
ISBN 978-82-326-7222-6 (printed ver.)
ISBN 978-82-326-7221-9 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:261

Katrine Seel

Learning for Model Predictive
Control

D
oc

to
ra

l t
he

si
s

D
octor al theses at N

TN
U

, 2023:261
Katrine Seel

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Thesis for the Degree of Philosophiae Doctor

Trondheim, August 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Katrine Seel

Learning for Model Predictive
Control

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

© Katrine Seel

ISBN 978-82-326-7222-6 (printed ver.)
ISBN 978-82-326-7221-9 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:261

Printed by NTNU Grafisk senter

Summary

This thesis focuses on learning-based control, with an emphasis on control designs
for which we can analyze stability and robustness properties. The topic is motivated
by the lack of available controllers for complex, nonlinear dynamical systems that
are hard to model, and that are also applicable to safety-critical applications.

Recent successes in the field of machine learning (ML), as well as the availability
of increased sensing and computational capabilities, have led to a growing interest
in data-driven control techniques. For systems that require systematic handling
of constraints, MPC has established itself as the primary control method. The
combination of ML and MPC has therefore become a popular field of research, as
data can be exploited to improve controller performance, while tools for stability
and robustness analysis are well-established.

The most intuitive combination of MPC and ML is using available data to improve
the MPC prediction model. Supervised ML methods based on e.g. rich function
approximators such as neural networks (NNs) and Gaussian processes (GPs) can be
leveraged to learn parts of or entire dynamical models from data. In part I of this
thesis, we propose two different MPC formulations that leverage ML to learn the
dynamics. Using techniques from robust control, we provide stability guarantees
under core assumptions on the approximation error.

There has also been an increasing interest in inferring the parameterization of the
MPC controller, of not only the prediction model but also the cost and constraints,
that lead to the best closed-loop performance. Reinforcement learning (RL) is a
framework for developing self-optimizing controllers that adjust their behaviors
based on observed outcomes of their actions. As the policies are usually modeled
using NNs, the resulting closed-loop behavior is difficult to analyze. In Part II of
this thesis, we consider RL as a tool to infer the optimal parameterization of an

iii

iv

MPC scheme. Leveraging existing theory on stability analysis of MPC, we propose
a cost parameterization and constrained RL parameter updates such that the nominal
closed-loop stability of the learned MPC is ensured by design. We also consider
different approaches for combining RL methods, as a way to speed up learning.
Finally, we propose a new method for exploration during learning.

On a more general level, this thesis has considered two conceptually different
approaches to learning-based MPC. Whereas the combination of supervised ML
and MPC can be exploited to design MPC schemes with highly accurate prediction
models and exploit potentially already available data sets in order to learn them,
the models are not learned to optimize the closed-loop performance directly. The
combination of MPC and RL on the other hand, allows us to learn not only the
prediction model but also the cost and constraints that directly optimizes the closed-
loop performance.

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor (PhD) at the Norwegian University of Science and Technology
(NTNU). I carried out the presented work at the Department of Engineering Cy-
bernetics (ITK) under the main supervision of Professor Jan Tommy Gravdahl and
with Professor Sébastien Gros, Dr. Esten Ingar Grøtli (SINTEF), Professor Kristin
Y. Pettersen, and Dr. Signe Moe (former SINTEF), as my co-supervisors. My work
has been supported by the Norwegian Research Council (NFR) through the project
"Towards Autonomy in Process Industry" (TAPI) with grant number 294544.

Acknowledgements

The following thesis has come into being through years of hard work, and a group of
indispensable people. First of all, I want to thank my main supervisor, Jan Tommy
Gravdahl, for always cheering me on and for being approachable for all kinds of
discussions and ideas. Thank you for meeting me with enthusiasm and helping
me build confidence as a researcher. During the first part of my PhD, I benefited
greatly from Kristin’s expertise in control and stability analysis. Signe, thanks for
introducing me to the field of ML which at this time was still very new to me. In
addition, I am very grateful for the collaboration I have had with Sébastien during
the second half of my PhD. Thank you for including me in your research group
and for giving me guidance, it has been challenging and inspirational. Finally, I
would like to thank Esten, for all our valuable discussions on a wide range of topics
throughout my PhD and for your hawk eyes on so much of my written work.

In addition to my supervisors, I have also had important collaborations with several
other people. I spent 3 months at IMT School for Advanced Studies Lucca, where I
was fortunate to work with Professor Alberto Bemporad. Moreover, I would like
to thank Mark Haring from SINTEF and Arash Bahari Kordabad from NTNU for

v

vi

fruitful collaborations.

I also want to thank all my colleagues in SINTEF, both in Trondheim and in Oslo,
for the coffee and lunch breaks that got my mind off things and for your insights
into the hardships of doing a PhD.

The time has come to thank my closest friends. Vilde, getting to know you has been
the most enjoyable part of moving back to Trondheim, and without your friendship,
this experience would truly have been poorer. To my friends in Oslo, thank you for
all the phone calls and messages letting me know that you were waiting for me on
the other side. I can finally say that the time has come, and I cannot wait to spend
more time with you.

Finally, my family cannot be thanked enough for their unwavering faith that I would
make it, all the times I doubted it myself. Mother, although not formally listed, you
have and will continue to function as my supervisor in life.

Contents

Summary iv

Preface vi

Contents xi

Abbreviations xiv

1 Introduction 1

1.1 Background and motivation . 1

1.2 Research Objectives . 4

1.3 Contributions and outline . 5

2 Preliminaries 11

2.1 Model Predictive Control . 11

2.1.1 Linear Quadratic Regulator 12

2.1.2 Stability analysis of MPC 14

2.2 Markov decision process . 17

2.3 Reinforcement Learning . 19

vii

viii CONTENTS

2.3.1 Q-learning . 19

2.3.2 Policy gradient methods 20

2.3.3 MPC as a function approximator 21

I Combining MPC and supervised learning methods 27

3 Learning the MPC prediction model with NNs 31

3.1 Introduction . 31

3.2 Problem statement . 32

3.3 Data-based prediction model . 33

3.3.1 NARX prediction model 33

3.4 NARX Neural Network . 34

3.5 Stabilizing data-based MPC . 35

3.5.1 Optimal control problem 35

3.5.2 Stability . 36

3.6 Case study . 39

3.6.1 The continuous stirred tank reactor 39

3.6.2 Obtaining the dataset . 40

3.6.3 Training the NARX network 41

3.6.4 Control of the reactor . 41

3.6.5 Finding the reference equilibrium point 42

3.6.6 Soft output constraints 42

3.6.7 Finding the terminal cost 43

3.7 Simulation results . 44

3.8 Conclusion . 45

4 Learning for robust control of sector-bounded systems 47

CONTENTS ix

4.1 Introduction . 47

4.2 Problem statement . 49

4.3 Learning the sector bound . 50

4.4 Learning-based robust MPC . 52

4.5 Simulation results . 57

4.6 Conclusion . 61

II MPC as a function approximator in RL 63

5 Cost modifications for learning-based MPC 67

5.1 Introduction . 67

5.2 Background and problem statement 69

5.2.1 Economic NMPC . 69

5.2.2 Strict dissipativity . 70

5.2.3 Parameterized tracking MPC 72

5.3 Convex cost parametrizations . 74

5.3.1 Stage cost . 75

5.3.2 Terminal cost . 75

5.3.3 Storage function . 75

5.4 NNs for cost modification . 75

5.4.1 Regular neural networks 76

5.4.2 Convex neural networks 76

5.4.3 Choice of activation functions 78

5.5 RL for parameter updates . 79

5.5.1 Constrained RL steps . 79

5.6 Combining Q-learning and policy gradient methods 81

5.6.1 Null space method . 81

x CONTENTS

5.7 Numerical examples . 82

5.7.1 Economic LQR . 82

5.7.2 ENMPC: Chemical reactor 86

5.8 Conclusion . 92

6 Combining RL methods for learning-based MPC 95

6.1 Introduction . 95

6.2 Background . 96

6.2.1 Q-learning . 97

6.2.2 Deterministic policy gradient method 99

6.3 Combining RL methods . 100

6.3.1 Multi-objective RL . 100

6.4 Simulations . 102

6.4.1 Economic LQR . 102

6.4.2 Linear MPC . 104

6.5 Conclusion . 109

7 Variance-based exploration for learning MPC 111

7.1 Introduction . 111

7.1.1 Contribution . 113

7.2 Background . 114

7.2.1 MPC as a function approximator in RL 115

7.3 Parameter space exploration . 116

7.4 Value function IDW variance . 117

7.4.1 Inverse distance weighting 118

7.4.2 p-step TD prediction of V 119

7.4.3 Practical implementation 121

CONTENTS xi

7.5 Variance-based exploration . 122

7.5.1 Variance-based perturbations in parameter space 122

7.5.2 Convergence properties 123

7.6 Simulation examples . 125

7.6.1 LQR . 125

7.6.2 Cart pendulum . 128

7.7 Conclusion . 133

8 Conclusions and further work 135

8.1 Summary and discussion . 135

8.2 Further work . 137

References 139

xii CONTENTS

List of Abbreviations

CSTR Continous stirred tank reactor

DP Dynamic programming

DPG Deterministic policy gradient

EMPC Econmic model predictive control

ENMPC Economic nonlinear model predictive control

FNN Feedforward neural network

GP Gaussian process

ICNN Input convex neural networks

IDW Inverse distance weighting

ISS Input-to-state stability

KKT Karush-Kuhn-Tucker

LQR Linear quadratic regulator

MDP Markov decision process

ML Machine learning

MPC Model predictive control

NARX Nonlinear autoregressive model with exogenous inputs

NMPC Nonlinear model predictive control

xiii

xiv LIST OF ABBREVIATIONS

NN Neural network

OCP Optimal control problem

RL Reinforcement learning

RMPC Robust model predictive control

TD Temporal difference

wBLR Weighted Bayesian linear regression

Chapter 1

Introduction

1.1 Background and motivation
Automation describes the design of a process or a system that is self-governing, self-
acting, or moving on its own. The characteristic is typically attributed to processes
that require little or no human intervention. In more recent times, automation
was taken one step further, by adding also the ability to learn and adapt to its
environment, known as autonomy. Today, we see both automation and autonomous
systems everywhere, essentially made possible by computerized control.

A prerequisite for autonomous control systems is the availability of measurements
and/or accurate mathematical models to build control algorithms. However, indus-
tries that suffer from both sparse measurements as well as difficulties related to the
mathematical modeling of their underlying processes, are falling behind when it
comes to incorporating autonomous systems. As an example, we see this apply to
the process industry. The process industry typically deals with dynamical systems
that are highly nonlinear and potentially subject to harsh environments. In harsh
conditions, sensors cannot survive permanently. Therefore, measurements need to
be taken manually, which in turn makes them expensive, in addition to constituting
a risk for the human operators that need to take them. Moreover, because dynamics
are typically nonlinear, complex, and may also suffer from varying time delays,
traditional model-based methods for control are not sufficient.

Machine learning (ML) is a sub-field of artificial intelligence (AI), and can broadly
be categorized as the study of how computer algorithms can learn from new in-
formation to improve their operation. Due to the increasing amounts of data and
the recent improvements in processing technology, we have seen a surge in the

1

2 Introduction

use and research of ML, as well as new areas of use constantly emerging. ML
is usually divided into three subcategories, namely (1) supervised learning, (2)
unsupervised learning, and (3) reinforcement learning (RL). Supervised learning
algorithms involve training with labeled data sets, whereas unsupervised learning
uses unlabelled data sets to find patterns or trends in data. Finally, RL uses trial and
error to optimize sequential decision-making.

The intersection between control theory and ML is a growing research field with
large potential for many types of control systems, see e.g. [1]. The literature on
combinations of learning and control is vast, and this short background section
does not aim to cover all of it but rather aims to give a flavor of some of the main
directions within the field. Especially supervised learning and RL are suited for
learning control algorithms.

RL is a framework for optimizing a policy, that maps from states to actions and
is analogous to what the control community refers to as a controller. The policy
is optimized through a reward function, that rewards actions that lead to desirable
states. Recently, impressive results have been obtained using so-called deep RL,
which are RL algorithms combined with deep neural networks (NNs) as function
approximators. Deep RL has successfully been used for games such as Go [2] and
Atari games [3], and in learning robots how to fly [4], walk [5] and perform complex
manipulation [6]. Because the learned policies are based on NNs, their resulting
behavior is difficult to analyze and therefore difficult to trust for safety-critical
applications.

The term black box model is often used to describe models for which humans cannot
understand how the predicted output was obtained. The need for transparency and
trust in learned models has motivated the study of explainable AI, a new emerging
research field devoted to developing methods for visualizing, explaining, and
interpreting data-driven models, see e.g. [7]. This is particularly important when AI
is used in sensitive domains with societal, ethical, and safety implications. Partly
because explainable AI has mostly evolved for classification models in different
domains, it has to a small extent been applied to learned control policies.

In the face of control of safety-critical systems, it is generally unacceptable that we
cannot guarantee the resulting closed-loop behavior. To trust a control algorithm,
we need to be able to assess properties such as stability, robustness and constraint
satisfaction. From a control-theoretic perspective, stability properties are typically
addressed using Lyapunov methods and passivity methods [8]. These tools are more
directly applicable to the combination of learning and control, where the control
law is cast in a more traditional form, but learning is added as an ingredient in the
controller.

1.1. Background and motivation 3

Controllers cast as NNs, have also been explored using supervised learning methods.
This combination of learning and control is especially relevant in the case of using
model-based control methods where the model of the underlying process is complex
and therefore computationally expensive to evaluate. One obvious example is model
predictive control (MPC) for complex processes, which is a control algorithm based
on solving an optimal control problem at each sampling time, involving a prediction
model of the system dynamics. The authors in [9], propose to use NNs as an
approximator of explicit predictive control laws. Although the controller itself is
modeled with an NN as in deep RL, the closed-loop behavior of the optimal policy,
on which the NN is trained, can be analyzed.

Supervised learning methods can also be a tool for model-based controllers to
perform system identification. An early combination of system identification
and control dates back to the 1970s and is known within the control community
as adaptive control [10]. Adaptive control considers systems with parametric
uncertainties and adapts controller parameters online to optimize performance. The
control technique is limited to a specific model structure, it tends to "overfit" to
the latest observations, and convergence to the true parameters is generally not
guaranteed [11], [12].

Among others, the aforementioned limitations of adaptive control have motivated
learning-based approaches to deal with model inaccuracies. Dynamical models
obtained as a result of learning may replace either the entire dynamical model or
parts of it needed in model-based controllers, e.g. in feedback linearizing controllers
as in [13], to design the prediction model in MPC as in [14] or in a feedforward
controller as in [15]. Alternatively, supervised learning can be used to estimate
immeasurable states, as to perform output feedback control as in [16].

For systems that require systematic handling of constraints, MPC has established
itself as the primary control method. The MPC scheme relies on a sufficiently
descriptive model of the system to optimize performance and ensure constraint
satisfaction, thus rendering modeling critical for the success of the resulting con-
troller. Perhaps because of the two aforementioned reasons, learning-based MPC
has recently received increased attention from the research community. This has
also included a focus on safety, which in this context usually is understood as
constraint satisfaction when dealing with model mismatch. For a full review of safe
learning-based MPC, the reader is referred to [17]. For safety-critical systems, we
may argue that safety, in a broader understanding of the word, is not only ensured by
guaranteeing constraint satisfaction but that we, in addition, need some guarantees
related to the stability properties of the closed-loop system.

The study of the stability of learning-based control in general, including learning-

4 Introduction

based MPC, is challenging because of the black-box nature of traditional ML
methods. One approach to ensuring stability is to make necessary assumptions
regarding the prediction error of the ML model, and study how this affects the
stability of the resulting controller, see e.g. [18], [13] and [19]. Stability can also
be ensured in a probabilistic sense when applying probabilistic methods such as
Gaussian processes (GP) for dynamical modeling, as in e.g. [20]. Generally, how-
ever, there is no fits-all analysis that can be made for all learning-based controllers,
as the analysis needs to be adapted to the type of learning algorithm, as well as to
which control architecture is used, and how the two are combined.

In between deep RL for control and supervised learning for system identification
to be used in model-based controllers, we find an alternative option for learning
for control. The authors in [17], refer to this alternative as performance-driven
controller learning, which aims to infer the optimal parameterization of an MPC
scheme w.r.t. the closed-loop performance. By adopting a parameterized MPC
scheme as a function approximator, RL can be used to learn the parameters. This
was first proposed in [21]. The mentioned framework allows using RL algorithms
for adjusting the policy, approximated using a parameterized MPC optimization
problem, thereby casting it in a form that offers rich tools to analyze the resulting
closed-loop behavior. The proposed framework exploits the ability to learn from
sampled state transitions and the associated rewards to adopt a policy with closed-
loop properties that we can analyze. However, using RL to update the MPC
parameters online must be done with care to ensure properties such as stability and
constraint satisfaction as addressed in [22].

1.2 Research Objectives
The research resulting in this thesis is funded by the project "Towards autonomy
in process industry" (TAPI). A central research objective for the TAPI project is
combining data-driven and model-based methods for control, with the goal of
understanding and analyzing the stability and robustness properties of the resulting
closed-loop system. Motivated by this, as well as the described challenges and
opportunities outlined in the preceding section, the main research objective of this
thesis is to explore learning-based MPC approaches for systems that may be hard to
model, while providing stability guarantees. More specifically, the thesis considers
two conceptually different approaches to learning-based MPC, namely MPC in
combination with supervised learning methods and MPC as a function approximator
in RL.

In Part I of this thesis, we consider how supervised learning methods can be
integrated with MPC. In particular, we consider recurrent NNs to be used as the
prediction model in MPC. We then wish to answer the following research questions:

1.3. Contributions and outline 5

R.1 What type of stability guarantees can be made for a system controlled by
MPC using an NN as the prediction model?

Moreover, we consider supervised learning methods in combination with robust
control techniques. In this context, we consider a specific class of systems, namely
Lur’e systems. For this class of systems, we investigate:

R.2 Can we use supervised learning methods to reduce the conservativeness of
robust control of Lur’e systems?

Part II of the thesis builds upon existing research using MPC as a function approx-
imator in RL. An important question for this framework is how to parameterize e.g.
the cost function in the MPC scheme. We aim to answer the following research
question:

R.3 Can rich cost parameterizations improve controller performance for MPC
schemes based on inaccurate models?

With the controller cast as a parameterized MPC problem, various RL methods have
been tested for updating the parameters. In this thesis, we investigate the potential
of combining RL methods, and ask the following question:

R.4 Can we combine RL methods in order to speed up learning when using MPC
as a function approximator in RL?

In an RL setting, we adjust the parameters of the policy based on experience
gained from interacting with the system. In order to improve the performance of
the initial policy, which in our case is cast by an MPC scheme, we depend on
visiting interesting areas of state space, leading to meaningful parameter updates,
i.e. explore efficiently. This leads us to the following research question:

R.5 Can we do better than random exploration for MPC as a function approxim-
ator in RL?

1.3 Contributions and outline
The thesis is organized into two main parts, consisting of a total of 8 chapters,
including this introduction and a concluding chapter. Chapter 2 aims at providing
relevant general theory for the subsequent chapters. Part I covers the contributions

6 Introduction

Figure 1.1: An overview of the thesis in terms of chapters and the associated research
questions (R.1 - R.5).

made on MPC combined with supervised learning methods, while Part II covers
variations of using MPC as a function approximator in RL. In the following, we
look at the topic and contributions of Chapters 3-7. We will also list the papers on
which the chapters are based, for which I am the main contributor. An overview of
this part of the thesis is visualized in Figure 1.1.

Chapter 3: Learning the MPC prediction model with NNs

[23] Katrine Seel, Esten Ingar Grøtli, Signe Moe, Jan Tommy Gravdahl and
Kristin Ytterstad Pettersen. Neural network-based model predictive control
with input-to-state stability. 2021 American Control Conference (ACC), pp.
3556-3563. IEEE, 2021.

In this chapter, we consider supervised learning methods for learning the dynamical
model used to predict the system behavior in the MPC scheme. We consider an
output feedback MPC scheme, for which we are not dependent on measuring the

1.3. Contributions and outline 7

entire state, and learn offline using input-output data. The contributions we make
are:

• Design of a learning-based MPC scheme, with an autoregressive prediction
model based on an NN trained on input-output data.

• For the resulting closed-loop system, we show input-to-state (ISS) stability
with respect to the prediction error.

Chapter 4: Learning for robust control of sector-bounded systems

[24] Katrine Seel, Mark Haring, Esten Ingar Grøtli, Kristin Ytterstad Pettersen
and Jan Tommy Gravdahl. Learning-based Robust Model Predictive Control
for Sector-bounded Lur’e Systems. IFAC-PapersOnLine, 54(20), 46-52, 2021.
1st IFAC Modeling, Estimation and Control Conference (MECC) 2021.

In Chapter 4 we treat a class of systems known as Lur’e systems, which are linear
systems with sector-bounded nonlinearities. We consider specifically a robust MPC
formulation typically used to control Lur’e systems and propose a probabilistic
learning method to learn the sector-bound from data. We make the following
contribution:

• Propose a stochastic sector formulation that reduces the conservativeness of
robust control of Lur’e systems.

Chapter 5: Cost modifications for learning-based MPC

[25] Katrine Seel, Arash Bahari Kordbad, Sébastien Gros and Jan Tommy
Gravdahl. Convex neural network-based cost modifications for learning
model predictive control. IEEE Open Journal of Control Systems, 1, 366-379,
2022.

Chapter 5 is the first chapter of Part II, where we consider MPC as a function
approximator in RL. In this chapter, we consider how to select the cost parameteriz-
ation specifically, with a focus on obtaining a parameterization that ensures stability,
also as parameters are updated, and that renders an optimization problem that can
be solved within a reasonable time. The main contribution is described as:

• Design of convex cost modifications for MPC that ensure nominal stability
of the closed-loop system.

8 Introduction

Chapter 6: Combining RL methods for learning-based MPC

[26] Katrine Seel, Sébastien Gros and Jan Tommy Gravdahl. Combining Q-
learning and Deterministic Policy Gradient for Learning-based Model Pre-
dictive Control. Accepted to 2023 62nd IEEE Conference on Decision and
Control (CDC).

In this chapter, we consider problems for which we may need a combination of
RL methods in order to verify stability and capture the optimal policy. Generally,
first-order parameter updates, i.e. parameter updates using gradient information of
the optimization objective, are the most common in RL. This is because, among
other things, it is hard to estimate second-order derivatives from data, which is
needed to formulate a second-order parameter update. In this chapter, we make the
following contributions:

• A multi-objective approach to combining RL methods.

• A novel second-order parameter update based on combining RL methods.

Chapter 7: Variance-based exploration for learning MPC

[27] Katrine Seel, Alberto Bemporad, Sébastien Gros and Jan Tommy Gravdahl.
Variance-based Exploration for Learning Model Predictive Control. IEEE
Access, 11, 60724-60736, 2023.

Exploration is an essential component of all RL algorithms. The most common
method for ensuring exploration is based on random perturbations of the policy,
which for certain types of problems may yield slow learning and/or modest im-
provements in controller performance. More sophisticated exploration techniques
have been developed specifically for NNs as function approximators. In Chapter 7
we make the following contribution:

• A novel method for variance-based exploration geared towards using MPC
as a function approximator in RL.

The following articles were published during the PhD, but are not part of this thesis:

Publications not included in this thesis

[28] Mark Haring, Esten Ingar Grøtli, Signe Riemer-Sørensen, Katrine Seel and
Kristian Gaustad Hanssen. A Levenberg-Marquardt algorithm for sparse

1.3. Contributions and outline 9

identification of dynamical systems. IEEE Transactions on Neural Networks
and Learning Systems (2022).

[29] Akhil Anand, Katrine Seel, Vilde Gjærum, Anne Håkansson, Haakon Robin-
son, and Aya Saad. Safe learning for control using control Lyapunov func-
tions and control barrier functions: A review. Procedia Computer Science
192 (2021): 3987-3997, 2021.

[30] Anne Håkansson, Aya Saad, Akhil Anand, Vilde Gjærum and Katrine Seel.
Robust reasoning for autonomous cyber-physical systems in dynamic envir-
onments. Procedia Computer Science, 192, pp.3966-3978, 2021.

10 Introduction

Chapter 2

Preliminaries

2.1 Model Predictive Control
MPC has seen significant success in recent decades and has established itself as
the primary control method for the systematic handling of constraints, with wide
adaptation in diverse fields, such as process control, automotive systems, and
robotics. MPC is based on solving an optimal control problem (OCP) at each
instant the state is sampled. In the following, we consider (possibly nonlinear)
discrete-time systems of the form

zk+1 = f(zk, uk), (2.1)

with state zk ∈ X ⊆ Rn, input uk ∈ U ⊆ Rm, and dynamical model f : X×U→ X.
For a system as in (2.1), we formulate the following OCP

VN (z) = min
x,u

T(xN) +

N−1∑

i=0

ℓ(xi, ui) (2.2a)

s.t. ∀i ∈ I0:N−1 : x0 = z, (2.2b)

xi+1 = f̂(xi, ui) (2.2c)

ui ∈ U, (2.2d)

h(xi, ui) ≤ 0, (2.2e)

xN ∈ Xf (2.2f)

where N is the length of the prediction horizon, x = {x0, . . . , xN} denotes the
predicted states and u = {u0, . . . , uN−1} the predicted inputs. It is also possible
to use the notation xk+i+1|k and uk+i|k to emphasize that we are predicting i steps

11

12 Preliminaries

into the future, for the initial state sampled at time k, although this notation is not
used in this chapter. The objective of the optimization problem is defined by the
stage cost, ℓ(·), and the terminal cost, T (·). We differentiate between the true state
z and the predicted state in OCP, using x, and distinguish between the physical
time k and predicted time i. Moreover, we use f̂(·, ·) to describe the prediction
model, which may differ from the true dynamical model in (2.1). Mixed input-state
constraints are described by h(xi, ui), and xN ∈ Xf is a terminal set constraint,
that we will address further in Section 2.1.2. The addition of a terminal constraint
is classically used to ensure the recursive feasibility of the MPC scheme, as defined
next.

Definition 1. The MPC problem is called recursively feasible if for all feasible
initial states feasibility is guaranteed at every state along the closed-loop trajectory.

However, this property can be destroyed in the face of uncertainty, in the form of
additive disturbances, model error or state estimation error, causing f̂ ̸= f .

The solution to the OCP in (2.2), will produce an optimal input sequence of length
N − 1, u⋆ = {u⋆0, . . . , u⋆N−1} for which we will apply only the first element to the
system, u⋆0. The rest of the input sequence is disregarded, and at the next sampling
instance, the procedure is repeated. This is illustrated in Figure 2.1. Many control
applications are naturally posed as tracking problems. For these problems, the main
objective of MPC is to minimize the tracking error, that is the difference between a
reference and the system states and inputs. We refer to this as tracking MPC, for
which the stage cost is typically a quadratic function. We can also use MPC for
optimizing economic performance rather than a tracking objective, referred to as
economic MPC (EMPC). EMPC is introduced further in Part II of this thesis and
treated in more detail in Chapter 5.

2.1.1 Linear Quadratic Regulator

The linear quadratic regulator (LQR) is a state-feedback controller that arises as
the optimal solution to the unconstrained control problem for linear dynamics and
quadratic objectives [32]. Throughout this thesis, we consider the discrete-time
formulation of LQR, defined for linear systems of the form

zk+1 = Azk +Buk, (2.3)

with system matrices A ∈ Rn×n and B ∈ Rn×m. The objective we wish to
minimize is defined as

V∞ =

∞∑

k=0

z⊤k Qzk + u⊤k Ruk + 2z⊤k Nuk, (2.4)

2.1. Model Predictive Control 13

Figure 2.1: MPC illustration, modified version from [31].

14 Preliminaries

where Q ∈ Rn×n ⪰ 0, R ∈ Rm×m ≻ 0 are weight matrices that penalize the
state and input respectively and N ∈ Rn×m is a cross term matrix. We obtain a
state-feedback controller on the form

uk = −Kzk, (2.5)

where the gain matrix, K, is given as

K = (R+B⊤PB)−1(B⊤PA+N⊤), (2.6)

where P is the positive definite solution to the discrete-time Riccati equation
(DARE), i.e.

P = A⊤PA− (A⊤PB +N)(R+B⊤PB)−1(B⊤PA+N⊤) +Q. (2.7)

2.1.2 Stability analysis of MPC

In the following, we will give a brief outline of the tools needed to perform stability
analysis of systems controlled by MPC. The presented theory is taken from [33].
For more detailed analyses, we will make references to the relevant chapters in this
thesis where the theory is applied.

As before, we consider the discrete, possibly nonlinear system, as defined in (2.1).
Without loss of generality, we will assume that the reference setpoint is at the origin,
i.e. (ze, ue) = (0, 0) with f(ze, ue) = 0. To establish stability, we will make use
of Lyapunov theorems defined in terms of function classes, i.e. K, K∞, and KL.
These are defined as follows.

Definition 2. A continuous function α : R≥0 → R≥0 belongs to classK if α(0) = 0
and is strictly increasing.

Definition 3. A function α : R≥0 → R≥0 belongs to K∞ if it is in class K and is
unbounded, i.e. α(j)→∞ when j →∞.

Definition 4. A function β(j, k) : R≥0 × Z≥0 → R≥0 belongs to KL if for each
fixed k, β(j, k) is class K w.r.t j and if it for each fixed j, β(j, k) is decreasing w.r.t
k and β(j, k)→ 0 as k →∞.

In addition, we need the following property of a set.

Definition 5. A set X ⊆ Rn is positive invariant for z+ = f(z) if z ∈ X implies
f(z) ∈ X.

We can then define asymptotic stability, which is what we want to show for the
closed-loop system using MPC.

2.1. Model Predictive Control 15

Definition 6. Suppose X is positive invariant for z+ = f(z). The origin is
asymptotically stable for z+ = f(z) in X if there exists a KL function β(·) such
that, for every z ∈ X

∥ψ(k; z)∥ ≤ β(∥z∥, k), ∀k ∈ I≥0, (2.8)

where ψ(k; z) denotes the solution to z+ = f(z) at time k for initial state z at time
zero and ∥·∥ denotes the 2-norm.

The set X is called a region of attraction. For a system controlled with MPC, the
region of attraction is defined as follows.

Definition 7. The region of attraction of an MPC scheme is the set of states which
can be steered to the terminal region Xf in N steps or less.

A standard approach to establish the asymptotic stability of the closed-loop system
under MPC is to show that the value function VN (z) for the finite-horizon OCP in
(2.2) is a Lyapunov function for the closed-loop system z+ = f(z, κN (z)). Next,
we formally define a Lyapunov function.

Definition 8. Suppose X is positive invariant for z+ = f(z). A function V : Rn →
R≥0 is said to be a Lyapunov function in X for z+ = f(z) if there exits functions
α1, α2 ∈ K∞ and a continuous, positive definite function α3 such that for any
z ∈ X

α1(∥z∥) ≤ V (z) ≤ α2(∥z∥), (2.9a)

V (f(z))− V (z) ≤ −α3(∥z∥). (2.9b)

Showing that the value function VN (z) satisfies the lower bound in (2.9a), is
ensured by additionally assuming that the stage cost satisfies ℓ(z, u) ≥ α1(∥z∥)
where α1 ∈ K∞ and ℓ(0, 0) = 0. This is satisfied by the standard choice of a
quadratic cost function, as the one used in (2.4).

To ensure the decrease condition in (2.9b), we will assume that the terminal cost
is a Lyapunov function in the terminal set Xf and that the terminal set is invariant
under a local control law κf (z). These can be categorized as terminal conditions,
and are soon discussed in more detail. For appropriate choices of the stage cost ℓ,
terminal cost T and terminal region Xf that ensures the satisfaction of (2.9b), the
upper bound in (2.9a) can also be also ensured. To ensure the existence of an upper
bound on VN (z) outside the terminal region, i.e. for the region of attraction, we
usually assume that the set X× U is compact, i.e. closed and bounded.

16 Preliminaries

With the necessary assumptions for the stage cost and terminal conditions, the value
function VN (z) satisfies the conditions in Definition 8 and is thereby a Lyapunov
function for the closed-loop system, and stability is established. This is stated
formally in the following theorem.

Theorem 1. Suppose X ⊂ R is positive invariant for z+ = f(z). If there exists a
Lyapunov function in X for the system z+ = f(z), then the origin is asymptotically
stable in X for the system z+ = f(z). If X = Rn then the origin is globally
asymptotically stable.

Proof. See e.g. [33].

In case the stage cost is not a quadratic function, as for EMPC, stability analysis
is generally more complicated. However, for certain types of problems, known as
dissipative problems, we are able to show that the EMPC scheme can be re-cast
as a tracking MPC scheme, for which we are able to prove the stability of the
closed-loop system [34]. This is elaborated on mainly in Chapter 5.

