the optimization problem, or when a study 

falls outside the scope of this thesis, such as not focusing on sequencing or not using 

reinforcement learning. An overview of the study selection process with indication of the 

reasons for exclusion is illustrated in figure 4-1 in the form of a PRISMA diagram based on 

Moher et al. (2009). Given that the document filtering process was conducted by a single 

reviewer, it retains a certain degree of subjectivity. However, any doubts regarding inclusion 

or exclusion were discussed with the review panel. This approach ensures quality and a 

validation in alignment with the objectives of this thesis. To achieve reliability, the study 

selection process was carefully documented which allows for transparency. 
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Figure 4-1: PRISMA diagram of the study selection process based on Moher et al. (2009). 

 

In table 4-2, the output of the studies selection is shown in chronological order. Based on this 

list, the descriptive and the content analysis of the selected documents is carried out according 

to the third step of the methodology as explained in detail in section 3.1. The analyses follow 

in the next sections. 

 

Table 4-2: List of final documents. 

Title Authors Publication 

year 

A reinforcement learning method for human-robot collaboration in 

assembly tasks 
 

Zhang et al. 2022 

Robust Adversarial Reinforcement Learning for Optimal Assembly 

Sequence Definition in a Cobot Workcell 
 

Alessio et al. 2022 

Robust Assembly Sequence Generation in a Human-Robot 

Collaborative Workcell by Reinforcement Learning 
 

Antonelli et al. 2021 

Mastering the working sequence in human-robot collaborative 

assembly based on reinforcement learning 
 

Yu et al. 2020 
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4.2 Descriptive analysis 

In the following, the descriptive analysis results of the systematic literature review are 

presented and discussed. In particular, the distribution of the studies, starting with the temporal 

and geographical distribution, then the distribution among journals and the most frequent used 

keywords are shown.  

The publication years of the selected articles are shown in figure 4-2. As there was no starting 

date within the inclusion criteria of this review, the eraliest research on task sequencing with 

collaborative robots using reinforcement learning was published in 2020. Subsequently, the 

analysis period of this review is from the year 2020 until the year 2022. As visible in the figure, 

the number of publications was stable in 2020 and 2021 and increased in 2022.  

The results imply that the scope of this review is an emerging topic as no documents were 

published before 2020 and the number of documents within the scope of this review is rather 

low. This means that only a limited amount of research was conducted in this area so far. Even 

though assembly line sequencing was studied for years, the embedding of collaborative robots 

and the usage of reinforcement learning are new approaches which offer great potential. Reason 

for this is, on the one hand, the relatively novel approach to use machine learning for 

optimization problems, and, on the other hand, the nascent stage of implementation of 

collaborative robots resulting in lack of wide-scale uptake in assembly lines. As a result, 

researchers may have perceived the topic as having a low practical value, which might have 

led them to pursue other areas of research instead. However, the rising number of publications 

in 2022 emphasizes the increasing relevance and shows that the topic becomes more and more 

in focus of research. Therefore, the number of publications can be expected to further increase 

in the next years. The selected documents only include journal articles. As a low number of 

documents was expected, conference papers were included in this review. 

 

 

Figure 4-2: Year-wise distribution of publications (n = 4). 

 

Figure 4-3 shows the geographical distribution of the selected publications, which displays the 

number of documents originating from each country. As visible, the majority of the research 
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was conducted in Italy (2). The remaining articles were written by authors from China (1) and 

the USA (1). 

 

Figure 4-3: Geographical distribution of publications (n = 4). 

 

The results show that researchers affiliated with institutions in Italy, China and the USA are 

interested in the topic of research. One reason that these countries are especially interested in 

the automation of assembly lines might be that China (28.7%), USA (16,8%) and Italy (2.1%) 

together have a share of 47,6% of the global manufacturing output (Richter 2021)1. Hence, 

these countries might focus on funding programs for research in this area and the practical 

interest of researchers might be higher in comparison to other countries.  

The publishing journals of the documents can be seen in figure 4-4. All articles were published 

in different journals. This indicates that the interest in the topic of this review is not fouces on 

one specific academic sector. 
 

 

Figure 4-4: Journal distribution of publications (n = 4). 

 

1 Numbers are from 2019 and measured on a value-added basis in U.S. dollars 
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The most frequent used keywords are shown in figure 4-5. In total, the selected articles contain 

12 distinct keywords. All documents list the keyword Human-robot collaboration. 

 

 

Figure 4-5: Most frequent keywords. 

 

4.3 Content analysis 

The content analysis follows the third step of the methodology described in section 3.1. It is 

carried out by category. In this section, the findings are structured in the categories and 

discussed. The determination of the categories was done by following the inductive approach 

for category selection as the topic of this review was not dealt with in detail yet. The approach 

is described in detail in section 3.1. The following categories were defined: Firstly, the 

objectives for optimization for each of the models are compared. This provides an overview of 

the assembly system characteristics that have been the primary focus of optimization in prior 

research. In the next section, the environment with which the reinforcement learning algorithm 

interacts is outlined for each publication, followed by the reinforcement learning algorithm 

itself. The last category is the application area as well as validation of the studies. Per category, 

similarities, disagreements and potential literature gaps are identified. The theoretical 

background of reinforcement learning is described in section 2.3. 

 

4.3.1 Objective for optimization 

As only models using a reinforcement learning algorithm were in the scope of this review, the 

objective to be optimized is determined by the reward provided within the models. This may 

involve a single or multiple objectives. The models of Yu et al. (2020), Antonelli et al. (2021) 

and Alessio et al. (2022) pursue a single objective. Yu et al. (2020) aims to minimize the 

completion time of an assembly task for maximizing the working efficiency. For this, the best 

sequence of tasks and the best operator for a specific task are chosen so that the entire assembly 

process is finished in the shortest time. The same as in various of the other studies, operator 

refers to both human workers and robots. The goal of Antonelli et al. (2021) and Alessio et al. 

(2022) is also to find the task sequence with the lowest completion time. For example, in the 

model of Alessio et al. (2022), this is achieved by providing a negative a reward for idle time. 

