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Abstract

This thesis investigates the effect of power analytic side-channel attacks
against the post-quantum key encapsulation algorithm CRYSTALS-Kyber.
To achieve this, the previously known correlational power analytic attack
performed by Karlov et al. [KdG21] was recreated and improved upon.
We implemented Kyber512 in the ChipWhisperer toolchain and performed
the attack three times, with the power measurements of 1000, 200, and
50 decryptions.

In all the attacks, We successfully recovered all attempted secret key
parameters and verified the attack could fully recover the secret key. The
attack is also applicable to all versions of CRYSTALS-Kyber, with a
linear increase in the runtime of the attack as the security parameter k of
CRYSTALS-Kyber increases. We are also confident that the attack can
partially recover the secret key in the corresponding signature scheme
CRYSTALS-Dilithium.

Our results show a drastic decrease in the likelihood of false positives
in the attack as the number of power recordings used increases. However,
we observed a drastic increase in runtime due to large computations,
requiring future implementations to consider the tradeoff between fault
likelihood and runtime.

We have disproven the suggested countermeasure by Karlov et al. of
regenerating the secret key every 50 communication cycles by successfully
recovering the secret key with the power recordings of 50 decryptions.





Sammendrag

Denne avhandlingen undersøker effekten av effektanalytiske sidekana-
langrep på den kvantesikre nøkkelkapslingsalgoritmen CRYSTALS-Kyber.
Vi gjenskapte og forbedret et tidligere korrelasjonsangrep utført av Karlov
et al. [KdG21]. Vi implementerte Kyber512 i ChipWhisperer-systemet
og utførte angrepet tre ganger, med effektmålinger fra 1000, 200 og 50
dekrypteringer.

Vi gjenopprettet alle hemmelige nøkkelparametere i alle gjennomførte
angrep og vi har verifisert at angrepet kan gjenopprette den fullstendige
hemmelige nøkkelen. Angrepet er også anvendelig på alle versjoner av
CRYSTALS-Kyber, med en lineær økning i kjøretiden basert på størrelsen
på sikkerhetsparameteren k. Vi er også sikre på at angrepet kan benyttes
til å delvis gjenopprette den hemmelige nøkkelen i den tilsvarende digitale
signaturalgoritmen CRYSTALS-Dilithium.

Resultatene våre viser en drastisk reduksjon i sannsynligheten for
falske positiver i angrep som bruker et økt antall effektmålinger. Imid-
lertid observerte vi en betydelig økning i kjøretid i angrep med mange
effektmålinger, noe som krever at fremtidige implementasjoner må veie
risikoen for falske positiver mot kjøretiden.

Vi har avkreftet det foreslåtte mottiltaket av Karlov et al., som
omhandler å regenerere den hemmelige nøkkelen innen hver 50. kommuni-
kasjonssyklus. Dette ble gjort ved å gjenopprette den hemmelige nøkkelen
ved hjelp av effektmålinger fra 50 dekrypteringer.
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Chapter1Introduction

Cryptography is a crucial part of modern society in securing online communications,
protecting our data, and verifying our identity. This is done by relying on the
complexity of certain mathematical problems, such as the integer factorisation
problem and the discrete logarithm problem. These problems are the foundation of
most of the prevailing cryptographic systems.

This security paradigm is threatened by the rapid advancement in quantum
computing, with quantum algorithms such as Shor’s algorithm [Sho94] being able to
solve these problems exponentially faster than today’s classical computers. This shift
poses several threats to our personal, infrastructural and societal security by poten-
tially exposing all online communication and compromising sensitive data. Quantum
computers capable of executing such algorithms are beyond our technological reach.
However, their timeline remains uncertain, underscoring the need for developing
secure quantum algorithms.

To be prepared for the future, the National Institute of Standards and Technology
(NIST) initiated a competition in 2016 to develop and standardise new quantum-secure
algorithms. The competition focused on two categories of cryptographic algorithms:
Key Encapsulation Mechanisms (KEM) for secure shared-secret distribution between
parties and signature schemes to ensure message integrity and authenticity. As a
result, four algorithms were selected for standardisation, with CRYSTALS-Kyber
emerging as the sole winner in the KEM category and CRYSTALS-Dilithium being
one of the three winning signature schemes [NIST]. The potential exists for additional
algorithms to be standardised in the future.

While these winning algorithms have undergone rigorous theoretical security
testing through the NIST standardisation project, there has been significantly less
research concerning their resilience to side-channel attacks – attacks that exploit the
processor’s physical properties while the cryptographic algorithm is running. Given
the increasing presence of hardware devices in the rise of the Internet of Things era,

1



2 1. INTRODUCTION

the need for side-channel security cannot be overstated.

This thesis aims to analyse the security strength of CRYSTALS-Kyber through a
power analytic Side-Channel Attack (SCA). The primary focus is to replicate the
attack performed by Karlov et al. [KdG21], analyse the attack’s performance with
varying amounts of available power data, and verify the effectiveness of the proposed
countermeasure by Karlov et al., which involves regenerating the secret key before
50 communication cycles. Further, this work will explore whether the attack applies
to all versions of CRYSTALS-Kyber and CRYSTALS-Dilithium, a signature scheme
built on the same mathematical principles. This investigation leads to the following
research questions:

– Can the correlational power analytical attack performed by Karlov et al. be
replicated?

– Can the attack be improved?

– How does the availability of varying amounts of power traces impact the
performance of the attack?

– Can the countermeasures proposed by Karlov et al. effectively mitigate the
attack?

– Is the attack applicable to the corresponding signature scheme, CRYSTALS-
Dilithium?

The remainder of the thesis is divided into five chapters. Chapter 2 provides
a comprehensive background to the cryptographic methods utilised in this study.
Following that, Chapter 3 introduces the power analytic side-channel attacks that
form the basis of our research. The setup used for applying the attack to CRYSTALS-
Kyber is detailed in Chapter 4. Our research findings are subsequently presented in
Chapter 5. The thesis concludes with Chapter 6.



Chapter2Background

2.1 Cryptography

Cryptography, the science of protecting information through the use ciphers, serves
multiple functions such as ensuring confidentiality, where only the intended recipient
can decipher the secret information, guaranteeing data integrity by verifying that
there have been no unauthorised alterations, and providing authenticity by confirming
the source of information. The use of cryptography extends back thousands of years,
with the earliest recorded instance in 1900 BC when Egyptian scribes used non-
standard hieroglyphic symbols to obscure messages on clay tablets [WM21]. Today,
cryptographic mechanisms are in use all around us. Whether we access a secure
website or sign a digital document, cryptography is instrumental in protecting data in
transit, verifying website authenticity, and confirming personal identity and content
integrity.

2.1.1 Cryptographic schemes

Encryption schemes are used to provide confidentiality to a plaintext message. Three
algorithms are required to construct an encryption scheme [KL20]. A key generation
algorithm Gen; an encryption algorithm Enc; and a decryption algorithm Dec. The

Figure 2.1: Encryption and decryption in a generalized encryption scheme.

3



4 2. BACKGROUND

general process of sending and receiving encrypted messages is depicted in Figure
2.1. An encryption function first utilises Key A to transmute the plaintext into
an unreadable ciphertext, denoted EncA(Plaintext) = Ciphertext. Now resistant
to prying eyes, this ciphertext can be safely transmitted or stored in untrusted
environments. Upon receiving the ciphertext, the intended recipient employs a
decryption function, which utilises Key B, to convert the ciphertext back to its
original plaintext form, denoted DecB(Ciphertext) = Plaintext. It is worth noting
that for an encryption process to be deemed secure, it must be infeasible to decipher
the ciphertext without knowing the value of Key B. The specific details of these
algorithms and the selection of Key A and Key B are determined by the encryption
schemes used, with different schemes offering varying levels of security and suited to
different use cases. However, the algorithms are commonly divided into symmetric
encryption and Public-Key Encryption (PKE).

In symmetric encryption, the same key is used for encryption and decryption,
such that DecK(EncK(Plaintext)) = Plaintext. In the generalised scheme shown
in Figure 2.1, Key A and Key B take the same value. Complete secrecy of the
key is imperative for the security of symmetric encryption, as anyone with the
key can retrieve the plaintext. This introduces a key distribution problem [KL20].
Both parties involved must have access to the key before the communication starts.
Historically, this was addressed by physically meeting to establish the secret keys.
However, this is often not feasible, and managing multiple keys can introduce
additional risks [KL20].

In a PKE scheme, each participant has a pair of keys: a public key, which can be
freely distributed and used by others to encrypt messages, and a private or secret
key, which is kept secret and used to decrypt messages. The encryption is done
using the recipient’s public key, Encpk(Plaintext)) = Ciphertext, and decryption is
performed using the recipient’s secret key, Decsk(Ciphertext)) = Plaintext.

In the generalised scheme in Figure 2.1, Key A is the recipient’s public key, and
Key B is the recipient’s secret key. A significant advantage of PKE schemes is that
they eliminate the need for pre-established secrets, as public keys can be safely sent
through untrusted environments. However, PKE is typically slower and require
bigger keys and ciphertexts than symmetric encryption of the equivalent security
strength [KL20].

To mitigate these performance issues, KEM was developed. KEM protocols are
used to securely exchange a shared secret key, which can then be used for symmetric
encryption. Once both parties have established this shared secret, more efficient
symmetric encryption algorithms, such as Advanced Encryption Standard (AES),
can be used for subsequent communication. A common method for creating a KEM
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Figure 2.2: The signing and verification process in a generalised signature scheme.

is to modify existing PKE. One method for this conversion is the Fujisaki–Okamoto
transform, where PKE schemes secure under chosen plaintext attacks are converted
to KEM secure under chosen ciphertext attacks [FO99].

Digital signature schemes are utilised to ensure the integrity and authenticity
of a message. Similar to PKE schemes, digital signature schemes also use public
and secret keys, but their usage order is reversed. As illustrated in Figure 2.2, to
sign a message, the signer employs their private key to compute the signature, which
is then distributed along with the message. A verification algorithm subsequently
verifies whether the alleged signer has signed a message. The algorithm takes the
message and the accompanying signature as input and uses the signer’s public key
to determine if the signature is valid or invalid [KL20]. If the signature passes the
verification process, we can confirm the message’s authenticity, as the signer must
possess the corresponding secret key to the public key used. Furthermore, we know
that the integrity of the message is preserved because any alteration in the message
would result in a different signature, causing the verification process to fail.

2.1.2 Quantum computing and cryptography

There is a significant shift in the world of cryptography as quantum computers
potentially threaten the security of almost all currently used PKE and signature
schemes. The security of most of these schemes is grounded in the computational
difficulty of one of two problems: the integer factorisation problem, which involves
finding the two prime factors of a large integer, and the discrete logarithm problem,
which relies on the difficulty of finding the integer x in the equation gx = h for a
generator g of a cyclic group G. Both of these problems can be efficiently solved in
polynomial time using Shor’s algorithm on a sufficiently powerful quantum computer
[Sho94].

Over the last decade, the field of quantum computing has seen significant ad-
vancements, including the public availability of quantum computing through the
cloud [IBMQuantum] and the successful, scalable implementation of Shor’s algorithm
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to factorise the integer 15 [MNM+16]. However, due to technological challenges, it is
unknown when quantum computers capable of breaking real-world cryptography will
become a reality.

2.2 Lattice problems

CRYSTALS-Kyber is currently the sole winner of the NIST quantum competition
for KEM’s and will be standardised. This chapter aims to give a fundamental
understanding of the algorithm and the concepts it is building upon.

2.2.1 Mathematical background

The evolution of PKE schemes has been marked by increased complexity in the
mathematics they employ. From the high school mathematics required for under-
standing the integer factorisation problem of RSA, leading to the more advanced
elliptic curve cryptography and, most lately, to the new lattice-based post-quantum
schemes. This section aims to briefly introduce the key mathematical principles of
CRYSTALS-Kyber. Atiyah provides a more thorough introduction to mathematical
concepts introduced in this section [Ati18].

Ring

A mathematical ring is an algebraic structure consisting of a set of elements, with
the two closed operations addition + and multiplication · defined. As in the normal
rational numbers, multiplication is required to have an identity element (a ·1 = a), be
associative ((a ·b) ·c = a · (b ·c)) and distributive over addition (a · (b+c) = a ·b+a ·c).
However, unlike the rationals, multiplication is not required to be commutative
(a · b ̸= b · a) or have multiplicative inverses defined (a · a−1 ̸= 1). Under addition, a
ring is an abelian group, which means there exists an identity element (a + 0 = a),
there exists an inverse element (a+(−a) = 0), it is associative ((a+b)+c = a+(b+c))
and is commutative (a + b = b + a).

In CRYSTALS-Kyber, a polynomial ring in the form Zq[X]/(f) is used. The
ring consists of polynomials where the coefficients are integers reduced modq, and
the polynomials are reduced modf . The addition of two polynomials is defined
coefficient-wise, reduced modq.

a + b =
n−1∑
i=0

((ai + bi) mod q)Xi

The multiplication operation is defined as standard polynomial multiplication
with the coefficients reduced modq and the polynomial reduced modf . If f is of the
form Xn + 1, the ith coefficient of c = a · b is defined as:
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ck =
∑

i+j≡k,i+j<n

ai · bj −
∑

i+j≡k,i+j≥n

ai · bj

Let us consider a numerical example in the ring:

R = Z17[X]/(X2 − 4)

To represent the polynomial a = 20X2 + 5X + 17 in R we need to reduce the
coefficents mod17:

a = 3X2 + 5X

And reduce the polynomial mod(X2 − 4):

a = 3X2 + 5X

= 3X2 + 5X − 3(X2 − 4)
= 3X2 − 3X2 + 5X − (3 · −4)
= 5X + 12

The addition is defined coefficient-wise. Let us consider the addition of the
polynomial a = 5X + 8 and b = 4X + 9 in ring R:

a + b = (5X + 8) + (4X + 9)
= (5 + 4)X + (8 + 9)
= 9X + 17
= 9X

The multiplication operation is defined as normal polynomial multiplication before
reducing mod f as follows:

a · b = (5X + 8)(4X + 9)
= 20X2 + 45X + 32X + 72
= 20X2 + 77X + 72
= 3X2 + 9X + 4
= 3X2 + 9X + 4 − 3(X2 − 4)
= 3X2 − 3X2 + 9X + 4 − (3 · −4)
= 9X + 16
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Module

A module M is a generalization of a vector space. As in a vector space, the vectors,
called elements in the module, form an abelian group. However, unlike vector spaces,
the scalars are of a ring R. In finitely generated modules, there exist a set of elements
a1, a2, · · · , an ∈ M which reach may reach all elements x ∈ M by multiplying with
scalars r ∈ R.