The stability following from Theorem 1 is usually referred to as nominal, i.e. the
stability analysis is done with respect to the prediction model in the MPC. If the
true system exactly matches the prediction model, we have asymptotic stability
for the true closed-loop system, whereas, for any disturbances in the form of
noise or model errors, we must turn to robust stability techniques. In the case
of bounded disturbances, we can achieve input-to-state stability (ISS). This is
considered Chapter 3.

Terminal conditions

For the terminal cost to be a Lyapunov function in the terminal region, three partic-
ular formulations of the terminal conditions in (2.2) can be used, as summarized in
[35]:

1. N →∞, Xf = {0} and T (z) = 0. This corresponds to the infinite-horizon
case but is difficult to implement with nonlinear dynamics.

2. N is finite, Xf = {0}, and T (z) = 0. This case mirrors the infinite horizon,
but the specification of N sufficiently large is difficult in general. In addition,
a point constraint is known to severely reduce the feasible region of the MPC
scheme [36].

3. N is finite, a suitable terminal region Xf has been calculated for the MPC
scheme (2.2), and a terminal controller κf (z) is known with a suitable ter-
minal cost T (z).

2.2. Markov decision process 17

In practice, MPC is often implemented without terminal constraints. Conditions for
stability without terminal constraint have been thoroughly studied. In this thesis,
we will consider the following two, i.e.

1. Replace the terminal cost T by λT with λ ≥ 1 sufficiently large, such that a
suitable terminal constraint Xf is satisfied without being explicitly stated in
the MPC (2.2) [37].

2. Use a general positive definite terminal cost, that can serve as a global
Lyapunov function, and thereby there is no need for a terminal constraint. It
has also been shown that for a sufficiently long horizon N , we can omit both
the terminal cost and terminal constraint [38].

In Chapter 3, we consider option 1 for the terminal conditions without a terminal
constraint, whereas in Chapter 5 we consider option 2. The advantages of omitting
the terminal constraint are (i) the OCP is simpler i.e. easier to solve and (ii) a larger
feasible set is obtained. On the other hand, establishing recursive feasibility be-
comes more challenging and requires additional assumptions. Addressing recursive
feasibility both without a terminal condition as well as in the face of uncertainty,
has, with the exception of Chapter 4, not been done in this thesis.

2.2 Markov decision process
Markov decision processes (MDPs) provide a standard framework for the optimal
control of discrete-time stochastic processes, defined by a stage cost and a transition
probability that completely characterizes the environment’s dynamics. We denote
the underlying conditional transition probability density as p, defined for the state
s ∈ S ⊆ Rn and action a ∈ A ⊆ Rm. The function p gives the probability density
of transitioning to state s+ given action a in state s, i.e.

s+ ∼ p(·|s, a). (2.10)

The probability of each possible value of s+ should depend only on the immediately
preceding state and action, i.e. s and a. This is best viewed as a restriction on the
state rather than on the decision process and is known as the Markov property. A
Markovian state includes all information from the past that is relevant for the future.
The dynamics in (2.10) include deterministic dynamics as a special case. In control
theory, the dynamics in (2.10) are more often given as, only different in terms of
notation,

s+ = fw(s, a, w), w ∼ W , (2.11)

where w ∈ Rd is a random disturbance from distributionW and fw : Rn × Rm ×
Rd → Rn. In the following, we will use the term cost to describe what is commonly

18 Preliminaries

referred to as reward and assume that this is given, i.e.

L(s, a), (2.12)

is known. For a given MDP, we wish to find the optimal policy, π⋆ : S → A, that
is the solution to

π⋆ = argmin
π
J(π), (2.13)

where J(π) is the performance function. This is defined as

J(π) = Es0∼p0,s∼p(·|s,π(s))

[∞∑

k=0

γkL(sk, ak) | ak = π(sk)

]
, (2.14)

where p0 is a distribution of initial states and γ ∈ (0, 1] is a discount factor used to
establish the importance of future costs over immediate costs. In the following, we
will use Eπ[·] as short for Es0∼p0,s∼p(·|s,π(s))[·], where E[·] is the expected value
operator. We note that the performance measure in (2.14) also includes the special
case where the initial condition is fixed, and not drawn from a distribution. In (2.14)
the performance function is defined for an infinite horizon, but the performance can
also be defined for a finite horizon. We recognize that minimization of the sum of
discounted costs in (2.14) aligns with the commonly used formulation of the MDP
objective which is maximizing the sum of discounted rewards r(s, a) by stating
that r(s, a) = −L(s, a).
The value function Vπ and action-value function Qπ associated with a policy π
satisfy the Bellman equations [32]

Qπ(s, a) = L(s, a) + γEs+∼p(·|s,a)[Vπ(s
+)|s, a], (2.15a)

Vπ(s) = Qπ(s, π(s)). (2.15b)

From the optimal action-value function Q⋆(s, a), we can obtain the optimal policy
as

π⋆(s) = argmin
a
Q⋆(s, a). (2.16)

Solving the MDP problem in (2.13) is possible by using dynamic programming
(DP) techniques on the Bellman equations. However, the problem quickly becomes
intractable as the dimension of the problem grows [32]. In addition, DP depends on
the exact transition dynamics, that in most engineering applications are not readily
available. RL provides alternative methods for solving MDPs, that do not depend
on the exact transition dynamics, that will render an approximation of the optimal
policy based on data.

2.3. Reinforcement Learning 19

2.3 Reinforcement Learning
The taxonomy of RL methods is defined by several meaningful categorizations.
One important distinction is between model-based and model-free methods. Model-
based methods use a model of the system dynamics that can either be known
beforehand or learned jointly with the policy. Unlike model-based methods, model-
free methods assume no knowledge of the system dynamics. In this thesis, we
consider only model-free methods.

Model-free methods can coarsely be further divided into two groups, namely value-
based and policy-based methods. The first category aims to learn an approximation
of the value or action-value function and then obtains a policy estimate from this
approximation, such as in (2.16). Policy-based methods, on the other hand, aim
to directly learn the optimal policy. In the next coming section, we will visit one
common value-based method, namely Q-learning, and look at a sub-category of
policy-based methods, namely policy gradient methods. We will consider both of
these methods in Chapters 5, 6 and 7.

2.3.1 Q-learning

Q-learning is a value-based method, that approximates the optimal action-value
function via a parameterized function approximator Qθ with parameter vector θ.
The goal of value-based RL methods is then to learn the optimal parameters θ⋆, such
that Qθ⋆(s, a) ≈ Q⋆(s, a). Q-learning aims to solve the following least squares
problem

min
θ

Eπθ

[
1

2
(Q⋆(s, a)−Qθ(s, a))

2

]
. (2.17)

Because Q⋆ is generally not known, this can not be solved directly. One approach
to solving (2.17) is the temporal difference (TD) learning [39]. The TD error is
defined as

δk = L(sk, ak) + γVθ(sk+1)−Qθ(sk, ak), (2.18)

where Vθ is the parameterized value function. Let yk = L(sk, ak) + γVθ(sk+1),
and consider this a fixed target, evaluated using a sampled state transition and the
cost. The parameter update is formulated to minimize the squared TD error, i.e.

min
θ

Eπθ

[
1

2
(y −Qθ(s, a))

2

]
. (2.19)

In order to solve (2.19) in practice, it is necessary to collect data also by deviating
from the policy πθ, which is referred to as exploration. For the minimization
problem in (2.19), we define the following first-order (semi)-gradient step

θ ← θ + ζδk∇θQθ(sk, ak), (2.20)

20 Preliminaries

where ζ > 0 is a scalar denoting the step size. The policy estimate is then defined
as

πθ(s) = argmin
a
Qθ(s, a). (2.21)

For Q-learning techniques, it should be mentioned that there is no guarantee to find
the optimal policy. This is because the parameter update of Q-learning methods
is not designed to optimize closed-loop performance directly. Instead, Q-learning
aims to fit Qθ as closely as possible to Q⋆, and assumes that Qθ ≈ Q⋆ results in
πθ ≈ π⋆. However, there are no guarantees that the former approximation implies
the latter, and for certain shapes of Q-functions, it still may be challenging to
capture the optimal policy, even with an almost correct Q-function estimate.

2.3.2 Policy gradient methods

The lack of convergence guarantees for Q-learning methods has motivated the
need for alternative methods with more formal (local) convergence guarantees [40].
Using policy gradient methods, the parameters are updated towards improving the
performance of the policy irrespective of the action-value function accuracy. For
policy-based methods, the policy rather than the value functions are parameterized,
and the policy parameters are adjusted in order to minimize J(πθ). For policy
gradient methods, this is done by estimating the policy gradient ∇θJ(πθ). A
gradient descent step is then used to update the parameters, i.e.

θ ← θ − ω∇θJ(πθ), (2.22)

where ω > 0 is the step size. For deterministic policies, we apply deterministic
policy gradient methods (DPG), for which the policy gradient may be estimated as
in [41]

∇θJ(πθ) = Eπθ

[
∇θπθ(s)∇aQπθ

(s, a)|a = πθ

]
, (2.23)

where Qπθ
is the true action-value function for policy πθ as defined in (2.15a).

Instead of using the true action-value function, which is generally not known, we
will replace it with a function approximator Qw(s, a), with parameter vector w. In
general, assuming that Qπθ

(s, a) ≈ Qw(s, a) will introduce a bias in the policy
gradient estimate. However, under certain conditions, as outlined in [41], this
approximation can be made without affecting the policy gradient, and in this case,
we denote the function approximator as compatible. The function approximator of
Q can e.g. take the form

Qw(s, a) = (a− πθ(s))⊤∇θπθ(s)
⊤

︸ ︷︷ ︸
Ψ(s,a)⊤

w + Vv(s), (2.24)

2.3. Reinforcement Learning 21

where Ψ(s, a) is a state-action feature vector, using the following value function
approximation

Vv(s) = Φ(s)⊤v, (2.25)

where Φ(s) is a state feature vector and v is a parameter vector. The state feature
vector can be an NN, or monomials of the state for simpler systems. The gradient
of the Q-function can then be approximated as

∇aQπθ
(s, a) ≈ ∇aQw(s, a) = ∇θπθ(s)

⊤w. (2.26)

The parameters v and w of the action-value function approximation in (2.24) are
given by the solution to the following least squares problem

min
v,w

Eπθ

[
1

2
(Qπθ

(s, a)−Qw(s, a))
2

]
. (2.27)

The problem in (2.27) can be tackled using e.g. a least squares TD-approach
(LSTD), as detailed in [42], here specified for m episodes of length K, i.e.

v =
1

m

m∑

j=0

{[K∑

k=0

[
Φ(sk,j)(Φsk,j − γΦ(sk+1,j))

⊤]
]−1

K∑

k=1

[
Φ(sk,j)L(sk,j , ak,j)

]}
,

(2.28)

w =
1

m

m∑

j=0

{[K∑

k=0

[
Ψ(sk,j , ak,j)Ψ(sk,j , ak,j)

⊤]
]−1

K∑

k=1

[
(L(sk,j , ak,j) + γVv(sk+1,j)− Vv(sk,j))Ψ(sk,j , ak,j)

]}
.

(2.29)

2.3.3 MPC as a function approximator

In deep RL, NNs are used as function approximators of the value function and/or
policy. This means that in theory, arbitrary complex (action)-value functions and
policies can be approximated with high accuracy. However, it is difficult to analyze
the associated closed-loop behavior. Alternatively, a parameterized MPC scheme
can be used as a function approximator in both value- and policy-based RL methods.

22 Preliminaries

We parameterize the OCP in (2.2), and obtain a value function estimate given as

Vθ(s) = min
x,u,σ

γN (Tθ(xN) + ψ⊤
NσN) +

N−1∑

i=0

γi(ℓθ(xi, ui) + ψ⊤σi) (2.30a)

s.t. ∀i ∈ I0:N−1 : x0 = s, (2.30b)

xi+1 = fθ(xi, ui), (2.30c)

ui ∈ A (2.30d)

hθ(xi, ui) ≤ σi, hNθ (xN) ≤ σN , (2.30e)

σi ≥ 0, σN ≥ 0 (2.30f)

Note that the OCP in (2.2) describes an undiscounted MPC problem, i.e. a spe-
cial case of γ = 1. The function fθ(·, ·) describes the prediction model, hθ(·, ·)
describes the mixed input and state constraints, and hNθ (·) describes the terminal
constraint as before, but now parameterized by θ. Slack variables σi and σN are
used to prevent the MPC scheme from becoming infeasible due to the possible
model mismatch between the true system (2.10) and the prediction model fθ. We
note that the potential stochasticity resulting from the disturbances in (2.10), is
addressed firstly by the parameterized prediction model fθ, as well as by the para-
meterization of the cost and constraints. The constant vectors ψ and ψN should be
selected sufficiently large, such that constraint violations are accepted as seldom as
possible while still ensuring feasibility [43]. Moreover, the stage cost and terminal
cost are also parameterized. Although not clearly visible in the performance meas-
ure as defined in (2.14), the mixed input and state inequality constraint in (2.30e)
may be incorporated in the RL cost L(s, a), by a term that penalizes constraint
violations, e.g.

L(s, a) = L0(s, a) + ψ⊤max(0, h(s, a)). (2.31)

For a value function estimate described by (2.30), the policy estimate is given by

πθ(s) = u⋆0(s, θ). (2.32)

By adding an additional constraint to the OCP in (2.30), namely that the first control
action equals a given action a, we obtain an action-value function estimate:

Qθ(s, a) = min
x,u,σ

γN (Tθ(xN) + ψ⊤
NσN) +

N−1∑

i=0

γi(ℓθ(xi, ui) + ψ⊤σi) (2.33a)

s.t. (2.30b)− (2.30f), (2.33b)

u0 = a. (2.33c)

2.3. Reinforcement Learning 23

The MPC scheme is a valid function approximator of Q⋆, given that it satisfies the
following relationships

πθ(s) = argmin
a
Qθ(s, a), Vθ(s) = min

a
Qθ(s, a) (2.34)

With MPC as a function approximator, RL methods can be applied to adjust the
parameters θ towards the optimal parameters θ⋆. For the optimal parameters θ⋆, the
MPC scheme delivers the optimal policy through (2.32), i.e. πθ⋆ = π⋆.

The central justification for using a parameterized MPC scheme in RL follows from
the following theorem.

Theorem 2. Suppose that the parametrized stage cost, terminal cost, and con-
straints in the MPC scheme (2.30) are rich function approximators with adjustable
parameters θ. Moreover, the MPC scheme has an exact relaxation (i.e. ψ,ψN large
enough). Then there exists parameters θ⋆ such that

Tθ⋆(s) = V ⋆(s) (2.35a)

ℓθ⋆(s, a) =

{
Q⋆(s, a)− V ⋆(fθ⋆(s, a)) if |V ⋆(fθ⋆(s, a))| <∞
∞ otherwise

(2.35b)

and the following holds, ∀γ:

1. Vθ⋆(s) = V ⋆(s), ∀s ∈ Ω

2. πθ⋆(s) = π⋆(s), ∀s ∈ Ω

3. Qθ⋆(s, a) = Q⋆(s, a), ∀s ∈ Ω, for the inputs a ∈ A such that
|V ⋆(fθ⋆(s, a))| <∞

if the set

Ω =:

{
s ∈ S

∣∣∣∣ |V ⋆(x⋆k)| <∞, ∀k ≤ N
}
, (2.36)

is non-empty, where x⋆ is an optimal state trajectory generated by the MPC scheme
in (2.30) i.e. x⋆0, . . . , x

⋆
N .

Proof. The proof follows from [21], [44].

The assumption in (2.36) can be interpreted as a type of stability condition for the
prediction model fθ⋆ under the optimal policy π⋆. More specifically, the assumption
requires the existence of a non-empty set such that the optimal value function V ⋆

24 Preliminaries

of the predicted optimal trajectory x⋆ based on the prediction model is finite for all
initial states starting from this set. Theorem 2 then states that, for a given MDP,
an MPC scheme with a possibly inaccurate model can deliver the optimal value
functions and optimal policy. The result extends to EMPC, which is also treated
in this thesis. A rich parameterization can be achieved by using universal function
approximators for the stage, terminal cost and constraints, such as e.g. NNs [45].
In this thesis, we use the following definition of universal function approximators.

Definition 9. A universal function approximator can approximate any continuous
function on a closed and bounded set.

If the parameterization is not rich enough to capture the optimal policy and value
functions, RL will find the parameters that best fit the policy or value function for
the given set of functions described by the selected parameterization, see e.g. [46].

Remark 1. MPC is most commonly formulated without discounting, i.e. γ = 1, for
which stability analysis can be conducted as outlined in Section 2.1.2. Introducing a
discount factor γ ̸= 1 generally complicates the stability analysis. However, recent
work has newly defined conditions for the stability of closed-loop systems under
discounted MPC schemes, see [47]. Stability analysis in the case of discounted
MPC schemes is not considered in this thesis.

Sensitivity analysis of MPC

In order to calculate the parameter updates for Q-learning (2.20) and policy gradient
methods (2.22), we calculate the gradients of the action-value function and the
policy from sensitivity analysis for the underlying MPC scheme in (2.33) and (2.30)
respectively.

The Lagrange function for the optimization problem in (2.33) is

Lθ = Φθ + ν⊤Gθ + µ⊤Hθ, (2.37)

where Φθ is the cost (2.33a), H gathers the inequality constraints andG the equality
constraints in (2.33). The variables ν and µ are Lagrange multipliers associated
with the equality constraints and inequality constraints respectively. Let p label the
primal decision variables and let η = {p, ν, µ}. The solution to the MPC problem
(2.33) is then given by η⋆. The gradient of Qθ(s, a) w.r.t the parameters is then

∇θQθ(s, a) = ∇θLθ(s, η⋆). (2.38)

The gradient of the policy estimate ∇θπθ required in (2.23), is obtained from
sensitivity analysis of the MPC scheme in (2.30). The primal-dual Karush-Kuhn-

2.3. Reinforcement Learning 25

Tucker (KKT) conditions are given by

R =

∇pLθ
Gθ

diag(µ)Hθ

 = 0, (2.39)

where diag(µ) is a diagonal matrix with entries µ. Using the implicit function
theorem, it follows that

∇θπθ(s) = −∇θR(η
∗, s, θ)∇ηR(η

∗, s, θ)−1 ∂η

∂u0
. (2.40)

26 Preliminaries

Part I

Combining MPC and supervised
learning methods

27

29

Introduction
System modeling represents the first step of an MPC design, and the resulting
performance of an MPC scheme relies heavily on a sufficiently accurate model.
While established methods for system modeling and identification exist, see e.g.
[48], the increasing complexity of systems to be controlled in terms of nonlinearities
or scalability challenges the classical system identification techniques.

In the control community, model errors have been accounted for explicitly in the
field of robust control, established in the 1980s [49]. Robust control is mainly
concerned with linear systems, and is based on incorporating an a priori estimate of
the model uncertainty, and then provides guarantees for stability and performance
for all uncertain parameters or disturbances that lie within some (typically compact)
set. For large uncertainties, robust controllers are naturally conservative in order to
maintain formal guarantees.

ML methods have been considered to overcome the limitations of approximate
models. Both NNs [45] and GPs [50] are universal function approximators, and
therefore suited for learning highly complex dynamics. Although not treated in
this thesis, the opportunities for supervised learning methods for MPC go beyond
data-driven model improvement. For example, the terminal sets and costs were
learned in [51]. Moreover, the region of attraction for a given controller was learned
in [20].

For model learning in MPC, the resulting control design will vary with the choice of
ML model. One important distinction is between models that provide estimates of
the model uncertainty, and those that do not. For learned models that traditionally
do not provide a measure of model uncertainty, such as NNs, we can apply robust
stability techniques in order to analyze the closed-loop system under a controller
that does not consider model uncertainty explicitly. This is done in Chapter 3,
where NNs are used to learn the dynamics of a chemical reactor and used as the
prediction model in MPC to control the process.

For ML models that do provide estimates of model uncertainty, such as probabil-
istic formulations [52], we can incorporate this into the MPC formulation. This
results in what is known as robust MPC (RMPC). Addressing model uncertainty
is essential to ensure constraint satisfaction in case of model inaccuracy and noise.
Typically the uncertainty descriptions for RMPC have been fixed and assumed
available for control design. Learning-based approaches enable us to estimate the
uncertainty based on data, and potentially update the uncertainty description over
time, potentially reducing the conservativeness of the robust controller.

As MPC is based on solving an optimization problem at each sampling time,

30

computational efficiency must be considered as learned models are used as the
prediction model. Leveraging the full potential of e.g. probabilistic methods in
MPC is therefore still an active research field. Convexity is another desired property
for MPC. Convex formulations of the cost or constraints generally make the MPC
problem much easier to solve [33]. In Chapter 4, we exploit probabilistic learning
methods to reduce the conservativeness of a robust controller that can be cast as a
convex optimization problem. The concept of convexity is revisited in Chapter 5,
where we consider convex formulations of the MPC cost function.

The work presented in the following chapters builds on the introduction given to
stability analysis of MPC in Section 2.1.2.

Chapter 3

Learning the MPC prediction
model with NNs

Learning-based controllers, and especially learning-based model predictive con-
trollers, have been used for a number of different applications with great success.
In spite of good performance, a lot of these cases lack stability guarantees. In
this chapter, we consider a scenario where the dynamics of a nonlinear system are
unknown, but where input and output data are available. A prediction model is
learned from data using an NN, which in turn is used in a nonlinear model predict-
ive control (NMPC) scheme. The closed-loop system is shown to be ISS stable
with respect to the prediction error of the learned model. The approach is tested
and verified in simulations, by employing the controller to a benchmark system,
namely a continuous stirred tank reactor (CSTR) plant. Simulations show that the
proposed controller successfully drives the system from random initial conditions
to a reference equilibrium point, even in the presence of noise. The results also
verify the theoretical stability result. This chapter is based on [23].

3.1 Introduction
In the following, we focus on a scenario where either the entire or parts of the
system dynamics are unknown, but with data available, so that a prediction model
can be built or improved offline. In order to be used in MPC, the resulting prediction
model should be accurate, while at the same time not too computationally complex.

Different learning methods have been used for building or improving prediction
models from data, suited for MPC. In [53], GP regression is used to improve a
nominal model by learning a disturbance model, used to design an MPC algorithm

31

32 Learning the MPC prediction model with NNs

for a mobile robot. Similarly, in [54], GPs and local linear regression methods are
compared in order to improve the prediction model of a robot. Because GPs are
known to scale poorly with the number of data points used in training, learning-
based MPC has been tested using sparse GPs, such as in [55]. NNs have also proven
to be highly flexible function approximators, and have become state-of-the-art for
a variety of challenging tasks, ranging from image analysis and classification to
language processing [56], [57]. This learning method has also proved effective for
learning the dynamics of nonlinear systems [58], [59], [60]. Consequently, NNs
have been used to build prediction models suited for MPC, such as in [61], [62],
[63], [64], [65].

For safety-critical applications, a necessary aspect of learning-based MPC is being
able to prove the stability of the closed-loop system. For many references on
learning-based MPC, this is currently missing. In [14], stability is analyzed for a
general class of learning-based MPC, where the dynamics are divided into a nominal,
linear model and a function to be learned. Using that the amplitude of the learned
function is bounded, robust stability is proved for the linear MPC. Because the
bound must hold for all unmodelled nonlinearities in addition to model errors, the
assumption is rather conservative. In [19] and [66] the entire system dynamics are
learned, using GPs and parameter optimized kinky inference (POKI) respectively,
and stability is proved assuming boundedness of the modeling uncertainty. Stability
is analyzed for learning-based MPC using NNs, in [67]. However, the suggested
MPC design is different and computationally more complex compared to the design
proposed in this chapter.

This work is inspired by the stability analyses done in [19] and [66] but is adapted to
a case where the system dynamics are learned using an NN. The main contributions
of this chapter are:

• Design of an output MPC scheme using a nonlinear autoregressive model
with exogenous input (NARX) prediction model learned using an NN

• Conditions for which the closed-loop system is ISS with respect to the
prediction error

• Implementation and testing of the control design for a benchmark system

3.2 Problem statement
We study nonlinear discrete-time systems, where yk ∈ R is the measured output
and uk ∈ R is the control input. It is assumed that the dynamics can be described

3.3. Data-based prediction model 33

using a NARX model, given by

yk+1 = f(xk, uk) + wk, (3.1)

where the output is corrupted by noise, wk, which is assumed to lie in a compact
setW , that is wk ∈ W ⊂ R. The input is subject to hard constraints, uk ∈ U , and
the output is subject to soft constraints, yk ∈ Y . The NARX state vector is given by

xk = [yk, . . . , yk−my , uk−1, . . . , uk−mu], (3.2)

where my and mu denotes the number of previous outputs and inputs used to
describe the next output so that xk ∈ Rmy+mu+1.

It is assumed that the system dynamics of the plant are unknown and that f(·, ·)
from (3.1) is an unknown function, but that input and output data are available. The
data is used to build a prediction model

ŷk+1 = f̂(xk, uk). (3.3)

Throughout this chapter, (̂·) will be used to denote either variables that are predicted
or functions that are used to make predictions. We want to steer the process from
random initial conditions, within the given input and output sets, to a desired
reference equilibrium point, given by (xref , uref), where xref ∈ Rmy+mu+1 and
uref ∈ R. To this end, we design an MPC scheme, using the prediction model from
(3.3).

Remark 2. Here, we have considered a case that is single-input single-output.
However, the control design and the stability results in this chapter can easily be
extended to the multi-input multi-output case.

3.3 Data-based prediction model

3.3.1 NARX prediction model

In the MPC algorithm, we consider the prediction of the state. We therefore
reformulate the NARX model into a state space representation on the form

xk+1 = F (xk, uk, ek)

yk = c⊤xk + wk,
(3.4)

where c⊤ = [1 0 . . . 0] and ek represents modeling uncertainty, in the form
of a prediction error, introduced because we will use the prediction model from

34 Learning the MPC prediction model with NNs

(3.3). The prediction error denotes the difference between the true model (3.1) and
the learned prediction model (3.3)

ek := yk+1 − ŷk+1

= f(xk, uk) + wk − f̂(xk, uk).
(3.5)

Using the definition of the NARX state vector from (3.2), the vector-valued function
from (3.4) is given by

F (xk, uk, ek) = [f̂(xk, uk) + ek, yk, ..., yk−my+1,

uk, ..., uk−mu+1].
(3.6)

We now define the nominal state space model, for which F̂ (xk, uk) ≜ F (xk, uk, 0).
This is written as

F̂ (xk, uk) = [f̂(xk, uk), yk, ..., yk−my+1, uk, ..., uk−mu+1], (3.7)

where the first argument can be either the previous predicted state, x̂k, or the true
state known from measurements, xk, and is used to obtain the next state prediction
x̂k+1 = F̂ (xk, uk).

3.4 NARX Neural Network
When a multi-layer perceptron (MLP) network is used to approximate the function
f(·) in a NARX model, the resulting structure is known as a NARX network [68].
Here, a single hidden layer is proposed for approximation. It has been shown that a
single hidden layer feedforward NN with a sufficient number of neurons, is capable
of approximating any continuous function to an arbitrary degree of accuracy [69],
[45].

Training of a NARX network can be done in two different modes [68]. If the
network is in so-called series-parallel mode, the previous outputs are actual values
of the system’s output. This can be written as

ŷk+1 = f̂NN(yk, ..., yk−my , uk, ..., uk−mu). (3.8)

If the network is in parallel mode, predicted past outputs are used to predict the
next output, according to

ŷk+1 = f̂NN(ŷk, ..., ŷk−my , uk, ..., uk−mu). (3.9)

In parallel mode, the NARX network is a recurrent neural network (RNN), with
feedback connections enclosing the layers of the network.

3.5. Stabilizing data-based MPC 35

Series-parallel mode is generally preferred in training if the actual values of the
system’s outputs are available. This has two benefits, the first being that using
the actual output values gives better accuracy. In addition, the series-parallel
architecture results in a purely feedforward network, so that static backpropagation
methods can be used during training.

In order to make predictions, the NARX network should be converted to parallel
mode after training. When the NARX network is making multi-step ahead predic-
tions, the true output values will no longer be available, and in parallel mode the
network will instead use its own output predictions. A NARX network in parallel
mode is visualized in Figure 3.1.

Figure 3.1: Visualization of a NARX network in parallel mode, reproduced from [70].

3.5 Stabilizing data-based MPC
In the following section, we define a nonlinear MPC scheme that uses the nominal
model (3.7) learned from data using a NARX network. In the following we will use
the class K functions as defined in Section 2.1.2.

3.5.1 Optimal control problem

MPC is based on solving an open-loop optimization problem at every time step. In
each iteration, the optimization routine will minimize a given cost function.

Because we want the MPC scheme to drive the process to a reference state, we use
a positive definite stage cost that penalizes deviations from the reference, given by
ℓs(·, ·). A barrier function, ℓb(·), is added to the total stage cost, in order to fulfill
soft output constraints, that is to ensure that the output stays in a certain set, Y ⊆ R,

36 Learning the MPC prediction model with NNs

if possible. Based on the stability analysis in Section 3.5.2, ℓb(·) is designed such
that

ℓb(ŷk) ≥ αb(d(ŷk,Y)) (3.10)

and ℓb(ŷk) = 0 ∀ ŷk ∈ Y , where αb(·) is a class K-function and d(·) is the shortest
distance from a point ŷk ∈ R to the set Y ⊆ R.

The total stage cost is then

ℓ(x̂k, uk) = ℓs(x̂k − xref , uk − uref) + ℓb(ŷk), (3.11)

where (xref , uref) denotes the reference equilibrium point. Using the stage cost
(3.11) and the nominal model (3.7), the final optimization problem is formulated.
Note that this is done without defining a terminal constraint [37], resulting in

min
x̂,u

N−1∑

i=0

ℓ(x̂k+i|k, uk+i|k) + λVf (x̂k+N |k − xref) (3.12a)

s.t. ∀i ∈ I0:N−1 : (3.12b)

x̂k+i+1|k = F̂NN(x̂k+i|k, uk+i|k) (3.12c)

x̂k|k = xk (3.12d)

ŷk+i|k = c⊤x̂k+i|k (3.12e)

uk+i|k ∈ U , (3.12f)

where (̂·) denotes predicted variables. We let F̂NN(·, ·) denote the nominal state
space model (3.7), using the neural-based prediction model (3.9). The control se-
quence applied over the prediction horizonN is given by uk = {uk|k, ..., uk+N−1|k}
and the predicted states are xk = {xk|k, ..., xk+N |k}. The optimization problem is
subject to hard input constraints, where U is the set of feasible inputs. In order to
guarantee stability, we make use of a terminal cost Vf (·) and an associated terminal
control law κf (·). The terminal cost is weighted by a design parameter λ ≥ 1 and
xk is the initial condition of the NARX state.

3.5.2 Stability

We want to consider ISS of the closed-loop system

xk+1 = F (xk, κMPC(xk), ek), (3.13)

where κMPC(xk) is the nominal controller resulting from the optimization problem
(3.12), and F (xk, κMPC, ek) is the true model given by (3.6). The stability proof
for the learning-based MPC in [19] and [66] is here adapted for an MPC scheme
where the prediction model is approximated by an NN.

3.5. Stabilizing data-based MPC 37

Definition 10. A system xk+1 = F (xk, κMPC(xk), ei) is ISS if there exists a class
KL-function β and a class K-function γ such that

∥xk∥ ≤ β(∥x0∥ , k) + supi=0,...,kγ
(
|ei|

)
(3.14)

for all initial conditions x0, modeling uncertainties ei and for all k ≥ 0.

We first establish stability in the nominal case, for which the prediction error is
assumed to be zero so that the true and predicted state is the same. We then
consider robust stability, when the prediction error is non-zero, but bounded. For
the nominal case, we want to establish that the control error, x̃k = xk − xref ,
converges asymptotically to zero.

For now, we consider the following closed-loop system using the nominal model
(3.7), with the neural prediction model (3.9)

x̃k+1 = F̂NN(xk, κMPC(xk))− xref
= F̃NN(x̃k, κMPC(x̃k)).

(3.15)

We make use of the following assumptions regarding the total stage cost, ℓ(xk, uk),
the terminal cost, Vf (·), and the terminal controller, κf (·).

Assumption 1. There exists a terminal control law κf (x̃k), a control Lyapunov
function Vf (x̃k) and a region defined by Ω = {x̃k ∈ Rmy+mu+1 : Vf (x̃k) ≤ α},
where α > 0, such that ∀x̃k ∈ Ω the following holds

1.

α1(∥x̃k∥) ≤ Vf (x̃k) ≤ α2(∥x̃k∥),
Vf (F̃NN(x̃k, κf (x̃k))− Vf (x̃k)

≤ −ℓ(x̃k + xref , κf (x̃k)),

(3.16)

2.
κf (x̃k) ∈ U , c⊤(x̃k + xref) ∈ Y, (3.17)

where F̃NN(·, ·) is the nominal model (3.15), ℓ(·, ·) is the stage cost (3.11), xref is
the reference state, α1(·) and α2(·) are class K∞-functions and U , Y are compact
input and output sets, respectively.

