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Preface

This Master’s Thesis was written during the spring of 2023 as a part of the course
TTK4900 - Engineering Cybernetics: Master’s Thesis and is weighted 30 cred-
its. SINTEF Ocean provided the project in contribution to the research project
DigiRAS. The problem formulation includes detecting toxin formation in water
by monitoring salmon juveniles utilizing stereo vision and machine learning. This
project is an extension of the work conducted during the fall of 2022 within the
context of the TTK4550 course - Specialization Project.

A selection of material from the Specialization Project [14] has been restated in
this thesis to improve readability and provide context for the reader. The selected
material included is listed below.

• From Chapter 1: Parts of Section 1.1.

• From Chapter 2: Parts of Section 2.1, 2.2, 2.3, and 2.4.

I want to thank my supervisor Morten Omholt Alver for valuable feedback and
guidance during this project. I also want to thank Bjarne Kvæstad from SINTEF
Ocean for technical guidance and helpful advice.
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Executive Summary

Background: Expanding land-based production phases in salmon farming is an
emerging trend within the aquaculture industry. While reducing time spent at sea
can yield many benefits, the development of land-based facilities faces challenges,
such as the immaturity of the utilized technology. Currently, the industry lacks
autonomous solutions for monitoring fish behavior. One significant challenge of
land-based farming is poor water quality, adversely impacting fish welfare. This
Master’s Thesis explores the integration of stereo vision and machine learning
to detect water quality changes, specifically the formation of hydrogen sulfide,
by monitoring salmon juvenile behavior. SINTEF Ocean provided the project in
contribution to the research project DigiRAS.

Method: A Stereo R-CNN object detection model was trained using a dataset of
stereo image pairs featuring salmon juveniles. Camera calibration results were re-
trieved to recover 3D information about the detected fish in stereo images. The
Stereo R-CNN model and camera calibration outcomes were employed in object
tracking to extract positional data of salmon juveniles from videos. The videos
used contained various scenarios of fish behavior: before, during, and after being
exposed to different concentrations of hydrogen sulfide. The acquired results sug-
gested that velocity and speed change rate were the most characteristic indicators
of various swimming patterns.

Several datasets were developed based on positional data distributions. An assess-
ment of different techniques for examining the detection of hydrogen sulfide was
performed. For testing, several machine learning models were utilized to clas-
sify and estimate hydrogen sulfide concentrations to investigate if water quality
changes could be detected from the datasets.

Results: The obtained results implied that 3D estimations of positional data could
be employed for further analysis. The classification models demonstrated limited
success, with a peak accuracy of 56%. Conversely, the regression models provided
satisfactory results, signifying that a regression model might be viable for hydro-
gen sulfide detection. More positional data must be generated in order to assess its
credibility.
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Sammendrag

Bakgrunn: Utvidelsen av landbaserte produksjonsfaser i lakseoppdrett er en vok-
sende trend innen akvakulturindustrien. Reduksjon av tid tilbrakt på sjøen kan gi
mange fordeler, men utviklingen av landbaserte fasiliteter bringer også med seg
egne utfordringer, eksempelvis umodenhet av teknologien som blir brukt. En av
de største utfordringene forbundet med landbasert oppdrett er dårlig vannkvalitet
som påvirker fiskevelferden negativt. For øyeblikket mangler industrien autonome
løsninger for å overvåke fiskeatferd. Denne masteroppgaven utforsker bruken av
stereosyn og maskinlæring for å oppdage endringer i vannkvalitet, spesielt rettet
mot hydrogensulfid, ved å overvåke atferd til laksesmolt. SINTEF Ocean bidro
med prosjektet i forbindelse med forskningsprosjektet DigiRAS.

Metode: En Stereo R-CNN objektdeteksjonsmodell ble trent ved bruk av et datasett
bestående av stereobildepar som viser laksesmolt. Kamerakalibreringsresultater
ble brukt for å gjenopprette 3D-informasjon om fisken som ble detektert i stereo-
bildene. Stereo R-CNN-modellen og resultater fra kamerakalibreringen ble brukt i
objektsporing til å generere posisjonsdata for laksesmolt. Videoene som ble brukt
inneholdt forskjellige scenarier av fiskeatferd: før, under og etter å ha blitt ekspon-
ert for forskjellige doser av hydrogensulfid konsentrasjoner. Resultatene antydet
at hastighet og hastighetsendring var de mest karakteristiske indikatorene på ulike
svømmemønstre.

Flere forskjellige datasett ble laget basert på fordelinger av posisjonsdata. Forskjel-
lige teknikker ble vurdert for å undersøke muligheten for hydrogensulfid deteksjon.
Flere maskinlæringsmodeller ble testet for å vurdere om hydrogensulfid konsen-
trasjoner kunne bli klassifisert og estimert basert på datasettene.

Resultater: De oppnådde resultatene antydet at 3D-estimater av posisjonsdata
kunne brukes for videre analyse. Klassifiseringsmodellene som ble testet oppnådde
en nøyaktighet på 56%, som ikke anses å være særlig bra. Til tross for dette ga
regresjonsmodellene tilfredsstillende resultater, noe som indikerer at en regresjon-
smodell kan være en rimelig tilnærming for oppdagelse av hydrogensulfid. For å
vurdere troverdigheten må mer posisjonsdata genereres.
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1
Introduction

Parts of Section 1.1 are restated from the Project Thesis [14] with modifications
and additional details. Subsection 1.1.1 has been restated.

1.1 Motivation

The aquaculture industry is one of the leading industries in Norway, supplying
seafood to consumers worldwide. 98.8% of the fish farming industry comprises
salmon production, making Norway the world’s largest producer of farmed salmon
[29]. The early stages of the salmon production cycle take place in land-based
facilities. The salmon are nurtured in a controlled freshwater environment until
they reach a weight of 100-125 grams before their transfer to seawater cages. In
recent years, facilities have been developed to grow the smolt up to 1,000 grams
[30].

Land-based farming brings several advantages over its offshore counterpart. Fish
raised in these controlled environments are shielded from sea lice and other dis-
eases typically associated with offshore farming. Land-based facilities also offer
environmental advantages as they have the ability to gather generated waste and
other potentially harmful byproducts. Additionally, it offers fish production closer
to the local market and in land-locked countries. Over the past two decades, Nor-
way has developed land-based Recirculating Aquaculture Systems (RAS) as a sub-
stitute for the traditional flow-through system. RAS recycle the water instead of
replacing it, making it less dependent on access to fresh water [3].
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Although land-based fish farming offers many benefits, it introduces some new
challenges. The biological conditions in RAS can be hard to control and lead
to poor water quality. A notable concern is the production of hydrogen sulfide
(H2S), a highly toxic gas that can cause mass mortality in fish populations. At
present, there are no automated methods for detecting this toxic gas in water [33].
However, alterations in fish behavior have been noted upon H2S exposure. While
experienced fish farmers can recognize these behavioral changes, an automated
system would provide a more objective and consistent monitoring solution. Such
a system would not rely on a specific individual’s presence and would be capable
of continuous operation. Hence, the goal is to create an automated system capable
of detecting H2S exposure by monitoring behavioral changes in salmon, thereby
safeguarding the fish’s health and the industry’s productivity.

1.1.1 DigiRAS

The DigiRAS project is a European research initiative addressing challenges re-
lated to land-based fish farming. SINTEF Ocean is one of eleven partners of the
project and is leading many of its tasks. The project aims to help RAS facilities
operate more efficiently with digitalization [12].

1.2 Problem Description

One of SINTEF Ocean’s tasks for the DigiRAS project is to develop a computer vi-
sion system to monitor salmon juveniles’ behavior to detect H2S. SINTEF Ocean
has conducted an experiment where concentrations of H2S in a salmon juvenile
RAS tank were increased. They gathered video footage from the tank during the
experiment from a stereo vision setup.

In the fall of 2022, an object-tracking system was established during the Special-
ization Project in collaboration with the previous work of Åshild Nedreberg [31].
This system utilized Stereo R-CNN to detect objects, a SORT algorithm to track
fish, and a Kalman filter to estimate their 3D positions. Initial tests have indicated
that velocity distributions retrieved from object-tracking effectively differentiate
between two distinct behavioral patterns of fish: calm and stressed. This project
aimed to develop this system further.

The objectives of this Master’s Thesis are summarized below.

• Further develop the existing annotation tool for video data and establish a
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more extensive training dataset for the Stereo R-CNN model.

• Further develop the tracking algorithm to obtain longer and more precise
fish position and velocity time series.

• Analyze larger parts of the video material to build a more comprehensive
dataset.

• Test one or more methods for detecting various stress levels based on the
H2S experiment.

• Assess how well the stress level can be estimated and recommend future
work.

1.3 Delimitations

The scope of this study is limited to the analysis of an existing object tracking
module consisting of a Stereo R-CNN, a SORT algorithm, and a Kalman filter for
3D estimation and tracking of salmon juveniles. Other methods for object tracking
have not been considered.

Further, one of the main objectives of this Master’s Thesis was to investigate and
assess one or more methods for detecting various stress levels in the context of the
H2S experiment. Rather than attempting to classify specific fish behaviors, the
focus shifted towards detecting H2S concentration utilizing positional data.

1.4 Structure of the Report

This report is divided into six chapters. Chapter 1 presents the motivation and
problem description for the project.

Chapter 2 presents the background theory for this project, divided into five main
sections: recirculating aquaculture systems, the H2S experiment, stereo vision,
machine learning, and object tracking.

Chapter 3 presents the materials and methods used to complete this project. This
mainly includes hardware and software, preparing image data for Stereo R-CNN,
object tracking, processing acquired positional data, and classification and estima-
tion of H2S concentration.
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Chapter 4 presents the obtained results from this work. The results are discussed
and evaluated in chapter 5, and suggested future work is provided. Chapter 6
summarizes the discussion as a conclusion.
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2
Theory

This chapter presents the background theory of the master project. Section 2.1 and
2.2 are partly restated from the Project Thesis [14]. Subsection 2.1.1 is refined to
include more information on the topic. Section 2.3 is restated with alternations
in Subsection 2.3.1. Parts of Section 2.4 have been restated, including parts of
Subsection 2.4.1 and 2.4.6.

2.1 Recirculating Aquaculture System

Recirculating Aquaculture System (RAS) is a land-based technology for farming
fish or other aquatic organisms by reusing the water in production. The technol-
ogy is based on mechanical and biological filters and is designed to minimize water
consumption, control culture conditions, and allow waste streams to be fully man-
aged. The use of RAS compared to traditional flow-through systems proliferates
in many areas of the fish farming sector [5].

RAS has excelled in terms of environmental impact. The limited amount of water
used is beneficial as water has become a limited resource in many regions. RAS
can recycle up to 90-97% of the freshwater used in land-based farming. This makes
up 0.1%-1% of the water consumed in a traditional flow-through system [19]. The
production is thus more independent of external conditions and provides a more
stable environment for the fish.

Although RAS has many beneficial aspects, some challenges remain. In particular,
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2 Theory 2.1.1 Hydrogen Sulfide in RAS and its Effects

the production of hydrogen sulfide.

2.1.1 Hydrogen Sulfide in RAS and its Effects

Hydrogen Sulfide (H2S) is a colorless toxic gas to humans and fish and has a
strong unpleasant odor. The presence of H2S is one of the most significant chal-
lenges in RAS, posing a threat to the health and welfare of the fish.

There are numerous factors contributing to the generation of H2S in RAS. It is
produced as a byproduct when certain bacteria decompose organic matter, such as
fish waste or unconsumed feed. Conditions promoting H2S production include
stagnant water and sludge, dead zones or corners, thick biofilters, and sediment
buildup within piping systems [36]. These elements can adversely effect water
quality and fish health in aquaculture environments.

H2S concentrations of 2µg/L in freshwater and 5µg/L in salt water can cause
stress for fish, and concentrations above 25µg/L can be lethal. In the case of H2S
poisoning, the fish gills are damaged, impairing their ability to extract oxygen from
the water and leading to suffocation. In addition, H2S can cause tissue damage
and organ failure, leading to illness and death [35].

These adverse effects can make the fish break from its regular swimming pattern.
The general characteristics of salmons’ regular swimming pattern are consistent
and steady swimming, and maintaining their position in the water column without
signs of disorientation. In case of H2S exposure, the fish can exhibit various
indicators of stress and discomfort, and some common signs include [2]:

• Rapid or labored breathing: The symptoms are increased gill movement,
gasping, or rapid breathing if the H2S inhibits the fish’s ability to breathe.

• Erratic swimming or loss of equilibrium: Fish affected by H2S may ex-
hibit abnormal swimming behavior, such as erratic movements, disorienta-
tion or loss of balance, change of tail-beating frequencies, swimming side-
ways, swimming in circles, or bolting around. In severe cases, they may lose
their ability to maintain their position in the water column and sink or float
[24].

• Lethargy: Fish exposed to H2S may become less active, sluggish, or show
reduced responsiveness to stimuli.

• Aggregation near the water surface or water inlets: As the H2S is more
concentrated in low-oxygen environments, fish may seek areas with higher
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oxygen, such as near the water surface or close to water inlets where fresh
water is being added to the system.

• Darkening of color: Fish changing their coloration, often darker than usual,
is usually caused by physiological stress.

• Reduced appetite or feeding: Fish under stress from H2S exposure may
show reduced appetite and lower activity during feeding periods.

• Mortality: In severe cases of H2S exposure, fish may die due to the toxic
effects on their respiratory and physiological systems.

2.2 Hydrogen Sulfide Experiment

SINTEF Ocean conducted an H2S experiment in contribution to the DigiRAS
project. The experiment started on 27th of June 2022 and ended on 7th of July 2022.
The setup consisted of three RAS tanks, where two were gradually exposed to H2S
during the experiment period. One of the tanks contained 70 salmon juveniles
with a mono and a stereo camera setup. The second tank contained 200 salmon
juveniles and a mono camera. These tanks were connected to a water reservoir
via water pipes. H2S was added to the reservoir, leading to H2S exposure in both
tanks. During the experiment, the reservoir was equipped with an instrument that
measured salinity, temperature, oxygen, carbon dioxide, and H2S. The third tank
was not connected to the reservoir and was employed for control purposes. An
illustration of the experimental setup and procedure is shown in Figure 2.1. The
experiment protocol is summarized in Table 2.1.
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Figure 2.1: SINTEF Ocean’s H2S experiment setup1.

Table 2.1: SINTEF Ocean’s H2S experiment protocol.

H2S experiment protocol
1. Gradually add H2S to the reservoir tank over a time period every

day. The amount varied between 5µg/L on the first days and
160µg/L on the last days. The amount was added in 1 liter of
water in rounds per minute...