Lattice

A lattice is a set of infinite discrete points in a vector space. Take the vector space
V with the unit vectors v1, v2 over the field R. A corresponding lattice Λ would be
all integer combinations of v1 and v2:

Λ =
2∑

i=1
aivi, a ∈ Z,

I.e. Λ is a module over Z, generated by v1 and v2.

In CRYSTALS-Kyber, we use modules M over R, where R is the ring from earlier.
An element m ∈ M is a tuple consisting of i polynomials in R. The ring R itself can
be seen as a special lattice (with multiplication) reduced mod q, turning M into a
so-called module lattice [LS15].

2.2.2 Learning with errors

The Learning With Errors (LWE) problem introduced by Regev [Reg09] has gained
considerable attention from cryptographers in recent years due to its potential in post-
quantum security. The problem is a reduction of the worst-case lattice problem, which
has no known efficient solving algorithms, giving LWE strong security guarantees.
In addition, LWE algorithms have proven to be cheap to implement, making it a
promising problem for use in embedded devices.

For a formal definition of LWE, some static parameters must be defined. The
static parameter n ≥ 1 denotes the size of the problem, q ≥ 2 is the size of the modulo
and χ is the error probability distribution. As,χ is the probobility distrubution for
each equation where a ∈ Zn

q is chosen uniformly at random and e ∈ Zq is choosen
acording to the χ distribution. The output of As,χ is the sample (a, t) where a is one
random equation and t is the corresponding equation a · s + e, where the operations
are done modulo q. To solve the LWE problem, an algorithm needs output s ∈ Zn

q

with a high probability given an arbitrary number of samples of As,χ, the modulo q

and the distribution χ for any value of s [Reg10].
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The idea of the LWE problem is to recover a secret message s, represented by a
set of random linear equations A mod q, with each equation having a small additive
random error introduced. Take a simple example with the modulo q = 17, the secret
s = (1, 2, 3), the error e = (1, 0, −1, −1) and the random linear equations A:

4s1 + 1s2 + 6s3

5s1 + 0s2 + 3s3

1s1 + 1s2 + 2s3

2s1 + 6s2 + 5s3

For brevity, these equations will herby be represented as matrices:

A =


4 1 6
5 0 3
1 1 2
2 6 5

 , s =


1
2
3

 , e =


1
0

−1
−1



t = A · s + e is then calculated as follows:


4 1 6
5 0 3
1 1 2
2 6 5




1
2
3

 +


1
0

−1
−1

 =


25
14
9
29

 mod 17 =


8
14
9
12



The LWE problem is then to recover s knowing only the random equations A and
t = A · s + e. It is worth to notice without the error recovering the secret message
would be trivial after n linearly independent equations, as there is the same number
of equations and unknown values.

Many different cryptographic schemes rely on the LWE problem. However, the
concepts are the same in hiding the secret message in the error. The following
paragraphs show a simple example of such a scheme.

The private key is a uniformly random chosen vector s ∈ Zn
q while the public key

consists of the matrix A ∈ Zmxn
q , the the noisy vector t ∈ Zm

q = A · s + e where
e ∈ Zm

q is the error drafted of χ, and the modulo q. This is shown in Figure 2.3
where the public key is denoted in blue and the secret key in green.
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Figure 2.3: The key relationship in the matrix representation of the LWE problem
where the public key is shown in blue, the secret key in green and the random error
in yellow.

Figure 2.4: The encryption process in a simple LWE scheme. The public key is
shown in blue, the secret random vector in green, the encrypted message bit in grey
and the ciphertext in red.

The encryption process starts with sampling a random set r ∈ Zm
q . The encryption

is done bitwise and results in the ciphertexts u ∈ Zm
q and v ∈ Zq. u is found by

multiplying r and the public key A: u = r · A. The value of v depends on the bit to
be encrypted. If the message bit is 0, v is the random vector r multiplied with the
public key t. However, if the bit is 1, the half of the modulo is added: v = ⌊ q

2 ⌋ + r · t
[Reg10]. The encryption process is shown in Figure 2.4.

To decrypt a message v − u · s ≈ m is calculated, as shown in Figure 2.5. If
the answer is closer to 0 than ⌊ q

2 ⌋ the bit is decrypted as 0, if it is not, the bit is
decrypted as 1. It is important to notice that if no error is introduced, the decryption
will always be exactly 0 or exactly ⌊ q

2 ⌋. A decryption error will occur if the error
sum is above | q

4 |. However, this is avoided by carefully setting the standard deviation
of χ to appropriate values.

Let us continue by encrypting a 1-bit using the above numerical example.
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Figure 2.5: The decryption process in a simple LWE scheme. The public key
is shown in blue, the secret information in green, the random error in yellow, the
encrypted message bit in grey and the ciphertext in red.

We sample the random vector r =
[
13 4 7 2

]
.

u = r · A

=
[
13 4 7 2

]
·


4 1 6
5 0 3
1 1 2
2 6 5


=

[
83 32 114

]
mod 17

=
[
15 15 16

]

To calculate v we need to find the value of the message. Since we are encrypting a
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1-bit, v is found by calculating:

v = ⌊q

2⌋ + r · t

= ⌊17
2 ⌋ +

[
13 4 7 2

]


8
14
9
12


= 8 + 13 · 8 + 4 · 14 + 7 · 9 + 2 · 12 mod 17
= 255 mod 17
= 0

To decrypt (u, v) the following calculation is made:

m ≈ v − u · s

= 0 −
[
15 15 16

] 
1
2
3


= −15 · 1 − 15 · 2 − 16 · 3 mod 17
= −93 mod 17
= 9

As 9 is closer to ⌊ q
2 ⌋ = ⌊ 17

2 ⌋ = 8 than to 0, the bit was succsessfully decrypted to 1.

The hardness of LWE is based on a quantum reduction from the worst-case lattice
problems GAPSVP and SIVP [Reg09], which are believed to be hard as they are
widely studied problems with no known efficient quantum algorithms to solve them.
A desirable property of the LWE problem is its ability to be reduced to several simpler
problems more suited for cryptographic applications. One of the most important
is the ability to limit the distribution of the secret s, with minimal changes to the
hardness of the problem [Reg10].

One of the main problems of standard LWE cryptographic implementations is
the key size. Typically n equations of As,χ need to be sent, each of size n, making
the key size O(n2). Ring-LWE introduced by Lyubashevsky et al. [LPR13] resolves
this problem by applying algebraic structure while maintaining the strong hardness
guarantees of the standard LWE problem. This is done by using the polynomial
ring Rq = Zq[X]/(Xn + 1) where q ≡ 1 mod 2n as the underlying structure of the
problem. Similar to standard LWE, there is a secret s(x) ∈ Rq chosen uniformly at
random, an error distribution e(x) ∈ Rq with small coefficients and m equations,
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and an a(x) ∈ Rq chosen uniformly at random. The noisy representation of s(x) is
called t(x) ≈ a(x) · s(x) ∈ Rq. The main benefit of Ring-LWE is its efficiency, as the
noisy product t(x) produces n pseudorandom values over Zq compared to the one
scalar obtained in standard LWE [LPR13]. This makes it possible for one sample of
(a(x), t(x)) ∈ Rq × Rq to pseudorandomly generate n other samples, making the key
size O(n).

Let us consider a numerical example in the polynomial ring Z5[X]/(X2 + 1),
where A consist of the polinomial a(x) = 4x+3, the secret polinomial is s(x) = 2x+4
and the error polynomial e(x) = x − 1. The noisy representation t is calculated as

t(x) = a(x) · s(x) + e(x)
= (4x + 3)(2x + 4) + (x − 1) mod (x2 + 1)
= (12x2 + 16x + 6x + 12) + (x − 1) mod (x2 + 1)
= 2x2 + 3x + 1 mod (x2 + 1)
= 3x − 1

The ring-LWE problem is then to obtain s(x) = 2x + 4 by knowing a(x) = 4x + 3
and t(x) = 3x − 1.

A generalization of both standard LWE and Ring-LWE was introduced by Brak-
erski et al. [BGV14] called Module-LWE, which where later proved by Langlois et
Al. [LS15] to be as hard as quantumly approximating worst-case lattice problems. In
Module-LWE, the underlying algebraic structure is a rank-n module over a polyno-
mial ring denoted as Rn, where the secret s and error e are n-tuples of polynomials in
R. The sample (A, t) is generated by choosing A ∈ Rn×n uniformly at random and
calculating t = A · s + e where multiplication and addition are done component-wise
in the ring R. The main benefit of module-LWE is increased efficiency compared
to unstructured LWE and greater flexibility compared to the ring-LWE because of
the extra algebraic structure provided by the module. This allows for more compact
cryptographic key sizes and flexible parameter choices, creating the possibility of
cryptographic schemes with varying levels of security and efficiency.

For an example, let us consider modules over the polynomial ring R = Z5[X]/(X2+
1), where A ∈ R2×2, s ∈ R2 and e ∈ R2.

A =
[

a1,1 a1,2

a2,1 a2,2

]
, s =

[
s1

s2

]
, e =

[
e1

e2

]
,
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a1,1 = 4X + 2,

a1,2 = 2X + 1,

a2,1 = X + 3,

a2,2 = 4X + 3,

s1 = 2X + 1,

s2 = X + 4,

e1 = X,

e2 = 4X + 4.

The noisy representation t is then calculated as follows, where all operations are
polynomial addition and multiplication in ring R:

t = As + e

=
[

a1,1 a1,2

a2,1 a2,2

] [
s1

s2

]
+

[
e1

e2

]

=
[

a1,1s1 + a1,2s2 + e1

a2,1s1 + a2,2s2 + e2

]

=
[

(4X + 2)(2X + 1) + (2X + 1)(X + 4) + X

(X + 3)(2X + 1) + (4X + 3)(X + 4) + 4X + 4

]

=
[

10X2 + 18X + 6
6X2 + 30X + 19

]

=
[

0X2 + 3X + 1
1X2 + 0X + 4

]

=
[

3X + 1
3

]

The module-LWE problem is to obtain s knowing A and t.

2.2.3 Number theoretic transform

CRYSTALS-Kyber is based on module-LWE and operates on elements in a polynomial
ring, which makes polynomial operations a fundamental part of its implementation.
Traditional polynomial multiplication methods multiply each term separately and
are computationally intensive, requiring O(n2) time complexity, where n is the
polynomial degree. Given that CRYSTALS-Kyber uses polynomials of degree 256,
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and polynomial multiplication is extensively used in key generation, encryption, and
decryption [ABL+21], an efficient polynomial multiplication algorithm is essential.
In CRYSTALS-Kyber, the Number Theoretic Transform (NTT) have been chosen
for polynomial multiplication due to its computational efficiency (requiring only
O(n log n) operations) and its efficient use of memory and code space [ABL+21].

The main idea of multiplying polynomials through NTT is to represent a large
polynomial in a ring as a set of residue polynomials of a lesser degree in a residue
class ring. Operations on these smaller polynomials correspond to the same operation
on the original larger polynomial. Essentially, the NTT is a special case of the Fast
Fourier transform (FFT), which is performed over the field Z∗

q instead of over the
complex numbers [Lyu20]. However, unlike the FFT over the complex numbers,
where there always exists an element ζ ∈ C∗ of order d (where d is the degree of the
product of the two polynomials), such an element is not guaranteed to exist in Z∗

q .
The NTT can thus only be applied to multiplication in specific polynomial rings that
satisfy certain properties related to the modulus q and the modulus polynomial f

[Lyu20]. These properties include the ability to factorize the modulus polynomial f

as
f(X) = (X − ζ1) · · · (X − ζd)

for unique values of ζi ∈ Zq. Provided these conditions are met, polynomial multipli-
cation between two polynomials a, b in the ring Zq[X]/f can be efficiently performed
in three steps [Lyu20]:

1. Reduce the polynomials a, b to the form â = (a1, · · · , an), b̂ = (b1, · · · , bn),
where each ai and bi are residues modulo the factors of f .

2. Perform pointwise multiplication of the residue pairs to obtain âb = (a1b1, · · · , anbn).

3. Use the Chinese Remainder Theorem (CRT) to reconstruct the product poly-
nomial c from its residues ĉ = âb.

Let us again consider the multiplication of the polynomials a = 5X + 8 and
b = 4X + 9 in the ring Z17[X]/(X2 − 4). The traditional approach would involve
n2 = 2 × 2 = 4 operations:

8 × 9,

8 × 4X,

5X × 9,

5X × 4X.