Assumption 2. There exists a class K∞-function, αy(·), such that the stage cost
(3.11), satisfies ℓ(xref , uref) = 0 and ℓ(x̃k + xref , uk) ≥ αy(∥x̃k∥) for all uk ∈ U ,
where (xref , uref) denotes the reference equilibrium point.

38 Learning the MPC prediction model with NNs

We now propose the following theorem, which is an adaption of Theorem 4 in [37].

Theorem 3. Let Assumptions 1-2 hold, and let κMPC(x̃k) be the resulting control
law of the optimization problem in (3.12). Then ∀λ ≥ 1, where λ is a weighting
factor, there exists a domain of attraction, XN (λ), defined without terminal con-
straint, such that for all initial conditions x0 ∈ XN (λ), the closed-loop system
(3.15) is asymptotically stable at the origin.

Proof. An outline of the proof is given as follows. Having satisfied Assumption
1-2, Theorem 4 in [37] states that the controller resulting from the solution of the
optimization problem (3.12) will stabilize the system (3.15) asymptotically in the
set xk ∈ XN (λ). For the complete proof, the reader is referred to [37].

The weight of the terminal cost, λ, can be used to adjust the size of the domain of
attraction. The greater λ, the larger is XN (λ), but the worse is the approximation,
λVf (·), of the optimal cost.

Having established that the nominal system is asymptotically stable, the robust case
will now be considered. To that end, we make use of the following assumptions:

Assumption 3. There exists a constant µ <∞, such that the prediction error (3.5)
is bounded ∀k |ek| ≤ µ.

Remark 3. The prediction error encompasses the approximation error as well as
the measurement noise. The measurement noise is assumed to lie in a compact
set and is therefore bounded. In general, it is not possible to prove that the
approximation error of NNs is bounded. However, this is still a commonly used
assumption [13], [71], [72]. In this case, we can argue that if the prediction error
is bounded on the training set, and the training data is representative of data seen
in closed-loop operation, then Assumption 3 is reasonable.

Assumption 4. The nominal model F̂NN(xk, κMPC(xk)) from (3.7) is uniformly
continuous in xk for all xk ∈ XN (λ).

Remark 4. The nominal model F̂NN(xk, κMPC(xk)) will be uniformly continu-
ous, if the prediction model f̂NN(xk, κMPC(xk)) is uniformly continuous. This is
ensured by choosing uniformly continuous activation functions for the neurons in
the layers of the NARX network. All the commonly used activation functions in
RNNs, such as the sigmoid, tanh and ReLU functions, are uniformly continuous as
their derivatives are uniformly bounded. Considering the interval [0,∞), all the
above-mentioned activation functions are in addition continuously differentiable,
which is a stronger continuity property than uniform continuity.

3.6. Case study 39

The following theorem is an adaption of Theorem 4 in [73].

Theorem 4. Let κMPC(xk) be the predictive controller derived from the optimal
control problem (3.12) and let Assumptions 1-4 hold. Then, Ωr ⊆ XN (λ) is a
robust invariant set for a sufficiently small bound on the uncertainty. The system
(3.13) fulfills the ISS property within the robust invariant set Ωr.

Proof. An outline of the proof is given as follows. Satisfaction of Assumptions 1-2
guarantees asymptotic stability of the nominal system (3.15) as stated by Theorem 3.
If Assumptions 3 and 4 also hold, then Theorem 4 of [73] holds directly. Satisfaction
of Theorem 4 guarantees ISS for the closed-loop system (3.13).

Remark 5. Because the continuity requirement to the neural-based prediction
model relates to the choice of activation functions, the user has the freedom to
select a different number of hidden layers as well as other network architectures,
such as other standard RNNs. Nonetheless, MPC is a computational heavy control
design, because an optimization problem is solved at every iteration. This provides a
valid argument for keeping the architecture as simple as possible in a neural-based
MPC.

Remark 6. ISS can also be shown by establishing uniform continuity of the optimal
cost, by adding some additional assumptions regarding the terminal cost and the
stage cost used in the objective function. For details, the reader is referred to C1 in
Proposition 1 in [73].

3.6 Case study
To test the performance and robustness of the proposed MPC design, the CSTR
process is considered. This is often used as a benchmark process for learning-based
MPC.

3.6.1 The continuous stirred tank reactor

A CSTR process describes the reaction where a reactant is converted from A→ B
[74]. The following differential equations are used to model this process

ĊA(t) =
q0
V
(CAf − CA(t))− k0e

−E
RT (t)CA(t) (3.18a)

Ṫ (t) =
q0
V
(Tf − T (t))−

∆Hrk0
ρCp

e
−E

RT (t)CA(t) (3.18b)

+
UA

V ρCp
(Tc(t)− T (t)) (3.18c)

Ṫc(t) =
Tr(t)− Tc(t)

τ
, (3.18d)

40 Learning the MPC prediction model with NNs

Table 3.1: CSTR process parameters

Param. Definition Value
q0 Reactive input flow 10 l/min
V Liquid volume in the tank 150 l
k0 Frequency constant 6·1010 l/min
E/R Arrhenius constant 9750 K
−∆Hr Reaction enthalpy 10000 J/mol
UA Heat transfer coefficient 70000 J/(min K)
ρ Density 1100 g/l
Cp Specific heat 0.3 J/(g K)
τ Time constant 1.5 min
Cf CA in input flow 1 mol/l
Tf Input flow temperature 370 K

whereCA [mol/l] is the concentration of the reactant, T [K] is the temperature in the
tank, Tc [K] is the temperature of the coolant, and Tr [K] is the coolant temperature
reference. For this control problem, we have input and output according to u = Tr
and y = CA. The model parameters are given in Table 3.1, and are similar to those
used in [19] and [66]. We define the following input constraints, U = {335 K ≤
Tr ≤ 372 K}, and output constraints, Y = {0.35 mol/l ≤ CA ≤ 0.65 mol/l}.

3.6.2 Obtaining the dataset

The model equations in (3.18) were used in simulation and for generating training
data, but otherwise assumed unknown. The equations were implemented in MAT-
LAB, discretized using Euler’s method and sampled at Ts = 0.5 min. An input
signal was designed to do open-loop simulations. The requirement for input design
for system identification is that the data needs to be persistently exciting, i.e. the
data must contain sufficiently many distinct frequencies [48].

The input signal was designed to cover the relevant area of input-output space,
considering the input and output constraints. To this end, the system was excited by
a total of 7 sweeping chirp signals, with different amplitudes and length. A total of
17500 data points were used to train the NN. As the resulting training data covers a
large part of the input-output space which is considered in closed-loop operation,
we assume that a bounded prediction error for the training data implies a bounded
prediction error in closed-loop operation.

3.6. Case study 41

3.6.3 Training the NARX network

Training the NARX network was done in MATLAB, using a series-parallel archi-
tecture, as described in Section 3.4. All data was normalized ahead of training,
so that all values fall within a range [−1, 1]. This was done to compensate for the
input data having different scales, as both past inputs and past outputs are fed to
the NN. For a NARX network, the size of the input layer is dictated by the number
of input and output delays in the NARX model, given by mu and my. Different
architectures were tested, until we obtained satisfactory performance, using a single
hidden layer, with 10 neurons, and mu = 1 and my = 2 as the number of input and
output delays, respectively. The sigmoid function was used in the neurons in the
hidden layer, and a linear activation function was used in the output neuron. The
data was split randomly into a train, test and validation set, that corresponded to
70/15/15 % of the data, respectively. A Levenberg-Marquardt algorithm was used
for optimization during training. Early stopping was used to prevent the model from
overfitting. For multi-step ahead prediction, the NARX network was converted to
parallel mode (3.9).

The resulting architecture of the NN represents a trade-off between modeling
flexibility, needed to capture the system dynamics, and computational complexity
for the resulting control design. An independent dataset with noise, was set aside
for validation, not previously seen in training. To quantify the prediction accuracy
on the separate validation dataset, the mean squared error (MSE) is introduced

MSE =
1

Npred

Npred∑

k=1

∥yk − ŷk∥2. (3.19)

The validation results are seen in Figure 3.2, where the NN is tested for Npred = 30,
initialized using noisy measurements. For the given prediction horizon we get
MSE = 2.84 · 10−6. Here the prediction horizon is relatively long, and the multi-
step ahead prediction is fairly accurate for the unseen validation data. In closed-loop
model-based control the prediction horizon will often be shorter, and we conclude
that the prediction model should be suited.

3.6.4 Control of the reactor

The control objective is to drive the process from a random initial condition, to a
reference equilibrium point. The following quadratic stage cost was used

ℓs(xk − xref , uk − uref) = (xk − xref)⊤Q(xk − xref)
+(uk − uref)⊤R(uk − uref),

(3.20)

where xref = [yref , yref , yref , uref], for the selected choice of mu and my, as ad-
dressed in Section 3.6.3. The optimization problem defined in (3.12) was solved

42 Learning the MPC prediction model with NNs

0 5 10 15

350

352

354

356

358

360

0 5 10 15

0.435

0.44

0.445

0.45

0.455

0.46

Figure 3.2: NARX NN prediction of CSTR concentration. Top: random steps in the coolant
temperature reference. Bottom: true and multi-step ahead predictions of the concentration,
with the network in parallel mode, using a separate validation set not previously seen by
the network. The output is shown in the original scale. The multi-step ahead prediction
seems to be fairly accurate for a random input sequence, and for that reason, more complex
and larger architectures are avoided in order to keep the prediction model simple.

using fmincon in MATLAB. The prediction horizon was set to N = 5, and we
used Q = diag(50, 0, 0, 0), R = 0.2 and λ = 1.

3.6.5 Finding the reference equilibrium point

Because we consider a system with unknown dynamics, the input reference cor-
responding to the output reference is not necessarily known. Here it is assumed
that the input and output reference point is known a priori, namely uref = 356 K
and yref = 0.439 mol/l. If this is not the case, the learned prediction model can
be used to obtain an estimate of the corresponding input reference, by solving an
optimization problem. See for example [63].

3.6.6 Soft output constraints

A barrier function was added to the stage cost to account for soft output constraints.
The following barrier function was adopted from [19], [66]

ℓb(yk) = ζ

(
1− e

−d(yk,Y)

δ

)
, (3.21)

where δ = 1, ζ = 100 and d(·) is given by

d(y,Y) = infz∈Y ∥z − y∥∞ , (3.22)

3.6. Case study 43

where ∥·∥∞ denotes the infinity norm. For the benchmark system, this means that
the coolant temperature reference will not exceed its limit, since input constraints are
hard, while the concentration limit is "desirable", given by soft output constraints.

3.6.7 Finding the terminal cost

The selected terminal controller and the terminal cost are defined as κf (x̃k) =
K⊤x̃k+uref and Vf (x̃k) = x̃⊤k Px̃k [33], where x̃k = xk−xref . The terminal cost
is found by solving the LQR problem for the linearized model around the reference
point, where P is the solution to the discrete Riccati equation, given in (2.7).

The linearized model is found using the learned prediction model. For the choice of
my and my, the NARX state vector is given by xk = [yk, yk−1, yk−2, uk−1], and
consequently the linearized model should be on the form

yk+1

yk
yk−1

uk

 =

a11 a12 a13 a14
1 0 0 0
0 1 0 0
0 0 0 0

yk
yk−1

yk−2

uk−1

+

b11
0
0
1

uk. (3.23)

Because the learned model is not defined explicitly, the linearized model is ob-
tained numerically [19], [66]. The coefficients of the linearized system can be
approximated according to

a11 =
∂f̂NN

∂yk
, a12 =

∂f̂NN

∂yk−1
, a13 =

∂f̂NN

∂yk−2

a14 =
∂f̂NN

∂uk−1
, b11 =

∂f̂NN

∂uk
,

(3.24)

where f̂NN(·, ·) is the prediction model (3.9). The coefficients in (3.24) were
evaluated at (uref , yref) and (yref + ∆, uref + ∆), where ∆ represents a small
perturbation. We used ∆ = 0.015, found by trial and error.

The coefficients for the linearized system evaluated at the reference point, were
found to be a11 = 2.1742, a12 = −1.5402, a13 = 0.3958, a14 = −0.0003 and
b11 = 0.0. Using dlqr in MATLAB, the following gain and solution to the Riccati
equation were found:

K⊤ =
[
−838.08 897.23 −300.55 0.20

]
, (3.25)

P = 106

1.5672 −1.6776 0.5619 −0.0004
−1.6776 1.7959 −0.6015 0.0004
0.5619 −0.6015 0.2015 −0.0001
−0.0004 0.0004 −0.0001 0.0000

 . (3.26)

44 Learning the MPC prediction model with NNs

Assumptions 1 - 4 from Section 3.5.2 are fulfilled given the choice of the terminal
cost and terminal controller, the selected total stage cost, composed of (3.20) and
(3.21), the considerations regarding the prediction error in closed-loop operation
and the selected NN architecture and activation functions. By Theorem 4, the
considered closed-loop system is ISS.

3.7 Simulation results
In order to evaluate the performance of the MPC-NN, using the NARX network
as the prediction model, an MPC scheme using the ordinary differential equations
(ODEs) (3.18), was implemented. To determine the terminal ingredients for this
controller, the linearization of the system was also done numerically, as described
by (3.24), but using the ODEs to determine the coefficients. The same MPC cost
parameters were used for both the MPC-NN and the MPC-ODE design.

For each controller, simulations were run for t = 15 min. For each simulation,
random initial conditions were selected from the valid input and output sets. The
measurements were corrupted by 2.5% sensor noise. A total of 100 simulations
were run to test for different realizations of noise and initial conditions.

The following performance index was used to evaluate the controller’s performance

ϕ =
1

Nsim

Nsim∑

j=1

tsim∑

k=1

ℓ(xjk, u
j
k), (3.27)

where xk and uk are the resulting state and control input for each iteration, tsim is
the number of time steps in one simulation and Nsim is the number of simulations.

In simulations, the MPC-ODE design was expected to be superior, because the true
model was used as the prediction model. Comparing the closed-loop results seen in
Figure 3.3a and 3.3b, we see that the MPC-NN performs almost as well as the ideal
controller. This was also verified by the evaluated performance index (3.27), which
was found to be ϕODE = 273.86 and ϕNN = 281.44. For the tested scenario where
the system dynamics are unknown, but input-output data is available, the proposed
learning-based MPC design obtained close to ideal behavior.

Simulation results show that the MPC-NN successfully steered the system from
all tested random initial conditions, to the reference equilibrium point, even in the
presence of noise. In Figure 3.4 we also see that the one-step prediction error stays
small and bounded for all realizations of noise. This is important with respect to
Assumption 3 in the stability proof. The initial peak in the one-step prediction error
is due to the fact that at the beginning of each simulation, the network is initialized
using only one noisy, random initial condition.

3.8. Conclusion 45

0 5 10 15

330

340

350

360

370

380

0 5 10 15

0.3

0.4

0.5

0.6

0.7

(a) MPC-ODE

0 5 10 15

330

340

350

360

370

380

0 5 10 15

0.3

0.4

0.5

0.6

0.7

(b) MPC-NN

Figure 3.3: CSTR results from 100 simulations. The thick line represents the empirical
mean, and the shaded area represents ±σ. In each figure, the upper subplot shows the
coolant temperature reference and the bottom subplot shows the concentration. Note that
the input constraints are hard, while the output constraints are soft

3.8 Conclusion
We have presented a NMPC scheme that uses a learned prediction model. The
prediction model was learned based on past input and output data, using an NN.
The proposed controller is proved to be ISS with respect to the prediction error,

46 Learning the MPC prediction model with NNs

0 5 10 15

0

0.005

0.01

0.015

0.02

0.025

Figure 3.4: The one-step prediction error for the prediction model used by the MPC-NN.
The thick line represents the empirical mean, and the shaded area represents ±σ from 100
simulations.

assuming that the latter is sufficiently bounded. Because this is an output feedback
MPC algorithm, full state information is not necessary, so the control design may be
applied to systems where the state might not be measured. The control design was
implemented and tested for a CSTR. Compared to an ideal MPC implementation,
the learning-based MPC design performed almost as well. Simulations also show
the stability of the controlled system for all investigated cases and support the
assumption that the prediction error is bounded.

Chapter 4

Learning for robust control of
sector-bounded systems

For dynamical systems with uncertainty, robust controllers can be designed by
assuming that the uncertainty is bounded. The less we know about the uncertainty
in the system, the more conservative the bound must be, which in turn may lead to
reduced control performance. If measurements of the uncertain term are available,
this data may be used to reduce the uncertainty in order to make bounds as tight
as possible. In this chapter, we consider a linear system with sector-bounded
uncertainty. We develop an MPC algorithm to control the system and use a weighted
Bayesian linear regression (WBLR) model to learn the least conservative sector
condition using measurements collected in closed-loop. The resulting robust MPC
algorithm therefore reduces the conservativeness of the controller and provides
probabilistic guarantees of asymptotic stability and constraint satisfaction. The
efficacy of the proposed method is shown in simulation. This chapter is based on
[24].

4.1 Introduction
Even though modern solvers are able to handle NMPC algorithms, solving the
resulting optimization problem is in general challenging. The main reason is that
for non-convex optimization problems, the solvers are often not guaranteed to
find global minima, and may instead get stuck in a local minimum. A way to get
around this is to treat the nonlinearities present in the dynamics as uncertainties
in a linear system. The linear system can then be controlled using algorithms that
are robust with respect to some bounded uncertainty in the system, by solving
convex optimization problems. In [75], robust MPC schemes are formulated for

47

48 Learning for robust control of sector-bounded systems

polytopic systems and for linear systems with structured uncertainty. A sector
bound is particularly suited for modeling state-dependent uncertainty and is used
with a similar MPC algorithm in [76], [77], [78].

For uncertain systems, the smallest possible bound on the uncertainty may not
be known a priori. Using more conservative bounds will in turn lead to more
conservative controllers and correspondingly reduced control performance. If the
uncertainty in the system can be measured or estimated, learning-based methods
may be used to provide robust controllers with improved performance. In [79], a
GP is used to model the disturbances in a vehicle model. The learned model is used
to enhance a nominal prediction model in an MPC scheme, resulting in improved
path-tracking performance.

A similar approach is taken in [80], using wBLR to learn unknown dynamics in the
prediction model. In [81], GP regression is used to learn unmodelled dynamics to
be used in stochastic MPC. The learned model complements the prediction model,
and the model uncertainty is used to update the chance constraints. Compared to
using only a nominal model, the addition of the learned model results in cautious
control with improved performance. A GP model is also used in [82] to model the
uncertainty in a linear system, ensuring robust constraint satisfaction and resulting
in less conservative control.

In this chapter, we consider linear systems with sector-bounded uncertainties, as
in [76], [77] and [78]. We develop a robust MPC algorithm similar to the one
formulated in [77]. However, instead of assuming that the smallest possible sector
is known a priori, we use measurements of the uncertainty to learn the sector bound.
This is done using a Bayesian linear regression (BLR) model [83], with weighted
data points as in [80], that is particularly suited for finding local approximations of
nonlinear functions.

To the best of the authors’ knowledge, this has not been done before. The first
contribution of this chapter is therefore to use closed-loop measurements to tighten
a sector bound of an uncertain nonlinear term. Because the wBLR model estimates
distributions rather than deterministic model parameters, it provides a measure of
model uncertainty, which is used to formulate a stochastic sector bound, that in
turn provides probabilistic stability and constraint satisfaction guarantees for the
closed-loop system. The third contribution of this chapter is a reformulation of the
optimal infinite horizon problem, formulated in [77], for discrete-time systems.

4.2. Problem statement 49

4.2 Problem statement
We consider a subclass of discrete-time nonlinear systems, namely sector-bounded
Lur’e systems, which can be written in the form

xk+1 = Axk +Gγ(zk) +Buk,

zk = Hxk,
(4.1)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control input and zk is the
input of the nonlinearity γ(z) : R → R for z ∈ R. The system matrices have
dimensions A ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×1 and H ∈ R1×n. We assume that
the nonlinearity satisfies

(uz − γ(z))(γ(z)− lz) ≥ 0 ∀z, (4.2)

where u, l ∈ R+, i.e. is bounded by the sector condition as visualized in Figure 4.1.

−1 0 1
z

−4

−2

0

2

4

uz

lz

γ(z)

Figure 4.1: Sector-bounded nonlinear function, γ(z).

The system is subject to r polytopic state and input constraints, of the form

Ck =

{[
xk
uk

]
∈ Rn+m : cjxk + djuk ≤ 1, j = 1, ..., r

}
, (4.3)

that must be satisfied at every time instant k. The control objective is to steer the
system (4.1) to the origin, for all nonlinearities that satisfy the sector condition
(4.2), and for the input- and state-constraints in (4.3).

50 Learning for robust control of sector-bounded systems

To this end, a sector condition that is as small as possible can improve the control
performance by making it less conservative. For this purpose, both open-loop and
closed-loop measurements can be used to reduce the bounds on the uncertainty. In
this chapter, we focus on the latter and propose using closed-loop measurements
to tighten an initially conservative sector bound. For systems of the form (4.1),
where the full state is sampled for k ≥ 0, we can estimate γ(zk) using the available
closed-loop measurements. For each time step, we use xk+1 and xk, in combination
with (4.1) and the known system matrices A, B, G and H , to obtain an estimate of
γ(zk).

4.3 Learning the sector bound
The goal of this section is to describe how closed-loop measurements can be used
to learn a sector bound, in order to make it as tight as possible. For this purpose we
use wBLR, which is an extension of BLR as presented in [83], and a modification
of [80]. We assume that we have a dataset of n training samples, D = {zi, yi}ni=1,
with yi = γ(zi). Consider a local model

yi = wzi + ϵi, (4.4)

where zi and yi are the scalar input and output, respectively, and with zero mean
Gaussian noise, ϵi ∼ N (0, σ2), where σ2 is the variance. For the sampled region
of input space, we want to approximate a locally linear model of the form

ŷ = wz, (4.5)

where w is a stochastic variable. Because the available data points are sampled
from a closed-loop system with a fixed sampling frequency, we use scalar weights
li ∈ [0, 1] to determine the importance of each data point as done in [80]. As in [80],
we assume that the data points are weighted ahead of learning. However, we weigh
the datapoints differently, namely by considering the density of data points in input
space. To this end, the closed-loop measurements are sorted, and then weighted
according to the input points’ similarity with both the previous and the next data
point. The weight is then scaled using the largest difference between subsequent
data points, according to

li =
0.5∥zi − zi−1∥+ 0.5∥zi − zi+1∥

max({∥z2 − z1∥, . . . , ∥zn − zn−1∥})
, (4.6)

for 2 ≤ i ≤ n− 1. For the first and last data point we let li = 0. For a sample zi
that is very similar to the previous sample zi−1 and the next sample zi+1, the weight
is small, li ≈ 0, and the data point will have little influence on the regression. For

4.3. Learning the sector bound 51

the opposite case, the sample will be weighted with li ≈ 1, and the data point is
fully included in the regression. If all weights are 1, we obtain standard BLR.

For the weighted data set Dl = {zi, yi, li}ni=1, we assume that each data point is
independent, and distributed according to

p(y|Z,w, σ2) =
n∏

i=1

N (yi|wzi, σ2)li , (4.7)

known as the likelihood function, where Z is a matrix with rows zi and y is a vector
with elements yi. For this likelihood function, the conjugate prior is a Normal
Inverse Gamma (NIG) distribution, resulting in the following priors for w and σ2

[83]

p(w|σ2) ∼ N (w|w0, σ
2V0), (4.8a)

p(σ2) ∼ IG(σ2|a0, b0), (4.8b)

where w0 is the prior mean and σ2V0 is the prior variance of the regression weight,
and a0 and b0 are the initial parameters determining the Inverse Gamma (IG)
distribution. For the specified likelihood (4.7) and prior (4.8), one can show that the
posterior distribution over w and σ2 has the form [83]

p(w, σ2|Dl) = NIG(w, σ2|wN , VN , aN , bN), (4.9)

with

wN = VN (V −1
0 w0 + ZTLy), (4.10a)

VN = (V −1
0 + ZTLZ)−1, (4.10b)

aN = a0 +
tr(L)
2

, (4.10c)

bN = b0 +
1

2
(w0V

−1
0 w0 + yTLy − wNV

−1
N wN), (4.10d)

where tr(·) is the trace operator, and L is a diagonal matrix with the data weights li.
From the joint posterior distribution (4.9), we obtain the marginal distributions for
w and σ2 [83]

p(w|Dl) = T (w|wN ,
bN
aN

VN , 2aN), (4.11a)

p(σ2|Dl) = IG(σ2|aN , bN). (4.11b)

In order to define a stochastic model of the sector bound, we use the uncertainty of
w, given by the Student t-distribution as specified in (4.11a). To make use of the
stochastic sector bound in the control design, we use the confidence interval for w
to define the upper l̂ and lower û bound on the local linear approximation of the
nonlinear function γ(z).

52 Learning for robust control of sector-bounded systems

Assumption 5. For the local linear approximation ŷ

Pr
(
(ûz − ŷ)(ŷ − l̂z) ≥ 0

)
≥ ps ∀ŷ, (4.12)

holds with probability, Pr(·), at least ps.

The stochastic sector bound is used to formulate a robust controller for a system
where the exact sector bound is not known. In the next section, Assumption 5 is
used in the stability analysis of the resulting closed-loop system.

4.4 Learning-based robust MPC
For the system (4.1), constraints (4.3) and the control objective as described in
Section 4.2, we propose to use NMPC. The following section is dedicated to
describing the control design, as well as analyzing the stability and recursive
feasibility of the closed-loop system.

The basic idea of MPC is to solve an optimal control problem online, at each
time instant k, based on the measured system state xk|k. The goal of the optimal
control problem is to find a control sequence that minimizes the infinite horizon
cost function

J∞|k =

∞∑

i=0

F (xk+i|k, uk+i|k), (4.13)

as stated for the general LQR in (2.4), but while satisfying constraints. In (4.13)
i ≥ 0 is the prediction time variable and

F (xk+i|k, uk+i|k) = xTk+i|kQxk+i|k + uTk+i|kRuk+i|k, (4.14)

with Q ≥ 0 ∈ Rn×n and R > 0 ∈ Rm×m. Because of the infinite horizon cost
function, the resulting constrained optimization problem is generally not solvable.
This is overcome by assuming a controller of the form

uk+i|k = Kkxk+i|k, (4.15)

and at each time instant k calculating a constant feedback matrix Kk ∈ Rm×n,
instead of the complete input trajectory. The resulting optimal control problem is a
min-max problem, that determines the feedback matrix Kk, which minimizes the
upper bound on the infinite horizon cost. The uncertain nonlinear term is treated as
a sector condition so that the resulting optimization problem is convex, which we
can solve efficiently and for which we can find a global minimum. By recalculating
Kk, the controller can be more aggressive as the state evolves closer to the origin,
compared to the corresponding static feedback law [75].

4.4. Learning-based robust MPC 53

With the purpose of incorporating the learned sector from Section 4.3 in the control
design, we define the following parameters

δ =
û+ l̂

2
, (4.16)

ν =
û− l̂
2

, (4.17)

where l̂ and û are the lower and upper bound of the learned sector, as given by the
confidence interval for (4.11a). The parameters are used to shift the nonlinearity
according to

φ(z) = γ(z)− δz. (4.18)

This is done in order to work with a more convenient expression for the sector
bound in the control design. To this end, we use (4.18) to express γ(z) in the
original sector condition (4.2), and obtain the following inequality

(νz − φ(z))(φ(z) + νz) ≥ 0, (4.19)

which implies that
|φ(z)| ≤ |νHx|. (4.20)

Let E := νH ∈ R1×n and rewrite (4.20) so that

φ2(z) ≤ xTETEx, (4.21)

which in matrix form becomes
[
x
φ

]T [
ETE 0
0 −1

] [
x
φ

]
≥ 0. (4.22)

We now define
Ā = A+ δGH, (4.23)

so that the system (4.1) can be written as

xk+1 = Āxk +Gφ(zk) +Buk,

zk = Hxk.
(4.24)

The following lemma provides conditions for obtaining a stabilizing feedback law
(4.15) for a system (4.1) with sector condition (4.2) and an upper bound on the
infinite horizon cost (4.13). This is similar to Lemma 2 in [77], but is modified
to apply to discrete-time systems and formulates a convex optimization problem
without fixing any of the optimization variables. Lemma 1 is also similar to Theorem
1 in [75], but is derived using the sector condition as formulated in (4.2).

54 Learning for robust control of sector-bounded systems

Lemma 1. Let Assumption 5 hold, so that for system (4.1), with a sector bound as
given by (4.2), and for the matrices Ξ = ΞT > 0 ∈ Rn×n, Y ∈ Rm×n, and scalars
λ > 0, α > 0, the following inequality

Ξ Y TR
1
2 ΞQ

1
2 ΞET ΞĀT + Y TBT

R
1
2Y αI 0 0 0

Q
1
2Ξ 0 αI 0 0
EΞ 0 0 λ 0

ĀΞ +BY 0 0 0 Ξ−GλGT

≥ 0. (4.25)

is satisfied. For K = Y Ξ−1 and P = αΞ−1, it holds that

a. The feedback law uk+i|k = Kxk+i|k asymptotically stabilizes the system
(4.1), with the sector-bounded nonlinearity described by (4.2).

b. V (xk|k) = xTk|kPxk|k is an upper bound on the infinite horizon cost (4.13).

Proof. We define λ = α
τ and use that P = αΞ−1, K = Y Ξ−1. After some matrix

manipulations, we take the Schur complement to the matrix (4.25), and obtain that

[

(Ā+BK)TP (Ā+BK)
−P +Q+KTRK + τETE

]
(Ā+BK)TPG

GTP (Ā+BK) GTPG− τ

 ≤ 0. (4.26)

Applying the lossless S-procedure, see e.g. [84], to (4.26), it follows that vTQv ≤ 0,
with vT =

[
xT φ

]
and

Q =

[
(Ā+BK)TP (Ā+BK)
−P +Q+KTRK

]
(Ā+BK)TPG

GTP (Ā+BK) GTPG

 ≤ 0, (4.27)

holds for all x = xk+i|k and φ = φ(zk+i|k) that satisfies (4.22). This holds
probabilistically under Assumption 5. The inequality (4.27), is equivalent to

xT ((Ā+BK)TP (Ā+BK)− P +Q+KTRK)x

+φGTP (Ā+BK)xk + xT (Ā+BK)TPGφ

+φGTPGφ ≤ 0.

(4.28)

For a feedback law uk+i|k = Kxk+i|k and a quadratic function of the form
V (xk|k) = xTk|kPxk|k where V (0) = 0 and P > 0, we then know that at sampling
time k and i ≥ 0

V (xk+i+1|k)− V (xk+i|k)) ≤
−(xTk+i|kQxk+i|k + uTk+i|kRuk+i|k).

(4.29)

4.4. Learning-based robust MPC 55

Thus, for Q ≥ 0 and R > 0, V (xk|k) = xTk|kPxk|k is a Lyapunov function and the
control law asymptotically stabilizes the system (4.1), proving part (a) of Lemma
1.

Using that x∞|k = 0, so that V (x∞|k) = 0, and summing (4.29) from i = 0 to
i =∞, we get

J∞|k ≤ V (xk|k), (4.30)

i.e. V (xk|k) is an upper bound on the infinite horizon cost J∞|k, proving part (b)
of Lemma 1.

Lemma 2 is used for showing constraint satisfaction:

Lemma 2. The ellipsoid Ek = {xk ∈ Rn : xTk Pkxk ≤ αk} is contained in the
constraint set Ck, as described in 4.3), at time instant k if and only if

(cj + djKk)(αkP
−1
k)(cj + djKk)

T ≤ 1, j = 1, . . . , r. (4.31)

Proof. See e.g. [84].

Using the results from Lemma 1, we state the following theorem for an NMPC
controller with probabilistic stability and constraint satisfaction guarantees, that
minimizes the upper bound on the infinite horizon cost function (4.13). This is a
discrete-time version of Theorem 1 in [77]. Contrary to this theorem, all matrix
inequalities are linear, making the resulting optimization problem easier to solve.

