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Abstract

The board game Diplomacy has received much attention in recent years as a
benchmark problem for the field of artificial intelligence. Diplomacy features a
massive combinatorial action space, a mix of cooperation and competition, nego-
tiation in natural language, a deterministic ruleset, and simultaneous action se-
lection. These traits pose a novel challenge to artificial intelligence research, and
some are shared with real-life issues like negotiation, tactics, and coordination.

Recent research in artificial intelligence for Diplomacy has utilized deep rein-
forcement learning with (generalized) policy iteration, similar to AlphaGo Zero
of Silver et al. [46]. State-of-the-art techniques have achieved success in the ori-
ginal formulation of the classic game. The success raises interest as to whether
the techniques generalize to other problems.

The long lifespan and popularity of the game has spawned a culture of creating
variants of the classic game. Game variants modify the ruleset, map topology, and
player count to create new challenges for the player. As a step towards general
applicability of state-of-the-art techniques, this thesis investigates their application
in variants of the classic game.

Inspired by state-of-the-art, an agent is implemented that at each turn per-
forms game-theoretic search over a subset of the joint action space, with payoff
given by next-state end-game score prediction from a neural network. Action sub-
sets are generated by a neural network that decomposes the action space as a
sequential selection of sub-actions. Over time, the accuracy of end-game score
prediction is improved via bootstrapped score estimates, and the quality of the
generated action subset is improved by making actions valued by search more
likely for inclusion in the future. The neural networks train from scratch with
no human data, and an action exploration procedure helps discover reasonable
actions.

Agents are trained through self-play on three non-communicative (No-Press)
Diplomacy map variants, and evaluated through skill in tournaments with baseline
opponent agents. The work shows that state-of-the-art deep reinforcement learn-
ing techniques that have seen success on the classic Diplomacy map can be ap-
plied successfully in alternative map topologies, which hints at the generality of
the techniques and acts as a step toward their application in real-life issues.
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Sammendrag

Brettspillet Diplomacy har fått mye oppmerksomhet de siste årene som en prob-
lemstilling for kunstig intelligens. Diplomacy har et enormt kombinatorisk aks-
jonsrom, en miks av samarbeid og konkurranse, forhandlinger i naturlig språk,
deterministiske regler, og simultane aksjonsvalg. Disse egenskapene ugjør en in-
teressant utfordring for forskning innen kunstig intelligens. Noen av egenskapene
er også delt med utfordringer i det virkelige liv, som forhandling, taktikk, og
samarbeid.

Nylig forskning innen kunstig intelligens for Diplomacy har benyttet dyp for-
sterkningslæring med "(generalized) policy iteration", ikke ulikt AlphaGo Zero fra
Silver et al. [46]. "State-of-the-art" teknikker har oppnådd suksess i den originale
formuleringen av det klassiske spillet. Suksessen vekker en interesse rundt hvor-
vidt teknikkene er nyttige i andre problemstillinger.

Populariten og det lange leveløpet til spillet har gitt oppspring til varianter av
det klassiske spillet. Spillvariantene endrer regler, kart-topologi, og antall spillere
for å skape nye utfordringer for spilleren. Som et steg mot generell anvendelighet
av "state-of-the-art" teknikker, utforsker denne masteroppgaven deres anvendelse
på varianter av det klassiske spillet.

Inspirert av "state-of-the-art" skapes en agent som i hver runde gjør et spill-
teoretisk søk over et subset av felles aksjonsrom med payoff definert via poeng-
estimat av spilltilstander i følgende runde gitt av et nevralnett. Subsettet av aks-
joner genereres av et nevralnett som dekomponerer aksjonsrommet som et sek-
vensielt valg av sub-aksjoner. Over tid forbedres kvaliteten i poeng-estimatene
via "bootstrapping", og kvaliteten på subsettet av aksjoner ved å gjøre aksjoner
regnet som gode av spillteoretisk søk mer sannsynlige for inkludering i subsettet
i fremtiden. Nevralnettene trenes fra grunnen av uten hjelp av menneskelig data,
og en "action exploration"-prosedyre hjelper med å oppdage fornuftige aksjoner.

Agenter trenes via self-spill på tre ikke-kommunikative (No-Press) Diplomacy
kartvarianter, og blir evaluert via ferdighet i turneringer med referanseagenter.
Arbeidet viser at "state-of-the-art" teknikker innen dyp forsterkningslæring som
har oppnådd suksess på det klassiske Diplomacy-kartet kan anvendes med gode
resultater på alternative kart-topologier. Dette resultatet hinter til den generelle
anvendeligheten av teknikkene og utgjør et steg mot deres anvendelse i utfordringer
fra det virkelige liv.
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Chapter 1

Introduction

This chapter introduces the thesis by presenting motivation and background, stat-
ing research questions, and outlining the report structure.

1.1 Motivation and Background

The field of artificial intelligence (AI) studies the creation of computationally in-
telligent agents able to act rationally in complex environments. Benchmark prob-
lems are required to empirically measure progress on this task. Games have a
long standing as a benchmark of human intelligence, and serve as an appropriate
benchmark for AI.

Each game presents a set of challenges: chess and go require long-term strategies,
backgammon requires reasoning about a stochastic environment, and poker re-
quires reasoning with imperfect information. Recent years have seen major mile-
stones in AI for games, with computational agents playing at the expert level in
chess [7], go [45], backgammon [48], Atari video games [34], StarCraft II [50],
poker [35, 5], and Stratego [39].

A game that has received much attention in recent years as a benchmark for
AI is the Diplomacy board game [37, 1, 3, 17, 23, 4, 11, 27]. Diplomacy features
a combinatorial action space much larger than even that of go, a mix of cooper-
ation and competition, negotiation in natural language, a deterministic ruleset,
and simultaneous action selection. In addition to posing a novel challenge to AI
researchers, some of these traits are shared with real-life issues like negotiation,
tactics, and coordination. Techniques successful on the Diplomacy board game
could therefore generalize onto issues with a real impact on the world.

Success in Diplomacy has been achieved using reinforcement learning (RL)
with (generalized) policy iteration, similar to AlphaGo Zero of Silver et al. [46].
Diplomacy RL systems consist of several novel components: policy networks that
model the action space as sequences of sub-actions, action exploration that en-
ables learning from scratch with no human data, game-theoretic search over sub-
sets of joint action space, and regularization of search with a human prior to
achieve human-like play.

1
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Due to the complexity of Diplomacy, game variants have been used to study
aspects of the game in isolation. Bakhtin et al. [4] achieved an expert-level agent
that plays the non-communicative No-Press game variant, and FAIR et al. [11]
incorporated a language model to create the first agent to competently play the
original variant of the game.

1.2 Goals and Research Questions

The thesis centers around the following goal and research questions.

Goal The goal of the thesis is to explore the application of state-of-the-art reinforce-
ment learning techniques in the game of Diplomacy.

Diplomacy AI research has been successful within the context of the original
game, with minor rule deviations1. However, the Diplomacy board game is only
a benchmark problem for AI research, and the ultimate goal is to apply the de-
veloped techniques more generally. As a step towards general applicability of re-
cent techniques, this thesis will investigate their application in variants of the
classic game.

Research Question 1 Can state-of-the-art techniques successfully learn to play
Diplomacy map variants?

Major publications have tailored their techniques to fit the original map of the
game. The first research question seeks to answer whether the techniques can be
used to create learning agents more generally on map variants of the game.

Research Question 2 Do state-of-the-art generalized policy iteration techniques
compare favorably to policy gradient techniques for Diplomacy on the Pure game
variant?

Early research on reinforcement learning for Diplomacy utilized the policy
gradient paradigm, where agents are trained by acting in the environment and
adjusting probabilities of taken actions directly based on received reward. State-
of-the-art techniques instead uses the (generalized) policy iteration paradigm,
where agents act by applying a search procedure, and train by approximating
the result of search. Recent work utilizing policy iteration has been shown to out-
perform policy gradient techniques on the classic Diplomacy map [1]. The second
research question seeks to reproduce this result on a variant of the game. The
openly available Actor-Critic (A2C) policy gradient agent of Hatlø [20] will be
used, which is trained on the Pure game variant.

1No-Press, Restricted-Press, FvA. See section 2.1.2.
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1.3 Thesis structure

The thesis consists of the following chapters:

1 Introduction This chapter introduces the thesis by presenting motivation and
background, stating research questions, and outlining the structure of the
document.

2 Background This chapter introduces background theory for the domain, re-
lated work, and the methodology.

3 Related Work This chapter contextualizes the thesis by presenting related work.

4 Methodology This chapter details the methodology followed to achieve the
goal and ultimately answer research questions.

5 Results and Analysis This chapter presents and analyses results gathered in
carrying out the methodology of the previous chapter.

6 Conclusion This chapter concludes the thesis by addressing research questions
in light of the analyzed results, listing thesis contributions, and outlining
suggestions for future work. The chapter opens with a thesis review, and
closes with an epilogue.





Chapter 2

Background

This chapter introduces background theory for the domain, related work, and the
methodology. The chapter covers four main topics: The Diplomacy board game,
neural networks, reinforcement learning, and game theory.

2.1 Diplomacy

Diplomacy [6, 10] is a strategic board game for 7 players first released in 1959
in which each player controls a national power in early 20th-century Europe. The
game is renowned in the board game community for its elegant ruleset, the pos-
sibility of negotiating alliances with a real impact on the game, and for ruining
friendships when those alliances inevitably are broken. From the perspective of
using the game as a benchmark for AI, the key features are a massive combinat-
orial action space, a mix of cooperation and competition, negotiation in natural
language, a deterministic ruleset, and simultaneous action selection.

The classic map is divided into regions1, some of which contain "supply cen-
ters". The goal of the game is for one player to control over half the supply centers
on the board. Regions of the board are either "land areas", "coastal areas" or "sea
areas"2. Coastal areas are regions adjacent to sea areas that are not themselves
sea areas. There are two types of units: armies move on land areas and coastal
areas, and fleets move on sea areas and coastal areas.

The game is played in game-years, starting in 1901. Each year is divided
into three seasons3: Spring, Fall and Winter. Each season consists of one or more
phases. The phases are, along with a brief description:

• Movement phase: Movement orders are issued to every unit on the board.
• Retreat phase: Retreat orders are issued to "dislodged" units.

1Regions are more commonly called "provinces". "Regions" is chosen for this thesis to simplify
notation; A variable r unambiguously refers to a region, while a variable p could be interpreted as
a "power" or "player".

2As will be discussed in section 4.1, only land areas and army units are considered in this thesis.
3The official rules divide the game into two seasons. This thesis uses the convention of the MILA

engine of Paquette et al. [37], as discussed in 4.2.

5
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• Adjustment phase: Players "build" or "disband" units.

1901 consists of the following turns in the order shown. This pattern repeats
for every game-year.

1. Spring 1901 Movement
2. Spring 1901 Retreat
3. Fall 1901 Movement
4. Fall 1901 Retreat
5. Winter 1901 Adjustment

At each turn of the game, all players secretly issue orders to their units on
the board. Orders are written according to a syntax, loosely: "<unit type> <unit
location> <unit command>". Orders are handed to an adjudicator who resolves
them simultaneously according to the rules. Abbreviations are used in place of
place names. Norway is denoted "NWY", for example.

2.1.1 Order Example

For the purpose of this thesis, a few examples of orders in the movement phase,
their meaning, and how they interact, suffices to give insight into how the game
is played. The examples also demonstrate the complexity of the game. The orders
are discussed in the order an adjudicator would consider them while resolving
their effects.

Consider the example orders in figure 2.1. Two units are trying to move into
BUL (1, 2). Provided no support, no unit overpowers another, and there would be
no movement. BUL would be left empty, which is called a "bounce" or a "standoff".

The move from BLA to BUL is, however, supported by the fleet in AEG (3).
This results in BLA moving into BUL with double the strength of CON, leaving
CON where it is and moving BLA to BUL. There is an army in BUL ordered to hold
(4) - meaning to stay put. This unit is also overpowered by the strength of the
supported move, and is "dislodged". Dislodged units are forced to retreat to an
adjacent region in a following "retreat phase".

Finally, there is a fleet in EAS moving to AEG (5). This move is unsupported,
and will not dislodge the fleet in AEG. It will, however, disturb AEG’s order to
support BLA into BUL (order 5 "cuts the support" of order 3). Left unsupported,
BLA moves into BUL with the same strength as the holding army (and the army
moving from CON), resulting in a bounce. BUL is therefore not disbanded, and
the orders result in the units existing in the same configuration next turn.

Notice that this situation would have had the same result regardless of which
power owned the units4. This demonstrates the fact that players are free to support
each other’s orders, and to disrupt their own orders - "self-bounces" are common

4There are two situations where power ownership matters: 1) A power cannot dislodge or sup-
port the dislodgement of one of its own units, and 2) A power cannot cut the support of one of
its own units [10]. If green owned EAS in figure 2.1b, A BLA - BUL would have been succesfully
supported by AEG due to 2).
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Nr. Order Explanation
1 A CON - BUL The army in Constantinople moves to Bulgaria.

2 F BLA - BUL The fleet in the Black Sea moves to Bulgaria.

3 F AEG S F BLA -
BUL

The fleet in the Aegean Sea supports the fleet in
the Black Sea moving to Bulgaria.

4 A BUL H The army in Bulgaria holds.

5 F EAS - AEG The fleet in the Eastern Mediterranean moves to
the Aegean Sea.

(a) Five example Diplomacy orders.

(b) Visualization of orders created with the MILA Diplomacy Engine (Section 4.2), an-
notated with order numbers.

Figure 2.1: Five example Diplomacy orders. The orders are presented and ex-
plained in table 2.1a and visualized in figure 2.1b.
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to ensure a region is left unoccupied.
The situation above also shows why communication is an important aspect

of the game. In the following turn, Russia might try to sway Austria to support
BLA moving to CON, with the promise to leave BUL alone. This move will be
successful provided Russia can trust Italy not to use their unit in AEG to support
CON or cut support from BUL. Russia might propose that Italy move their fleet into
SMY instead, anticipating that the Turkish fleet in EAS will repeat the same order.
This would net Russia and Italy a supply center each at the expense of Turkey, and
would avoid Austria losing one in a vulnerable position.

2.1.2 Diplomacy Game Variants

The long lifespan and popularity of the game has spawned many game variants,
some officially licensed and others fan-made. The most prominent game variant is
"No-Press" Diplomacy5, which forbids conversation between players, limiting com-
munication to what can be expressed through actions on the board6. The original
game of Diplomacy is often labelled the "Full-Press" variant to distinguish it from
"No-Press". Some Diplomacy AI research also makes use of a "Restricted-Press"
game variant, where communication is limited to a computer-friendly protocol
[27, 25]. Other relevant game variants are "France vs. Austria" (FvA), a 2-player
variant using the classic map that includes only France and Austria, and "Pure", a
7-player game variant where the map consists of 7 fully connected provinces, one
per power. The Pure game variant is further discussed in section 4.8.1.

2.2 Neural Networks

A neural network7 is a parameterized function consisting of a composition of
mathematical operations transforming an input space into an output space. A
neural network can be utilized as a function approximator by adjusting its para-
meters until it performs the desired transformation. This adjustment is performed
with the back-propagation algorithm [40], which utilizes parameter gradients
calculated with respect to some loss function expressing a measure of error given
network parameters, also called network weights.

Back-propagation can be utilized on any function that is differentiable with re-
spect to its parameters, and thus also for any composition of such functions. The
composition of functions in a neural network is called the neural network archi-
tecture. The advent of automatic differentiation tools like PyTorch [38] has em-
powered AI researchers to experiment with novel architectures in new domains.

5"No-Press" Diplomacy is also called "gunboat" Diplomacy by the Diplomacy player community.
6An article from 1995 published in a fan-made Diplomacy magazine discusses how communic-

ation can be achieved through actions in the "No-Press" game variant. http://uk.diplom.org/
pouch/Zine/W1995A/Szykman/NoPress.html, accessed 08.09.2022.

7Also called artificial neural network (ANN) to distinguish from biological neural networks.

http://uk.diplom.org/pouch/Zine/W1995A/Szykman/NoPress.html
http://uk.diplom.org/pouch/Zine/W1995A/Szykman/NoPress.html
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Therefore, a large space of possibilities exists when designing a neural network,
and architectures can be tailor-made for specific problem domains.

The following sections present key architectures and concepts relevant to this
thesis. Refer to Goodfellow et al. [16] for a detailed treatment of neural networks.

2.2.1 Computational Graphs

Neural networks are typically introduced with an analogy to biological neurons
in the human brain, accompanied by visualizations showing how neurons of the
network interconnect to produce output. For the novel network architectures ne-
cessary when modeling the Diplomacy board game, a more precise visual language
is useful. Computational graphs [16, Chapter 6.5.1] are used, as they map more
directly to the underlying mathematical expressions.

In this thesis, the nodes of computational graphs are variables and operations
on variables. Variables are denoted through variable names, and operations are
enclosed in rectangles. Edges denote the flow of information in the graph. An
edge from a variable to an operation means that the variable is utilized by the
operation, and an edge from an operation to a variable means the variable is the
result of an operation. Edges can also exist between operations, denoting that the
result of the operation is directly consumed by another, without the need for an
intermediate variable. As an example, consider the expression f (x v+ yw+ b) = o
visualized with a computational graph in figure 2.2a.

Computational graphs can be used to visualize neural networks at a desired
level of abstraction. For example, figure 2.2b shows how the operation of a simple
neuron in figure 2.2a can be encapsulated into an operation named "Neuron".
Compositions of neurons could then be shown by reusing this higher-level ab-
straction.

The variables of a computational graph can be any mathematical object. Figure
2.2a takes x and y as scalars, but the graph could be rewritten to perform the
same operation on vectors of arbitrary length. An example of this is given when
introducing the feed-forward neural network in the following section. Variables
could also be matrices, tensors, or sets.

Computational graphs inspire the notation for several figures in the meth-
odology chapter of this thesis. The notation is not strictly followed, and neural
network architecture is blended with other parts of the system for convenience.
The meaning of symbols in figures should be clear from context, but the general
idea of computational graphs lays the foundation.

2.2.2 Feed-Forward Neural Networks

The simplest neural network architecture is the feed-forward neural network.
It takes some input and transforms it through a series of operations to produce
an output. The name feed-forward stems from the fact that no cycles exist in the
composition of functions, as opposed to recurrent neural networks discussed in
the following section.
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(a) f (x v + yw+ b) = o

x
y Neuron o

(b)

Figure 2.2: Simple computational graph. Figure 2.2a shows the computational
graph for the expression f (x v + yw+ b) = o. Figure 2.2b encapsulates this ex-
pression in a named operation, parameterized by v, w and b. The operation cor-
responds to an individual neuron in a typical neural network with two inputs,
assuming f is a non-linear transformation. Neural networks can be visualized
with higher-level graphs that compose encapsulated operations.

Typically, feed-forward neural networks consist of a series of layers, each layer
consisting of a number of neurons. Each neuron performs a parameterized non-
linear transformation of the layer’s inputs. A simple neuron taking two inputs is
shown in figure 2.2b. Instead of operating on individual neurons, it is common
to view the layer as taking a vector of inputs and producing a vector of outputs
as the output of each individual neuron. The more neurons and layers are added,
the greater the network’s capacity to approximate a desired function becomes.

As an example, consider a feed-forward neural network of one layer tak-
ing as input the vector x⃗ = [x1, x2, . . . , xN ] and producing as output the vec-
tor ˆ⃗y = [ ŷ1, ŷ2, . . . , ŷM ]. The layer first performs a linear transformation of x⃗ by
matrix multiplication with a weight matrix WM×N , which parameterizes the layer.
The layer then applies a non-linear transformation through the sigmoid activation
function, denoted σ. Usually, the result of matrix multiplication would be shifted
by "bias" weights. Bias is omitted in this example for notational convenience8. The
network is called fully connected, since all inputs to the layer influence all output
neurons. The activation function and neural network is denoted as:

σ(x) =
1

1+ e−x
(2.1)

f ( x⃗ |W) = σ(W x⃗) = ˆ⃗y

= σ




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...
...

. . .
...
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
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









x1
x2
...

xN

















= ˆ⃗y
(2.2)

This neural network can be visualized with a computational graph as shown
in figure 2.3a, where "matmul" is the matrix multiplication operation. Notice that
the variables are vectors and matrices, showing a higher level of abstraction than

8Bias can be included as an additional column in the weight matrix if a dummy input of 1 is
assumed in the input vector.
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x⃗
W

matmul σ ˆ⃗y

(a) σ(W x⃗) = ˆ⃗y

x⃗ f (·|W) ˆ⃗y

(b)

Figure 2.3: Computational graph for a one-layer feed-forward neural network,
without bias for notational convenience. Figure 2.3a visualizes the operation of
equation 2.2. "matmul" is the matrix multiplication operation. Figure 2.3b encap-
sulates the operation, allowing for composition with other operations to create
more sophisticated neural network architectures.

earlier example computational graphs. The network can also be encapsulated in a
single operation as shown in 2.3b, allowing for composition with other operations
to create more sophisticated neural network architectures.

Given samples of desired output y⃗ given input x⃗ , and a loss function L(W| x⃗ , y⃗)
measuring the error of W, the weight matrix can be adjusted to bring network
output closer to the desired output. The following equation shows a simple loss
function defined as the sum of squared errors between each x⃗ i , y⃗ i (input, output)
pair9.

L(W) =
∑

i

�

f ( x⃗ i|W)− y⃗ i

�2
(2.3)

The network is trained with back-propagation by iteratively adjusting the weight
matrix W a small step in the direction that minimizes the loss function ∂ L(W)

∂W ,
starting with some initial value for W. This process is called supervised learning
because the samples act as a guide supervising the training of the network toward
the target function the network trying to approximate.

Simple fully connected feed-forward neural networks like that of equation 2.2
do not assume, nor take advantage of, structure in data. More complex network
architectures have been proposed for this purpose. The following two sections
present architectures that are particularly relevant to this thesis.