Constraints, such as a movement out of the used grid environment, are met in the same way, 
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Machine learning

Reinforcement learning

Human-robot collaboration



Systematic literature review on assembly line sequencing with collaborative robots using 

reinforcement learning  18 
 

 

by providing a negative reward for these actions. In contrast to these studies, the research of 

Zhang et al. (2022) follows a multi-objective approach. Besides to the minimization of the 

assembly completion time, a constant task difficulty should be achieved. To do so, the reward 

function considers the time spent for each action as well as the difficulty of executing the 

operation, individually defined for both human and robot.  

The results show that the minimization of the completion time is in focus of researchers. While 

the majority follows a single-objective approach, only Zhang et al. (2022) consider multiple 

objectives by taking the difficulty to solve a task into account. Ergonomic factors among others 

are up to a certain amount included in the difficulty of a task. However, a pure focus on 

ergonomics was not a subject of research so far.  

 

4.3.2 Environment 

The environment defines the state transition following an action and provides the reward to the 

agent. In all the selected documents, the environment is composed of a Markov Decision 

Process (MDP). The MDP represents the set of all feasible tasks at a certain point in time. Yu 

et al. (2020) uses a chessboard game to formulate the assembly process. The rules in the game 

reflect the required constraints. Alessio et al. (2022) uses a Matlab built-in grid world which 

shows the sequence of possible assembly steps. The agent explores the grid world and searches 

for terminal states which indicate the completion of the assembly process. The observation 

provided to the agent is thereby composed of four channels: one for obstacles which define the 

structure of the grid world, one for the path covered by the robot, one for the path covered by 

the human, and one for information on whether a terminal state was reached. However, the use 

of a grid world as environment is also a limitation of the model. While it provides a clear 

visualization of the results, it reflects a real scenario only with restrictions as the behavior of 

one agent cannot change the state of both the agents. In the model, individual states are assigned 

to the agents, and they cannot be in the same state at the same time. Zhang et al. (2022) express 

the assembly task by vectorizing the bill of material of the product. By this, sequence 

constraints are established.  

All researchers use a MDP environment which is usual when applying a reinforcement learning 

algorithm. Also, they all implement the sequence constraints. However, different approaches 

are identified in the literature, as for example, the use of a grid world. 

 

4.3.3 Agent 

The models of Yu et al. (2020) and Antonelli et al. (2021) both use single-agent reinforcement 

learning. The collaborative robot is thereby represented by the agent. In contrast to that, Alessio 

et al. (2022) and Zhang et al. (2022) both use multi-agent reinforcement learning which is an 
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extension of the single-agent approach. Both robot and human worker are then represented by 

an agent. The reinforcement learning algorithm used to update the policy of Yu et al. (2020) is 

inspired by Google Deep Mind’s Alphago Zero which is an algorithm based on Monte Carlo 

Tree Search. Antonelli et al. (2021) uses Q-learning which adjusts an approximator for the best 

action-value function. Alessio et al. (2022) apply proximal policy optimization (PPO) which is 

a policy gradient reinforcement learning method where the weights of the policy are estimated 

by the gradient ascent algorithm. As they focus on the behavior of the robot, the robot agent is 

trained to use the best policy while the human agent follows a random objective. In this way, 

the robot has to correct the mistakes of the human. Zhang et al. (2022) uses a deep deterministic 

policy gradient (DDPG) method as well as Q-value based deterministic strategy. Noise is added 

to the actor network of the agent representing the human to increase the robustness of the 

system when influenced by uncertain factors. 

The results show that the researchers were unanimous about the choice of reinforcement 

learning method. Using multi-agent reinforcement learning comes with several advantages. 

Different rewards can be provided to the agents and thereby a different focus can be set. In 

addition, it enhances the robustness of the system as small mistakes, which the human might 

do during a real assembly task, can be simulated. As explained in section 2.3, reinforcement 

learning agents can be categorized as model-free and model-based. All researchers use a model-

free algorithm which means no model of the environment is provided to the agent. In addition, 

reinforcement learning algorithms can be categorized as policy-based, value-based, and actor-

critic approaches. The majority of the selected studies use an actor-critic approach (Yu, 

Alessio, Zhang), while Antonelli et al. (2021) uses with Q-learning a value-based approach. 

 

4.3.4 Application area and validation 

All researchers developed a model to find the sequence of tasks to assemble a product by a 

human worker and a collaborative robot with shared workspace at one workstation (Yu, Huang, 

and Chang 2020; Antonelli et al. 2021; Alessio, Aliev, and Antonelli 2022; Zhang et al. 2022). 

However, the models support different levels of interaction between human worker and 

collaborative robot as well as their abilities to react to foreseen behavior.  

For the level of interaction between human and robot, three approaches can be found in the 

models. When cooperating, the robot and human are working independently on different tasks 

to complete a joint assembly goal. When working in collaboration, they complete a shared task 

together. The support of one of the two or both at the same time is possible. The research of 

Yu et al. (2020) and Alessio et al. (2022) only consider cooperating while the model of 

Antonelli et al. (2021) only supports collaboration, meaning that all operations to complete an 

assembly task are conducted by human and robot together. Both cooperation and collaboration 

are considered by Zhang et al. (2022).  
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The developed models are validated in different ways. Yu et al. (2020) performed extensive 

numerical studies with 100 different randomly generated assembly chessboards as well as a 

simulated case study to assemble a desk. Furthermore, the developed model was compared 

with a conventional mathematical optimization method regarding the assembly completion 

time and the time needed by the model to take a single decision. Their model outperformed the 

conventional optimization method in these points. The authors see a further improvement of 

their model in the consideration of random robot failures and human errors, as their model does 

not consider possible mistakes of the human or random failure of the robot. 

Antonelli et al. (2021) validated their model by testing it in a real-life experimental setup. The 

case study included the mounting of two flanges on a base. Their model allows disassembly 

actions when assembled wrong due to an error and is therefore able to cope with changes. 