Theorem 5. Let Assumption 5 hold, so that for the system (4.1), with a sector-
bounded nonlinearity (4.2), an NMPC scheme is given by solving the following
optimization problem:

min
αk,Ξk,Yk,λk

αk (4.32)

56 Learning for robust control of sector-bounded systems

subject to

[
1 xTk|k
xk|k Ξk

]
≥ 0 (4.33a)

Ξk Y T
k R

1
2 ΞkQ

1
2 ΞkE

T ΞkĀ
T + Y T

k B
T

R
1
2Yk αkI 0 0 0

Q
1
2Ξk 0 αkI 0 0
EΞk 0 0 λk 0

ĀΞk +BYk 0 0 0 Ξk −GλkGT

≥ 0 (4.33b)

[
1 cjΞk + djYk

(cjΞk + djYk)
T Ξk

]
≥ 0 (4.33c)

j = 1, ..., r

with Pk = αkΞ
−1
k and Kk = YkΞ

−1
k . Then the NMPC scheme has the following

properties:

a. The optimization problem is feasible for all future time instants k if it is
feasible at k = 0.

b. The solution to the optimization problem (4.32)-(4.33) minimizes the upper
bound V (xk|k) = xTk|kPkxk|k on the infinite-horizon cost (4.13) at each time
instant k.

c. If the optimization problem (4.32)-(4.33) is feasible at k = 0, then the control
law

uk+i|k = Kkxk+i|k, i ≥ 0, (4.34)

asymptotically stabilizes the origin of the system (4.1), with sector condition
(4.2) and state and input constraints (4.3) for all times k ≥ 0.

Proof. The proof is divided into three parts, to show that the properties (a)-(c) hold.
Part (a): As only (4.33a) depends on xk|k, we know that the solution to the optimiz-
ation problem (4.32)-(4.33) satisfies constraints (4.33b) and (4.33c). As inequality
(4.33b) is identical to (4.25) from Lemma 1, (4.29) in combination with (4.33a)
means that xTk+1|kPkxk+1|k ≤ xTk|kPkxk|k ≤ αk. Hence, the solution to the optim-
ization problem at time k is also a solution at time k + 1. By induction, feasibility
at time k + 1 leads to feasibility at k + 2, k + 3, . . .
Part (b): From Lemma 1 we have that V (xk|k) is an upper bound on the cost func-
tion (4.13) at time k. Because (4.33a) is equivalent to xTk|kPkxk|k ≤ αk, minimizing
αk implies minimizing the upper bound on the cost function.

4.5. Simulation results 57

Part (c): We now consider stability for when P is recalculated at every sampling
instant, k. From Lemma 1, we have that applying the control law (4.34), leads
to xTk+1|kPkxk+1|k ≤ xTk|kPkxk|k. At the next sampling instant, the previous
solution to the optimization problem is feasible, but not necessarily optimal, i.e.
xTk+1|k+1Pk+1xk+1|k+1 ≤ xTk+1|k+1Pkxk+1|k+1. Combining these two inequalit-
ies, yields xTk+1|k+1Pk+1xk+1|k+1 ≤ xTk|kPkxk|k. Thus, xTk|kPkxk|k is a strictly
decreasing Lyapunov function for the closed-loop system, implying that xk|k → 0
as k →∞.
It remains to show constraint satisfaction. Having satisfied the conditions of Lemma
1, we know that the state lies in the ellipsoid Ek = {xk ∈ Rn : xTk Pkxk ≤ αk}.
From Lemma 2, Ek lies in the constraint set Ck if (4.31) holds. It can be shown
that (4.33a) is equivalent to (4.31). We let uk+i|k = Kkxk+i|k replace u in (4.3), so
that Ck =

{
xk ∈ Rn : (cj + djKk)xk ≤ 1, j = 1, ..., r

}
, followed by some matrix

manipulation. Because Ek is invariant, and contained in the constraint set Ck, all
states are guaranteed to satisfy input and state constraints.

Remark 7. Closed-loop stability, input and state constraint satisfaction are guar-
anteed probabilistically by feasibility of the linear matrix inequalities at initial
time. Because we consider a confidence interval at every time step, the resulting
probability may be smaller than that given by Assumption 5.

Remark 8. For some initial conditions, the sector condition may be too restrictive,
so the set of linear matrix inequalities does not have a feasible solution. Reduction
of the conservative sector using learning will increase the number of feasible initial
conditions.

4.5 Simulation results
To test the proposed control design, we consider the dynamics of a flexible link
robotic arm, as given in e.g [77]. The system is discretized using the forward Euler
method, to obtain the same form as (4.1), resulting in

A =

1 1 0 0
−48.6∆t −0.25 −48.6∆t 0

0 0 1 ∆t
19.5∆t 0 −16.7∆t 1

 , B =

0
21.6∆t

0
0

GT =
[
0 0 0 −3.33∆t

]
, H =

[
0 0 1 0

]
,

(4.35)

with time step ∆t = 0.01s. For the robotic arm we have that
[
x1, x2, x3, x4

]T
=[

θ1, θ̇1, θ2, θ̇2
]T

, where θ1, θ2 are angles, and θ̇1, θ̇2 are angle rates. The nonlinear-
ity, given by

γ(zk) = sin(zk) + zk, (4.36)

58 Learning for robust control of sector-bounded systems

is assumed unknown, but estimated as described in Section 4.2. The following state
and input constraints apply

uk ∈ [−1.5, 1.5], x1,k, x3,k ∈ [−π
2
,
π

2
], k ≥ 0. (4.37)

The control objective is to steer the system (4.35) to the origin. The weighting
matrices were selected as in [77]

Q = diag([1, 0.1, 1, 0.1]), R = 0.1. (4.38)

A conservative sector was defined using the prior distribution for w and σ2 (4.8).
The parameters of the prior distribution were specified such that the resulting
conservative sector was contained within the first and third quadrants of the input
coordinate plane. We used w0 = 3.0 and σ2V0 = 2.25 in (4.8a), and a0 =
90, b0 = 50 in (4.8b). The conservative sector was then defined using the 95%
confidence interval for the prior distribution and is visualized in Figure 4.2. The
first simulation was run for initial condition x0 = [1.2, 0.1, 0.1, 0.1], with the
conservative sector formulation. The closed-loop measurements were then sorted,
and weighted according to (4.6). The weighted data set was then used to train
the wBLR model, using the equations (4.10). A 95% confidence interval for the
posterior distribution of w (4.11a), resulted in the following upper bound, û = 2.63,
and lower bound, l̂ = 1.39, for the learned sector. The learned sector is visualized
in Figure 4.2. For the next 20 simulations, the MPC algorithm was tested with two

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
z

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

γ(z)

learned sector

conservative sector

measurements

Figure 4.2: A conservative (blue) and a learned (orange) sector bound on the nonlinear
function, γ(z).

versions of the sector, namely

4.5. Simulation results 59

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

θ 1
[r
ad
]

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

θ 2
[r

ad
]

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

−6

−4

−2

0

2

4

θ̇ 1
[r

ad
/s

]

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

−3

−2

−1

0

1

2

3

θ̇ 2
[r

ad
/s

]

Figure 4.3: Simulation results generated using (1) a conservative sector (blue), (2) a sector
learned offline (orange).

1. the conservative sector, as defined above

2. the sector learned offline with data from the first simulation

The optimization problem (4.32)-(4.33) was solved using CVXOPT in Python
[85]. We tested 20 different initial conditions in a region around x0 = [1.2, 0, 0, 0],
according to

x̃i,0 = xi,0 + [−δ, δ], i = 1, . . . , 4 (4.39)

with δ = 0.2. The simulation results for when both sectors were feasible in
closed-loop are plotted in Figure 4.3 and 4.4. In order to compare the closed-loop
performance, we calculated the closed-loop cost according to

ϕ =

ksim∑

k=1

xTkQxk + uTkRuk, (4.40)

resembling (4.14), but summed over the simulation length denoted by the time
index ksim. Using the conservative sector, fewer of the initial conditions rendered

60 Learning for robust control of sector-bounded systems

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

−1.0

−0.5

0.0

0.5

1.0

u
[r

ad
/s

]

Figure 4.4: Control inputs using a conservative (blue) and a learned (orange) sector bound
on the nonlinear function, γ(z).

feasible optimization problems due to a more conservative sector bound in Theorem
5. Table 4.1 shows the mean of (4.40) for all simulations where both versions of
the sectors were feasible, and in addition the total number of feasible simulations.

Table 4.1: Comparison of closed-loop performance

MPC scheme w/ ϕmean Num. of feasible simulations
(1) Conservative sector 171.97 10
(2) Learned sector 156.55 20

For the proposed control design, optimization is performed at every time step in
order to recalculate K. Because the resulting optimization problem is convex, this
can be solved very efficiently. For high-frequency systems, optimization may also
be done at a lower frequency than control, maintaining stability but with a small
performance loss in between updates of K.

Simulations verify that the proposed design can be used for robust control of linear
systems with sector-bounded uncertainties, where the sector bound is not initially
known. The stochastic sector allows for a conservative initial formulation, based on
the best guess on the uncertainty. By exploiting available closed-loop measurements,
the uncertainty of the initial, stochastic sector can be reduced, resulting in a smaller
sector bound. For the smaller sector, the quadratic cost of the input and state is

4.6. Conclusion 61

reduced, and the feasible region of the optimization problem is enlarged.

4.6 Conclusion
In this chapter, we have shown how measurements in closed-loop can be used to
define a stochastic sector condition, for robust control of linear systems with sector-
bounded nonlinearities. A wBLR model is trained with closed-loop measurements
of the nonlinearity and used to reduce the conservativeness of the robust controller.
The proposed MPC design is tested in simulations of a flexible link robotic arm.
Comparing the closed-loop performance for a conservative sector with a sector that
incorporates learning, shows that the latter reduces the quadratic cost of the state
and input over the simulation length, and results in an enlarged feasible region for
the control optimization problem. The approach is currently limited to systems
without disturbances and with a certain constraint formulation.

62 Learning for robust control of sector-bounded systems

Part II

MPC as a function approximator
in RL

63

65

Introduction
RL is a powerful tool for tackling MDPs without depending on a model of the
system. RL has recently drawn increasing attention due to its accomplishments for
robotics and games, see e.g. [4] and [2], using NNs as function approximators to
capture the policy and potentially also the value functions. As the policies are based
on NNs, analyzing the resulting closed-loop behavior is difficult.

The term safe RL is used to describe efforts made to learn policies that optimize
performance while ensuring reasonable system performance and/or respecting
safety constraints during learning and/or deployment. An extensive survey of these
methods is detailed in [86]. Safety filters have also been considered for learning-
based controllers in general, including policies learned with RL, based on e.g.
invariance-based approaches [87] and stochastic MPC as in [88].

RL can also be exploited as a tool to improve the performance of an MPC scheme.
MPC schemes are often a rough approximation of the true (possibly stochastic)
optimal control problem due to the finite horizon, simplified models, and neg-
lected stochastic disturbances. In [21], the authors suggest using parameterized
MPC schemes as a function approximator of the policy and value function in RL.
Parameterizing the MPC problem allows RL to improve the policy as data is ac-
quired while maintaining an MPC structure, which offers rich tools to analyze
the resulting closed-loop behavior. In the following, we will refer to MPC as a
function approximator in RL, because we can use the parameterized MPC scheme
to capture the policy or value function of an MDP. An alternative understanding of
this combination of MPC and RL is that we use RL to tune the parameters of the
MPC towards the optimal policy dictated by the RL performance measure, which
in turn is defined by the given cost function.

Bayesian optimization has to some extent also been considered for adjusting the
parameterization of optimal control problems, such as for unconstrained optimal
control in [89], and for constrained optimal control in [90], where the parameters of
a linear prediction model were learned for a system where the true dynamics were
potentially nonlinear. Automatic tuning of the cost function was also considered in
[91], specifically for controllers based on convex optimization problems.

Another approach to learning the parameterization of an optimal control problem is
using inverse optimal control to learn from demonstrations. For most applications
of inverse optimal control, the underlying model is assumed known and the aim is
to infer the parameters of the underlying cost, typically assumed to be a quadratic
cost with unknown weights. Moreover, it is assumed that the demonstrations are
solutions to the optimal control problem. To account for potential suboptimal

66

execution and noisy data, the optimality conditions are relaxed. This approach was
demonstrated for linear system dynamics in e.g. [92] and for nonlinear systems in
e.g. [93].

In this part of the thesis, we will focus on the framework where MPC is used as a
function approximator in RL, which also extends to a more general type of MPC
scheme, namely economic MPC (EMPC). In the preceding part of the thesis, we
have considered tracking MPC schemes, with quadratic cost functions, defined by a
squared distance measure from the predicted state and input to the reference state
and input. Unlike tracking MPC, EMPC is characterized by generic cost functions,
that typically represent economic or performance-oriented objectives, addressing
the energy, time, or financial cost of running a system. Because the stage cost is not
necessarily positive definite, stability analysis established for tracking MPC cannot
be used directly. Dissipativity is a fundamental tool that can be used to address the
stability of EMPC schemes with not necessarily positive definite stage costs [94].

In Chapter 5 we apply dissipativity theory, in order to design cost parameterizations
that are stable by design, which can be learned using value-based RL methods. In
Chapter 6 we address the lack of guarantees provided for value-based methods, in
terms of obtaining the optimal policy, and propose using a combination of value-
based and policy gradient-based methods. A combination of methods allows us to
learn both the optimal value function as well as the optimal policy. The proposed
combination of methods also extends to a second-order approach, for which we
achieve a faster learning rate than using either value-based or policy gradient-based
second-order methods on their own.

For the selected framework, we are learning from interactions with closed-loop
systems, and efficient learning depends on efficient methods for exploration. In
Chapter 7, we propose an exploration scheme based on an uncertainty measure of
the MPC-based value function approximation.

The work presented in the following chapters is implemented in Python, using
CasADI to formulate the MPC problem [95], and solving them with the IPOPT
solver [96]. The general problem descriptions follow the notation used to describe
MDPs as in Section 2.2, which will also result in some notational differences in
this part of the thesis compared to the previous. In the following chapters, s and
a are used to denote the true state and input, whereas x and u are used to denote
the predicted state and input respectively. Moreover, we no longer use the notation
xk+i|k to describe that x is predicted i steps ahead from time k when the state was
sampled, but use the simplified notation xi. Finally, we use the RL methods as
outlined in 2.3.

Chapter 5

Cost modifications for
learning-based MPC

It has recently been shown that adapting not only the MPC model but also its
cost function is conducive to achieving optimal closed-loop performance when an
accurate model cannot be provided. In the learning context, this modification can be
performed via parametrizing the MPC cost and adjusting the parameters via e.g. RL.
In this framework, simple functions used as cost modifications can be effective, but
the underlying theory suggests that rich functions in principle can be useful. In this
chapter, we propose such a cost modification using a class of NNs that preserves
convexity. This choice avoids creating difficulties when solving the MPC problem
via sensitivity-based solvers. In addition, this choice of cost parametrization ensures
nominal stability of the resulting MPC scheme. Moreover, we detail how this choice
can be applied to EMPC problems where the cost function is generic and therefore
does not necessarily fulfill any specific property. The following chapter is based on
the work in [25].

5.1 Introduction
One approach to learning-based MPC is using cost modifications to handle model
imperfection. In [21], it was proved that an MPC scheme can deliver the optimal
policy for a system, even if the model in the MPC is inaccurate. This can be achieved
under some fairly mild conditions via modifications of the cost of the MPC scheme,
which compensates for model inaccuracy. This idea can be applied in practice by
parametrizing the MPC cost and constraints and using learning techniques to adapt
the parameters. In that context, RL has been extensively investigated as a learning
tool for tuning the cost, constraints and MPC model, see e.g. [22], [97], [98], [99].

67

68 Cost modifications for learning-based MPC

The idea of compensating model inaccuracy with cost modifications, has success-
fully been tested in [21], [100], [101], using fairly simple parametrizations of
the cost. However, the theory underlying this result suggests that in principle the
cost parametrization should be rich i.e. using universal function approximators.
Rich parametrizations of the cost in the context of economic nonlinear MPC (EN-
MPC) were first considered in [46]. In this chapter, we elaborate on this early
investigation and propose a more complete framework to provide such a rich para-
metrization. More specifically, we propose to use a class of NNs that preserve
convexity. This choice has two important benefits. First, ensuring convexity of the
MPC cost alleviates the difficulties inherent to solving MPC schemes numerically
using sensitivity-based solvers. Second, the stage cost in the MPC scheme must
be lower-bounded by a K∞-function to ensure stability. A convex function can be
designed to satisfy this lower bound, and in turn, ensures nominal stability of the
resulting MPC scheme.

In this chapter, we will apply the framework of convex cost modifications to
ENMPC problems. ENMPC is concerned with optimizing performance rather than
penalizing deviations from a given reference. This means that the cost function not
necessarily can be lower-bounded by a K∞-function [33]. Dissipativity theory is a
fundamental tool in order to understand the closed-loop stability of ENMPC. For
dissipative problems, there exist corresponding tracking MPC schemes that yield
the same policy as the ENMPC scheme. As tracking MPC schemes typically use
quadratic cost functions, they intrinsically satisfy the lower bound. The dissipativity
of a problem is verified through the existence of a storage function that satisfies
the dissipativity inequality [102]. Finding a valid storage function for the general
problem is hard, but may be captured using RL techniques as suggested in [21] and
justified in [103]. As we are focusing on economic problems, we use deterministic
systems as proof of concept, for which general dissipativity theory is valid.

Even for dissipative problems, the ideal modified stage cost may not be convex.
This means that enforcing convexity as a means to ensure stability, may impose
limitations on the learned cost function. In [104], the authors showed that for a
dissipative problem, a tracking MPC with a quadratic stage cost is locally equivalent
to ENMPC. In other words, a convex cost approximation is at least valid locally.

The main contribution of the chapter is the introduction of convex NNs as cost
modifications in MPC schemes with imperfect prediction models. Using the MPC
scheme as a function approximator for the value function and the policy, we will
use RL to adjust the cost parameters, including the NN weights, in pursuance of the
optimal economic policy. The second contribution of the chapter is the combination
of RL methods for when neither value-based nor policy-based RL methods alone
are sufficient. We let one simulation example serve as a proof of concept, and then

5.2. Background and problem statement 69

consider a second simulation example to benchmark the addition of convex cost
modifications against the standard quadratic cost parametrization.

5.2 Background and problem statement
In the following, we consider a special case of MDPs as outlined in Section 2.2,
defined by discrete-time, constrained dynamic systems of the form:

sk+1 = f(sk, ak), h(sk, ak) ≤ 0, (5.1)

where k denotes the discrete time step, sk ∈ X ⊆ Rn denotes the state and
ak ∈ U ⊆ Rm denotes the input. The (possibly nonlinear) dynamics are defined
by f : Rn × Rm → Rn. The function h(sk, ak) describes a mixed input-state
constraint. We propose how to formulate stable MPC schemes by parameterizing
the cost function, for an economic problem where the stage cost L : X× U→ R is
indefinite, using a (potentially) inaccurate model of the system, f̃ .

5.2.1 Economic NMPC

The following section will describe the ENMPC formulation and recall dissipativity
theory as a tool to analyze stability. The following standard assumptions for
ENMPC are used in the rest of the chapter. The set of states s ∈ X and inputs
a ∈ U define the set of feasible state-input pairs as follows

Z = {(s, a) ∈ X× U | f(s, a) ∈ X, h(s, a) ≤ 0}, (5.2)

for which we need the following assumption.

Assumption 6. (Properties of constraint sets) The set Z is compact and non-empty.

Assumption 7. (Continuity of cost and system) The functions f(·) and L(·) are
continuous on Z.

The optimal steady state pair (se, ae) is defined as follows:

(se, ae) = argmin
(s,a)∈Z

{L(s, a) | s = f(s, a)}. (5.3)

We define a shifted stage cost as:

ℓ(s, a) = L(s, a)− L(se, ae), (5.4)

so that ℓ(se, ae) = 0.

70 Cost modifications for learning-based MPC

Let π denote a deterministic policy, that maps from a state to an action, π : Rn →
Rm. The optimal policy π⋆ is then given by the solution to the following infinite-
horizon problem

V ⋆(s) =min
π

∞∑

j=0

ℓ(xj , π(xj)) (5.5a)

s.t. ∀j ∈ I≥0 : x0 = s, (5.5b)

xj+1 = f(xj , π(xj)), (5.5c)

h(xj , π(xj)) ≤ 0, (5.5d)

where xj denotes the predicted state, not to be confused with the true state sk, so
that (xj)∞j=1 is the predicted state trajectory for the system starting at some initial
state x0 = s, subject to policy π. The optimal action-value function is defined as
follows

Q⋆(s, a) = ℓ(s, a) + V ⋆(f(s, a)). (5.6)

The action-value function and the value function are related through the underlying
Bellman equations [32]

π⋆(s) = argmin
a
Q⋆(s, a), V ⋆(s) = min

a
Q⋆(s, a). (5.7)

5.2.2 Strict dissipativity

A generic economic stage cost can make it challenging to establish the stability of
the closed-loop system. Satisfaction of the dissipativity conditions entails that the
ENMPC scheme can be recast as a tracking MPC scheme, for which closed-loop
stability properties are straightforward to prove [102]. Next, we define the concept
of strict dissipativity.

Definition 11. (Strict dissipativity) The system (5.1) with stage cost L(·) is strictly
dissipative if there exists a storage fuction λ : X→ R satisfying

λ(f(s, a))− λ(s) ≤ −ρ(||s− se||) + ℓ(s, a), (5.8)

where ρ ∈ K∞ and ||·|| denotes the Euclidean norm.

Assumption 8. (Strict dissipativity) The system (5.1) is strictly dissipative.

For the storage function, we make the following assumption.

Assumption 9. (Continuity of storage function) The storage function λ(·) is con-
tinuous on Z.

5.2. Background and problem statement 71

Without loss of generality, we can add a constant to the storage function, in order
to ensure that λ(se) = 0, without invalidating inequality (5.8). If λ exists, we can
define the rotated stage cost as

ℓ̄(s, a) = ℓ(s, a) + λ(s)− λ(f(s, a)). (5.9)

Combining (5.8) and (5.9) then yields

ρ(||s− se||) ≤ ℓ̄(s, a), ℓ̄(se, ae) = 0. (5.10)

For a strictly dissipative problem, the ENMPC scheme is equal to a tracking MPC,
using the rotated stage cost ℓ̄. As the rotated stage cost is zero at the optimal steady
state and lower-bounded by a K∞-function, the closed-loop system is stable [33].
The corresponding tracking MPC is formulated as

V ⋆(s) =min
π
−λ(s) +

∞∑

j=0

ℓ̄(xj , π(xj)) (5.11a)

s.t. (5.5b), (5.5d). (5.11b)

To formulate the finite-horizon MPC, we introduce the finite-horizon stage cost, ℓ̂,
and add a terminal cost, according to

V ⋆(s) =min
u,x
−λ(s) + T (xN) +

N−1∑

j=0

ℓ̂(xj , uj) (5.12a)

s.t. ∀j ∈ I0:N−1 : x0 = s, (5.12b)

xj+1 = f(xj , uj), (5.12c)

h(xj , uj) ≤ 0, (5.12d)

xN ∈ Xf , (5.12e)

whereN is the horizon length, T : Xf → R is a penalty on the terminal state and Xf

is a compact terminal region containing the steady state operating point in its interior.
The resulting input sequence is u = {u0, . . . , uN−1}, and x = {x0, . . . , xN} is the
corresponding state trajectory. Note that we use ℓ̂ to denote the finite-horizon stage
cost, to clearly distinguish it from the infinite-horizon stage cost ℓ̄, as these may not
be the same. The stage cost ℓ̂ must be selected such that it satisfies a lower bound as
defined for ℓ̄ in (5.10). For the terminal cost, we make the following assumptions.

Assumption 10. (Continuity of terminal cost) The terminal cost T (·) is continuous
on Xf .

72 Cost modifications for learning-based MPC

Assumption 11. (Stability assumption) There exists a compact terminal region
Xf ⊆ X, containing the point se in its interior, and terminal control law κf : Xf →
U such that

T (f(s, κf (s)))− T (s) ≤ −ℓ̂(s, κf (s)), (5.13)

∀s ∈ Xf and (s, κf (s)) ∈ Z. Moreover, T (se) = 0 and T (s) > 0 ∀s ∈ Xf \ {se}.

Remark 9. This assumption requires that for each s ∈ Xf , f(sk, κf (s)) ∈ Xf ,
i.e. the set Xf is control invariant, i.e. the set is invariant under the control law
a = κf (s).

Assumption 11 is a standard assumption used with the purpose of analyzing the
stability of the resulting closed-loop system.

Theorem 6. Let Assumptions 6 - 11 hold. Then the steady state solution se is an
asymptotically stable equilibrium point of the system (5.1) using input a where
a = u⋆0 and u⋆0 is the first element in the optimal solution to (5.12).

Proof. Note that the term −λ(s) does not affect the optimal solution in (5.12), but
shapes the action-value and value function. The rest of the proof is a standard result
and can be found in e.g. [33].

5.2.3 Parameterized tracking MPC

We propose to use a finite-horizon MPC problem to approximate the value function
(5.5), where the cost function is parameterized with parameters θ, according to

Vθ(s) = min
x,u
− λθ(s) + Tθ(xN) +

N−1∑

j=0

ℓ̂θ(xj , uj) (5.14a)

s.t. ∀j ∈ I0:N−1 : x0 = s, (5.14b)

xj+1 = f̃(xj , uj), (5.14c)

h(xj , uj) ≤ 0, (5.14d)

xN ∈ Xf , (5.14e)

where f̃(xj , uj) is a potentially inaccurate prediction model. The resulting policy
is given by the first element in the input sequence

πθ(s) = ū⋆0(s, θ), (5.15)

where ū⋆(s, θ) is the optimal solution to (5.14). Using the MPC scheme as a
function approximator, entails using RL to update the parameters θ in order to

5.2. Background and problem statement 73

shape the value function estimate (5.14) and improve the policy (5.15). For stable
economic problems, using rich parametrizations for the cost function enables the
MPC scheme to deliver the optimal policy even with an inaccurate prediction model.
This is stated in Theorem 1 in [21]. The following assumption is needed to ensure
the nominal stability of the closed-loop system.

Assumption 12. The stage cost ℓ̂θ(s, a) satisfies

ρ(||s− se||) ≤ ℓ̂θ(s, a), ℓ̂θ(se, ae) = 0, (5.16)

where the optimal steady state pair (se, ae) may be part of the parametrization θ.

Because the MPC scheme in (5.14) may use an inaccurate prediction model, we
propose to parameterize the steady state. This is not a new idea, but closely
resembles an approach the real-time optimization (RTO) community refers to as
modifier adaptation, see e.g. [105]. Our case differs in that we use RL to adjust the
modifiers, or as we call them, parameters.

We note that as long as the MPC scheme is using an inaccurate prediction model
f̃(s, a), we can only guarantee nominal stability of the resulting closed-loop system,
i.e. stability with respect to the MPC model. In order to guarantee the stability of
the true system, we would have to apply robust techniques. Robust techniques for
MPC with RL, are treated in [97]. The authors in [97] describe a robust technique
for MPC that uses a nominal prediction model. A tube-based approach considers the
system stochasticity and the model uncertainties and is used to perform a suitable
tightening of the constraints. Because we are considering economic MPC problems,
re-cast as tracking MPC schemes, the techniques from [97] directly extend to the
proposed parameterized MPC scheme. For the sake of brevity, we have not treated
robust techniques further in this chapter.

Remark 10. The easiest way to ensure (nominal) stability of (5.14) is to use the
so-called zero terminal equality i.e. Xf = {se}, for which the terminal cost can
be omitted. However, this is very restrictive and may yield feasibility issues. The
terminal constraint may also be defined using an inequality constraint defined
by a terminal region. For the standard quadratic stage and terminal cost, the
terminal region can be approximated. For more generic stage and terminal cost
approximations, the terminal region may be hard to find. However, in practice, we
may use a general positive definite terminal cost, or select N "large enough" and
ensure stability without terminal constraint and terminal cost [38].

Proposition 1. The parameterized MPC scheme in (5.14), with a stage cost sat-
isfying Assumption 12, using either a stabilizing terminal cost, i.e. satisfying
Assumption 11, with terminal constraints or a general positive definite terminal
cost and a long enough horizon N , will be stabilizing for any parameterization θ.

74 Cost modifications for learning-based MPC

Proof. This is a standard result, and proofs are given in e.g. [33] and [38].

5.3 Convex cost parametrizations
For proving nominal closed-loop stability of the MPC scheme, the stage cost must
be lower-bounded by a K∞-function. A generic cost function lower-bounded by a
K∞-function is illustrated in Figure 5.1.

Figure 5.1: Generic cost function (green) lower-bounded by a K∞-function (blue), with a
quadratic approximation (dashed green).

The K∞ lower bound in principle entails no restrictions regarding the convexity of
the cost function. On the other hand, convexity may be selected as a tool to show
that the same lower bound holds. The first reason for selecting convexity is that we
are able to describe and therefore parameterize generic convex functions. Second,
it is easier to handle convex functions in the MPC scheme. Moreover, a strictly
convex function will satisfy the K∞ lower bound by enforcing its global minimum
to be zero at zero and the function to be radially unbounded.

For ENMPC schemes that are locally stabilizing, it can be shown that the modified
stage cost obtained using dissipativity theory, is locally quadratic [104]. The
quadratic approximation of the stage cost is also illustrated in Figure 5.1. In
fact, the local quadratic approximation of the cost can be computed by solving a
semi-definite program (SDP) [104]. As convex functions also describe quadratic
functions, we can establish that the choice of a convex stage cost is at least valid
locally.

5.4. NNs for cost modification 75

5.3.1 Stage cost

In order to satisfy strict dissipativity as stated in Assumption 8, the approximated
stage cost must satisfy the lower bound from Assumption 12 and continuity from
Assumption 7. Without loss of generality, we let (sa, ae) = (0, 0) so that ℓ̄(0, 0) =
0. The following lemma lists the function requirements for the stage cost.

Lemma 3. Let p(s, a) : Rn × Rm → R be a strictly convex function. If the
minimum of the function is p(0, 0) = 0, and p(s, a) is radially unbounded with
respect to s, i.e. p(s, a)→∞ as s→∞, then ρ(∥s∥) ≤ p(s, a) for some ρ ∈ K∞.

Proof. If the function is strictly convex, it will only have one global minimum.
If this is at p(0, 0) = 0, it means that ∀(s, a) ̸= (0, 0) p(s, a) > 0, so that
p(s, a) ≥ β(||s||), where β ∈ K. Because p(s, a) is radially unbounded with
respect to s, we can also state that p(s, a) ≥ ρ(||s||), where ρ ∈ K∞.

5.3.2 Terminal cost

The terminal cost must satisfy continuity from Assumption 10 and Assumption 11.
The latter assumption may be relaxed, as outlined in Remark 10.

5.3.3 Storage function

The storage function must satisfy continuity from Assumption 9, and zero at the
optimal state, λ(se) = 0, as a result of (5.9).

5.4 NNs for cost modification
NNs are known to be universal function approximators. Consequently, a mul-
tilayered NN can represent any continuous function under mild assumptions, see
e.g. [45]. More uniquely, NNs have successfully been applied to high-dimensional
problems, for which traditional approximation methods tend to perform poorly. We
propose to combine NNs with quadratic functions to parameterize the cost. The
quadratic function is a good initial guess as we know it is locally valid and we know
how to compute it [104]. NNs are then added as an attempt to capture everything
beyond the locally valid quadratic function.

In this section, we will describe both regular NNs as well as convex NNs, and how
these can be combined with quadratic functions to provide nominal stability of the
MPC scheme by construction.

76 Cost modifications for learning-based MPC

5.4.1 Regular neural networks

A (not necessarily convex) feedforward neural network (FNN) with F layers, for
which i = 0, . . . , F − 1, can be formulated as

zi+1 = σi(Wizi + bi), v(s) = zF , (5.17)

where z0 = s is the network input, zi ∈ Rqi×1 denotes the hidden state of layer i,
zi+1 ∈ Rqi+1×1 denotes the hidden state of the next layer so that Wi is a matrix
of size Rqi+1×qi containing the weights of layer i and bi ∈ Rqi+1×1 are bias terms.
The nonlinear activation function used in layer i is denoted by σi and operates
element-wise.

An FNN will be used to modify the parametrization of the storage function. From
[104] we know that locally a quadratic storage function is sufficient to show strict
dissipativity. We therefore combine the quadratic function with an FNN, according
to

λθ(s) = vθ(s) + θλ0 + (s− θse)⊤D(θ)(s− θse), (5.18)

where vθ(s) is the FNN as defined in (5.17), θse is the parameterized steady state,
θλ0 is a parameter that will be tuned so that λθ(θse) = 0 and D(θ) is a matrix with
entries from the parameter vector θ. All NN weights W0:F−1 and bias terms b0:F−1

are part of the parameter vector θ.

The terminal cost is typically modeled with a quadratic function, and here combined
with an FNN

Tθ(s) = vθ(s)
2 + θT0 + (s− θse)⊤(B(θ)⊤B(θ) + ϵI)(s− θse), (5.19)

where B(θ) is a parameter matrix, and θT0 is tuned to shift Tθ(θse) to zero. We use
B(θ)⊤B(θ) + ϵI , where ϵ is a small positive constant, to ensure that the quadratic
term is positive definite. For this reason we also square the output from the FNN.

Remark 11. In (5.19) the terminal cost is modelled with an FNN that does not
preserve convexity. To ensure nominal stability the terminal cost should be at least
positive definite. However, for optimization reasons, it may be beneficial to model
also the terminal cost using a convex NN, as detailed next.