When NTT is used, we first note that (x2 − 4) can be factorized as (x − 2)(x + 2).
This is a static value which only needs to be calculated once for the ring. We represent
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the polynomials a and b in the two rings Z17[X]/(X −2) and Z17[X]/(X +2), reducing
the polynomials in each ring. As the degree of the reduction polynomial is halved at
each step, we require log 2n = log 22 = 1 step to reduce our degree 1 polynomial to
degree 0 (constants):

a1 ≡ 5X + 8 mod (X − 2) ≡ 5X + 8 − 5(X − 2) ≡ 18 ≡ 1,

a2 ≡ 5X + 8 mod (X + 2) ≡ 5X + 8 − 5(X + 2) ≡ −2 ≡ 15,

b1 ≡ 4X + 9 mod (X − 2) ≡ 4X + 9 − 4(X − 2) ≡ 17 ≡ 0,

b2 ≡ 4X + 9 mod (X + 2) ≡ 4X + 9 − 4(X + 2) ≡ 1.

Thus, we represent the polynomials a and b as â = (a1, a2) = (1, 15) and
b̂ = (b1, b2) = (0, 1) in the rings Z17[X]/(X − 2) and Z17[X]/(X + 2).

Next, we perform the pointwise multiplication of the residues of a and b, which
can be done in O(n) operations:

âb = (a1b1, a2b2) = (1 × 0, 15 × 1) = (0, 15)

Finally, we use CRT to combine the residues back into the product polynomial c.
This is done by first calculating the ring inverses:

(x + 2) mod (x − 2) ≡ 4

(x − 2) mod (x + 2) ≡ 13

Then applying CRT:

c = 0 · (x + 2) · 13 + 15 · (x − 2) · 4

c = 9x + 16

In CRYSTALS-Kyber the plynomial ring Z3329[X]/(x256 + 1) is used [ABL+21].
However, when q = 3329, the reduction polynomial can only be factorized into
1-degree polynomials. This restriction increases the computational cost for the
pointwise multiplication in the NTT domain, as the multiplication of two 1-degree
polynomials requires four operations compared to the one operation required to
multiply two constants.

2.2.4 CRYSTALS-Kyber

CRYSTALS-Kyber is a quantum chosen ciphertext resistant KEM transformed from
an underlying PKE scheme using the Fujisaki–Okamoto transformation [ABL+21].
Three different versions of CRYSTALS-Kyber are defined, each with a different



2.2. LATTICE PROBLEMS 17

security strength, Kyber512, Kyber768 and Kyber1024. This section thoroughly
explains CRYSTALS-Kyber through how the concepts described earlier are used and
how the scheme is defined.

CRYSTALS-Kyber uses the computational difficulty of the Module-LWE problem
as the basis for its security. Notably, if an attacker manages to solve the LWE
problem, they may trivially obtain the secret key s. The polynomials of A, s and
e are all of the same ring Z3329[X]/(x256 + 1) [ABL+21]. The dimensions of these
matrices depend on what security parameter k is used, which is the main mechanism
for scaling security [ABL+21]. The matrix dimensions of A being a k × k with k

being 2, 3 and 4 in Kyber512, Kyber768 and Kyber1024 respectively.

A main difference in the LWE used in CRYSTAL-Kyber compared to traditional
approaches is the use of binomial noise in the sampling [ABL+21], compared to the
standard Gaussian noise [Reg09]. Gaussian noise sampling has been shown to be
inefficient [BCNS14] and vulnerable to timing attacks [BHLY16]. As no known attack
depend directly on the noise distribution, The Binomial distribution was chosen due
to its efficiency and security [ABL+21].

For the LWE error-correcting algorithms, CRYSTALS-Kyber has defined the
compression and decompression functions, which take a polynomial input and operates
coefficient wise [ABL+21].

Compressq = ⌈(2d/q) · x⌋mod+2d

Decompressq = ⌈(q/2d) · x⌋

Compared to traditional LWE cryptography, where the public key is t and
A and the secret key is s, all keys in CRYSTALS-Kyber are stored in the NTT
representation of the polynomials, which increases the efficiency in multiplication. In
addition, the public key representation of A is a 32-byte value ρ used to generate the
NTT representation of A, drastically decreasing the key size [ABL+21]. The key size
in CRYSTALS-Kyber is dependent on the size of the byte representation of t̂ and ŝ.
As each vector represents k polynomials and each polynomial is represented in 384
bytes [ABL+21], the public key of the PKE scheme is represented in 384k + 32 bytes
and the secret key is represented in 384k bytes. The PKE key generation algorithm
can be split into the 6 parts shown in Algorithm 2.1.

The encryption process requires the input of a 32-byte plaintext message and
a 32-byte random value in addition to the recipient’s public key. The encryption
can be split into 10 steps shown in Algorithm 2.2. In step 9, the decompression
algorithm is used to create the error tolerance gaps. with 0-bits remaining 0, and
1-bits being converted to ⌈q/2⌋. In step 10, the compression function is used to limit
the ciphertext size.
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Algorithm 2.1 Key generation algorithm for the PKE scheme in CRYSTALS-Kyber.

1: Sample the NTT representation R̂ of a polynomial R ∈ Z3329[X]/(x256 + 1)
uniformly at random from a generator ρ for all elements in Â ∈ R̂kxk.

2: Sample R ∈ Z3329[X]/(x256 + 1) from the Binomial distribution Bη1 for all
elements in s ∈ Rk.

3: Sample R ∈ Z3329[X]/(x256 + 1) from the Binomial distribution Bη1 for all
elements in e ∈ Rk.

4: Calculate the NTT representations ŝ and ê from s and e.
5: Calculate t̂ = Â ◦ ŝ + ê
6: Create the public key and secret key by encoding the polynomials as a byte

string. pk = Encode12(t̂|ρ), sk = Encode12(ŝ).

Algorithm 2.2 Encryption algorithm for the PKE scheme in CRYSTALS-Kyber.

1: Decode the byte representation of the public key, revealing t̂ and ρ.
2: Generate matrix ÂT ∈ R̂kxk using ρ
3: Sample R ∈ Z3329[X]/(x256 + 1) from the Binomial distribution Bη1 for all

elements in r ∈ Rk.
4: Sample R ∈ Z3329[X]/(x256 + 1) from the Binomial distribution Bη2 for all

elements in e1 ∈ Rk.
5: Sample R ∈ Z3329[X]/(x256 + 1) from the Binomial distribution Bη2 for all

elements in e2 ∈ R.
6: Calculate the NTT representations r̂ from r.
7: Calculate u by the inverse NTT of (ÂT ◦ r̂) + ê1
8: Decode the byte representation of the plaintext m to its polynomial form
9: Calculate v by NTT −1(̂t ◦ r̂) + e2 + Decompressq(m, 1)

10: Create the ciphertext by compressing and encoding u and v to a byte string
representation. Encodedu

(Compressq(u, du)|Encodedv
(Compressq(v, dv)

The decryption algorithm takes the secret key and the ciphertext byte arrays as
inputs and produces the 32-byte message. The process can be summarised in the 7
steps shown in Algorithm 2.3. In step 6, the compression function is used to interpret
if a bit should be decrypted to a 1-bit or 0-bit. For all coefficients in the message
polynomial, if v − sT u, 1 is closer to ⌈q/2⌋ than to 0, the bit is interpreted as a 1-bit,
and otherwise, it is interpreted to a 0-bit.

The KEM key generation is similar to one used in the PKE with the only difference
being the PKE secret key is encapsulated with the public key, the hash of the public
key and 32 random bytes [ABL+21]. This results in the secret key size increasing to
1632 bytes. This process is summarised in the 3 steps of Algorithm 2.4.

The encapsulation algorithm, shown in Algorithm 2.5, generates a shared secret
which is encrypted and sent to the communication partner. The algorithm takes
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Algorithm 2.3 Decryption algorithm for the PKE scheme in CRYSTALS-Kyber.
1: Obtain u and v by decoding decompressing the ciphertext
2: Obtain the NTT representation ŝ by decoding the secret key byte array
3: Calculate the NTT representation û from u.
4: Calculate ŝT u through the pointwise multiplication ŝT ◦ û.
5: Calculate sT u by performing the inverse NTT
6: Calculate Compressq(v − sT u, 1)
7: Obtain the original plaintext message by encoding the polynomial to a byte array.

Algorithm 2.4 Key generation algorithm for the KEM in CRYSTALS-Kyber.
1: Generate z consisting of 32 random bytes.
2: Obtain the keys sk′ and pk by running the PKE key generation.
3: Encapsulate the secret key sk = sk′|pk|H(pk)|z

the recipient’s public key as input and produces the byte-encoded ciphertext c and
a byte-encoded secret key K. The algorithm uses three hash functions, H, G and
KDF , which are initiated as different functions in different implementations of
CRYSTALS-Kyber [ABL+21].

Algorithm 2.5 Encapsulation algorithm for the KEM in CRYSTALS-Kyber.
1: Generate the message m consisting of 32 random bytes
2: Set m to the hash value of H(m) producing 256 bytes
3: Set (K, r) = G(m|H(pk))
4: Generate ciphertext c by encrypting m through Algorithm 2.2 with the recipient

public key and the random values r
5: Generate the shared secret K by the hash KDF (K, H(c)

The decapsulation algorithm, shown in Algorithm 2.6, takes the ciphertext and
secret key as input and verifies and produces the shared secret. In addition, it
confirms the correctness of the shared secret by re-encrypting the message to ensure
the same ciphertext is made. To be indistinguishable in a chosen ciphertext attack,
the algorithm produces a different shared secret if the ciphertexts do not match in
line 5.
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Algorithm 2.6 Decapsulation algorithm for the KEM in CRYSTALS-Kyber.
1: Obtain sk′, pk, H(pk) and z from the secret key sk.
2: Generate m′ by decrypting the ciphertext c through the PKE decryption algo-

rithm with the secret key sk′

3: Set (K ′
, r′) = G(m′|H(pk))

4: Generate ciphertext c′ by encrypting m′ through the PKE encryption algorithm
with the recipient public key and the random values r′.

5: Compare c and c′. If they are equal, set the share secret K = KDF (K ′, H(c), if
they are not, set it as K = KDF (z, H(c))



Chapter3Power analytical side-channel
attacks

Two major attack categories exist for attacking cryptographic algorithms, theoretical
attacks and Side-Channel Attacks (SCA). While theoretical attacks see the algorithms
as mathematic equations and try to recover the secrets through mathematical analysis,
SCA are more rooted in the physical world. When a cryptographic algorithm runs
on a given processor, the internal state of the processor correlates with the physical,
measurable properties of the processor, such as execution time, electromagnetic
radiation and power consumption. A SCA is a form of attack which exploits these
physical properties to recover the secret parameters of the cryptographic algorithms.
In general, SCA are often both more effective and easier to perform than traditional
theoretical attacks as no deep mathematical knowledge or a large amount of data is
required [ZF05].

In a power analytical SCA, secret information is gained through monitoring
the power consumption of the device performing cryptographic operations. Power
analytical SCA’s are one of the most researched forms of SCA’s and have been used
to break most symmetric and public key systems, including widely used AES [GT03],
RSA [Nov02], DES [KJJ99] and elliptic curve [Cor99] cryptographic schemes.

This chapter introduces power analytical SCA attacks. First, we begin with
a general classification of SCA which is then applied to power analytical attacks.
This is followed by a demonstration of the different classes of power analytic SCA.
Subsequently, we explore the theory behind the advanced power analytic attacks. We
then introduce the toolchain used in this thesis for executing power analytical attacks.
Lastly, a section on countermeasures against power analytic SCA is provided.

3.1 Classification of side-channel attacks

There are many different types of SCA’s, commonly categorised in three independent
axes: invasive or non-invasive, active or passive, and simple or differential [ZF05].

21



22 3. POWER ANALYTICAL SIDE-CHANNEL ATTACKS

Invasive vs non-invasive Invasive attacks require direct access to internal com-
ponents of the processor, such as monitoring the data bus and compromising
the secrets when they are routed internally. Non-invasive attacks only require
externally available information. The most common SCA’s of this category
are timing attacks measuring the computation time of the processor, electro-
magnetic attacks that exploit the processor’s electromagnetic radiation, and
power-monitoring attacks that exploit the power usage of the processor.

Active vs passive Attacks classified as active interrupt the correct functioning of
the processor and observe the results of leaked information. The most common
attacks are fault injections, for example, by voltage glitching and clock glitching.
Passive attacks observe the behaviour of the processor without altering its
state.

Simple vs differential SCA’s are divided into simple and differential class attacks
based on the method of analysis. Simple SCA are attacks where the output of
the SCA directly depends on the operations performed on the target device. An
example of a simple SCA is the first recorded SCA, performed by the British
Intelligence Agency in 1964 when they broke the cipher used in the Egyptian
embassy. This was done by obtaining the initial state of the Egyptian rotor-
cipher machine by using a microphone to listen for the number of clicks in the
setup phase of the machine [Wri87]. This is also an example of a non-invasive,
passive attack. On the other hand, differential SCA exploit a correlation
between the operation performed in a target device and the output of the
SCA. These correlations are often small and hidden behind the noise in the
measurements. Therefore, several independent recordings and a hypothetical
model of the target are required to obtain secret information through strong
statistical methods.

Power analytical SCA are classified as passive non-invasive attacks, as the attack
only monitors the target, which does not alter its behaviour, and no direct access
to the processor is required. However, power analytical attacks require access to
the device’s power usage, often requiring internal access to the device, making
power analytical SCA still require close proximity to the target device. As in SCA
classifications, power analytical attacks are divided into Simple Power Analysis (SPA)
and Differential Power Analysis (DPA) attacks [KJJ99]. Common for all power
analytical SCAs are that traces are analysed to gain secret information. A trace
is a set of measurements of the power usage of the target during a cryptographic
operation, taken over time at a given sampling rate.

In SPA, a single trace is directly interpolated to gain information on the operation
performed in the device and other secret information. This is done by linking peaks
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in the trace to operations performed in the target processor. In its simplest form, a
SPA attack can be used to detect which cryptographic algorithm is used. This can,
for example, be done by linking repeating patterns in the trace to known loops in
the algorithms, which could be a first step in part of a bigger attack.