However, if the deviation from the proposed sequence is too high, they found that their model 

might not be able to adapt. For a further improved model, the authors suggest as next step using 

an adversarial reinforcement learning algorithm designed for games. By that, the authors expect 

a better handling of unforeseen human interferences in assembly tasks. In their opinion, when 

using an adversarial algorithm, the reinforcement learning agent will aim to complete the 

assembly job despite any interference as it considers the human operator as an opponent. In the 

authors’ opinion, this leads to an enhanced robustness. The suggested approach is followed 

with some deviations by Alessio et al. (2022). However, they disagree partly with the claims 

of their fellow researchers. They argue that a traditional adversarial approach, in which both 

agents compete against each other as in a game, is not fully appropriate to complete an 

assembly task as both agents must work toward a common goal. A robust design requires that 

the robot adjusts its next actions when the human makes a mistake. In their opinion, the use of 

an entirely adversarial approach could, in some cases, make the completion of the assembly 

process impossible. This issue is solved by the subtraction of 10% of the human’s total reward 

from the total reward of the robot. Then, a mistake of the human leads to a decreased reward 

of the robot which prompts the robot to adjust its actions based on the best strategy to complete 

the assembly process. However, their algorithm was only tested in a virtual environment for a 

limited set of tasks. According to the authors, a modification of the training environment as 

well as the conduction of a case study with a real assembly process will improve their model. 

Zhang et al. (2022) validated their models by testing it in a real-life experiment. The behavior 

of the agent representing the human is shown on the display to the operator in real-time who 

can then perform the tasks in the proposed sequence. Also, tools which might be required for 

certain tasks as well as the time to operate them are considered. Their model is able to adapt to 

unforeseen changes during the process and is capable of finding an alternative sequence to 

achieve the assembly target. To improve their model, the authors want to implement the 
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computation of operating time and resource consumption and apply their model to more 

complex assembly tasks. 

The results show a progression in the development of the models. The model of Yu et al. (2020) 

does not consider human mistakes, while Antonelli et al. (2021) takes human failures into 

account, however, with limited robustness. Alessio et al. (2022) enhances robustness with their 

adapted version of adversarial multi-agent reinforcement learning. Zhang et al. (2022) 

developed the first model pursuing multiple objectives taking the difficulty of a task into 

account. Also, the considered scenarios have different levels of complexity.  
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5 Development of an optimization model 

In order to answer the second research question, an optimization model using multi-agent 

reinforcement learning for solving the sequencing problem is developed. The model is created 

based on the findings of the systematic literature review in chapter 4. As the focus on 

ergonomic factors has not been in focus of research so far, the model follows two objectives. 

Next to the optimization of completion time, the ergonomic stress level of the human worker 

should be minimized. The goal of the model is to find a task sequence in connection with the 

task allocation to robot and human worker to complete an assembly process considering the 

two defined objectives.  

In section 5.1, the model structure is explained followed by a detailed description of the 

environment in section 5.2 as well as a description of the agents in section 5.4. The training 

and simulation of the model is presented in section 5.5. The application of the model on an 

exemplary task and its discussion is outlined in chapter 6. 

 

5.1 Model structure 

In reinforcement learning, as described in section 2.3, an agent interacts with an environment. 

The state of the environment is changed, and a reward is provided based on the actions of the 

agent. Based on the state transition and the reward, the agent updates its policy. Reinforcement 

learning has been extensively studied at the trajectory level of robots. As shown in the literature 

review in chapter 4, it is a relatively new approach to use it for solving the assembly line 

sequencing problem. In multi-agent reinforcement learning, two or more agents interact with 

an environment. Within this thesis, two agents are used. One represents the collaborative robot 

and the other one the human worker. Therefore, the model is applicable for workstations with 

one human worker and one collaborative robot and considers ergonomic factors. To do so, 

multiple objectives are pursued, namely a short assembly completion time and a low ergonomic 

stress level for the human. The agents can be classified as model-free, meaning that no model 

of the environment is provided to the agents, also see section 2.3. The reinforcement learning 

model supports only cooperating of human and robot, meaning that both operators work 

independently to complete a joint assembly process. The model is programmed using Matlab 

and Simulink. Functions of the Reinforcement Learning Toolbox™ (2023) are used. The core 

reinforcement model structure can be seen in figure 5-1, which is a screenshot of the Simulink 

programming environment. The environment and both agents representing robot and human as 

well as the data transfers between them are visible. Each time step, the operators provide their 

action to the environment resulting in its state transition. Then, an observation, which describes 

the state transition, as well as the respective rewards are supplied to both operators. In addition, 
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Boolean information indicating the completion of the assembly process is given. The 

development of the environment, based on the methods described in section 3.2, and of the 

agents are described in the next sections in detail. 

 

 

Figure 5-1: Model structure. 

 

A Matlab script is used to initiate the model in the figure above. It is provided in appendix B. 

In the script, firstly, parameters are defined, and the action space as well as the observation 

space are established in Bus format which are later used to set up the agents. Then, the Simulink 

model is created as well as the function resetEnvironment is set as reset function for the 

environment. Afterwards, the two agents are generated, and training parameters are 

determined. Finally, functions to validate the environment, to start the training of the agents or 

to load pre-trained agents as well as to simulate an assembly task with trained agents are given.  

The function resetEnvironment is attached in appendix C. It resets the Simulink model when a 

new simulation is started by defining the initial state of the environment.  
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5.2 Environment 

The environment is modelled using the framework for conceptional modelling of Robinsons 

(2008b) which is described in section 3.2. The conceptional model of the environment is then 

translated into programmed model code. The model should represent a physical assembly 

process at one workstation and should be used to train two reinforcement learning agents. 

Assembly constraints should be represented in the model. The two actions  

𝑎𝑅 and 𝑎𝐻 chosen by the agents should serve as model inputs. The model outputs need to 

provide sufficient information about its state for the agents so that they are able to adapt their 

policy to find the best task sequence. They are the response to the inputs of the agents. As the 

agents do not share information among themselves, the model should provide the number of 

task 𝑑𝑅 and 𝑑𝑅 which both are currently doing. The time which is needed by robot and human 

to finish each task, is provided within the vectors 𝑡𝑅 and 𝑡𝐻. The ergonomic stress level to do 

a task for the human is provided within the vector 𝑒𝐻 and the dependencies of each assembly 

task within the matrix 𝐶. As a requirement to use reinforcement learning, the rewards 𝑟𝑅 and 

𝑟𝐻 must be provided to each agent dependent on the chosen action. Finally, information is 

needed about whether or not the assembly process was finished. This is given within the binary 

value 𝑓. The notations of all model inputs and outputs are listed in table 5-1.  