2.2.3 Graph Neural Networks (GNN) and Graph Convolutional Net-
works (GCN)

Graph neural networks are neural networks that leverage the structure and prop-
erties of graphs [41]. GNN take as input edges in the form of an adjacency mat-
rix, and a number of features per node in the graph. They produce a (possibly
different) number of output features per node. A general formula for GNN [18,
Equation 5.4] is given in equation 2.410.

h⃗(k+1)
u = UPDATE(k)

�

h⃗(k)u , AGGREGATE(k)({h⃗(k)v ,∀v ∈ N(u))}
�

�

(2.4)

9 x⃗ i here refers to the i-th vector x⃗ , not the i-th element of x⃗ . Likewise for y⃗ i .
10The convention of Hamilton [18] to enclose superscripts in parenthesis is used when presenting

GNN.
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Each node u has at every step k of the GNN a "hidden message" h⃗(k)u , a vector.
Denoting the neighborhood of u as N(u), this message is updated at step k + 1
by aggregating the messages of adjacent nodes v ∈ N(u) with some aggregation
function AGGREGATE, and performing some UPDATE function given the previous
message and the aggregated messages. h⃗(0)u is set to the initial features of each
node, and by performing iterations of equation 2.4 messages propagate through
the graph following adjacencies.

Implementations of GNN have to define UPDATE and AGGREGATE. One relev-
ant implementation of GNN is graph convolutional networks (GCN) [18, Equa-
tion 5.16]11, shown in equation 2.5 where σ is the sigmoid activation function of
equation 2.1.

h⃗(k+1)
u = σ

�

W(k)
∑

v∈N(u)∪{u}

h⃗(k)v
p

|N(u)||N(v)|

�

(2.5)

W(k) is a nh(k+1) × nh(k) weight matrix where nh(k) is the number of features of
the hidden message at step k. The weight matrix is shared for all nodes, allowing
the network to generalize over nodes of the graph.

A GCN aggregates messages of adjacent nodes with symmetric normalization
[18, Chapter 5.2.1] - messages of neighboring nodes are normalized through di-
vision with the square root of the product of degrees for the node u and neighbor
v. This normalization helps keep node messages within the same order of mag-
nitude despite variable node degrees, as opposed to simple summing. Symmetric
normalization also has the advantage of assigning less importance to messages
from very high-degree neighbors.

2.2.4 Recurrent Neural Networks (RNN) and the Long Short-Term
Memory (LSTM) Model

Recurrent neural networks are neural networks that utilize parameter shar-
ing to process sequential data and allow for variable length input [16]. Many
classes of RNN exist, and the kind utilized in this thesis take as input a variable-
length vector of values x⃗ = [ x⃗1, x⃗2, . . . , x⃗N ] and produces as output a vector
y⃗ = [ y⃗1, y⃗2, . . . , y⃗N ] of the same length.

Figure 2.4 shows an example of an RNN adapted from Goodfellow et al. [16,
Figure 10.3]. The figure is similar to the one-layer feed-forward network of figure
2.3a, except for the introduction of a "hidden state" h⃗i that influences the next
sequence step, and the addition of two more weight matrices with associated op-
erations. Starting with an initial hidden state at i = 0, the following is calculated
per sequence step i:

11The superscripts in Hamilton [18, Equation 5.16] are believed to be erroneous, and have been
fixed for inclusion in this thesis.
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h⃗i = σ(Wh⃗i−1 +U x⃗ i)

y⃗ i = Vh⃗i

(2.6)

When sequentially processing x⃗ i , the hidden state h⃗i−1 is used by the network
as a representation of x⃗1, x⃗2, . . . , x⃗ i−1, providing context for the output of y⃗ i . This
allows the network to generalize over a sequence of data, similar to how graph
convolutional networks generalize over a graph. It also allows the network to
process a variable length sequence.

RNNs are trained by producing the full sequence of outputs, measuring loss
through comparison with a ground-truth sequence, and then "unrolling" recurrent
connections as shown in figure 2.4b. With the recurrent connections unrolled,
back-propagation can be applied to propagate gradients back through the net-
work, and the weights can be adjusted using the gradients to minimize loss. Back-
propagation used in this way is called back-propagation through time.

RNNs are notoriously hard to train, as the propagation of gradients through
time can make them explosively large or vanishingly small. Gated RNN employ
paths through time with gradients that don’t explode or vanish, conditioned on
the current hidden state. These paths are gated with a parameterized function,
allowing the network to learn to retain and forget information while processing a
sequence.

The original gated RNN is the Long Short-Term Memory (LSTM) model. The
LSTM has complex internals, but is commonly available as a black-box in machine
learning frameworks. Figure 2.5 shows how a black-box implementation of LSTM
can be used as part of a larger computational graph. For a detailed treatment of
LSTM internals, refer to Goodfellow et al. [16, Chapter 10.10.1].

2.2.5 Teacher Forcing

Figure 2.4a shows an RNN with recurrent connections between hidden states,
meaning the hidden state of one sequence step is influenced by that of the previous
step. In principle, however, recurrent connections could be added anywhere, and
some RNNs benefit from connections going from the output of the network back to
the hidden state of the next step. This allows the network to produce the sequence
conditioned on network output so far, not just on inputs. Figure 2.6 shows an
example.

During the training of such a network, incorrectly predicting ˆ⃗y i affects the
prediction of ˆ⃗y i+1. This makes correctly producing a full sequence very diffi-
cult. Teacher forcing [16, Chapter 10.2.1] addresses this issue by supplying the
ground-truth y⃗ i−1 when producing ˆ⃗y i rather than the network output. Intuitively,
this training scheme trains each sequence step as if the sequence was predicted
correctly so far.
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matmul + σ h⃗i

matmulW
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h⃗i−1

matmul ˆ⃗yi

V

(a)

x⃗1

U
matmul + σ h⃗1

x⃗2
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matmul + σ h⃗2
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matmul + σ h⃗N

matmulW

matmul ˆ⃗y1
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Figure 2.4: Computational graph for an RNN that maps a sequence of input
vectors x⃗ = [ x⃗1, x⃗2, . . . , x⃗N ] to a corresponding sequence of output vectors
y⃗ = [ y⃗1, y⃗2, . . . , y⃗N ]. Figure 2.4a shows the computational graph with a feedback
connection to signify recurrence. Figure 2.4b shows the same graph unrolled for
each sequence step. Notice that weight matrices U , V , and W are shared between
sequence steps. This is called parameter sharing. Biases are omitted for notational
convenience. The RNN is adapted from Goodfellow et al. [16, Figure 10.3].

x⃗ i LSTM ˆ⃗yi

feedback
connection

Figure 2.5: Usage of black-box LSTM implementation in computational graphs.
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x⃗ i

U
matmul + σ h⃗i

matmulW

matmul ˆ⃗yi

V

feedback
connection;

ˆ⃗yi−1

Figure 2.6: Modification of figure 2.4a with recurrent connection from output
instead of the hidden state. This network can be trained with teacher forcing,
which uses the ground-truth y⃗ i−1 when producing ˆ⃗y i rather than the network
output.

2.3 Autoencoders and the Encoder-Decoder Architecture

A crucial factor in the successful training of a neural network is the representation
of the data being processed. Representation learning is an approach to neural
network training with the objective of learning a useful representation of data. The
autoencoder is the quintessential example of representation learning [16]. An
autoencoder consists of an encoder that produces a compressed representation, or
encoding, of its input, and a decoder whose job it is to reproduce the original input
from the encoding. An autoencoder is trained by feeding it data and calculating
loss based on the difference between the input and the output. A successfully
trained autoencoder learns a useful representation of its input.

The Encoder-Decoder architecture is a generalization of the idea of produ-
cing an encoding with an encoder that is then used by a decoder for higher-level
processing. The architecture is useful when a neural network has multiple out-
puts, or "heads", as the network can be modeled in terms of a single encoder and
several decoders.

2.3.1 Embedding

An embedding transforms a categorical value into a real-valued vector repres-
entation [16, Figure 14.8]. The idea is that categorical values that are similar in
meaning should be represented as points in a high-dimensional space that are
close together, and conversely for values that are different in meaning. Embed-
ding a categorical variable provides more context to downstream processing, and
allows for generalization.

The embedding of a categorical variable x into M -dimensional space is de-
noted e(x) ∈ RM . Embeddings are easily represented as matrices: Embeddings of
N categorical variables is denoted RN×M . Each row corresponds to the embedding
of a variable, and e(x) is therefore just a lookup into this matrix.

Mathematically, the lookup of an embedding for a categorical value can be
performed by multiplying the matrix by a simple "one-hot-encoding" (OHE) of
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the value, provided each categorical value is assigned a unique index. Embed-
dings can be included as components of neural networks, as back-propagation
can propagate back through the OHE multiplication to calculate loss with respect
to the embedding matrix.

2.3.2 KL-Divergence as a Loss Function

Kullback-Leibler Divergence (KL-Divergence) is a measure of the difference between
two probability distributions [16, Equation 3.50]. The KL-Divergence between two
probability distributions P and Q is defined has:

DKL(P||Q) = Ex∼P

�

log
P(x)
Q(x)

�

= Ex∼P[log P(x)− log Q(x)] (2.7)

KL-Divergence is non-negative, and for discrete probability distributions, DKL(P||Q)
is 0 if and only if P and Q are the same distribution. All probability distributions
are discrete in the context of this thesis. KL-Divergence is asymmetric, DKL(P||Q) ̸=
DKL(Q||P), and is thus not a true distance measure. Still, it serves as a useful loss
function when the output and target of a neural network are probability distribu-
tions.

2.4 Reinforcement learning (RL)

According to Sutton and Barto [47]: "Reinforcement learning is learning what to
do—how to map situations [states] to actions—so as to maximize a numerical
reward signal." The two most important characteristics of RL [47] are trial-and-
error search and delayed reward; The learner must discover optimal actions by
interaction with the environment, and the reward for performing a given action
is not only dependant on the following situation, but all subsequent situations.

The following sections provide a brief introduction RL and techniques relevant
to this thesis. Refer to Sutton and Barto [47] for a detailed treatment.

2.4.1 Core RL concepts

Reinforcement learning uses the formalism of states, actions and rewards. The
agent perceives its environment through a state St

12, chooses an action At , and
receives a reward Rt+1 and a resulting new state St+1 from the environment. This
is illustrated in figure 2.7.

A policy function π maps states to actions. The learner seeks to find an op-
timal policy function that maps from states to actions that maximize expected
future discounted total reward, also called return Gt , defined in (2.8). γ is a dis-
counting factor that introduces a preference for early reward over later reward.

12States and actions are capitalized in this introduction to RL following Sutton and Barto [47].
Throughout the rest of the thesis, lowercase variable names are used to avoid confusion with set
notation.
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S0→ A0→ R1→ S1→ A1→ ·· · → RN → SN

Figure 2.7: State, action, reward formalism of reinforcement learning

Gt =
T
∑

k=t+1

γk−t−1Rk (2.8)

A value function vπ(s)maps states to expected return when following π start-
ing from state s:

vπ(s) = Eπ[Gt |St = s] = Eπ
� T
∑

k=0

γkRt+k+1

�

�

�

�

St = s
�

(2.9)

An optimal policy π(s) is one whose value function v∗(s) is maximal in all
states:

v∗(s) =max
π

vπ(s),∀s ∈ S (2.10)

We sometimes want to express the value of a state-action pair rather than the
value of a state. In this case, we use Qπ(s, a), defined as the expected return of
taking action a in state s, and following policy π thereafter.

2.4.2 Learning in RL

The task of the learner is to find (an approximation of) optimal behavior in an
environment. This is typically done by starting from some initial policy function,
value function, or both, and iteratively improving toward optimal behavior. For
environments of low complexity, tabular Dynamic Programming techniques can
be used to find the functions. In practice, however, environments are typically
complex and require the use of function approximators (eg. neural networks),
algorithms that learn through interaction with the environment (eg. Sarsa, Q-
learning), and bootstrapping the functions from some prior.

A learner interacts with the environment while learning by choosing actions
from some policy π. If this policy is also the target for learning we call it on-policy
learning. The learner can instead choose to use experience to train some separate
target policy. We call this off-policy learning.

When an on-policy learner is simultaneously exploring the environment and
optimizing its policy function, a crucial balance must be struck between explora-
tion and exploitation: exploiting its experience prematurely will cause it to stop
exploring its environment, while failing to exploit its knowledge will lead to sub-
optimal behavior. An example of a purely exploitative learner is one whose policy
function for all states greedily chooses the action leading to the successor state
with maximal value according to its (possibly incorrect) current understanding of
its environment. An example of a purely explorative learner is one whose policy
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function for all states samples an action uniformly from the set of all actions. A
common compromise is the ε-greedy learner, which with probability ε samples
a random action, and with probability 1− ε greedily chooses the best action. In
a stationary environment, ε can be discounted over time to gradually make the
learner exploitative.

2.4.3 Policy Iteration (PI), Value Iteration (VI) and Generalized Policy
Iteration (GPI)

The "policy improvement theorem" states that given any pair of deterministic
policies π and π′ where the following holds:

Qπ(s,π
′(s))≥ vπ(s) for all s ∈ S (2.11)

Then π′ must be as good as, or better than, π. [47] A technique that takes
advantage of this fact is policy iteration, which alternatingly performs policy
evaluation to find the value function of a policy, and policy improvement to
construct a new policy by greedily choosing actions based on the value function.
value iteration is an alternative technique that directly optimizes a value func-
tion by performing a single step of policy evaluation within each step of policy
improvement. Strictly speaking, policy iteration and value iteration are both Dy-
namic Programming techniques, meaning we need access to a perfect model of
the environment, and perform updates to all states simultaneously. However, the
terms are used loosely in RL research. policy iteration is often used to refer to
techniques that apply some form of policy improvement step to iteratively learn
better policies, and value iteration is often used to refer to techniques that directly
update a value function based next-state values with respect to a policy found by
policy improvement.

Generalized policy iteration is a name given to the general concept of sim-
ultaneously making the value function consistent with the policy function (policy
evaluation), and making the policy greedy with respect to the value function
(policy improvement). PI and VI as presented above are instances of GPI. Gener-
alized policy iteration allows for techniques that incorporate decision-time search
over available actions [47, Chapter 8.8] as a powerful policy improvement op-
erator [46], based on the policy and value functions. This is the foundation for
several recent successes in AI for games [45, 5, 4]. The term generalized policy
iteration is used in this thesis to mean any method that utilizes a policy improve-
ment operator to improve either the policy function, the value function, or both.

2.4.4 Approximation and Deep Reinforcement Learning

Neural networks can be used as function approximators for policy and value func-
tions. Reinforcement learning utilizing neural networks is called deep reinforce-
ment learning, influenced by the term "deep learning" used to describe particu-
larly deep neural networks. Networks used in this way are referred to as policy
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networks and value networks. Using function approximators allows the agent to
learn compressed representations that generalize across states and actions.

Neural networks can be iteratively trained through supervised learning to imit-
ate the result of policy evaluation (value network) and policy improvement (policy
network). A policy network can also be trained through policy gradient methods,
as described in the following section.

2.4.5 Policy Gradient Methods and Actor-Critic (A2C)

Generalized policy iteration improves a policy by imitating an improved policy
found through policy improvement. When the policy function is modeled as a
neural network, policy gradient methods exist as an alternative that instead dir-
ectly optimizes the policy with respect to some performance measure. A popular
class of policy gradient methods is Actor-Critic [33], where an "actor" uses a policy
network to choose actions given states, and a "critic" is responsible for "criticizing"
the action choice of the actor using a value network.

2.4.6 Temporal-Difference Learning and Sarsa

Temporal-Difference (TD) learning is a category of RL methods that performs
updates to a value function to minimize TD error δt . Given a state St , successor
state St+1 and reward Rt+1, TD error measures the difference between a previous
estimation of the value of a state, and a new estimate calculated by combining the
received reward and the estimated value of the successor state13:

δt = Rt+1 + γV (St+1)− V (St) (2.12)

A TD method can use this value to approximate the true value function cor-
responding to the followed policy, eg:

V (St)← V (St) +αδt (2.13)

Sarsa is an example on-policy TD method that simultaneously learns a state-
value function and optimizes a policy function (derived from Q). At each step t
Sarsa chooses an action At using Q. Higher-valued actions are preferred, but there
must be a non-zero probability of choosing a lower-valued action for the method
to converge to optimal behavior. Sarsa then receives a reward Rt+1 and a successor
state St+1, and selects an action At+1 using the same approach. It now has access
to St , At , Rt+1, St+1, At+1, and uses this to perform an update to Q:

Q(St , At)←Q(St , At) +α
�

Rt+1 + γQ(St+1, At+1)−Q(St , At)
�

(2.14)

13A formulation also exists for Q functions.
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2.4.7 Q-learning

Q-learning can be seen as an off-policy variant of Sarsa, where the update step is
modified to directly optimize Q independent of the policy being followed:

Q(St , At)←Q(St , At) +α
�

Rt+1 + γmax
a

Q(St+1, a)−Q(St , At)
�

(2.15)

The crucial difference to Sarsa is that TD error is calculated with respect to
the best action from t +1, rather than the one chosen while stepping through the
environment.

2.5 Game Theory

According to Shoham and Leyton-Brown [44]: "Game theory is the mathematical
study of interaction among independent, self-interested agents." It provides a use-
ful formalism when modeling games for the purpose of creating computational
agents. This section introduces relevant terminology and techniques. To avoid
confusion with reinforcement learning and simplify the reading of later chapters,
some unconventional choices are made with respect to terminology. These choices
are pointed out in footnotes, to allow the reader to relate the text to other work
utilizing game theory. Refer to Shoham and Leyton-Brown [44] for a detailed
treatment.

Game theory uses the formalism of actions, strategies, and payoff. The field
consists of many forms, but only the normal-form game is directly relevant to this
thesis. In a normal-form game with N players, each player p14 chooses an action
ap ∈ Ap according to their strategyσp

15, where Ap is the set of all available actions
for player p, and σp defines a probability distribution over available actions from
which an action can be sampled16. Players then receive payoff up(a⃗) based on
the joint action17 a⃗ = [a1, a2, . . . , aN ]; A vector of actions for each player. The
combination of all players’ individual strategies is called a joint strategy18 σ. We
also define the expected payoff for a joint strategy E

�

up(σ)
�

as the expected
payoff for player p when the actions are chosen according to the joint strategy σ:

E
�

up(σ)
�

=
∑

a⃗

σ(a⃗)up(a⃗) (2.16)

Given a joint strategyσ, the best response (BR) strategyσ∗p for player p is any
strategy that achieves maximal expected payoff [3]. Denoting the joint strategy
defined for all players except p as σ−p, the best response strategy is defined as:

14Typically i.
15Typically π. σ is usually reserved for equilibrium strategies.
16Strategies can also be deterministic, but they are always probabilistic (mixed) for the purpose

of modeling Diplomacy.
17Typically "action profile".
18Typically "strategy profile".
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σ∗p = argmax
σp

E
�

up(σp,σ−p)
�

(2.17)

The exploitability of a joint strategy is measured as the maximal increase in
expected payoff any one player can gain by playing their best response. A joint
strategy σ is a Nash Equilibrium if each players’ strategy σp is a best response
to σ−p, or put in other words: if the maximal exploitability is 0. A joint strategy
is ε-NE if the maximum gain any player can get by unilaterally deviating is ε.

Normal-form games are constrained to modeling situations where players choose
a single joint action and then immediately receive payoff. Other forms allow se-
quential selection of actions and inclusion of information gained throughout the
game. The normal-form game can, however, be extended to a wider array of games
with the concept of stage games. Within a more complex game, a stage game
is a normal-form game defined by applying constraints to the larger game and
introducing a substitute payoff function. Usefully defined stage games can help
solve more complex games. As an example, consider a group of stock traders in a
stock market. A stage game could be formed by defining a subset of stock options
available for purchase for each trader (player), and defining payoff as the profit
gained from a purchase after a few weeks. Repeatedly solving this stage game
well achieves a profitable investment portfolio, and is simpler than applying a
more expressive form of game theory. This idea applies in complex board games
as well.

2.5.1 Regret Matching (RM)

Regret Matching [36, 17, 3] is an algorithm to approximate a Nash Equilibrium
in two-player zero-sum (2p0s) normal-form games. A zero-sum game is a game
where the sum of player payoffs is 0. RM is only guaranteed to converge to NE in
2p0s games, and converges to a "coarse correlated equilibrium" in general [19].
Recent successes in non-2p0s games, including Diplomacy, have demonstrated
that it nevertheless produces competitive policies with low exploitability [3]. In
line with related work, this thesis makes the working assumption that RM pro-
duces an approximation of NE in general, and leaves the study of the nuances of
RM to other research.

The sampled form of RM proposed by Gray et al. [17] is described. It works by
maintaining cumulative "regret" per action, intuitively understood as how much
the agent has regretted not taking the action in the past. The cumulative regret
of action ap at iteration t for player p is denoted Regrett

p(ap). On each iteration
t, the algorithm constructs a joint strategy σt

p for player p which prefers actions
with higher positive regret. If some action has positive regret, σt

p(ap) is assigned
a probability according to the action’s regret relative to total regret. Otherwise,
the probability is uniform.
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σt
p(ap) =







max{0,Regrett
p(ap)}

∑

a′p∈Ap
max{0,Regrett

p(a′p)}
if
∑

a′p∈Ap
max{0,Regrett

p(a
′
p)}> 0

1
|Ap|

otherwise
(2.18)

Then, an action a∗p is sampled from σt
p for each player p, and the regret of all

actions ap is increased by the regret of "not having played" that action given that
other players play according to a∗−p: The difference between the payoff of playing
that action and the expected payoff when playing by σ∗p.

Regrett+1
p (ap) = Regrett

p(ap) + up(ap, a∗−p)−
∑

a′p∈Ap

σt
p(a
′
p)up(a

′
p, a∗−p), (2.19)

Over many iterations T the average strategy σp(at) =
∑

t σ
t
p(ap)

T is guaranteed
to converge to a coarse correlated equilibrium in general [17, 19], and is assumed
to converge to NE in this thesis.

Regret Matching is one implementation of regret minimization, the concept
of minimizing regrets over time to arrive at an equilibrium. The Hedge algorithm
[30, 15] is an example of another Regret Minimization implementation.

2.5.2 Double Oracle (DO)

Double Oracle [32, 3] is an algorithm for finding NE in normal-form games with
large action spaces. An "oracle" in Double Oracle is an externally supplied best
response operator. The name Double Oracle stems from the application of the
algorithm to two-player normal-form games, where an oracle (BR operator) is
assumed for both players (as opposed to one player - Single Oracle). The algorithm
generalizes to N -player games, where an oracle is assumed for every player.

DO leverages the fact that iteratively computing a best response is compu-
tationally cheaper than computing an NE. It maintains a candidate action space
At

p ⊆ Ap as a subset of the full action space. On each iteration t, an NE σt
p is

computed for the matrix game restricted to the candidate actions At
p. Then, each

player p finds the best response to σt
p among actions in the full action space

at+1
p ∈ Ap. This best response is added to the candidate actions for the next itera-

tion: At+1
p = At

p

⋃

{at+1
p }. The algorithm terminates once the maximal exploitation

of the NE goes below a set threshold.
DO works well for games where a small subset of the action space has support

in NE. In this case, DO can find an approximation of the NE quicker than a calcu-
lation on the full matrix game since it will only have to perform NE calculations
on a subset of the full action space.