More advanced attacks breaking the cryptographic algorithm are also possible
through SPA attacks. This is done by reading the sequence of commands executed,
which requires knowledge of the specific implementation of the cryptographic algo-
rithm running on the target and the trace signature of relevant instructions. Suppose
the cryptographic implementation uses conditional branching based on the value of
secret information. In that case, the branching will be revealed in the trace, also
revealing information on the value of the secret. Common operations resulting in
conditional branching are memory comparisons which abort on mismatch, multipliers
leaking Hamming distance, and exponentiators [KJJ99]. SPA is therefore easily
mitigated by avoiding using secret information for conditional branching. The main
disadvantage of SPA is the high requirement for signal-to-noise ratio, as the power
usage of each instruction must be visible in the trace. This requirement is not true
for most complex systems, as other components drain and overshadow power con-
sumption. However, SPA have been successfully performed against simple embedded
systems [ÖOP03].

DPA is a more powerful class of attacks where statistical methods are used to
exploit a correlation between the value of the data being manipulated and the power
usage [Sta10]. Compared to SPA, where instructions are analyzed, the data value has
a low effect on a single power trace, often being more insignificant than measurement
errors and other noise [KJJ99]. Because of the low signal-to-noise ratio, multiple
traces are used in the attacks, with the same key but different known inputs (plaintext
or ciphertext). DPA uses a divide-and-conquer strategy, where the key is split into
multiple sub-keys. The internal structure of the target algorithm is analyzed to
create a leakage model which takes the known input and a sub-key. The leakage is
then calculated for all possible sub-keys and known inputs. The statistical methods
are then used to compare the predicted leaks for each sub-key and the measured
traces, revealing the most likely sub-keys. This process is repeated until all subkeys
are revealed.

In the traditional DPA attack, first described by Kocher et al. [KJJ99], the
leakage model provides 1 bit which is sent over the data bus. The attack requires
traces of multiple encryptions with known inputs. As with all DPA attacks, the
attack is performed one sub-key at a time. The traces are divided into two groups
based on if the leakage model of the known input and a guessed sub-key is 1 or 0, and
the average of all traces in each group is calculated. The biggest peak difference in the
value of the two groups is used to evaluate the subkey. This process is repeated for all
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possible values of the subkeys, with the subkey value with the biggest difference being
the best candidate subkey. This process is repeated for all subkeys revealing the
whole secret key. Since the power usage of the data bus is, on average, higher when it
is known one bit is 1, there will be a peak difference in the 1-group compared to the
0-group during encryption. In comparison, there is no peak difference in the groups
when the wrong subkey is used, as the division of traces is correct only half of the
time, cancelling out the peak. The biggest peak across the trace is used to evaluate
subkeys, as it is unknown where the encryption is happening in the trace. The attack
assumes the non-encryption part of the trace is similar for each group providing no
peaks. This assumption does not hold in some cases, as ghost peaks larger than the
correct peak may be produced, resulting in erroneous subkeys [BCO04].

An alternative differential class attack is the Correlation Power Analysis (CPA)
attack, first described by Brier et al. [BCO04]. The leakage model in a CPA attack
reveals the Hamming distance produced by a given input and a subkey. The Hamming
distance model assumes the data bus has a constant reference state R before the
data is loaded on the bus, and the Hamming distance is the number of bits flipped
when the data D is loaded onto the bus from the reference state, denoted H(D ⊕ R).
It is also assumed the power used in flipping a bit from 0 to 1 is equal to flipping a
bit from 1 to 0, and there is a linear relationship between the Hamming distance
and the power usage of the processor. The statistical method used in the attack is
the Pearson correlation coefficient, used to evaluate the linear relationship between
two sets. For the two sets X and Y , the Pearson correlation coefficient is written as:

ρX,Y = cov(X, Y )
σXσY

where cov is the covariance of the sets, and σ is the standard deviation. To conduct
a CPA attack, the power traces of multiple known input encryptions/decryptions are
recorded, and the value of the reference state on the target processor R needs to be
known. The leakage model calculates the Hamming distance from all inputs using a
given subkey. The Person correlation factor is then calculated between the set of
Hamming distance of all inputs for a given subkey guess and the set of all power
trace values at a given sample point, as it is unknown when the data is on the bus.
This is repeated for all subkey guesses and at every time interval. The best subkey
candidate is the subkey with the highest correlation factor.

The main benefits of a CPA attack compared to the traditional DPA attack is the
avoidance of ghost peaks and requiring fewer traces for a successful result [BCO04].
However, CPA require a more extensive leakage model as the value of all bits on
the databus is required to reveal the Hamming distance, compared to the one bit
required in the traditional DPA attack.
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3.2 Power analytical SCA in practice

We start by giving a few practical attacks in their simplest form before diving down
into the more advanced attack in the later chapters of this thesis. This section
demonstrates real-life examples of all attack types mentioned earlier. Starting with a
SPA attack against a vulnerable password checker, followed by two attacks against
the S-box operation of AES using a traditional DPA approach and a CPA attack.
All attacks mentioned in this section are taken from the ChipWhisperer tutorials
[NewAEa].

3.2.1 SPA against vulnerable password checker

As described earlier, a SPA attack directly interprets the power usage to gain access
to secret information. Algorithm 3.1 is an example of a SPA vulnerable password
checker. The algorithm stores the true password in plaintext and compares it with a
given password one character at a time. When a mismatched character is found, the
password checker aborts. This will lead to a deviation in the instruction sequence
based on if the correct or incorrect character is given to the password checker.

Algorithm 3.1 SPA vulnerable password checker implementation

for(uint8_t i = 0; i < sizeof(correct_passwd); i++){
if (correct_passwd[i] != passwd[i]){

passbad = 1;
break;

}
}

Figure 3.1 shows the power traces of all possible one-character passwords given
to Algorithm 3.1, where each line is the power usage of one password. The grey
trace clearly follows a different path than the rest of the traces, which means the
character used in the construction of the grey trace must be the first character in the
password! The next character can be obtained by collecting traces of all two-letter
passwords starting with the correct character from the previous step. This process
can be repeated until the whole password is broken.

3.2.2 Traditional DPA attack against AES

The main assumption in a DPA attack is that there is a relationship between the
manipulated software data values and the system’s power usage. To demonstrate
this relationship, we compare the average power usage in two sets of encryptions.
The first set consists of 50 power traces where the first byte of the plaintext is set
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Figure 3.1: Traces of all different one-character password guesses handled by
Algorithm 3.1.

Figure 3.2: Average difference in power usage between encryption of the plaintexts
0xFF and 0x00.

to 0x00. The second set consists of 50 power traces where the first byte is set to
0xFF , i.e. all bits are set to 1. The average difference in power usage of the two
sets is shown in Figure 3.2, which shows a large peak in power usage difference in
the sample point where the all-0 and all-1 bytes are handled.

To exploit this in a traditional DPA attack, we need a leakage model which sorts
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(a) (b)

Figure 3.3: Intermediate results of a DPA attack against AES, where (a) uses an
incorrect key guess, and (b) uses the correct key guess.

power traces into two groups based on the value of a specific bit and the value of a
guessed key. The difference between these two averages is then compared. When an
incorrect key guess is used in the leakage model, the traces are sorted randomly, and
there are no peaks in the average power difference. When the correct key guess is
used, the groups are divided based on an actual software bit value, which will be
visible in the average difference between the two sets of power traces.

Figure 3.3 shows an intermediate result of a DPA attack against the S-box
operation of AES. Where the S-box input key byte is guessed, and 1 bit of the output
of the S-box operation is the leakage bit. The leakage model calculates the output
bit value based on the known ciphertext input byte for all power traces and sorts the
traces into two groups based on the value of the bit. The average difference in power
usage between the two sets is then calculated, which is shown in Figure 3.3, where
3.3a is the difference when an incorrect key guess is used, and 3.3b is the difference
when the correct key guess is used.

3.2.3 CPA attack against AES

The main assumption of CPA attacks is that there exists a linear relation between
the Hamming distance of data sent over the databus and the power used by the
processor. To demonstrate this relationship, we encrypt 1000 known plaintext with
a known secret key and sort the traces in groups based on their Hamming distance.
Figure 3.4 shows the average power usage for each Hamming distance group at the
sample point where the data is sent over the databus. The figure shows a clear linear
relationship, as expected.

Similarly to the DPA attack, a CPA attack can also be used for an attack against
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Figure 3.4: Average power usage of groups of Hamming distances.

the S-box of AES. The difference being the leakage model provides the Hamming
distance of a theoretical output when given a ciphertext byte and a key guess instead
of providing the value of one bit.

In a CPA attack, the Pearson correlation coefficient is used to calculate the linear
relationship between two sets. The first set is the set of Hamming distances of all
known ciphertext descriptions using the same key guess, and the second set is the
power usage of all the decryption processes at a given sample point. The correlation
of a key guess is the maximum correlation obtained from the power usage of all
sample points.

Figure 3.5 shows the max correlation of all possible key guesses in the attack
against AES, with the correct key byte clearly standing out. This process is repeated
for all key bytes to obtain the full secret key. Figure 3.6 shows the power usage in the
decryption process where each line is a power trace of one decryption, colour coded
with the corresponding Hamming distance obtained using the correct subkey. The
figure shows a clear linear relationship between the Hamming distance and power
usage in the decryption sample point (1325), with darker traces with a high Hamming
distance using less power than the lighter traces with a low Hamming distance.
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Figure 3.5: Correlation of all key guesses in a CPA attack against AES.

Figure 3.6: All power traces colour coded with the Hamming distance using the
leakage model with the correct key at the sample point where the decryption is
happening.
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3.3 Relationship between databus bit changes and processor
power usage

In the previous sections, we have assumed changing bits sent over the databus
consumes power. This section provides reasoning for why this is the case.

Currently, most integrated circuits, including processors, are using Complementary
Metal–Oxide–Semiconductor (CMOS) gates to execute instructions. A CMOS gate
is connected to a power source Vdd, ground Gnd, input(s) A and output Q, with
the output being dependent on the voltage of the input. The building blocks of
CMOS gates are NMOS and PMOS transistors. When the input is high, the NMOS
transistor has a low resistance, and the PMOS have a high resistance and vice versa
if the input voltage is low.

There are three dissipation sources in CMOS gates, leakage currents in the
transistors, short-circuit currents where all transistors are conducting which appear
for a short period when A switches, and dynamic power consumption due to load
capacitance [Sta10]. In SCA, the dynamic power consumption is the most relevant
as it leaks information on the internal state of the integrated circuit [Sta10]. Due
to physical properties in the CMOS transistors, the close proximity of the gate and
semiconducting material have a natural tendency to store electrical charge and act
as a capacitor. When the input state of the CMOS gate changes, the transistors’
internal gate capacitance will resist the current change, resulting in dynamic power
consumption. Figure 3.7 shows the charge and discharge of the gate capacitance in a
CMOS inverter.

The power usage of an integrated circuit depends on the total amount of switching
of the gates, which may leak information on the instructions performed as well as
more fine-grained information as the data values on the bus. To perform power
analytical SCA the power usage needs to be measured. This is done by placing a
resistor in series with either the ground or power pin of the processor [KJJ99]. The
power is found by using a combination of Ohms and Jouls law by measuring the
voltage drop over the resistor P = IV = V 2

R .

3.4 ChipWhisperer toolchain

Traditionally conducting power analytical attacks requires a complex setup with a
cryptographic device being attacked with an external clock generator and power
supply, a power measuring circuit, a sampling oscilloscope and a Personal Computer
(PC) to control all measurements [07]. Chipwhispererer is an open-source toolchain
which provides all these elements in a standard way, simplifying the process of
performing and reproducing power-based SCA and is the toolchain used in our
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Figure 3.7: The charge and discharge of gate capacitance in a CMOS inverter.
The capacitor shown is not part of the CMOS gate, but is a product of the physical
characteristics of the integrated circuits. This figure was originally produced by
Standaert [Sta10].

attack implementation. This is done through the four components of ChipWhisperer;
hardware, firmware, software and tutorials [NewAEa].

3.4.1 Hardware

The ChipWhisperer hardware consists of two categories of circuit boards, scope boards
capturing data and target boards being attacked. The communication between the
target and capture boards is standardised in a 20-pin connection. ChipWhisperer
also provides UFO boards as an intermediary between the scope board and embedded
targets to support a magnitude of different target devices.

The scope boards focus on performing power analysis and voltage- and clock-
glitching against the target board [NewAEb]. In this thesis, only the power analysis
functionality is considered. For power analysis, synchronous sampling is used [OC14],
where the sample clock is synchronised with the clock of the target device. This allows
only measuring the power on the clock edge, only capturing relevant data and reducing
the clock frequency needed for a successful attack. The scope boards have a limited
buffer for containing power samples. The Chipwhisperer-Lite used in this thesis has
a limit of 24 573 samples. Since it does not support sample streaming [NewAEb],
it is more challenging to attack long-duration processes, requiring tradeoffs such as
lower sample frequency or splitting the attack in multiple captures. In addition, the
scope board acts as the power supply for the target and initiates all communication
with the target.

The target boards contain the processor running the code to be attacked with
hardware modifications making SCAs more accessible, such as the addition of shunt
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resistors and capacitor removal [NewAEb]. Shunt resistors are added to measure the
power usage of the target by measuring the voltage drop over the shunt resistor, which
gives the current by Ohms law [SBB18] (as described in Section 3.3). Capacitors are
a common countermeasure against power analytical attacks, given their property
of filtering out noise and stabilising the voltage, hiding the noise generated by
cryptographic operations. The target board used in this thesis is the STM32F3 with
an ARM Cortex-M4 processor with 256 KB of flash and 40KB of SRAM [NewAEb].