 

Table 5-1: Inputs and outputs of the environment model. 

Type Notation Format Explanation 

Input 𝑎𝑅 Scalar Action chosen by the agent representing the robot 

Input 𝑎𝐻 Scalar Action chosen by the agent representing the human 

Output 𝑑𝑅 Scalar 
Task which the agent representing the robot is 

currently doing 

Output 𝑑𝐻 Scalar 
Task which the agent representing the human is 

currently doing 

Output 𝑡𝑅 Vector Remaining time for each task for the robot 

Output 𝑡𝐻 Vector Remaining time for each task for the human 

Output 𝑒𝐻 Vector Ergonomic stress level for each task for the human 

Output 𝐶 Matrix Dependencies of each assembly task 

Output 𝑟𝑅 Scalar Reward for the agent representing the robot 

Output 𝑟𝐻 Scalar Reward for by the agent representing the human 

Output 𝑓 Boolean Binary value indicating completion of assembly task 

 

The model should have a sufficient level of detail to simulate the assembly process to find the 

best task sequence as well as the best allocation of tasks. In addition, it should offer the 

possibility to exclude robot or human to do a certain task, meaning that specific tasks must be 

performed by the robot or by the human. This can be indicated by setting the corresponding 



Development of an optimization model  25 
 

 

task time to zero. The following simplifications and assumptions are taken when formulating 

the conceptional model. The model represents a MDP as all information about the state of the 

environment required for decision-making are provided. This includes that only the current 

state of the environment is considered, and the history of past states and actions is discarded. 

The possible actions for the agents are finite. Each time step, they can choose a task number or 

choose to wait and doing nothing. The operation in discrete time steps is another simplification. 

Actions are only possible and observations are only provided after a certain time interval. Also, 

the process is assumed to be stationary and other possible influences on the assembly process 

are not considered, as for example the availability of components and the usage of tools. As 

the state of the environment is only represented by a limited number of variables, the model 

freedom and dependencies might be omitted. The model does not support collaboration 

between robot and human to work on the same task together. Besides, once started a task, the 

agent must finish it in the predefined time before choosing the next task. Difficulties which 

might appear when performing the task and lead to a longer task time are not taken into account, 

similarly to when a task is finished earlier as expected. Therefore, accurate task time 

estimations for both robot and human are necessary in order to provide an accurate model of 

the assembly process.  

After the outline of the conceptional model, the programmed model code is explained in the 

following. The environment subsystem of the Simulink model can be seen in figure 5-1 which 

represents the whole customized programmed environment. The opened subsystem is shown 

in appendix D. For more clarity, data operations are performed on this level. This includes 

handling of the Bus datatype as well as ensuring the data transfer between different rates and 

tasks. The opened next subsystem is visible in figure 5-2. It shows all inputs and outputs to a 

Matlab Function block in which the state transition of the customized environment is 

programmed.  
 

 

Figure 5-2: Subsystem with Matlab Function block. 
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The variable state contains the variables 𝑑𝑅, 𝑑𝐻 , 𝑡𝑅 , 𝑡𝐻 , 𝑒𝐻 and 𝐶 explained in table 5-1 in 

struct format. The state after transitioning serves as starting point for the next state transition. 

To enable the use of an output as an input, a delay block was added in between the two. The 

program code of the Matlab Function block is attached in appendix E. 

First, the rewards for both agents for several cases are defined, for example if the assembly 

process is finished or if the agent chooses an unavailable task. Positive and negative rewards 

are possible. The choice of rewards is further justified in section 5.3. Then, further variables 

are initialized. Within a for-loop, the chosen action is validated and, dependent on the case, the 

corresponding reward is provided. This is performed for both agents one after the other. It is 

checked if the action leads to idle time. This would be the case when no action is chosen even 

though the agent is free. In this case, 𝑎𝑅,𝐻 = 0 and 𝑑𝑅,𝐻 = 0. Then, several checks are 

performed to determine if the chosen action is illegal. It is examined if an action was chosen 

even though the agent is busy. This is the case when 𝑎𝑅,𝐻 ≠ 0 and 𝑑𝑅,𝐻 ≠ 0. The next check 

is the sequence dependency of the chosen task. If the task is dependent on the completion of 

another task before, the corresponding column lists at least one 1, so the equation  

𝐶(𝑖, 𝑗) = 0 for 𝑖 = 𝑎𝑅,𝐻 and 𝑗 = 1…𝑚 with 𝑚 = total number of tasks 

must be true. Finally, it is assessed if the chosen task is currently being done by the other agent, 

already finished or must be done by the other agent. In all those three cases, the corresponding 

task time 𝑡𝑅,𝐻(𝑎𝑅,𝐻) = 0. If an illegal action was selected, it is set to 𝑎𝑅,𝐻 = 0 and is thereby 

ignored. In case the agent is currently performing a task and did not choose an illegal action, 

the time corresponding to one time step is deducted from the task time 𝑡𝑅,𝐻(𝑎𝑅,𝐻). If this leads 

to 𝑡𝑅,𝐻(𝑎𝑅,𝐻) = 0, then the variable for the task which the agent is currently doing is set to 

𝑑𝑅,𝐻 = 0 and the dependencies of other tasks on the assembly task are set to  

𝐶(𝑖, 𝑗) = 0 for 𝑖 = 1…𝑚 and 𝑗 = 𝑎𝑅,𝐻 with 𝑚 = total number of tasks. 

In addition, a reward for finishing the task can be provided. Due to the design of the model, as 

the agents do not communicate directly with each other, the chance exist that they might choose 

the same valid task. In this case, the action of the robot is set to 𝑎𝑅 = 0 and no reward is 

provided. Next, if the agent is free and a new not illegal action was chosen, the new task is 

assigned to the agent. This is the case when 𝑎𝑅,𝐻 ≠ 0 and 𝑑𝑅,𝐻 = 0. This leads to 𝑑𝑅,𝐻 = 𝑎𝑅,𝐻.  