Implementations of DO must choose a method for calculating NE and BR. RM
and Hedge are alternatives for calculating NE.



Chapter 2: Background 23

2.5.3 Nash Q-Learning

Nash Q-learning [22, 3] is an extension of the reinforcement learning algorithm
Q-learning (section 2.15) adapted to work in multi-agent environments, based on
the framework of stochastic games [43]. In Nash Q-learning, the learned Q func-
tion is defined over joint actions, rather than over individual actions: Q(s, a1, a2 . . . , aN ) =
Q(s, a⃗), where N is the number of players. Q(s, a⃗) approximates the expected re-
turn when all agents follow a Nash Equilibrium from st+1. Its update rule is sim-
ilar to that of Q-learning, but replaces the max operation with the expected payoff
when playing by a NE calculated for a stage game rooted in st+1 and payoffs given
by Q(st+1, a⃗t+1):

Q(st , a⃗t)←Q(s, a⃗t) +α
�

Rt + γ
∑

a⃗t+1

σ(a⃗t+1)Q(st+1, a⃗t+1

�

�

(2.20)

Implementations of Nash Q-learning must choose a method for calculating
NE in the stage game. Hu and Wellman [22] use the Lemke-Howson method [8],
which only works for two-player games. With large action spaces, exact calcula-
tion of NE is intractable. An approximation of NE is useful in these scenarios, for
example RM (section 2.5.1).

2.6 Summary of Background

This chapter has introduced relevant background theory. This section summarizes
key concepts and highlights connections between the covered topics.

The Diplomacy board game was introduced. In Diplomacy, players control na-
tional powers in 20th-century Europe, aiming to gain control of a majority of
the map through tactics and negotiation. Players take actions by simultaneously
issuing orders to units on the board, and the orders allow for international co-
operation. The original formulation of the game includes negotiation in natural
language, but a culture of creating "game variants" exists, the most common of
which is non-communicative Diplomacy, or No-Press Diplomacy. The original for-
mulation is often labeled Full-Press to distinguish it from No-Press. Other notable
variants are Restricted-Press, FvA, and Pure.

Neural networks were introduced as compositions of parameterized differen-
tiable functions. They can be trained to perform a desired transformation from an
input space to an output space by adjusting parameters (or "weights") with respect
to a loss function using back-propagation. A loss function expresses a measure of
distance to optimal parameters and is defined by comparison between network
output given some input, and the ground-truth desired output for that input. KL-
Divergence can be used as a loss function when the output of the network is a
probability distribution.

The concept of neural network architecture as the composition of a neural
network was introduced. The simplest architecture is the feed-forward neural net-
work which consists of a series of layers, each layer performing a linear transform-
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ation of its input with a weight matrix, and then applying a non-linear activation
function to produce output. More complex architectures that take advantage of
structure in data were also covered. A graph neural network takes advantage of
the structure and properties of graphs. Graph convolutional networks were intro-
duced as an instance of GNN that normalize node updates with respect to relative
neighborhood sizes. A recurrent neural network generalizes over sequences of
data and allow for variable-length input. RNN include recurrent connections so
that the processing of a sequence step can influence future sequence steps. If recur-
rent connections exist between network output and the internals of the RNN (hid-
den state), successfully producing a correct sequence is difficult. Teacher forcing
addresses this by supplying ground-truth output to future sequence steps, rather
than network output. RNN are notoriously hard to train, and "gated" RNN exist
that learn to retain and forget information while processing a sequence. LSTM is
the original gated RNN. It is widely used, and available as a black-box component.

A visual language based on the concept of computational graphs was intro-
duced to visualize and reason with neural network architecture.

Embeddings were introduced as a way to achieve a real-valued vector rep-
resentation of categorical variables. Embeddings can be used as components of
neural networks.

Reinforcement learning was introduced. In reinforcement learning, an agent
(learner) perceives its environment through states, acts by choosing an action
from a policy function, and receives a reward. The agent seeks to find an optimal
policy function that maps from states to actions that maximize expected future
discounted total reward, also called return. The value function of a policy function
can be defined that maps from states to return when following the policy function
from that state. The agent learns by starting from an initial policy function, value
function, or both, and iteratively improving them towards optimal behavior.

Generalized policy iteration was introduced as the general concept of simul-
taneously making the value function consistent with the policy function (policy
evaluation), and making the policy greedy with respect to the value function
(policy improvement). Policy iteration and value iteration were introduced as in-
stances of GPI. The term GPI is used in this thesis to refer to any method that
utilizes a policy improvement operator to improve either the policy function, the
value function, or both.

Function approximators are useful in RL to generalize across states and ac-
tions, and neural networks can be employed as policy networks and value net-
works. This is called deep reinforcement learning.

Policy gradient methods were introduced as an alternative to GPI when using
a neural network as a policy function. Where GPI trains the policy network by
imitating the result of a policy improvement operator, policy gradient methods
optimize network parameters with respect to some performance measure. Actor-
Critic (A2C) was introduced as a popular class of policy gradient methods.

Game theory was introduced as a useful formalism when modeling games
for the purpose of creating computational agents. The anatomy of a normal-form
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game was presented, introducing (joint) actions, (joint) strategies, and payoff.
Players take joint actions following a joint strategy, and receive payoff. The expec-
ted payoff of a joint strategy is defined as the expected payoff when all players
choose actions according to the joint strategy.

Best response was presented as the player strategy that achieves maximal ex-
pected payoff against some joint strategy, and the exploitability of a joint strategy
was defined as the maximal increase one player can gain in payoff by playing
their best response to that joint strategy. Nash Equilibrium was presented as a
joint strategy that no player is able to exploit.

The concept of a stage game was introduced as a way of modeling complex
games in normal-form by limiting the action space and choosing a substitute pay-
off function.

Some key game-theoretic techniques were introduced. Regret Matching is a
regret minimization algorithm that is guaranteed to converge to a Nash Equilib-
rium in two-player zero-sum games. The algorithm has also been shown to pro-
duce competitive policies in the general case. Double Oracle is an algorithm for
finding Nash Equilibrium in normal-form games with large action spaces. It it-
eratively expands a set of candidate actions by looking for actions that are best
responses to the Nash Equilibrium over the candidate actions. Regret Matching
can be used in DO to create NE.

Nash Q-learning was introduced as a game-theoretic reinforcement learning
technique based on joint action return when all players play by Nash Equilib-
rium. It is an extension of Q-learning, which itself is a variation on Sarsa, which is
an instance of Temporal-Difference learning. These antecedent techniques were
presented to contextualize Nash Q-learning.





Chapter 3

Related Work

This chapter contextualizes the thesis by presenting related work. The chapter
consists of an outline of the literature review process, and a presentation of related
work in three parts: First, a brief summary of early work on Diplomacy AI is given.
Then follows a brief summary of related work in RL for other board games. Finally,
the chapter concludes with a detailed presentation of major papers on RL for
Diplomacy leading up to state-of-the-art.

3.1 Literature Review Process

Literature review was conducted in the preparatory phase of the thesis. The over-
arching goals of the process were to:

1. Establish a good understanding of the current state-of-the-art in RL for Dip-
lomacy.

2. Trail development back to the earliest work on RL for Diplomacy.
3. Obtain an overview of early work on AI for Diplomacy, prior to the applica-

tion of RL.
4. Obtain an overview of the context within which the techniques used in RL

for Diplomacy exist (other games, alternative approaches, etc.).

An adaptation of the "Snowballing" [26] method was used. "Snowballing" it-
eratively grows a base of related work by following citations backwards (papers
cited in base of papers) and forwards (papers citing work in the base). The search
engines Google, Google Scholar and Semantic Scholar were used during forwards
snowballing. The initial base of related work consisted of the seed paper "Learn-
ing to Play No-Press Diplomacy with Best Response Policy Iteration" by Anthony
et al. [1] (Section 3.4.2). When considering a discovered paper for inclusion into
the base of related work, it was evaluated with respect to the literature review
process goals.

27
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3.2 Early Work on AI for Diplomacy

Research on Diplomacy prior to 2019 focused primarily on rule-based agents
without learning. The earliest published work is Diplomat [28, 29] from the 1980s,
which uses symbolic reasoning to evaluate and make proposals in a computer-
friendly negotiation language. Other notable rule-based agents are DipBlue [12],
D-Brane [24] and Albert [9]. Albert was the state-of-the-art in no-press Diplomacy
until Paquette et al. [37] introduced DipNet in 2019.

Much of the early work on Diplomacy has been done in the context of the
field of Automated Negotiation. The annual competition ANAC - Automated Ne-
gotiating Agents Competition - featured a Diplomacy League in 2017, 2018 and
2019. [2] The competition set in place strict requirements to ensure a winner
truly performs meaningful negotiation, and does so better than its competitors.
To date, no agent has been able to beat this challenge. The Diplomacy League was
discontinued in 2019.

One early work that incorporates a form of RL is Shapiro et al. [42] from
2003. They utilize Temporal-Difference learning and self-play to fit the weights of
a "Pattern-Weights" model to play the No-Press variant of the game.

3.3 Reinforcement Learning for Other Board Games

Three games stood out as clear inspirations behind reinforcement learning for
Diplomacy while conducting the literature review. These are presented briefly to
provide a broader context of work in RL for Diplomacy.

Silver et al. [46] propose AlphaGo Zero, which employs policy iteration with
Monte Carlo tree search (MCTS) as the policy improvement operator in the board
game of go. MCTS performs a heuristic search over available actions using a policy
function to narrow down the search and a value function to evaluate non-terminal
states. The policy and value functions are modeled as a neural network using the
Encoder-Decoder1 architecture. The policy head is trained to imitate the result of
MCTS, and the value head is trained to predict end-game scores. AlphaGo Zero
trains with self-play from scratch with no human data, and is the first agent to
reach superhuman skill in go without human examples or guidance.

Vinyals et al. [50] propose AlphaStar, the first agent to achieve Grandmaster
level in StarCraft II. The API of StarCraft II represents actions as functions taking
arguments, and AlphaStar decomposes the action space into a sequential choice
of a function name followed by a sequence of arguments.

Brown and Sandholm [5] propose Pluribus, the first agent to reach superhu-
man skill in six-player no-limit Texas hold’em poker. Pluribus trains with self-play
from scratch with no human data, and utilizes game-theoretic search through Re-
gret Matching2.

1The term Encoder-Decoder is not used by them. The categorization was chosen to relate the
work to this thesis.

2Counterfactual Regret Minimization is used, which according to Neller and Lanctot [36] in turn



Chapter 3: Related Work 29

3.4 Reinforcement Learning for Diplomacy

This section presents major Diplomacy RL papers in order of publication, with text
on later papers often building upon the presentation of earlier papers. A summary
is given to conclude the section, including an overview of the presented papers in
table 3.1.

3.4.1 No Press Diplomacy: Modeling Multi-Agent Gameplay

Paquette et al. [37] propose DipNet, a neural network-based agent capable of beat-
ing state-of-the-art rule-based agents in the no-press variant. DipNet is first trained
on human data with supervised learning to approximate human play, then further
trained with reinforcement learning through self-play.

The model architecture consists of graph convolutional networks3 (GCN) that
"encode" the board state, and LSTM that "decode" the encoding into orders for
each orderable unit. GCN allow the network to capture the complex board state
of Diplomacy as a graph, with nodes corresponding to regions and edges corres-
ponding to adjacencies. Use of a sequential decoding of orders reduces the output
dimension of the network, while still allowing coordination between units. Rather
than producing action probabilities over the whole action space, the network se-
quentially produces a distribution over all unit orders for each orderable unit.
After illegal orders are masked out, this distribution is used to sample orders. Unit
orders are sampled such that the sampled order oi−1 is fed into the network when
producing order oi . As clarified by Bakhtin et al. [3], this sequential sampling
results in action probabilities:

π(a) =
t
∏

i=1

π(oi|o0, . . . , oi−1) (3.1)

There is no natural sequential ordering of locations when decoding orders,
and Paquette et al. [37] propose to use a "topological sorting" of unit locations,
such that adjacent units are likely to be ordered in sequence.

The RL training of DipNet is done with A2C, rewarded both based on supply
centers gained or lost from turn to turn, and the final score at the end of the game.
Learning is bootstrapped from the supervised model. The performance between
agents trained with SL and RL is not significant. They observe that the RL agent
issues more support orders, but that less of these are successful, suggesting that
RL agents are less effective at cooperation.

uses Regret Matching.
3Anthony et al. [1, Appendix C] points out that the GNN of DipNet is not truly convolutional.
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3.4.2 Learning to Play No-Press Diplomacy with Best Response Policy
Iteration

Anthony et al. [1] propose a Sampled Best Response (SBR) operator and a fam-
ily of policy iteration algorithms tailored to using approximate BRs such as SBR,
referred to collectively as Best Response Policy Iteration (BRPI) algorithms. They
apply BRPI to no-press Diplomacy, and improve upon previous state-of-the-art.

SBR makes computational tradeoffs to become a tractable approximation of a
true best response (BR). For a given state, they consider the stage game formed
by each player taking one of a subset of actions sampled from a policy network,
and receiving a payoff via the value of the resulting state according to a value
network.

The proposed family of BRPI algorithms employ SBR as a policy improvement
operator for policy iteration in two main ways: (1) Iterated Best Response (IBR)
calculates a policy improvement with respect to the policy of the previous iter-
ation. (2) Fictitious Play Policy Iteration (FPPI) calculates a policy improvement
with respect to the empirical distribution over historical opponent strategies.

To train their model with a given BRPI variant, they first train a policy and
value network to imitate human data like Paquette et al. [37]. They then iteratively
generate a dataset with actions chosen by the improvement operator, and train the
policy and value network to imitate this dataset. The policy is trained to imitate
the result of the policy improvement operator and the value network is trained
to predict end-game results, similar to the training of AlphaGo Zero Silver et al.
[46].

Their neural architecture builds on the work of Paquette et al. [37], but makes
several improvements. Most notably, they replace the LSTM decoder with a "Re-
lational Order Decoder" - a stack of 4 GNNs with residual connections. Their su-
pervised learning prediction accuracy improves upon state-of-the-art.

They cite the A2C-agent of Paquette et al. [37] as an unsuccessful application
of RL to Diplomacy, since it did not improve upon their SL-agent when measured
with the Trueskill rating system [21]. All of their BRPI algorithms outperform
DipNet, the previous state-of-the-art. They consider this as the first successful ap-
plication of RL to Diplomacy.

To conclude, they postulate that successful application of RL is a prerequis-
ite for investigating the complex mixed motives and many-player aspects of Dip-
lomacy. They list five questions for future work. Of special note is "(1) What is
needed to achieve human-level No-Press Diplomacy AI?" and "(2) Can we build
agents that reason about the incentives of others [. . . ] by applying opponent shap-
ing?" (1) has later been achieved by Gray et al. [17], and (2) was investigated by
Hatlø [20], albeit without BRPI.
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3.4.3 Human-Level Performance in No-Press Diplomacy via Equilib-
rium Search

Gray et al. [17] propose SearchBot, an agent that augments a policy trained with
imitation learning on human data with Regret Matching at inference time. A
sampled form of Regret Matching is used at each state to calculate an equilib-
rium in the stage game formed by each player taking one action and receiving a
payoff based on a limited rollout from the resulting state using the current policy
and value network. This one-ply lookahead search is reminiscent of the SBR op-
erator proposed by Anthony et al. [1] with two key differences: (1) SearchBot
performs rollouts, where SBR immediately queries its value network, and (2)
SearchBot approximates an equilibrium, where SBR approximates a BR. A BR
seeks to maximally exploit a fixed joint strategy, whereas an equilibrium seeks
to find a joint strategy that minimizes exploitability. Gray et al. [17] empirically
show that SearchBot achieves low exploitability compared with previous state-of-
the-art, and that human experts were unable to exploit the agent during repeated
play.

After calculating an approximate equilibrium with Regret Matching, SearchBot
plays its part in the equilibrium. Notice that the equilibrium policy is not used for
RL, as the search procedure is computationally expensive.

The architecture of SearchBot is built on that of Paquette et al. [37]. They
leverage the improvements by Anthony et al. [1], except for the Relational Or-
der Decoder, which was considered too computationally expensive relative to the
improvement in performance. They propose a Featurized Order Decoder. Their
supervised learning prediction accuracy improves upon state-of-the-art.

The approach is inspired by successes from applying Regret Matching in Poker
[35, 5], another many-player game popular for AI research. SearchBot is the first
successful application of RM to a complex game involving cooperation, and sug-
gests that its use is not limited to purely adversarial games.

SearchBot performed better than the previous state-of-the-art of Diplomacy AI.
Additionally, SearchBot was evaluated against human player on a popular online
Diplomacy platform. It ranked in the top 2% of human players, thereby becoming
the first Diplomacy agent to achieve human-level performance.

They propose three directions for future research on the topic of search: (1)
n-ply search with Counterfactual Regret Minimization [51], (2) Leveraging RM in
RL, and (3) Leveraging RM in Diplomacy variants with explicit communication.
(2) was later achieved by Bakhtin et al. [3], and (3) is achieved by FAIR et al. [11].

3.4.4 No-Press Diplomacy from Scratch

Bakhtin et al. [3] propose an algorithm for action exploration and equilibrium
approximation in games with combinatorial action spaces. Their focus is the cre-
ation of an agent which can learn Diplomacy from scratch without hand-crafted
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reward signals.4

The basis for their approach is the proposed algorithm Deep Nash Value Itera-
tion (DNVI), a variant of Nash Q-learning (section 2.5.3). DNVI transforms Nash
Q-learning from using state-action values Q(s, a⃗) to using state values V (s). This is
an advantage since state-action networks are hard to express for games with large
action spaces. They base their transformation on the assumption that the reward
signal of going from state s to state s′ through (joint) action a⃗ is independent of
s and a⃗. Since they make it a goal to avoid handcrafted reward signals, this as-
sumption holds: The only state that matters in Diplomacy is the terminal one, and
once you’ve won or lost, it doesn’t matter how.

DNVI maintains a state value network and an action proposal network. On
each game turn, the action proposal network suggests action candidates5, a sub-
set of the full action space. The algorithm then proceeds as Nash Q-learning, ex-
cept only considering the candidate actions in a stage game defined similarly to
Anthony et al. [1] and Gray et al. [17]. Once an NE has been calculated, it is used
to train the networks. The action proposal network is trained to imitate the NE,
and the value network is trained to imitate the expected payoff of the stage game
when playing the NE. The agent then chooses an action by playing its part in the
NE. For NE calculation they use RM, like Gray et al. [17].

To enable learning from scratch, DNVI is enhanced with an action exploration
procedure inspired by Double Oracle (section 2.5.2). The candidate actions from
the action proposal network are used as the initial action subset for DO, and DO
extends the candidates with repeated BR and NE calculations. They alter DO to
only consider a subset of all actions for BR calculation. This subset is generated by
pertubing candidate actions, based on the intuition that pertubation of candidate
actions is more likely to produce good actions than random sampling from all
actions. They empirically show that this intuition holds in practice.

They include two stages of pre-training. The agent first trains with uniformly
sampled action candidates and value targets for learning based on end-game
scores instead of the expected payoff under NE. Then, a second pre-training stage
trains the agent as normal, but without action exploration6. These pre-training
stages prime the action proposal network and value network with reasonable val-
ues.

They propose DORA - Double Oracle Reinforcement Learning with Action ex-
ploration, an agent trained from scratch with DNVI and their DO-like action ex-
ploration procedure. The DO-like procedure is used both at training and at infer-
ence time. As their concern is the combinatorial action space of Diplomacy, they
evaluate DORA using a variant called FvA - "France versus Austia". FvA is identical
to classic Diplomacy, but includes only two players. DORA achieves superhuman
performance against top players on a popular online Diplomacy platform on the

4A handcrafted reward signal in Diplomacy is any reward not directly associated with the win
condition of the game.

5Action candidates are called "plausible actions" in the rest of the thesis.
6Only for 7-player Diplomacy.
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FvA variant.

In addition to DORA, they propose HumanDNVI-NPU - "deep Nash value iter-
ation, no proposal update". HumanDNVI-NPU also uses DNVI, but is bootstrapped
from imitation learning on human data, does not train its action proposal network
over time, and does not utilize their DO-procedure. HumanDNVI-NPU beats SOTA
in 7-player no-press Diplomacy

DORA fails to beat state-of-the-art in 1v6 in classic Diplomacy, and Bakhtin et
al. [3] attribute this to DORA playing by an NE incompatible with human play. This
is used as evidence that self-play from scratch may be insufficient to achieve super-
human performance in Diplomacy. DORA also performs poorly against HumanDNVI-
NPU in 1v6, and vice versa. Two separately trained DORA display the same beha-
vior. This is used as evidence for the presence of a wide space of equilibria, and
DORA is proposed as the first technique for exploring this wider space of equilibria
without being constrained to human priors.

3.4.5 Learning to Play No-Press Diplomacy from Self-Play: Deep Re-
inforcement Learning Focusing on Collaboration Between Agents7

Hatlø [20] proposes in his master thesis an application of "Learning with Opponent-
Learning Awareness" (LOLA) [13] to no-press Diplomacy, as suggested by Paquette
et al. as one of the most exciting paths for future research. The thesis implements
two variants: "France vs. Austria", and "Pure". LOLA was deemed as not suitable
for the former variant, due to it being too computationally demanding. For the lat-
ter, results show that although a LOLA-agent was able to learn to play the variant,
it performs worse than a reference A2C-agent. The LOLA-agent was also shown to
be worse at cooperating than the reference A2C-agent, thereby providing evidence
that LOLA is not appropriate as a method to increase cooperation in Diplomacy
agents. The thesis implements an architecture inspired by Paquette et al. [37],
Anthony et al. [1], Gray et al. [17] and Bakhtin et al. [3].

It should be noted that the RL system implemented by Hatlø [20] most re-
sembles that of Paquette et al. [37], being policy gradient based. As pointed out
in section 3.4.2, Anthony et al. [1] does not count the A2C agent of Paquette et
al. [37] as a successful application of RL to Diplomacy, since it did not increase
performance over its imitation learned bootstrapped policy. Later RL works [1,
3] opt for policy iteration techniques based on search instead of a policy gradi-
ent approach. The fact that no policy gradient approach can be said to have been
successfully applied to Diplomacy can perhaps help explain why LOLA did not
produce the desired results.