3.4.2 Firmware

The ChipWhisperer firmware provides the program to control the ChipWhisperer
hardware components. For the capture boards, the firmware includes logic for
handling communication between the host and the target, collecting power traces and
initiating glitch attacks against the target board. On the target side, the firmware
provides all the necessities for running code on the target board. This includes
Hardware Abstraction Layer (HAL) files for each supported target board, which
is used for taking a general source code to be built and making it fit the target
board hardware architecture. Another part of the firmware is the code running on
the target boards. ChipWhisperer provides many different cryptographic schemes
already implemented and ready to be built. This code includes the logic handling
communication with the software, done through the SimpleSerial protocol, and
specifications on where in the code the capture board should start capturing power
traces. However, no version of CRYSTALS-Kyber is available and must be integrated
from scratch.

The specification of where the capture board should start and stop capturing
power traces is done by listening to trigger events. There are several different ways
to initiate such events. The most noteworthy is “basic” triggers, where the target
notifies the scope directly. Analog triggers send trigger events when power traces
match a pre-defined trace within a threshold. And digital triggers where triggering
are based on matching patterns on the target pins. In a LAB environment, the “basic”
trigger is preferred as we have full control over when the target sends the trigger
event. This is done by inserting trigger functions in the firmware running on the
target device, which notifies the capture device. When a trigger event is encountered,
the scope starts collecting samples of the power usage synchronous to the target’s
clock.

The amount of samples collected is set in the software prior to the capture. The
samples are stored in the capture buffer, with the size of the buffer being a hard
limit on the number of samples the device can store. However, there exist measures
to be able to collect longer power traces above the capture buffer size. This can be
done by collecting power samples every n clock cycle, which comes with some loss of
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information, or by utilizing high-end capture hardware, which allows for streaming
of capture data during capture, efficiently removing the length limitation of power
traces.

The communication protocol SimpleSerial is the standard protocol for communi-
cation between the capture board and the target board. SimpleSerial is a flexible
protocol suited to which functionality depends on the firmware running on the target.
ChipWhisperer supports two different versions of SimpleSerial, v1.1 and v2.1, with
the main difference being the amount of data that can be sent in each packet and
cyclic redundancy checks being supported in the latter version. The SimpleSerial
communication is always initiated by the capture board with a packet containing
an identifying character, the data to be sent to the target and a new line character.
Following is an example of a SimpleSerial v1.1 initiation packet:

[cmd, data_0, ..., data_n , \n]

When the target firmware receives the packet, the data is sent to the function with
the same identifier “cmd” as the packet. If the target is to return data to the capture
board, a similar packet structure is used. Still, the identifying “cmd” of the returned
data has no link to the original identifier. In SimpleSerial v1.1, the data return packet
is identical to the original packet shown above. When the target has performed
the specified function, an acknowledgement is sent to the capture board containing
a status code specified by the firmware of the target. In SimpleSerial v1.1, the
acknowledgement has the identifier “z” and the packet is of the following format:

[’z’, status, \n]

Given the firmware being open source and having a modular design, it is simple
to integrate new functionality in the ChipWhisperer system. New capture and target
boards can be integrated by providing new firmware, and new cryptographic schemes
can be integrated by providing the source code and program flow logic.

3.4.3 Software

ChipWhisperer also provides a Python library for controlling the hardware and
performing SCA’s. This is done through four separate Application Programming
Interfaces (API). In addition, the ChipWhisperer target devices implement 3rd party
interfaces supported by OpenOCS, making it possible to perform real-time debugging
on the target device.
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The Scope API controls the capture board and provides functionality for setting
up, capturing and exporting power traces, setting the trigger the capture device is
listening for and setting the clock speed.

The Target API is for controlling the target device under test. It includes
functionality to access the bootloaders for the target boards, specifying the firmware
to be run on the target, and functionality to communicate with the target board.
This communication is often through the SimpleSerial protocol, but other protocols
are also supported. When SimpleSerial is used, the target API provides functionality
to send SimpleSerial commands to the target and read SimpleSerial commands sent
from the target.

The Capture API simplifies the handling of captured traces by attaching
relevant information of each trace as the wave, plaintext, ciphertext and the key.
Connected traces are also stored through the use of “Projects”.

The Analyzer API simplifies the process of performing SCA’s. It provides
functionality to preprocess all traces in a project through the use of the Sum of
Absolute Difference (SAD) algorithm and performing a CPA attack based on a
provided leakage model.

3.4.4 Tutorials

The last part of the ChipWhisperer toolchain is the tutorials. Chipwhisperer provides
several Jypyter Notebooks containing tutorials for using ChipWhisperer, the API
and all its functionality. Several LABs are also provided where the reader is given
guidance on performing its own power-analytical and glitching attacks with increased
difficulty. The hands-on power analytical examples in Section 3.2 are based on these
tutorials. In addition, ChipWhisperer also provides online courses containing the
theory of these attacks.

3.5 Countermeasures

For a system to be resistant to power analytical attacks, specific countermeasures
need to be implemented. This section gives an overview of such countermeasures,
their effectiveness, and their cost.

As mentioned in Section 3.4, a cheap hardware-level countermeasure is integrating
capacitors that resist current changes and hide the small power changes exploited
by the advanced power analytical attacks. However, these capacitors can easily be
removed by an adversary having access to the hardware being attacked, which is
often the case in power analytical attacks.
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Against SPA attacks, a simple application-level countermeasure is to not alter
the program flow based on a secret value. This would prevent large power differences
and limit the SPA attack to exploit the instruction sequence. Countermeasures
against instruction sequence attacks are to ensure the instructions handling secret
information use the same amount of clock cycles regardless of inputs and employ
algorithms which do not alter program flow based on inputs. For point multiplication,
effective countermeasures have been shown to be algorithms where the addition and
double operation patterns are independent of the multiplication [ZF05].

Countermeasures against differential class attacks ass DPA and CPA are more
difficult to implement, as they only reduce the pattern differences used in the
statistical analysis rather than eliminating them completely [ZF05]. However, a few
promising methods have been suggested.

A common countermeasure is randomization, which consists of randomizing
the data leaked in the power measurement [ZF05]. As the attacker only obtains
randomized data, no statistical methods can be used to obtain the secret information.
Examples of such randomization are hardware implementations randomizing the
order of instructions [MMS01] or introducing random timing shifts and wait states
[ZF05].

Another powerful countermeasure is masking, where the intermediate values
processed by an algorithm are masked. At the beginning of the encryption algorithm,
the key and the message are masked by a random value, while the rest of the algorithm
continues as normal [ZF05]. However, to ensure the correctness of the data sent,
mask correction must be applied at the end of the computation, removing the mask
resulting in the expected data of the algorithm. In a differential class attack, all
patterns are constructed using different masked keys, making the statistical methods
unable to recover the true secret key.

In the CPA attack against CRYSTALS-Kyber performed by Karlov et al. [KdG21],
the countermeasure of regenerating the private key every 50 communication cycles
was suggested. This will limit an attacker to use a maximum of 50 power traces in
their analysis, which will allegedly not be sufficient for separating the true keys from
the noise. This countermeasure will be evaluated later in this thesis.





Chapter4Experimental Setup

This chapter describes the approach undertaken for performing our CPA SCA against
CRYSTALS-Kyber. Initially, we describe the architecture of the experimental
environment. Subsequently, the attacked CRYSTALS-Kyber implementation is
presented. This is followed by a section on our communication system designed for
controlling and retrieving data for the attack. Then our procedure for collecting
power traces is described. Lastly, an in-depth description of the CPA attack is
provided.

4.1 Environment

The hardware devices used in the attack are a ChipWhisperer-Lite capture board,
a CW308 UFO board, a CW308T-STM32F3 target device and a PC. See Section
3.4 for a more detailed hardware and software description. The setup is shown in
Figure 4.1, where the PC is connected to the capture board through a USB cable,
and the capture board is connected to the target board via the UFO board through
ChipWhispers standard 20-pin connector for communication and SMA connectors
for measuring power.

The PC is running ChipWhisperer software through the provided Jupyter note-
books. The PC is used to build the code on the target device and program the target
to run the code. This was done using the build system and bootloaders provided
in the ChipWhisperer software. In addition, the PC controls the capture board
through standard ChipWhisperer software and the target board using customized
SimpleSerial commands, described in Section 4.3.

The ChipWhisperer-Lite capture board is running unaltered firmware provided
by ChipWhisperer. It is configured through the OpenADC scope to listen for
basic rising edge triggers sent from the target device, to initialize the sampling
of power measurements, and to capture 24400 samples just shy of the maximum

37
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Figure 4.1: Setup of the hardware devices with the PC out of frame, ChipWhisperer-
Lite capture board in the bottom left, CW308 UFO board in red and the CW308T-
STM32F3 target device on top of the UFO board.

24573 supported by the ChipWhisperer Lite and just enough to capture the whole
decryption process in one dimension.

The CW308T-STM32F3 target device runs the Kyber implementation, which
will be more thoroughly described in the next section, using its ARM Cortex-M4
processor.

4.2 Kyber implementation

CRYSTALS-Kyber was implemented using the Post-Quantum Crypto Library for
the ARM Cortex-M4 (PQM4) [KPR+], which provides implementations of all KEMs
and signature schemes involved in the NIST post-quantum competition for the ARM
Cortex-M4 family of microcontrollers. However, an earlier version was used due
to problems integrating the ARM Cortex-M4 Floating Point Unit (FPU), which is
widely used in the latest PQM4 versions, with the ChipWhisperer build system. The
CRYSTALS-Kyber version of commit 8970d37 of PQM4, released Sep 26, 2021, was
used as it is the latest version not using the ARM Cortex-M4 FPU and still providing
a valid implementation of the latest Round 3 submission of CRYSTALS-Kyber.
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Given the limited amount of Random Access Memory (RAM) in the CW308T-
STM32F3 target device, it is not possible to run the full implementation of CRYSTALS-
Kyber as a KEM (described in Section 2.1). Therefore, CRYSTALS-Kyber is im-
plemented as a PKE scheme, directly implementing the algorithms for PKE key
generation, encryption and decryption, bypassing all KEM algorithms (see Section
2.2.4). The PKE key generation and encryption algorithms were implemented un-
modified from PQM4. As we are attacking the base multiplication of the ciphertext
and the secret key (line 4 in Algorithm 2.3), the PKE decryption algorithm was
modified to send trigger signals, initiating the power recording on the capture board
just before the polynomial multiplication.

Algorithm 4.1 shows the decryption algorithm where the first “trigger_high();”
initiates power trace collection for the first dimension, and the second initiates power
trace collection for the remaining dimensions.

Algorithm 4.1 Modified PKE decryption algorithm

indcpa_dec(unsigned char *m, unsigned char *c, unsigned char *sk) {
poly mp, bp;
poly *v = &bp;

poly_unpackdecompress(&mp, c, 0);
poly_ntt(&mp);
trigger_high();
poly_frombytes_mul(&mp, sk);
trigger_low();
for(int i = 1; i < KYBER_K; i++) {

poly_unpackdecompress(&bp, c, i);
poly_ntt(&bp);
trigger_high();
poly_frombytes_mul(&bp, sk + i*KYBER_POLYBYTES);
trigger_low();
poly_add(&mp, &mp, &bp);

}

poly_invntt(&mp);
poly_decompress(v, c+KYBER_POLYVECCOMPRESSEDBYTES);
poly_sub(&mp, v, &mp);
poly_reduce(&mp);

poly_tomsg(m, &mp);
}
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4.3 Communication system

To conduct the CPA attack against CRYSTALS-Kyber, we need to know when
the decryption takes place and what ciphertext is being decrypted. However, in
embedded systems, there is no simple way to view and modify the state of the
software in runtime. Therefore, a communication system was created between the
target device and the ChipWhisperer software. The system is implemented in the
firmware running in the target device and as Python scripts in the ChipWhisperer
software. The SimpleSerial protocol version 1.1 (described in Section 3.4) was used
to relay data between the PC and the target device.

A communication cycle can be summarized in the following steps:

1. The PC initiate the communication through the target API of the ChipWhispere
software by sending a SimpleSerial packet with an identifying character. See
Section 3.4 for more details.

2. The packet arrives at the target, where the identifying character is interpreted.

3. If a match is found, the corresponding firmware code is initiated.

4. If the target is to return data, it responds with a SimpleSerial packet with an
identifying character followed by the message.

5. When the function has been completed, the target returns an acknowledgement
packet.

6. The response is obtained in the PC by issuing a read command to the target
API.

Function Character Respone
Initiate PKE key generation k None

Initiate PKE encryption e None
Initiate PKE decryption d None

Get public key p 32 byte of public key
Get secret key s 32 byte of secret key
Get ciphertext c 32 byte of ciphertext

Generate and return plaintext i Newly generated plaintext
Get decrypted plaintext o Output of previous PKE decryption

Reset r None

Table 4.1: Overview of all implemented SimpleSerial commands.
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Table 4.1 summarises the implemented commands. Given the limited maximum
packet size of 64 bytes, retrieving longer variables as keys and ciphertext in one
packet is impossible. This is solved by requiring the PC to send multiple requests for
the same variable, with each subsequent request being responded to with the next 32
bytes of the variable. A simple counter variable keeps track of what bytes are sent,
which may also be reset by sending a SimpleSerial packet with the reset character.

Algorithm 4.2 Base multiplication of 4 bytes, part of the doublebasemul_asm()
function.