2. ... until the response of the fish was observed.
3. After the exposure to H2S, the fish would have a 24-hour recov-

ery phase.
4. H2S is measured in the water reservoir and feed collector.

1Figure provided by SINTEF Ocean.
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2 Theory 2.3 Stereo Vision

2.3 Stereo Vision

Stereo vision is a machine vision technique that uses multiple cameras to perceive
depth and create 3D scene models. The cameras are typically arranged side by
side with a small distance between them to capture slightly different perspectives
of the same scene. By comparing the images from the cameras and calculating the
difference in the position of objects in the scene, the machine can determine the
distance to each object and create a 3D model of the environment.

A stereo vision system is based upon the human visual system, which consists
of two frontal-parallel eyes using binocular vision to see the 3D world. In com-
parison, stereo vision usually consists of two cameras, illustrated in Figure 2.2.
The images captured by these cameras are used to recover surface geometry and
distance information of the 3D world from 2D images [20].

Figure 2.2: Stereo vision setup2.

2.3.1 Stereo Vision Principle

A stereo vision setup provides image pairs from left and right cameras, called
stereo images. The essential requirements for reconstructing a 3D point from a
stereo image are camera parameters and disparity estimation.

Camera Calibration

Camera calibration is the process of finding the parameters of a camera model. It
helps establish the relationship between 2D points in an image and the 3D world.
These parameters include both the intrinsic parameters (focal length and optical

2Figure adapted from [8].
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center), which are specific to the camera, and extrinsic parameters (rotation and
translation), which describe the camera’s position in the world. For a more de-
tailed elaboration on these parameters and stereo camera calibration, see Subsec-
tion 2.3.2 in Project Thesis [14].

Epipolar Geometry and Point Correspondence

Epipolar geometry describes the geometric relationship of a stereo vision setup.
This relationship is shaped by various factors, including the cameras’ intrinsic and
extrinsic parameters. It is represented by a 3×3 matrix known as the essential ma-
trix for calibrated cameras and the fundamental matrix for uncalibrated cameras.

The cameras of a parallel stereo vision setup have parallel optical axes and are
separated by a baseline distance in the x-direction. This geometry is illustrated
in Figure 2.3. An object point (P) in the scene will be captured from two distinct
perspectives by the left and right camera, OL and OR. The perspective projections
of this point in the left and right views, PL and PR, form a conjugate pair. The
plane that passes through the left and right camera center and the object point is
called the epipolar plane, and the intersection of this plane with the image plane
is called the epipolar line.

In a parallel stereo vision setup, all the epipolar lines are parallel and have the same
vertical coordinates in the left and right image planes. This alignment is achieved
using the essential matrix, which allows for image rectification. The rectification
process horizontally aligns the left and right images, resulting in the epipolar lines
running parallel to the x-axis. This configuration simplifies finding corresponding
points in the left and right views, as they must lie on the same epipolar line. Con-
sequently, a one-dimensional search is sufficient to find the corresponding point of
a projection.
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2 Theory 2.3.1 Stereo Vision Principle

Figure 2.3: The epipolar geometry of a parallel stereo vision setup: two cameras, which
view the same scene, detecting a common 3D point P on different 2D locations3.

Disparity Estimation

Disparity estimation is the process of finding the pixels in the left and right image
that corresponds to the same 3D point in the scene. The corresponding points
will have different locations in the images since they are captured from slightly
different points of view. The epipolar geometry of the setup is utilized to reduce
the search space for finding these corresponding points. When the corresponding
points have been found, it is possible to determine the distance between them,
referred to as disparity. The disparity is given by d = xL − xR, where xL and xR
are the x-coordinates of the conjugate pair in the left and right image plane.

Once the disparity is found, it becomes feasible to determine the point’s depth, z.
This is achieved through the comparison of two similar triangles formed by the
system’s geometry, expressed as:

xL
f

=
x+ b

2

z
(2.1)

xR
f

=
x− b

2

z
(2.2)

x is the x-coordinate of the point in the world scene and b is the baseline distance.
f signifies the focal length, which is the distance between the image plane and the
optical center of the camera lens. By subtracting Equation 2.2 from Equation 2.1,
the calculation of depth is derived [1]:

3Figure adapted from [1].
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z =
b× f

xL − xR
=

b× f

d
(2.3)

2.4 Machine Learning

Machine Learning (ML) is a field within artificial intelligence that provides mod-
els to make predictions, estimations, and classifications based on historical data.
There are two basic approaches within ML: supervised learning and unsupervised
learning. In supervised learning, the model is trained on labeled data to classify
or predict outcomes. Unsupervised learning trains the model on unlabeled data,
allowing it to find patterns and relationships within the dataset [9].

Parametric vs. Non-Parametric Models

ML algorithms can be broadly classified into parametric and non-parametric mod-
els. Parametric models require the specification of some parameters in advance of
making predictions. In contrast, non-parametric methods do not rely on predeter-
mined parameter values, allowing them to deliver more precise outcomes in many
instances, as the parameters can be hard to determine [32].

Training, Validation, and Test Dataset

A common practice in supervised ML is to split the available data into three sets:
training, validation, and test set. The training set is utilized for training the model,
the validation set is used to evaluate the model’s performance and tune its hyper-
parameters, and the test set is used to evaluate its final performance. This allows
for a more thorough evaluation of a ML model [18].

Data Augmentation

Data augmentation is a technique used to artificially increase the size of a dataset
by creating new data samples based on existing ones. This is often done in the
context of training ML models, where having more data can improve model per-
formance. There are many ways to perform data augmentation. Some standard
techniques include adding noise to existing data samples and combining multiple
data samples to create new ones. Data augmentation can help prevent overfitting
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and improve the generalization of a model, as it provides the model with more
diverse and varied data to learn from [13].

2.4.1 Support Vector Machine

A Support Vector Machine (SVM) is a supervised ML algorithm that can be used
for classification, regression, and outlier detection. It is considered a non-parametric
model despite having a few tunable parameters, as it does not make strong assump-
tions about the underlying structure or distribution of the data. Compared to other
ML methods, SVM is powerful at recognizing subtle patterns in complex datasets
[22].

Support Vector Classification

A Support Vector Classifier (SVC) aims to create a line or hyperplane that can
linearly separate a dataset into classes. Once the hyperplane has been found, new
data can easily be classified by determining which side of the hyperplane it falls
on.

Consider a binary classification given a training set {(x1, y1)...(xn, yn)} with y ∈
{±1}, the decision boundary parameterized by (w, x) can be defined as:

⟨w, xi⟩+ b ≥ 0 for yi = +1

⟨w, xi⟩+ b < 0 for yi = −1

where ⟨, ⟩ denotes the dot product of w and xi. This boundary aims to maximize
the margin, the distance from the hyperplane to the closest data point in either
class, called support vectors. An illustration of the SVC concept and its definitions
is represented in Figure 2.4.

The maximization of the margin can be written as a linear constrained convex
optimization problem, with w as a weight vector:

min
w,b

1

2
||w||2 (2.4)

s.t. yi(⟨w, xi⟩+ b) ≥ 1 ∀ i. (2.5)

4Figure adapted from [28].
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Figure 2.4: SVC concept: Defining the margin between classes - the criterion SVCs seek
to optimize4.

This objective function is a quadratic program (QP) with a single global minimum.
The optimization problem assumes that the data is linearly separable. In the case
of non-linearly separable data, the linear constraints, Equation 2.5, will not be
satisfied. A method of dealing with such datasets is loosening the constraints in
order to learn a useful classifier. This approach is called soft margin and introduces
slack variables, ξi, to allow certain constraints to be violated. Each training point
gets a corresponding slack variable. This allows for some training points to be
within the margin and be wrongly classified. Mathematically, by introducing slack
variables to Equation 2.4, a new optimization problem can be defined as:

min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

ξi (2.6)

s.t. yi(⟨w, xi⟩+ b) ≥ 1− ξi ∀ i

ξi ≥ 0 ∀ i
(2.7)

where C is the margin parameter, and ξi (i = 1, ...,m) are the non-negative slack
variables. The C parameter defines the tradeoff between the margin maximization
and the classification error minimization. It works as a regularization term and
penalizes large values of ξi. Large values of C will lead the optimization problem
to choose a smaller-margin hyperplane to fit all the training points, potentially
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leading to overfitting. Controversially, small values for C will cause the optimizer
to choose a larger margin, even if it leads to misclassifying more points.

Support Vector Regression

The SVM was adapted to support regression tasks by introducing Support Vector
Regression (SVR). In SVR, the goal is to find the hyperplane that holds the maxi-
mum training observations within the margin ϵ. Given a training set {(x1, y1)...(xn, yn)}
with xi ∈ {Rd} and yi ∈ {R} where d is the dimension of samples, the nonlinear
function between the input and the output is formulated as:

y = f(x) = wTx+ b,

where w ∈ F is the vector of weight coefficients, and b is a bias constant. The w
and b are estimated by minimizing the optimization problem:

min
w,b

1

2
||w||2 (2.8)

s.t. yi(⟨w, xi⟩+ b) ≤ ϵ ∀ i

yi(⟨w, xi⟩+ b) ≥ −ϵ ∀ i
(2.9)

Similar to SVC, slack variables, ξ and ξ∗, are introduced to penalize points from
ϵ-insensitive band [17]:

min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

(ξi + ξ∗i ) (2.10)

s.t. yi(⟨w, xi⟩+ b) ≤ ϵ+ ξi ∀ i

yi(⟨w, xi⟩+ b) ≥ −ϵ− ξ∗i ∀ i

ξi, ξ
∗
i ≥ 0 ∀ i

(2.11)

15



2 Theory 2.4.1 Support Vector Machine

Kernel Functions

All SVMs use the kernel trick to bridge linearity and non-linearity. The key idea of
this concept is to map the input data from the feature space into higher-dimensional
space using a kernel function. By mapping the data, it might become linearly
separable, and an optimal hyperplane can be found in this space [34].

The linear kernel is the simplest and most computationally efficient kernel. It is
commonly used for linearly separable datasets with many features. The kernel
function calculates the distance between the data points and the hyperplane of the
SVM and is denoted:

K(xi, xj) = ⟨xi, xj⟩,

where xi, xj are input vectors. xi represents the data points and xj represents
the weights of the hyperplane. As the linear kernel only performs dot product
between samples, which is the same as using the original features of the samples,
no transformation is applied. Therefore, the linear kernel is often referred to as the
baseline kernel to compare the performance of more complex kernels.

The Radial Basis Function (RBF) kernel, also known as the Gaussian kernel, is a
nonlinear kernel function that can capture complex relationships in the data. For
large datasets, it can be computationally expensive. It is denoted:

K(xi, xj) = e−γ||xi−xj ||2 ,

where ||xi−xj ||2 is the squared Euclidean distance between the two feature vectors
xi, xj . Gamma, γ, is a parameter that controls the width of the Gaussian function.
Intuitively, it determines how much influence each data point has on the decision
boundary. A large value of gamma means that each data point has a greater influ-
ence on the boundary. Too large values will lead to overfitting, and no values of C
can prevent it. A small value of gamma means that each data point has a smaller
influence on the decision boundary. Underfitting can occur when the gamma is
too small, making the model too constrained to capture the complexity of the data
[25].

Polynomial kernel is another common nonlinear kernel function and is defined as:

K(xi, xj) = (γ⟨xi, xj⟩+ c0)
d,
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where xi and xj are input vectors, c0 is a constant added to the input vectors’ dot
product, and d is the polynomial degree. The degree of the polynomial controls the
complexity of the decision boundary — higher degree results in higher complexity
and vice versa [34].

2.4.2 Decision Tree

A decision tree is a non-parametric supervised learning algorithm utilized for clas-
sification and regression tasks [32]. The model provides an inference that is easily
understood. The structure of a decision tree is an upside-down tree, beginning
with a root node at the top, branching out via edges, through decision nodes, to
leaf nodes. Figure 2.5 visualizes the concept.

Root Node

Edges

Decision Node

Decision Node

Decision NodeLeaf Node Leaf Node Leaf Node

Leaf Node Leaf Node

Decision Node

Figure 2.5: Decision tree structure.

The goal is to find the optimal decision tree by minimizing the generalization error.
However, it has been established that finding a minimal decision tree is NP-hard
and only feasible for minor problems. Heuristic methods tackle larger and more
complex datasets, offering practical solutions while maintaining reasonable accu-
racy. These heuristic methods predominantly fall into two categories: top-down
and bottom-up approaches. Among these, the top-down methods are more com-
monly used due to their intuitive nature and ease of implementation.

One such top-down decision tree inducer is the Classification and Regression Tree
(CART) algorithm. This approach constructs binary trees; each decision node has
two outgoing edges. It iteratively subdivides the data into more homogeneous
subsets, starting from the root node and proceeding downwards. This process
continues until a stopping criterion is met, resulting in a decision tree that best
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approximates the underlying data distribution. Common stopping criteria include
max depth and minimum number of instances per leaf. The max depth param-
eter determines the maximum depth of the tree, while the minimum number of
instances per leaf stops the tree’s growth when the number of instances in a leaf
node is below a specified threshold.

A notable characteristic of CART is its capability to construct regression trees.
Unlike conventional decision trees that predict classes, regression trees predict
real numbers at their leaf nodes. When dealing with regression tasks, CART
searches for splits that minimize the squared prediction error, also known as the
least-squared deviation. The predicted value at each leaf node is calculated as the
weighted mean for that particular node [32].

2.4.3 Ensemble Methods

Ensemble methods are a class of ML techniques that aim to improve the perfor-
mance of a model by combining multiple individual models, often referred to as
base learners or weak learners. The idea behind ensemble methods is to train mul-
tiple models with different parameters and combine their outputs to predict the
outcome. The combination of individual predictions often has better overall accu-
racy than one prediction alone [6].

2.4.4 Random Forest

Random forest is an ensemble method used for classification and regression tasks.
It is constructed by a collection of decision trees with controlled variation. Each
tree in the random forest is constructed independently from a random sample with
replacement from the training data. Statistically, the sample will contain 64% of
the training set, called in-bag instances. The remaining 36% are referred to as
out-of-bag instances. Each tree in the random forest acts as a base predictor to de-
termine its label. The final output label for classification tasks is typically decided
via majority voting, where each decision tree casts one vote for its predicted label,
and the label with the most votes is used to predict the outcome. In the case of
regression tasks, it is common practice to calculate the average of all output values
[16].
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2.4.5 Deep Learning

Deep learning is a subset of ML that involves using artificial neural networks with
multiple layers of computation to model complex patterns in data. Deep learn-
ing has achieved state-of-the-art performance on various tasks, including image
recognition, natural language processing, and speech recognition [15].