Besides, the task time for the other agent is set to 𝑡𝐻,𝑅(𝑎𝑅,𝐻) = 0. By this, the other agent will 

not be able anymore to choose the action. Also, a positive or negative reward for ergonomics 

can be assigned here.  

Finally, the variables 𝑑𝑅, 𝑑𝐻 , 𝑡𝑅 , 𝑡𝐻 , 𝑒𝐻 and 𝐶 are saved in struct format and are provided as 

the environment state to the agents. The Boolean value 𝑓, which indicates if the assembly 

process is finished, is changed to true when  
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𝑡𝑅,𝐻(𝑖) = 0 for 𝑖 = 1…𝑚 with 𝑚 = total number of tasks. 

Then, the simulation is stopped. 

 

5.3 Rewards and model objectives 

By using multi-agent reinforcement learning, different rewards can be provided to the two 

agents. This allows for the promotion of different behaviors and ultimately leads to different 

policies. A local as well as a global reward is provided to the agents. The global reward 𝑟𝑔 is 

the same for both agents, while the local reward 𝑟𝑙𝑅,𝐻 is assigned individually. The rewards, 

which are specified within the programmed environment, are crucial for the training success 

and the realization of the determined model objectives.  

First of all, the agents should learn which actions are allowed in a certain environment state. 

For this reason, a negative reward is added to the local reward of an agent when choosing an 

illegal action. The ultimate goal is to finish the assembly process. Therefore, when finished, a 

relatively high global reward is assigned to the reward function. Applying these rewards alone, 

however, could lead to sparse rewards during the assembly, especially in the beginning of the 

training when the agents might not always finish the process or it could take a long time. To 

prevent this, reward shaping is used by providing a local small intermediate reward for 

completing one assembly task to guide the agents better.  

In order to achieve a minimized completion time of the assembly process, a global negative 

reward is appointed for every time step. In addition, a local negative reward for idle time is 

assigned to the agents. To prevent the convergence of the policy to only choosing waiting as 

action instead of exploring the action space, this reward is slightly higher than the one for an 

illegal action. 

The second objective is a low ergonomic stress level for the human worker. To achieve this, 

when choosing a specific task, the ergonomic stress level of this task times a factor is added to 

the local reward of the agent representing the robot or subtracted to the local reward of the 

agent representing the human. By this, the robot-agent gets promoted to take over tasks which 

would result in a high ergonomic stress level of the human while the human-agent is trained to 

perform preferably tasks with a low ergonomic stress level. The weighing between the two 

objectives completion time and ergonomic stress level can be adjusted by the amount of the 

factor. 

An overview of all rewards per action for each agent can be seen in table 5-2. The total reward 

provided to the two agents is calculated by 𝑟𝑅 = 𝑟𝑔 + 𝑟𝑙𝑅 for the agent representing the robot 

and 𝑟𝐻 = 𝑟𝑔 + 𝑟𝑙𝐻 for the agent representing the human. The values of 𝑟𝑔 and 𝑟𝑙𝑅,𝐻 are assigned 
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within the programmed environment model based on the current environment state and the 

chosen action of the agents. 

 

Table 5-2: Overview of provided rewards per action for each agent. 

Type Explanation 
Robot 

reward 

Human 

reward 

Global Reward for finishing the whole assembly process 50 50 

Global Negative reward for every time step -1 -1 

Local Reward for completing one assembly task 1 1 

Local Negative reward for illegal action -10 -10 

Local Negative reward for idle time -11 -11 

Local 
Reward for choosing a task 𝑖 with a certain ergonomic 

stress level 
𝑒𝐻(𝑖) ∗ 1 −𝑒𝐻(𝑖) ∗ 1 

 

5.4 Agents 

The agents interact with the environment according to the model structure in figure 5-1. One 

agent represents the collaborative robot and the other one the human worker. As reinforcement 

learning algorithm, for both agents, proximal policy optimization (PPO) is chosen. Thereby, 

built-in functions of the Reinforcement Learning Toolbox™ (2023) are used. 

According to section 2.3, reinforcement learning algorithms can be categorized as policy-

based, value-based and as actor-critic. The chosen algorithm is an actor-critic approach. The 

critic network then evaluates the decision made by the actor network. The PPO agents use a 

value function critic and a stochastic policy actor. The literature review in section 4.3.3 showed 

that this approach is used by most of the examined studies. It has the advantage that both 

discrete and continuous action and observation spaces are supported. During training, PPO uses 

a policy gradient method which means that it adjusts the policy of the agent based on the 

feedback it gets. This is done by collecting data through interaction with the environment and 

then optimizing the policy using a technique called stochastic gradient descent. To ensure 

stability during training, the amount by which the policy is changed at each time step is limited. 

This prevents drastic changes and leads to more efficient learning. Each time step, the 

probabilities for taking each action of the action space is estimated. The final action is chosen 

by randomly selecting an action based on those probabilities. The agents are model-free. This 

means that no information on the simulated environment is provided to the agents, and they 

learn by trial-and-error. 

Several options can be customized when creating PPO agents in Matlab. The choice of 

parameters influences the behavior of the agents and is highly dependent on the reinforcement 

learning problem. For example, the entropy loss weight can be adjusted. It is a scalar value 
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between 0 and 1 which is added as factor of the entropy loss term to the actor loss function. 

The higher the entropy value, the more uncertain the agent is about which action to take next. 

Therefore, a high entropy loss weight increases the uncertainty of the agent and thereby 

promotes exploration. By a high exploration, the agent gets less easily trapped on a local reward 

maximum. Another relevant parameter is the discount factor. During training, it is applied to 

future rewards and thereby determines the weighing of immediate rewards over future rewards. 

Also, the number of hidden fully connected layers of the neural networks of the agent can be 

specified. The higher the number of layers, the more complex function can be approximated. 

However, finding the best policy becomes more and more computationally expensive and the 

training time increases. 

 

5.5 Training and simulation 

During training, the assembly process is simulated with the help of the environment model. 

The two agents interact with the environment and update their policies. By simulating the 

process, the system behavior can be predicted.  