5.4.2 Convex neural networks

In order to build stable MPC schemes, the parameterized stage cost must satisfy
Assumption 12. Making general FNNs respect the lower bound, would entail
constraining the majority of the network’s weights, giving an in practice intractable
optimization problem for most applications. Instead, we select convex NNs to

5.4. NNs for cost modification 77

Figure 5.2: Input convex neural network.

parameterize the stage cost. In addition to the stability argument, a convex cost
function is expected to alleviate difficulties when using sensitivity-based solvers.
This section outlines how convex NNs can be adapted so that Assumption 12 is
satisfied.

In recent years, several convex NN architectures have been developed. Using convex
NNs as cost modifications in MPC has, to the best of the authors’ knowledge, not
been done before. We consider a class of fully input convex neural networks
(ICNNs) first proposed in [106]. It was proven in [107] that ICNNs are universal
approximators of convex Lipschitz functions. Alternative convex NN architectures
exist, as described in e.g. [108], that are richer function approximators than ICNNs,
but usually require a larger number of parameters. The specific type of ICNN
is selected because it offers a simpler parametrization and training process, and
requires fewer parameters.

Let y = {s, a}. An ICNN with F layers as described in [106], for which i =
0, . . . , F − 1, can be formulated as

zi+1 = σi(W
(z)
i zi +W

(y)
i y + bi), g(y) = zF , (5.20)

where g(y) denotes the output of the ICNN. The ICNN is similar to the FNN in
(5.17), with the exception of the additional input weights W (y)

i ∈ Rqi+1×(n+m)

and the input to the ICNN y ∈ R(n+m)×1, that here enters every hidden layer
and the output layer. Also, the ICNN requires the activation σi to be a convex
and non-decreasing nonlinear activation function. An example of this is given in
Section 5.4.3. For the input layer, we have that W (z)

0 = 0 and z0 = 0. The network
is visualized in Figure 5.2.

Proposition 2. The function g is convex in y provided that all terms in W (z)
1:F−1 are

non-negative, and all functions σi are convex and non-decreasing.

78 Cost modifications for learning-based MPC

Proof. This is straightforward to prove, using the fact that non-negative sums of
convex functions are also convex and that the composition of a convex and convex
non-decreasing function is convex [109].

By limiting all weights W (z)
1:F−1 to be non-negative, the function g(y) will be a

convex function with respect to its input. We model the stage cost as

ℓ̂θ(y) = gθ(y) + θℓ0 + (y − θe)⊤(M(θ)⊤M(θ) + ϵI)(y − θe), (5.21)

where θℓ0 is a dedicated parameter used to shift ℓ̂θ(θe) to zero and θe contains the
parameterized steady state, i.e. θe = (θse , θae). Moreover, we use M(θ)⊤M(θ) +
ϵI to ensure that the quadratic term is positive definite. The quadratic term will
ensure that for a (not necessarily strictly) convex function, θe will be the only global
minimum. The quadratic term will also ensure that the resulting function is radially
unbounded with respect to s. In addition to the function being convex, we also need
the global minimum of the function to be zero at steady state, i.e.

ℓ̂θ(θe) = 0, ∇y ℓ̂θ(θe) = 0. (5.22)

This is satisfied by construction as the parameters are updated. Next, we will
formally establish that the stage cost is lower-bounded by a K∞-function. As a
result, the parameterized MPC scheme ensures nominal stability by construction.

Theorem 7. Let (5.22) hold for ℓ̂θ(s, a) modelled as in (5.21). Then the parameter-
ized stage cost (5.21) satisfies

ρ(||s− θse ||) ≤ ℓ̂θ(s, a), ℓ̂θ(θse , θae) = 0. (5.23)

Proof. The ICNN term, gθ(y)+θl0 , and the quadratic term, (y−θe)⊤(M(θ)⊤M(θ)
+ ϵI))(y − θe), are both convex functions. The addition of the quadratic term
ensures that the stage cost becomes strictly convex, so that it will have at most one
global minimum. The quadratic term also ensures that the cost will be radially
unbounded. Because (5.22) holds, the only global minimum will be at (θse , θae),
and consequently the stage cost satisfies Lemma 3, and ℓ̂θ(θse,θae) = 0.

5.4.3 Choice of activation functions

Convexity of the ICNN is dictated by Proposition 2, which requires convex and non-
decreasing activation functions. By selecting a smoothed version of the rectified
linear unit (ReLU), such as the softplus function, the specified convexity properties

5.5. RL for parameter updates 79

are ensured. The fact that this function is also continuously differentiable, may ease
optimization of the MPC problem. The softplus function is given by

σ(x) = ln(1 + exp(x)). (5.24)

For the cost terms modelled by the FNNs, we have no limitations on the choice
of activation functions, except the requirement on continuity. As stated in Section
5.2.1, all cost terms should be continuous functions. For the NN-based cost terms
this is dictated by the choice of activation function, and this is satisfied for all the
most popularly used activation functions.

5.5 RL for parameter updates
Finding a storage function that allows us to recast ENMPC as a stable tracking MPC
scheme, i.e. that satisfies the dissipation inequality, is generally difficult. Techniques
for finding the storage function include e.g. sum-of-squares programming for
polynomial dynamics and stage costs [110], or via techniques borrowed from
RL as in [21]. The latter approach allows one to build ENMPC schemes that are
optimal and whose stability is established by construction rather than by verification.
This framework also introduces the additional flexibility to tackle non-dissipative
problems. Indeed, for non-dissipative problems, the proposed framework can be
used to find a controller that as closely as possible resembles the optimal unstable
policy for the problem at hand. In this section, we will consider how RL can be
used to perform parameter updates of parameterized MPC schemes such that the
requirements outlined in Section 5.4, are ensured.

In the following, we propose to use Q-learning to update the parameters of the
parameters in the MPC scheme, as outlined in Section 2.3.1, modified to an un-
discounted setting by specifying γ = 1. However, there are no guarantees that
Q-learning will converge to the optimal policy, and for certain shapes of Q-functions,
it can be challenging to capture the optimal policy, even with an almost correct
Q-function estimate. In this scenario, policy-based methods such as deterministic
policy gradient methods may be more suited, as outlined in Section 2.3.2.

5.5.1 Constrained RL steps

In order to ensure the convexity of the ICNN, we need to perform constrained RL
steps so that selected weights in the network stay non-negative. This applies to the
hidden state weights W (z)

1:F−1 in (5.20). We also use the constrained RL update to
ensure that the NNs used in the stage cost, terminal cost, and storage function, are
zero at steady state and to ensure that the global minimum of the stage cost is zero
at steady state i.e. that (5.22) holds.

Let d denote the proposed step by RL at time step k, using e.g. Q-learning or a

80 Cost modifications for learning-based MPC

deterministic policy gradient method. We can then define the following optimization
problem to constrain d so that the parameter update respects the constraints as
detailed above

min
∆θ

1

2
∥∆θ∥2 − d⊤∆θ (5.25a)

s.t. wi +∆θi ≥ 0 for i = 1, ..., r, (5.25b)

ℓ̂θk+1
(θk+1,e) = 0, (5.25c)

∇y ℓ̂θk+1
(θk+1,e) = 0, (5.25d)

λθk+1
(θk+1,se) = 0, (5.25e)

Tθk+1
(θk+1,se) = 0, (5.25f)

where ∆θ = θk+1 − θk is the constrained update of the entire parameter vector
and wi are the constrained elements in the ICNN weight matrices W (z)

1:F−1. The r
constrained weights wi are also part of the parameter vector θ, and we have that
wi = θi,k. It can be shown that if there exists a constrained parameter update ∆θ
at k = 0 by solving the optimization problem (5.25), such that (5.25b)-(5.25f) are
satisfied, then there must exist a feasible solution ∆θ ∀k > 0.

Remark 12. The constraints in (5.25) are not necessarily ensured at k = 0 for the
initial values of the parameters θ, even for NNs that are pre-trained to quadratic
functions. To guarantee that these constraints hold at k = 0, the constraints can be
enforced either during or after pre-training.

Lemma 4. If learning converges, the constrained parameter update found from
solving (5.25) will yield the true optimal parameters θ, i.e. the parameter values
that minimize the function with gradient step d.

Proof. Let Ψ(θ) denote the function that RL is trying to minimize, i.e. d =
−α∇Ψ(θ). We formulate the original optimization problem as

min
θ

αΨ(θ) (5.26a)

s.t. Z(θ) = 0, (5.26b)

Γ(θ) ≤ 0, (5.26c)

where Z and Γ are matrices that gather the equality and inequality constraints in
(5.25) respectively. For (5.26) the stationarity of the KKT conditions is given as

α∇Ψ(θ) + ϕ⊤∇Z(θ) + ξ⊤∇Γ(θ) = 0, (5.27)

5.6. Combining Q-learning and policy gradient methods 81

where ϕ and ξ are the multipliers associated with equality and inequality constraints,
respectively. The stationarity of the KKT conditions for (5.25) are

∆θ − d+ ϕ⊤∇Z(θ +∆θ) + ξ⊤∇Γ(θ +∆θ) = 0. (5.28)

As learning converges, ∆θ ≈ 0. Using this, and the fact that d = −α∇Ψ(θ),
we see that we obtain the same expression for stationarity of the KKT conditions.
Note that one can also show that the primal/dual feasibility conditions and the
complementary slackness condition are the same. The two optimization problems
therefore share the same optimal values of θ.

5.6 Combining Q-learning and policy gradient methods
Policy-based methods have several advantages over value-based RL methods. First
and most important, these methods are more reliable when it comes to improving the
policy, as they are designed based on optimality of the closed-loop policy. Second,
certain types of policy-based methods are also known to be more sample-efficient
than Q-learning [39]. However, there may be parameters that the MPC policy
gradient will be insensitive to. Mathematically this entails that certain parameters
lie in the null space of the policy gradient.

This is especially relevant for rich parametrizations, as they contain more parameters.
Although certain parameters may not influence the optimal policy, we may still
want to update them, in order to e.g. capture the correct shape of the value and
action-value function. In this context we propose to embed Q-learning, as a measure
to handle the parameters that the MPC policy may not be sensitive to. As the Q-
function and the policy are jointly unique functions, the parameters should affect at
least one of these functions.

5.6.1 Null space method

For an ENMPC problem recast as a tracking MPC, policy gradient methods will not
be sufficient for tuning the cost parametrization, as the MPC policy is insensitive
to the storage function. Hence, we will use a policy gradient method and combine
it with Q-learning using a null space method. More specifically we aim at using
a policy gradient method to update parts of the parameters in order to converge
to the correct policy and perform Q-learning steps in the null space of the policy
gradient to shape the action-value function with the remaining parameters. For a
parametrization that is rich enough, the correct action-value function should be
captured without conflicting with the policy approximation. Whereas the use of
both Q-learning and policy gradient methods for adjusting a parameterized MPC
scheme is well established, we now introduce a new method for combining RL
algorithms.

82 Cost modifications for learning-based MPC

In order to formulate the null space of the policy gradient update, we consider an
approximation of the Hessian of the policy gradient, given by the Fisher information
matrix [111]:

∇2
θJ(πθ) ≈ Eπθ

[∇θπθ(s)∇θπθ(s)
⊤]. (5.29)

Alternatively, a more accurate approximation of the Hessian can be found in [112].
We then define the null space of ∇2

θJ(πθ) as gathered by the matrix N , such that
∇2

θJ(πθ)N = 0. The parameter update resulting from Q-learning (2.20) is then
projected to the null space of the policy gradient according to

∆θNQ = N (N⊤N)†N⊤∆θQ, (5.30)

where ·† denotes the Moore-Penrose pseudo-inverse. The full parameter update
resulting from combining policy gradient and Q-learning is then given by

∆θ = ∆θJ +∆θNQ , (5.31)

with ∆θJ as defined in (2.22).

5.7 Numerical examples
In this section, we propose two numerical examples to illustrate the proposed
method. The first example is a seemingly simple case of an economic LQR, i.e. an
LQR with weighting matrices that are not positive definite. The example becomes
challenging because of the shape of the action-value function that calls for a combin-
ation of RL methods in order to capture both the correct policy and value function.
The second simulation example is a chemical reactor with nonlinear dynamics
and an economic cost function. The ENMPC scheme is recast as a tracking MPC
scheme, using a parameterized cost and storage function. We combine the convex
NN-based cost modifications and quadratic functions for all cost terms, ensuring
nominal stability of the MPC, and benchmark its performance against the standard
quadratic cost parametrization.

5.7.1 Economic LQR

We consider an economic LQR for a system with dynamics

sk+1 = 0.1sk + ak, (5.32)

and stage cost
L(s, a) = −s2 + 10a2. (5.33)

For the sake of satisfying Assumption 6, we introduce the following artificial
constraints

−100 ≤ a ≤ 100, −100 ≤ s ≤ 100. (5.34)

5.7. Numerical examples 83

Table 5.1: NNs for LQR example

Cost term NN
class

Num. hidden
layers

Num.
neurons

Pre-trained

ℓ̂θ(s, a) ICNN 2 16, 16 ✓

ℓ̂θ(s, a) FNN 2 16, 16 ✓

λθ(s) FNN 2 16, 16 ✓

Tθ(s) FNN 2 16, 16 ✗

For the set of states that never activate the constraints, we can solve the Riccati
equation for the discrete system, and obtain the optimal value function and policy.
For the dynamics (5.32) and stage cost (5.33) in the unconstrained case, the optimal
value function and policy is

V ⋆(s) = −1.0113s2, π⋆(s) = 0.0113s. (5.35)

In the first set of simulations, we will make a comparison of the ICNN and the
FNN. For this purpose, we will assume that both the true dynamics and the optimal
steady state pair are available. We formulate the following finite-horizon linear
MPC scheme

min
x,u
− λθ(s) + Tθ(xN) +

N−1∑

j=0

ℓ̂θ(xj , uj) (5.36a)

s.t. ∀j ∈ I0:N−1 : x0 = s, (5.36b)

xj+1 = 0.1xj + uj , (5.36c)

− 100 ≤ xj ≤ 100, (5.36d)

− 100 ≤ uj ≤ 100, (5.36e)

with prediction horizon N = 10. For this example, we used NNs to model all cost
terms in (5.36). In order to get suitable initial values of the weights, we pre-trained
the NNs to quadratic functions. This was done using Keras in Python [113]. The
architecture used to parameterize each cost term, is reproduced in Table 5.1. We
stress that this simulation example is mainly providing a proof of concept, and
therefore that the choices related to the architectures of the NNs have not been
optimized. System (5.32) is simulated from random initial conditions on the interval
[−1, 1], for episodes of length 10.

For this example, regular Q-learning manages to capture the Q-function fairly
accurately but struggles to capture the optimal policy. This is likely explained by
the shape of the Q-function, which turns out to be fairly insensitive to the policy,

84 Cost modifications for learning-based MPC

causing small errors in the Q-function to give large errors in the resulting policy.
This clearly illustrates a known weakness in Q-learning, and we therefore resort to
a combination of Q-learning and deterministic policy gradient methods using a null
space method as described in Section 5.6. The gradient ofQ w.r.t. the action needed
to formulate the deterministic policy gradient can be computed from data using a
range of algorithms. For convenience, we use the true Q-function to formulate the
gradient needed in (2.23), that is

Qπθ
(s, a) = −x2 + 10a2 + (0.1x+ a)2P, (5.37)

where P is the solution to the Riccati equation. The derivative with respect to the
action is then

∇aQπθ
(s, a) = 0.2Px+ 2(10 + P)a. (5.38)

Furthermore, we use gradient descent with learning rate α = 0.02 for both the
Q-learning and policy gradient update. A total of 2500 episodes were simulated
in order to update the parameters, yielding a total of 2.5 × 104 learning samples.
For the same hyperparameter values, we tested learning using both an ICNN and an
FNN to model the stage cost. Given the learned storage function, we are able to
obtain the rotated cost given by (5.9). This is plotted for the ICNN and the FNN in
Figure 5.3. Because the curvature is much larger in the action dimension, we have
adjusted the axes in order to highlight the curvature in s-direction.

s

−1.0
−0.5

0.0
0.5

1.0
a

−0.2
−0.1

0.0
0.1

0.2

¯̀ (
s,
a

)

−0.5

0.0

0.5

Figure 5.3: Resulting rotated stage cost (5.9) when using an ICNN (green) and an FNN
(blue) to model the stage cost respectively.

5.7. Numerical examples 85

We see that with an FNN to model the stage cost, learning may fail to capture
a storage function such that we obtain a rotated stage cost lower-bounded by a
K∞-function. We note that for some of the simulations, using FNNs would also
produce rotated stage costs that were lower-bounded by a K∞-function. However,
we saw that by using FNNs, we were not guaranteed to learn a stage cost that
satisfied the desired lower bound.

For the second set of simulations, we will demonstrate that MPC with the proposed
cost parametrization, successfully learns the optimal policy. For this demonstration,
we assume that both the true dynamics and the optimal steady state are unknown.
We used the following inaccurate prediction model in the MPC scheme:

xj+1 = 0.098xj + 1.02uj (5.39)

We parameterized the steady state parameters and wrongly initialized the parameters
with θe = (0.3, 0.3). We ran a total of 2500 episodes of length 10, resulting in

0 500 1000 1500 2000 2500

Episode

10−3

10−2

10−1

100

101

‖∇θJ(πθ)‖2

Figure 5.4: Policy gradient over episodes.

2.5 × 104 learning samples, using α = 0.01. In Figure 5.4 we have plotted the
evolution of the policy gradient over episodes. We note that this is noisy due to
random choices of initial conditions.

In Figure 5.5 we have plotted the approximation of the value function and the policy,
using the final updated values of the parameters. We see that the value function is

86 Cost modifications for learning-based MPC

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0
Vθ(s)

−1.0 −0.5 0.0 0.5 1.0

s

−0.01

0.00

0.01

πθ(s)

Figure 5.5: Approximated value function and policy using only NNs to parameterize all
cost terms (blue). Optimal value function and policy for the unconstrained case (green,
dashed).

captured accurately, whereas the policy approximation has some inaccuracies. This
is likely improved by increasing the number of learning samples.

In Figure 5.6 we have plotted the evolution of the steady state parameters over
episodes. We see that the steady-state parameters converge very close to the optimal
steady state, namely (θse , θae) = (0, 0).

5.7.2 ENMPC: Chemical reactor

The next simulation example has nonlinear dynamics and an economic stage cost,
and we expect a quadratic cost function to be valid only locally. It is therefore
suitable for testing the addition of NNs to a quadratic cost parametrization. We
consider a CSTR, with an economic cost as described in [114]. The CSTR describes
a non-isothermal reactor, where an exothermic reaction, converting reactant A to
product B, takes place. The dynamics are given as

ĊA =
F

VR
(CA0 − CA)− k0e−E/RTC2

A (5.40a)

Ṫ =
F

VR
(T0 − T)−

∆Hk0
ρRCp

e−E/RTC2
A +

q

ρRCpVR
, (5.40b)

5.7. Numerical examples 87

0 500 1000 1500 2000 2500

0.0

0.2

θse

0 500 1000 1500 2000 2500

Episode

0.0

0.2

θae

Figure 5.6: Evolution of steady state parameters.

where T is the temperature in the reactor, CA is the concentration of the reactant A,
F is the flow rate and q is the heat rate. The same quantities constitute the states
and inputs, i.e. s = [CA, T] and a = [F, q] respectively. The additional parameters
are listed in Table 5.2. The inputs are constrained according to

[0,−2× 105] ≤ a ≤ [10, 2× 105]. (5.41)

The economic cost is

L = −ωF (CA0 − CA) + βq, (5.42)

where ω = 1.7×104 and β = 1 so that the production rate and energy consumption
will be balanced. To get the dynamics on the form of (5.1), the equations in (5.40)
were discretized using the Euler method with a step size of 0.02 hours. According
to (5.3), the optimal steady state of the system is

se = [0.7572, 497.71], ae = [10, 1.38557× 105]. (5.43)

88 Cost modifications for learning-based MPC

Table 5.2: CSTR parameter definitions and values

Symbol Description Value
CA0 Feed concentration of A 3.5 kmol/m3

T0 Feedstock temperature 300 K
VR Reactor fluid volume 1.0 m3

E Activation energy 5.04× 104 kJ/kmol
k0 Pre-exponential rate factor 8.46× 106 m3/kmolh
∆H reaction enthalpy change −1.16× 104 kJ/kmol
Cp Heat capacity 0.231 kJ/kgK
ρR Density 1000 kg/m3

R Gas constant 8.314 kJ/kmolK

We assume that we only have an inaccurate prediction model available, which we
define by introducing the following errors in the dynamics described by (5.40):

ĊA = 0.85
F

VR
(CA0 − 0.85CA)− 1.2k0e

−E/R0.95TC2
A (5.44a)

Ṫ = 0.85
F

VR
(T0 − T)−

1.2∆Hk0
ρRCp

e−E/R0.95TC2
A

+
0.8q

ρRCpVR
.

(5.44b)

The MPC scheme is formulated with the inaccurate prediction model and a para-
meterized cost according to

min
x,u
− λθ(s) + Tθ(xN) +

N−1∑

j=0

ℓ̂θ(xj , uj) (5.45a)

s.t. ∀j ∈ I0:N−1 : x0 = s, (5.45b)

xj+1 = f̃(xj , uj), (5.45c)

h(uj) ≤ 0, (5.45d)

with a prediction horizon of N = 10, where f̃(xj , uj) is the discretized version of
(5.44). The stage and terminal cost were modelled with quadratic functions and
convex cost modifications as in (5.21), whereas for the storage function, we used a
quadratic function and an FNN as in (5.18). Because the true model is unknown,
we also parameterized the steady state. The steady state parameters were initialized
with values found by evaluating (5.3) for the inaccurate prediction model described
by (5.44). The architecture for each NN is specified in Table 5.3. The quadratic
terms were initialized with M(θ) = In+m, B(θ) = In, D(θ) = 10× In, where I

5.7. Numerical examples 89

Table 5.3: NNs for CSTR example

Cost term NN
class

Num. hidden
layers

Num.
neurons

Pre-trained

ℓ̂θ(s, a) ICNN 2 16, 16 ✗

λθ(s) FNN 2 16, 16 ✗

Tθ(s) ICNN 2 16, 16 ✗

is the identity matrix of dimension given by the subscript. The NN weights and
bias terms were initialized to small, random numbers. All parameters were updated
with Q-learning. Because the combination of quadratic functions and NNs will
introduce many parameters, that may also differ by orders of magnitude, we used
Adam optimization for updating the parameters. Adam optimization differs from
gradient descent by computing individual learning rates for each parameter. The
hyperparameters typically require little tuning, and we used standard values, see
[115]. Because the states and inputs span different orders of magnitude, we used
input normalization to force the NN input variables into the range [0, 1]. Input
normalization used correctly is known to reduce estimation errors as well as speed
up convergence, see for instance [116].

The closed-loop system was first simulated with quadratic cost terms, i.e. we
parameterize the cost with only the quadratic terms in (5.18), (5.19) and (5.21). We
simulated for 1000 episodes of length 60, with a learning rate of α = 1 × 10−3,
until performance converged. The evolution of the quadratic parameters over the
episodes is plotted in Figure 5.7. The result from the first 1000 episodes was used
as a benchmark for the rich cost parameterization.

The rich cost parametrization was obtained by adding NNs to the already trained
quadratic cost terms after 1000 episodes. We then continued learning for 500 more
episodes of shorter length, as we were mainly hoping to improve performance in the
transients. The closed-loop performance during learning is plotted for all episodes
in Figure 5.8. We note that, as for the previous simulation example, this plot is
noisy due to the random choice of initial conditions. The closed-loop performance
initially worsens, before improving using the quadratic cost parameterization. After
1000 episodes we see that introducing the NNs creates a new peak in performance,
followed by a new decrease in J(πθ) i.e. an improvement in performance. We
conjecture that the two peaks in performance stem from the fact that the reference
state and input are parameterized, in combination with the system’s states and inputs
not being scaled, resulting in a less smooth learning process.

In order to further evaluate the performance of each cost parametrization, we

90 Cost modifications for learning-based MPC

0 200 400 600 800 1000

Episode

−30

−20

−10

0

10

20

30

θ

Figure 5.7: Evolution of the quadratic parameters during the first 1000 episodes.

0 250 500 750 1000 1250 1500

Episode

1

2

3

4

5

6

×106 J(πθ)

Figure 5.8: Closed-loop performance during learning of the quadratic parameters (0-1000
episodes), and of the quadratic and NN parameters (after 1000 episodes).

have also compared their performance in closed-loop using the final values of
the updated parameters. In order to show that the learned controller is robust to

5.7. Numerical examples 91

0 10 20 30 40 50

Episode

1.00

1.25

1.50

1.75

2.00

2.25

×106 J(πθ)

Figure 5.9: Closed-loop performance of controllers using the learned cost parameters of
the quadratic parameterization (blue) and the combination of quadratic functions and NNs
(green) in the MPC.

model error, we added parametric uncertainty in the pre-exponential rate factor
k0 in (5.40). For each random initial condition, we also drew a new value of k̃0
where k̃0 ∼ N (k0, σ

2
k) with σk = 2.1156 × 105. In Figure 5.9, we have plotted

the closed-loop performance of closed-loop trajectories starting from 50 randomly
selected initial conditions and values of k̃0. The addition of the NN-based cost
modifications clearly gave a modest improvement in performance. It is possible
that the convexity requirement to the NNs in this case is limiting the use of the cost
modifications for this example.

In Figure 5.10 we have plotted the mean and two standard deviations of closed-loop
trajectories from the same 50 simulations. We see that the addition of the NNs does
not alter the closed-loop trajectories much, except noticeably for the flow rate F .
Also, the controllers converge to slightly different steady states for the heat rate q.
However, the shifted economic cost, ℓ(s, a), plotted in Figure 5.11, shows that this
has a small influence on the cost. We see clearly that, as previously stated, at steady
state the quadratic cost parametrization is sufficient to obtain the optimal economic
cost. Although the effect of adding NN-based cost modifications on performance
was limited in this case, we see that the small improvement that does occur happens
in the transients.

92 Cost modifications for learning-based MPC

0 10 20 30

1

2

CA [kmol/m3]

0 10 20 30

400

450

500

T [K]

0 10 20 30

k

8

10

F [m3/h]

0 10 20 30

k

156800

156900

157000
q [J/h]

Figure 5.10: Closed-loop trajectories from 50 simulations using the learned cost parameters
of the quadratic parameterization (blue) and the combination of quadratic functions and
NNs (green) in the MPC scheme. The thick lines represent the empirical mean, and the
shaded areas represent two standard deviations.

5.8 Conclusion
In this chapter we have considered the use of convex cost modifications, using NNs.
We have applied this framework to economic ENMPC. By invoking dissipativity
theory, we have recast the ENMPC as a tracking MPC scheme, with the additional
storage function. Convexity properties of the learned stage cost have been leveraged
in order to ensure the appropriate lower bound necessary to establish nominal
closed-loop stability, as well as alleviate numerical difficulties when solving the
MPC problem. We have outlined how RL can be used to adjust the parametrized
cost, including the weights of the NN, enabling the tracking MPC scheme to deliver
the optimal policy, even with an inaccurate prediction model. For a challenging
case of economic LQR, we have demonstrated how a combination of RL methods
can be used to update the parameters so that both the policy and value function is
learned. For a nonlinear chemical reactor, we have benchmarked the combination
of quadratic functions and NNs, against a standard quadratic parametrization. For
this particular simulation example, the addition of NN-based cost modifications
resulted in a small improvement in closed-loop performance.

5.8. Conclusion 93

0 5 10 15 20 25 30

k

0

100000

200000

300000

`(s, a)

Figure 5.11: Economic cost in simulations using the learned cost parameters of the
quadratic parameterization (blue) and the combination of quadratic functions and NNs
(green) in the MPC. The thick lines represent the empirical mean, and the shaded areas
represent two standard deviations.

94 Cost modifications for learning-based MPC

Chapter 6

Combining RL methods for
learning-based MPC

This chapter considers adjusting a fully parametrized MPC scheme to approximate
the optimal policy for a system as accurately as possible. By adopting MPC as
a function approximator in RL, the MPC parameters can be adjusted using Q-
learning or policy gradient methods. However, each method has its own specific
shortcomings when used alone. Indeed, Q-learning does not exploit information
about the policy gradient and therefore may fail to capture the optimal policy, while
policy gradient methods miss any cost function corrections not affecting the policy
directly. The former is a general problem, whereas the latter is an issue when
dealing with economic problems specifically. Moreover, it is notoriously difficult
to perform second-order steps in the context of policy gradient methods while it is
straightforward in the context of Q-learning. This calls for an organic combination
of these learning algorithms, in order to fully exploit the MPC parameterization as
well as speed up convergence in learning. The following chapter is based on work
in [26].

6.1 Introduction
Updating the parameters of MPC schemes to improve the closed-loop performance
has successfully been tested using Q-learning, see e.g. [97], and DPG, see e.g.
[22]. While simple to use, Q-learning methods do not come with formal guarantees
regarding the closed-loop optimality of the resulting policy [39]. Whereas policy
gradient methods come with such (local) guarantees but do not fully exploit the
MPC parameterization in learning the policy. This is crucial when using RL to
verify dissipativity for economic problems. Dissipativity is verified by the existence

95

96 Combining RL methods for learning-based MPC

of an appropriate storage function, which is generally difficult to find, but that can
be learned using Q-learning as proposed in [103]. Using Q-learning alone, we are
not guaranteed to learn the stable optimal policy. In this chapter, we detail how to
combine these RL algorithms for MPC, such that their respective drawbacks are
tackled.

To the best of the authors’ knowledge, Q-learning and policy gradient methods have
to a small extent been combined to formulate parameter updates. One exception
is the work in Chapter 5, where Q-learning and DPG parameter updates were
combined using a null space projection to alleviate the difficulties experienced
when using the methods independently. An issue with this combination is the
potential inaccuracies in the null space computation related to small, but not zero,
eigenvalues. In [117], the authors propose to combine the parameter update for a
regularized policy gradient technique with that of Q-learning. The authors provide
empirical evidence of the combined update scheme resulting in improved data
efficiency and stability. The idea of combining parameter updates from different RL
methods is the same as in this chapter but the resulting combined parameter update
is different. Also, the authors in [117] use an NN as a function approximator, and
propose an augmentation to the standard architecture, to facilitate learning of both
the policy as well as the action-value function. This is not necessary when using
MPC as a function approximator.

Classical Q-learning and policy gradient methods typically use first-order methods
to update the policy and value function parameters. Second-order methods tend
to yield a much faster convergence. The natural policy gradient method is based
on the Fisher information matrix to provide a policy Hessian approximation, and
approximate second-order steps [111]. However, the convergence rate is affected
by the quality of that Hessian approximation. For Q-learning on the other hand,
the true Hessian is straightforward to obtain. We therefore propose to use the
Q-learning Hessian to improve the second-order step of policy gradient methods.

In this chapter, the first contribution we make is a combination of RL methods using
a multi-objective approach. Secondly, we propose a second-order method based on
the multi-objective approach, to speed up convergence in learning. We demonstrate
the performance of the combination of RL methods in simulation and compare the
convergence rate with the natural policy gradient and a second-order Q-learning
method.

6.2 Background
In this chapter, we consider problems that are described by MDPs and adopt a value
function approximator using MPC as detailed in (2.30), parameterized by θ. We

6.2. Background 97

note that for EMPC, MPC problems characterized by generic cost functions that are
not necessarily positive definite, we may include a parameterized storage function
in the MPC cost. For more details on this, the reader is referred to Chapter 5. Our
goal is to find the parameters θ of a deterministic policy π(s), that maps from state
to action i.e. πθ : S → A, so as to minimize the sum of discounted cost

J(πθ) = Es0∼p0,s∼p(·|s,πθ(s))

[K∑

k=0

γkL(sk, ak) | ak = πθ(sk)

]
, (6.1)

where p0 is a distribution of initial states, p(·|s, πθ(s)) describes the transition
dynamics and γ ∈ (0, 1] is a discount factor used to establish the importance of
future costs over immediate costs for an episode of length K. In order to explore,
we use a stochastic policy i.e.

φθ(a|s) = πθ(s) + ζa, (6.2)

with ζa ∼ N (0, σ2aIm), where σa is the standard deviation and Im is the identity
matrix. Next, we will describe two types of RL methods that can be used to adjust
the parameters θ.

6.2.1 Q-learning

We make use of the Q-function approximator as given in (2.33), and make the
following assumption for the parameterization.