7Title translated from Norwegian to English. Original title: "Å lære No-Press Diplomacy fra
Selvspill: Dyp Reinforcement Learning med Fokus på Samarbeid mellom Agenter"



34 Thomas Løkkeborg: Deep Reinforcement Learning for International Diplomacy

3.4.6 Modeling Strong and Human-Like Gameplay with KL-Regularized
Search

Jacob et al. [23] study the trade-off between human-like behavior and strong per-
formance in multi-agent decision problems. They observe that agents trained with
imitation learning on human data tend to fail to match human expert perform-
ance, while learning through self-play from scratch tends to create agents that di-
verge from human play. They study two kinds of game: Perfect-information games
through chess and go, and imperfect-information, simultaneous action games through
No-Press Diplomacy. For each of these kinds of game, a search algorithm penalized
by divergence to some prior policy is proposed.

For imperfect-information, simultaneous action games they propose piKL-Hedge
- Policy-Regularized Hedge, a variant of the Hedge algorithm regularized by KL-
divergence to some prior policy. The influence of the regularization in piKL-Hedge
is controlled through a parameterλ. Whenλ= 0, piKL-Hedge behaves like Search-
Bot, with no incentive to stay close to the prior policy. When λ=∞, piKL-Hedge’s
behavior is dictated by the prior policy, and search does not enhance performance.

Using the approach of Gray et al. [17] of augmenting an agent trained with
imitation learning on human data with search, they propose piKL-HedgeBot. The
neural architecture of piKL-HedgeBot follows that of Bakhtin et al. [3], using a
Transformer-based encoder and an LSTM-based decoder. Two notable enhance-
ments to the model architecture are: (1) The input features describing each loca-
tion to be encoded is extended with enough information that the representation
becomes equivariant to permutation, allowing for steps in the training process
that reduce overfitting, and (2) The value network approximates the result of rol-
lout from a given state, rather than being used for evaluation of successor states
after rollout, inspired by the success of Silver et al. [45].

The joint task of (1) Accurately predicting human actions, and (2) Achieving
a high winrate against a purely imitation learned policy, is considered. A host of
agents are compared, each employing varying degrees of regularization. The com-
parison shows that highly favorable combinations of the two goals can be achieved
by varying the λ term. Values for λ exist that improve performance in both goals
compared to an unregularized search agent and a pure IL agent, thereby advan-
cing state-of-the-art in terms of IL agents enhanced by search at inference time.

Although their work is not focused on RL, they do note that DORA and HumanDNVI-
NPU of Bakhtin et al. [3] perform poorly in predicting human moves.

With favorable empirical results for Chess, Go, and Diplomacy, Jacob et al.
[23] demonstrate that regularizing search by divergence from human play can be
beneficial both for accurately predicting human moves and achieving strong play.

3.4.7 Mastering the Game of No-Press Diplomacy via Human-Regularized
Reinforcement Learning and Planning

Bakhtin et al. [4] combine the regularized search algorithm of Jacob et al. [23]
with the self-play reinforcement learning of Bakhtin et al. [3] to create Diplodocus,
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the first Diplomacy agent to reach expert-level performance in the no-press variant
through self-play from scratch.

Based on piKL8 of Jacob et al. [23] they propose Distributional Lambda piKL
- DiL-piKL. The improvement of DiL-piKL over piKL is that the λ parameter is
sampled from a distribution β at each iteration rather than staying fixed.

To utilize DiL-piKL for self-play reinforcement learning, they use DORA by
Bakhtin et al. [3] as a basis, and replace the equilibrium-finding algorithm with
DiL-piKL both during training and inference time. They call the resulting algorithm
RL-DiL-piKL. While calculating an equilibrium they use a fixed distribution β ,
while when actually choosing an action given a found equilibrium they use a fixed
low λ. This fixed low λmakes the agent play closer to optimal given a found equi-
librium.

Using RL-DiL-piKL they train Diplodocus. The policy and value networks are
initialized from imitation learning on human data, and search is regularized against
these same imitation learned networks. Interestingly, they do not utilize the DO
action exploration procedure of DORA during training, as they found initialization
from imitation learning made it unnecessary.

Two Diplodocus agents participating in a 200-player no-press Diplomacy tour-
nament involving 62 human participants ranked first and third, and achieved the
highest average score among participants who played more than two games. The
participants spanned skill levels from beginner to expert.

3.4.8 Human-level Play in the Game of Diplomacy by Combining Lan-
guage Models with Strategic Reasoning

FAIR et al. [11] propose Cicero, the first Diplomacy agent to achieve human-level
play in the original Full-Press formulation of Diplomacy, including negotiation
in natural language. This is achieved by combining a language model with Dip-
lodocus of Bakhtin et al. [4], the state-of-the-art in non-communicative Diplomacy
agents. The main innovation in this work is the way dialogue with other powers
informs and is grounded in the agent’s tactical understanding of game state. Since
this thesis is focused on No-Press Diplomacy (Section 4.1), it has been given lim-
ited treatment.

3.4.9 Negotiation and Honesty in Artificial Intelligence Methods for
the Board Game of Diplomacy

Kramár et al. [27] propose and study explicit negotiation algorithms for a "Restricted-
Press" variant of Diplomacy that allows communication in a computer-friendly ne-
gotiation protocol. The negotiation algorithms build on the non-communicative
agents of Anthony et al. [1]. Since this thesis is focused on No-Press Diplomacy
(Section 4.1), the paper has been given limited treatment.

8The piKL-Hedge variant.
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Year Section Citation Agent Variant(s)
2019 3.4.1 Paquette et al. [37] DipNet No-Press
2020 3.4.2 Anthony et al. [1] BRPI9 No-Press
2021 3.4.3 Gray et al. [17] SearchBot No-Press
2021 3.4.4 Bakhtin et al. [3] DORA No-Press, FvA
2022 3.4.5 Hatlø [20] HatløA2C10 No-Press, FvA, Pure
2022 3.4.6 Jacob et al. [23] piKL-HedgeBot No-Press
2022 3.4.7 Bakhtin et al. [4] Diplodocus No-Press
2022 3.4.8 FAIR et al. [11] CICERO Full-Press
2022 3.4.9 Kramár et al. [27] - Restricted-Press

Table 3.1: Summary of presented papers utilizing RL for Diplomacy, along with
the agent proposed, and the Diplomacy game variant played.

3.5 Summary of Related Work

When Paquette et al. [37] showed how neural networks could be applied to Dip-
lomacy in 2019, they opened the door to the application of modern deep rein-
forcement learning techniques to the game. Anthony et al. [1] demonstrated the
value of introducing game-theoretic concepts to allow for RL, and Gray et al. [17]
applied game-theoretic techniques with success in Poker [35, 5] to Diplomacy to
achieve human-level play in the No-Press game variant. Bakhtin et al. [3] further
developed game-theoretic techniques to allow an agent to learn the game from
scratch, inspired by AlphaGo Zero of [46]. Jacob et al. [23] and Bakhtin et al. [4]
regularized game-theoretic search by a human prior to create an agent that plays
at the expert level with humans in the No-Press game variant. FAIR et al. [11]
combine state-of-the-art in No-Press Diplomacy with language models to create
the first human-level agent for the Full-Press variant of the game.

The trend in applying RL to Diplomacy is to define an Encoder-Decoder neural
network architecture with separate heads for producing the policy and value func-
tions, and then training this network through policy iteration (Anthony et al. [1]
and Kramár et al. [27]) or value iteration (Bakhtin et al. [3], Jacob et al. [23],
Bakhtin et al. [4] and FAIR et al. [11]) with game-theoretic search (BR or NE)
acting as the policy improvement operator. Search is conducted in the stage game
formed by each player taking one of a subset of actions sampled from a policy
network acting as an "action proposer", and receiving payoff through next-state
value estimation from a value network. The policy network decomposes the action
space into sequences of unit orders. Work that instead opts for a policy gradient
approach (A2C agents of Paquette et al. [37] and Hatlø [20]) does not seem to
produce strong agents.

Diplomacy research that labels itself as "policy iteration" trains the value net-

9BRPI is a family of algorithms for creating Diplomacy agents.
10Agents are simply named A2C and LOLA by Hatlø [20]. The A2C agent is referenced as

HatløA2C in this thesis. The LOLA agent is not considered in this thesis.
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work through end-game scores when playing on-policy by the NE found in search
at each turn. Diplomacy research that labels itself as "value iteration" instead trains
the value network through bootstrapped next-state value estimation under the NE
found through search. Both camps train the policy network to imitate the result of
search. Both of these techniques fall under the term generalized policy iteration
as defined in the background chapter, as they train their networks using a policy
improvement operator. The term generalized policy iteration is used to allow for
easy comparison with policy gradient techniques.

The majority of recent work considers the non-communicative No-Press vari-
ant of the game [42, 37, 1, 17, 3, 23, 20, 4]. Bakhtin et al. [3] and Hatlø [20]
further deviates from the original game formulation by considering the 2-player
"France vs. Austria" variant, and Hatlø [20] studies the 7-player "pure" variant fea-
turing a tiny map. Little research exists that trains agents for maps other than the
original. Earlier work has a larger focus on negotiation, and uses restricted-press
variants that limit communication to a computer-friendly protocol. Kramár et al.
[27] revisit this variant. Only FAIR et al. [11] have been successful on the classic
variant of the game including negotiation in natural language.





Chapter 4

Methodology

Previous chapters have stated and motivated the goal of the thesis, introduced
relevant background theory, and presented relevant work. This chapter details
the methodology followed to achieve the goal and ultimately answer research
questions.

A modular reinforcement learning system for Diplomacy based on state-of-
the-art research is created. Section 4.1 describes the modified Diplomacy ruleset
used. Section 4.2 describes the game engine. Section 4.3 describes the variant
creation process. Section 4.4 describes the representation through which the agent
interacts with the game environment. Section 4.5 describes the neural network
architecture used by the agent to produce actions and state values. Section 4.6
describes how the agent leverages a neural network and game-theoretic search to
take actions in the game. Section 4.7 describes how agents are trained. Section 4.8
describes how the system can be used to run experiments in service of addressing
research questions.

4.1 Ruleset Modifications

Given the limited computational resources available to thesis experiments, a re-
stricted version of the fundamental rules of the game is used.

4.1.1 Omission of Coastal Areas and Sea Areas

Coastal areas and sea areas are omitted. The game is played entirely on land. This
effectively removes fleets, since they cannot exist on land, along with the "convoy"
order, since it can only be issued by fleets.

4.1.2 No-Press

The non-communicative variant considered by most recent research [37, 1, 17,
3, 23, 4] is used. This restricts communication to what can be expressed through
actions in the game (See footnote 6 on page 8).

39
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4.1.3 Sum-of-Squares (SoS) Scoring and Turn Limiting

In its original formulation, a game of Diplomacy is supposed to last until one
power reaches the victory condition of controlling a majority of the supply centers
on the board. This is difficult to achieve, and the game is prone to getting stuck
in stalemates. To mitigate this, a maximum number of in-game years is defined
for each game variant. If a game ends without a clear victor, the Sum-of-Squares
(SoS) scoring mechanism [14, 17] is used, scoring each power by their number
of controlled supply centers squared, proportional to the sum of squared supply
center counts. Denoting the set of all powers as N and the supply center count of
power i as Ci , the SoS score of power i becomes:

Score(i) =
C2

i
∑

j∈N C2
j

4.2 Game Engine

A game engine is necessary to perform computational experiments on Diplomacy.
The Diplomacy ruleset is non-trivial to implement correctly: It is a known fact that
logical paradoxes can arise which require fallback rules1. Therefore, an existing
game engine is chosen for this thesis. The engine2 developed by Paquette et al.
[37] is chosen. Gray et al. [17] refers to it as the MILA3 Diplomacy Engine4. This
name is used throughout this thesis. The MILA Diplomacy Engine is chosen for
the following reasons:

• Trivial API.
• Support for game state visualization.
• Trivial installation and debugging, as it is written in pure Python.
• Its usefulness is proven by the success of DipNet [37]5.
• Hatlø [20], operating with the same computational resources as this thesis

has available, successfully used the engine for his thesis.
• Custom Diplomacy game variants are possible, as leveraged in section 4.3.

The dipcc6 engine developed for research by Gray et al. [17], Bakhtin et al. [3],
Jacob et al. [23], Bakhtin et al. [4] and FAIR et al. [11] was also considered. It is a
faster alternative to the MILA Diplomacy Engine written in C++. The engine was

1See for example this article for some paradoxes and their workarounds: http://www.dipwiki.
com/index.php?title=Convoy_Paradoxes, accessed 17.06.2023.

2https://github.com/diplomacy/diplomacy, accessed 06.06.2023.
3https://mila.quebec/en/, accessed 06.06.2023.
4https://github.com/facebookresearch/diplomacy_searchbot/blob/main/dipcc/README.

md, accessed 06.06.2023.
5Although the RL in DipNet of Paquette et al. [37] was based on policy gradient, not generalized

policy iteration as in this thesis. By nature, generalized policy iteration using search puts more
pressure on the game engine.

6https://github.com/facebookresearch/diplomacy_searchbot/tree/main/dipcc

http://www.dipwiki.com/index.php?title=Convoy_Paradoxes
http://www.dipwiki.com/index.php?title=Convoy_Paradoxes
https://github.com/diplomacy/diplomacy
https://mila.quebec/en/
https://github.com/facebookresearch/diplomacy_searchbot/blob/main/dipcc/README.md
https://github.com/facebookresearch/diplomacy_searchbot/blob/main/dipcc/README.md
https://github.com/facebookresearch/diplomacy_searchbot/tree/main/dipcc
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disregarded because it is written specifically for the original variant, and would
require substantial rewrites before it could be used for arbitrary variants.

4.3 Variant Creation

A feature of the MILA Diplomacy Engine important for this thesis is the possibility
of playing game variants beyond the classic formulation of Diplomacy. This is
achieved by supplying a .map file, together with a corresponding .svg file with
special annotations used for visualization of game states.

Listing 4.1 is the .map file behind the example game variant visualized in fig-
ure 4.2a, which pits the Informatics students against the Cybernetics students for
control of three of Gløshaugen’s cantinas. The visualization in the figure was cre-
ated by the MILA Diplomacy Engine by combining the .map file with a .svg file
with meticulously chosen content to match the variant.

BEGIN SPRING 1901 MOVEMENT

Informatikk (Informatiker) Element
A Element
A Hangaren

Kybernetikk (Kybber) Elektro
A Elektro

ELT = Element
HAN = Hangaren
ELO = Elektro

LAND Element ABUTS Hangaren Elektro
LAND Hangaren ABUTS Element Elektro
LAND Elektro ABUTS Hangaren Element

VICTORY 3

Code listing 4.1: Example .map file for the MILA Diplomacy Engine, specifying
the game variant visualized in figure 4.2a. This file, along with the corresponding
.svg file, is automatically generated.

Creating game variants for the MILA Diplomacy Engine by hand is tedious,
as it requires writing a verbose .map file, and carefully creating a corresponding
.svg file that nicely illustrates regions and region adjacencies. To enable more er-
gonomic experimentation with map variants, a system is created that can generate
these files from a simple variant specification in the YAML file format. Importantly,
this specification allows automatic generation of the .svg file via a combination of
"ASCII art" and an adjacency matrix, enabling customizable visualization of vari-
ants. The adjacency matrix is also used as input to the neural network, and serves
as a useful single source of truth for adjacencies in the variant.
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4.4 Game Representation

The formalism of RL requires the definition of a state space and an action space.
The agent senses the current state of the game through a state from the state
space, and acts by supplying a chosen action from the action space.

The state space of Diplomacy can be described by representing features of the
state of the board. The action space consists of combinations of unit orders. Due to
the size of the action space, the agent is supplied both a board state representation
and a representation of the legal action space subset, from which it chooses one
legal action.

The following sections detail the board state representation and the action
space representation including representation of the legal action subset. The chosen
game representation is summarized in section 4.4.3.

4.4.1 Board State Representation

Board state is represented using the technique introduced by Paquette et al. [37]
and adapted by later papers; As a matrix B with one row per region, and columns
made up of concatenated one-hot-encoded features per region; B ∈ {0,1}R×F ,
where R is the number of regions and F is the number of bits of the concatenated
features. The features chosen mimic Gray et al. [17] figure 5, but are adapted to
exclude features made irrelevant by the ruleset modifications described in section
4.1. The features are detailed in table 4.1. As an example, figure 4.1 shows how
the board state visualized in figure 4.2a would be represented. Powers are sorted
alphabetically with "none" first where applicable, and locations are sorted as they
appear in the variant specification (listing 4.1).

The state representation does not include adjacency information. Instead, the
adjacency matrix found in the variant specification is fed to the neural network
during construction for use in GNN.

4.4.2 Action Space Representation

Out of the three kinds of phases in Diplomacy, the movement phase is the most
interesting. It has by far the largest action space, and is critical to a power’s suc-
cess. Additionally, we can represent the retreat phase the exact same way as the
movement phase, and the adjustment phase can make use of a representation that
is similar. Therefore, only the action space of the movement phase is explained in
detail in this section. Details on how the representation presented here can be
utilized for the retreat and adjustment phases are found in appendix D.

In the movement phase, the action space in Diplomacy is combinatorial [3];
An action consists of choosing an order for each orderable unit. The action space
representation chosen is detailed in the following sections. First, the space of or-
ders per unit is defined. Then, the space of (joint) actions is defined using the
order space. Finally, an elaborate example is given in figure 4.2.
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Name Value Size Description
Unit Power OHE P+1 Power controlling unit at region, or

none.
Buildable Boolean 1 Can region be used to build a unit?

Removable Boolean 1 Does region unit we can remove?

Dislodged Unit OHE P+1 Power controlling unit dislodged at
region, or none.

Supply Center Owner OHE P+1 Power controlling supply center at
region, or none.

Season OHE 3 Spring, Fall or Winter.

Build Numbers Integer P Number of builds per power. Can be
negative.

Table 4.1: Features for a single region in B. P is used to mean the number of
powers in the variant. OHE is used to mean one-hot-encoding.
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ELT 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0
HAN 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0
ELO 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0

Figure 4.1: Board state representation B of game state in figure 4.2a There are
R = 3 regions, and the features require F = 16 bits, resulting in B ∈ {0,1}3×16.
Rows are labelled with the region they denote, and columns are grouped by the
feature they help describe. Table 4.1 details the meaning of each feature.
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Order Space

A list Ω of all orders possible by any unit in any region is defined for each variant.
As an example, the indexed global list of all orders possible in the variant shown in
figure 4.2a is included in appendix A. Orders are represented as integer indexes
into Ω. Throughout this thesis, the name "order" is often used interchangeably
with "order index", since there is a one-to-one relationship between the two.

In the movement phase, an action consists of choosing an order for each or-
derable unit. Given N orderable units denoted i ∈ {1,2, . . . , N}, the set of legal
order indexes for unit i is denoted Oi:

Oi = { k ∈ N | Ωk is a legal order for unit i }

Given unit i with Mi legal orders, the individual legal order indexes are de-
noted:

Oi = {o1
i , o2

i , . . . , oMi
i }

The vector of legal orders per unit i is denoted:

O = [O1, O2, . . . , ON ]

The action space is highly variable: The number of legal orders Mi in a game
state varies per unit, and the number of orderable units N varies across game
states.

Action Space

An action consists of choosing an order oi ∈ Oi for each orderable unit i. This
makes the action space combinatorial [3]; The size of the action space is |A| =
∏N

i=1 |Oi|. Since |Oi| can become large by itself, |A| can grow explosively large.
Rather than modeling the action space as a selection between |A| actions, one can
leverage the combinatorial nature of the game by modeling action selection as the
assignment of an order to each orderable unit. [37]. This decomposes the process
of choosing an action from choosing one of

∏N
i=1 |Oi| actions to choosing one of

|Oi| orders N times.
Order assignment is modeled as sequence; An action a⃗ is a sequence of order

indexes, where the i-th element oi ∈ Oi is the order for unit i:

a⃗ = [o1 ∈ O1, o2,∈ O2, . . . , oN ∈ ON ]

The action space consists of all such sequences, and can be written as the
cartesian product of Oi for each unit:

A= O1 ×O2 × . . .×ON

Where a⃗ ∈ A.
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About Joint Actions

This section has so far overlooked the fact that action selection in Diplomacy is
simultaneous; Given P powers denoted p ∈ {p1,p2, . . . , pP}, each with a set of
actions Ap to choose from, each power p secretly chooses an action a⃗p ∈ Ap. The
combination of action selections per power is called a joint action. A joint action
is a vector of actions per power (a vector of vectors) and is denoted:

⃗ajoint = [a⃗p1, a⃗p2, . . . , a⃗pP]

The joint action space is the cartesian product of each power’s action space,
and is denoted:

Ajoint = Ap1 × Ap2 × . . .× ApP

When constructing actions for multiple powers, we need a vector of legal or-
ders per unit per power. This is denoted:

Ojoint = [Op1, Op2, . . . , OpP]

For notational convenience, the subscript p was omitted earlier in this section.
For some arbitrary power p, the set of actions Ap was denoted A, and the vector
of legal orders per unit Op was denoted O. This shortcut is used throughout the
thesis, and the meaning should always be clear from context. To avoid confusion
between joint actions and actions by a single power, the term "action" is always
used to refer to an action by a single power.

Representation

The space of legal orders for a unit in any single game state is only a small subset
of the space of all orders; i.e. Oi is much smaller than |Ω|. Conversely, the space
of legal actions in any single game state becomes only a small subset of the space
of all actions. Therefore, legal orders per orderable unit are supplied in the state
representation alongside the board state representation of section 4.4.1. This al-
lows for selection between legal actions only, reducing the complexity of action
selection.

Because of simultaneous action selection, the Diplomacy agent implemented
for this thesis has to reason about the actions of all powers. Therefore, the space
of legal actions Ojoint is supplied to the agent along with the board state repres-
entation B.

Example

An example of the action space representation for one power is given in figure
4.2.
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(a) Example game state.

k Ωk
1 A ELT H
3 A ELT - HAN
5 A ELT S A HAN
6 A ELT S A ELO - HAN
7 A ELT - ELO
9 A ELT S A ELO
10 A ELT S A HAN - ELO

(b) Legal orders for unit at ELT.

k Ωk
11 A HAN H
13 A HAN - ELT
15 A HAN S A ELT
16 A HAN S A ELO - ELT
17 A HAN - ELO
19 A HAN S A ELO
20 A HAN S A ELT - ELO

(c) Legal orders for unit at HAN.