Neural Networks

Neural Networks (NN) are the fundamental building block of deep learning. A
NN is inspired by the structure and function of the human brain and simulates
this through algorithms. NNs consist of three layers: an input layer, one or more
hidden layers, and an output layer. Each layer is composed of units, the simplest
function of deep learning, which can be associated with neurons in the brain. Each
unit receives input from other units in the previous layer, applies a mathematical
transformation to the input, and then sends the result to the units in the next layer
[15].

A unit has a set of associated learning parameters, weights, and an activation
function. The learning parameters are hyperparameters that control the training
process itself. The weights of the connections are adjusted during the training
process, allowing the NN to learn complex patterns in the data. The activation
function decides if the unit can pass information or not. If the NN has more than
one hidden layer, it is called a deep neural network [15].

2.4.6 Stereo Region-Based Convolutional Neural Network

A Stereo Region-Based Convolutional Neural Network (Stereo R-CNN ) is a deep
learning model for stereo vision tasks, such as depth estimation and 3D object de-
tection. It was first proposed by P. Li et al. in 2019 to serve visual perception,
motion prediction, and planning for autonomous driving [26]. It takes a stereo im-
age pair captured in the same time frame and detects objects using stereo matching.
An illustration of a Stereo R-CNN architecture is provided in Figure 2.6.

Stereo R-CNN Architecture

Stereo R-CNN is based on Faster R-CNN architecture. The Faster R-CNN is de-
signed to be faster and more efficient than the original R-CNN, substituting the
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time-consuming feature extraction method, Selective Search, with a CNN feature
extractor. For the Stereo R-CNN in Figure 2.6, this feature extraction is done by a
pre-trained Residual Network consisting of 101 layers (ResNet-101) and a Feature
Pyramid Network (FPN). Further, the Stereo R-CNN architecture can be divided
into three main components: a stereo Region Proposal Network (RPN), a stereo
regression module, and a keypoint prediction module [26].

The stereo RPN is an RPN that is modified to work with stereo images. It generates
region proposals for potential objects in the scene based on the feature maps from
the FPN [27]. The region proposals are fed into Region of Interest Align (RoI
Align), where the extracted features are aligned with the region proposals [21].

After applying RoI Align on the left and right feature maps, the left-right features
are linked and fed into a stereo regression model. This module generates a 3D
representation of the objects in the scene. An object’s 3D representation includes
its 3D location, classification, and a 2D bounding box representing its size.

Simultaneously in a keypoint prediction branch, the location of a set of keypoints is
predicted. Each object has a set of keypoints representing the object’s borders. The
keypoints and the output of the stereo regression module are further fed into a 3D
box estimation module. The 2D bounding boxes are combined with the keypoints
to create a 3D bounding box. Lastly, the output is sent to a 3D box alignment
module to refine the 3D localization of the objects further. The final output of the
Stereo R-CNN is a set of 3D bounding boxes wrapping the detected objects and
their respective classes [26].

Figure 2.6: Stereo R-CNN architecture5.

5Figure adapted from https://github/Stereo-RCNN.
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2.4.7 Automatic Machine Learning Methods

Automatic Machine Learning (AutoML) represents an innovative methodology
aimed at automating the end-to-end process of applying ML to resolve different
tasks. It utilizes techniques and methods to simplify the process of model selec-
tion, hyperparameter tuning, iterative modeling, and model evaluation in ML. This
approach allows newcomers to enter the ML field and apply ML techniques for
data analysis.

The key elements of AutoML include [23]:

• Model selection: One of AutoML’s key features is automatically selecting
the best model for a given task. It evaluates various models for the given
problem and selects the one with the best performance.

• Hyperparameter tuning: ML models often have numerous hyperparam-
eters that must be set before training begins. The manual tuning process
can be time-consuming and difficult. AutoML utilizes techniques like grid
search, random search, or Bayesian optimization to automatically tune these
hyperparameters, sparing the user of the tuning process.

• Feature engineering: AutoML includes automated feature engineering. This
is the process of automatically creating new features from the input data that
might improve the model’s performance.

• Model evaluation: AutoML systems automatically evaluate the performance
of the models using predefined metrics. This includes cross-validation or
bootstrapping techniques to estimate the model’s generalization error.

• Model interpretability: Some AutoML systems include tools to interpret
the model, providing insights about the importance of features and how they
are combined to make estimations.

Two well-known AutoML packages are Auto-Sklearn and H2O AutoML.
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2.5 Object Tracking

Object tracking is an application of deep learning to continuously estimate the
position and orientation of an object in a video sequence. There are two types
of video tracking: Single Object Tracking (SOT) and Multiple Object Tracking
(MOT). SOT focuses only on one unique target object and keeps track of that
throughout a video sequence. MOT tracks multiple objects, generates unique IDs
for each detected object, and tracks their position as they move from one frame to
the next. The system can maintain the ID assignment for each object, allowing it
to keep track of the number of objects present at any given time. With tracking
information, states such as position, velocity, and acceleration can be estimated
[7].

2.5.1 SORT Algorithm

The Simple Online and Real-time Tracking (SORT) algorithm is a type of MOT
designed to efficiently track multiple objects in 2D images for online and real-time
applications. SORT is made of 4 key components: detection, estimation, data
association, and creation and deletion of track identities.

Detection

Detection is the first step in the SORT tracking module. An object detector, like
Stereo R-CNN, detects objects in the frame that are intended for tracking. The
detections are then passed on to the next step, estimation.

Estimation

The estimation model propagates the detections from the current image frame to
the next, estimating the state of the target in the next frame. Equation 2.12 presents
the state of each target:

xk =
[
u v s r u̇ v̇ ṡ

]
, (2.12)

where u and v represent the pixel location of the center of the target in x- and
y-direction, while s and r represent the scale and the aspect ratio of the target’s
bounding box [4].

22



2 Theory 2.5.1 SORT Algorithm

The Kalman filter is an example of a commonly used estimation model. It works
in two steps: the prediction step and the update step. The prediction step utilizes
a model to estimate the object’s position at the next image frame based on its
previous trajectory. One commonly used model for this purpose is the constant
velocity model. The constant velocity model is a physical model that assumes an
object moves at a constant speed in a straight line. The update step is initiated
when an object is detected and associated with a target. The Kalman filter uses the
detected bounding box to update the estimate of the object’s state. If a detection is
not associated with the target, the linear velocity model predicts its state without
adjustments.

Data Association

After the estimation step, an assignment cost matrix is computed to establish asso-
ciations between detections and existing targets. This cost matrix is based on the
Intersection-over-Union (IoU) distances, which measure the overlap between each
detection and all predicted bounding boxes from the existing targets. The assign-
ment is rejected if the IoU of detection and target is less than an imposed threshold,
IoUmin. This rejection step ensures that only accurate and reliable associations are
made between detections and targets.

Creation and Deletion of Track Identities

This module handles creating, deleting, and maintaining IDs for object tracking
in the scene. Unique IDs are generated for objects and are continuously tracked
based on the IoUmin threshold. If a detection has an overlap with an existing target
equal to or greater than IoUmin, it retains its assigned ID. If a detection overlaps
less than IoUmin, a new ID is assigned to the detection.

Tracks are terminated if not detected for a specified number of frames, known as
the Tlost threshold. If the object reappears in the scene after being lost, tracking
resumes implicitly under a new ID [10].

23



3
Materials and Methods

This chapter presents the materials and methodologies employed throughout the
master project. Specifically, it encompasses the development and implementation
of a system designed to detect H2S concentrations based on video of salmon ju-
veniles. Figure 3.1 presents a simplified representation of the system from a user’s
perspective. It showcases the integration of video input, data processing, and the
resulting H2S concentration as output. This visual depiction offers an overview
of how the system operates and highlights the key steps involved in detecting and
obtaining H2S concentrations.

Stereo vision 
setup

Salmon 
juvenile videos

Input

H2S concentration

Output

Sliding windowObject tracking

System

positional
data

distributional
data

Classify and estimate 
H2S concentration

Figure 3.1: The H2S detection system from the user’s point of view, with three modules:
input, system, and output.

The utilized materials and methods are partially based on previous work. There-
fore, some sections concerning the camera setup, materials, and methodologies
utilized were also mentioned in the Specialization Project [14]. This concerns
Section 3.1, 3.2, 3.3, and Subsection 3.4.1, 3.5.1, and 3.5.2.
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3.1 Stereo Vision Setup

A pair of Alvium cameras were mounted as a parallel stereo setup in a RAS tank
containing salmon juveniles during SINTEF Ocean’s H2S experiment. The cam-
era specifications are presented in Table 3.1. Multiple videos were captured to
gather data on fish behavior throughout the experiment.

Table 3.1: Camera specifications of the cameras used for the stereo vision setup.

Camera specifications
Sensor type Alvium 1500 C-510 NIR
Resolution 2592× 1944 (width× height)
Sensor type CMOS
Sensor size Type 1/2.5
Pixel size 2.2µm× 2.2µm

Max. frame rate 68 fps
Lens C Series VIS-NIR
Focal length 3.50mm
Field of view Horizontal: 41.2mm - 102.4◦

Vertical: 26.8mm - 82.3◦

Diagonal: 63.6mm - 117◦

3.2 Hardware and Software

This section presents the hardware and software used in this project.

3.2.1 CUDA Toolkit

CUDA Toolkit is a parallel computing platform and programming model devel-
oped by NVIDIA for computing on its own graphics processing units (GPU).
CUDA enables computer-intensive applications to speed up by taking advantage
of the parallel processing power of GPUs [11]. The training of Stereo R-CNN and
object tracking utilized this tool.
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GPU Access

Specific components of the software required NVIDIA GPU access due to their
usage of CUDA. A computer with the required hardware power was provided by
NTNU and accessed via Secure Shell (ssh). The computer contained 3 NVIDIA
GeForce RTX 3090 GPUs with CUDA Toolkit 11.8.

3.2.2 GitHub

GitHub is a web-based platform used for software development. It allows multiple
people to work on projects simultaneously, making it easier for teams to collab-
orate and keep track of changes. The master project repository can be found on
GitHub1.

3.2.3 Tools and Libraries

Anaconda was utilized to create an environment to install the required libraries.
Anaconda provides the opportunity to create environments of different versions of
Python and install, remove, and upgrade packages within them. The environment
used for this project was Python 3.6.13. A list of essential libraries and their used
versions is displayed below.

• PyTorch 1.10.1

• Imgaug 0.4.0

• OpenCV 4.6.0

• Scikit-Learn 1.0.2

• H2O 3.40.0.2

1Repository of the project: https://github.com/TTK4900
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3.3 Data Provided by SINTEF Ocean

SINTEF Ocean provided datasets in the form of videos. Several videos of salmon
juveniles were provided. Two videos of a chessboard were also given for calibra-
tion purposes. All videos were captured in the RAS tank with the same stereo
vision setup. The image frame was of pixel dimension 1920 × 2160 (width ×
height), containing images captured by the left and right camera. The pixel di-
mension of one camera was 1920× 1080.

3.3.1 Video Data of Salmon Juveniles

The provided salmon juvenile videos were captured during SINTEF Ocean’s H2S
experiment. The video data contained footage over 11 days where the RAS tank
was exposed to different concentrations of H2S. Each day’s dataset contained
between 9-43 videos, each with an approximate duration of 15 minutes. Table 3.2
presents an overview of the provided videos from each day, the start of recording,
the start of H2S dosing, and the duration. Figure 3.2 shows a stereo image sample
from a salmon juvenile video.

Table 3.2: Overview of provided video data of salmon juveniles from the H2S experiment.

Date Start of
recording

Start of
H2S dosing

Approximate
recording

length
(hours:min)

Amount of
videos per

day

27.06.2022 15:30 - 16:00 64 videos
28.06.2022 07:18 08:25 4:15 17 videos
29.06.2022 07:00 08:03 4:00 16 videos
30.06.2022 07:00 08:03 3:00 12 videos
01.07.2022 06:45 08:00 3:00 12 videos
02.07.2022 06:40 08:05 3:15 13 videos
03.07.2022 06:45 07:52 3:30 14 videos
04.07.2022 06:45 08:00 2:30 10 videos
05.07.2022 06:45 07:50 2:15 9 videos
06.07.2022 06:48 07:50 3:00 12 videos
07.07.2022 06:42 07:50 5:15 21 videos
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(a) Snapshot from left camera. (b) Snapshot from right camera.

Figure 3.2: Snapshot of a salmon juvenile video from the dataset.

3.3.2 Video Data of Chessboard

A dataset containing videos of a chessboard was provided for camera calibration.
Figure 3.3 shows a stereo image sample of one of the videos of the chessboard.

(a) Snapshot from left camera. (b) Snapshot from right camera.

Figure 3.3: Snapshot of a chessboard video from the dataset.

Stereo Camera Calibration

Stereo camera calibration was performed during the Specialization Project to ex-
tract 3D information from stereo images containing salmon juveniles. The method
employed was Zhang’s approach [37], which utilizes images of a chessboard pat-
tern to determine both the intrinsic and extrinsic parameters of the cameras in-
volved. It was unnecessary to perform the calibration anew, given the use of iden-
tical video data in both the Master’s Thesis and the Specialization Project. Conse-
quently, the calibration results from the Specialization Project was adopted. For an
in-depth comprehension of the underlying theory, methodological approach, and
corresponding results, see Section 2.3.2, 3.6, and 4.2 in Project Thesis [14].
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3.3.3 Measurements from the H2S Experiment

During the experiment, an instrument simultaneously measured salinity, temper-
ature, oxygen, carbon dioxide, and H2S. These measurements were provided in
the form of a .csv file. Table 3.3 presents the highest measured concentration of
H2S for each day and the corresponding time.

Table 3.3: H2S measurements during the H2S experiment.

H2S measurements

Date Time of max.
concentration

Max. measured
H2S concentration

27.06.2022 - -
28.06.2022 08:41 3.54µg/L

29.06.2022 08:18 8.13µg/L

30.06.2022 08:22 9.72µg/L

01.07.2022 08:45 5.96µg/L

02.07.2022 08:27 3.55µg/L

03.07.2022 08:18 7.27µg/L

04.07.2022 08:30 14.45µg/L

05.07.2022 08:16 32.15µg/L

06.07.2022 08:17 67.72µg/L

07.07.2022 08:10 64.43µg/L

3.4 Preparing Image Data

A dataset of 380 stereo images was created from 10 of the salmon juvenile videos
during the Specialization Project. One of the main limitations of the annotating
process was the time-consuming job of manually annotating all the fish within an
image. Moreover, the annotation process would not indicate how well the trained
Stereo R-CNN model did or what types of images were lacking from the dataset.
Therefore, it was of interest to implement a new annotation strategy that would
accelerate the process in addition to getting feedback on model performance.
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3.4.1 Correction of Disparity Between the Left and Right Image

The Stereo R-CNN required that objects in the corresponding left and right image
pair were vertically aligned. The videos captured by the stereo camera setup had
some disparity between the left and right image frames. The disparity was found
to be 25 pixels in y-direction. The left image was cropped 25 pixels in y-direction
at the top, and the right image was cropped 25 pixels at the bottom. Figure 3.4
visualizes the alignment. All images utilized for training the Stereo R-CNN and
images fed into the model for object detection were resized. Consequently, the
images attained a new resolution of 1920× 1055 pixels.