//basemul 2
smultt tmp, poly0, poly1
montgomery q, qinv, tmp, tmp2
smultb tmp2, tmp2, zeta
smlabb tmp2, poly0, poly1, tmp2
montgomery q, qinv, tmp2, tmp

smuadx tmp2, poly0, poly1
montgomery q, qinv, tmp2, tmp3
pkhtb tmp, tmp3, tmp, asr#16
str tmp, [rptr], #4

neg zeta, zeta

//basemul 2
smultt tmp, poly2, poly3
montgomery q, qinv, tmp, tmp2
smultb tmp2, tmp2, zeta
smlabb tmp2, poly2, poly3, tmp2
montgomery q, qinv, tmp2, tmp

smuadx tmp2, poly2, poly3
montgomery q, qinv, tmp2, tmp3
pkhtb tmp, tmp3, tmp, asr#16
str tmp, [rptr], #4

4.4 Power trace collection

In the CPA attack, we are interested in the power traces containing measurements of
the power usage of the base multiplication between the secret key and ciphertext in the
NTT domain. This operation is performed in Algorithm 4.2 in our CRYSTALS-Kyber
implementations and which is line 4 of Algorithm 2.3 in the specifications.
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We want to determine the relationship between the amount of power traces
collected and the attack’s efficiency. Therefore, it was decided to record a total
of 1000 power traces of the decryption process and use subsets of these traces in
different attacks.

Ideally, one power trace should record power measurements of the whole decryption
process. However, this is not possible given the low maximum sample size of the
ChipWhisperer-Lite of 24573 measurement points. A maximum-size ChipWhisperer-
Lite power trace manages to record the decryption in one dimension. Collecting
multiple power traces in one setting is infeasible due to the risk of overwriting traces
before retrieval. Therefore the decryption of each ciphertext needs to be performed
k times to collect the k power traces needed. In our attack against Kyber512,
where k = 2, we need to decrypt each ciphertext two times. To ensure there are
no deviations in each recording, all randomness is obtained using a pseudorandom
function with the same initial seed.

Prior to recording the power traces, a static public and secret key were obtained
by running the PKE key generation function. This ensures all decryptions are
done using the same secret keys. The keys were retrieved through the SimpleSerial
communication system to set their value statically in the code.

To obtain the power trace of one decryption, algorithm 4.3 was used. Firstly a
new plaintext is generated, stored and encrypted using the communication framework.
Next, the scope is armed, making the capture board listen for trigger signals before
the decryption is initialized. When the program has received an acknowledgement
that decryption is finished, it retrieves the decrypted plaintext and verifies it is the
same as the initial plaintext. If the decryption is successful, the trace is collected
and stored together with the corresponding plaintext and ciphertext. This process is
repeated for all 1000 decryptions and all k dimensions.

4.5 CPA attack implementation

Our CPA attack is a slightly modified version of the attack performed by Karlov et
al. [KdG21]. We run three attack variations using 1000, 200 and 50 power traces of
known ciphertext decryptions, each trace containing the 24400 sample points. The
attack will be explained using 1000 power traces, but the approach is the same in
the other attack variations. For the source code implementation of the attack, see
the associated repository1.

As described in Section 3, a CPA attack require us to know the Hamming distance
of a word sent over the databus, which depends on the secret value we are attempting

1https://github.com/erlehaak/chipwhisperer
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Algorithm 4.3 Algorithm for obtaining power trace of one decryption.

def get_trace():
#Generates and saves plaintext to be sent
plaintext_in = get_pt_i()

#Encrypt
target.simpleserial_write(’e’, bytearray())
target.simpleserial_wait_ack()

#Decrypt
scope.arm()
target.simpleserial_write(’d’, bytearray())
scope.capture()
target.simpleserial_wait_ack();

#Get decrypted plaintext
plaintext_out= get_pt_o()

#Check if valid trace
assert plaintext_in == plaintext_out

ciphertext = get_ciphertext()
trace = scope.get_last_trace()

return [plaintext_in, ciphertext, trace]

to recover. In our attack, we attempt to recover the secret key by exploiting the base
multiplication between the secret key and the ciphertext in the NTT domain, which
is shown in line 4 of the decryption algorithm 2.3. A more thorough explanation of
the base multiplication is found in section 2.2.3. In each of these base multiplications,
the two 1-degree polynomials s1 + s2X and c1 + c2X are multiplied. Where the
coefficients of s1 + s2X are dependent on the secret key, and the coefficients of
c1 + c2X are dependent on the ciphertext.

In the CRYSTALS-Kyber implementation, we attack Algorithm 4.2 where the
registers poly0 and poly2 contain one ciphertext polynomial each as c1|c2, and the
registers poly1 and poly3 contain one secret key polynomial each as s1|s2. Algorithm
4.2 calculates two polynomial multiplications, poly0 · poly1 in the top half, and
poly2 · poly3 in the bottom half. As we perform a known ciphertext attack, all values
except for the secret key coefficients s1 and s2 are known. The ciphertext polynomial
values c1 and c2 can be obtained by decoding, decompressing and performing NTT
on the ciphertext according to the CRYSTALS-Kyber specification (see section 2.2.4).
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The ζ values are static and are available in the implementation-specific source code.

The following paragraphs describe the attack against one polynomial multiplica-
tion. For a full attack recovering the whole secret key, this process needs to be repeated
128 times for each dimension k in CRYSTALS-Kyber, which is 2 · · · 128 = 248 times
for recovering a full Kyber512 secret key.

We divide the attack on each polynomial multiplication into two parts. In the first
part, we are interested in the result of the first “smultt” operation, which multiplies
the top coefficient of the ciphertext polynomial c2 with the top coefficient of the
secret key polynomial s2. In the second part, we are interested in the value in the
tmp register when it is stored in memory with the “str” instruction. The content
of this register is the product polynomial after the base multiplication (p1 + p2X),
with the top half containing the p2 coefficient and the bottom part containing the
p1 coefficient. Calculating the Hamming distance of these values depends on the
processor. For the CW308T-STM32F3, the data is represented in two’s complement,
and the data bus is set to all 0 bits before a word is sent. Therefore the Hamming
distance is obtained by counting the number of 1-bits in the two’s complement
representation of the values.

Part 1 of the attack starts with calculating the resulting Hamming distance
of the “smultt” operation, which multiplies c2 × s2 using all possible values of s2.
Even though 4 bytes are used to store s2, the CRYSTALS-Kyber documentation
specifies the integer values of coefficients are reduced modq = 3329, resulting in the
calculation of the Hamming distance of 3329 s2 coefficient guesses for each of the
1000 ciphertexts.

The next step is to find the Person correlation coefficient between the Hamming
distance and power usage. We define a set of Hamming distances as the Hamming
distance of the result of the “smultt” operation using one secret key coefficient s2
and all 1000 values of the ciphertext coefficient c2. As we do not know when the
result of the “smultt” operation is sent over the data bus, we calculate the correlation
in all sample points. We define a set of power usage as the power usage of all 1000
ciphertext decryption processes at a given sample point. We then calculate the
Person correlation coefficient between all combinations between the 3329 sets of
Hamming distances and the 24400 sets of power measurements for a total of 81560500
calculations.

To prepare for part 2 of the attack, we store the maximum achieved correlation of
all 3329 secret key coefficient s2 and order them from highest to lowest correlation.

In part 2 of the attack, the process is repeated with the Hamming distance of the
“str” result being calculated instead. We start with the secret key s2 coefficient with
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the highest maximum correlation from part 1 of the attack. We then calculate the
Hamming distance of the resulting “str” operation using s2 and all 3329 values of s1.
As in the previous step, the Person correlation coefficient is then calculated between
all combinations of the 3329 sets of Hamming distances and the 24400 sets of power
measurements. If a correlation higher than a given threshold is encountered, 0.9 in
our case, the used s1 and s2 coefficients are set as the true secret key coefficient, and
the attack moves to the next polynomial multiplication. If no such correlation is
found, the attack moves to the s2 coefficient with the next highest correlation from
part 1, and the process is repeated.

The attack will be performed against Kyber512 with three different numbers of
known ciphertext power traces, 1000, 200 and 50. Part 1 will be performed against
all polynomial multiplications. Part 2 of the attack with the correct value of the s2
coefficient will also be performed against all polynomial multiplications. However,
the full attack will only be performed against select polynomial multiplications:

– The polynomial multiplication where the correct s2 coefficient has the highest
correlation value in part 1.

– The polynomial multiplication where the correct s2 coefficient has the lowest
correlation value in part 1.

– The polynomial multiplication where the correct combination of s1 and s2
coefficients has the highest correlation value in part 2.

– The polynomial multiplication where the correct combination of s1 and s2
coefficients has the lowest correlation value in part 2.

4.5.1 Improvements

This attack is a recreation of Karlov et al.’s attack [KdG21] with some modifications
described in this section.

In the base multiplication algorithm shown in Algorithm 4.2, each polynomial
coefficient is stored using 2 bytes. In the original attack, all 216 = 65536 possible
values were evaluated. This is unnecessary as the modulus q = 3329 defined in
CRYSTALS-Kyber ensures all coefficients are lower than 3329. Therefore only the
first 3329 coefficients are evaluated in our implementation, drastically improving the
attack’s efficiency.

Another difference is the selection of which s2 coefficients should be evaluated
in part 2 of the attack. In the original attack, all s2 coefficients which achieved a
correlation above a given threshold, set to 0.6 in their paper, are evaluated. In our
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implementation, we rank all s2 coefficients from highest to lowest correlation and
apply part 2 on all s2 coefficients in turn according to their ranking. This increases
the likelihood of the correct s2 coefficients being evaluated earlier and eliminates the
risk of the correct s2 coefficient having a correlation below the threshold.

4.5.2 Secret key recovery

After a successful CPA attack, we have obtained all coefficients of the base polynomials
in the NTT representation of the secret key. As the secret key in CRYSTALS-Kyber
is the byte string encoded NTT representation of the secret key polynomial, we can
obtain the secret key by performing the encoding operation on the NTT representation
of the secret key, as specified in the key generation procedure in section 2.2.4.



Chapter5Results

This chapter presents our findings derived from the methodologies described in
Chapter 4. We conducted the attack three times, each with different decryption
power traces (1000, 200, and 50) against the Kyber512 implementation. The chapter
begins by presenting and comparing the initial results from part 1 of the attack. This
is followed by the final outcomes after the execution of part 2 of the attack. Next,
we compare the runtime of the various attacks. Subsequent sections delve into the
limitations of the attack, along with any deviations of the results from the theoretical
expectations. Finally, the chapter explores how the attack can be applied to different
versions of CRYSTALS-Kyber and CRYSTALS-Dilithium.

5.1 CPA attack part 1

In part 1 of the attack, we rank the correlation for the first step in the NTT domain
multiplications of the ciphertext polynomial (c1 + c2X) and secret key polynomial
(s1 + s2X). This is the multiplication (c2 · s2), shown in the “smultt” operation in
the first line of each “basemul” in Algorithm 4.2. We calculate Hamming distance of
the product using all valid s2 coefficients and rank them according to the maximum
correlation with the power usage at a sample point. Part 1 of the attack was
performed against all base multiplications, with 1000, 200, and 50 power traces.

5.1.1 1000 traces

In part 1 of the attack using the power traces of 1000 known ciphertext decryptions,
the correct key coefficient had an average correlation of 0.37, with each guess having
an average of 87.16 coefficients with a higher correlation. Figure 5.1 shows this
relation for all base multiplication, with the multiplications in the first dimension
k = 0 shown in the first half and k = 1 shown in the second half. Figure 5.1a shows
the correlation of the correct secret key coefficient for all base multiplications, and
Figure 5.1b shows the number of key coefficient guesses with a higher correlation
than the correct key coefficient for each base multiplication.

47
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(a) (b)

Figure 5.1: For all base multiplications using 1000 power traces, (a) shows the
correlation for the correct key coefficient and the corresponding rank of each guess is
shown in (b).

The base multiplication number 106 in the k = 0 dimension had the highest
correlation of 0.47, which resulted in having 31 key coefficient guesses with a higher
correlation. Figure 5.2a shows the correlation of all key coefficient guesses of this
base multiplication, with the correct key coefficient being shown in red. Figure 5.2b
shows the raw power trace of each decryption at the sample point where the correct
key coefficient achieved the highest correlation (sample point 20161). Each trace
is colour-coded with the resulting Hamming distance of the first step of the base
multiplication using the correct key coefficient guess, with a high Hamming distance
in dark blue and a low Hamming distance in light green.

The correct key coefficient with the worst correlation is found in the base multi-
plication number 35 in the k = 1 dimension with a correlation of 0.25, and having
591 key coefficient guesses with a higher correlation. The correlations of the key
coefficient guesses of this base multiplication are found in Figure 5.3a, with the
correct key coefficient shown in red. Figure 5.3b shows the power traces at the
sampling point where the correct key has the highest correlation (sample point 6741),
colour encoded with the corresponding Hamming distance. Compared to the more
linear colour shift of Figure 5.2b, the lower power to hamming distance correlation is
clearly shown in Figure 5.3b having power traces with high correlation in the middle.

5.1.2 200 traces

This section assesses part 1 of the CPA attack, using 200 power traces of known
ciphertext decryptions. The average correlation of the correct key coefficients of all
base multiplications is 0.39, with an average of 282.6 key coefficient guesses having
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(a) (b)

Figure 5.2: Using 1000 power traces, (a) shows the correlation of key coefficient
guesses of the base multiplication with the highest correlation of the correct key
coefficient (shown in red). (b) shows the relative power measurements during
decryption at the sample points around the maximum correlation (sample point
20161), for the correct key coefficient guess, colour-coded with the Hamming distance
after part 1 of the attack (corresponding to the number of bits changed on the
databus). Each line represents the power trace of one decryption.

(a) (b)

Figure 5.3: (a) shows the correlation of the base multiplication with the lowest
correlation of the correct key coefficient using 1000 power traces. (b) shows the sam-
pling point with the highest correlation for the correct key of this base multiplication,
colour coded with Hamming Distance.
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(a) (b)

Figure 5.4: Correlation (a) and rank (b) of the correct key coefficient for all base
multiplications using 200 traces.

a higher correlation. Figure 5.4a shows the correlation of all base multiplications
using the correct s2 coefficient, while Figure 5.4b shows the amount of incorrect s2
coefficients with a higher correlation.