1

11 13 15 16 17 19 20

3

11 13 15 16 17 19 20

5

11 13 15 16 17 19 20

6

11 13 15 16 17 19 20

7

11 13 15 16 17 19 20

9

11 13 15 16 17 19 20

10

11 13 15 16 17 19 20

(d) Tree of order assignments.

(e) [A ELT H, A HAN H] (f) [A ELT H, A HAN S A ELT] (g) [A ELT - ELO, A HAN S A ELT - ELO]

Figure 4.2: Diplomacy action space representation visualized. In figure 4.2a, the
red power has two orderable units in a movement phase, located at ELT and HAN.
The legal orders for each are listed in tables 4.2b and 4.2c. Considering the unit
at ELT as unit 1 and the unit at HAN as unit 2, O becomes:

O = [O1, O2] = [{o1
1, o2

1, o2
1, o3

1, o4
1, o5

1, o6
1}, {o

1
2, o2

2, o2
2, o3

2, o4
2, o5

2, o6
2}]

= [{1, 3,5, 6,7, 9,10}, {11,13, 15,16, 17,19, 20}]

An action is a sequence of orders per orderable unit [o1, o2] where oi ∈ Oi . There
are |A|= |O1| · |O2|= 7 ·7= 49 legal actions. Figure 4.2d shows a tree of possible

order assignments. Three actions are highlighted in color: [1, 11] , [1, 15] and

[7,20] . The highlighted actions are visualized in figures 4.2e, 4.2f and 4.2g;

Given an action as a sequence of order indexes [o1, o2], an action is constructed
as [Ωo1

,Ωo2
], referring to the global order list Ω of appendix A.
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B

O

Encoder Benc Value Decoder

Order Decoder

[%p1,%p2] = ŷv

[o1, o2] = a⃗
�

πO(O1)
πO(O2|o1)

�

board state

legal orders

end-game
score

orders

order probabilities

Figure 4.3: Overview of neural network architecture. The network takes the
board state B and legal orders per unit O as input (section 4.4.3), and produces
a prediction ŷv of end-game score in the form of a vector of SoS score per power
(here denoted %p for power p), an action a⃗ in the form of a sequence of orders
[o1, o2], and the probability distributions [πO(O1),πO(O2|o1)] from which o1 and
o2 were sampled. The encoder creates an encoding of each region as Benc based on
B. The value decoder takes this encoding and returns ŷv . The order decoder uses
the encoding in combination with O to produce the sequence of orders [o1, o2]
and the probability distributions [πO(O1),πO(O2|o1)].

4.4.3 Summary of Game Representation

Sections 4.4.1 and 4.4.2 presented the chosen game representation. At every turn
in the game, the agent is supplied:

• A representation of board state B.
• A representation of the legal orders per unit per power Ojoint.

Using B and Ojoint, an agent playing power p can construct a legal action a⃗p ∈
Ap that is grounded in the state of the game. An agent is also free to construct
actions for other powers, allowing for exploration of joint actions.

4.5 Neural Network Architecture

Deep Reinforcement Learning requires a differentiable model at the core of decision-
making. This section describes how neural networks are utilized to construct a
model that can produce actions and state values given a description of game state.

The neural network uses the Encoder-Decoder architecture with two decoding
"heads": One for unit orders, the other for state value. Like Paquette et al. [37],
Gray et al. [17] and Hatlø [20] and unlike Bakhtin et al. [3], Jacob et al. [23],
Bakhtin et al. [4] and FAIR et al. [11], the two heads are attached to the same
encoder.

Figure 4.3 gives an overview of the neural network architecture. An example
forward pass of the neural network is found in appendix C.
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4.5.1 Encoder

The task of the encoder part of the network is to produce a compressed repres-
entation (an "encoding") of each region on the board that reflects the state of
neighboring regions. The encoding is denoted Benc ∈ {0,1}R×E , where R is the
number of regions on the board, and E is the size of the encoding per region. In
the decoder heads, Benc is used to make decisions based on the state of the region
and its neighboring environment.

Fully-connected feed-forward networks discussed in section 2.2.2 fail to take
advantage of region adjacencies, and is not suitable. As a motivating example,
the go agent AlphaGo Zero of Silver et al. [46] takes advantage of adjacencies by
utilizing convolutional neural networks, made possible due to the game map re-
sembling a grid. Diplomacy maps, however, do not conform to grids, and are best
modelled as arbitrary graph structures. Graph convolutional networks are used
(section 2.2.3), which apply a convolution-like operation over arbitrary graph
structures.

The encoder takes as input the board state space representation B described in
4.4.1, and produces as its output Benc an encoding for each region on the board.
The encoder consists of enough GCN layers for information to propagate from any
node to any other through adjacencies. The classic map requires 8 layers [37]. The
variants used in this thesis require far less.

Note that B does not include information on region adjacency. Instead, the
encoder is fed the adjacency matrix from the map description during initialization
of the network.

The GCN implementation of Gray et al. [17] is used.

4.5.2 Order Decoder

The task of the order decoder is to produce an action a⃗ = [o1, o2, . . .] as a
sequence of orders given region encodings Benc and the space of orders O. The
order decoder always operates from the point of view of a single power, and has
to be queried once per power7 to obtain actions for all powers. Therefore, this
section is written from the point of view of a single power taking an action given
the legal orders available to it.

The order decoder is denoted π. When used to denote probabilities over ac-
tions, it is denoted πA. When used to denote probabilities over orders for some
individual unit, it is denoted πO.

Principle

The high-level operation of the order decoder is to sequentially produce a prob-
ability distribution over legal orders for each unit, and sample an order from this
distribution. To achieve unit coordination, the distributions are conditioned on

7The operation can be efficiently batched.
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orders sampled earlier in the sequence. The probability distribution over legal
orders Oi for unit i with sequence number i is denoted as:

πO(Oi|o1, o2 . . . , oi−1) (4.1)

Sequentially sampling orders for N units can be written as:

o1←πO(O1)

o2←πO(O2|o1)
...

oN ←πO(ON |o1, o2, . . . , oN−1)

(4.2)

Consider an action a⃗ consisting of orders [o1, o2, . . . , oN ] for N units. The prob-
ability of this action being sampled from the order decoder becomes:

πA(a⃗) =
N
∏

i=1

πO(oi|o1, o2 . . . , oi−1) (4.3)

In addition to producing the action a⃗, the order decoder also produces the
probability distribution over legal orders Oi for each unit i:









πO(O1),
πO(O2|o1),

...,
πO(ON |o1, o2, . . . , oN−1)









(4.4)

This allows for learning, as loss can be defined with respect to the probability
of producing the produced action.

The high-level sequential operation of the order decoder is visualized in figure
4.4.

Model

A differentiable model of π is required for deep reinforcement learning. Using a
technique introduced by Paquette et al. [37], the order decoder is a custom model
that employs a combination of LSTM, embeddings, and tensor operations. The or-
der decoder implementation of Gray et al. [17] is used, with minor modifications8.
The order decoder is visualized in figure 4.5 as a computational graph.

For unit i to be ordered at sequence step i, πO(Oi|o1, o2, . . . , oi−1) should be
grounded in:

1. The environment around the unit.
2. The power that is ordering it.
3. The orders chosen by previously ordered units in the sequence.

8The "disband logic" was updated, with very minor effect to practical operation.
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Figure 4.4: Principle of order decoder. Each node in the tree represents a (possibly
partial) sequence of orders. Each level i of the tree corresponds to the assignment
of an order oi to unit i from Oi = {o1

i , o2
i , . . . , oM

i }. Branches are labelled by the
probability of choosing each order in Oi , conditioned on earlier orders in the
sequence. Order assignment is sequential; Starting with an empty sequence at the
root, orders assigned one by one by sampling branches according to the labelled
probabilities. Leaves of the tree assign an order to each unit in the sequence, and
correspond to actions. As per equation 4.3, the probability of producing an action
a⃗ = [o1

1, o3
2, . . . , o2

N ] is the probability of reaching that leaf node in the tree by
following the highlighted path:

πA(a⃗) =
N
∏

i=1

πO(oi |o1, o2, . . . , oi−1)

= πO(o1) ·πO(o2|o1) · . . . ·πO(oN |o1, o2, . . .)

= πO(o
1
1) ·πO(o

3
2|o

1
1) · . . . ·πO(o

2
N |o

1
1, o3

2, . . .)
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Benc[ri]

e(p)

e(oi−1)

LSTM ψi matmul ξi eξ−LSE(ξ) πO(Oi|o1, o2, . . . , oi−1)

e(Oi) sample one oi

embed
embedded order of previous unit

hidden
state

Figure 4.5: Overview of order decoder. The network sequentially produces an
order for unit i as oi along with the probability distribution from which it was
sampled πO(Oi |o1, o2, . . . .oi−1), given board state encodings Benc, the region of
unit i denoted as ri , embeddings denoted as e(·), the legal orders for unit i de-
noted as Oi , and the power issuing the order denoted as p. Matrix multiplication
between the output of LSTM and embeddings for legal orders produces unnor-
malized logits ξi . The operation eξ−LSE(ξ) transforms the unnormalized logits in
the logarithmic scale to normalized probabilities in the linear scale, producing a
(conditional) probability distribution over legal orders Oi . oi is sampled from this
distribution, and its embedding is used as input to the LSTM for the next unit in
the sequence. Double arrows indicate recurrent connections: hidden state of the
LSTM, and the embedding of the previously issued order. During training, this
computational graph is unrolled as shown in figure 2.4.

This dictates the input to the LSTM: 1. is addressed by providing the region
the unit to be ordered exists in: Benc[ri], denoting the region of unit i as ri . 2. is
addressed by providing an embedding of the power p ordering the unit, denoted
as e(p). 3. is addressed by providing an embedding of the order oi−1 chosen for
the previous unit in the sequence, denoted as e(oi−1)9. 3. is also addressed by the
LSTM having the ability to remember earlier parts of the sequence through hidden
state. Omitting hidden state, the output of the LSTM for unit i is denoted ψi .

ψi = LSTM(Benc[ri], e(p), e(oi−1)) (4.5)

To achieve a probability distribution over legal orders, LSTM outputψi is com-
bined with embeddings of legal orders. With an embedding size of X , embeddings
of legal orders are denoted e(Oi) ∈ R|Oi |×X . 10 Making the size of LSTM output
equal to the size of order embeddings, ψi ∈ RX , allows for matrix multiplication
between the two, creating a vector ξ ∈ R|Oi |.

ξi = e(Oi) ·ψi (4.6)

9For the first unit, there is no previous order. In this case, e(oi−1) is substituted with a vector of
all zeros with the same size.

10With Oi is a set of elements {o1
i , o2

i , . . . , oMi
i } and an embedding size of X , e(Oi) should be

interpreted as constructing a matrix where the j-th row consists of e(o j
i ).
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ξi is interpreted as the unnormalized "logits" of a probability distribution over
Oi . ξi is normalized in the logarithmic scale by subtracting each element by the
"log-sum-exp" (LSE) of itself. Denoted as ξnormalized

i , the normalized logits are
defined as:

LSE(ξ) = log(
|ξ|
∑

j=1

eξ[ j]) (4.7)

ξnormalized
i = ξi − LSE(ξi) (4.8)

The normalized form of the distribution in the logarithmic scale is used through-
out code, as many calculations are less computationally expensive in the logar-
ithmic scale. For the purpose of explanation, however, let’s pretend that probab-
ilities in the linear scale are used. We can obtain probabilities in the linear scale
by simply taking the exponent of each element of ξnormalized

i . These probabilities
form the conditional probability distribution over legal orders:

πO(Oi|o1, o2 . . . , oi−1) = eξ
normalized
i (4.9)

4.5.3 Value Decoder

The task of the value decoder is to produce a prediction of the end-game sum-of-
squares score of every power given region encodings. A simple multi-layer fully-
connected feed-forward network is used, taking flattened region encodings as in-
put and producing a distribution summing to one at the final layer using a SoftMax
layer.

4.6 Agent Implementation

Like many recent successes in Diplomacy AI [1, 17, 3, 23, 4, 11], this thesis chooses
to train an agent using generalized policy iteration (GPI, section 2.4.3) with game-
theoretic search as the improvement operator. Two classes of GPI exist for Dip-
lomacy: Best Response Policy Iteration introduced by Anthony et al. [1] (section
3.4.2), and Deep Nash Value Iteration (DNVI) introduced by Bakhtin et al. [3]
(Presented in section 3.4.4). DNVI has seen the most success, and inspires the
GPI implementation for this thesis.

Bakhtin et al. [3] also proposes Double Oracle Reinforcement Learning for
Action Exploration (DORA), presented in section 3.4.4. DORA extends DNVI with
a Double Oracle-like (Section 2.5.2) procedure to enable learning from scratch
without human data. Since little or no human data exists for Diplomacy game
variants, learning from scratch must be assumed. Therefore, DORA is the primary
inspiration for the GPI implementation in this thesis.

The agent selects an action by playing its part in an approximated Nash Equi-
librium calculated with Regret Matching search. Because this search is intractable
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for large action spaces, only a subset of the full action space for each power can be
considered. The agent therefore calculates for each power a subset of "plausible"
actions. The set of plausible actions is found by using the order decoder of section
4.5.2 as an "action proposal network". The order decoder is trained over time to
propose actions that are "plausibly" good, hence the name. RM is performed in
the stage game formed by each power only considering the subset of plausible ac-
tions, and payoff of joint actions being calculated as a predicted end-game score
of the successor state. The end-game score prediction is obtained using the value
decoder of section 4.5.3.

The following sections detail each step involved in action selection: selecting
plausible actions, augmenting plausible actions with action exploration, and RM
search over plausible actions. Finally, an example is given in figure 4.2.

4.6.1 Plausible Actions

To construct a set of K plausible actions per power, the order decoder is queried
a large number of times to produce action samples. Then, the sampled actions
are sorted by number of occurrences. The top K most occurring actions for each
power form the plausible actions set for that power.

The plausible action set for power p is denoted A∗p ⊆ Ap and has a max-
imum size of K: |A∗p| ≤ K . The joint action space formed by each power p ∈
{p1, p2, . . . , pP} only considering plausible actions A∗p is denoted:

A∗joint = A∗p1 × A∗p2 × . . .× A∗pP

4.6.2 Search

Regret Matching (Section 2.5.1) is conducted on the stage game formed by consid-
ering the subset of plausible actions per power and payoff defined through 1-step
rollout of a joint action. Rollout of a joint action is performed by stepping the
game engine to the resulting successor state. If the successor is a terminal state,
the payoff of the joint action is the end-game score at the terminal state. Other-
wise, payoff is the predicted end-game score queried from the value decoder.

RM produces a joint strategy σ over the joint action space of plausible actions
A∗joint. The probability distribution over plausible actions A∗p for power p under the
joint strategy σ is denoted σ(A∗p). For a plausible action a⃗p ∈ A∗p, the probability
of playing that action under σ is denoted σ(a⃗p).

4.6.3 Action Exploration

When learning from scratch, the order decoder initially produces actions accord-
ing to an arbitrary probability distribution. Sampling actions thus does not form
a "plausible" set of actions, but instead an arbitrary subset. The order decoder
can only be trained on actions that have been sampled, leading to bias toward
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sampled actions. This can hinder learning over time, as exploratory actions not
already sampled by the order decoder become unlikely.

To address this issue, a procedure inspired by Double Oracle (section 2.5.2) is
utilized to augment the set of plausible actions produced by the order decoder:

1. A joint strategy σ is found through search over A∗joint plausible actions with
RM.

2. Then, for each power:

a. A subset of candidate actions Ac
p outside the plausible action subset is

sampled randomly from the action space Ap, such that Ac
p ∩ A∗p = φ

and |Ac
p|< |A

∗
p|.

11

b. The expected payoff of unilaterally deviating from σ with each can-
didate action ac

p ∈ Ac
p is calculated.

c. The expected payoff of playing by σ is calculated.
d. If unilaterally deviating with a candidate action exploits σ by yielding

higher expected payoff than playing by σ, the candidate that maxim-
ally exploits σ is added to the plausible action set for that power.

This process is repeated either until no candidate actions exploit σ, or a max-
imum number of iterations is reached.

The process is computationally expensive, and its usefulness decreases as the
order decoder starts producing better actions. Therefore, action exploration is only
used while training (except for the pre-training stage discussed in section 4.8.2).
Action exploration is not used in tournament games.

4.6.4 Example

An example of how the agent chooses an action given the game state shown in
figure 4.2 is given in table 4.2.

4.7 Training Loop

The agent learns by adapting its neural network to alter what actions are proposed
by the order decoder, and what state value is predicted by the value decoder.

The training loop consists of alternating data generation and learning phases,
where the data generation phase gathers data for learning through self-play, and
the learning phase adapts the network based on generated data. Neural network
checkpoints are used to synchronize weights between the two phases, and training
data is stored in a "replay buffer". The training loop is illustrated in figure 4.6 and
detailed in the following sections.

11Bakhtin et al. [3] generates candidates by mutating plausible actions. This thesis instead just
randomly samples candidates, since this has proven to work well.
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p Actions Sampled # ∈ A∗p? σ(A∗p) πA(A∗p)
p1 [1,11] 50 y (top K) 0% 60%

[1,15] 25 y (top K) 0% 25%
[3,13] 20 n
[7,16] 5 n
[7,20] y (DO) 100% 1%

p2 [21] 70 y (top K) 50% 45%
[23] 25 y (top K) 50% 30%
[25] 5 n

Table 4.2: Example of agent operation and training given game state in figure
4.2. The red power is denoted p1, the purple power is denoted p2. The agent is
playing p1.

The agent starts by sampling 100 actions from the order decoder for each
power. The number of occurrences of each sampled action is listed in the Sampled
# column. The top K = 2 most occurring actions are included into the plausible
action set A∗p. The agent then performs one round of action exploration to aug-
ment the plausible actions, and discovers the action [7,20] for p1. This action is
added to A∗p. The ∈ A∗p? column lists whether an action is included in the plausible
action set or not, and if yes (y), the reason for its inclusion (top K while sampling,
or action exploration (DO)). Next, the agent performs RM search over the joint
plausible action space by querying the value decoder for next-state values (not
shown), and produces a joint strategy σ approximating a Nash Equilibrium. The
probability of each plausible action under σ is shown in the σ(A∗p) column. The
agent plays its part in the equilibrium, and samples [7,20]with 100% probability,
since it conquers ELO (See figure 4.2g).

Notice that [1,11] and [1, 15] are (correctly) assigned 0% probability by σ,
since they do not conquer ELO (See figures 4.2e and 4.2f). Nothing p2 can do
can stop p1 from conquering ELO, and it therefore has no preference between its
two plausible actions.

In this example, one power has actions available to it that are obvious choices
given the cramped environment. More complex game states are less clear cut,
and this is where DORA shines.

The πA(A∗p) column contains the teacher-forced action probabilities of each
plausible action. For the order decoder, the goal of learning is to minimize dis-
tance between πA(A∗p) and σ(A∗p). This is elaborated in section 4.7.3. Notice that
the fit of the order decoder appears particularly bad here, as high probability is
assigned to actions considered bad by σ ([1,11] and [1,15]), and little probab-
ility is assigned to the action considered good by σ ([7, 20]). Notice also that the
column πA(A∗p) does not sum to 1.
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Figure 4.6: Overview of training loop. The neural network at checkpoint two
(CHKPT2) is being used to generate the fifth game (G5) into the replay buf-
fer through self-play, causing the earliest game states of game one (G1) to be
discarded. The replay buffer consists of samples from five games (G1, G2, G3,
G4, G5), three of which were created by an earlier neural network checkpoint
CHKPT1 (G1, G2, G3), and two of which were generated by the current check-
point CHKPT2 (G4, G5). In the learning phase, a batch of samples is sampled
from the replay buffer, each consisting of yv ,B, Ojoint, A∗joint, yσ. The illustration
shows how a sample is processed by the neural network to produce ŷv (predicted
end-game scores) and ŷσ (action probabilities over plausible actions A∗joint). ŷσ is
produced through the application of equation 4.3 to the conditional probability
distributions produced by the order decoder (See figure 4.3), in combination with
teacher forcing using the plausible action subset. The two outputs are compared
with their target counterparts with KL-Divergence to calculate loss. The optim-
izer steps the network to minimize loss, eventually producing a new checkpoint
CHKPT3 to take over for checkpoint CHKPT2. Data generation and learning are
visualized as simultaneous processes, but in reality, they alternate.
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4.7.1 Checkpoints and Replay Buffer

A checkpoint of neural network weights is stored after every learning phase. This
enables the data generation phase to load the resulting network of the learning
phase, and enables spinning up the agent from any iteration of training at a later
point.

Training data is stored in and retrieved from a replay buffer of limited size.
When the replay buffer is full, old datums are discarded. Data in the replay buffer
spans multiple neural network checkpoints, enabling larger batch sizes for learn-
ing. It is also intended to make learning more resilient, as the training data is
bound to have high variance.

4.7.2 Data Generation Phase

In the data generation phase, the agent plays games against itself using the most
recent checkpoint of the neural network. The agent controls all powers in the
game. Each time an agent selects a (joint) action, the following datums are stored
together to form a sample for learning:

• B: Representation of board state.
• Ojoint: Representation of legal orders for each power.
• A∗joint: Plausible actions for each power.
• yσ: The joint strategy over plausible actions produced by search.
• yv: An updated estimate of the value of the current state.

Section 4.4.1 details B and Ojoint. Section 4.6 details how the agent acts by pro-
ducing plausible actions A∗joint and conducting game-theoretic search to find σ. yσ
is σ, renamed in this context to make clear that it is used as a target for learning.
yv is not a direct result of regular agent operation, and can be computed in one
of two ways: As the expected state value when playing by σ, or as the discoun-
ted end-game score. The former is more proper, and is used for the majority of
training. The latter is beneficial during early stages of training to quickly achieve
a reasonable value network, and is used for the pre-training stage discussed in
section 4.8.2.

The agent chooses an action to play ε-greedily with respect to σ. This means
the agent is most likely to gain experience in valuable states while also having
some probability of visiting less valuable states, thereby balancing between explor-
ation and exploitation. Learning is off-policy since learning targets use σ greedily.
During pre-training, state value targets are calculated with respect to the discoun-
ted end-game score when following the behavioral policy, leading to values based
on the ε-greedy policy. This is not believed to be an issue.