Figure 3.4: Correction of disparity in y-direction between left and right image.

3.4.2 Integrating Stereo R-CNN in the Annotation Strategy

The new annotation strategy involved using a pretrained Stereo R-CNN model
to detect bounding boxes around salmon juveniles within an image. The images
selected for annotation were subsequently displayed with bounding boxes encom-
passing all detected fish by the model. The annotation process was streamlined by
reducing the manual work to oversee and fine-tune the images. Figure 3.5 illus-
trates an example of the new annotation process.

Implementation

Due to limitations of GPU access, it was of interest to implement the annotation
tool to utilize CPU. The Stereo R-CNN model had a slow inference speed on CPU.
It would take approximately 1 minute to process one image to detect the fish within
it. The processed image would then be displayed for annotation, and only after
manual annotation would the Stereo R-CNN be fed the next image. This sequential
process proved to be relatively inefficient. To solve this, a multiprocessing strategy
was introduced. Multiprocessing is a Python package that supports the spawning
of processes, effectively allowing for simultaneous operations.
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(a) Detected objects of Stereo R-CNN.

(b) Corrected objects.

Figure 3.5: Example of the annotation process with integrated Stereo R-CNN.

Multiprocessing with a queue was implemented. The model would then process
images continuously in the background, storing the detected bounding boxes of
an image in a queue. This way, the manual annotation could be performed con-
currently and thereby streamlining the overall process. The annotation tool was
developed to iterate through all of the provided salmon juvenile videos to include
all types of scenarios and lighting conditions.

3.4.3 Annotation Process

The creation of the stereo image dataset was an iterative process. Including a
pretrained Stereo R-CNN model in the annotation tool facilitated an assessment
of the model’s performance in fish detection. This generated an iterative feedback
loop, wherein images with wrongly detected fish were adjusted and added to the
dataset, and correctly detected images were dismissed. After adding some images
to the dataset, the Stereo R-CNN model was retrained, and training and validation
loss were assessed over multiple epochs to identify the best model. The updated
model was set in the annotation tool. The process was repeated until the validation
loss implied that the model had reached its performance limit. Figure 3.6 presents
the workflow of the annotation process and training of Stereo R-CNN.
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Figure 3.6: A flow diagram of the procedure for the annotation process and training of
Stereo R-CNN. The procedure is split into five modules: input, annotation tool, training
dataset, training and evaluation of Stereo R-CNN, and output. This process was repeated
until the end results were satisfactory.

3.4.4 Image Augmentation

Observations during the annotation process revealed a lack of diversity in the
dataset. The augmentation methods multiply, linear contrast, rotation, horizon-
tal flip, and Gaussian blur were applied during the Specialization Project. It was
discovered that rotation and horizontal flip were sources of inaccurately training
the model. Rotation could lead to rotating the annotated fish out of the image, and
horizontal flip led to wrong locations of the fish in the left and right image relative
to each other. Due to this, only multiply, linear contrast, and Gaussian blur were
used. Images of the different augmentation methods are presented in Figure 3.7,
3.8, and 3.9, respectively. The leftmost image in the figures is the original image,
followed by augmented images. The green boxes present the annotated regions.
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Figure 3.7: Augmentation method: Multiply.

Figure 3.8: Augmentation method: Linear contrast.

Figure 3.9: Augmentation method: Gaussian blur.

Combination of Data Augmentation Methods

A combination of the augmentation methods presented above was used to create
images from each sample in the training dataset. The specific combinations are
presented in Table 3.4. Figure 3.10 provides two augmented images derived from
a single image sample.
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Table 3.4: Applied combination of data augmentation methods.

Augmentation method Description, occurrence, and values
Multiply Make the image darker or lighter. Multiply all

pixels in an image by a random value between
0.9 and 1.1.

Linear contrast Increasing or decreasing contrast in the im-
age. Each pixel in the image is scaled with a
value between 0.8 and 1.4.

Gaussian blur Blurring of images. Applied to 70% of all im-
age samples, with a value between 0 and 1.3.

(a) Original image.

(b) Image after applying a combination of data augmentation methods.

Figure 3.10: Combination of data augmentation methods.

3.4.5 Image Dataset for Stereo R-CNN

In addition to the 380 stereo images annotated during the Specialization Project,
1062 new images were annotated with the new annotation strategy. The resulting
dataset consisted of 1442 stereo images and a .csv file containing coordinates
of corresponding bounding boxes. The number of salmon juveniles in an image

34



3 Materials and Methods 3.5 Training of Stereo R-CNN

ranged between 1-10.

A separate test set was created to evaluate the Stereo R-CNN model’s actual per-
formance. This dataset was created without using the new annotation tool to avoid
biased performance measures of testing different models. It comprised 66 images
with a corresponding .csv file.

3.5 Training of Stereo R-CNN

The dataset presented in Subsection 3.4.5 was employed to train and assess the
Stereo R-CNN. The split ratio of the training dataset was 80:20, meaning that 80%
went to the training of the model and 20% went to validate the model. The samples
were distributed randomly.

The Stereo R-CNN was trained with and without data augmentation. In the case
of data augmentation inclusion, the augmentation combinations were only applied
to the training dataset. Three augmented images were created of each sample in
the training set and added to the dataset. The validation and test dataset contained
only original annotated images, keeping it as accurate to the true data as possible.

3.5.1 Loss Function of Stereo R-CNN

The loss function used in the training process of Stereo R-CNN is presented in
Equation 3.1. Lp and Lr represents RPN and R-CNN loss respectively. Bounding
box regression is referred to as reg, classification as cls, and loss of 2D boxes as
box. The loss function is a combination of Logarithmic loss and Smooth L1 loss.
Logarithmic loss is based on the probability of correctly classifying the regions,
and Smooth L1 loss represents how well the predicted bounding boxes match the
true bounding boxes [31].

L = Lp
cls + Lp

reg + Lr
cls + Lr

box (3.1)

3.5.2 Training Steps of Stereo R-CNN

A computer with NVIDIA hardware accessed via ssh was utilized during the train-
ing of the Stereo R-CNN model. The steps taken towards training the Stereo R-
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CNN model were as follows:

1. An anaconda environment was created and activated to install the required
libraries:

1.1 PyTorch 1.10.1 and torchvision 0.11.2 was installed with CUDA 11.3.

1.2 Other required libraries listed in requirements.txtwere installed.

2. The model environment was built by running the command line:
python setup.py build develop

3. A pretrained ResNet-101 model was downloaded and placed in the direc-
tory: data/pretrained_model

4. The created dataset consisting of stereo image pairs and the corresponding
.csv file was loaded in the directory: data/training_data

5. All project files were transferred to the NVIDIA computer via an ssh con-
nection.

6. Hyperparameters of the model were set in the trainval_net.py file.
This includes learning rate, number of epochs, and batch size.

7. The training of Stereo R-CNN was conducted by running the command line:
python trainval_net.py

The Stereo R-CNN model was saved at every 10 epoch interval during training.
By saving the model during training, it was possible to test the model at differ-
ent epochs and easily retrieve the model with the best performance. The training
process could also be started again at a given epoch in case of process disruption.

3.5.3 Evaluation of Stereo R-CNN Performance

Following the training of the Stereo R-CNN model, an evaluation was conducted
on models from various epochs. The models were tested utilizing the test dataset.
Three evaluation metrics were employed to assess model performance: Median
IoU, Precision, and Recall. IoU, as defined in Equation 3.2, represents the degree
of overlap between the true and the predicted bounding box. An IoU threshold
was established to classify the predicted boxes as either True Positives (TP) or
False Positives (FP). This value was set to 0.4, indicating that boxes with at least
40% overlap would be considered TP, while those with less than 40% overlap
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would be labeled FP. Precision quantified the accuracy of the model’s predictions,
specifically, the proportion of the predicted bounding boxes correctly identified
as fish. Recall measured the percentage of all true bounding boxes the model
successfully detected. Precision and recall are defined in Equation 3.3 and 3.4,
respectively.

IoU =
Area of overlap

Area of union
(3.2)

Precision =
TP

TP + FP
=

TP

all detections
(3.3)

Recall =
TP

TP + FN
=

TP

all ground truths
(3.4)

3.6 3D Coordinate Estimations of Detected Objects

3D coordinates of detected objects could be estimated after training the Stereo R-
CNN. Utilizing the camera calibration outcomes from the Specialization Project,
it was of interest to investigate whether an improved Stereo R-CNN model influ-
enced the estimation of 3D coordinates for detected objects. The same 10 images
employed during the testing phase of the Specialization Project were utilized to
compare the differences.

3.7 Object Tracking

Object tracking of video material could be performed after establishing the best-
performing Stereo R-CNN model and testing of 3D coordinate estimation. Figure
3.11 presents an overview of the object tracking process flow, from salmon juvenile
video as input to positional data output.

Object tracking was initially implemented to track fish over a specified number of
image frames in a video. It was modified to accept a sequence of videos as input
and iterate through each image frame in every video, providing 3D coordinates for
each detected object. The SORT algorithm assigned every detected object a unique
ID to track it from one image frame to the next. The estimation step in the SORT
algorithm utilized a Kalman filter with a constant velocity model as its prediction
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step. The IoUmin threshold was set to 0.3, meaning that a detected object and the
predicted bounding box of a target had to overlap at least 30% in order to maintain
its ID.

The tracking module gathered 3D coordinates for a number of frames, namely
frame count (fc), before feeding them into a Kalman filter. Based on these coor-
dinates, the filter estimated a trajectory comprising the 3D position and its decom-
posed velocity. The filter output provided fish position (x, y, z) and velocity (vx,
vy, vz). Furthermore, the velocity magnitude, or speed, was calculated according
to Equation 3.5. The salmon juvenile videos were captured at 15 frames per sec-
ond. By setting the frame count to 15, the Kalman filter would estimate positional
data every second.

The rate of speed change was determined based on estimated velocities over time.
If the frame count was set to 15, a fish needed to be tracked for at least 2 seconds
to calculate its speed change rate, given that the Kalman filter estimated velocity
every second. The calculation of the speed change rate is given in Equation 3.6,
where ∆v represents the change in speed and ∆t denotes the change in time. The
term fps represents the frames per second rate of the utilized video data, which
was set to 15. With a frame count of 15 frames, the value of ∆t = 1.

The obtained 3D position (x, y, z), decomposed velocity (vx, vy, vz), velocity
magnitude (|v|), and speed change rate (rs) were acquired from object tracking
and subsequently stored in .pickle-files.

|v| =
√
v2x + v2y + v2z (3.5)

rs =
∆v

∆t
=

|v2| − |v1|
frame count/fps

=
|v2| − |v1|

frame count/15
(3.6)
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Figure 3.11: A flow diagram of the object tracking process, with four main modules: input
data, SORT algorithm, Kalman filter, and output data.

3.7.1 Video Data Utilized for Object Tracking

Throughout the Specialization Project, 16 videos were employed to gather posi-
tional data from two behavioral states of the fish, namely normal behavior and
stressed behavior. There was interest in examining more video material to con-
struct a more extensive and comprehensive dataset. Consequently, all provided
videos from SINTEF Ocean were utilized to acquire positional data for further
analysis.
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3.7.2 Obtaining Extended Time Series of Positional Data

A primary limitation during the Specialization Project was the short time series
of fish position, velocity, and speed change rate. With the initial threshold value
of Tlost = 1, the SORT algorithm assigned salmon juveniles new IDs upon being
lost for more than one image frame. To achieve longer time series for fish, this
value was experimentally adjusted to 5, 10, and 20, allowing the fish to be lost for
a greater number of frames before being considered lost.

Additionally, various frame counts, fc, were examined with Tlost = 5. The frame
count was assessed at 5, 15, and 30. The different values signified that the Kalman
filter estimated position every 1/3 of a second for fc = 5, every second for fc = 15,
and every 2 seconds for fc = 30. Table 3.5 presents the different combinations of
Tlost and frame count that were tested.

It was determined by visual inspection that the most satisfactory results were ob-
tained with Tlost = 5 and fc = 15. Consequently, these values were selected for
further analysis.

Table 3.5: Overview of combinations of tested values for Tlost threshold and frame count.

Threshold Frame count
Tlost = 1 15 frames
Tlost = 5 5 frames
Tlost = 5 15 frames
Tlost = 5 30 frames
Tlost = 10 15 frames
Tlost = 20 15 frames

3.8 Processing Acquired Positional Data

Processing acquired positional data from object tracking was utilized to examine
potential features relevant to the task of detecting H2S. The processing encom-
passed visualization of the positional data and the creation of various distribution
datasets to test and assess which is best suited for the task.
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3.8.1 Visualizing Positional Data

Visualizing the positional data was a step towards examining fish behavior and
identifying the most suitable features for H2S detection. The positional data was
plotted against the corresponding measured H2S concentration over the same time
period. Figure 3.12 illustrates the measured H2S concentration, and Figure 3.13
presents positional data from 07.07.2022.

The positional graphs represent the mean value of all the data points collected
within a one-minute interval. The shaded area around the graphs indicate the vari-
ation within the same minute. The shaded region includes 80% of the data points,
excluding the lower and upper 10% of the data points. The red area marks the
time frame with high H2S concentration and where the positional data appeared
to deviate. For plots of 27.06.2022-06.07.2022, see Appendix A.

Figure 3.12: 07.07.2022: Measured H2S.
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Figure 3.13: 07.07.2022: Velocity and speed change rate data acquired from object track-
ing.

3.8.2 Creating Distribution Datasets

Datasets of positional data were created to classify and estimate H2S concentra-
tions. In order to obtain a representative sample of the fish population, it was
decided to use normalized positional data distributions as samples in the dataset.
It was decided to include decomposed velocity, velocity magnitude, and speed
change rate distributions to provide as much information related to fish behavior
as possible.

Sliding Window

A sliding window technique was utilized to create the positional data distributions.
All data points within a specified window size were selected, and the values were
distributed. The window was then moved sequentially to capture the next set of
data points, and the distributions were recalculated. The step size determined the
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window’s movement through the dataset. A smaller step size resulted in a higher
degree of overlap between consecutive windows, and a larger step size led to less
overlap. An illustration of the technique is presented in Figure 3.14.