The base multiplication with the highest correct key coefficient correlation is the
16th multiplication of the k = 0 dimension, resulting in a correlation of 0.57 with 17
key correlation guesses having a higher correlation. Figure 5.5a shows the correlation
of all key guesses of this base multiplication with the correct key coefficient shown in
red, and Figure 5.5b shows the power traces at the sample point where the correct
key coefficient had the best correlation (sample point 3243) colour coded with the
Hamming distance.

The worst correct key coefficient correlation is in 6th multiplication in the k = 1
dimension with a correlation of 0.24 with 3218 key coefficient guesses having a higher
correlation out of 3329 key coefficients, as seen in Figure 5.6a. As seen in Figure
5.6b, there is little correlation between the Hamming distance and the power usage,
with the high Hamming distance traces gathering in the middle.

5.1.3 50 traces

For the implementation of the countermeasure suggested by Karlov et al. [KdG21],
the correct key coefficients have an average correlation of 0.55 with an average
of 1400.8 key coefficient guesses having a higher correlation than the correct key
coefficient, as shown in Figure 5.7. An average rank of 1400.8 is only marginally
better than randomly ordering the key coefficient, which would result in an average
rank of q−1

2 = 3328
2 = 1664. However, as part 1 of the attack calculates correlation
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(a) (b)

Figure 5.5: Using 200 power traces, (a) shows the correlation of the base multi-
plication with the highest correlation of the correct key coefficient. (b) shows the
power traces at the sample point where the correct key coefficient had the highest
correlation, colour coded with the Hamming distance.

(a) (b)

Figure 5.6: (a) shows the correlation of key coefficient guesses in the base multipli-
cation where the correct (red) key coefficient have the worst correlation. (b) shows
the power traces encoded with hamming distance at the sample point (1427) where
the correct key coefficient had the highest correlation.
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(a) (b)

Figure 5.7: The correlation of the correct key coefficient is shown in (a), with the
rank of each correct key coefficient shown in (b), for all base multiplications using
50 power traces.

for each key coefficient once for each base multiplication and saves on average
1664 − 1401 = 263 iterations per base multiplication in part 2 of the attack, part
1 of the attack with 50 power traces is significantly more efficient than performing
part 2 of the attack with a random ordering of the s2 key coefficient.

The best correlation is in the 106th base multiplication in the first (k = 0)
dimension, as it was with 1000 traces. Figure 5.8a shows the correlation of each
key coefficient guess of this base multiplication with the correct key coefficient 1155
shown in red. The correct key coefficient has a correlation of 0.69, which is the 11th
highest correlation for this base multiplication. Figure 5.8b shows the power traces
colour encoded with the Hamming distance in the sample point where the correct
key coefficient had the highest correlation.

The base multiplication with the worst correlation of the correct key coefficient
is the 80th base multiplication in the k = 0 dimension, shown in Figure 5.9a. The
correct key coefficient (shown in red) has a correlation of 0.46 and a rank of 3319,
with only 9 key coefficient guesses having a worse correlation. Figure 5.9b shows this
lack of correlation has little to no visual correlation between the power usage and
Hamming distance in the sample point with the highest correlation of the correct
key (sample point 11808).

5.1.4 Summary

The attack is summarised in Table 5.1.

A clear trend emerges that with fewer power traces comes a higher average
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(a) (b)

Figure 5.8: (a) shows the correlation of key coefficient guesses for the base multi-
plication where the correct key coefficient had the highest correlation. (b) shows the
relative power measurements during decryption at the sample point where the correct
key coefficient had the maximum correlation (sample point 20164), colour-coded with
the Hamming distance.

(a) (b)

Figure 5.9: The correlation of key coefficient guesses of the polynomial with the
lowest correlation of the correct key (shown in red) is shown in (a), with (b) showing
the power trace of the correct key coefficient at max correlation, colour encoded with
the Hamming distance.
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Attack Type Best Case Worst Case Average Case
Correlation Rank Correlation Rank Correlation Rank

1000 Traces 0.47 31 0.25 591 0.37 87.1
200 Traces 0.57 17 0.24 3218 0.39 282.6
50 Traces 0.69 10 0.46 3319 0.55 1400.8

Table 5.1: Comparison of the attack types through best, worst, and average cases
of correlation and rank.

correlation and a higher amount of key coefficient guesses with a higher correlation
than the correct key. This is expected, as with more power traces, there are less
likely to be random points with high correlation, making the correct key coefficient
guess more likely to stand out. This effect is observable in the worst and average
case of each attack type, with the worst correct correlation with 1000 power traces
still being in the top 20% of the key guesses, while the worst case for 200 and 50
power traces is in the bottom 5%.

5.2 CPA attack part 2

Part 2 of the attack is also done one base multiplication at a time. The attack iterates
through all s2 coefficients ranked in part 1 from highest to lowest correlation and
calculates the Hamming distance of the whole base multiplication ((c1 + c2X) · (s1 +
s2X)) for all possible values of s1. The resulting polynomial is stored in memory
in the last line of each “basemul” in Algorithm 4.2. Then the correlation between
the Hamming distance and the power usage of each ciphertext is calculated. If a
correlation is higher than a fixed value, the attack assumes that the correct secret
coefficients, s1 and s2, are found.

Because of the long runtime of the attack, the full part 2 of the attack was run
against a selection of the base multiplications. For all attack types, the full attack was
performed against the base multiplications with the highest and lowest correlation
in part 1 of the attack and against base multiplications with the highest and lowest
correlation in part 2 of the attack. The attack was performed for the rest of the
base multiplications only using the correct s2 coefficients from part 1. Ensuring the
attack will detect the correct key in all base multiplications and obtaining useful
data as the maximum, minimum and average correlation of the correct key guesses.
However, there is not known how many, if any, false positives will be detected for
the base multiplications where the full attack was not performed.
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(a) Highest correlation in part 1 (b) Worst correlation in part 1

(c) Highest correlation in part 2 (d) Worst correlation in part 2

Figure 5.10: Maximum correlation in all iterations where the full part 2 of the
attack was performed. The iterations using the correct part 1 key coefficient (s2) is
shown in red

5.2.1 1000 traces

In the attack using 1000 power traces, the threshold correlation for finding the key
was set to 0.9. Using the correct key coefficients resulted in an average correlation
of 0.93 with a maximum value of 0.96 and a minimum value of 0.91. Figure 5.10
shows the correlation of all iterations in all base multiplications where the full attack
was performed. The figure clearly shows only the iterations using the correct s2 key
coefficient (shown in red) come close to reaching the threshold value of 0.9. Making it
unlikely any false s2 coefficients would be obtained by running the full attack against
all base multiplications.

Figure 5.11a and Figure 5.12a show the correlation of all s1 key coefficient guesses
using the correct value of s2 for the base multiplication with the best and worst
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(a) (b)

Figure 5.11: The base multiplication where the correct key coefficient had the best
correlation in part 2 of the attack using 1000 traces.

(a) (b)

Figure 5.12: The base multiplication where the correct key coefficient had the
worst correlation in part 2 of the attack using 1000 traces.

correlation respectively, with the correct value of s1 being shown in red. As no
other values of s1 are close to reaching the threshold of 0.9, the attack with 1000
power traces is unlikely to result in a false positive for s1. Figure 5.11b and Figure
5.12b show the power trace of each decryption at the sample point with the highest
correlation colour coded with the Hamming distance obtained using the correct key
coefficients. The gradual colour change of these figures clearly shows the linear
relationship between power usage and Hamming distance.
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5.2.2 200 traces

The threshold correlation for finding the key was also set to 0.9 in the attack using
200 power traces. Using the correct key coefficients, an average correlation of 0.93,
a maximum of 0.96 and a minimum of 0.91 was obtained. Figure 5.13 shows the
max correlation of all iterations through s2 from part 1 of the attack for all the
base multiplications where the full attack was executed. For the iterations using the
incorrect s2 key coefficient, a majority of the correlation is around 0.4. Some notable
exceptions are found in Figure 5.13b where the 3146th iteration has a correlation
of 0.81, nearly passing the threshold of 0.9, which would result in a false positive.
Therefore a full attack against all base multiplication may have resulted in a few
erroneous key coefficients.

The attack would still be successful with a few false positives. As all correct key
coefficients stand out with a correlation at or above 0.91, the correct key coefficients
would be found by continuing to iterate through the s2 coefficients until another
coefficient with a high correlation is found. However, as it would not be known what
base multiplication resulted in an erroneous key coefficient, all base multiplications
must be searched.

The correlation of the s1 coefficient guesses using the correct s2 coefficient is
shown in Figure 5.14a for the base multiplication which resulted in the highest
correlation, and in Figure 5.15a for the base multiplication which resulted in the
worst correlation. The correct s1 coefficient is shown in red. The incorrect s1
coefficients have a correlation of around 0.3 and are unlikely to result in an erroneous
key coefficient guess. However, if they do, the attack should still be successful by
following the procedure described in the previous paragraph. Figure 5.14b and Figure
5.15b show the linear relationship between the Hamming distance and power usage
by plotting the power traces colour coded with the Hamming distance at the sample
point where the correct key coefficient had the highest correlation.

5.2.3 50 traces

This section shows the results of the attack using 50 power traces. As fewer traces
introduce more noise, it was decided to reduce the correlation threshold for finding the
key coefficients to 0.85. The attack resulted in the correct key coefficients achieving
an average correlation of 0.94, a maximum of 0.97 and a minimum of 0.87.

The full attack was performed against four base multiplications, which resulted in
one false positive and three correct key coefficient pairs. The attack was performed
against the base multiplications with the best and worst correlation in both parts of
the attack. The best correlation for all iterations of the s2 key coefficient from part
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(a) Highest correlation in part 1 (b) Worst correlation in part 1

(c) Highest correlation in part 2 (d) Worst correlation in part 2

Figure 5.13: Maximum correlation in all iterations where the full part 2 of the
attack was performed using 200 power traces. The iterations using the correct part 1
key coefficient (s2) are shown in red

1 of the attack is shown in Figure 5.16, with the max correlation of the correct s2
coefficient shown in red.

The false positive was obtained in the base multiplication with the highest correct
key coefficient in part 2, shown in Figure 5.16c. In the 2367th iteration, incorrect key
coefficients obtained a correlation of 0.90, much higher than the threshold of 0.85 and
the correct key coefficients with the lowest correlation of 0.87. As shown in Figure
5.16c and Figure 5.17a the correct key coefficients were still obtained by continuing
to iterate through the s2 coefficients until another high correlation combination was
found.

Figure 5.16 also shows that the correct s2 coefficients stand out from the majority
of the incorrect s2 coefficients. And since the lowest correct key coefficients have
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(a) (b)

Figure 5.14: The base multiplication where the correct key coefficient had the best
correlation in part 2 of the attack using 200 traces.

(a) (b)

Figure 5.15: The base multiplication where the correct key coefficient had the
worst correlation in part 2 of the attack using 200 traces.
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(a) Highest correlation in part 1 (b) Worst correlation in part 1

(c) Highest correlation in part 2 (d) Worst correlation in part 2

Figure 5.16: Maximum correlation in all iterations where the full part 2 of the
attack was performed using 50 power traces. The iterations using the correct part 1
key coefficient (s2) are shown in red

a correlation of 0.87, all correct s2 coefficients will eventually be found using the
above method of continuing to the search until the next coefficients with a high
correlation. Figure 5.17 and Figure 5.18 also show the correct combination of the
s2 and s1 coefficients clearly stand out from the correlation of the correct s2 and
incorrect s1 coefficient.

By successfully recovering the secret key coefficients in four out of four base
multiplications, we conclude that the countermeasure introduced by Karlov et al.
[KdG21] of changing the secret key after every 50 communication cycle is insufficient
for preventing a secret key recovery as it is possible to obtain the 50 power traces
used in the attack with the countermeasure implemented. Given that the correlation
of correct key coefficients still differs from the incorrect ones, the attack is likely
feasible with even fewer power traces.
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(a) (b)

Figure 5.17: The base multiplication where the correct key coefficient had the best
correlation in part 2 of the attack using 50 traces.

(a) (b)

Figure 5.18: The base multiplication where the correct key coefficient had the
worst correlation in part 2 of the attack using 50 traces.

5.2.4 Summary

The secret key coefficients were recovered in all base multiplications using 1000, 200,
and 50 power traces. Table 5.2 summarises our findings from part 2 of the attack.
The correlation using the correct key coefficients is similar in all attack types, with a
slightly bigger variance in the attack using 50 traces. The main difference between
the attack types is the average correlation when using incorrect key coefficients, with
fewer power traces resulting in higher correlation, which again increases the likelihood
of false positives.
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Attack Type Best (c) Worst (c) Average (c) Average (i)
1000 Traces 0.96 0.91 0.93 0.17
200 Traces 0.96 0.91 0.93 0.37
50 Traces 0.97 0.87 0.94 0.73

Table 5.2: Comparison of attack types through maximum, worst and average
correlation, differentiating correct (c) and incorrect (i) key coefficients. Note that
the averages using the incorrect key coefficients are approximate, as the full attack
was only performed against four base multiplication for each attack type.

5.3 Attack runtime

Two main factors dictate the attack’s run time: the number of iterations required for
finding all key coefficients and the speed of performing one iteration. By iteration,
we mean iterating through all values of one key coefficient s1 or s2.

The amount of iterations required largely depends on the rank of the correct key
coefficient in part 1 of the attack. In one base multiplication, the following minimum
amount of iterations is required. Additional iterations are likely needed in case of
false positives.

– One iteration in part 1, iterating through and ranking all s2 coefficients.

– One iteration for all s2 coefficients with a higher rank than the correct s2
coefficient, with each iteration iterating through all s1 coefficients.

– One iteration for the correct s2 coefficient, iterating until the correct s1 coeffi-
cient is found.