4.7.3 Learning Phase

In the learning phase, the neural network is adapted using the datums in the
replay buffer. First, a batch of samples is fetched randomly from the replay buffer.
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Then, a forward pass of the neural network is conducted for all samples in the
batch. Loss is calculated for the order decoder and value decoder by comparison
with yσ and yv . Finally, the neural network weights are adjusted to minimize the
sum of order decoder loss and value decoder loss, and a checkpoint is stored.

The following sections detail loss calculation for the order decoder and value
decoder.

Order Decoder Loss Calculation

For a power p, the target probability distribution over plausible actions yσ con-
tains the probability for each plausible action a⃗p ∈ A∗p as yσ(a⃗p). The goal of
learning is that the order decoder should more probably produce actions that are
probable under yσ(A∗p). This way, the plausible action subset will contain actions
that have been shown to be good through search in the past. Over time, the quality
of the plausible action subset should increase.

In addition to producing an action a⃗ as a sequence of orders [o1, o2, . . .], the
order decoder also produces the conditional probability distributions from which
the orders were sequentially sampled: [πO(O1),πO(O2|o1), . . .] (section 4.5.2). As
per equation 4.3, the action probability πA(a⃗) can be computed using the condi-
tional probability distributions and the sequence of sampled orders.

Normal feed-forward operation of the order decoder samples an order at each
sequence step, producing a random action. To obtain the probability of some spe-
cific action a⃗′ = [o′1, o′2, . . .], teacher-forcing is used: For unit i at sequence step i,
o′i−1 is injected as the previously sampled order. This way, the returned probability
distribution at each sequence step i is conditioned on [o′1, o′2, . . . , o′i−1], and πA(a⃗′)
can be calculated.

By using teacher forcing, the probability of each action in the plausible action
set can be calculated, producing ŷσ

12. Loss can then be defined by comparing yσ
and ŷσ. For this thesis, the KL-Divergence metric is used, which gives a measure
of the distance between probability distributions.

Figure 4.2 includes a column illustrating an example comparison between
yσ = σ(A∗p) and ŷσ = πA(A∗p).

Value Decoder Loss Calculation

A state value prediction ŷv is produced with the value decoder. The value of a
state is a prediction of end-game Sum-of-Squares score, and thus a distribution
summing to 1. Similar to the order decoder, loss is calculated as the KL-Divergence
between the value target yv and value prediction ŷv .

12If the plausible action set is smaller than the full action space, ŷσ will not sum to 1, and is thus
not a proper probability distribution. This is problematic, but has worked well in practice for this
thesis.
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4.8 Experimental Setup

To answer the research questions of section 1.2, several experiments are run. An
experiment consists of training an agent for some game variant and running tour-
naments for comparison with other agents. The following sections detail the three
game variants chosen, how agents are trained, and how agents are evaluated.

4.8.1 Game Variants

Research question 1 poses a question about the generality of state-of-the-art tech-
niques in map variants. In order to say something about generality, several map
variants need to be utilized. Three variants will be considered in this thesis. As will
be discussed in section 4.8.3, research question 2 dictates that one of the variants
considered be the Pure variant. Since Pure features 7 powers, it is computationally
heavy for search-based agents (the joint action space grows large). Therefore, the
other two variants are chosen to be 3-power variants. Since Pure is topologically
trivial, the two other variants focus on topological challenges. The two other vari-
ants are the Lattice variant, featuring a relatively large regular topology, and the
Hub variant, featuring a central highly-connected "hub" region. The three variants
are visualized in figure 4.7.

All three chosen game variants happen to be symmetric both in terms of map
topology and the starting positions for powers. Typical Diplomacy game variants
(including the original game) are asymmetric, mirroring real-world geography.
The choice of symmetric maps is deliberate, as it simplifies visual inspection of
game state, and can be argued to reduce the number of tournament games needed
to evaluate agents: For asymmetric maps, a large number of games is needed to
"even out" score differences due to power assignment. For example, Paquette et
al. [37] reports that Turkey wins twice as many games as Italy in a large dataset
of human games13.

Pure Game Variant

Pure [49] is an unofficial, but established, map variant for Diplomacy. The variant
is playable on vdiplomacy.com, one of the major online Diplomacy platforms, and
has existed since at least 199014. The Pure variant features 7 powers and 7 fully-
connected regions. Powers have one region each as their home supply center. The
game is won by controlling four regions. The maximum number of in-game years
is chosen to be 10. The initial board state of the Pure variant is visualized in figure
4.7a.

13Table 1 of Paquette et al. [37].
14A webpage detailing the ruleset of Pure was "last revised" August 9, 1990: http://uk.diplom.

org/pouch/Email/judge/info.pure.html, accessed 12.05.2023.

vdiplomacy.com
http://uk.diplom.org/pouch/Email/judge/info.pure.html
http://uk.diplom.org/pouch/Email/judge/info.pure.html
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(a) Pure game variant (b) Lattice game variant (c) Hub game variant

Figure 4.7: Initial board state of the three game variants considered in this thesis.

Lattice Game Variant

The Lattice map variant features 3 powers and 21 regions laid out in a "triangular
lattice" structure, where region neighborhoods follow a regular pattern. Like the
classic map, and unlike the Pure variant, not every region on the board features
a supply center. The variant features 12 supply centers, and 7 are required to win
the game. Each power has two home supply centers, and therefore starts off with
two units. The maximum number of in-game years is chosen to be 10. This variant
requires an agent to maneuver a large number of units to win the game. The initial
board state of the Lattice variant is visualized in figure 4.7b. It was created for this
thesis, and is not played by the board game community.

Hub Game Variant

The Hub map variant features 3 powers, 10 regions and 9 supply centers. 9 regions
feature supply centers, and form a circle. The home centers are found on this
circle, spaced two supply centers apart. A 10th region without a supply center
(the "hub") is found in the middle of the circle, neighboring all other regions. The
maximum number of in-game years is chosen to be 10. The initial board state of
the Hub variant is visualized in figure 4.7c. It was created for this thesis, and is
not played by the board game community.

4.8.2 Agent Training

An agent is trained for each of the three game variants. The training of each agent
is conducted following a YAML specification file that includes agent hyperpara-
meters, parameters for the training loop, and the game variant specification as
per section 4.3. Training is split in two stages, starting with a pre-training stage
that aims to achieve reasonable operation quickly, before making full use of the
agent implementation of section 4.6.

The following sections detail how agent hyperparameters were selected and
the specifics of the pre-training stage.
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Agent Hyperparameter Selection

The agent consists of many moving parts, leading to many tweakable hyperpara-
meters. Since the research questions do not strictly require creating an optimal
agent, hyperparameter selection is not considered an important part of this thesis.
Hyperparameters are selected based on intuition and related work, as well as brief
manual experimentation before starting the training sessions that produce the res-
ults of chapter 5. Some key hyperparamters are shown in table 5.1. The full agent
hyperparameters for each of the three game variants can be found in the uploaded
thesis codebase.

Pre-Training Stage

The value decoder sits at the core of the training loop, as it informs both value
decoder targets given successor states, and order decoder targets through the res-
ult of search (which again is based on the value decoder). Since the value de-
coder normally is trained through the expected bootstrapped next-stated value,
only the last non-terminal state is updated with valuable targets in early train-
ing. Many iterations are required for that information to propagate throughout
the state space. Meanwhile, training data is littered with arbitrary targets that do
nothing but confuse learning. To mitigate this, training is split up into two stages,
starting with a "pre-training" stage. The pre-training stage is intended to prime the
value decoder with meaningful state values, before enabling the full capacity of
agent implementation of section 4.6. The pre-training stage is inspired by Bakhtin
et al. [3], and makes the following modifications to regular operation:

• Value decoder targets are computed using backed-up discounted end-game
scores.

• The order decoder is unused, and not trained. Plausible actions are sampled
uniformly.15

• No action exploration is performed.

Search over (uniformly chosen) plausible actions is performed as usual, using
the value decoder for state values.

The pre-training stage is run until the value decoder can be seen to output
"reasonable" values near the end-game through manual inspection of visualiza-
tions produced throughout training. As an example, in a game state where one
power has a clear advantage over the others in the end-game, the value decoder is
considered "reasonable" if it predicts this power’s end-game score as higher than
the others.

15Bakhtin et al. [3] does train the order decoder during pre-training, based on the result of search
over the uniformly chosen plausible action subset. This was omitted from this thesis to simplify
interpretation of the loss function while pre-training, and because pre-training seems to yield good
results regardless.
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4.8.3 Agent Evaluation

Agents are evaluated through inspection of skill throughout training. Skill is meas-
ured through tournaments with comparison agents. The simplest comparison agent
is the "Uniform" agent, that at each turn chooses a random action. Any compet-
ent agent should easily beat the Uniform agent, yet it still acts as a cheap and
useful method of evaluating skill over time. Agents are also compared against
different (sometimes earlier) versions of themselves. For the Pure variant, a com-
parison with the A2C agent of Hatlø [20] is made, here called HatløA2C. The
following two sections detail how tournaments are held to compare agents, and
the HatløA2C agent.

Tournaments

Since the game of Diplomacy features more than two players, comparing agents
against each other is not as simple as playing one-on-one games and recording
win probabilities. On the classic 7-player Diplomacy map utilized for all major
Diplomacy research, the most common technique for comparing two agents is to
play one instance of one agent against six instances of the other, and vice versa.
This kind of "one-versus-all" tournament tests whether a population of the six-
instance agent can be invaded by the one-instance agent, and hence whether it
plays a Evolutionarily Stable Strategy. [1] These settings are referred to as 1v6
and 6v1. For 3-player game variants in this thesis (Lattice and Hub), tournament
settings are referred to as 1v2 and 2v1.

In balanced 2-player games like chess, an agent facing a copy of itself should
be expected to win 50% of the time. Similarly, in an N -player Diplomacy game
variant, an agent facing copies of itself achieves an expected Sum of Squares score
of 1/N .16 This expected score is important when inspecting tournament results for
Diplomacy, as scores above 1/N indicate a single agent is able to successfully in-
vade the opponent, and scores below indicate the opponent is able to successfully
protect against invasion from the single agent.

Importantly, the presence of a wide space of equilibria in Diplomacy [3]means
that some pairs of agents will be unable to invade each other, while performing
well against less competent agents.

Action exploration is a computationally heavy, and its value diminishes at later
iterations of training [3]. Therefore, it is disabled during tournament play. This
means search-based agents are restricted to the plausible actions sampled from
the order decoder.

16A Sum of Squares score of exactly 1/N might not be possible in a single game due to the layout
of supply centers. However, when playing a large number of games, the average score will converge
towards 1/N . Also, this average score assumes powers are assigned at random, for game variants
with asymmetric powers.
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Computational Restrictions During Tournaments (Pure)

Playing games with search-based agents is computationally heavy, and it is hard
to play a large number of games. This can become a problem when evaluating an
agent throughout training, as running a statistically significant number of tour-
nament games for comparison with a baseline agent could take more time than
training itself. The Pure game variant features 7 players, and is badly affected by
this problem. Therefore, a compromise is struck for this variant. When evaluating
the progression of skill throughout training, a computationally restricted version
of the agent (limited search iterations, limited plausible action space) is used. The
skill of the restricted agent should be correlated with the skill of the unrestricted
agent, and the intuition is that if the restricted agent is improving over time, the
unrestricted agent should be as well. This way of evaluating an agent gives useful
insight over time, but does not indicate the true power of the agent. Therefore,
additional tournaments are held with the final iteration of the agent without re-
strictions.

To avoid confusion when presenting results in chapter 5, the unrestricted ver-
sion of the agent is called GPI, and the restricted version is called GPI-R.

Comparison with HatløA2C (Pure)

Research question 2 requires a policy gradient agent as a benchmark. Several such
agents exist, with the most important being the RL version of DipNet of Paquette
et al. [37]. In later research utilizing GPI, this agent is used as a benchmark [1, 17,
3]. Later research also develop their own Actor-Critic agents building on improve-
ments in neural architecture arising from the development of their GPI agents.
Since DipNet RL is the common Actor-Critic benchmark agent in recent research,
comparison to it would be optimal for this thesis. However, DipNet RL is written
specifically for the classic game map, which is much to large for consideration
in this thesis, in addition to falling outside the ruleset modifications discussed in
section 4.1. Luckily, Hatlø [20] proposes an Actor-Critic agent based partly on
DipNet RL trained on the Pure game variant; one of the game variants chosen for
consideration in this thesis. The agent of Hatlø [20] is discussed in Related Work
section 3.4.5. Throughout the rest of this thesis, it is referenced as HatløA2C, to
distinguish it from its LOLA sibling.

Code and neural network weights for the agent are available online.17 A thin
compatibility layer is implemented to allow the HatløA2C agent to interface with
this thesis. No agent code is modified, but one major quirk exists: HatløA2C can
output illegal unit orders. The MILA game engine, also utilized by Hatlø [20], is
known to gracefully ignore illegal orders, treating them as if no order was submit-
ted. Failing to submit an order triggers a default order. The game engine for this
thesis (section 4.2) does not allow illegal actions. Therefore, illegal unit orders by
HatløA2C are converted to their equivalent default order under the MILA engine

17At https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3024711, accessed 12.05.2023

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3024711
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(with one exception):

• An illegal order in the movement phase is converted into a Hold order
• The default order when building in the adjustment phase is to opt out of

building. This order is not supported in this thesis, on the grounds that
building a unit when able is always beneficial. Therefore, an illegal order
in the build phase is converted into a random build order. This should only
improve the performance of the agent, especially on the small Pure variant.

• An illegal order when removing units in the adjustment phase is turned into
a random legal disband order.

• An illegal order in the Retreat phase is turned into a disband order.

An additional quirk is that the agent is trained for a maximum of 10 order
phases. The number of in-game years involved in these 10 order phases can vary,
but will always be less than the maximum number of in-game years considered for
the Pure variant in this thesis. HatløA2C is therefore strictly speaking not trained
for the game length considered in this thesis.

4.9 Summary of Methodology

In this chapter, a modular reinforcement learning system for Diplomacy based on
state-of-the-art research was described.

The system operates on a modified version of the original Diplomacy rules:
Coastal and sea areas are omitted, the non-communicative No-Press game variant
is assumed, and Sum-of-Squares (SoS) scoring is used to score games reaching a
turn limit.

The MILA game engine is utilized, as it is simple to utilize and supports game
variants. The game variant creation process is automated through a specification
in the YAML file format, enabling game variants to be fully described alongside
agent hyperparameters, including configuration of game visualization.

A game representation is defined which enables the agent to interact with
the game environment through the formalism of states and actions. The agent
perceives the game through a representation of board state. The action space is
modeled as sequences of unit orders, and a representation of the space of legal
actions is supplied to the agent alongside the board state representation, allowing
the agent to choose among legal actions only.

A neural network serves as a differentiable model at the core of decision-
making for the agent. The neural network takes as input the board state and space
of legal actions, and produces as output a prediction of end-game SoS score, an
action as a sequence of orders, and the conditional probability distributions from
which the orders were sampled. The neural network uses the Encoder-Decoder
architecture with two decoding "heads". A GCN-based encoder produces an en-
coding of board state. Then, this encoding is processed by the value decoder to
produce a prediction of end-game SoS score, and by the LSTM-based order de-
coder (alongside the space of legal actions) to produce an action and the condi-
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tional probability distributions from which it was sampled.
Primarily inspired by Double Oracle Reinforcement Learning for Action Ex-

ploration (DORA) of Bakhtin et al. [3] (section 3.4.4), an agent is implemented
that samples a subset of the action space from a order decoder, optionally aug-
ments this subset with action exploration to add reasonable actions, and then per-
forms game-theoretic Regret Matching (RM) search with next-state values from
the value decoder to produce a joint strategy over the action subset approximating
a Nash Equilibrium. The agent acts by playing its part in the joint strategy.

The agent is trained through self-play on three Diplomacy game variants: Pure,
Lattice and Hub. For each turn of the game, a sample for learning is stored con-
sisting of the input to the neural network, an improved estimate of the current
state value, and the resulting joint strategy produced by RM. The value estim-
ate is either the expected payoff when playing by the joint strategy from RM and
using bootstrapped next-state values from the value decoder, similar to value it-
eration, or the discounted end-game score. Then, the neural network is trained to
imitate the learning targets, improving the value decoder estimate, aand making
the order decoder more likely to predict actions considered good by search in the
future. Training begins with a pre-training stage that aims to achieve a reasonable
fit of the value decoder Agents are evaluated through inspection of skill through-
out training, measured through "one-versus-all" tournaments. All agents are com-
pared against the Uniform agent. Additionally, the agent trained for the Pure game
variant is compared with the A2C agent of Hatlø [20], dubbed HatløA2C in this
thesis.





Chapter 5

Results and Analysis

This chapter presents and analyses results gathered in carrying out the method-
ology of the previous chapter. The chapter opens by introducing the figures and
tables used in detailing results. Then, the results for each game variant are presen-
ted and analysed one by one. Analysis for each subsequent game variant builds
upon earlier analysis. The chapter ends with a summary.

5.1 Anatomy of Results

Three agents are trained, one for each game variant. The agents are evaluated
through skill in tournament games against other agents. Two kinds of tourna-
ment results are presented for each game variant: A skill-progression plot and a
comparison table. Both are made in the style of Gray et al. [17]. The trained agents
are summarized in table 5.1.

In the results, GPI refers to a fully trained agent, GPI-R refers to a computation-
ally restricted version of the fully trained agent (limited search iterations, limited
number of plausible actions), and GPI-Pre-iN refers to the agent at pre-training
iteration N. The Uniform agent chooses a legal move at random each turn, and
HatløA2C is the agent presented in section 4.8.3.

Variant Iterations (Pre) Search Iterations Plausible Actions
Pure 1822 (522) 1024 (GPI-R: 128) 10 (GPI-R: 3)
Lattice 1200 (800) 1024 5
Hub 900 (100) 1024 5

Table 5.1: Summary of trained agents. The Iterations column shows the number
pre-training iterations in parenthesis. For Pure, the parameters of the restricted
agent are shown in parenthesis.

67
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5.2 Presentation and Analysis of Results for the Pure game
variant

For the Pure game variant, 1822 iterations of training are performed. The first 522
iterations form the pre-training stage as discussed in section 4.8.2. Training was
conducted over a period of 26 days, and tournament games took around a week
to complete. 1024 iterations of search are performed at each turn, searching over
10 plausible actions per power.

As outlined in 4.8.3, the large joint action space of the Pure game variant
makes evaluating skill through time infeasible. Therefore, a computationally re-
stricted version of the agent is introduced (GPI-R). GPI-R performs only 128 iter-
ations of search, and only searches over 3 plausible actions per power.

The bug discussed in appendix B.1 affects results for the Pure variant (and
only the Pure variant), leading retreat orders to become ineffective in many game
states. The bug only affects game states where the search-based agent is retreat-
ing, meaning games between HatløA2C and Uniform are unaffected. The bug is
primarily detrimental to the search-based agent, as most or all of its retreat orders
are rendered ineffective. In game states where an opponent agent is retreating
simultaneously with a search-based agent, the bug affects the opponent agent as
well.

5.2.1 Progression of Skill

Figure 5.1 shows the (restricted) agent’s progression of skill throughout training,
measured through tournaments with HatløA2C and the Uniform agent. The figure
shows that the agent improves against both opponents over time, and ends up
significantly outperforming them. The agent is able to both invade the opponent
when playing as a single agent, and protect against invasion when playing the
majority of powers. The agent performs better against the Uniform agent than
against HatløA2C, which is to be expected, considering HatløA2C is trained to be
competent at the game.

Interestingly, the agent starts off outperforming the Uniform agent already at
iteration 0 (with arbitrary network weights), while performance against HatløA2C
is expectedly poor. This is likely due to the fact that terminal successor states are
evaluated by their true end-game score, rather than predictions from the value
decoder. This means that the agent has an advantage in the end-game over the
Uniform agent already before any training is performed, since it is making a de-
cision informed by true end-game scores. This advantage is not massive, as several
random events have to coincide in order for the agent to capitalize. For example,
actions that likely lead to good end-game states have to exist in the plausible ac-
tion set (the selection is uniform during pre-training, and action exploration is
not used), the evaluation of non-terminal successor states have to be (randomly)
worse, and the agent has to have randomly ended up in a game state where a
good end-game score is possible. The agent has the best advantage when games
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Figure 5.1: Skill of (restricted) agent on Pure game variant across training itera-
tions. Each individual graph shows, as a function of time, the average SoS score
of a single agent playing 100 games against 6 copies of another, along with the
95% confidence interval. The color of a line indicates the opponent agent being
compared against (HatløA2C or Uniform). Solid lines show games with 1 copy of
the agent and 6 copies of the opponent. Dashed lines show games with 6 copies
of the agent and 1 copy of the opponent. Scores are always from the perspective
of the single agent. The solid vertical line indicates the end of the pre-training
stage at iteration 522. The dashed horizontal line shows a score of 1/7≈ 14.3%,
which is the expected score of a single agent playing against 6 copies of itself.
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end due to the turn limit, since all successor states when making the last action are
terminal, leading the agent to effectively search based on true end-game scores
only.

The agent’s poor performance against HatløA2C during early iterations is ex-
pected, since the agent is only playing slightly better than the Uniform agent at this
stage (in the end-game). As training progresses, the invasion score of HatløA2C
diminishes to almost exactly 1/7 ≈ 14.3%, meaning it is not able to invade. The
invasion score against HatløA2C stays poor throughout pre-training, and this is
likely due to the agents poor understanding of early turns of the game during
pre-training.

A large dip in performance can be observed at iteration 523, the first iteration
after the pre-training stage. This iteration simply copies neural network weights
from the iteration 522, and removes the pre-training stage modifications of section
4.8.2; The order decoder is enabled, action exploration is enabled (for training),
and the value decoder starts learning with bootstrapped next-state values. Since
no further training has occurred yet, and action exploration is disabled for tour-
nament play, the only agent modification that differentiates the iteration from
the last iteration of pre-training is the enablement of the (so far untrained) order
decoder. The order decoder must therefore be to blame for the performance dip.
The performance dip can be attributed to the fact that the untrained order decoder
produces arbitrarily biased subsets of the action space as plausible actions.

Comparing iteration 0 and 523 one can make the interesting observation that
an untrained order decoder in combination with a "reasonable" (pre-trained) value
decoder seems to perform worse than uniformly choosing plausible actions in
combination with an untrained value decoder. The difference is particularly no-
ticeable in the 6v1 scenario against HatløA2C, and the 1v6 scenario against the
Uniform agent. The reason for this is unclear, but could be due to the bias in the
untrained order decoder being so adverse that the agent consistently fails to con-
sider good actions, and therefore fails to take advantage of both the trained value
decoder and terminal scores in the end-game.