The start and end time was set manually by examining the measured H2S con-
centrations and positional data. These times correspond to the start and end of the
shaded red area in the positional plots. As the sliding window moved, distribu-
tions of positional data were added to the distribution dataset. The complexity of
the distributions was influenced by the number of bins, bn, chosen for histogram
representation. A higher number of bins gave a more detailed distribution, reveal-
ing subtler patterns and nuances within the data. Conversely, fewer bins simplified
the distribution, potentially obscuring some finer details but providing a more gen-
eralized presentation.

One data point in the dataset consisted of distributions of decomposed velocity,
velocity magnitude, and speed change rate. Two different data samples are illus-
trated in Figure 3.15 and 3.16, presenting positional data from 27.06.2022 (low
activity) and 07.07.2022 (high activity), respectively. The histograms were made
with a window size of 10 minutes.

Sliding window

P
os

iti
on

 D
at

a

Time
Step size

Window size

Start End

Figure 3.14: Sliding window technique for collecting distribution data.
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Figure 3.15: Example of a data sample consisting of velocity and speed change rate dis-
tributions from 27.06.2022 labeled with 0µg/L. bn = 100.

Figure 3.16: Example of a data sample consisting of velocity and speed change rate dis-
tributions from 07.07.2022 labeled with 66.4µg/L. bn = 100.
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Distribution Datasets

Five combinations of window size (ws), step size (ss), and number of bins (bn)
were set to create five distribution datasets. These combinations are presented in
Table 3.6.

Distributions based on positional data from each day of the H2S experiment were
collected. The number of created data samples for each day varied based on the
sliding window’s time frame, window size, and step size. The distributions were
labeled with corresponding measured H2S concentration. Table 3.7 presents the
time frame used for each day, created distribution samples, and their labels.

Two window sizes of 5 and 10 minutes were tested. The quantity of positional data
points utilized to define the distributions depended on the selected window size and
the specific day of the H2S experiment. Table 3.8 presents the average number
of velocity samples, Navg, used to define a distribution for each day, dependent
on window size. It also shows the minimum, Nmin, and maximum number of
samples, Nmax, used to define distributions.

Some samples were selected from the datasets to create test sets. The test sets
contain at least one sample from each day, representing all H2S concentration
labels. Overlapping samples in the training dataset were deleted, ensuring that
positional data used to create a distribution would not be used in both the training
and test set. Table 3.6 presents the length of the resulting training and test datasets.

Table 3.6: Created datasets with the sliding window technique.

Overview of distribution datasets

Dataset Window size Step size Number
of bins Training size Test size

1 5 min 2.5 min 50 237 samples 16 samples
2 5 min 2.5 min 100 237 samples 16 samples
3 10 min 2.5 min 50 208 samples 13 samples
4 10 min 5 min 50 113 samples 13 samples
5 10 min 5 min 100 113 samples 13 samples
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Table 3.7: Overview of time frame used to collect distribution samples and corresponding
created distribution data samples for each day, including their labels.

Created data
samples

Date

Start and
end time for

collecting
data

Time
frame

(hours:min)

Window size =
5/10 min

(ss = 2.5/5 min)
Label

27.06.2022 16:28-19:08 02:40 87 / 41 0µg/L

28.06.2022 08:33-08:03 00:30 6 / 3 3.5µg/L

29.06.2022 08:09-08:39 00:30 6 / 3 8µg/L

30.06.2022 08:15-08:45 00:30 6 / 3 9.5µg/L

01.07.2022 08:09-09:09 01:00 19 / 8 5.8µg/L

02.07.2022 08:14-09:09 00:55 16 / 7 3.5µg/L

03.07.2022 08:00-09:10 01:10 19 / 10 7.2µg/L

04.07.2022 08:10-09:10 00:50 18 / 8 14.4µg/L

05.07.2022 08:03-09:03 01:00 16 / 9 32µg/L

06.07.2022 08:06-09:01 00:50 14 / 8 67.7µg/L

07.07.2022 08:03-09:43 01:40 31 / 13 66.4µg/L
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Table 3.8: Overview of the minimum, maximum, and average number of velocity samples
used to define velocity distributions.

Velocity samples
Date Window size = 5 min Window size = 10 min

Nmin Nmax Navg Nmin Nmax Navg

27.06.2022 487 1662 1197 1243 2968 2404
28.06.2022 578 1425 907 1190 2405 1806
29.06.2022 1106 1665 1523 2610 3285 3078
30.06.2022 1258 1966 1471 2549 3387 2936
01.07.2022 463 902 690 1079 1728 1392
02.07.2022 141 1431 538 430 1776 1092
03.07.2022 571 1004 819 1211 1872 1621
04.07.2022 370 3092 2227 370 6098 4146
05.07.2022 476 2091 1389 1055 3873 2741
06.07.2022 145 1055 666 385 2271 1426
07.07.2022 25 695 286 75 1503 616

3.9 H2S Detection using Machine Learning

Several ML methods were assessed for detecting H2S concentration based on dis-
tribution data. Six classification models and five regression models were imple-
mented for the task. The models were trained and tested on the created datasets.
The process is depicted in Figure 3.17, showcasing the stages of training and eval-
uating these models. The objective was to identify the most suitable model and the
respective dataset that could accurately estimate H2S concentration.
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Figure 3.17: A flow diagram of the procedure for training and testing the classification
and estimation models.

3.9.1 Classification of H2S Concentration

Classification was the first method assessed for detecting H2S concentration based
on positional distribution data.

Model Candidates

Three SVCs with linear, RBF, and polynomial kernel were implemented utilizing
the built-in function SVC() from the scikit-learn library. All kernels were trained
with the default regularization parameter C = 1. The default gamma parameter of
the RBF and polynomial kernel was also used:

γ = scale =
1

nfeatures ×X.var()
, (3.7)

where nfeatures is the number of features and X.var() is the variance of the
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dataset. The degree of the polynomial kernel was set to d = 3.

A decision tree and a random forest classifier were also implemented and tested
with default values from the same library. The decision tree algorithm utilized by
the scikit-learn library is CART. The random forest had the value of n estimators =
100, meaning there are 100 trees in the forest. Other default values applied by both
models were as follows:

• max depth = None: The nodes will expand until all leaves are pure or until
all leaves contain less than min samples split samples.

• min samples split = 2: The minimum number of samples required to
split an internal node was 2.

• min samples leaf = 1: The minimum number of samples required at a
leaf node was 1.

An automatic machine learning tool for classification, Auto-Sklearn, was utilized
to strive for optimal classification results. This method automatically searches
for the best model and hyperparameters for a given classification problem. Auto-
Sklearn offered some interpretability and transparency by providing detailed logs
and output. These logs describe the selected models, their hyperparameters, per-
formance metrics, and evaluation criteria used for model comparison.

A summary of the implemented models and their documentation for the classifica-
tion of H2S concentration:

• SVC(kernel=’linear’)2

• SVC(kernel=’rbf’)2

• SVC(kernel=’poly’, degree=3)2

• DecisionTreeClassifier()3

• RandomForestClassifier()4

• AutoSklearnClassifier()5

2scikit-learn.org/SVC/
3scikit-learn.org/DecisionTreeClassifier/
4scikit-learn.org/RandomForestClassifier/
5automl.github.io/auto-sklearn/classifier/
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Evaluation of Classification Performance

The classification performance of the different models was measured in accuracy,
defined in Equation 3.8. In addition, a confusion matrix was displayed to visualize
the classification results of the test set.

accuracy =
TP + TN

TP + TN + FP + FN

=
Number of correct estimations

Total number of estimations

(3.8)

3.9.2 Estimation of H2S Concentration

The second method assessed for detecting H2S concentration was estimation. The
aim was to examine if H2S concentration could be estimated from positional data
rather than classify it, considering H2S concentration being a continuous variable.

Model Candidates

A SVR, a decision tree regressor, and a random forest regressor were employed
utilizing the scikit-learn library. The SVR model was implemented with RBF
kernel with default parameters C = 1 and γ = scale. The max depth parameter
of the random forest was set to 2. Other parameters of the random forest and the
decision tree were implemented with the same default values as for classification.

Two automatic machine learning methods were also assessed for estimation with
the aim of obtaining the best possible regression results. The automatic machine
learning tool for regression from the scikit-learn library was implemented. An-
other automatic machine learning library called H2O AutoML was also employed.
The difference between the two libraries lies in H2O AutoML’s inclusion of deep
learning networks as model candidates. Both methods provided interpretability
and transparency of assessed models in terms of detailed logs of model leader-
boards, hyperparameters, and performance metrics.

In summary, the following models were implemented for the estimation of H2S
concentration; each complemented with documentation:

• SVR(kernel=’rbf’)6

6scikit-learn.org/SVR/
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• DecisionTreeRegressor()7

• RandomForestRegressor(max_depth=2)8

• AutoSklearnRegressor()9

• H2OAutoML()10

Evaluation of Estimation Performance

The estimation performance of the different models was measured in R² score,
mean absolute error (MAE), and root mean square error (RMSE). R² score mea-
sures how well a regression model explains the variance in the target variable. It
usually ranges from 0 to 1, with 1 indicating that the model perfectly explains the
variance and 0 indicating that the model explains none. A higher R² score indi-
cates a better model. Equation 3.9 presents the calculation of the R² score, where
y represents the true value, ŷ is the estimated value, and y is the average of all true
values.

MAE is a measure of the average magnitude of errors between the estimated values
and the true values. It is calculated by taking the average absolute differences
between the estimated and true values. Lower values of MAE indicate a better
model. Equation 3.10 defines the formula for calculating MAE.

RMSE presents the standard deviation of estimation errors and provides a measure
of how well the model estimated the target value. RMSE is defined in Equation
3.11. It is sensitive to outliers as the differences are squared. It was easy to interpret
as it had the same unit, µg/L, as the true and estimated values.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)
, y =

1

n

n∑
i=1

yi (3.9)

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.10)

RMSE =

√√√√ n∑
i=1

(yi − ŷi)2

n
(3.11)

7scikit-learn.org/DecisionTreeRegressor/
8scikit-learn.org/RandomForestRegressor/
9automl.github.io/auto-sklearn/regressor/

10docs.h2o.ai/h2oAutoML/
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Furthermore, a regression plot was displayed to represent the relationship between
true and estimated values. Additionally to the regression line, a confidence interval
was also visualized. The interval represents the range of values within. This range
represents an uncertainty around the estimated values based on the variability of
the data points around the regression line. This is the range of values one expects
the estimations to fall between, with a confidence of 95%.
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4
Results

This chapter presents results from the training and testing of Stereo R-CNN, the
test of estimated 3D coordinates of detected objects, object tracking, and classifi-
cation and estimation of H2S concentration.

4.1 Training and Testing Stereo R-CNN

This section presents the training and testing results of Stereo R-CNN. The training
process was done with and without data augmentation. The optimization algorithm
Adam with learning rate 0.0001 was used to get the following results. The batch
size was set to 1.

4.1.1 Training Without Data Augmentation

Figure 4.1 presents the training and validation loss from the final training process
of Stereo R-CNN without data augmentation. It was trained over 100 epochs. The
validation graph suggests that the minimum was achieved slightly before the 50th

epoch, after which the model started to overfit. The validation loss value at this
point was approximately -21.
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Figure 4.1: Training and validation loss without data augmentation.

4.1.2 Training With Data Augmentation

Figure 4.2 presents the training and validation loss of the training process over
approximately 45 epochs of the Stereo R-CNN model with data augmentation.
The plot indicates that the model was at its best at epoch 27, where the validation
loss value was -20.

Figure 4.2: Training and validation loss with data augmentation.
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4.1.3 Testing of Stereo R-CNN

The Stereo R-CNN models were tested utilizing the test set consisting of 66 im-
ages. Figure 4.3 and 4.4 show two example test stereo images. The green boxes
are grounding truth boxes, and the red boxes are predictions. All fish in Figure
4.3 were detected and correctly classified. In Figure 4.4, every labeled fish was
detected in addition to two FPs.

Model performance was measured with an IoU distribution of bounding boxes and
the calculation of precision and recall for every stereo image in the test set. The
Stereo R-CNN with and without data augmentation was tested at different epochs.
Median IoU, precision, and recall results are presented in Table 4.1. The model
used for further analysis was trained without data augmentation and extracted at
epoch 50, marked with blue in the table. The corresponding IoU distribution is
illustrated in Figure 4.5, with a median IoU of 87.4%. The average precision was
96.7%, and recall was 93.9%, presented in Figure 4.6.

Table 4.1: Overview of median IoU, precision, and recall obtained from testing Stereo
R-CNN with and without data augmentation at different epochs.

Testing of Stereo R-CNN without data augmentation
Model Median IoU Precision Recall
Epoch 40 0.854 0.957 0.940
Epoch 50 0.874 0.962 0.939
Epoch 60 0.846 0.974 0.933
Epoch 80 0.890 0.979 0.910
Epoch 100 0.864 0.979 0.932

Testing of Stereo R-CNN with data augmentation
Model Median IoU Precision Recall
Epoch 10 0.820 0.915 0.898
Epoch 20 0.850 0.943 0.907
Epoch 30 0.848 0.965 0.913
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Figure 4.3: Example test image 1: Detections in a stereo image.

Figure 4.4: Example test image 2: Detections in a stereo image.

Figure 4.5: IoU distribution of the test dataset with Stereo R-CNN trained without data
augmentation at epoch 50.
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Figure 4.6: Precision and recall overview of the test dataset with Stereo R-CNN trained
without data augmentation at epoch 50.

4.2 Estimated 3D Coordinates of Detected Objects

This section presents a sample of the results obtained from 3D coordinate esti-
mation of detected objects. The same 10 images used during the Specialization
Project were utilized. Three test images are presented within this section, two pre-
viously displayed in Section 4.3 in the Specialization Project [14]. This applies to
test image 2 and 3. The remaining seven images are in Appendix C.

Test Image 1

Figure 4.7 presents the detected salmon juveniles of a stereo image pair in the
test dataset. The Stereo R-CNN model detected 9 objects. Figure 4.8 illustrates
the corresponding estimated x- and y-coordinates for these objects, while Figure
4.9 provides information on the z-coordinate, depth, of the objects. The x/y/z-
coordinates only show 8 objects, excluding object 9. This implies that object 9
had an unrealistic depth estimate and was filtered out due to depth correction in-
troduced during the Specialization Project. For more information on the subject,
see Subsection 3.7.1 in Specialization Project [14]. The other detected objects in
the image indicated satisfactory results, suggesting object 6 closest to the camera,
and object 2 and 3 furthest away.
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Figure 4.7: Test image 1: Detected salmon juveniles in stereo image.