Assumption 13. The parameterization is rich, i.e. there exists a parameter vector
θ⋆ such that

Qθ⋆(s, a) = Q⋆(s, a). (6.3)

Remark 13. Assumption 13 is strong, although common in theoretical RL, see
e.g. [21]. Making the parameterization rich, entails using universal function
approximators for the cost terms and constraints in the MPC scheme. If the
parameterization is not rich, RL will find the best parameters among the set of
functions provided by the selected parameterization, see e.g. [46]. The need for
using universal function approximators such as NNs is arguably problem dependent,
but as shown in Chapter 5, simpler parameterizations of the MPC scheme, such
as e.g. a quadratic cost parameterization, can be able to improve closed-loop
performance considerably.

For a rich parameterization, we can characterize the optimal parameters as those
that minimize the following least-squares problem

θ⋆ = argmin
θ

Eπθ

[
1

2
(Q⋆(s, a)−Qθ(s, a))

2

]
. (6.4)

98 Combining RL methods for learning-based MPC

As the optimal action-value function generally is unknown, the problem in (6.4)
cannot be addressed directly. Next, we will present both a first-order and second-
order method of Q-learning. First-order methods use gradient information, whereas
second-order methods in addition to the gradient also use second derivatives, also
known as the Hessian, to converge faster to the optimum.

First-order Q-learning

A classical approach to Q-learning is trying to achieve (6.4) by updating the para-
meters using the TD error defined as

δk = yk −Qθ(sk, ak), (6.5)

where yk = L(sk, ak) + γVθ(sk+1). We think of y as a fixed target, evaluated
using a sampled state transition and the cost. The parameter updates are driven by
minimizing the TD error, i.e.

minEπθ

[
1

2
(y −Qθ(s, a))

2

]
. (6.6)

For the minimization problem in (6.6), we define the following first-order (semi)-
gradient step

∆θQ = αqδk∇θQθ(sk, ak), (6.7)

where ∆θQ = θk+1 − θk,∇θQθ(sk, ak)|θ=θk and αq > 0 is a scalar denoting the
step size. The gradient ∇θQθ(sk, ak) is obtained from sensitivity analysis. For
more details on the sensitivity analysis of MPC for Q-learning, the reader is referred
to [21].

Second-order Q-learning

Rather than considering the TD error at each step as in (6.7), we can consider
the sum of TD errors over a batch of state transitions, known as a least-squares
TD (LSTD) algorithm [118]. We formulate a second-order LSTD algorithm for
Q-learning (LSTDQ), by considering a root-finding problem, using the gradient in
(6.7), i.e.

Eπθ

[
δ∇θQθ(s, a)

]
= 0. (6.8)

For the root-finding problem in (6.8), we adopt the following Newton step i.e.

∆θHQ = −αdA
−1b, (6.9)

using ∆θ and ∆θH to distinguish the first-order and second-order steps, respectively,
and αd > 0 to denote the learning rate. We note that for a well-posed update in

6.2. Background 99

(6.9), A is negative definite, and hence generalizes to the first-order step in (6.7) by
replacing A with the negative identity matrix. The parameter update is given by

A = Eπθ

[
∇θδ∇θQθ(s, a)

⊤ + δ∇2
θQθ(s, a)

]
, (6.10a)

b = Eπθ

[
δ∇θQθ(s, a)

]
, (6.10b)

where
∇θδ = γ∇θVθ(s

+)−∇θQθ(s, a), (6.11)

with ∇θQθ(s, a) and ∇2
θQθ(s, a) obtained from sensitivity analysis of the MPC

in (2.33). The expectations in (6.10a) are evaluated in an episodic manner, by
considering m episodes of length K, i.e.

A =
1

m

m∑

j=1

K∑

k=1

[
∇θδk,j∇θQθ(sk,j , ak,j)

⊤ + δk,j∇2
θQθ(sk,j , ak,j)

]
, (6.12)

b =
1

m

m∑

j=1

K∑

k=1

δk,j∇θQθ(sk,j , ak,j). (6.13)

As discussed in Section 2.3.1, there are no guarantees of learning the optimal
policy using Q-learning techniques, as small approximation errors in the Q-function
estimate, may yield significant errors in the resulting policy estimate.

6.2.2 Deterministic policy gradient method

The lack of convergence guarantees for Q-learning methods has motivated the
need for alternative methods with more formal (local) convergence guarantees [40].
Using policy gradient methods, the parameters are updated towards improving the
performance of the policy irrespective of the action-value function accuracy. In the
following, we focus on methods for deterministic policies.

For a rich enough parameterization, the optimal parameters θ⋆ are characterized by

θ⋆ = argmin
θ
J(πθ). (6.14)

First-order DPG

Policy gradient methods typically solve (6.14) using gradient descent, which results
in the following first-order parameter update

∆θJ = −αp∇θJ(πθ), (6.15)

where αp > 0 is the learning rate and ∇θJ(πθ)|θ=θk . In this chapter, we use the
estimation of the DPG as detailed in Section 2.3.2.

100 Combining RL methods for learning-based MPC

Second-order DPG

For the policy gradient objective in (6.14), we can also formulate a second-order
Newton step i.e.

∆θHJ = −αr∇2
θJ(πθ)

−1∇θJ(πθ), (6.16)

with learning rate αr > 0. An analytic expression of the deterministic policy
Hessian is derived in [112], revealing that it is difficult to estimate from data. The
Hessian can be replaced by the Fisher information matrix, resulting in a parameter
update known as the natural policy gradient method [111]. The Fisher information
matrix for deterministic policies is defined as

F (θ) = Eπθ

[
∇θπθ ∇θπ

⊤
θ

]
, (6.17)

and we note that this is only an approximation of the Hessian. The natural policy
gradient method yields the following parameter update

∆θHJ = −αrF
−1(θk)∇θJ(πθ). (6.18)

Because of the Hessian approximation, the natural policy gradient method still has
a linear rate of convergence, despite being a second-order method [119]. This is the
same rate of convergence as the first-order DPG method.

6.3 Combining RL methods
In the following, we propose to combine Q-learning and DPG methods, to learn
a parameterization that optimizes both the Q-learning objective (6.4) and policy
gradient objective (6.14) simultaneously. We propose to do so using multi-objective
optimization. Multi-objective optimization is applied in many fields where optimal
solutions are needed in the presence of trade-offs between two or more conflicting
objectives. As opposed to most multi-objective problems, the objective of Q-
learning and policy gradient methods are not necessarily in conflict. However,
as we can not minimize the true action-value error directly, and may suffer from
limitations related to the richness of our function approximator, the parameter
update resulting from each RL method may be in conflict. This suggests that an
alternative to the naive sum of update laws is needed.

6.3.1 Multi-objective RL

With the purpose of combining Q-learning and DPG methods, we define the follow-
ing multi-objective problem

min
θ
ωEπθ

[
1

2
(Q⋆(s, a)−Qθ(s, a))

2

]
+ J(πθ), (6.19)

6.3. Combining RL methods 101

where ω is a scalar that weighs the importance of the Q-learning objective relative
to the policy gradient objective. In (6.19) we propose a weighted sum method in
order to convert the multi-objective problem to a single-objective problem. This
method is appealing because it is simple. Alternative methods for solving the
multi-objective problem are discussed in e.g. [120].

Theorem 2 states that for a given MDP, an MPC scheme with a possibly inaccurate
model can deliver the optimal value function, action-value function, and policy for
an appropriate parameterization θ. Building on Theorem 2, we state the following
corollary, which is an important statement for the multi-objective RL approach.

Corollary 1. Under Assumption 13 there is no trade-off between the Q-learning
and policy gradient objective in (6.19). The minimum of the two objectives will
coincide, independent of the scalar value ω.

Proof. For a rich parameterization, we have for the optimal parameters θ⋆ that
Qθ⋆(s, a) = Q⋆(s, a), hence minimizing the Q-learning objective. Moreover, the
optimal parameters θ⋆ also minimize the performance J(πθ) as stated in (6.14).

As pointed out earlier, we can not directly address the Q-learning objective in (6.19).
We therefore adopt the TD approach to Q-learning, as outlined in Section 6.2.1.
The multi-objective problem is then

min
θ
ωEπθ

[
1

2
(y −Qθ(s, a))

2

]
+ J(πθ). (6.20)

The parameter updates as defined in Section 6.2.1 and 6.2.2, can then be used to
define a Newton step that minimizes (6.20). The resulting parameter update is given
as the solution to

min
∆θH′

m

1

2
∆θH

′⊤
m (−ωA+ F (θ) + τI)∆θH

′
m + αm(∇θJ(πθ)− ωb)⊤∆θH

′
m , (6.21)

where A and b are defined in (6.12) and (6.13) respectively. We regularize using a
scalar τ > 0 and the identity matrix I .

Remark 14. As we replace the true action-value error with the TD error in (6.19),
Corollary 1 no longer holds, even under Assumption 13. Generally, we cannot
expect to achieve an average TD error of zero. This is because the parameter
update in (6.9) involves taking the product of two expectations including the next
state s+. To obtain an unbiased sample of this product, two independent samples
of s+ are needed. During normal interaction with a system, this is not possible.
However, we can expect to reduce the average TD errors toward the true minimum.

102 Combining RL methods for learning-based MPC

The Fisher information matrix will be rank deficient in case we include a storage
function in the MPC cost, and depending on the selected parameterization, the
Q-learning Hessian can potentially also be ill-posed. The regularization term in
(6.21) is therefore often added to prevent the Hessian approximation from becoming
singular. Regularization may also be added to ensure positive definiteness.

Remark 15. The Fisher information matrix in (6.17) is positive semi-definite by
construction. A well-posed LSTDQ step is characterized by a negative definite
Hessian. The multi-objective Hessian composed of the Fisher information matrix
and the negative LSTDQ Hessian, should therefore be positive definite. Potentially
indefinite Hessian approximations can be tackled using regularization, as proposed
here, or trust-region methods, see e.g. [121].

We note that the computation of the Q-learning Hessian, which is done using
sensitivity analysis of (2.33) is not computationally heavy, and much cheaper than
solving the optimization problem. The Fisher information matrix (6.17) often used
as an approximation of the policy Hessian is rather crude, and we therefore propose
the alternative second-order update, where the policy Hessian approximation is
omitted, i.e.

min
∆θHm

1

2
∆θHm

⊤
(−ωA+ τI)∆θHm + αm(∇θJ(πθ)− ωb)⊤∆θHm. (6.22)

We can further simplify the step in (6.22), by replacing the multi-objective Hessian
approximation with the identity matrix, and obtain the multi-objective first-order
step as the solution to the following

min
∆θm

1

2
∆θ⊤m∆θm + αv(∇θJ(πθ)− ωb)⊤∆θm. (6.23)

6.4 Simulations
In the following section, we consider two simulation examples. The first simulation
example is included as a motivating example and is a seemingly simple case of the
economic LQR i.e. an LQR with weighting matrices that are not positive definite.
The example becomes challenging due to the shape of the action-value function,
which calls for a combination of RL methods in order to capture both the correct
value function and policy. The second example is a linear MPC (LMPC) that we
use to benchmark the convergence of the different parameter update regimes.

6.4.1 Economic LQR

We consider an ELQR for a system with dynamics

sk+1 = 0.1sk + ak, (6.24)

6.4. Simulations 103

and stage cost
L(s, a) = −s2 + 10a2. (6.25)

We introduce the following artificial constraints, to work with compact and bounded
constraint sets and thereby comply with dissipativity theory for economic problems
[34]

−100 ≤ a ≤ 100, −100 ≤ s ≤ 100. (6.26)

For the set of states that never activate the constraints, we can solve the Riccati
equation for the discrete system, and obtain the optimal value function and policy.
For the dynamics (6.24) and stage cost (6.25) in the unconstrained case, the optimal
value function and policy is

V ⋆(s) = −1.0113s2, π⋆(s) = 0.0113s. (6.27)

We formulate the following finite-horizon linear MPC scheme

min
x,u

− λθ(s) + Tθ(xN) +

N−1∑

i=0

ℓθ(xi, ui) (6.28a)

s.t. ∀i ∈ I0:N−1 : x0 = s, (6.28b)

xi+1 = 0.1xi + ui, (6.28c)

− 100 ≤ xi ≤ 100, (6.28d)

− 100 ≤ ui ≤ 100. (6.28e)

We let λθ, Tθ and ℓθ be fully parameterized quadratic functions. The parameter
vector θ is then a vector containing all elements in λθ, Tθ, ℓθ. All matrices were
initialized with the identity matrix. We learned in an episodic manner, using
trajectories of length K = 10 for initial condition s0 = 1.0 with learning rate
α = 0.1 for all update schemes. We used a stochastic policy for exploration as
described in (6.2), with Gaussian noise described by standard deviation σa = 10−3.
We tested learning using first-order Q-learning (6.7), denoted ∆θQ, DPG (6.15)
denoted ∆θJ as well as first-order multi-objective combination (6.23) using ω = 1,
denoted ∆θm. As the true Q-function for this system is known, and this serves only
as a motivational example, we use the analytical gradient in the DPG formulation in
(2.23). We saw convergence for all methods after 20 batches consisting of m = 1
episodes.

In Figure 6.1 we have plotted the value function estimate and the policy using the
final values of the parameters. We see that the pure DPG method fails to learn the
value function, but estimates the true policy well. The pure Q-learning step, on the
other hand, learns the value function well, but not the policy. The combination of

104 Combining RL methods for learning-based MPC

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0
Vθ(s)

−1.0 −0.5 0.0 0.5 1.0
s

−0.05

0.00

0.05
πθ(s)

True ∆θm ∆θQ ∆θJ

Figure 6.1: Economic LQR: Value function estimate (top) and policy (bottom).

methods using the first-order multi-objective update, however, manages to learn
both the true value function and policy after 20 episodes.

For economic problems, we can use Q-learning as a tool to learn the storage
function, needed to verify dissipativity as detailed in [103]. Verification is done
by checking that the rotated cost, denoted by ℓ̄θ(s, a) and defined by the learned
storage function, λθ, according to

ℓ̄θ(s, a) = L(s, a)− λθ(s+) + λθ(s), (6.29)

satisfies the following condition i.e.

ℓ̄θ(s, a) ≥ ρ(∥s∥), (6.30)

where ρ ∈ K∞. In Figure 6.2 we see that using DPG alone, the resulting rotated
cost is not lower-bounded in s, whereas for the multi-objective combination, we
obtain a rotated cost that clearly satisfies this lower bound. In summary, we are
able to verify that this problem is dissipative, and also capture the correct policy, by
using a combination of RL methods.

6.4.2 Linear MPC

We consider a discrete linear system of the form

sk+1 = Ask +Bak + n, (6.31)

6.4. Simulations 105

s

−1.0
−0.5

0.0
0.5

1.0
a

−0.2
−0.1

0.0
0.1

0.2

¯̀ θ
(s
,a

)

0.0

0.2

0.4

0.6

s

−1.0
−0.5

0.0
0.5

1.0
a

−0.2
−0.1

0.0
0.1

0.2

¯̀ θ
(s
,a

)

0.0

0.1

0.2

0.3

Figure 6.2: Economic LQR: The rotated cost (6.29) as defined by the learned storage
function using multi-objective RL (top) and using DPG (bottom).

106 Combining RL methods for learning-based MPC

where n describes Gaussian process noise i.e. n ∼ N (0, σ2n In), with standard
deviation σn = 10−3 and where In is the identity matrix. The system matrices are
given as

A = κ

[
cosβ sinβ
sinβ cosβ

]
, B =

[
1.1 0
0 0.9

]
, (6.32)

where we use κ = 0.95, and β = 22 [deg]. The baseline stage cost is selected as

L(s, a) =
1

20
∥s− sref∥2 +

1

2
∥a− aref∥2 (6.33)

where sref = [0.1, 0.1]⊤, and aref is found according to (6.31). The parameterized
MPC scheme reads as

min
x,u

V0 + γN∥xN − xref∥2P +

N−1∑

i=0

γif⊤
[
xi
ui

]

+

N−1∑

i=0

γi
∥∥∥∥
[
xi − xref
ui − uref

] ∥∥∥∥
2

(6.34a)

s.t. ∀i ∈ I0:N−1 : x0 = s, (6.34b)

xi+1 =

[
θ1 θ2
θ3 θ4

]
xi +

[
θ5 0
0 θ6

]
ui, (6.34c)

[
−0.05
−0.05

]
≤ ui ≤

[
0.05
0.05

]
(6.34d)

using a prediction horizon of N = 10 and discount factor γ = 0.99. The stage
cost consists of a quadratic function of the state and input reference and a linear
term that can be used to shift the minimum of the stage cost. We let xref = sref,
but use the prediction model to obtain the input reference, i.e. uref ̸= aref. The
linear term is defined by a vector f⊤ = [f1, f2, f3, f4]. The parameter vector is
θ = {V0, θ1, θ2, θ3, θ4, θ5, f1, f2, f3, f4}. The prediction model is initialized with
parameter values θ1 = θ3 = cos β̂ and θ2 = θ4 = sin β̂, where β̂ = 30 [deg], and
θ5 = 1.3, θ6 = 0.7. We let f1 = f2 = f3 = f4 = 0.3 and V0 = 0. We use a
quadratic terminal cost, for which P is found solving the discrete Riccati equation
for the prediction model, using the initial values of the parameters.

We learned in an episodic manner, simulating the system from initial condition
s0 = [0, 0]⊤, for a total of 25 batches, consisting of m = 10 episodes of length
K = 50. A stochastic policy is used for exploration as defined in (6.2), with a
Gaussian noise term distributed as ζa ∼ N (0, σ2a Im), where σa = 5 · 10−3. For
this example, we tested both first- and second-order multi-objective RL as described
in Section 6.3.1. We compared their performance with both the second-order and

6.4. Simulations 107

Table 6.1: LMPC: Update schemes tested in simulation.

Label Name and eq. reference Learning rate Ltot

∆θQ Q-learning (6.7) αq = 0.01 19.69
∆θHQ LSTDQ (6.9) αd = 0.5 18.63
∆θHm Second-order multi-objective (6.22) αm = 0.5 4.63
∆θH

′
m Second-order multi-objective (6.21) αm = 0.5 6.64

∆θHJ Natural policy gradient (6.18) αr = 0.5 5.12
∆θm First-order multi-objective (6.23) αv = 0.5 12.46
∆θJ DPG (6.15) αp = 0.5 12.37

first-order policy gradient methods, as well as classical Q-learning and LSTDQ.
For the Q-learning Hessian and Fisher information matrix, we regularized using
τ = 10−1 and τ = 10−2 respectively, at all time steps. The learning rates were
selected by testing each method for an interval of learning rates and selecting the
best-performing one. The sum of costs was evaluated for the best-performing case,
i.e.

Ltot =

m∑

j=1

K∑

k=1

γkL(sk,j , ak,j), (6.35)

and is reported in Table 6.1. All plotting labels are also listed and explained in
Table 6.1. In Figure 6.3 we see the closed-loop performance produced by each of
the learning schemes. Because the RL cost in (6.33) is rather flat in s-direction,
this is typically a challenge for Q-learning alone, and hence we see both classical
TD-learning and LSTD-learning achieving the poorest performance. First-order
DPG and the first-order multi-objective approach achieve more or less the same
closed-loop performance. Moreover, we see that the closed-loop performance
obtained using the natural policy gradient method converges faster than both first-
order methods. The second-order multi-objective approach performs better without
the Fisher information matrix in the Hessian, as given in (6.22), and speeds up
convergence further. The aforementioned observations align also with the calculated
sum of discounted costs during learning for the different update schemes as listed
in Table 6.1. For the selected learning rates, we obtained the best closed-loop
performance for the multi-objective approach by using ω = 0.1 in (6.22), (6.21)
and (6.23).

In Figure 6.4 we have plotted the states and inputs resulting from the learned
parameters in exploitation, i.e. without exploration noise. We note that the upper
bounds on the inputs become active constraints as we approach the optimal policy,

108 Combining RL methods for learning-based MPC

0 5 10 15 20 25
Batch

0.02

0.04

0.06

0.08

J(πθ)

∆θQ

∆θHQ

∆θHm

∆θH
′

m

∆θHJ
∆θm
∆θJ

Figure 6.3: LMPC: Mean closed-loop performance over learning batches.

0 25 50
0.00

0.05

0.10
s1

0 25 50

0.0

0.1
s2

0 25 50
k

−0.05

0.00

0.05
a1

0 25 50
k

−0.05

0.00

0.05
a2

∆θQ

∆θHQ

∆θHm

∆θH
′

m

∆θHJ
∆θm

∆θJ
Reference

Constraints

Figure 6.4: LMPC: Simulated states and actions using the learned parameters.

6.5. Conclusion 109

which is the case for the second-order multi-objective and natural policy gradient
method.

For the second-order multi-objective approach, we saw that the Q-learning gradient
part caused learning to converge to a policy that caused a small steady-state error
from the desired state and input reference. This is likely caused by the same
effect as addressed in Remark 14. We therefore removed the first-order Q-learning
contribution to produce the results shown in Figures 6.3 and 6.4, at the cost of some
reduction in convergence rate. Ideally, ω could be gradually reduced, to gain the
full increase in convergence rate, while still converging to the true optimum.

6.5 Conclusion
In this chapter, we proposed a multi-objective approach for combining RL methods,
in order to fully exploit the parameterization provided by the MPC scheme and
increase the convergence rate of learning. The first simulation example illustrates
that for certain economic policies, we need a combination of Q-learning and
policy gradient methods in order to verify dissipativity and learn both the optimal
value function and policy. The second simulation example demonstrates that
the proposed multi-objective second-order step, combining Q-learning and policy
gradient methods, speeds up convergence in learning compared to both a second-
order policy gradient method and a second-order Q-learning method.

110 Combining RL methods for learning-based MPC

Chapter 7

Variance-based exploration for
learning MPC

RL is dependent on exploration to learn, and currently, simple heuristics based
on random perturbations is most common. This chapter considers variance-based
exploration in RL geared towards MPC as function approximators. We propose to
use a non-probabilistic measure of uncertainty of the value function approximator in
value-based RL methods. Uncertainty is measured by a variance estimate based on
inverse distance weighting (IDW). The IDW framework is computationally cheap
to evaluate and therefore well-suited in an online setting, using already sampled
state transitions, actions, and rewards. The gradient of the variance estimate is then
used to perturb the policy parameters in a direction where the variance of the value
function estimate is increasing. The proposed method is verified on two simulation
examples, considering both linear and nonlinear system dynamics, and compared to
standard exploration methods using random perturbations. The following chapter is
based on work in [27].

7.1 Introduction
RL requires that the actions applied to the real system undergo some exploration.
If the same, deterministic policy is always applied to the system, it is not possible
to discover alternative actions that may improve closed-loop performance. One
way to quantify an effective exploration is in terms of regret. The notion of regret
in RL is defined as the loss in reward for choosing a suboptimal over an optimal
action. An effective exploration strategy can then be defined as minimizing the
cumulative sum of regrets. However, we cannot directly obtain the regret as the
optimal action is not known. Hence, the concept of regret in itself cannot be used

111

112 Variance-based exploration for learning MPC

to perform effective exploration.

Currently, the most commonly used methods to explore are simple heuristics. For
discrete action spaces, methods such as ϵ-greedy [39] or Boltzmann exploration
[122] are used. For continuous action spaces, stochastic policies for exploration
are generated e.g. by adding Gaussian noise to a deterministic policy [123]. In the
case of using stochastic policy gradient methods, the distribution of the stochastic
policy itself is parameterized and adjusted by RL. Exploration is then ensured by
sampling from the resulting distribution that describes the stochastic policy [39].

A collective term for the aforementioned exploration strategies is dithering
strategies. Because the perturbation from one time step to the next is not co-
ordinated, the exploration is not temporally extended or what we refer to as deep.
For problems that require consistent exploration over several time steps to realize
improved closed-loop performance, dithering strategies may in fact prevent efficient
exploration. The most straightforward method for ensuring deep exploration, is
random perturbations in parameter space, as suggested by the authors in [124]. A
random perturbation in the parameters is introduced at the beginning of an episode,
and fixed throughout that episode, such that a temporally coordinated sequence
of actions is generated. However, the potential benefit of using random noise in
parameter space rather than in action space is generally not obvious and needs to
be evaluated on a case-by-case basis. Moreover, when using random parameter
noise for exploration in large parameter spaces, we are at risk of adding a lot of
disturbances that yield little effect on the resulting policy.

Although the aforementioned heuristics perform well for many tasks, they are all
undirected and therefore may take exponentially long to learn the optimal policy
[125]. To learn efficiently, the exploration method should prioritize potentially
informative states and actions. To do this, exploration should be done with regard
to a notion of uncertainty.

Directed exploration is well understood for the multi-armed bandit problem, which
corresponds to a one-step stateless MDP problem. One strategy is “optimism in the
face of uncertainty”, which corresponds to preferring actions with uncertain values.
This strategy has led to e.g. the upper confidence bound (UCB) algorithm. The UCB
algorithm acts greedily w.r.t. to the action-value function and an exploration bonus
based on a confidence interval of the reward, see e.g. [126]. For the bandit problem,
Hoeffding’s inequality can be applied to obtain the UCB. The UCB algorithm in
[126] has been extended to RL in different forms, but the resulting algorithms have
been considered mostly as theoretical results due to the computational complexity.

Thompson sampling (TS) is a related strategy developed for the bandit problem. TS

7.1. Introduction 113

sampling is based on a Bayesian approach to maintaining a posterior distribution
over models. We sample from the posterior distribution and then select the action
that optimizes the sampled model [127]. Extending TS to RL would involve
maintaining a distribution of MDPs, which in general is difficult. Even updating a
Bayesian model of the value function for an MDP will for most realistic problem
sizes be computationally intractable. For bandit problems, both UCB and TS
achieve a sublinear total regret. In comparison, ϵ-greedy has a linear total regret,
which is the same as with no exploration at all.

As a means to reduce the computational burden, yet inspired by TS, the authors in
[128] introduced the concept of randomized value functions. The use of randomized
value functions aims to approximate samples from the posterior distribution of the
value function. However, the method is developed only for linear parameterizations
of the value function. An extension was made to nonlinear parameterizations, more
specifically to NNs, in [129], where bootstrapped deep Q-function NNs (DQN)
were used to approximate the posterior distribution of the Q-function.

The concept of randomized value functions has also motivated the NoisyNets as
proposed in [130]. Rather than training an NN with K outputs or heads to build
an approximate posterior distribution of Q as in [129], the authors in [130] inject
noise in the NN parameters and use RL to tune the intensity i.e. the variance of the
noise distributions. A new sample of the Q-function is then obtained by sampling
parameter noise from the tuned noise distributions, and exploration is done by
acting greedily with respect to that Q-function.

Bootstrapped DQNs have also been used to develop a practical UCB approach that
applies to RL. Namely, the bootstrapped DQN was used to obtain an empirical es-
timate of the mean and standard deviation of the Q-function distribution [131]. This
was in turn used to formulate a UCB, and the action was selected by maximizing
the UCB. Along the same lines, the DQN framework was used by the authors in
[132] in order to obtain confidence intervals to formulate a surrogate of the regret,
which in turn was used to guide exploration. The use of randomized value functions
constitutes an important step towards more effective exploration strategies in RL,
although it for nonlinear value function parameterizations only applies to discrete
action spaces.

7.1.1 Contribution

The goal of this work is to develop a directed and deep exploration strategy for
continuous action spaces, that is suitable for problems where we wish to use MPC
as a function approximator in RL. For this purpose, we will adopt the principle of
“optimism in the face of uncertainty”. To the best of the authors’ knowledge, few

114 Variance-based exploration for learning MPC

studies exist on directed exploration strategies in continuous action spaces. One
important exception is the work in [133], where K value function approximators
are trained independently, and the agent is encouraged to explore states where
the value function approximators show the largest disagreement. Although the
exploration strategy resembles ours, it is based on knowing the true model of the
MDP, which is not a requirement in our case. We present an uncertainty-based
exploration method not limited to, but particularly suited for MPC, and make the
following contributions:

• we introduce the use of IDW to estimate the variance of the MPC function
approximator at a low computational cost;

• we formulate variance-based exploration in parameter space via the IDW
variance estimate;

• we compare the proposed method with random (Gaussian) perturbations in
both action and parameter space.

The proposed method is verified on two simulation examples, considering both
linear and nonlinear dynamics, for which variance-based exploration performs
better in terms of significantly improving the cumulative rewards during learning.

7.2 Background
In the following, we will consider a special case of MDPs, described by the determ-
inistic dynamics

sk+1 = f(sk, ak), (7.1)

where sk+1 denotes the next state and k denotes the physical time of the system.
The system is subject to the following constraints given by

h(sk, ak) ≤ 0. (7.2)

We will assume in the following that a stage cost L(sk, ak), analogous to a negative
reward, is provided. Our goal is to find a deterministic policy π that maps from
state to action i.e. π : S → A, that minimizes the sum of discounted costs. The
optimal policy, denoted π⋆, is the solution to the following infinite-horizon problem

7.2. Background 115

V ⋆(s) = min
π

∞∑

j=0

γjL(xj , π(xj)) (7.3a)

s.t. ∀j ∈ I≥0 : x0 = s, (7.3b)

xj+1 = f(xj , π(xj)) (7.3c)

h(xj , π(xj)) ≤ 0, (7.3d)

π(xj) ∈ A, (7.3e)

where V ⋆(s) is the optimal value function, γ ∈ (0, 1] is a discount factor and
{xj}∞j=1 is the predicted state trajectory under the policy π for an initial state s.
The action-value function for a policy π can then be defined as follows

Qπ(s, a) = L(s, a) + γVπ(f(s, a)), (7.4)

and is related to the value function through the Bellman equality

Vπ(s) = Qπ(s, π(s)) = min
a
Qπ(s, a). (7.5)

We then parameterize the value function using parameter vector θ and adjust these
using RL towards the optimal value function, and thereby the optimal policy.

7.2.1 MPC as a function approximator in RL

We consider parameterized MPC schemes to estimate the value function Vθ(s) as
in (2.30) and action-value function Qθ(s, a) as in (2.33).

Q-learning

A classical approach to Q-learning is parameter updates driven by the TD error
defined as

δk = L(sk, ak) + γVθ(sk+1)−Qθ(sk, ak). (7.6)

At each time step the parameters are updated according to

θ ← θ + αδk∇θQθ(sk, ak), (7.7)

where α > 0 is a scalar denoting the step size. The gradient ∇θQθ(sk, ak) can be
obtained from sensitivity analysis of the MPC scheme, as detailed in [21].

An alternative to the incremental update of parameters in (7.7), is a batch approach
to Q-learning. This method is known to result in more stable learning [39]. A batch
approach entails introducing an additional set of parameters θ̃ that is continuously
being updated

θ̃ ← θ̃ + αδ̃k∇θ̃Qθ̃(sk, ak), (7.8)

116 Variance-based exploration for learning MPC

where δ̃k = L(sk, ak)+ γVθ̃(sk+1)−Qθ̃(sk, ak). The action ak is selected accord-
ing to the action-value function Qθ(sk, ak), defined by parameters θ that remain
fixed for the duration of one batch. As the updated parameters θ̃ converge, which
marks the end of a batch, we replace the fixed parameters θ with the updated ones θ̃
and begin a new batch.

Q-learning techniques aim to fit Qθ(s, a) to Q⋆(s, a), with the hope that Qθ ≈ Q⋆

will result in πθ ≈ π⋆. To make this fitting possible, we have to deviate from
the current policy estimate, i.e. explore. A standard strategy for exploring in the
case of continuous actions is adding random perturbations to the policy, e.g. in the
form of Gaussian noise. This results in a stochastic policy that induces undirected
exploration, i.e.,

µθ(a|s) = πθ(s) + ζa, (7.9)

where ζa is normally distributed according to ζa ∼ N (0, σ2aIa) where σa is the
standard deviation and Ia is the identity matrix. Convergence properties for Q-
learning are established in e.g. [134] and elaborated further in Section 7.5.2. The
stochastic policy in (7.9) will serve as a baseline for the variance-based exploration
method proposed in this chapter.

7.3 Parameter space exploration
Exploration in parameter space is closely related to the concept of randomized
value functions, which may be used as an alternative to TS without the need for
an intractable exact posterior representation. Exploration in parameter space has
been studied in, e.g., [124] and [130]. The referenced works are similar in the sense
that NNs are used for approximating the value function, and that a sample from an
approximate posterior distribution of the value function is used to explore.

To the best of the authors’ knowledge, only exploration in action space has been
tested for MPC as a function approximator in RL. Comparing NNs and MPC
schemes as function approximators, we conjecture that exploration in parameter
space is particularly suited when using MPC, as the parametrization is smaller
and less convoluted than for NNs (due to the layers and consecutive nonlinear
activations), and also more easily interpreted.

We therefore propose to adopt exploration in the parameter space for MPC, by
adding uncorrelated Gaussian noise to the parameters as follows

θ̂ = θ + ζp, (7.10)

where ζp ∼ N (0, σ2pIp). The exploration policy is then obtained by acting greedily
with respect to the Q-function defined by the perturbed parameters, i.e.

π̂θ̂ = argmin
a
Qθ̂(s, a). (7.11)

7.4. Value function IDW variance 117

The exploration method is summarized in Algorithm 1, here for a continuous task.
We note that the method easily extends to an episodic task.