Several training options can be adjusted. As learning strategy, a decentralized training is 

chosen. This means that the agents do not share their experiences and update their policy 

individually. The maximum number of episodes determines how often the assembly process 

should be simulated before the training is ended. One episode refers to the simulation of one 

assembly process. Also, the maximum number of time steps per episode is defined. Especially 

in the beginning of the training, the agents might not complete all assembly tasks within the 

maximum time steps. When starting the training, a window opens where the training progress 

can be monitored. The current number of episode as well as one graph per agent showing the 

episode reward for all previous episodes, a curve of the averaged reward with a window size 

of 30 episodes, and the value estimation of the critic network. Usually, the rewards in the 

beginning of the training are low and then slowly converging to the ideally highest reward. 

It is possible to fine-tune the agents by conducting the training in two stages. In the first stage, 

a high exploration rate can be chosen to promote exploring the action space. However, the 

policy of the agents will then hardly converge to a maximum value as the agents receives 

negative reward when they are too certain about a certain policy. This promotes a policy change 

each time the policy converges. Therefore, a second training stage with a low exploration rate 

can be beneficial. Then, the policy can finally converge to the overall maximum. 

When the training of the agents is finished, they can be saved from the workspace to file. By 

this, they can be loaded into the workspace again at a later point in time or be made available 

on other devices. The assembly process can be simulated with the trained agents. The result is 

the optimal sequence and task allocation according to the two objectives regarding completion 

time and ergonomic stress level. 
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6 Testing and discussion of the model

In this section, the developed optimization model is tested and discussed. To validate the 

model, a computational experiment using an exemplary system without practical reference is 

carried out. It is composed of seven tasks which the collaborative robot and the human worker 

finish in cooperation to reach the assembly goal taking several constraints into account. The 

sequence constraints can be seen in figure 6-1.  

 

  

Figure 6-1: Sequence constraints of the example task. 

 

The sequence constraints result in the dependency matrix  
 

𝐶 =

[
 
 
 
 
 
 
 0  0  0  0  0  0  0 
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
1 1 0 1 0 0 0
1 1 1 1 1 1 0 ]

 
 
 
 
 
 

. 

 

Each row indicates which tasks have to be finished before the respective task can be started. 

Thereby, the availability and processing time of each task are different for the two operators. 

Robots and humans have their own distinct strengths and skills which might be beneficial for 

certain types of tasks depending on, for example, material characteristics and tolerance limits. 

Some tasks might not be suitable for robot or human or the processing time can differ between 

both. To cover the application possibilities of the model, this is reflected in the exemplary 

system by setting the task times for the robot to  

𝑡𝑅 = [ 9  7  0  2 4  10  2 ] 
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and for the human to  

𝑡𝐻 = [ 10  8  10  0  2  3  4 ]. 

The third task cannot be processed by the robot and the fourth task cannot be processed by the 

human. In addition, the ergonomic stress level 

𝑒𝐻 = [ 10  11  2  0  4  1  5 ] 

for the human is assigned to the tasks. As the exemplary system is not derived from a real 

assembly task, the values are randomly selected. Since the human worker is not able to process 

the fourth task, a value of 0 is given, meaning that no additional reward will be provided to the 

robot when choosing this task. The ergonomic stress level of an assembly task is, among others, 

dependent on body motion and postures, physical effort as well as environmental stressors 

(Tropschuh et al. 2021). As the examination of the ergonomic stress level is not within the 

scope of this work, a detailed explanation is omitted at this point and reference should be made 

to the literature. 

To test the developed model and assess the influence of the provided reward regarding the 

ergonomic stress level, the model is applied multiple times on the example system. The first 

time, no reward regarding ergonomics is assigned. By that, only the goal of a minimized 

completion time should be followed by the agents. In the second run, a reward of  

𝑒𝐻(𝑖) ∗ 1 and −𝑒𝐻(𝑖) ∗ 1, respectively, is given when taking over a task. Finally, the factor is 

increased and a reward of 𝑒𝐻(𝑖) ∗ 5 and −𝑒𝐻(𝑖) ∗ 5, respectively, is provided. The proposed 

optimal assembly sequences and task allocations for these three cases are compared with each 

other in the following.  

Some options for the agents as well as for the training are highly dependent on the complexity 

of the assembly task. As explained in section 5.5, the training is conducted in stages. For the 

selected example, an entropy loss weight of 0.7 is chosen to promote exploration in the first 

stage. Also, a negative reward for idle time is provided to prevent the policies to converge 

towards a solution where no action is chosen at all to not risk taking illegal actions. In the 

second stage, after the agents learned how to prevent illegal actions, the reward for idle time is 

set to 0, as the solution with the least idle time does not necessarily have the shortest completion 

time due to the task time differences for the operators. In the last stage, the entropy loss weight 

is reduced to 0.01 to promote convergence. The number of hidden layers of the neural networks 

of the agents is set to 256. Regarding the training options, a maximum number of episodes 800 

is selected for the first stage, 500 for the second stage and 800 for the last stage. The maximum 

number of time steps per episode is 1400. During training, it is visible that these numbers are 

high enough in order to enable a learning progress of the agents without being too 

computationally expensive. 
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The training progress of the first and second run is visualized in figure 6-2, above for the agent 

representing the robot and below for the agent representing the human. The reward for each 

episode is illustrated in light blue and the running average reward value over the last 30 

episodes in dark blue. Since the agents are composed of an actor and a critic, the critic estimates 

the value of a certain state of the agent. The estimated value for the initial state to the beginning 

of each episode, meaning the cumulative discounted long-term reward for the episode, is shown 

in orange. In the progress of the training, the critic learns to estimate the value better and better. 

The high exploration of the agents is clearly visible in the first 800 episodes. Afterwards, when 

no negative reward for idle time is provided anymore, the policies adapt to this. In the 

following, the curves are slowly converging.  

 

 

 

Figure 6-2: Training progress. 

 

The solution for the task sequence and allocation found by the model in the first run is shown 

in figure 6-3 for the robot and figure 6-4 for the human. The course of the two variables 𝑑𝑅 and 

𝑑𝐻 over time without any reward for choosing a task with a certain ergonomic stress level is 

visible. 
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Figure 6-3: Task sequence for the robot over time for only optimized completion time. 