Figure 4.8: Test image 1: Estimated x- and y-position of salmon juveniles in stereo image.

Figure 4.9: Test image 1: Estimated depth of salmon juveniles in stereo image.

58



4 Results 4.2 Estimated 3D Coordinates of Detected Objects

Test Image 2

Figure 4.10 presents 5 correctly detected fish in another stereo image pair. The
model employed in the Specialization Project detected 6, including one FP. False
detections often led to unrealistic 3D coordinates; an improved detection model
contributed to more accurate 3D coordinate estimations. Examining the associated
x/y-coordinates in Figure 4.11 and depth estimations in Figure 4.12, it appears
that all 5 objects have realistic estimations.

Test Image 3

Figure 4.13 demonstrates the third example of estimated 3D coordinates of de-
tected objects within a stereo image. In the Specialization Project, the stereo im-
age pair showed that two of the detected objects in the left image overlapped in
the right image, resulting in imprecise 3D estimations for these objects. This issue
did not occur utilizing the new model. Figure 4.14 presents the x/y-coordinates
of the detected objects, indicating that object 5 is located further to the left than
object 8. Upon comparing these estimates with the stereo image, they appear to be
inaccurate. Figure 4.15 displays the estimated depth, positioning object 8 closest
to the camera. This proximity could account for the discrepancy in the x/y esti-
mations, given that the coordinate system defined by the camera calibration might
differ from what the eye observes from the stereo image.
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Figure 4.10: Test image 2: Detected salmon juveniles in stereo image.

Figure 4.11: Test image 2: Estimated x- and y-position of salmon juveniles in stereo
image.

Figure 4.12: Test image 2: Estimated depth of salmon juveniles in stereo image.
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Figure 4.13: Test image 3: Detected salmon juveniles in stereo image.

Figure 4.14: Test image 3: Estimated x- and y-position of salmon juveniles in stereo
image.

Figure 4.15: Test image 3: Estimated depth of salmon juveniles in stereo image.
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4.3 Object Tracking

This section presents the obtained results from object-tracking salmon juveniles in
videos. All provided videos from SINTEF Ocean were tracked to retrieve posi-
tional data. The results from experimenting with the Tlost and frame count values
will be presented. Figure 4.16 is a snapshot of an object-tracked video. Two exam-
ples of object-tracked videos are provided in Supplementary Materials. The two
videos present object tracking of normal behavior from 27.06.2022 and stressed
behavior from 07.07.2022.

Figure 4.16: Snapshot of an object-tracked salmon juvenile video.

4.3.1 Time Series of Positional Data

A 5-minute video from 27.06.2022 was utilized to test different values of Tlost and
frame count for object tracking. Table 4.2 presents an overview of the obtained
number of detected fish and average time series per fish from the combinations
of Tlost and frame count. The experimental outcomes indicated best results with
Tlost = 5 and fc = 15 frames.

Tlost Threshold

Three different Tlost thresholds were tested to acquire extended time series of po-
sitional data. The frame count was kept constant with a value of fc = 15. An
example of a fish’s positional data with Tlost set to 1, 5, and 20 can be seen in
Figure 4.17, 4.18, and 4.19, respectively. The time series are from the same fish.
The average time series per fish presented in Table 4.2 indicates that the lower the
value of Tlost, the shorter the time series for fish. A smaller Tlost value caused
the SORT algorithm to remove tracks more quickly when no matching detections
were found, while a larger value allowed the algorithm to retain tracks for a longer
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period. For two other examples of time series of a fish with various Tlost values,
see Appendix D.

Table 4.2: Overview of tested values for Tlost and frame count, the corresponding number
of detected fish, and average time series per fish.

Threshold Frame count Detected fish Average time series per fish
Tlost = 1 15 frames 839 3.384 sec
Tlost = 5 5 frames 583 3.393 sec
Tlost = 5 15 frames 601 3.661 sec
Tlost = 5 30 frames 578 3.596 sec
Tlost = 10 15 frames 530 4.024 sec
Tlost = 20 15 frames 484 4.636 sec

Figure 4.17: Tlost = 1, fc = 15 frames: Example of time series of positional data of a
fish.
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Figure 4.18: Tlost = 5, fc = 15 frames: Example of time series of positional data of a
fish.

Figure 4.19: Tlost = 20, fc = 15 frames: Example of time series of positional data of a
fish.
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Frame Count

The parameter frame count was also modified while the threshold value Tlost = 5
was kept constant to find the optimal balance between accuracy and responsive-
ness. The frame count was set to 5, 15, and 30 frames, and an example of po-
sitional time series obtained from every count is presented in Figure 4.20, 4.21,
and 4.22, respectively. The time series are from the same fish and illustrate how
variations in the quantity of historical data can influence the positional estimations.
fc = 5 gave noisy positional data, which resulted in large values for velocity and
speed change rate. A larger frame count of 15 and 30 appeared more effective in
smoothing out the variations in the data. However, a frame count of 30 gave un-
realistic small velocity and speed change rate values. For two additional examples
of time series with various frame counts, see Appendix D.

Figure 4.20: Tlost = 5, fc = 5 frames: Example of time series of positional data of a fish.
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Figure 4.21: Tlost = 5, fc = 15 frames: Example of time series of positional data of a
fish.

Figure 4.22: Tlost = 5, fc = 30 frames: Example of time series of positional data of a
fish.
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4.4 H2S Detection using Machine Learning

This section presents the results obtained from classification and estimation of
H2S concentration. Each model was evaluated on the different datasets, and the
corresponding performance metrics are presented in tables. Notably, the best per-
formance achieved by each model is highlighted in blue.

4.4.1 Classification of H2S Concentration

This section presents the obtained results from the classification of H2S concen-
tration. Three support vector classifiers, a decision tree, a random forest, and an
automated machine learning model were utilized to obtain the following results.

Support Vector Classifier

Table 4.3 presents an overview of achieved accuracy with the SVC utilizing dif-
ferent kernels on the datasets. The best accuracy was achieved with the linear ker-
nel, reaching an accuracy of 50% with the dataset created with ws = 5 minutes,
ss = 2.5 minutes, and bn = 50. The resulting confusion matrix for this model is
presented in Figure 4.23. It correctly classified some lower H2S concentrations
but misclassified other low values as the highest concentration of 67.7µg/L.

The highest accuracy achieved with the RBF kernel was 28.6%, and the confusion
matrix is illustrated in Figure 4.24. This model classified all samples in the test
dataset as 0µg/L, except for one correctly classified sample of 66.4µg/L. This
indicated that the RBF kernel might not be efficient at classifying positional distri-
butions.

The polynomial kernel achieved an accuracy of 31.2%. Figure 4.25 presents the
resulting confusion matrix. The model only estimated three concentrations of 0,
7.2, and 66.4µg/L, where most were wrongly classified. These results suggested
poor estimation with the polynomial kernel.
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Table 4.3: Accuracy of SVC with different kernel functions trained on different datasets.

Accuracy of SVC with different kernel functions
Window

size Step size Number
of bins Linear kernel RBF kernel Polynomial

kernel
5 min 2.5 min 50 50% 25% 31.2%
5 min 2.5 min 100 18.8% 18.8% 25%
10 min 2.5 min 50 42.9% 28.6% 28.6%
10 min 5 min 50 40% 26.7% 20%
10 min 5 min 100 44.4% 22.2% 27.8%

Figure 4.23: Confusion matrix for SVC with linear kernel with accuracy of 50%, trained
with the dataset: ws = 5 min, ss = 2.5 min, and bn = 50.
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Figure 4.24: Confusion matrix for SVC with RBF kernel with accuracy of 28.6%, trained
with the dataset: ws = 10 min, ss = 2.5 min, and bn = 50.

Figure 4.25: Confusion matrix for SVC with polynomial kernel with accuracy of 31.2%,
trained with the dataset: ws = 5 min, ss = 2.5 min, and bn = 50.
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Decision Tree Classifier

Table 4.4 presents accuracies of the decision tree dependent on the different datasets.
The highest accuracy was 37.5%. This was achieved with the datasets made with
ws = 5 minutes, ss = 2.5 minutes, and bn = 50 and 100. Figure 4.26a presents
the confusion matrix for the decision tree with the mentioned values and bn = 50.
This matrix indicates that most concentrations over 60µg/L were correctly classi-
fied as high concentrations, except for one.

Figure 4.26b presents the confusion matrix for ws = 10 minutes, ss = 2.5 min-
utes, and bn = 50. By comparison of the before mentioned model, all high con-
centrations were classified as high concentrations. Additionally, it classified one
0µg/L as 67.7µg/L.

Depending on specific requirements, a model with a lower accuracy could be con-
sidered as effective as a model with higher accuracy. There seemed to be a trade-off
between low values being misclassified as high and high values as low. It might
be more critical to detect high concentrations rather than low concentrations accu-
rately. Hence, the model with an accuracy of 30.8%, correctly classifying all high
concentrations, may be deemed more effective when compared to the model with
an accuracy of 37.5%, which misclassified some high concentrations.

Table 4.4: Accuracy of decision tree classifier trained on different datasets.

Accuracy of decision tree classifier
Window

size Step size Number
of bins Accuracy

5 min 2.5 min 50 37.5%
5 min 2.5 min 100 37.5%
10 min 2.5 min 50 30.8%
10 min 5 min 50 23.1%
10 min 5 min 100 38.5%
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(a) Confusion matrix for decision tree classifier with accuracy of 37.5%, trained with the
dataset: ws = 5 min, ss = 2.5 min, and bn = 50.

(b) Confusion matrix for decision tree classifier with accuracy of 30.8%, trained with the
dataset: ws = 10 min, ss = 2.5 min, and bn = 50.

Figure 4.26: Confusion matrices for decision tree classifier with accuracy of 37.5% (a)
and 30.8% (b).
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Random Forest Classifier

Random forest achieved the highest accuracy of all implemented classification
models. Similar to the decision tree model, the highest accuracy was achieved
with the datasets made with ws = 5 minutes, ss = 2.5 minutes, bn = 50 and
100, and was 56.3%. Table 4.5 presents an accuracy overview dependent on the
datasets.

Figure 4.27a presents the confusion matrix for ws = 5 minutes, ss = 2.5 minutes,
and bn = 50. The model estimated all high values as high except for one. It also
classified many of the low values as too low. This trend indicates that the model
often classified concentrations lower than their actual values.

Figure 4.27b presents the confusion matrix for the accuracy of 38.5%. This model
classified the highest values correctly but struggled with the lower concentrations.

Table 4.5: Accuracy of random forest classifier trained on different datasets.

Accuracy of random forest classifier
Window

size Step size Number
of bins Accuracy

5 min 2.5 min 50 56.3%
5 min 2.5 min 100 56.3%
10 min 2.5 min 50 38.5%
10 min 5 min 50 30.8%
10 min 5 min 100 30.8%
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(a) Confusion matrix for random forest classifier with accuracy of 56.3%, trained with the
dataset: ws = 5 min, ss = 2.5 min, and bn = 50.

(b) Confusion matrix for random forest classifier with accuracy of 38.5%, trained with the
dataset: ws = 10 min, ss = 2.5 min, and bn = 50.

Figure 4.27: Confusion matrices for random forest classifier with accuracy of 56.3% (a)
and 38.5% (b).
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Random Forest with Auto-Sklearn Classification

The Auto-Sklearn classification was employed to evaluate if an automatic machine
learning method could outperform the other traditional models. The accuracy of
the best-performing model on the different datasets is shown in Table 4.6. The
best accuracy of 50% was achieved with a random forest trained with the dataset
created with ws = 5 minutes, ss = 2.5 minutes, and bn = 100. Table 4.7 presents
the leaderboard of trained models of this dataset. Figure 4.28 illustrates the con-
fusion matrix for the top-performing model. The confusion matrix reveals that
three samples were accurately classified as high H2S concentrations. However,
there are many misclassifications: one sample with a high concentration was erro-
neously classified as 0µg/L, and another sample with a true label of 0µg/L was
misclassified as 67.7µg/L.

Table 4.6: Accuracy of Auto-Sklearn classification trained on different datasets.

Accuracy of Auto-Sklearn classification
Window

size Step size Number
of bins Accuracy

5 min 2.5 min 50 37.5%
5 min 2.5 min 100 50.0%
10 min 2.5 min 50 30.8%
10 min 5 min 50 46.2%
10 min 5 min 100 38.5%

Table 4.7: The Auto-Sklearn leaderboard for classification models trained with the
dataset: ws = 5 min, ss = 2.5 min, and bn = 100.

Auto-Sklearn leaderboard for classification

Rank Ensemble
weight Type Cost Duration

1 0.18 Random forest 0.215 2.755
2 0.12 Random forest 0.228 2.020
3 0.02 Random forest 0.228 1.597
4 0.18 Random forest 0.241 1.974
5 0.06 Random forest 0.241 1.804
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Figure 4.28: Confusion matrix for random forest provided by Auto-Sklearn with accuracy
of 50%, trained with the dataset: ws = 5 min, ss = 2.5 min, and bn = 100.

4.4.2 Estimation of H2S Concentration

This section presents the achieved results from the estimation of H2S concentra-
tion. Five machine learning methods were employed; a support vector regressor,
a decision tree, a random forest, and two automatic machine learning methods.
Their performance was evaluated using the five distinct datasets.

Support Vector Regressor

The first machine learning method tested was SVR with RBF kernel. Table 4.8
presents the R² score, MAE, and RMSE values for the different datasets. The per-
formance of the SVR model was unsatisfactory, with the highest R² score achieved
being -0.342. This negative value indicates that the model failed to capture the
underlying patterns in the data and that the model’s estimations were worse than a
constant function that always estimates the mean of the data. Figure 4.29 presents
the regression plot comparing the estimated values to the true values. A significant
deviation between the estimated and true values is evident, as exemplified by the
three rightmost data points. In these instances, the model estimated lower values
than 8.5µg/L, while the true values were over 60µg/L.
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Table 4.8: Performance of SVR with RBF kernel trained on different datasets.

Performance of SVR with RBF kernel
Window

size Step size Number
of bins R² score MAE RMSE

5 min 2.5 min 50 -0.440 20.354 31.447
5 min 2.5 min 100 -0.440 20.353 31.443

10 min 2.5 min 50 -0.342 18.467 29.920
10 min 5 min 50 -0.346 18.341 29.973
10 min 5 min 100 -0.346 18.339 29.969

Figure 4.29: Regression plot for SVR with RBF kernel trained with the dataset: ws = 10
min, ss = 2.5 min, and bn = 50.