Algorithm 1: Exploration in parameter space

1 Input : Initial MPC parameters θ0, initial learning parameters θ̃0, initial state
s0, batch update frequency b, learning step size α, parameter noise standard
deviation σp, length of simulation kmax ;

2 Output : Policy πθ

3 while k ≤ kmax do
4 if mod(k, b) = 0 then
5 Update MPC parameters with learned parameters θk = θ̃k

6 Perturb parameters to get θ̂k (7.10)

7 Act greedily w.r.t. current Q-estimate (7.11)
8 Update θ̃k (7.8)
9 k ← k + 1

Remark 16. We note that exploration in parameter space in combination with
Q-learning, generally calls for a batch approach to Q-learning as given by (7.8).
For an incremental approach as in (7.7) where we only have one set of parameters
θ, the resulting TD-error as we update the parameters according to (7.10) would
be L(sk, ak) + γVθ̂(sk+1) − Qθ̂(sk, πθ̂) where Qθ̂(sk, πθ̂) = Vθ̂(sk), i.e. we are
fitting the V-function rather than the Q-function.

Depending on the selected parameterization and the resulting range of parameters,
which in turn depends on the problem at hand, we may choose to perturb the
normalized parameters in order to use the same scale for perturbing the entire
parameter vector. Alternatively, the states and actions in the problem can also be
scaled, which will result in a smaller variation in parameter range, which is also
known to speed up learning.

In the next section, we will consider an alternative to adding random perturbations
to the parameters, namely adding a perturbation based on the uncertainty of the
value function. We will use the exploration method in (7.10) as a second baseline
for our proposed method.

7.4 Value function IDW variance
To guide exploration using the uncertainty of our value function estimate, a method
is needed for quantifying such uncertainty. In Bayesian exploration, we use the

118 Variance-based exploration for learning MPC

covariance of the resulting posterior distribution of a GP, to guide exploration.
Alternatively, interpolation methods can be used to define non-probabilistic un-
certainty measures that are computationally cheaper to evaluate. In [135], radial
basis functions (RBFs) were used to formulate a measure of uncertainty based on
sampled points. In [136], an uncertainty measure based on IDW was compared to a
Bayesian exploration for global optimization and showed competitive performance.
We propose to use IDWs for quantifying the uncertainty of the value function.

The IDW framework can be used to estimate uncertainty for both the value function
and the action-value function. Because we will use the IDW variance to measure
parametric uncertainty only, we do not need to consider the additional argument of
the action-value function, and therefore choose to apply IDW to the value function.

7.4.1 Inverse distance weighting

Given a data set, IDW is an interpolation method that also provides us with a
variance estimate given a predictor of the function that is sampled. We assume
that we have a data set consisting of M samples Vi = V (ηi) of V : Rq → R at
corresponding points η1, . . . , ηM . In the following, the function V is the value
function, that we for now assume that we can sample, and η = [θ, s]⊤.

We may consider the following scaling function ϕ : Rq → Rq to be immune to the
different scaling of individual parameters and states

ϕ(η) = diag
(

2

ηmax − ηmin

)(
η − ηmax + ηmin

2

)
, (7.12)

so that ϕ(η) ∈ [−1, 1] for all η ∈ [ηmin, ηmax], where [ηmax, ηmin] ⊂ Rq. The
min and max values of the states and parameters can be based on constraints and
reasonable bounds on possible parameter values.

For a new instance of η, we consider the (scaled) squared Euclidean distance
function d2 : Rq × Rq → R given as

d2(η, ηi) = (ϕ(ηi)− ϕ(η))⊤(ϕ(ηi)− ϕ(η)), i = 1, . . . ,M. (7.13)

The IDW function wi : Rq → R can then be defined as in [137]

wi(η) =
1

d2(η, ηi)
, (7.14)

and assigns larger weights wi(η) to samples that are close to η than to samples
further away. In [138], the following alternative weighting function was suggested

wi(η) =
e−d2(η,ηi)

d2(η, ηi)
. (7.15)

7.4. Value function IDW variance 119

The weighting function in (7.15) is similar to (7.14) for small values of d2, but more
quickly reduces the effect of points ηi far away from η due to the exponential term.
We then define the following function vi : Rq → R as

vi(η) =
wi(η)∑M
j=1wj(η)

(7.16)

which allows us to define

V̄ (η) =

M∑

i=1

vi(η)Vi, (7.17)

which is an IDW interpolation of {(η, Vi)}Mi=1. For a new instance of η, an estimate
of V (η) is obtained by interpolating on the M existing samples of V . In its original
form, the selection function in (7.16), will include the option that in case we evaluate
an already sampled instance of η, i.e. η ∈ {ηi, . . . , ηM}, we use that vi(ηj) = 1
for i = j and vi(ηi) = 0 otherwise. However, for our purpose we will not evaluate
already sampled values of η, as we wish to explore new values of the parameters.
This is explained further in Section 7.5.1. It was shown in [139, Lemma 1], for both
choices of the weighting function, (7.14) and (7.15), that the interpolation function
V̄ (η) is differentiable everywhere on Rq.

Based on the IDW interpolation function, we define the IDW variance function
r2 : Rq → R as given by [138]–[140]

r2(η) =

M∑

i=1

vi(η)
(
Vi − V̂ (η)

)2
, (7.18)

where Vθ(s) = V̂ (η), Vθ(s) being the parameterized value function in (2.30) for
which we want to estimate the variance. Essentially, the IDW variance estimate is
a weighted average of the squared error between the sampled value functions Vi
and the predictor V̂ (η). As V̂ (η) is differentiable, it follows that the IDW variance
estimate is also differentiable everywhere on Rq. Figure 7.1 is one example of how
the IDW variance estimate can be used to define error bounds for a predictor of a
function V with, in this case, a scalar argument η.

7.4.2 p-step TD prediction of V

Monte Carlo (MC) learning involves learning from experience, using sequences of
states, actions, and costs. MC learning offers an alternative method to TD-learning
(7.6) of the action-value or value function. For a general MDP with stochastic
dynamics and possibly a stochastic policy, MC learning uses the mean sum of
discounted costs from several episodes of experience as the value function estimate.

120 Variance-based exploration for learning MPC

−3 −2 −1 0 1 2 3
η

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V̂ V̂ ± 3
√
r2(η) V

Figure 7.1: Example of IDW: Function V (green) and samples (ηi, Vi) (blue dots). Error
bands are given using the IDW variance estimate in (7.18) i.e. ±3

√
r2(η) (shaded blue)

evaluated for the predictor V̂ (η).

In the following we propose to use MC learning of the value function as a target in
the IDW framework.

As we are considering deterministic policies for deterministic environments, one
episode is sufficient to provide an MC value function estimate. Because the true
value function is defined for an infinite horizon (7.3), we bootstrap on our value
function estimate to compensate for considering an episode with finite length. We
estimate the value function as the sum of discounted costs, evaluated for p samples
of the state and p − 1 samples of the action, bootstrapping on the value function
approximator for the last state. This can be described as a p-step prediction of V,
based on a first-visit approach to MC learning [39].

We now consider a policy πθ̄, where θ̄ denotes the parameter vector. For notational
convenience we let πθ̄ = π̄. For p ≥ 1 we consider sampled states and actions, i.e.

{sk−p, ak−p, sk−p+1, . . . , ak−1, sk}, (7.19)

obtained by acting according to policy π̄. The data in (7.19) is used to predict the
value function by evaluating the sum of discounted costs. The V estimate is given
as

Vk(θ̄k, sk−p) =L(sk−p, ak−p) + γL(sk−p+1, ak−p+1)

+ γ2L(sk−p+2, ak−p+2) + . . .

+ γp−1L(sk−1, ak−1) + γpVθ̄k(sk), (7.20)

7.4. Value function IDW variance 121

where we evaluate the value function estimate Vθ̄ for the last sampled state, using
the current parameter vector θ̄k. The number of samples p thereby becomes a
hyperparameter. Because we bootstrap on our value function, both the targets
and the predictor in (7.18) are based on the function approximator in (2.30). It is
therefore important that p is large enough, such that the effect of bootstrapping is
small. Moreover, the effect of discounting will reduce the bias of bootstrapping.
Selecting p large relative to the batch size means that we obtain samples of the
value function for only a few instances of the state. In an episodic setting where
we initialize the system from the same initial condition at the beginning of a new
batch, we will evaluate the value function variance for the same state and therefore
depend on fewer samples of the value function target. In a continuing task on the
other hand, the system can be in different states at the beginning of each new batch,
and we need to provide samples of the value function targets for more instances
of the state. An alternative to the target we proposed in (7.20), is an exponentially
weighted estimate as the authors propose for the advantage function in [141].

Remark 17. As the variance-based exploration method is perturbing in parameter
space, we should, as for the random exploration in parameter space, use a batch
manner to Q-learning as given in (7.8). This entails having two sets of parameters,
where one set of parameters is continuously updated θ̃, whereas the other set of
parameters θ = θ̄ are fixed for one batch and is used to define a policy that visits
informative states.

Using the IDW variance function in (7.18), we obtain a variance estimate based on
the weighted average of the squared difference between the targets in (7.20) and
the MPC-based value function approximator in (2.30). The V-function estimate
in (7.20) is particular for the current policy estimate π̄, i.e. we are estimating Vπ̄.
As the parameters are updated from θ̄ to θ̄′ at the beginning of a new batch, data
is collected with an updated policy π̄′, and we are making p-step predictions of
Vπ̄′ . Although the previously sampled V targets are estimated for increasingly
more outdated policies, they can be useful for estimating the uncertainty w.r.t the
parameters. The weights in (7.18) are assigned using inverse distances according to
either (7.14) or (7.15), i.e. we influence the impact of previously sampled targets
on our variance estimate through the choice of IDW function.

7.4.3 Practical implementation

As the number of samples M increases, the IDW variance function becomes
increasingly computationally heavy to evaluate. For a practical implementation,
that can run fast in real-time, we set a limit for the maximum number of samples
Mmax used to evaluate (7.18). If our data set already contains Mmax samples, we

122 Variance-based exploration for learning MPC

evaluate the following criterion for a new instance of η,

Mmax∑

i=1

d2(η, ηi) > min

{Mmax∑

i=1

d2(ηi, η1), . . . ,

Mmax∑

i=1

d2(ηi, ηMmax)

}
. (7.21)

If the summed distance from a new sample η in (7.21) to our current samples
η1, . . . , ηMmax is larger than the least different sample in our dataset, we will replace
the old sample with the new. In the opposite case, we will not update our data set.
The maximum number of samples Mmax thereby becomes a hyperparameter.

Remark 18. Although the size of the data set in this framework can be controlled
by limiting the number of samples to include, the parameter and state dimension
will also affect the size. The IDW variance (7.18) is only evaluated at the beginning
of each batch, so the computation time of the variance itself may therefore not
necessarily be a problem. Nonetheless, a small parameter space will ease the work
related to handling the sampled data needed to evaluate the IDW variance. This
framework is therefore particularly suited for using MPC as a function approximator,
which typically uses much fewer parameters than the standard choice of NNs.

7.5 Variance-based exploration
In this section, we will outline how we can leverage an IDW framework as detailed
in the previous section, to direct exploration to where we have uncertainty in our
value function estimate. We are then acting according to the strategy of “optimism
in the face of uncertainty”, and hoping that by exploring areas of high uncertainty
our policy will visit more informative states and actions, and hence explore more
efficiently.

Combining a variance-based exploration in the parameter space with a batch ap-
proach to Q-learning, allows us to consider a perturbation to the parameters at the
beginning of each batch, and keep these parameter values for the duration of one
batch. The advantage of this approach is that we induce a state-dependent change
in the policy over multiple time steps, what is often referred to as deep exploration.

7.5.1 Variance-based perturbations in parameter space

We first define the gradient of the IDW variance function w.r.t. the parameters:

∇θr
2(η) =

M∑

i=1

∇θvi(η)(Vi − V̂ (η))2

−2vi(η)(Vi − V̂ (η))∇θV̂ (η), (7.22)

7.5. Variance-based exploration 123

to highlight the fact that the sensitivity of the MPC scheme, in terms of ∇θV̂ (η), is
used in evaluating the gradient of the variance. We propose to restrict the variance
gradient by using the standard deviation used for Gaussian exploration in parameter
space. This will, first of all, make the two methods highly comparable, in terms of
how large the applied perturbation in the parameters can be, and also prevents the
addition of yet another hyperparameter, i.e.

∇θ r̂
2(θ, s) = sat(∇θr

2(θ, s),−2σp, 2σp). (7.23)

We propose the following update of the parameters

θ̄ = θ +
1

2
∇θ r̂

2(θ, s) +
1

2
ζp, (7.24)

where ζp is a noise term as defined for (7.10). The gradient of the IDW function is
added to the parameters, in the hope that exploring parameter values in a direction
where our value function is uncertain, may improve our estimate. The noise term is
added to ensure some random exploration in parameter space, to collect data such
that the variance estimate of our function approximator is meaningful. A policy
estimate based on the perturbed parameters in (7.24), is obtained according to

πθ̄(sk) = argmin
a
Qθ̄(sk, ak). (7.25)

The formulation in (7.24) and (7.25) resembles the exploration method of ran-
domized value functions, where a value function is sampled from an approximate
posterior distributed and then used for greedy action selection. However, our
approach is not completely random in sampling the value function but uses the
gradient of the variance estimate to guide the sampling. We predict Vi for each
realization of θ̄ as well as different states, using p samples of states and actions
during a batch, and store it in the data set D. The data set is used to re-evaluate the
variance gradient at the beginning of the next batch, to generate a new (perturbed)
parameter vector to be used. This is summarized in Algorithm 2.

7.5.2 Convergence properties

Without considering that we are using function approximators, Q-learning will
converge under the following assumptions: (1) Greedy in the limit with infinite
exploration (GLIE), (2) the step sizes αk satisfy the Robbins-Munro sequence. For
more details, the reader is referred to [134]. The GLIE assumption entails that (i)
all state-action pairs are explored infinitely many times, and that, (ii) as time goes
to infinity, the policy converges to a greedy policy. The second assumption (2) is
not directly related to the exploration method and is most commonly satisfied in
practice by selecting a small constant step size. Formally, we can ensure GLIE

124 Variance-based exploration for learning MPC

Algorithm 2: Variance-based exploration

1 Input : Initial MPC parameters θ0, initial learning parameters θ̃0, initial state
s0, data set D, batch update frequency b, learning step size α, number of
samples used to generate V targets p, maximum number of samples in data set
Mmax, parameter noise standard deviation σp, length of simulation kmax ;

2 Output : Policy πθ

3 while k ≤ kmax do
4 if mod(k, b) = 0 then
5 Update MPC parameters with learned parameters θk = θ̃k
6 Evaluate gradient of IDW variance (7.22)
7 Ensure that the IDW variance gradient respects bound (7.23)
8 Perturb parameters to get θ̄k (7.24)

9 Act greedily w.r.t. current Q-estimate (7.25)
10 if mod(k, b) ≥ p then
11 if |D| ≤Mmax or (|D| ≥Mmax and (7.21)) then
12 Calculate p-step prediction of Vk (7.20)
13 Add {Vk, sk−p, θ̄k} to D

14 Update θ̃k (7.8)
15 k ← k + 1

7.6. Simulation examples 125

for the proposed exploration method in Section (7.5.1). The first part of GLIE
(i) is ensured by keeping a random term in (7.24) so that we ensure sufficient
exploration even though the gradient of the variance eventually may converge
to a small number. The second part of GLIE (ii) can be ensured by using a
decaying scalar i.e. β(12∇θk r̂

2(θk, sk) +
1
2ζp) where β = βa exp(−ωk) and ω is a

hyperparameter.

7.6 Simulation examples
We apply the proposed exploration method to two simulation examples, namely
on an LQR problem and a cart pendulum system. The latter is a popular example
in the control systems literature, as it is open-loop unstable and nonlinear. For
each simulation example, we will benchmark our method with respect to both (i)
Gaussian action noise and (ii) Gaussian parameter noise.

7.6.1 LQR

The following example is adapted from [22]. We consider a discrete linear system
of the form

sk+1 = Ask +Bak, (7.26)

with system matrices

A = κ

[
cosβ sinβ
sinβ cosβ

]
, B =

[
1.1 0
0 0.9

]
, (7.27)

where we use κ = 0.95, and β = 22◦ [deg]. The baseline stage cost is selected as

L(s, a) =
1

2
∥s− sref∥2 +

1

2
∥a− aref∥2, (7.28)

where sref = [0.1, 0.1]⊤, and the reference input is found accordingly. The (inac-
curate) prediction model is defined as

A0 = κ

[
cosβ̂ sinβ̂

sinβ̂ cosβ̂

]
, B0 =

[
1 0
0 1

]
, (7.29)

where β̂ = 20◦. The parameterized MPC scheme reads as

min
x,u

V0 + γN∥xN − xref∥2P +

N−1∑

j=0

γj
∥∥∥∥
[
xj − xref
uj − uref

] ∥∥∥∥
2

(7.30a)

s.t. ∀j ∈ I0:N−1 : x0 = s, (7.30b)

xj+1 = A0xj +B0uj , (7.30c)

(7.30d)

126 Variance-based exploration for learning MPC

using a prediction horizon ofN = 10, γ = 0.99 and P is the solution to the discrete
Riccati equation obtained using the inaccurate system dynamics in (7.29). The para-
meter vector is θ = {xref,1, xref,2, uref,1, uref,2, V0}. We consider a continuing task
and simulate the system for a total of 5000 time steps. The parameters are updated
in a batch manner, using a batch length of 200, i.e., we update the parameters in the
MPC scheme every 200 time steps. A learning rate of α = 0.1 was used. For each
exploration method, we consider a range of noise distributions, defined by varying
standard deviations. For brevity, only the best-performing ones are reported.

For the variance-based exploration method, we use p = 10, do not pose any restric-
tions on the data sampled, i.e., Mmax = 5000 and use the weighting function in
(7.15). The resulting IDW variance estimate (7.18) is plotted over learning batches
in Figure 7.2. The system states and actions are plotted both during exploration and
exploitation, i.e. we use MPC with the learned parameters, resulting from Gaussian
action noise and variance-based exploration, to control the system, see Figure
7.3. We also plot the norm of the parameter updates resulting from the different
exploration methods, to indicate when the algorithm converges. Additionally, we
state the cost of exploration, i.e. the sum of cost over all time steps needed to see
a convergence of the parameters, as well as the sum of cost over simulations in
exploitation, see Table 7.1. The numbers reported in Table 7.1 are found for a total
of 5 simulations run for each exploration method.

We see that the mean of the variance in Figure 7.2 is initially small but eventually
grows. The peak around 5 batches, seems to result in a larger parameter update
which can be spotted in the lower-right plot in Figure 7.3. As increasingly more
parameter values are tried out in the simulation, and data is gathered, the variance
estimate starts decreasing. From the resulting statistics in Table 7.1, we see that
Gaussian action noise for this particular problem obtains the best performance, in
terms of minimizing the cost during exploitation, but at a much higher cost during
exploration than both random perturbations as well as variance-based perturbations
in parameter space. Variance-based exploration in this case obtains a slightly higher
cost in exploitation compared to Gaussian action noise, although the same as with
Gaussian parameter noise, while being the cheapest alternative during exploration.
In Figure 7.3, we see that the empirical standard deviation of the simulated states
and actions are visibly larger for variance-based exploration than for Gaussian
action noise in exploitation, however, we note that the resulting standard deviation
in the accumulated cost is small in exploitation, see Table 7.1.

7.6. Simulation examples 127

0 5 10 15 20
Batch

−0.4

−0.2

0.0

0.2

0.4

0.6

r2(θ, s)

Figure 7.2: The mean and two standard deviations of the IDW variance estimate (7.18)
over learning batches.

Table 7.1: Cost statistics for LQR simulations. The mean and standard deviation (in
parentheses) are found for a total of 5 simulations for each exploration method.

Exploration method
Exploration

σ kmax
∑
L(s, a)

Variance-based 0.1 5000 28.74 (16.52)
Gaussian noise in parameter space 0.1 5000 57.66 (6.55)
Gaussian noise in action space 0.1 5000 132.66 (1.721)

Exploration method
Exploitation

kmax
∑
L(s, a)

Variance-based 20 0.021 (0.00)
Gaussian noise in parameter space 20 0.021 (0.00)
Gaussian noise in action space 20 0.020 (0.00)

128 Variance-based exploration for learning MPC

Table 7.2: Cart pendulum model parameters

Description Symbol Value
Cart weight M 2.4 kg
Pendulum weight m 0.23 kg
Acceleration of gravity g 9.81 m/s2

Pendulum length l 0.36 m

7.6.2 Cart pendulum

We consider the cart pendulum system as depicted in Figure 7.4. The dynamics of
the cart pendulum, neglecting friction, are given by

(M +m)z̈ +
1

2
mlϕ̈cosϕ =

1

2
mlϕ̇2sinϕ+ u, (7.31a)

1

3
ml2ϕ̈+

1

2
mlz̈cosϕ = −1

2
mglsinϕ, (7.31b)

with model parameters as specified in Table 7.2 and where u is the control input.
The state vector is s = [z, ż, ϕ, ϕ̇]⊤, consisting of the cart displacement and velocity
along the horizontal axis, the angle between the pendulum and the vertical axis
and angular velocity, respectively. The action is a = u. The dynamics in (7.31)
are converted to a state space representation, discretized, and used to simulate
the system. A linearized version of the state space representation is used as the
prediction model in the MPC scheme. The state space representation and the
linearized dynamics are found in e.g. [142].

A 4th-order Runge Kutta scheme is used to discretize the dynamics in (7.31), using
the step size dt = 0.1 s. We consider the following constraint, in newtons, on the
force acting on the cart

−7 ≤ a ≤ 7. (7.32)

The RL cost is given as

L(s, a) =

[
s− sref
a

]⊤ [
I4 0
0 0.01

] [
s− sref
a

]
, (7.33)

where sref = [0.5, 0, 0, 0]⊤. The linearized prediction model in the MPC scheme,
defined by Ā and B̄, is obtained from linearizing the system dynamics (7.31)
at ϕ = 0, corresponding to the pendulum being in an upright position. The

7.6. Simulation examples 129

parameterized MPC scheme reads as

min
x,u

V0 + γNTθ(xN) +

N−1∑

j=0

γjℓθ(xj , uj) (7.34a)

s.t. ∀j ∈ I0:N−1 : x0 = s, (7.34b)

xj+1 = Āxj + B̄uj , (7.34c)

− 7 ≤ uj ≤ 7, (7.34d)

where N = 30 and γ = 0.99. Moreover, we parameterize the stage cost using a
quadratic function according to

ℓθ(x, u) =

[
x− xref

u

]⊤
M(θ)

[
x− xref

u

]
, (7.35)

where M(θ) is a positive definite matrix, with parameterized diagonal elements.
We assume that we know all state references, except the cart position, i.e. xref =
[θc, 0, 0, 0]. A similar parameterization is also used for the terminal cost Tθ. The
resulting parameter vector consists of the elements in ℓθ and Tθ, as well as V0 and
θc. We learn in an episodic manner, considering episodes of length 300, and let one
episode correspond to one batch in terms of when we update the parameters. We
learn for a total of 1000 batches and use a learning rate of α = 0.5. We test all three
exploration methods, for an interval of Gaussian distributions, defined by different
standard deviations, and report the best-performing distribution in each category.
For the variance-based exploration method, we use p = 110, Mmax = 5000, and
the weighting function in (7.15) .

As for the previous example, we have plotted the simulated states and actions during
both exploration and exploitation, for Gaussian action noise and variance-based
exploration, as well as the normed parameter updates, see Figure 7.5. Table 7.3
lists the sum of the cost for exploration and exploitation. The main goal of learning,
in this case, is to obtain the true desired cart position, as well as tune the stage
and terminal cost. We see from the plotted cart position during exploration, that
variance-based exploration causes the system to visit positions closer to the true
reference, than using Gaussian action noise. Here, this results in a small, but still
visible improvement in both the plotted cart position in exploitation as well as the
calculated cost in Table 7.3.

The statistics in Table 7.3 are found for a total of 3 simulations in each category.
We see that Gaussian action noise in this case has very little effect, as the best
performance in exploitation was obtained with σa = 0.0001. By using a Gaussian
perturbation in parameter space we improve the performance in exploitation, while

130 Variance-based exploration for learning MPC

also reducing the cost of learning. Using variance-based exploration, we make
exploration even cheaper while achieving a similar improvement in performance.

Figure 7.4: Cart pendulum system.

Table 7.3: Cost statistics for cart pendulum simulations. The mean and standard deviation
(in parentheses) are found for a total of 3 simulations for each exploration method.

Exploration method
Exploration

σ kmax
∑
L(s, a)

Variance-based 0.1 300000 58071.39 (235.94)
Gaussian noise in parameter space 0.1 300000 60558.04 (155.20)
Gaussian noise in action space 0.0001 300000 61586.95 (0.033)

Exploration method
Exploitation

kmax
∑
L(s, a)

Variance-based 100 47.86 (0.01)
Gaussian noise in parameter space 100 47.46 (0.03)
Gaussian noise in action space 100 48.86 (0.00)

7.6. Simulation examples 131

0 2500 5000
−0.5

0.0

0.5

s1

0 2500 5000

0.0

0.5

s2

0 2500 5000
k

−0.5

0.0

0.5
a1

0 2500 5000
k

−0.5

0.0

0.5

a2

0 2500 5000

0.0

0.2

0.4
s1

0 2500 5000

0.00

0.25

s2

0 2500 5000
k

−0.2

0.0

0.2

a1

0 2500 5000
k

−0.2

0.0

0.2

a2

0 10 20
0.00

0.05

0.10
s1

0 10 20
0.00

0.05

0.10
s2

0 10 20
k

0.00

0.05

a1

0 10 20
k

0.00

0.05

a2

0 10 20
0.00

0.05

0.10

s1

0 10 20
0.00

0.05

0.10

s2

0 10 20
k

0.00

0.05

a1

0 10 20
k

0.00

0.05

a2

0 5 10 15 20 25
Batch

10−4

10−3

‖∆θ‖

0 5 10 15 20 25
Batch

10−4

10−3

‖∆θ‖

Figure 7.3: LQR simulation results. Upper plots: the mean and two standard deviations of
states and actions during exploration, with Gaussian action noise (left) and variance-based
exploration (right). Middle plots: the mean and two standard deviations of states and
actions during exploitation, using parameters learned with Gaussian action exploration
(left) and variance-based exploration (right). Bottom plots: the mean of parameter updates
using Gaussian action noise (left) and variance-based exploration (right).

132 Variance-based exploration for learning MPC

0 150 300
−1

0

z

0 150 300
−1

0

ż

0 150 300
−0.2

0.0

0.2
φ

0 150 300

0

1

φ̇

0 150 300

k

−5
0
5

u

0 150 300

k

0.0

2.5

`(s, a)

0 150 300
−1

0

z

0 150 300

−0.5
0.0
0.5

ż

0 150 300
−0.2

0.0

φ

0 150 300

0

1
φ̇

0 150 300

k

−5

0

5

u

0 150 300

k

0.0

2.5

`(s, a)

0 50 100

−0.5

0.0

0.5
z

0 50 100

−0.5
0.0
0.5

ż

0 50 100
−0.2

0.0

φ

0 50 100

0

1
φ̇

0 50 100

k

−5

0

5

u

0 50 100

k

0.0

2.5

`(s, a)

0 50 100

−0.5

0.0

0.5
z

0 50 100

−0.5
0.0
0.5

ż

0 50 100
−0.2

0.0

φ

0 50 100

0

1
φ̇

0 50 100

k

−5

0

5

u

0 50 100

k

0.0

2.5

`(s, a)

0 200 400 600 800 1000
Batch

10−4

10−3

10−2

10−1

‖∆θ‖

0 200 400 600 800 1000
Batch

10−4

10−3

10−2

10−1

‖∆θ‖

Figure 7.5: Cart pendulum simulation results. Upper plots: the mean and two standard
deviations of states and actions during exploration, with Gaussian action noise (left) and
variance-based exploration (right). Middle plots: the mean of states and actions during
exploitation, using parameters learned with Gaussian action exploration (left) and variance-
based exploration (right). Bottom plots: the mean of parameter updates using Gaussian
action noise (left) and variance-based exploration (right).

7.7. Conclusion 133

7.7 Conclusion
We have presented a novel approach for variance-based exploration particularly
suited for using an MPC scheme as a function approximator in RL. The method
is based on IDW to build a variance estimate of the value function approximator,
which is computationally cheap compared to probabilistic methods such as GPs
and well-suited in an online setting. The proposed exploration method is tested
in simulation and benchmarked against Gaussian perturbations in both action and
parameter space. The results show that exploration in parameter space generally
is cheaper than exploration in action space while achieving at least a similar per-
formance in exploitation using the learned parameter values. This suggests that
Gaussian exploration in parameter space, as already suggested for NNs as function
approximators in RL, successfully can be used also with MPC. The simulation
results also revealed that variance-based exploration in parameter space further
reduces the cost of exploration, compared to Gaussian perturbations, with the same
performance in exploitation. This means that exploration can be made even cheaper,
with only a small increase in computational cost and with minor overall changes to
the existing implementation.

134 Variance-based exploration for learning MPC

Chapter 8

Conclusions and further work

This thesis has detailed contributions made on the topic of learning-based MPC for
systems that may be hard to model accurately. A detailed conclusion is given at the
end of each chapter. The following chapter presents a more general discussion and
conclusion, as well as suggestions for future work.

8.1 Summary and discussion
In Part 1 of this thesis, we have considered two different approaches for combining
MPC with supervised learning methods. Both of these approaches exploit data
to learn the entire or parts of the dynamical model, which in turn is exploited in
the MPC formulation. In Chapter 3, we looked into how NNs can be used in an
autoregressive prediction model in the MPC. We answer research question R.1 by
showing that, for a system controlled with MPC using an NN as the prediction
model, the closed-loop system is ISS w.r.t. the prediction error of the NN, under
the core assumption of the prediction error being bounded.

In Chapter 4, we use learning only for the nonlinear component of what is known as
a Lur’e system. By replacing the nonlinear component with a sector constraint, the
optimal control problem can be formulated as a convex optimization problem, hence
reducing computation time considerably and for which we are guaranteed that a
global solution is obtained. By learning a stochastic sector we are able to improve
the closed-loop performance of the controller and enlarge the feasible region of
the controller compared to using a conservative sector estimate, thus answering
research question R.2. The resulting closed-loop system comes with probabilistic
stability guarantees.

As has been previously stated, the performance of the MPC scheme relies on suffi-

135

136 Conclusions and further work

ciently accurate models. When using data-driven models in the MPC scheme, the
models are trained to reduce the prediction error as much as possible, hoping that
this will yield the best closed-loop behavior. However, the modeling, in this case,
is not directly connected to the closed-loop performance, and determining what is
"sufficient accuracy" is therefore difficult to do. Moreover, it can be challenging to
select model architectures when dealing with complex dynamical systems. Addi-
tionally, as MPC is a control algorithm based on solving an optimization problem
at every iteration, introducing complex dynamical models in the MPC scheme
is expected to increase the computation time needed to solve the optimization
problem.

An important motivation for using MPC as a function approximator in RL is that
the parameterization of the optimization problem, including the prediction model,
can be adjusted to optimize the closed-loop behavior directly. As previously stated,
parameterizing not only the prediction model but also the cost and constraints give
additional flexibility for adjusting the policy in the face of model inaccuracies. This
combination of MPC and RL was pursued in Part II of the thesis.

Parameterizing and adjusting the cost function in the MPC scheme is especially
relevant for EMPC which aims to minimize an economic cost that is not necessarily
positive definite. The generic cost function complicates the stability analysis
of EMPC compared to the more standard tracking MPC scheme. By applying
dissipativity theory, we can formulate and learn cost modifications that for certain
types of problems allow us to capture the optimal economic policy using a provably
stable MPC scheme. In Chapter 5 we propose convex NNs as cost modifications
in order to estimate the economic policy using a stable MPC scheme based on an
inaccurate prediction model.

The motivation for introducing NNs in the cost function is supported by [22], which
states that an MPC scheme with a rich parameterization of the cost and constraints
is able to capture the optimal policy even when based on an inaccurate model.
Moreover, the motivation for selecting convex cost NNs, is that we can prove that
these are lower bounded by K∞-functions, which is needed in order to establish
stability. Furthermore, convexity is in general a desirable property in optimization.
For the selected simulation example in Chapter 5, we benchmarked the convex NN-
based cost modifications with quadratic functions, and found little improvement in
closed-loop performance. Thus, we were not able to provide an affirmative answer
to research question R.3. The expected significance, in terms of improving the
closed-loop performance, of adding richer cost modifications is arguably problem
dependent. Also, by enforcing the convexity of the NNs we are imposing a stricter
requirement than the stability condition itself.