 

 

Figure 6-4: Task sequence for the human over time for only optimized completion time. 

 

The tasks with the number 1, 4, 6 and 7 are assigned to the robot, while the human does the 

tasks with the number 2, 3 and 5. All constraints regarding the sequence, the task allocation 

and the task time are fulfilled. The total time for completing the assembly process amounts to 

23 seconds. Minimizing this time was the only objective as the ergonomic stress level was not 

taken into account by the agents. The ergonomic stress level according to 𝑒𝐻 amounts to 17.  

Next, a reward for choosing a task with a certain ergonomic stress level is provided with the 

factor 1. The model output for 𝑑𝑅 and 𝑑𝐻 follow in figure 6-5 and figure 6-6.  
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Figure 6-5: Task sequence for the robot over time considering ergonomics with factor 1. 

 

 

Figure 6-6: Task sequence for the human over time considering ergonomics with factor 1. 

 

The completion time stays at 23s, however, another sequence and task allocation are chosen 

resulting in a total ergonomic stress level of 7. Again, all given constraints are thereby fulfilled. 

In the last run, the factor for calculating the reward for choosing a task with a certain ergonomic 

stress level is increased to 5. By this, the weighing between the two objectives is changed in 

favor of ergonomics. 
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Figure 6-7: Task sequence for the robot over time considering ergonomics with factor 5. 

 

 

Figure 6-8: Task sequence for the human over time considering ergonomics with factor 5. 

 

The completion time changed to 24s seconds while the ergonomic stress level is reduced to 3. 

A summary of the output for the three model runs is given in table 6-1. As expected, the 

ergonomic stress level overall decreases while the completion time increases. 

 

Table 6-1: Model outputs respectively to provided reward regarding ergonomics. 

Run Scenario 

Robot 

reward 

(ergonomic) 

Human 

reward 

(ergonomic) 

Completion 

time 

Ergonomic 

stress level for 

the human 

1 
Only focus on optimizing 

total completion time 
0 0 23s 17 

2 
Ergonomic stress level of 

the human is considered 
𝑒𝐻(𝑖) ∗ 1 −𝑒𝐻(𝑖) ∗ 1 23s 7 

3 
Higher weighing of the 

ergonomic stress level 
𝑒𝐻(𝑖) ∗ 5 −𝑒𝐻(𝑖) ∗ 5 24s 3 
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The validation of the model shows that it is possible to consider multiple objectives when using 

reinforcement learning for optimization problems by assigning rewards to multiple conditions. 

The model outputs for the three different runs imply that the weighing between the objectives 

can be adjusted by changing the provided rewards. Also, illegal actions can successfully be 

prevented by assigning a negative reward to them. By that, given constraints can be met. It 

should be noted that, when an illegal action is taken by one agent, the action should not only 

be ignored by the environment, but no further state transition should be performed. For 

example, if the agent is currently doing a task and already chooses the next task while it is 

occupied, no time should be deducted from the task time. That way, the agent learns that it can 

only finish a task by not performing illegal actions. It is necessary to remark that the exemplary 

assembly process used to test the model is a rather simple system with a limited number of 

tasks which might be solved with conventional optimization methods with smaller 

computational effort. However, the goal of this thesis is to develop a model taking multiple 

objectives into account and to make use of the advantages of reinforcement learning over 

conventional optimization methods in this context. 

Another implication of the findings is the importance of selecting parameters which are 

appropriate for the specific assembly process. This includes fine-tuning of the rewards, options 

for the agents as well as training options. The results clearly demonstrate that the choice of 

parameters significantly impacts the training progress and the proposed solution. When testing 

the system, for example, no negative reward for idle time led to a policy in favor of taking no 

action at all as the agents tried to avoid negative reward for illegal actions. That hindered the 

exploration of the action space. The provision of a negative reward which is slightly higher 

than for illegal actions led to the preference of an illegal action over idle time in the beginning 

of the training. By taking also illegal actions, the agents explored the action space and finally 

adjusted their policies in favor of taking legal over illegal actions. In addition, the agents 

learned to choose idle time rather than an illegal action, as no state transitions are performed 

when an illegal action is chosen as described above.  

The findings show that the learning curve of the agent, which represents the robot, is in general 

lower than the one of the agent representing the human. This is influenced by the fact that both 

agents might choose the same valid task at the same time. As explained in section 5.2, when 

this happens, the action of the robot-agent is set to 0 and the action of the human-agent is 

progressed. The reason is that the robot should be able to react to the human and choose another 

task. However, it slows down the learning progress of the robot as a valid action was chosen 

but no state transition is processed based on it. 

In the developed model, the robot is able to adapt to the human and choose alternative assembly 

sequences based on the human choices. This is beneficial, as a certain degree of uncertainty is 

present in an assembly process involving human workers. When using conventional methods, 
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an adaption would not be possible which results in a halt of the process. However, the proposed 

model does not support disassembly actions as in the model of Antonelli et al. (2021). The 

support would allow a greater flexibility and represents therefore one possible improvement of 

the proposed model.  

The training of the reinforcement learning agents to solve the exemplary system was conducted 

in three stages. First with a high exploration rate and later with a low exploration rate. The 

reason is to balance exploration and exploitation of the agents. The trade-off between 

exploration and exploitation is a general challenge in reinforcement learning (Sutton and Barto 

2018). The agents should exploit the paths they already experienced but also discover new 

paths. By using a high exploration rate in the first two stage of the training, the agents have the 

opportunity to exploit the action space. Afterwards, in the third stage, the policies are able to 

converge towards the optimal solution. 

One might assume that a minimization of idle time would lead automatically to a minimization 

of completion time. However, this is not the case. As the task times for robot and human can 

be different, it might be beneficial if the operator with the lowest time conducts the task even 

though if it might lead to more idle time for the other operator. 