Decision Tree Regressor

The second method evaluated was decision tree regression. The model’s perfor-
mance was significantly better than the SVR, with the highest achieved R² score
of 0.856 with the dataset created with ws = 10 minutes, ss = 5 minutes, and
bn = 50. Table 4.9 presents the other model performances.
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Figure 4.30 presents the corresponding regression plot for the best-performing
model with an R² score of 0.856, MAE of 5.392, and RMSE of 9.816. These
metrics indicate that the model is generally effective in estimating H2S concentra-
tions, explaining approximately 85.6% of the variance in the dataset. The model’s
average prediction error, RMSE, of 9.816 means that the predicted values devi-
ate from the true values by approximately 9.816µg/L. A closer examination of
the plot reveals that the confidence intervals are not evenly distributed across the
entire range of true values. The confidence intervals are relatively narrow for the
lower part of the plot, suggesting that the model provides precise estimations for
lower H2S concentrations. On the other hand, the confidence intervals become
considerably wider as the true values increase, indicating that the model’s estimate
performance decreases for higher H2S concentrations. This deviation appears to
be primarily caused by a single data point with a true value of 32µg/L, which the
model estimated to be 0µg/L.

Table 4.9: Performance of decision tree regressor trained on different datasets.

Performance of decision tree regressor
Window

size Step size Number
of bins R² score MAE RMSE

5 min 2.5 min 50 0.038 14.356 25.694
5 min 2.5 min 100 0.561 6.869 17.367

10 min 2.5 min 50 0.434 10.223 19.435
10 min 5 min 50 0.856 5.392 9.816
10 min 5 min 100 0.360 9.508 20.670
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Figure 4.30: Regression plot for decision tree regressor trained with the dataset: ws = 10
min, ss = 5 min, and bn = 50.

Random Forest Regressor

Random forest was the third method tested for H2S estimation. This ensemble
method displayed a slightly bigger improvement compared to the decision tree.
The highest R² score was 0.9, with an MAE of 4.612 and an RMSE of 8.174.
Table 4.10 presents the results of the model trained on different datasets.

An R² score of 0.9 suggests that the model was able to explain about 90% of the
variance in the H2S concentration data. Figure 4.31 illustrates the regression plot
of this model. Similar characteristics to those observed in the decision tree plot are
also evident. A comparative analysis reveals that the estimations for lower values
were more accurate. Additionally, the dispersion in the confidence intervals appear
to be predominantly influenced by the same single data point with the true value of
32µg/L. The model estimated this particular value to be approximately 7µg/L.
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Table 4.10: Performance of random forest regressor trained on different datasets.

Performance of random forest regressor
Window

size Step size Number
of bins R² score MAE RMSE

5 min 2.5 min 50 0.526 9.866 18.035
5 min 2.5 min 100 0.527 9.761 18.018
10 min 2.5 min 50 0.900 4.612 8.174
10 min 5 min 50 0.880 5.526 8.924
10 min 5 min 100 0.531 9.844 17.687

Figure 4.31: Regression plot for random forest regressor trained with the dataset: ws = 10
min, ss = 2.5 min, and bn = 50.

Decision Tree with Auto-Sklearn Regression

The Auto-Sklearn regression identified a decision tree model as the top-performing
model, with an R² score of 0.869, an MAE of 6.422, and an RMSE of 9.34. This
was achieved with the dataset created with ws = 10 minutes, ss = 2.5 minutes,
and bn = 50. The performance metrics indicate that the decision tree model per-
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formed well but slightly worse than the previously tested random forest regressor.
The other metrics for the different datasets are presented in Table 4.11. Table 4.12
shows the leaderboard of Auto-Sklearn of the best dataset.

Figure 4.32 illustrates the regression plot of the top model. A closer examination
of the regression plot indicates smaller variance for higher H2S concentrations
than the previous models. Notably, the data point with a true value of 32µg/L
was estimated to be 10µg/L, which was closer to the true value. Additionally, the
higher and lower H2S concentration values appear to be more spread, which sug-
gests that the model may provide a more balanced performance across the entire
range of concentrations.

Table 4.11: Performance of Auto-Sklearn regression trained on different datasets.

Performance of Auto-Sklearn regression
Window

size Step size Number
of bins R² score MAE RMSE

5 min 2.5 min 50 0.517 10.825 18.217
5 min 2.5 min 100 0.534 9.646 17.895

10 min 2.5 min 50 0.869 6.422 9.340
10 min 5 min 50 0.609 10.994 16.154
10 min 5 min 100 0.489 13.405 18.466

Table 4.12: The Auto-Sklearn leaderboard for regression models trained with the dataset:
ws = 10 min, ss = 2.5 min, and bn = 50.

Auto-Sklearn leaderboard for regression

Rank Ensemble
weight Type Cost Duration

1 0.62 Decision tree 0.064 0.292
2 0.10 Extra trees 0.099 12.743
3 0.02 Adaboost 0.156 1.243
4 0.04 Gaussian process 0.188 43.210
5 0.04 Gradient boosting 0.208 6.831

80



4 Results 4.4.2 Estimation of H2S Concentration

Figure 4.32: Regression plot for decision tree provided by Auto-Sklearn trained with the
dataset: ws = 10 min, ss = 2.5 min, and bn = 50.

Stack Ensemble Model with H2O AutoML

Table 4.13 presents an overview of the performance of the utilized H2O AutoML
method on the different datasets. A stacked ensemble model was identified as the
top-performing model, achieved with the dataset of ws = 10 minutes, ss = 5
minutes, and bn = 50. The corresponding performance metrics were an R² score
of 0.887, an MAE of 4.756, and an RMSE of 8.677, indicating that the model
performed well in estimating H2S concentrations. The specifications of this model
are provided in Table 4.14, followed by an explanation.

Figure 4.33 illustrates the regression plot of the stacked ensemble model. The
narrower variance observed in the model’s estimations was notably improved over
the previously tested methods. Specifically, the higher variance interval for the
stacked ensemble model ranges from approximately 30 to 70µg/L. This result
reveals that the stacked ensemble model offered a more accurate and consistent
estimation performance when estimating H2S concentrations of higher values.
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Table 4.13: Performance of H2O AutoML regression trained on different datasets.

Performance of H2O AutoML regression
Window

size Step size Number
of bins R² score MAE RMSE

5 min 2.5 min 50 0.462 10.615 19.221
5 min 2.5 min 100 0.395 12.890 20.377

10 min 2.5 min 50 0.760 8.335 12.659
10 min 5 min 50 0.887 4.756 8.677
10 min 5 min 100 0.485 9.423 18.537

Table 4.14: Model summary of the top performing stacked ensemble model provided by
H20 AutoML, trained with the dataset: ws = 10 min, ss = 5 min, and bn = 50.

Model summary for stacked ensemble
Key Value

Stacking strategy cross validation
Number of base models (used / total) 3/6

GBM base models (used / total) 1/1
XGBoost base models (used / total) 1/1

DRF base models (used / total) 0/2
DeepLearning base models (used / total) 1/1

GLM base models (used / total) 0/1
Metalearner algorithm GLM

Metalearner fold assignment scheme Random
Metalearner nfolds 5

Metalearner fold column None
Custom metalearner hyperparameters None
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Explanation of the top performing stacked ensemble model presented in Table
4.141:

• Stacking strategy: Cross-validation was used to combine the base models,
meaning that cross-validated base model predictions are used to train the
metalearner.

• Number of base models (used / total): Indicates that 3 out of the total 6
base models were selected to be included in the stacked ensemble.

• GBM base models (used / total): 1 Gradient Boosting Machine (GBM)
model was generated and included in the ensemble.

• XGBoost base models (used / total): 1 XGBoost model was generated and
included in the ensemble.

• DRF base models (used / total): 2 Distributed Random Forest (DRF) mod-
els were generated, but none were included in the ensemble.

• DeepLearning base models (used / total): 1 Deep Learning model was
generated and included in the ensemble.

• GLM base models (used / total): 1 Generalized Linear Model (GLM) was
generated, but not included in the ensemble.

• Metalearner algorithm: The algorithm combines the base models’ predic-
tions. In this case, it is a Generalized Linear Model (GLM).

• Metalearner fold assignment scheme: The method used for assigning data
to folds in the metalearner. ”Random” indicates that data points are ran-
domly assigned to folds.

• Metalearner nfolds: 5 cross-validation folds used in the metalearner train-
ing process.

• Metalearner fold column: If a specific column was used to assign data to
folds, its name would be mentioned here. ”None” indicates that no specific
column was used.

• Custom metalearner hyperparameters: Any custom hyperparameters pro-
vided for the metalearner would be listed here. In this case, no custom hy-
perparameters were used.

1Model explanation list rephrased from: docs.h2o.ai/stackedensembleestimator.
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Figure 4.33: Regression plot for stacked ensemble model provided by H2O AutoML
trained with the dataset: ws = 10 min, ss = 5 min, and bn = 50.
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5
Discussion

This chapter presents a comprehensive discussion of results that have emerged
during the project. The discourse begins with the process of training and testing the
Stereo R-CNN, followed by the 3D coordinate estimation of detected objects and
object tacking. An essential part of the discussion concerns the acquired positional
data. Here, an assessment of the collected data and reflections around the created
datasets are provided. The last results discussed are classification and estimation
of H2S concentration.

The discussion ends with a summary that aims to weave together these diverse
topics, facilitating a holistic understanding of the research project and potential
use. This is followed by the project’s limitations and suggested future work.

5.1 Training and Testing Stereo R-CNN

The training of the Stereo R-CNN with an expanded dataset yielded satisfactory
results. The training and validation loss plot revealed a minimum loss of -21,
surpassing the -17 loss from the Specialization Project, indicating a substantial
improvement. The minimum was achieved by training the model without data
augmentation, over approximately 50 epochs. The validation loss graph indicated
overfitting beyond this point.

Given that the best-performing model was achieved without data augmentation, the
larger dataset potentially led the model to reach the saturation point of performance
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improvement. This implied that the expansion of the dataset brought the model’s
learning capacity to its optimum level, where further data or the application of data
augmentation could not yield additional improvements.

Expanding the test dataset from 10 to 66 stereo images facilitated a more robust
foundation for determining the optimal model at a given epoch. The best model
depended on the trade-offs between median IoU, precision, and recall. The deci-
sion was mainly based on the balance between identifying as many true positives
as possible (higher recall) and the accuracy of positive predictions (higher preci-
sion). The model trained without data augmentation at epoch 50 was chosen based
on its high precision and recall. However, the variances in performance were mi-
nor, suggesting that many of the models trained without data augmentation could
be suitable for object detection.

The top-performing model achieved a median IoU of 0.874, meaning that the de-
tected bounding boxes and the ground truth boxes overlapped with 87.4%. The
precision and recall were 96.2% and 93.9%, respectively. It can be concluded
that the model was performing well, based on these metrics and observations of
detected objects from testing.

5.2 Estimated 3D Coordinates of Detected Objects

The test set of 10 images presented satisfactory results compared to those obtained
during the Specialization Project. As stated in the Specialization Project [14], the
primary source of inaccurate 3D estimates appeared to be miss-detections by the
Stereo R-CNN. Therefore, improved results were achieved using the new Stereo
R-CNN model as the utilized camera calibration parameters were the same as in
the Specialization Project.

Although the 3D estimates were improved, some 3D coordinates were wrongly
estimated. Given the potential attainment of a saturation point by the current Stereo
R-CNN model, exploring alternative models may be an approach for obtaining
better 3D estimate results. In addition, refining the calibration process could also
result in improvements.
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5.3 Object Tracking

The SORT algorithm demonstrated good results for tracking fish through video
sequences. The algorithm successfully tracked fish over time with unique IDs.
The optimal values for the tracking parameters Tlost threshold and frame count
were experimentally established by visually inspecting time series of simple fish
position. A smaller Tlost value caused the SORT algorithm to remove tracks more
quickly when no matching detections were found, leading to more detected fish.
Conversely, a larger value allowed the algorithm to retain tracks longer, without
matching detections. This introduced more significant deviations in positional
data. This could result from the underlying constant velocity model utilized by the
SORT algorithm for estimating fish positions when lost for a number of frames. By
decreasing the frame count, the Kalman filter would generate more frequent up-
dates, potentially improving its ability to track positional changes and respond to
abrupt shifts in position. In contrast, increasing the frame count would yield less
responsiveness to sudden position changes but produce comparatively smoother
results.

The objective of obtaining longer time series of fish positional data was accom-
plished. By incrementing the Tlost to 5 while maintaining the frame count as its
original value of 15 frames, more extended time series were acquired in addition
to smoothing out the noise. As a result, the average time series per fish increased
by 8.18%.

Expanding the time series of data offered insight into the performance of the track-
ing algorithm. The obtainment of longer time series demonstrated that the utilized
tracking algorithm consistently maintained accuracy. This is important in dynamic
systems where the tracked object changes its behavior, speed, or other characteris-
tics. Overall, the SORT algorithm and the Kalman filter demonstrated commend-
able performance in object tracking.

Additionally, examining the time series of 3D coordinates was a decent method to
evaluate position estimates. Some deviations from anticipated positional data were
observed, indicating noise and variation in position estimates. Large deviations
could lead to inaccurate outcomes and present a distorted presentation of the fish
population. An option to enhance the accuracy of the tracking system’s position
estimates is to neglect large deviations from trending values.
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5.4 Acquired Positional Data

A comprehensive dataset containing positional data was obtained from object track-
ing of all provided videos. Various trends in positional data were apparent across
the different dosages of H2S exposure. For a majority of the observation period,
specifically 27-30.06.2022, 01.07.2022, and 03-05.07.2022, the positional data ex-
hibited minimal to no behavioral changes in response to H2S exposure. How-
ever, noticeable deviations from typical positional data were seen on 02.07.2022,
06.07.2022, and 07.07.2022.

While inaccurate positional estimates could cause these patterns, similar swim-
ming behaviors were observed upon visually examining the videos. The limited
instances of abnormal fish behavior in the video data may present a challenge in
creating a robust dataset for further analysis of H2S detection. A lack of sufficient
variation in swimming patterns might not allow for effective discernment of the
effects of H2S exposure.

Numerous factors might influence the lack of reaction to H2S exposure in fish.
A potential explanation is that the fish are naturally resilient to small dosages of
H2S; hence, they continue to exhibit normal behavior. Another possibility is the
familiarization or acclimatization of the fish if they have experienced exposure be-
fore. Another observation from the exposure periods was the apparent immediate
calmness in the fish behavior once the concentration of H2S peaked and started
declining. This behavioral pattern could indicate relief, suggesting an adaptive
response to the H2S as it dissipated.