After pre-training, performance against both agents quickly rises, with an up-
wards trend indicating performance could improve even more if training was con-
tinued. Large dips in performance are observed throughout training, which can
be attributed to several factors. First, since the value decoder and order decoder
share a common encoder, learning weights is complex. A good fit for one of the
decoders can lead to a worse fit for the other. Second, it is the nature of RL al-
gorithms that the neural network is being fit to a moving target. An update to
the value decoder could outdate the fit of the order decoder, and an updated or-
der decoder requires further training of the value decocer. An example scenario
where this could lead to worse performance is if an updated value decoder leads
search (and action exploration) to recommend a (joint) action that so far has
been considered of little value, and therefore leads to a part of the state space
that the neural network is undertrained on. Third, although the game variants
are symmetric (section 4.8.1), the skill of an agent with the different powers can
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(a) First 100 games. (b) 1000 games.

Figure 5.2: Average SoS score per power in tournaments with 1x GPI playing
6x Uniform on the Pure game variant, plotted with the 95% confidence interval.
5.2a shows the result after playing 100 games (the games behind the entry in
table 5.2). 5.2b shows the result after playing 1000 games. Notice that the scores
deviate more after 100 games than after 1000, and that the score 1/7 ≈ 14.3%
(horizontal line) is within confidence interval for all powers after 1000 games.

vary due to the nature of RL. This can decrease accuracy in the results as the
number of games played can become insufficient for particularly skewed agents.
As an example, 100 tournament games with random power assignments is more
appropriate for measuring the skill of an agent that is equally skilled with all 7
powers, than for a skewed agent that is very skilled with one power, and poor with
the others. For roughly 100 ∗ 1/7 ≈ 14 games, the skewed agent will be playing
competently. For the rest of the games, it will be playing poorly. In comparison, a
non-skewed agent will be equally competent regardless of the power it happens to
play, and should yield more consistent tournament scores. As shown in figure 5.2b
and expanded upon in the next section, the fully trained GPI agent does not seem
to be significantly skewed. It is therefore not believed to be a major contributing
factor to the dips in performance.

5.2.2 Skill of Final Iteration

Table 5.2 shows the result of tournaments between the agent at its final iteration
in both unrestricted and restricted form (GPI and GPI-R), the Uniform agent, and
HatløA2C.

Consider first tournaments held between HatløA2C and the Uniform agent.
Hatlø [20] reports1 an average score of 22.6% (stddev 18.6%) when a single
HatløA2C agent plays six Uniform agents. Conversely, he reports an average score
of 6.7% (stddev 8.1%) for a single Uniform agent playing six copies of HatløA2C.
Cross-referencing these scores with the results in table 5.2, one can observe that

1The scores are extracted from table 5.1, showing the average end-game "reward". The reward
signal is Sum-of-Squares scoring, matching the scoring mechanism used in this thesis.
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1x ↓ vs 6x→ Uniform HatløA2C GPI-R GPI
Uniform - 9.0%±1.1% 3.0%±0.5% 6.6%±0.8%

HatløA2C 33.9%±2.5% - 5.8%±1.0% 7.1%±0.8%

GPI-R 66.4%±4.1% 44.8%±4.5% - 9.6%±1.3%

GPI 57.0%±4.0% 33.4%±3.9% 10.5%±1.6% -

Table 5.2: Average SoS scores of agents playing 100 games against 6 copies of
another agent on the Pure game variant, along with standard error (after ±).
An agent playing against 6 copies of itself scores an average of 1/7 ≈ 14.3%,
and such comparisons are therefore omitted ("-"). The comparisons of GPI-R with
HatløA2C and the Uniform agent correspond to the final iteration of figure 5.1.

HatløA2C scores significantly better against 6x Uniform agents, and that the Uni-
form agent also scores slightly better against 6x HatløA2C. This disparity can be
attributed to the fact that agents are forced to select legal actions in this thesis’
game environment, which should improve the performance of both agents: The
Uniform agent is more likely to choose an action with impact, and less likely to
choose an action that reduces to a default (no-op) order, and illegal orders of
HatløA2C in the build phase are converted to legal build orders in situations where
it otherwise would have chosen not to build (a "waive" order, see section 4.8.3),
which is better a vast majority of the time. It can be concluded from this compar-
ison with the scores of Hatlø [20] that HatløA2C performs better here than in its
original context.

Both GPI and GPI-R clearly outperform the Uniform agent and HatløA2c in
all respects: When playing as the 1x agent, they obtain scores far higher than
1/7≈ 14.3%, and when playing the 6x agent, their opponent scores far lower.

A surprising result is that GPI-R scores better than GPI against both HatløA2C
and the Uniform agent in all respects. Given more computational headroom, one
would imagine that GPI would be the more competent of the two. This result
could be due to the restricted plausible action space of GPI-R turning out to be a
benefit when playing less competent agents: When playing against the Uniform
agent, the game-theoretic assumption that opponents play competently by the
same equilibrium does not hold. This is true to a lesser extent for HatløA2C as well.
A smaller plausible action space reduces the considerations the search operator
has to take with respect to opponents actions, leading to more greedy plays, which
might be beneficial when faced with an opponent that takes its actions following
a completely different model.

Neither GPI nor GPI-R scores above 1/7 ≈ 14.3% when playing six copies of
the other. GPI does obtain a higher invasion score against GPI-R than vice versa,
however. Because both GPI and GPI-R can be said to be competent agents based
on comparison with the Uniform agent and HatløA2C, the fact that neither is able
to invade the other can be attributed to the finding of Bakhtin et al. [3] that mul-
tiple equilibria exist for the game of Diplomacy. To significantly outperform GPI
and GPI-R as implemented, one would therefore have to make use of regularized
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search as introduced by Jacob et al. [23].
Figure 5.2 visualizes the average score of each power in tournaments of a

single GPI agent playing 6 copies of the Uniform agent. Measuring the relative
skill of an agent with each power intuitively takes a larger number of games than
measuring the skill of the agent playing an arbitrary power. Therefore, the visu-
alization is made first using the 100 tournament games behind the entry in table
5.2 in figure 5.2a, then with 1000 tournament games in figure 5.2b. Figure 5.2b
indicates that the agent is somewhat skewed. Since the Pure game variant (like
Lattice and Hub) is symmetric, this can only be due to the operation of the trained
agent. Therefore, the figure is evidence that RL can produce an agent more skilled
with some powers than others.

5.3 Presentation and Analysis of Results for the Lattice
Game Variant

For the Lattice game variant, 1200 iterations of training are performed. The first
800 iterations form the pre-training stage as discussed in section 4.8.2. Training
was conducted over a period of 2 days, and tournament games took around a day
to complete. 1024 iterations of search are performed at each turn, searching over
5 plausible actions per power.

In addition to the Uniform agent, comparisons are made with the agent at the
final iteration of pre-training (iteration 800), referred to as GPI-Pre-i800.

5.3.1 Progression of Skill

Figure 5.3 shows the agent’s progression of skill throughout training, measured
through tournaments with the Uniform agent and GPI-Pre-i800.

Several observations made in analysing results for the Pure game variant in
the previous section apply here as well. The agent outperforms the Uniform agent
already at iteration 0, and there is a dip in performance at the first iteration after
pre-training, after which the agent quickly outperforms the pre-training stage.

In this variant, the agent reaches close to a 100% score against the Uniform
agent after only about 900 iterations. In comparison, the agent achieves its max-
imum measured average score of about 70% against the Uniform agent in the
Pure variant after about 1700 iterations (see figure 5.1). This comparison must
be seen in context: The Pure game variant features 7 players, whereas the Lattice
variant only features 3. The high player count of the Pure variant means the ac-
tion of a single agent has a lesser influence on the game. A high player count also
puts harder requirements on the agent to properly model its opponent, and allows
for complex relationships to form. The map topologies should also be considered.
The Pure variant features a small number of fully-connected regions, leading to a
cramped map. The Lattice variant features a smaller number of regions connected
in a more complex structure. Intuitively, it makes sense that a search-based agent
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Figure 5.3: Skill of agent on Lattice game variant across training iterations. Each
individual graph shows, as a function of time, the average SoS score of a single
agent playing 100 games against 2 copies of another, along with the 95% confid-
ence interval. The color of a line indicates the opponent agent being compared
against (GPI-Pre-i800 or Uniform). Solid lines show games with 1 copy of the
agent and 2 copies of the opponent. Dashed lines show games with 2 copies of
the agent and 1 copy of the opponent. Scores are always from the perspective of
the single agent. The solid vertical line indicates the end of the pre-training stage
at iteration 800. The dashed horizontal line shows a score of 1/3≈ 33.3%, which
is the expected score of a single agent playing against 2 copies of itself.



Chapter 5: Results and Analysis 75

1x ↓ vs 2x→ Uniform GPI-Pre-i800 GPI
Uniform - 10.1%±0.9% 10.2%±0.7%

GPI-Pre-i800 81.0%±2.2% - 12.5%±0.8%

GPI 96.3%±1.2% 73.9%±2.3% -

Table 5.3: Average SoS scores of agents playing 100 games against 2 copies of
another agent on the Lattice game variant, along with standard error (after ±).
An agent playing against 2 copies of itself scores an average of 1/3≈ 33.3%, and
such comparisons are therefore omitted ("-"). The comparisons of GPI with GPI-
Pre-i800 and the Uniform agent correspond to the final iteration of figure 5.3,
and the comparisons of GPI-Pre-i800 with the Uniform agent corresponds to the
orange points at iteration 800.

has a greater advantage against the Uniform agent in a complex environment
where each player has a larger proportion of influence.

Additional tournaments are held against GPI-Pre-i800. This version of the
agent is more powerful than the Uniform agent, but should by design be out-
classed by further training. As expected, GPI-Pre-i800 soundly beats the agent at
the first iteration of training, and performance tends towards 1/3≈ 33.3% as pre-
training progresses. At the final iteration of pre-training, the agent is effectively
playing tournament games against itself. Therefore, an average score of 33.3% is
expected in both the 1v2 and 2v1 scenarios against GPI-Pre-i800 at iteration 800.
This seems approximately correct. As training progresses, GPI-Pre-i800 is soundly
outperformed by the agent.

5.3.2 Skill of Final Iteration

Table 5.3 shows the result of tournaments between the agent at its final iteration
(GPI), the agent at pre-training iteration 800 (GPI-Pre-i800), and the Uniform
agent.

Both GPI and GPI-Pre-i800 clearly outperform the Uniform agent in all re-
spects: When playing as the 1x agent, they obtain scores far higher than 1/3 ≈
33.3%, and when playing the 2x agent, the Uniform agent scores far lower. By the
same metric, GPI clearly outperforms GPI-Pre-i800.

5.4 Presentation and Analysis of Results for the Hub Game
Variant

For the Hub game variant, 900 iterations of training are performed. The first 100
iterations form the pre-training stage as discussed in section 4.8.2. Training was
conducted over a period of 2 days, and tournament games took around a day to
complete. 1024 iterations of search are performed at each turn, searching over 5
plausible actions.
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Figure 5.4: Skill of agent on Hub game variant across training iterations. Each
individual graph shows, as a function of time, the average SoS score of a single
agent playing 100 games against 2 copies of another, along with the 95% confid-
ence interval. The color of a line indicates the opponent agent being compared
against (GPI-Pre-i100 or Uniform). Solid lines show games with 1 copy of the
agent and 2 copies of the opponent. Dashed lines show games with 2 copies of
the agent and 1 copy of the opponent. Scores are always from the perspective of
the single agent. The solid vertical line indicates the end of the pre-training stage
at iteration 100. The dashed horizontal line shows a score of 1/3≈ 33.3%, which
is the expected score of a single agent playing against 2 copies of itself.

In addition to the Uniform agent, comparisons are made with two alternative
versions of the agent: GPI-Pre-i100 the agent at the final iteration of pre-training
(iteration 100), and GPI-Pre-i900, which results from 800 additional iterations of
pre-training initialized with GPI-Pre-i100.

5.4.1 Progression of Skill

Figure 5.4 shows the agent’s progression of skill throughout training, measured
through tournaments with the Uniform agent and GPI-Pre-i100.

Consistent with the results for the Pure and Lattice game variants, the agent
outperforms the Uniform agent already at iteration 0, and its performance dips
at the first iteration after pre-training. Unlike those variants, however, the agent
is able to soundly beat the Uniform agent already at the final iteration of the
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1x ↓ vs 2x→ Uniform GPI-Pre-i100 GPI-Pre-i900 GPI
Uniform - 0.1%±0.1% 0.4%±0.2% 0.0%±0.0%

GPI-Pre-i100 99.4%±0.6% - 17.8%±2.9% 3.2%±1.0%

GPI-Pre-i900 100.0%±0.0% 36.6%±3.8% - 6.1%±1.9%

GPI 100.0%±0.0% 76.1%±3.9% 69.1%±4.2% -

Table 5.4: Average SoS scores of agents playing 100 games against 2 copies of
another agent on the Hub game variant, along with standard error (after ±). An
agent playing against 2 copies of itself scores an average of 1/3 ≈ 33.3%, and
such comparisons are therefore omitted ("-"). GPI-Pre-i900 is an agent produced
by continuing pre-training until iteration 900. The comparisons of GPI with GPI-
Pre-i100 and the Uniform agent correspond to the final iteration of figure 5.4,
and the comparisons of GPI-Pre-i100 with the Uniform agent corresponds to the
orange points at iteration 100.

(relatively short) pre-training stage. Therefore, the Uniform agent is not a good
benchmark of skill after the pre-training stage.

Comparisons to the final iteration of pre-training (GPI-Pre-i100) are mostly
consistent with those for the Lattice game variant: The agent is soundly beaten
by GPI-Pre-i100 in early iterations, then the score tends towards 1/3 ≈ 33.3%,
and finally the agent soundly outperforms GPI-Pre-i100 as training progresses. At
iteration 100, the performance of the agent in the 2v1 scenario deviates notic-
ably, however. The expected score is within the confidence interval, but the mean
deviates. Had more than 100 games been played per scenario, the means should
converge to 33.3%. This result is instructive to the plot at large, as the relatively
low amount of games (100 per comparison) can lead to misleading results: Stat-
istically we know the true average score is 33.3% against GPI-Pre-i100 at iteration
100 since the agent under training is equal to GPI-Pre-i100 at this iteration, but
the plot seems to indicate a different score.

The 1v2 invasion score against GPI-Pre-i100 fluctuates significantly starting at
iteration 500. The reason for this is likely the same as for the performance dips
analysed for the Pure game variant.

5.4.2 Skill of Final Iteration

Table 5.4 shows the result of tournaments between the agent at its final itera-
tion (GPI), the agent at pre-training iteration 100 (GPI-Pre-i100), an agent result-
ing from 800 additional pre-training iterations (GPI-Pre-i900), and the Uniform
agent.

GPI-Pre-i900 scores better than GPI-Pre-i100 in most respects: It better pro-
tects against invasion from GPI, it is more able to invade GPI, it is more able to
invade GPI-Pre-i100 than vice versa, and it is more able to invade the Uniform
agent. The only tournament setting where GPI-Pre-i100 wins over GPI-Pre-i900 is
in invading 6x Uniform agents, and the difference is very small.

All of GPI, GPI-Pre-i100 and GPI-Pre-i900 clearly outperform the Uniform
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agent in all respects: When playing as the 1x agent, they obtain scores far higher
than 1/3 ≈ 33.3% (close to 100%), and when playing the 2x agent, the Uniform
agent scores far lower (close to 0%). By the same metric, GPI clearly outperforms
both GPI-Pre-i100 and GPI-Pre-i900.

From this, one can conclude that pre-training produced a reasonably good
agent (GPI-Pre-i100), and that while continuing the pre-training stage 800 ad-
ditional iterations produces a better agent (GPI-Pre-i900), the same amount of
iterations spent without the limitations of the pre-training stage produce an even
better agent (GPI).

5.5 Summary of Results and Analysis

An agent was trained for each of the three game variants Pure, Lattice and Hub.
Each agent was evaluated through skill in tournaments, the results of which was
presented and analysed in this chapter. Comparisons between game variants were
pointed out as part of the analysis of the preceding sections. This section summar-
izes the chapter by first focusing on similarities and differences between game
variants, and then on results and analysis unique to the Pure game variant.

5.5.1 Summary of Similarities and Differences

Trained agents for all game variants outperform the Uniform agent. In the Hub
game variant, the pre-training stage is enough to beat the Uniform agent convin-
cingly, whereas the Pure and Lattice variants benefit from further training. Trained
agents for all game variants have an advantage against the Uniform agent already
at iteration 0, hinting at the value of search in the end-game even without a prop-
erly trained value network.

For the Lattice and Hub game variants, comparisons are made against the final
pre-training agent. Further training outperforms the pre-training agent in both
cases. For the Hub variant, the pre-training stage was extended to match the total
iterations behind the search-based agent. This extended pre-training outperforms
the younger pre-training agent, but is outperformed by the search-based agent.

The results for the Hub variant demonstrate weakness in the measurement
process, and highlight the importance of showing confidence intervals: For two
of the tournaments in its skill-progression plot, the true expected score is known.
The mean score deviates noticably, but the true score is within the confidence
interval.

For all game variants a dip in performance exists at the first iteration after
the pre-training stage. The dip is especially significant for the Pure game variant,
where it dips below the performance at the first iteration. This dip is attributed
to the use of an untrained order decoder, and shows the importance of having a
good plausible action set. Since the untrained order decoder is demonstratively
bad, it also shows the importance of action exploration.
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For all game variants, performance roughly increases against all opponent
agents throughout training. Variation exist, however, and can be attributed to the
nature of the RL algorithm and the fact that skewed agents can require a larger
number of measurement games.

5.5.2 Summary of Results and Analysis for the Pure Game Variant

For the Pure game variant, additional tournament games are played to measure
the fully trained agent’s relative skill with each power. Results indicate that the
agent is somewhat more skilled with some powers than others, but only by a small
amount.

Three factors differentiate the tournament results of the Pure game variant
from the other two: The bug documented in appendix B.1, usage of a compu-
tationally restricted version of the agent for the skill-progression plot, and the
presence of an existing competent baseline agent, i.e., HatløA2C.

The computationally restricted agent turns out to perform better than the ori-
ginal unrestricted version in comparison to other agents. This is surprising, and
could be either because a smaller plausible action space is beneficial, or because
"proper" game-theoretic play is not an advantage when playing agents that are
not also approaching the game with game theory. In tournaments between the re-
stricted and unrestricted version, neither is able to successfully invade the other.
The unrestricted version achieves the highest invasion score, however. The result
likely relates to the presence of a wide space of equilibria in Diplomacy [3].

HatløA2C is shown to be competent when ported to this thesis’ game envir-
onment by comparisons with the Uniform agent, cross-referenced with the res-
ults reported in its original environment. The search-based agent soundly beats
HatløA2C.





Chapter 6

Conclusion

This chapter concludes the thesis by discussing research questions in light of the
analyzed results, listing thesis contributions, and outlining suggestions for future
work. The chapter opens with a thesis review, and closes with an epilogue.

6.1 Thesis Review

This thesis has explored the application of state-of-the-art deep reinforcement
learning techniques in the game of Diplomacy. Diplomacy is an unconventional
domain for AI where the best results have been achieved using (generalized)
policy iteration with game-theoretic search as the improvement operator. Recent
research has achieved success on the classic formulation of the game, which raises
an interest as to whether the proposed techniques generalize to other problems.
The game-theoretic situations that arise in Diplomacy can be related to real-life
issues like negotiation, tactics, and cooperation. The game also features a large ac-
tion space that poses special challenges for RL and require a novel representation
technique. The thesis has focused on the generality of state-of-the-art techniques
by training agents on variants of the classic game.

Chapter 1 motivated the thesis by introducing the idea of board games as
benchmarks for AI, Diplomacy as a particularly interesting benchmark, and by
giving an overview of the state of AI for Diplomacy. The chapter then stated the
thesis goal and the two research questions, both focusing on the application of
state-of-the-art techniques in Diplomacy game variants.

Chapter 2 presented the Diplomacy board game, as well as relevant back-
ground theory: neural networks, reinforcement learning, and game theory. Im-
portantly for the following discussion of research questions, it established "gener-
alized policy iteration" (GPI) as a term used to refer to any reinforcement learning
method that utilizes a policy improvement operator during training, and intro-
duced policy gradient methods as an alternative to this approach.

Chapter 3 contextualized the thesis by giving a brief summary of early work
on AI for Diplomacy and RL for board games in general, and then giving a detailed
summary of relevant research in RL for Diplomacy.

81
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Chapter 4 detailed the methodology used to address research questions. Primar-
ily inspired by Double Oracle Reinforcement Learning for Action Exploration (DORA)
of Bakhtin et al. [3] (section 3.4.4), an agent is implemented that samples a subset
of the action space from a neural network "order decoder", optionally augments
this subset with action exploration to add reasonable actions, and then performs
game-theoretic Regret Matching search with next-state values from a neural net-
work "value decoder" to produce a joint strategy over the action subset approxim-
ating a Nash Equilibrium. The agent plays its part in this joint strategy. The neural
network decoders share a common "encoder", and use the Encoder-Decoder archi-
tecture. Agents are trained through self-play on three Diplomacy game variants:
Pure, Lattice and Hub.

Chapter 5 presented and analysed results from training an agent for each of
the three game variants Pure, Lattice and Hub. As is common in recent RL research
for Diplomacy, the agents were evaluated based on "one-versus-all" tournaments
against chosen opponent agents. All agents were compared against the Uniform
agent. Additionally, the agent trained for the Pure game variant was compared
with the A2C agent of Hatlø [20] (here called HatløA2C), and the Lattice and
Hub agents were compared with their pre-training version. The insight gained
from chapter 5 will be used to address the two research questions in the following
section.

6.2 Discussion

With the thesis reviewed, the research questions of section 1.2 can be discussed
in light of the analyzed results:

Research Question 1 Can state-of-the-art techniques successfully learn to play
Diplomacy map variants?

In answering the question it is necessary to first establish the developed system
as an implementation of state-of-the-art techniques, to elaborate on what it means
to successfully learn to play map variants, and to establish success criteria. Then,
the results can be discussed in relation to the established success criteria.