A weakness of using a reinforcement learning model is that the training process will not be 

exactly the same when repeated even though when the exact same parameters are used. The 

reason is that stochastic choices are made by the agents which influence the further 

development of the policies. For example, if the agents randomly discover choices which lead 

to a high reward in the beginning of the training, they will quicker come to other choices with 

high rewards. However, agents might also explore long until they find choices with high 

rewards. It cannot be guaranteed that the model always finds the same and optimal solution, 

especially when the number of episodes during training is not high. When the training is 

finished and an assembly process with identical parameters is simulated multiple time, the 

model might not always perform the same and best sequence, even though when the 

underlaying policies converged towards the optimal solution. The reason is the stochastic 

nature of the model which might lead to a different outcome in the same state of the 

environment. 
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7 Conclusion 

The implementation of collaborative robots to support the human workers in assembly lines 

offers a great potential to enhance productivity and reduce ergonomic risks. However, it leads 

to an increasingly complex planning environment and requires optimization models for 

sequence planning and task allocation. Reinforcement learning can be used to develop 

optimization models. So far, the research in this context is mainly focused on economic factors 

such as a short completion time. This thesis aimed to investigate the following two research 

questions: 

• What is the state of the art of addressing the assembly line sequencing problem with 

reinforcement learning when using collaborative robots? 

• How can a reinforcement learning based optimization model be formulated to solve the 

assembly line sequencing problem with collaborative robots under consideration of 

ergonomic factors? 

The objectives of this thesis included the identification of relevant literature, the evaluation of 

their strengths and limitations, the derivation of areas for future research, the development of 

an optimization model, and finally, the training and testing of the model on an exemplary 

assembly task. 

To answer the first research question, a systematic literature review on assembly line 

sequencing with collaborative robots using reinforcement learning was carried out. In total, 

four documents were selected. As the first document was published in 2020 and the number of 

relevant documents is low, the research area is an emerging topic. Single- and multi-objective 

approaches were identified. The minimization of completion time is an objective in all models. 

In addition, only Zhang et al. (2022) takes a constant task difficulty into account and thereby 

follows multiple objectives. The pure focus on ergonomics was not a subject of research so far. 

All models use a MDP environment as common when using reinforcement learning. The 

researchers used different approaches, such as for example a grid world. Single-and multi-agent 

reinforcement learning is used in the studies. Thereby, different kinds of agents are applied, 

such as Q-learning, PPO and DDPG. The majority of the models use an actor-critic approach, 

and all models apply model-free agents. Only the model of Zhang et al. (2022) supports 

cooperation and collaboration between robot and human. A progression in the development of 

the models is visible. The complexity of the considered scenarios, adaption to human failures, 

model robustness, and consideration of multiple objectives are the main points of development.  

To answer the second research question, an optimization model using multi-agent 

reinforcement learning was developed. The model follows two objectives, namely the 

minimization of the completion time and a minimization of the ergonomic stress level of the 
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human worker. It is composed of two model-free PPO agents which represent robot and human. 

The agents interact with a customized environment programmed using Matlab and Simulink 

taking constraints into account. The environment was programmed based on a conceptional 

model of an assembly process and represents a MDP. Each time step, the agents choose an 

action, which triggers a state transition in the environment, and receive a reward. An optimized 

assembly sequence and task allocation is found for a workstation where one robot and one 

human work in cooperation to complete a joint assembly. Depending on the assembly task, the 

rewards and parameters for the agents and the training can be adjusted. The training can be 

conducted in multiple stages, for example, with different exploration rates. The developed 

model was tested on an exemplary assembly process. Thereby, the proposed solution without 

and with consideration of the economic stress level of the human worker were compared. The 

test showed that the model successfully considered the second objective as it proposed a 

solution with a slightly higher completion time, but significantly lower ergonomic stress level. 

Given constraints were met by providing a negative reward for illegal actions. It can be 

concluded that reinforcement learning can be used to solve the assembly line sequencing 

problem considering multiple objectives such as a short cycle time and low ergonomic stress. 

The adaption to small mistakes and uncertainties during the assembly process is possible. It 

should be noted that the results are highly dependent on the choice of parameters. 

The contributions of this thesis are as follows. The findings of the literature review can be used 

by researchers to quickly gain an understanding of the state of the art of assembly line 

sequencing with reinforcement learning when using collaborative robots. The review guides 

future research and can be used by practitioners to classify their current optimization model 

based on the existing knowledge as well as to better understand how to optimize the usage of 

collaborative robots through the application of reinforcement learning. On a general level, the 

review demonstrates how a systematic literature review can be performed for an emerging 

research area. The development of the optimization model highlights important factors that 

should be considered when using reinforcement learning for assembly line sequencing. In 

addition, it emphasizes the suitability of reinforcement learning for decision-making processes 

in robotics.  

The objectives of this thesis were achieved. Limitations of the review are the use of one single 

database in which solely English literature was considered, and the fact that a degree of 

subjectivity remains in the selection of documents. In addition, as the review topic is specific 

with a narrowed scope, only a small number of relevant studies were found. A source of error 

could be the selection of search keywords, as it is possible that relevant studies might have 

been excluded. In further research, the scope of the review could be broadened by including 

other optimization problems. Limitations of the developed optimization model are as follows. 

Regarding the level of interaction between robot and human, only cooperation is supported. 

The application of the model is restricted to one workstation with one robot and one human 
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worker. Adjustments to unforeseen behavior are possible only to a limited extent. Also, the 

robustness is limited. As the used agents have stochastic elements, they might take different 

actions in the same state of the environment. Therefore, the best solution might not always be 

chosen, even though it has the highest reward. In the next step, to improve the robustness of 

the policy, the training could be conducted with randomized elements of the environment as 

well as with the addition of noise. The usage of non-stochastic agents is possible. In addition, 

a case study to test the developed model on a real-life assembly task could be carried out. As 

this increases the number of environment states, an adequate exploration of the action space 

might be a challenge and would require adjustments of parameters. Further improvement of 

the model is possible through adding the support of disassembly processes in case of mistakes 

by the human. 
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B   Matlab function Main.m 
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C   Matlab function resetEnvironment.m 
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D   Environment subsystem in Simulink model 

 

 

Figure D-1: Subsystem with data operations. 
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E   State transition in Simulink model 
 

 

 



   51 
 

 

 

 



   52 
 

 

 

 

 