Acquired positional data characterized merely by velocity and speed change rate
provided some information but more is needed for a comprehensive understanding
of swimming behaviour. Including elements such as angular velocity and accel-
eration can enrich the spectrum of the data. This could provide a more holistic
portrayal of fish behavior, thereby capturing a greater range of deviations.

5.4.1 Distribution Datasets

The sliding window technique was utilized to collect positional distribution data to
create five different datasets. The sliding window range, specifically the start and
end time, was set manually based on visually examining the H2S graph and posi-
tional data. This approach may introduce an element of subjectivity and potential
bias into the data collection process. The range of the window could significantly
influence the outcome of the positional distributions. A more systematic or algo-
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rithmic approach to window selection, which considers the characteristics of the
H2S and positional data, such as variability or trend, could provide a more objec-
tive and reliable analysis.

Additionally, the data collection and labeling method may present some limita-
tions due to the inherent variability of the positional data and H2S concentrations
within the selected window. The method relied on assigning the same H2S con-
centration to all collected distributions from a single day, even though the H2S
value varied within the defined time window. This approach could introduce a
level of imprecision. It assumed homogeneity of fish behavior and exposure levels
throughout the time frame when these factors fluctuated. The oversimplification of
behavioral responses to varying exposure levels may lead to the masking of sub-
tle but meaningful variations in swimming patterns. Future studies could benefit
from exploring more dynamic labeling techniques that account for the temporal
variations in H2S concentrations and the corresponding changes in fish behavior.

Another possible limitation concerning distributional data could arise when the
number of positional data points forming the distribution is less than the number of
bins. This discrepancy might lead to overfitting and a sparse representation of the
distributions, which could distort the interpretation of the data. A potential solution
is to increase the sliding window to get more positional points and decrease the
number of bins.

Another vulnerability is the relatively small dataset, while each data point consists
of many features. This can lead to overfitting, where the model learns the noise
in the training dataset and not the underlying patterns. Techniques such as fea-
ture selection, dimensional reduction, regularization, and collecting more data can
efficiently counteract this.

Detecting H2S concentrations based on short time series intervals may not be
the most effective strategy. This approach overlooks broader trends or fluctua-
tions over time, which could be crucial indicators of behavioral changes or H2S
levels. Instead of segmenting the data into small intervals for independent anal-
ysis, it might be more beneficial to consider extended time series or all historical
data. This approach facilitates monitoring the behavioral progression over time.
It could lead to more accurate and comprehensive estimation models since they
would consider long-term trends or variations. Moreover, considering the trends
or variations as factors over time can better reflect the real-world scenarios where
changes in H2S levels or stress are typically gradual and cumulative. Therefore,
this method may provide more realistic and relevant insights into H2S detection
and stress analysis.
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5.5 Classification of H2S Concentration

An SVC with three different kernels, linear, RBF, and polynomial kernel, was
chosen to conduct initial tests of classifying H2S concentration. All kernels were
tested on the five datasets. The SVC with a linear kernel achieved the highest
accuracy of 50%. A closer examination of the corresponding confusion matrix
showed that the model estimated many samples as the highest H2S concentration
of 67.7µg/L. The performance of this model was assessed unsatisfactory.

Further, a decision tree and random forest classifier were tested. The decision
tree achieved an accuracy of 37.5%. However, it correctly classified most high
values as high. The best accuracy of all classification models was achieved with
the random forest classifier. The accuracy was 56%. Although it estimated many
instances correctly, it still classified one 67.7µg/L label as 0µg/L. The assessment
of the model could have been more favorable as it did not accurately detect all high
concentrations, which are of greater concern due to their lethal potential compared
to lower concentrations.

The random forest model achieving the highest accuracy might be due to the na-
ture of the data. The data has complex, non-linear relationships between features,
which works well with ensemble methods like the random forest. The random
forest does not make assumptions about the linearity of the data and can handle
high-dimensional spaces well.

To summarize, the classification models did not perform well on the task of H2S
detection based on positional distribution data. This could be due to the small
dataset and the characteristics of the positional data. Given that H2S concentra-
tion is a continuous value, using classification could result in information loss. A
regression model might be a more suitable choice. Additional validation metrics,
such as precision and recall, could be considered to evaluate the different models
better.

5.6 Estimation of H2S Concentration

The estimation models demonstrated a better performance in detecting H2S con-
centrations based on positional distribution data compared to the classification
models. An SVR with an RBF kernel, a decision tree regressor, a random for-
est, and two AutoML methods were assessed and tested for this task.

The random forest emerged as the top performer in terms of the R² score, achiev-

90



5 Discussion 5.7 System Summary and Potential Use

ing a value of 0.9, with an MAE of 4.612 and RMSE of 8.174. Despite this high
performance, an examination of the regression plot indicated that the confidence
intervals for higher values of H2S were smaller for the AutoML models, suggest-
ing improved performance in those regions.

In particular, the ensemble stacked model provided by the H2O AutoML library
had an R² score of 0.887, with an MAE of 4.756 and an RMSE of 8.677. While
these metrics may appear inferior to the random forest regressor, the AutoML
model had narrower confidence intervals for higher values. It indicated that the
ensemble stacked model might provide more precise and reliable estimates in sce-
narios of high H2S concentrations. The AutoML method’s ability to naturally
combine and optimize multiple algorithms may be the reason for its smaller confi-
dence intervals for higher values. This enables it to effectively capture the complex
relationships within the data, especially at higher concentration levels where the
data’s variability may be more pronounced.

The ensemble stacked model demonstrates a different performance profile than
the random forest. While the ensemble stacked model showed an improvement in
the higher H2S interval, the random forest regressor may appear to be the more
accurate and robust choice, considering the R² score, MAE, and RMSE values. A
larger dataset would be advisable to support these findings and further investigate
the potential of these models.

5.7 System Summary and Potential Use

The H2S detection system through salmon juvenile monitoring operates as fol-
lows: it takes video footage as an input and returns an estimation of H2S con-
centration as an output. This process starts when a video is passed to the track-
ing module. The tracking module incorporates a pretrained Stereo R-CNN object
detection model and employs the SORT algorithm and Kalman filter to derive po-
sitional data of the detected fish continuously. The resultant positional data is
converted into distributional data through a sliding window technique, which is
then employed to estimate H2S concentrations. The implications of having such a
system that uses video footage to estimate H2S concentrations could significantly
impact the operations of RAS facilities. Some potential outcomes include:

• Continuous monitoring: This system could enable continuous, real-time
monitoring of H2S concentration. This would be an improvement over man-
ual examination and could help operators respond to changes quickly.
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• Fish health and welfare: High concentrations of H2S can be harmful or
even lethal to fish. By detecting these levels early, operators can take action
to protect the health and welfare of the fish, leading to better growth rates
and lower mortality.

• Data collection and analysis: Over time, this system could provide a valu-
able dataset for analysis. This might provide a better understanding of the
conditions that lead to increased H2S and how to prevent them.

• Immediate response: By simultaneously monitoring the H2S level, the
system could be further developed to take immediate action in case of H2S
detection.

The primary aim of the DigiRAS project is to achieve real-time detection of H2S.
The current state of the monitoring system has yet to reach this goal, as it is not
currently developed to handle real-time operations. There are also some uncertain-
ties if the current detection model and tracking algorithm are fast enough to deal
with real-time. However, the obtained results showed good potential on the task of
H2S detection.

5.8 Limitations

One limitation of this study comes from the data collection and labeling method-
ology. The complexity and variability in positional data and H2S concentrations
were oversimplified due to the labeling technique. This also resulted in a limited
number of distinctly labeled H2S concentrations.

5.9 Future Work

The suggested future work is summarized below.

• Outlier detection and removal of positional data acquired from object track-
ing.

• Include other elements of positional data, such as angular velocity and ac-
celeration, to get a more comprehensive dataset of positional data.

• Investigate other methods to label distribution data to get a more dynamic
dataset.
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• Further expand the distribution dataset by investigating augmentation meth-
ods.

• Investigate other variables than distributions to represent the fish popula-
tion’s behavior pattern.

• Investigate other models for detecting H2S concentration based on posi-
tional data.
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Conclusion

One objective of this thesis was to develop an annotation tool and establish a larger
training dataset for the Stereo R-CNN model. A pretrained Stereo R-CNN model
was integrated into the annotation process, reducing the manual work to oversee
and fine-tune the annotation. The extended dataset was used for training and test-
ing the Stereo R-CNN. The new model provided pleasing results.

Another objective was to improve the tracking algorithm to obtain longer and more
precise time series for position and velocity. This improvement provided valuable
insights into the performance of the SORT algorithm and the Kalman filter in ob-
ject tracking. The estimates were reasonable by comparing the time series with the
corresponding video, except for some deviations. Retrieved positional data from
all provided videos gave a decent representation of the fish population exhibit-
ing various swimming patterns. Further, several distribution datasets were created
using the sliding window technique with different parameters. The datasets en-
compassed normalized distributions of decomposed velocity, velocity magnitude,
and speed rate change data.

Various techniques for detecting H2S based on positional distribution data were
assessed. Both classification and regression models were utilized for this task. The
final objective of this thesis was to evaluate how well H2S concentrations could
be estimated based on positional data. The outcome of various tests with different
datasets revealed that classification models were not particularly effective. In con-
trast, the regression models performed more proficiently, with the random forest
regressor model achieving the best results. This demonstrated the potential of ef-
fectively estimating H2S concentrations through salmon juvenile monitoring with
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stereo vision and machine learning.
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Appendix

A Positional Data of Fish

Figure 6.1: 27.06.2022: Velocity and speed change rate data acquired from object track-
ing.
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Figure 6.2: 28.06.2022: Measured H2S.

Figure 6.3: 28.06.2022: Velocity and speed change rate data acquired from object track-
ing.
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Figure 6.4: 29.06.2022: Measured H2S.

Figure 6.5: 29.06.2022: Velocity and speed change rate data acquired from object track-
ing.
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Figure 6.6: 30.06.2022: Measured H2S.

Figure 6.7: 30.06.2022: Velocity and speed change rate data acquired from object track-
ing.
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Figure 6.8: 01.07.2022: Measured H2S.

Figure 6.9: 01.07.2022: Velocity and speed change rate data acquired from object track-
ing.
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Figure 6.10: 02.07.2022: Measured H2S.

Figure 6.11: 02.07.2022: Velocity and speed change rate data acquired from object track-
ing.
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Figure 6.12: 03.07.2022: Measured H2S.

Figure 6.13: 03.07.2022: Velocity and speed change rate data acquired from object track-
ing.
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Figure 6.14: 04.07.2022: Measured H2S.

Figure 6.15: 04.07.2022: Velocity and speed change rate data acquired from object track-
ing.
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Figure 6.16: 05.07.2022: Measured H2S.

Figure 6.17: 05.07.2022: Velocity and speed change rate data acquired from object track-
ing.
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Figure 6.18: 06.07.2022: Measured H2S.

Figure 6.19: 06.07.2022: Velocity and speed change rate data acquired from object track-
ing.
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Figure 6.20: 07.07.2022: Measured H2S.

Figure 6.21: 07.07.2022: Velocity and speed change rate data acquired from object track-
ing.
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B Distribution Data of Fish

Figure 6.22: Example of a data sample consisting of velocity and speed change rate dis-
tributions from 27.06.2022 labeled with 0µg/L. bn = 50.
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Figure 6.23: Example of a data sample consisting of velocity and speed change rate dis-
tributions from 07.07.2022 labeled with 66.4µg/L. bn = 50.
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C Estimated 3D Coordinates of Detected Objects
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Figure 6.24: Test image 4: Detected salmon juveniles in stereo image.

Figure 6.25: Test image 4: Estimated x- and y-position of salmon juveniles in stereo
image.

Figure 6.26: Test image 4: Estimated depth of salmon juveniles in stereo image.
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Figure 6.27: Test image 5: Detected salmon juveniles in stereo image.

Figure 6.28: Test image 5: Estimated x- and y-position of salmon juveniles in stereo
image.

Figure 6.29: Test image 5: Estimated depth of salmon juveniles in stereo image.
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Figure 6.30: Test image 6: Detected salmon juveniles in stereo image.

Figure 6.31: Test image 6: Estimated x- and y-position of salmon juveniles in stereo
image.

Figure 6.32: Test image 6: Estimated depth of salmon juveniles in stereo image.
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Figure 6.33: Test image 7: Detected salmon juveniles in stereo image.

Figure 6.34: Test image 7: Estimated x- and y-position of salmon juveniles in stereo
image.

Figure 6.35: Test image 7: Estimated depth of salmon juveniles in stereo image.
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Figure 6.36: Test image 8: Detected salmon juveniles in stereo image.

Figure 6.37: Test image 8: Estimated x- and y-position of salmon juveniles in stereo
image.

Figure 6.38: Test image 8: Estimated depth of salmon juveniles in stereo image.
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Figure 6.39: Test image 9: Detected salmon juveniles in stereo image.

Figure 6.40: Test image 9: Estimated x- and y-position of salmon juveniles in stereo
image.

Figure 6.41: Test image 9: Estimated depth of salmon juveniles in stereo image.
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Figure 6.42: Test image 10: Detected salmon juveniles in stereo image.

Figure 6.43: Test image 10: Estimated x- and y-position of salmon juveniles in stereo
image.

Figure 6.44: Test image 10: Estimated depth of salmon juveniles in stereo image.
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D Time Series of Positional Data

Variation of Tlost Threshold

Figure 6.45: Tlost = 1, fc = 15 frames: Example of time series of positional data of a
fish.
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Figure 6.46: Tlost = 5, fc = 15 frames: Example of time series of positional data of a
fish.

Figure 6.47: Tlost = 20, fc = 15 frames: Example of time series of positional data of a
fish.
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Figure 6.48: Tlost = 1, fc = 15 frames: Example of time series of positional data of a
fish.

Figure 6.49: Tlost = 5, fc = 15 frames: Example of time series of positional data of a
fish.
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Figure 6.50: Tlost = 20, fc = 15 frames: Example of time series of positional data of a
fish.
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Variation of Frame Count

Figure 6.51: Tlost = 5, fc = 5 frames: Example of time series of positional data of a fish.

Figure 6.52: Tlost = 5, fc = 15 frames: Example of time series of positional data of a
fish.

125



Figure 6.53: Tlost = 5, fc = 30 frames: Example of time series of positional data of a
fish.

Figure 6.54: Tlost = 5, fc = 5 frames: Example of time series of positional data of a fish.
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Figure 6.55: Tlost = 5, fc = 15 frames: Example of time series of positional data of a
fish.

Figure 6.56: Tlost = 5, fc = 30 frames: Example of time series of positional data of a
fish.
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