The RL system presented in chapter 4 is based on the latest directly relev-
ant work in RL for Diplomacy: DORA of Bakhtin et al. [3]. Later work builds
on Bakhtin et al. [3] by regularizing search by a human prior (Sections 3.4.6,
3.4.7 and 3.4.8). These later works assume the presence of human data, which is
not generally available for Diplomacy game variants. When learning to play Dip-
lomacy game variants, the agent is expected to learn from scratch without human
data. Learning from scratch is exactly the focus of Bakhtin et al. [3], and the imple-
mented RL system for this thesis can therefore be considered an implementation
of state-of-the-art techniques1.

1State-of-the-art in the context of learning from scratch with no human data.
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The developed system does deviate from state-of-the-art in several areas, how-
ever. First, the KL-Divergence loss function is used for both the order decoder and
value decoder. This loss function is novel for Diplomacy RL, and was chosen be-
cause it is intuitive given that learning targets for both decoders are probability
distributions2. Loss functions more commonly used in relevant work would en-
hance the relevancy of the results, but the choice of loss function is not believed
to be a major factor in answering the research questions. Second, Bakhtin et al.
[3] train their order decoder in the pre-training stage, whereas this thesis has
chosen not to. This choice is likely to blame for the performance dips observed
for the first iteration after pre-training in all game variants, and training the or-
der decoder from the start could have led to more efficient training. On the other
hand, the simplified pre-training stage has reduced complexity in training, and has
been shown to work well in practice. Third, although early work on Diplomacy
RL shared the encoder between the value decoder and order decoder, later work
(including Bakhtin et al. [3]) has opted to split the network in two, with separ-
ate encoders for each decoder. The reasons for splitting the network are sound,
but this thesis decided to stick with the shared architecture because it reduces
the number of weights and allows the board state encoding to be reused across
the decoders. Most GPI works use a split architecture, but Anthony et al. [1] is
an example of a GPI implementation with a shared architecture. The choice of a
shared architecture therefore does not disqualify the system as representing state-
of-the-art3. Fourth, similar to the previous point, Bakhtin et al. [3] swaps out the
GCN-based encoder of earlier work with a transformer-based encoder. This thesis
again decided to stick with the "original" architecture of using a GCN. As Gray et
al. [17] exists as an example of a GPI work that uses a GCN-based encoder, the
choice is not considered to disqualify the system. Fifth, the board state represent-
ation in related work is typically more complex than that chosen for this thesis:
They include a representation of the board state and orders chosen last turn. The
simpler board state representation simplifies the learning task, but robs the agent
of the opportunity to react to opponent actions in the previous turn. For the simple
variants considered in this thesis, this trade-off is considered acceptable.

When evaluating whether agents can successfully learn to play a map variant,
three aspects are considered. First, learning is a process that happens over time,
and improvement over time is therefore expected in a well-functioning RL agent.
Second, improvement over time is only impressive if the agent eventually becomes
somewhat competent at the game. The Uniform agent is used as a trivial baseline.
Third, state-of-the-art RL for Diplomacy consists of many moving parts, and all of
these parts are expected to contribute to the success of the agent; The RL system is
expected to be cohesive. As an example, consider a system that reaches some level
of competence through simple pre-training, but fails to apply its more intricate
components in a useful way. This system would do just as well playing by the

2The output of the order decoder is most often a probability distribution over only a subset of
the action space (It doesn’t necessarily sum to 1), and is thus not a true probability distribution.

3In the context of GPI as a state-of-the-art technique, as opposed to earlier techniques.
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simple pre-training procedure, and the rest of the system becomes superfluous.
In this scenario, the system as a whole can be considered to fail the learning task
although part of the system did its job well.

The research question inquires about map variants in general. Therefore, ex-
perimentation on several different map variants is needed to address the question.
The three game variants chosen for this thesis differ in map topology and player
count. Also, both intuition and results show that they pose varying degrees of diffi-
culty to the RL system. Hub turns out to be a simple variant to learn, as pre-training
is enough to dominate the Uniform agent. Pure is the most difficult variant due to
its high player count. Lattice has a low player count, but features a relatively com-
plex map topology that takes the agent many iterations to learn in pre-training,
before eventually dominating the Uniform agent. The chosen game variants are
diverse, and are therefore considered appropriate candidates for addressing the
research question.

With the question contextualized, and the methodology argued to be appropri-
ate for answering it, the results and analysis of chapter 5 can be evaluated on the
three defined success criteria: improvement over time, competence, and cohesion.
The skill of all trained agents against all chosen baseline opponent agents is shown
to roughly improve over time. The improvement is not monotonic, but the ob-
served variation in skill over time can be attributed to the nature of RL algorithms.
All trained agents are shown to be competent against the chosen baseline oppon-
ents. The Uniform agent is significantly outperformed in the complex Pure variant,
and completely outclassed in the Lattice and Hub variants. Comparisons are also
made with more competent baseline agents: The agents at their pre-training stage
(Lattice and Hub) and HatløA2C (Pure). These agents are shown to be competent
through tournaments with the Uniform agent, and the fully trained agents are
shown to outperform them. The system can be argued to be cohesive based on
the successful results for the fully trained agents against their pre-training coun-
terpart for Lattice and Hub. This shows that the pre-training stage alone is not
sufficient for reaching maximal skill. Analysis also indicates that a well-trained
order decoder and action exploration is crucial to the success of the agent.

These results give a strong indication that, indeed, state-of-the-art techniques
can successfully learn to play Diplomacy map variants.

Research Question 2 Do state-of-the-art generalized policy iteration techniques
compare favorably to policy gradient techniques for Diplomacy on the Pure game
variant?

The arguments for the developed RL system being an appropriate implement-
ation of state-of-the-art techniques apply to this research question also. As elab-
orated when presenting the research question in section 1.2, the openly available
Actor-Critic (A2C) agent of Hatlø [20] (HatløA2C) is used as a competent refer-
ence policy gradient agent. As the game environment of this thesis differs slightly
from the environment HatløA2C was originally trained for, modifications to its op-
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eration were necessary. To prove the competence of HatløA2C, tournaments from
Hatlø [20] were reproduced. Results show that HatløA2C is at least as competent
as in its original game environment, and that it serves as a good reference agent
for comparison. An agent was trained on the Pure game variant, the game variant
that HatløA2C plays. Results show that the trained agent soundly beats HatløA2C,
showing that state-of-the-art generalized policy iteration techniques can outper-
form a competent policy Gradient agent.

6.3 Contributions

This thesis makes the following contributions:

• A detailed and holistic explanation of state-of-the-art in reinforcement learn-
ing for Diplomacy through chapter 2, 3, and 4. Special focus is put on the
order decoder, as this complex component receives little attention in the
way of explanation in prior research.

• A thorough exploration of the two research questions through the discussion
in the preceding section.

• A successful application of state-of-the-art techniques in three variants of
the classic Diplomacy game.

• An agent that outperforms Hatlø [20], establishing a new state-of-the-art
for the Pure game variant.

• An application of GPI techniques using the MILA game engine which can
train agents for arbitrary game variants4. Prior research has utilized faster
game engine implementations written in C++, hardcoded for the classic
game variant.

• A possible bug in the MILA game engine is uncovered, which affects search-
based agents seeking to minimize copying by mutating state. See appendix
B.1.

6.4 Future Work

Reinforcement Learning for Diplomacy is a complex domain, with many interest-
ing topics to explore. The following sections outline suggestions for future work
building upon this thesis.

6.4.1 Exploration of Search Regularized by a Computational Agent

A key component in RL for Diplomacy when playing against humans is regular-
ized search, as presented in related work sections 3.4.6 and 3.4.7, and briefly
discussed in the analysis of results for Pure when comparing against HatløA2C.
Further improvement against HatløA2C (or the agent developed in this thesis)

4Within the ruleset modifications of section 4.1.
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likely requires an application of regularized search, to enable the agent to imit-
ate the opponent. Developing an agent that regularizes against a computational
agent is a novel avenue for further research, and would enable experimentation
with regularized search on game variants lacking human data.

6.4.2 Investigation of Computational Restrictions

For the Pure game variant, a computationally restricted version of the agent per-
formed best. This is surprising, and was not explored further in this thesis due to
not being directly relevant to the research questions at hand. Reproducing these
results and explaining them can enhance understanding of the DORA algorithm.

6.4.3 Application in Other Games

This thesis has shown that state-of-the-art techniques can generalize to variants of
the classic Diplomacy game. Exploring the application of the techniques to other
games with similar traits is a natural next step.

6.4.4 Fast Engine Supporting Game Variants

The MILA engine is flexible, but slow. The development of a fast OpenSource
Diplomacy engine supporting game variants could benefit the Diplomacy research
community.

6.4.5 Exploration of Symmetry in Diplomacy Maps

All game variants considered in this thesis are symmetric (section 4.8.1). It is
possible to take advantage of this to achieve more compact state spaces. This was
not explored as it does not generalize to game variants in general. Exploration
of asymmetry in Diplomacy through game variants could also be an interesting
topic.

6.5 Epilogue

In general, this work shows that state-of-the-art reinforcement learning techniques
that have seen success on the classic Diplomacy map can be applied successfully
in alternative map topologies. This result hints at the generality of the techniques
and is a step toward their application in real-life issues.
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Appendix A

Orders for Game Variant in
Figure 4.2a

Denoted as Ω in section 4.4.2. oi is an integer index into Ω, and Oi is a set of these
indexes.

1. A ELT H
2. A ELT D
3. A ELT - HAN
4. A ELT R HAN
5. A ELT S A HAN
6. A ELT S A ELO - HAN
7. A ELT - ELO
8. A ELT R ELO
9. A ELT S A ELO

10. A ELT S A HAN - ELO
11. A HAN H
12. A HAN D
13. A HAN - ELT
14. A HAN R ELT
15. A HAN S A ELT
16. A HAN S A ELO - ELT
17. A HAN - ELO
18. A HAN R ELO
19. A HAN S A ELO
20. A HAN S A ELT - ELO
21. A ELO H
22. A ELO D
23. A ELO - ELT
24. A ELO R ELT
25. A ELO S A ELT
26. A ELO S A HAN - ELT
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27. A ELO - HAN
28. A ELO R HAN
29. A ELO S A HAN
30. A ELO S A ELT - HAN
31. A ELT B
32. A ELO B



Appendix B

Known Bugs

This appendix documents all known bugs. The first bug is significant and has been
fixed, but affects results for the Pure variant since results were gathered prior to
the fix. The other two are minor, and persist at the time of delivery.

B.1 Retreat Bug

Search as an improvement operator requires that rollout games are played with
the game engine. The game engine is stateful. One could make deepcopies of the
game engine to perform rollout games, but this leads to an unacceptable propor-
ition of runtime spent making copies. Instead, this thesis chooses to make use of
functionality in the MILA game engine that allows state to be reset to a previous
point. For each rollout game, the following steps are performed:

1. "phase = game.get_current_phase()" is used to obtain the current phase.
2. The game object is used to statefully step the game to a successor state given

a joint action.
3. Estimated or actual end-game score is produced for the successor.
4. "game.set_state(game.state_history[phase])" is used to reset state back to

the state before stepping the game to a successor, allowing for more rollout
games from the same state, and eventually for using the game object for the
rest of the game.

To the author’s knowledge, no previous research has utilized the MILA game
engine in this way, as no previous GPI research for Diplomacy has used the MILA
game engine. The A2C agents of Paquette et al. [37] and Hatlø [20] do not need to
perform rollout games in this way. It is believed that the "set_state" functionality
might exist primarily for visualization purposes.

After training an agent for the Pure variant and running tournament games,
it was discovered that retreat orders sometimes do not take effect when rollout
games are used. An example is given in figure B.1, where a legal retreat to another
region is ignored, and the unit is disbanded instead.

After digging through MILA code, it was discovered that a variable named
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(a) VVV is dislodged. (b) VVV orders a legal re-
treat to WWW.

(c) WWW is empty. VVV
was disbanded.

Figure B.1: Example of retreat bug.

"popped" listing disbanded units is not cleared at the start of each retreat phase,
only at the start of each movement phase. When performing rollout games in
the retreat phase, an agent is very likely to have a disband order as one of it’s
legal orders try rolling out. After rolling out a disband order the first time, all
following retreat orders are ignored, since the game engine considers the unit to
be disbanded even after resetting state as presented above.

Based on this understanding of the problem, a fix was made before training the
Lattice and Hub map variants that manually resets the "popped" variable before
each retreat phase, as is done internally before each movement phase. Inspection
of code indicates that resetting this variable should not have an adverse effect on
the regular operation of the MILA game engine.

Refer to section 5.2 for a discussion of how this bug affects results for the Pure
map variant.

B.2 "Multiple orders" bug

While training, the MILA engine gives intermittent warnings like this:

-- MULTIPLE ORDERS FOR UNIT: A UUU

An agent has never been observed to choose multiple orders for a unit in visu-
alized games, and the bug is therefore believed to appear while performing rollout
games, which are not visualized. The bug has not been observed during tourna-
ment games. The bug is believed to have a similar cause as the retreat bug of the
previous section. The bug appears especially often when training for the Lattice
map variant.

As manual inspection of games has failed to discover situations where an agent
has been negatively affected by the bug, and trained agents seem to operate reas-
onably, time has not been invested into fixing it.
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B.3 Rare Crash Bug

Training crashes very rarely with this stack trace:

Traceback (most recent call last):
File "train.py", line 309, in <module>

train(cfg)
File "train.py", line 263, in train

dataloader.generate_into_buffer(os.path.join(cfg[’viz_directory’], f’datagen_i{iteration}’), cfg[’trainer’][’dataloader’][’generate_per_iteration’])
File "/work/thomahl/master_thesis/data_loader.py", line 226, in generate_into_buffer

for i, played_game in yield_game_and_viz(self.model, self.cfg, update_step, viz_file_prefix + f’_local’):
File "/work/thomahl/master_thesis/data_loader.py", line 54, in yield_game_and_viz

for i, played_game in enumerate(yield_played_game(model, cfg, update_step)):
File "/work/thomahl/master_thesis/game_generator.py", line 572, in yield_played_game

step_value_targets[power_i] = batched_compute_joint_strategy_exact_ev(
File "/work/thomahl/master_thesis/action_exploration.py", line 309, in batched_compute_joint_strategy_exact_ev

assert u.shape[0] == all_combination_orders.shape[0],\
AssertionError: all_combination_orders should consist of unique combinations 1000 1100

Note the "should" part of the assertion message. This assertion was written
in relation to an optimization that was made to avoid duplicate work while pro-
cessing. The assertion is there to provide peace of mind that the optimization is
working. If the assertion was not there and its condition was met, the program
would operate as normal, but spend slightly longer than it needs to during action
exploration. The bug most often happens for the Lattice map variant.

Since training is checkpointed, a crashed training session can simply be contin-
ued with no adverse effects. The bug has only occurred a handful of times across
the thousands of training iterations performed during development and gathering
of results. Therefore, a fix has not been prioritized.





Appendix C

Example Forward Pass of Neural
Network

This section gives an example of how the neural network of section 4.5 produces
an action and state value given the game state of figure 4.2. Neural network build-
ing blocks covered in the background chapter like GCN, LSTM and SoftMax are
treated as black boxes. The example exists primarily to accompany the explana-
tion of the order decoder in section 4.5.2, which is the most novel component of
the neural network.

Encoder

The board state representation of 4.2a becomes:

B=





0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0





For the sake of example, assume the size of the encoding per region E is 3,
that there is only single GCN layer, and that its output given B and the adjacency
matrix of the map is:

Benc =





1 2 3
4 5 6
7 8 9





The row Benc[r] holds the encoding of region r.

Order Decoder

Assume the embedding of the red power is e(p) = [.3, .4, .5], and that the size of
order embeddings is 2. As per 4.2b and 4.2c, legal orders for units 1 and 2 are:
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O1 = {o1
1, o2

1, o3
1, o4

1, o5
1, o6

1, o7
1}

= {1, 3,5, 6,7, 9,10}

O2 = {o1
2, o2

2, o3
2, o4

2, o5
2, o6

2, o7
2}

= {11, 13,15, 16,17, 19,20}

For unit 1, the input to the LSTM is the concatenation of Benc[1], e(p), and a
dummy previous order embedding of dummy = [0,0], since there is no previous
order.

lstm_input1 = concat(Benc[1], e(p), dummy)

= concat([[1, 2,3], [.3, .4, .5], [0,0]])

= [1,2, 3, .3, .4, .5, 0, 0]

Assume that the application of LSTM returns:

LSTM(lstm_input1) =ψ1

= [1,2]

Note that the number of elements in vectorψ1 must be 2, since that is the size
of the order embedding. Assume further that the legal order embeddings form the
matrix:

e(O1) =



















0 1
2 3
4 5
6 7
8 9

10 11
12 13



















Where the j-th row of e(O1) corresponds to the embedding of the j-th legal
order o j

1.
The unnormalized logits ξ1 is calculated as the matrix multiplication of e(O1) ∈

R7×2 and ψ1 ∈ R2 (treated as a matrix of size 2× 1) is:

ξ1 = e(O1) ·ψ1

=



















0 1
2 3
4 5
6 7
8 9

10 11
12 13



















·
�

1
2

�

=
�

2 8 14 20 26 32 38
�
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πO(O1) can now be calculated:

LSE(ξ1)≈ log(
|
∑

j=1

ξ1|eξ1[ j])≈ 38.002

ξnormalized
1 = ξ1 − LSE(ξ1)

≈ ξ1 − 38.002

≈ [−36.002,−30.002,−24.002,−18.002,−12.002,−6.002,−0.002]

πO(O1) = eξ
normalized
1

≈ e[−36.002,−30.002,−24.002,−18.002,−12.002,−6.002,−0.002]

≈ [0.000, 0.000,0.000, 0.000,0.000, 0.002,0.998]

πO(O1) becomes a probability distribution over O1 that assigns 0.2% probab-
ility to the order o6

1 = 9, and 99.8% probability to the order o7
1 = 10. The order

decoder samples an o1 from this distribution, in this case let’s say o7
1 since it is

very likely. For unit 1, the order decoder returns πO(O1) and o1.
The order decoder then progresses to unit 2, using the embedding of the pre-

vious order e(o1) as one of the inputs to the LSTM. e(o1) = [1314], as per e(O1)
shown earlier.

lstm_input2 = concat(Benc[2], e(p), e(o1))

= concat([[4,5, 6], [.3, .4, .5], [13,14]])

= [4,5, 6, .3, .4, .5, 13,14]

Assume that the LSTM 1 returns lstm_input2, and that the legal order embed-
dings form the matrix e(O2):

LSTM(lstm_input2) =ψ2

= [3, 4]

e(O2) =



















15 16
17 18
19 20
21 22
23 24
25 26
27 28



















The unnormalized logits ξ2 is calculated as the matrix multiplication of e(O2) ∈
R7×2 and ψ2 ∈ R2 (treated as a matrix of size 2× 1) is:

ξ2 = e(O2) ·ψ2

1Hidden state from the previous sequence step is implicitly passed.
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πO(O2|o1) can now be calculated:

LSE(ξ2)≈ log(
|ξ2|
∑

j=1

eξ2[ j])≈ −23.449

ξnormalized
2 = ξ2 − LSE(ξ2)

≈ ξ2 − (−23.449)

≈ [−0.051,−3.051,−6.051,−9.051,−12.051,−15.051,−18.051]

πO(O2) = eξ
normalized
2

≈ e[−36.002,−30.002,−24.002,−18.002,−12.002,−6.002,−0.002]

≈ [0.950, 0.047,0.002, 0.000,0.000, 0.000,0.000]

πO(O2|o1) becomes a probability distribution over O2 that assigns 95% prob-
ability to the order o1

2 = 11, 4.7% probability to the order o2
2 = 13, and 0.2%

probability to the order o3
2 = 15. The order decoder samples an o2 from this dis-

tribution, in this case let’s say o1
2 since it is very likely. For unit 2, the order decoder

returns πO(O2|o1) and o2.
The full output of the order decoder in this example is:

πO(O1) = [0.000, 0.000,0.000, 0.000,0.000, 0.002,0.998]

o1 = 10

πO(O2|o1) = [0.950, 0.047,0.002, 0.000,0.000, 0.000,0.000]

o2 = 11

The sequence of orders [o1, o2] = [10, 11] corresponds to the Diplomacy ac-
tion "A ELT S A HAN - ELO, A HAN H".

Value Decoder

The value decoder flattens its input Benc, transforms it down to a vector with one
element per power, then applies SoftMax to achieve a distribution summing to 1.
Assume a single linear transformation followed by the application of the sigmoid
activation function (Equation 2.1). Assume weight matrix W ∈ RR·E×P , where R
is the number of regions, E is the region encoding size, and P is the number of
powers. For the sake of explanation, assume W is all ones. The output of the value
decoder becomes:

ŷv = SoftMax(σ(flatten(Benc) ·W)) = [0.5,0.5]

ŷv predicts that the game will end in a tie between the two players.
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Summary of example

The example showed how the neural network operates given input B and O. The
order decoder in effect produces the action a⃗ = [o1, o2] = [10,11], which cor-
responds to the Diplomacy action "A ELT S A HAN - ELO, A HAN H". The order
decoder also outputs the probability distributions from which the orders were
sampled, to allow for learning. The value decoder predicts the game will end in a
tie between the two players.





Appendix D

Representation of Actions in the
Retreat and Adjustment Phase

The methodology chapter detailed the action representation in the movement
phase, and made the argument that the other phases could be represented in
a similar way (Section 4.4.2). This appendix presents the action representation of
the retreat and adjustment phases based on the notation used for the movement
phase.

The retreat phase can be seen as identical to the movement phase, except that
not all units are orderable, and that the orders available are retreat and disband
orders. This difference has no effect on the operation of the agent, as it simply
chooses a sequence of legal orders, regardless of which units it is requested to
issue units for and the specifics of the legal orders.

When building units in the adjustment phase, the approach of Gray et al. [17,
Appendix A] is followed. The space of possible combinations of build orders is
relatively small, and each combination is therefore represented as a "combined
build" order. The agent is asked to choose a legal order for a single unit, where
the legal orders are all legal combined build orders. Instead of supplying the agent
with an embedding of the region of a unit (Equation 4.5), the agent is supplied an
aggregation of the embeddings of all buildable regions. The game engine receives
a combined build order from the agent, and "deserializes" it into individual build
orders.

When removing N units in the adjustment phase, the action space is modeled
as the selection of an order to N units, where the legal orders available to each
"unit" is all possible unit disbands, minus the disband orders chosen by previous
"units". This approach introduces masking to the order decoder’s operation, and
differs from Gray et al. [17] that instead re-samples order sequences when en-
countering duplicate disbands.
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