8.2. Further work 137

In Chapter 5, we were faced with an economic problem for which Q-learning
struggled to capture the optimal policy. In order to learn both the value function and
the policy, we proposed a combination of RL methods using a null space projection.
In Chapter 6, we build on this early result and propose a different combination
based on a multi-objective approach. This naturally extends to a second-order
method, that allows us to take full advantage of the MPC as a function approximator.
Because the Hessian of the Q-learning objective is straightforward to obtain from
sensitivity analysis of the MPC scheme, we were able to improve the learning rate
of the second-order policy gradient step, which positively answers research question
R.4.

Finally, we proposed a novel method for variance-based exploration for MPC in
RL. This is the first work that proposes and tests exploration in parameter space
for MPC, an approach that is currently adopted in deep RL to enhance exploration
when learning the value function or policy using NNs. Using a variance-based
exploration strategy, we achieved the same or better closed-loop performance of
MPC-based policies at a significantly lower cost during learning, compared to using
random perturbations in action space and parameter space. This is therefore an
important step towards answering R.5.

8.2 Further work
Convex cost modifications were proposed to improve the closed-loop performance
of MPC schemes based on inaccurate models. Restricting the cost modifications
to be convex functions, is a stronger requirement than what we need to establish
nominal stability, namely to show that the stage cost is lower bounded by a K∞
function. However, convexity is used to establish stability by design, which is
not necessarily easy to do for a generic cost modification, and also alleviates the
computation of the optimization problem. An interesting open research question is
therefore how rich the model parameterization ought to be in order to capture the
optimal policy when using a convex cost function in the MPC scheme.

In this thesis, we proposed a method for variance-based exploration in RL. The
method was formulated and verified for deterministic systems. A direction for
future work is therefore extending and testing this method for stochastic systems.
The exploration method is based on using IDW to estimate the uncertainty of the
value function. Although IDW has been used successfully applied to data with
noise, it is mainly considered a tool for noise-free data, and other methods may be
considered when extending this exploration scheme to stochastic systems.

One benefit of combining supervised learning methods and MPC, as treated in Part
I, is that there exist sophisticated tools for training e.g. NNs using e.g. GPUs. This

138 Conclusions and further work

makes training NNs on large data sets offline very efficient. For the combination
of MPC and RL as used in Part II, we learn in an online setting. This allows us to
update the controller as new data is available. MPC problems in general are cheap
to differentiate, using sensitivity analysis, but typically expensive to solve. Due to
the excellent tools that exist for solving MPC in real-time, performing RL online,
i.e. while the system is being controlled, is feasible for many problems. However,
when it comes to processing large amounts of data offline, the time needed to
solve the optimization problems is impractical. The applied framework in Part II
therefore suffers from one major drawback, namely the apparent difficulty to learn
from already existing large data sets.

An early investigation of adopting MPC as a function approximator in what is
known as an offline RL setting is done in [143]. This is a promising direction that
alleviates the need for solving the optimization problem when learning MPC-based
policies from large data sets.

As this thesis has considered only theoretical aspects of combining MPC and
learning, the final suggestion for further work is testing the proposed methods on
real systems.

References

[1] S. Moe, A. M. Rustad and K. G. Hanssen, “Machine learning in control
systems: An overview of the state of the art,” in Artificial Intelligence
XXXV: 38th SGAI International Conference on Artificial Intelligence, AI
2018, Cambridge, UK, December 11–13, 2018, Proceedings 38, Springer,
2018, pp. 250–265.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot et al., “Mastering the game of Go with deep neural networks and tree
search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra
and M. Riedmiller, “Playing Atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[4] P. Abbeel, A. Coates, M. Quigley and A. Ng, “An application of reinforce-
ment learning to aerobatic helicopter flight,” Advances in neural information
processing systems, vol. 19, 2006.

[5] S. Wang, W. Chaovalitwongse and R. Babuska, “Machine learning al-
gorithms in bipedal robot control,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 5, pp. 728–
743, 2012.

[6] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al., “Learning
dexterous in-hand manipulation,” The International Journal of Robotics
Research, vol. 39, no. 1, pp. 3–20, 2020.

139

140 REFERENCES

[7] L. Wells and T. Bednarz, “Explainable AI and Reinforcement Learning
— A systematic review of current approaches and trends,” Frontiers in
artificial intelligence, vol. 4, p. 550 030, 2021.

[8] H. K. Khalil, Nonlinear control. Pearson New York, 2015, vol. 406.

[9] B. Karg and S. Lucia, “Efficient representation and approximation of model
predictive control laws via deep learning,” IEEE Transactions on Cybernet-
ics, vol. 50, no. 9, pp. 3866–3878, 2020.

[10] L. Ljung, “Perspectives on system identification,” Annual Reviews in Con-
trol, vol. 34, no. 1, pp. 1–12, 2010.

[11] S. Sastry, M. Bodson and J. F. Bartram, Adaptive control: stability, conver-
gence, and robustness. Dover Books on Electrical Engineering, 2011.

[12] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: A
survey,” Cognitive processing, vol. 12, pp. 319–340, 2011.

[13] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar,
Y. Yue and S.-J. Chung, “Neural lander: Stable drone landing control using
learned dynamics,” in 2019 International Conference on Robotics and
Automation (ICRA), IEEE, 2019, pp. 9784–9790.

[14] A. Aswani, H. Gonzalez, S. S. Sastry and C. Tomlin, “Provably safe and
robust learning-based model predictive control,” Automatica, vol. 49, no. 5,
pp. 1216–1226, 2013.

[15] P. W. Van De Ven, T. A. Johansen, A. J. Sørensen, C. Flanagan and D. Toal,
“Neural network augmented identification of underwater vehicle models,”
Control Engineering Practice, vol. 15, no. 6, pp. 715–725, 2007.

[16] T. Dierks and S. Jagannathan, “Neural network output feedback control of
robot formations,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 40, no. 2, pp. 383–399, 2010.

[17] L. Hewing, K. P. Wabersich, M. Menner and M. N. Zeilinger, “Learning-
based model predictive control: Toward safe learning in control,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 3, pp. 269–296,
2020.

[18] D. Limon, J. Calliess and J. M. Maciejowski, “Learning-based nonlinear
model predictive control,” IFAC-PapersOnLine (Proc. 20th IFAC World
Congress), vol. 50, no. 1, pp. 7769–7776, 2017.

[19] M. Maiworm, D. Limon, J. M. Manzano and R. Findeisen, “Stability of
Gaussian Process Learning Based Output Feedback Model Predictive Con-
trol,” IFAC-PapersOnLine (Proc. 6th IFAC Conference on Nonlinear Model
Predictive Control), vol. 51, no. 20, pp. 455–451, 2018.

REFERENCES 141

[20] F. Berkenkamp, R. Moriconi, A. P. Schoellig and A. Krause, “Safe learning
of regions of attraction for uncertain, nonlinear systems with Gaussian
processes,” 2016 IEEE 55th Conference on Decision and Control (CDC),
pp. 4661–4666, 2016.

[21] S. Gros and M. Zanon, “Data-driven economic NMPC using reinforcement
learning,” IEEE Transactions on Automatic Control, vol. 65, no. 2, pp. 636–
648, 2019.

[22] S. Gros and M. Zanon, “Learning for MPC with stability & safety guaran-
tees,” Automatica, vol. 146, p. 110 598, 2022.

[23] K. Seel, E. I. Grøtli, S. Moe, J. T. Gravdahl and K. Y. Pettersen, “Neural
network-based model predictive control with input-to-state stability,” in
2021 American Control Conference (ACC), IEEE, 2021, pp. 3556–3563.

[24] K. Seel, M. Haring, E. I. Grøtli, K. Y. Pettersen and J. T. Gravdahl, “Learning-
based robust model predictive control for sector-bounded Lur’e systems,”
IFAC-PapersOnLine (Proc. 1st IFAC Modeling, Estimation and Control
Conference (MECC)), vol. 54, no. 20, pp. 46–52, 2021.

[25] K. Seel, A. B. Kordabad, S. Gros and J. T. Gravdahl, “Convex neural
network-based cost modifications for learning model predictive control,”
IEEE Open Journal of Control Systems, vol. 1, pp. 366–379, 2022.

[26] K. Seel, S. Gros and J. T. Gravdahl, “Combining Q-learning and determ-
inistic policy gradient for learning-based model predictive control,” in
Accepted to 2023 62nd IEEE Conference on Decision and Control (CDC),
2023.

[27] K. Seel, A. Bemporad, S. Gros and J. T. Gravdahl, “Variance-based ex-
ploration for learning model predictive control,” IEEE Access, vol. 11,
pp. 60 724–60 736, 2023.

[28] M. Haring, E. I. Grøtli, S. Riemer-Sørensen, K. Seel and K. G. Hanssen,
“A Levenberg-Marquardt algorithm for sparse identification of dynamical
systems,” IEEE Transactions on Neural Networks and Learning Systems,
2022.

[29] A. Anand, K. Seel, V. Gjærum, A. Håkansson, H. Robinson and A. Saad,
“Safe learning for control using control Lyapunov functions and control bar-
rier functions: A review,” Procedia Computer Science, vol. 192, pp. 3987–
3997, 2021.

[30] A. Håkansson, A. Saad, A. Anand, V. Gjærum, H. Robinson and K. Seel,
“Robust reasoning for autonomous cyber-physical systems in dynamic en-
vironments,” Procedia Computer Science, vol. 192, pp. 3966–3978, 2021.

142 REFERENCES

[31] B. Foss and T. A. N. Heirung, “Merging optimization and control,” Lecture
Notes, 2013.

[32] D. Bertsekas, Dynamic programming and optimal control: Volume I. Athena
scientific, 2012, vol. 1.

[33] J. B. Rawlings and D. Q. Mayne, Model predictive control: Theory and
design. Nob Hill Publishing, 2009.

[34] R. Amrit, J. B. Rawlings and D. Angeli, “Economic optimization using
model predictive control with a terminal cost,” Annual Reviews in Control,
vol. 35, no. 2, pp. 178–186, 2011.

[35] J. Jäschke, X. Yang and L. T. Biegler, “Fast economic model predictive
control based on nlp-sensitivities,” Journal of Process Control, vol. 24,
no. 8, pp. 1260–1272, 2014.

[36] D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. Scokaert, “Constrained
model predictive control: Stability and optimality,” Automatica, vol. 36,
no. 6, pp. 789–814, 2000.

[37] D. Limon, T. Alamo, F. Salas and E. F. Camacho, “On the stability of
constrained MPC without terminal constraint,” IEEE Transactions on Auto-
matic Control, vol. 51, no. 5, pp. 832–836, 2006.

[38] A. Jadbabaie and J. Hauser, “On the stability of receding horizon control
with a general terminal cost,” IEEE Transactions on Automatic Control,
vol. 50, no. 5, pp. 674–678, 2005.

[39] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[40] R. S. Sutton, D. McAllester, S. Singh and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” Ad-
vances in neural information processing systems, vol. 12, 1999.

[41] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller,
“Deterministic policy gradient algorithms,” 31st International Conference
on Machine Learning, ICML 2014, vol. 1, pp. 605–619, 2014.

[42] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of
Machine Learning Research, vol. 4, no. 6, pp. 1107–1149, 2004.

[43] E. C. Kerrigan and J. M. Maciejowski, “Soft constraints and exact pen-
alty functions in model predictive control,” Proceedings of the UKACC
International Conference on Control, 2000.

[44] A. B. Kordabad, M. Zanon and S. Gros, “Equivalence of Optimality Cri-
teria for Markov Decision Process and Model Predictive Control,” IEEE
Transactions on Automatic Control, pp. 1–8, 2023.

REFERENCES 143

[45] K. Hornik, M. Stinchcombe and H. White, “Multilayer feedforward net-
works are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–
366, 1989.

[46] A. B. Kordabad and S. Gros, “Q-learning of the storage function in eco-
nomic nonlinear model predictive control,” Engineering Applications of
Artificial Intelligence, vol. 116, p. 105 343, 2022.

[47] M. Zanon and S. Gros, “A new dissipativity condition for asymptotic
stability of discounted economic MPC,” Automatica, vol. 141, p. 110 287,
2022.

[48] L. Ljung, System Identification (2nd Ed.): Theory for the User. USA: Pren-
tice Hall PTR, 1999.

[49] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice Hall Upper
Saddle River, NJ, 1998, vol. 104.

[50] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2.

[51] U. Rosolia and F. Borrelli, “Learning model predictive control for iterative
tasks. A data-driven control framework,” IEEE Transactions on Automatic
Control, vol. 63, no. 7, pp. 1883–1896, 2017.

[52] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4.

[53] C. J. Ostafew, A. P. Schoellig and T. D. Barfoot, “Learning-based nonlin-
ear model predictive control to improve vision-based mobile robot path-
tracking in challenging outdoor environments,” IEEE International Confer-
ence on Robotics and Automation, pp. 4029–4036, 2014.

[54] C. D. McKinnon and A. P. Schoellig, “Learning probabilistic models for
safe predictive control in unknown environments,” in 2019 18th European
Control Conference (ECC), IEEE, 2019, pp. 2472–2479.

[55] L. Hewing, A. Liniger and M. N. Zeilinger, “Cautious NMPC with Gaussian
process dynamics for autonomous miniature race cars,” European Control
Conference, pp. 1341–1348, 2018.

[56] I. Goodfellow, Y. Bengio and A. Courtville, Deep Learning. MIT Press,
2016, pp. 307–342.

[57] A. Krizhevsky, I. Sutskever and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural information
processing systems, vol. 25, pp. 1097–1105, 2012.

144 REFERENCES

[58] A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,”
IEEE International Conference on Robotics and Automation, pp. 3223–
3230, 2015.

[59] N. Mohajerin and S. L. Waslander, “Multistep prediction of dynamic sys-
tems with recurrent neural networks,” IEEE transactions on neural networks
and learning systems, vol. 30, no. 11, pp. 3370–3383, 2019.

[60] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine and C. J. Tomlin, “Learning
quadrotor dynamics using neural network for flight control,” IEEE 55th
Conference on Decision and Control, pp. 4653–4660, 2016.

[61] D. L. Yu and J. B. Gomm, “Implementation of neural network predictive
control to a multivariable chemical reactor,” Control Engineering Practice,
vol. 11, no. 11, pp. 1315–1323, 2003.

[62] A. Wurzinger, H. Leibinger, S. Jakubek and M. Kozek, “Data driven mod-
eling and nonlinear model predictive control design for a rotary cement
kiln,” IFAC-PapersOnLine (Proc. 11th Symposium on Nonlinear Control
Systems), vol. 52, no. 16, pp. 759–764, 2019.

[63] N. Lanzetti, Y. Z. Lian, A. Cortinovis, L. Dominguez, M. Mercangoz and
C. Jones, “Recurrent neural network based MPC for process industries,”
European Control Conference, pp. 1005–1010, 2019.

[64] P. Kittisupakorn, P. Thitiyasook, M. A. Hussain and W. Daosud, “Neural net-
work based model predictive control for a steel pickling process,” Journal
of Process Control, vol. 19, no. 4, pp. 579–590, 2009.

[65] H. G. Han, X. L. Wu and J. F. Qiao, “Real-time model predictive control
using a self-organizing neural network,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 24, no. 9, pp. 1425–1436, 2013.

[66] J. M. Manzano, D. Limon, D. M. De la Peña and J. P. Calliess, “Output
feedback MPC based on smoothed projected kinky inference,” IET Control
Theory and Applications, vol. 13, no. 6, pp. 795–805, 2019.

[67] Z. Wu, A. Tran, D. Rincon and P. D. Christofides, “Machine learning-based
predictive control of nonlinear processes. Part I: Theory,” AIChE Journal,
vol. 65, no. 11, 2019.

[68] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,” IEEE Transactions on Neural
Networks, vol. 1, no. 1, pp. 4–27, 1990.

[69] G. Cybenko, “Approximation by superposition of a sigmoidal function,”
Mathmatics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989.

REFERENCES 145

[70] J. M. P. Menezes and G. A. Barreto, “Long-term time series prediction with
the NARX network: An empirical evaluation,” Neurocomputing, vol. 71,
no. 16-18, pp. 3335–3343, 2008.

[71] L. Wang, T. Chai and L. Zhai, “Neural-network-based terminal sliding-
mode control of robotic manipulators including actuator dynamics,” IEEE
Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3296–3304, 2009.

[72] T. Yang, N. Sun, H. Chen and Y. Fang, “Neural Network-Based Adaptive
Antiswing Control of an Underactuated Ship-Mounted Crane with Roll
Motions and Input Dead Zones,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 31, no. 3, pp. 901–914, 2020.

[73] D. Limon, T. Alamo, D. M. Raimondo, D. M. De La Peña, J. M. Bravo,
A. Ferramosca and E. F. Camacho, Input-to-state stability: a unifying frame-
work for robust model predictive control. Springer, 2009, vol. 384, pp. 1–
26.

[74] D. E. Seborg, T. F. Edgar and D. A. Mellichamp, Process dynamics and
control, English. New York: Wiley, 1989.

[75] M. V. Kothare, V. Balakrishnan and M. Morari, “Robust constrained model
predictive control using linear matrix inequalities,” Automatica, vol. 32,
no. 10, pp. 1361–1379, 1996.

[76] C. Böhm, R. Findeisen and F. Allgöwer, “Robust control of constrained sec-
tor bounded Lur’e systems with applications to nonlinear model predictive
control,” Dynamics of Continuous, Discrete and Impulsive Systems Series
B: Applications and Algorithms, vol. 17, no. 6, pp. 935–958, 2010.

[77] C. Böhm, S. Yu, R. Findeisen and F. Allgöwer, “Predictive control for Lure
systems subject to constraints using LMIs,” European Control Conference,
pp. 3389–3394, 2009.

[78] H. H. Nguyen, A. Savchenko, S. Yu and R. Findeisen, “Improved Robust
Predictive Control for Lur’e Systems Using Set-based Learning,” IFAC-
PapersOnLine (Proc. 6th IFAC Conference on Nonlinear Model Predictive
Control NMPC), vol. 51, no. 20, pp. 487–492, 2018.

[79] C. J. Ostafew, A. P. Schoellig and T. D. Barfoot, “Learning-based nonlin-
ear model predictive control to improve vision-based mobile robot path-
tracking in challenging outdoor environments,” Proc. IEEE International
Conference on Robotics and Automation, pp. 4029–4036, 2014.

[80] C. D. McKinnon and A. P. Schoellig, “Learn fast, forget slow: Safe pre-
dictive learning control for systems with unknown and changing dynamics
performing repetitive tasks,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 2180–2187, 2019.

146 REFERENCES

[81] L. Hewing, J. Kabzan and M. N. Zeilinger, “Cautious model predictive
control using Gaussian process regression,” IEEE Transactions on Control
Systems Technology, vol. 28, no. 6, pp. 2736–2743, 2019.

[82] R. Soloperto, M. A. Müller, S. Trimpe and F. Allgöwer, “Learning-Based
Robust Model Predictive Control with State-Dependent Uncertainty,” IFAC-
PapersOnLine (Proc. 6th IFAC Conference on Nonlinear Model Predictive
Control NMPC), vol. 51, no. 20, pp. 442–447, 2018.

[83] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,
2012.

[84] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear matrix in-
equalities in system and control theory. SIAM, 1994.

[85] M. Andersen, J. Dahl and L. Vandenberghe, “CVXOPT: Convex optim-
ization,” Astrophysics Source Code Library, [Online] Available: https:
//cvxopt.org, 2020.

[86] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforcement
learning,” Journal of Machine Learning Research, vol. 16, no. 1, pp. 1437–
1480, 2015.

[87] K. P. Wabersich and M. N. Zeilinger, “Scalable synthesis of safety cer-
tificates from data with application to learning-based control,” in 2018
European Control Conference (ECC), IEEE, 2018, pp. 1691–1697.

[88] K. P. Wabersich, L. Hewing, A. Carron and M. N. Zeilinger, “Probabilistic
model predictive safety certification for learning-based control,” IEEE
Transactions on Automatic Control, vol. 67, no. 1, pp. 176–188, 2021.

[89] A. Marco, P. Hennig, J. Bohg, S. Schaal and S. Trimpe, “Automatic LQR
tuning based on Gaussian process global optimization,” in 2016 IEEE
international conference on robotics and automation (ICRA), IEEE, 2016,
pp. 270–277.

[90] S. Bansal, R. Calandra, T. Xiao, S. Levine and C. J. Tomlin, “Goal-driven
dynamics learning via Bayesian optimization,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), IEEE, 2017, pp. 5168–5173.

[91] A. Agrawal, S. Barratt, S. Boyd and B. Stellato, “Learning convex optim-
ization control policies,” in Learning for Dynamics and Control, PMLR,
2020, pp. 361–373.

[92] M. Menner and M. N. Zeilinger, “Convex formulations and algebraic
solutions for linear quadratic inverse optimal control problems,” in 2018
European control conference (ECC), IEEE, 2018, pp. 2107–2112.

https://cvxopt.org
https://cvxopt.org

REFERENCES 147

[93] A. Aswani, Z.-J. Shen and A. Siddiq, “Inverse optimization with noisy data,”
Operations Research, vol. 66, no. 3, pp. 870–892, 2018.

[94] M. Diehl, R. Amrit and J. B. Rawlings, “A Lyapunov function for economic
optimizing model predictive control,” IEEE Transactions on Automatic
Control, vol. 56, no. 3, pp. 703–707, 2010.

[95] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings and M. Diehl, “CasADi:
A software framework for nonlinear optimization and optimal control,”
Mathematical Programming Computation, vol. 11, pp. 1–36, 2019.

[96] A. Wächter and L. T. Biegler, “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,” Math-
ematical programming, vol. 106, pp. 25–57, 2006.

[97] M. Zanon and S. Gros, “Safe reinforcement learning using robust MPC,”
IEEE Transactions on Automatic Control, vol. 66, no. 8, pp. 3638–3652,
2020.

[98] S. Gros and M. Zanon, “Bias correction in reinforcement learning via the
deterministic policy gradient method for MPC-based policies,” in 2021
American Control Conference (ACC), IEEE, 2021, pp. 2543–2548.

[99] S. Gros, M. Zanon and A. Bemporad, “Safe reinforcement learning via
projection on a safe set: How to achieve optimality?” IFAC-PapersOnLine
(Proc. 21st IFAC World Congress), vol. 53, no. 2, pp. 8076–8081, 2020.

[100] W. Cai, A. B. Kordabad, H. N. Esfahani, A. M. Lekkas and S. Gros, “MPC-
based reinforcement learning for a simplified freight mission of autonomous
surface vehicles,” in 2021 60th IEEE Conference on Decision and Control
(CDC), IEEE, 2021, pp. 2990–2995.

[101] A. B. Martinsen, A. M. Lekkas and S. Gros, “Combining system identifica-
tion with reinforcement learning-based MPC,” IFAC-PapersOnLine (Proc.
21st IFAC World Congress), vol. 53, no. 2, pp. 8130–8135, 2020.

[102] D. Angeli, R. Amrit and J. B. Rawlings, “On average performance and
stability of economic model predictive control,” IEEE Transactions on
Automatic Control, vol. 57, no. 7, pp. 1615–1626, 2012.

[103] A. B. Kordabad and S. Gros, “Verification of dissipativity and evaluation
of storage function in economic nonlinear MPC using Q-learning,” IFAC-
PapersOnLine (Proc. 7th IFAC Conference on Nonlinear Model Predictive
Control), vol. 54, no. 6, pp. 308–313, 2021.

[104] M. Zanon, S. Gros and M. Diehl, “A tracking MPC formulation that is
locally equivalent to economic mpc,” Journal of Process Control, vol. 45,
pp. 30–42, 2016.

148 REFERENCES

[105] B. Chachuat, B. Srinivasan and D. Bonvin, “Adaptation strategies for real-
time optimization,” Computers & Chemical Engineering, vol. 33, no. 10,
pp. 1557–1567, 2009.

[106] B. Amos, L. Xu and J. Z. Kolter, “Input convex neural networks,” in
International Conference on Machine Learning, PMLR, 2017, pp. 146–155.

[107] Y. Chen, Y. Shi and B. Zhang, “Optimal control via neural networks: A
convex approach,” 31st International Conference on Machine Learning,
ICML 2014, 2018.

[108] G. C. Calafiore, S. Gaubert and C. Possieri, “Log-sum-exp neural networks
and posynomial models for convex and log-log-convex data,” IEEE Trans-
actions on neural networks and learning systems, vol. 31, no. 3, pp. 827–
838, 2019.

[109] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge univer-
sity press, 2004.

[110] S. Pirkelmann, D. Angeli and L. Grüne, “Approximate computation of stor-
age functions for discrete-time systems using sum-of-squares techniques,”
IFAC-PapersOnLine (Proc. 11th IFAC Symposium on Nonlinear Control
Systems (NOLCOS)), vol. 52, no. 16, pp. 508–513, 2019.

[111] S. M. Kakade, “A natural policy gradient,” Advances in neural information
processing systems, vol. 14, pp. 1531–1538, 2001.

[112] A. B. Kordabad, H. N. Esfahani, W. Cai and S. Gros, “Quasi-Newton itera-
tion in deterministic policy gradient,” in 2022 American Control Conference
(ACC), IEEE, 2022, pp. 2124–2129.

[113] F. Chollet et al., “Keras: The python deep learning library,” Astrophys-
ics source code library, [Online] Available: https://github.com/
fchollet/keras, 2018.

[114] X. Li, L. Zhang, M. Nakaya and A. Takenaka, “Application of economic
MPC to a CSTR process,” in 2016 IEEE Advanced Information Man-
agement, Communicates, Electronic and Automation Control Conference
(IMCEC), IEEE, 2016, pp. 685–690.

[115] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 2014.

[116] J. Sola and J. Sevilla, “Importance of input data normalization for the
application of neural networks to complex industrial problems,” IEEE
Transactions on nuclear science, vol. 44, no. 3, pp. 1464–1468, 1997.

https://github.com/fchollet/keras
https://github.com/fchollet/keras

REFERENCES 149

[117] B. O’Donoghue, R. Munos, K. Kavukcuoglu and V. Mnih, “Combining
policy gradient and Q-learning,” International Conference on Learning
Representations, 2017.

[118] J. A. Boyan, “Least-squares temporal difference learning,” in International
Conference on Machine Learning, 1999, pp. 49–56.

[119] T. Furmston, G. Lever and D. Barber, “Approximate Newton methods for
policy search in Markov decision processes,” Journal of Machine Learning
Research, vol. 17, 2016.

[120] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Structural and multidisciplinary optimization,
vol. 26, no. 6, pp. 369–395, 2004.

[121] Y. Yuan, “A review of trust region algorithms for optimization,” in Inter-
national Council for Industrial and Applied Mathematics, vol. 99, 2000,
pp. 271–282.

[122] N. Cesa-Bianchi, C. Gentile, G. Lugosi and G. Neu, “Boltzmann exploration
done right,” Advances in neural information processing systems, vol. 30,
2017.

[123] J. Schulman, S. Levine, P. Abbeel, M. Jordan and P. Moritz, “Trust region
policy optimization,” in International conference on machine learning,
PMLR, 2015, pp. 1889–1897.

[124] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen,
T. Asfour, P. Abbeel and M. Andrychowicz, “Parameter space noise for
exploration,” International Conference on Learning Representations, 2018.

[125] M. Kearns and S. Singh, “Near-optimal reinforcement learning in polyno-
mial time,” Machine learning, vol. 49, pp. 209–232, 2002.

[126] P. Auer, N. Cesa-Bianchi and P. Fischer, “Finite-time analysis of the mul-
tiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–256,
2002.

[127] W. R. Thompson, “On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples,” Biometrika, vol. 25, no. 3-
4, pp. 285–294, 1933.

[128] I. Osband, B. Van Roy and Z. Wen, “Generalization and exploration via
randomized value functions,” in International Conference on Machine
Learning, PMLR, 2016, pp. 2377–2386.

[129] I. Osband, C. Blundell, A. Pritzel and B. Van Roy, “Deep exploration via
bootstrapped DQN,” Advances in neural information processing systems,
vol. 29, 2016.

150 REFERENCES

[130] M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband, A.
Graves, V. Mnih, R. Munos, D. Hassabis, O. Pietquin, C. Blundell and
S. Legg, “Noisy networks for exploration,” in International Conference on
Learning Representations, 2018.

[131] R. Y. Chen, J. Schulman, P. Abbeel and S. Sidor, “UCB and infogain
exploration via Q-ensembles,” arXiv preprint arXiv: 1706.01502, vol. 9,
2017.

[132] N. Nikolov, J. Kirschner, F. Berkenkamp and A. Krause, “Information-
directed exploration for deep reinforcement learning,” International Con-
ference on Learning Representations, 2019.

[133] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov and I. Mordatch, “Plan
online, learn offline: Efficient learning and exploration via model-based
control,” International Conference on Machine Learning, 2018.

[134] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-learning,”
Machine learning, vol. 16, no. 3, pp. 185–202, 1994.

[135] H.-M. Gutmann, “A radial basis function method for global optimization,”
Journal of global optimization, vol. 19, no. 3, pp. 201–227, 2001.

[136] A. Bemporad, “Global optimization via inverse distance weighting and ra-
dial basis functions,” Computational Optimization and Applications, vol. 77,
no. 2, pp. 571–595, 2020.

[137] D. Shepard, “A two-dimensional interpolation function for irregularly-
spaced data,” in Proceedings of the 1968 23rd ACM national conference,
1968, pp. 517–524.

[138] V. R. Joseph and L. Kang, “Regression-based inverse distance weighting
with applications to computer experiments,” Technometrics, vol. 53, no. 3,
pp. 254–265, 2011.

[139] A. Bemporad, “Global optimization via inverse distance weighting and ra-
dial basis functions,” Computational Optimization and Applications, vol. 77,
no. 2, pp. 571–595, 2020.

[140] A. Bemporad, “Active learning for regression by inverse distance weighting,”
Information Sciences, 2023.

[141] J. Schulman, P. Moritz, S. Levine, M. I. Jordan and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,” In-
ternational Conference on Learning Representations, vol. abs/1506.02438,
2015.

REFERENCES 151

[142] S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Ma-
chine learning, dynamical systems, and control. Cambridge University
Press, 2022.

[143] S. Sawant, A. S. Anand, D. Reinhardt and S. Gros, “Learning-based MPC
from big data using reinforcement learning,” arXiv preprint arXiv:2301.01667,
2023.

ISBN 978-82-326-7222-6 (printed ver.)
ISBN 978-82-326-7221-9 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:261

Katrine Seel

Learning for Model Predictive
Control

D
oc

to
ra

l t
he

si
s

D
octor al theses at N

TN
U

, 2023:261
Katrine Seel

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

	Summary
	Preface
	Contents
	Abbreviations
	Introduction
	Background and motivation
	Research Objectives
	Contributions and outline

	Preliminaries
	Model Predictive Control
	Linear Quadratic Regulator
	Stability analysis of MPC

	Markov decision process
	Reinforcement Learning
	Q-learning
	Policy gradient methods
	MPC as a function approximator

	I Combining MPC and supervised learning methods
	Learning the MPC prediction model with NNs
	Introduction
	Problem statement
	Data-based prediction model
	NARX prediction model

	NARX Neural Network
	Stabilizing data-based MPC
	Optimal control problem
	Stability

	Case study
	The continuous stirred tank reactor
	Obtaining the dataset
	Training the NARX network
	Control of the reactor
	Finding the reference equilibrium point
	Soft output constraints
	Finding the terminal cost

	Simulation results
	Conclusion

	Learning for robust control of sector-bounded systems
	Introduction
	Problem statement
	Learning the sector bound
	Learning-based robust MPC
	Simulation results
	Conclusion

	II MPC as a function approximator in RL
	Cost modifications for learning-based MPC
	Introduction
	Background and problem statement
	Economic NMPC
	Strict dissipativity
	Parameterized tracking MPC

	Convex cost parametrizations
	Stage cost
	Terminal cost
	Storage function

	NNs for cost modification
	Regular neural networks
	Convex neural networks
	Choice of activation functions

	RL for parameter updates
	Constrained RL steps

	Combining Q-learning and policy gradient methods
	Null space method

	Numerical examples
	Economic LQR
	ENMPC: Chemical reactor

	Conclusion

	Combining RL methods for learning-based MPC
	Introduction
	Background
	Q-learning
	Deterministic policy gradient method

	Combining RL methods
	Multi-objective RL

	Simulations
	Economic LQR
	Linear MPC

	Conclusion

	Variance-based exploration for learning MPC
	Introduction
	Contribution

	Background
	MPC as a function approximator in RL

	Parameter space exploration
	Value function IDW variance
	Inverse distance weighting
	p-step TD prediction of V
	Practical implementation

	Variance-based exploration
	Variance-based perturbations in parameter space
	Convergence properties

	Simulation examples
	LQR
	Cart pendulum

	Conclusion

	Conclusions and further work
	Summary and discussion
	Further work

	References

	Blank Page
	Blank Page