The speed of one iteration largely depends on the size of the data being compared,
the amount of data points in the set of Hamming distances and the set of power
measurements used in each correlation equation, and the number of correlation
equations required in the form of sample points. In all attack types, 24400 sample
points were used. For the attack using 1000 power traces, each correlation equation
uses 1000 Hamming distances and 1000 power measurement points. The attack using
200 power traces calculates correlation using 200 Hamming distances and 200 power
measurement points. And lastly, in the attack using 50 power traces, each correlation
equation uses 50 Hamming distances and 50 power measurement points.

The results are shown in Table 5.3. Note that the time usage was recorded
using an Intel Core i7-13700KF processor, and the average and total time usage was
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calculated using the average time per iteration in the four base multiplications used
in the full attack. The total time usage also assumes no false positives were found.

Attack Type Best Worst Average Total
i t(s) i t(s) i t(s) i t(s)

1000 Traces 33 5856 593 105580 87.2 15502 22825 4059565
200 Traces 19 680 3220 116633 282.6 10187 72847 2625686
50 Traces 12 109 3321 30694 1402.8 12853 359118 3295066

Table 5.3: Comparison of attack types through time usage in seconds t(s) and the
number of iterations (i) required.

Table 5.3 shows that the decreased number of iterations required to perform the
attack with 1000 power traces is insufficient to account for the heavy calculations
needed for each iteration, making the full attack take 47 days compared to the 30 days
required in the attack using 200 power traces. The opposite is the case for the attack
using 50 traces, where the decreased computation time is insufficient to account for the
high number of iterations required, making the attack take 38 days to be completed.
However, the true time usage is expected to be longer due to the high number of
false positives expected in the attack using 50 traces. In a worst-case scenario where
the true s2 coefficient has the worst correlation in all base multiplications, the true
key coefficients are still found within 3295066s

1402.8i · 3329i ≈ 7819557s ≈ 91 days after
iterating through all values of s2 in all base multiplications.

Some optimizations for the attack are possible, most notably in limiting the
number of sample points to be searched for a high correlation. In our implementation,
all sample points are searched in all base multiplications. As the Kyber512 implemen-
tation sequentially calculates the base multiplication, no base multiplication happens
before the sample point where the previous base multiplication had the maximum
correlation. Similarly, all base multiplication occurs shortly after each other due to
close code proximity. Therefore a higher efficiency could be achieved by, for example,
only searching the 1000 sample points directly after the sample point where the key
coefficients of the previous base multiplication were found. In testing, this approach
had little effect on the time used in each iteration. Still, it drastically decreased the
number of incorrect key coefficients with a higher correlation than the correct one in
part 1 of the attack, reducing the number of iterations required in part 2. However,
this approach may result in consequential errors if false positive key coefficients were
obtained in the previous base multiplication.
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5.4 Limitations

Part 1 of the attack does not return valid results for base multiplications where the
s2 secret coefficient is 0. As part 1 targets the multiplication s2 · c2, the product and
Hamming distance using s2 = 0 will be zero for all ciphertext c2 coefficient values,
which does not leak any information.

Our implementation does not consider this, resulting in s2 = 0 having the highest
correlation in part 1 in all base multiplications. When all Hamming distances are zero,
the set has zero variance (σH = 0), resulting in the Pearson correlation coefficient
converging towards infinity (ρH,P = cov(H,P )

σH σP
).

5.5 Diversions from theory

According to theory, a higher Hamming distance should result in higher power
usage. However, the results (as shown in Figure 5.11b) show that a higher Hamming
distance results in lower power usage. This is due to the measurement setup in the
ChipWhisperer Lite. The ChipWhisperer obtains power usage by measuring voltage
drop on one side of the shunt resistor. This results in a higher voltage when no
current flows through the resistor, inverting the result [NewAEb].

5.6 Applying the attack to other versions of
CRYSTALS-Kyber

The main difference between Kyber512, Kyber768 and Kyber1024 is the number
of dimensions in the form of k, with each version having k = 2, k = 3 and k = 4
respectively. As we attack one dimension at a time, an increase in k will result in
a linear increase in attack runtime. With an attack against Kyber768 taking 50%
longer and Kyber1024 taking double the amount of time compared to our attack
against Kyber512.

5.7 Applying the attack to CRYSTALS-Dilithium

In CRYSTALS-Dilithium, the NTT representation of polynomials are 0-degree
polynomials or constants [DKL+21]. However, the modulus q is set to 8380417
[DKL+21], requiring the correlation of 8380417 constants to be evaluated for each
base multiplication in an attack. This will likely make the attack less efficient than
the attack against CRYSTALS-Kyber, as there is not possible to split the attack into
two shorter coefficients with 3329 possible values each. However, the attack should
be more efficient than brute forcing both Kyber coefficients with 33292 = 11082241
possibilities.
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Compared to CRYSTALS-Kyber, CRYSTALS-Dilithiums secret key consists of 6
elements, ρ, K, tr, and the polynomials s1, s2 and t0. Both ρ and tr are publicly
available as ρ is a part of the public key, and tr is the public key hash. K is the
preimage under a hash function and is not involved in a polynomial multiplication,
making a full secret key recovery against CRYSTALS-Dilithium impossible with our
attack. However, the secret key parameters s1, s2 and t0 are involved in the NTT
domain multiplications ĉ · ŝ1, ĉ · ŝ2 and ĉ · t̂0 as part of the signing algorithm[DKL+21].
The polynomial ĉ is publicly available from the public key parameter c̃, making s1,
s2 and t0 vulnerable for recovery using our attack.

This attack is likely difficult to implement using the hardware used in this thesis
due to memory limitations. We had memory issues in implementing Kyber512 as a
KEM, and CRYSTALS-Dilithium will likely require more memory due to increased
key and signature sizes [DKL+21].





Chapter6Conclusion

The primary aim of this thesis was to assess the security strength of CRYSTALS-
Kyber, focusing on the power analytic side-channel attack and its possible enhance-
ments and countermeasures. We conclude by looking back at the research questions.

Can the correlational power analytical attack performed by Karlov et al.
be replicated?

Our method for recreating the power analytical SCA by Karlov et al. [KdG21] is
provided in Chapter 4. The technique successfully recovered the partial key against
Kyber512 in all our attacks, demonstrating that this approach can recover the full
secret key effectively. Our analysis also found the attack to apply against all versions
of CRYSTALS-Kyber, with a linear increase in time as the security parameter
increases.

Can the attack be improved?

Our modifications to the original attack included limiting the number of coefficients
required for testing, adhering strictly to the Kyber specifications, and avoiding
the threshold requirement in part 1 of the attack, described in Chapter 4. These
adjustments improved the attack’s efficiency and ensured correct coefficients were
evaluated in part 2, even with low correlation.

How does the availability of varying amounts of power traces impact the
performance of the attack?

In our assessment of the attack’s efficiency (in Chapter 5), we discovered more traces
drastically reduced the risk of false positives and the number of calculations required.
Interestingly, due to each calculation’s size, the attack’s runtime increased drastically
with a high amount of traces. Requiring future implementations consider the tradeoff
between the runtime and accuracy of the attack.

67
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Can the countermeasures introduced by Karlov et al. effectively mitigate
the attack?

A critical outcome of our research is the demonstration that the countermeasure
suggested by Karlov et al. [KdG21] was ineffective. We implemented the countermea-
sure of limiting the attack to 50 power traces in section 5.2.3 and recovered the secret
key coefficients in all attempted base multiplications using our improved attack.

Is the attack applicable to the corresponding signature scheme,
CRYSTALS-Dilithium?

We are quite confident our attack partially applies against CRYSTALS-Dilithium,
with it likely being possible to recover all parts of the secret keys involved in a base
multiplication as discussed in section 5.7. However, full secret key recovery is beyond
the scope of our attack as we leave it for future works to determine ways to recover
the secret key of CRYSTALS-Dilithium fully.



References

[07] «Power Consumption», in Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Boston, MA: Springer US, 2007, pp. 27–60. [Online].
Available: https://doi.org/10.1007/978-0-387-38162-6_3.

[ABL+21] R. Avanzi, J. Bos, et al., CRYSTALS-Kyber algorithm specifications and
supporting documentation, version 3.02, Aug. 2021.

[Ati18] M. Atiyah, Introduction to commutative algebra. CRC Press, 2018.

[BCNS14] J. W. Bos, C. Costello, et al., Post-quantum key exchange for the tls
protocol from the ring learning with errors problem, Cryptology ePrint
Archive, Paper 2014/599, https://eprint.iacr.org/2014/599, 2014. [Online].
Available: https://eprint.iacr.org/2014/599.

[BCO04] E. Brier, C. Clavier, and F. Olivier, «Correlation power analysis with a
leakage model», in Cryptographic Hardware and Embedded Systems-CHES
2004: 6th International Workshop Cambridge, MA, USA, August 11-13,
2004. Proceedings 6, Springer, 2004, pp. 16–29.

[BGV14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, «(leveled) fully ho-
momorphic encryption without bootstrapping», ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[BHLY16] L. G. Bruinderink, A. Hülsing, et al., Flush, gauss, and reload – a cache at-
tack on the bliss lattice-based signature scheme, Cryptology ePrint Archive,
Paper 2016/300, https://eprint.iacr.org/2016/300, 2016. [Online]. Avail-
able: https://eprint.iacr.org/2016/300.

[Cor99] J.-S. Coron, «Resistance against differential power analysis for elliptic
curve cryptosystems», in Cryptographic Hardware and Embedded Systems:
First InternationalWorkshop, CHES’99 Worcester, MA, USA, August
12–13, 1999 Proceedings 1, Springer, 1999, pp. 292–302.

[DKL+21] L. Ducas, E. Kiltz, et al., «CRYSTALS-Dilithium – algorithm specifica-
tions and supporting documentation», Tech. Rep., version 3.1, Feb. 2021.
[Online]. Available: https://pq-crystals.org/dilithium/data/dilithium-spe
cification-round3-20210208.pdf.

69

https://doi.org/10.1007/978-0-387-38162-6_3
https://eprint.iacr.org/2014/599
https://eprint.iacr.org/2014/599
https://eprint.iacr.org/2016/300
https://eprint.iacr.org/2016/300
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf


70 REFERENCES

[FO99] E. Fujisaki and T. Okamoto, «Secure integration of asymmetric and sym-
metric encryption schemes», in Advances in Cryptology—CRYPTO’99:
19th Annual International Cryptology Conference Santa Barbara, Cali-
fornia, USA, August 15–19, 1999 Proceedings, Springer, 1999, pp. 537–
554.

[GT03] J. D. Golić and C. Tymen, «Multiplicative masking and power analysis
of AES», in Cryptographic Hardware and Embedded Systems-CHES 2002:
4th International Workshop Redwood Shores, CA, USA, August 13–15,
2002 Revised Papers 4, Springer, 2003, pp. 198–212.

[IBMQuantum] Real quantum computers. [Online]. Available: https://quantum-computin
g.ibm.com/ (last visited: Jun. 3, 2023).

[KdG21] A. Karlov and N. L. de Guertechin, «Power analysis attack on Kyber»,
Cryptology ePrint Archive, 2021.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun, «Differential power analysis», in Advances
in Cryptology—CRYPTO’99: 19th Annual International Cryptology Con-
ference Santa Barbara, California, USA, August 15–19, 1999 Proceedings
19, Springer, 1999, pp. 388–397.

[KL20] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC press,
2020.

[KPR+] M. J. Kannwischer, R. Petri, et al., PQM4: Post-quantum crypto library
for the ARM Cortex-M4, https://github.com/mupq/pqm4.

[LPR13] V. Lyubashevsky, C. Peikert, and O. Regev, «On ideal lattices and learning
with errors over rings», Journal of the ACM (JACM), vol. 60, no. 6, pp. 1–
35, 2013.

[LS15] A. Langlois and D. Stehlé, «Worst-case to average-case reductions for
module lattices», Designs, Codes and Cryptography, vol. 75, no. 3, pp. 565–
599, 2015.

[Lyu20] V. Lyubashevsky, «Basic lattice cryptography: Encryption and fiat-shamir
signatures», IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon,
Switzerland, Tech. Rep., Dec. 2020, Original Version: December 2019.
Last Updated December 17, 2020.

[MMS01] D. May, H. L. Muller, and N. P. Smart, «Non-deterministic processors»,
in Information Security and Privacy: 6th Australasian Conference, ACISP
2001 Sydney, Australia, July 11–13, 2001 Proceedings 6, Springer, 2001,
pp. 115–129.

[MNM+16] T. Monz, D. Nigg, et al., «Realization of a scalable Shor algorithm»,
Science, vol. 351, no. 6277, pp. 1068–1070, 2016.

[NewAEa] ChipWhisperer. [Online]. Available: https://chipwhisperer.readthedocs.io/
(last visited: Apr. 12, 2023).

[NewAEb] NewAE Hardware Product Documentation. [Online]. Available: https://r
tfm.newae.com/ (last visited: Apr. 11, 2023).

https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://github.com/mupq/pqm4
https://chipwhisperer.readthedocs.io/
https://rtfm.newae.com/
https://rtfm.newae.com/


REFERENCES 71

[NIST] Post-Quantum Cryptography Standardization. [Online]. Available: https:
//csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cr
yptography-standardization (last visited: Jun. 3, 2023).

[Nov02] R. Novak, «SPA-based adaptive chosen-ciphertext attack on RSA im-
plementation», in Public Key Cryptography: 5th International Workshop
on Practice and Theory in Public Key Cryptosystems, PKC 2002 Paris,
France, February 12–14, 2002 Proceedings, Springer, 2002, pp. 252–262.

[OC14] C. O’flynn and Z. Chen, «Chipwhisperer: An open-source platform for
hardware embedded security research», in Constructive Side-Channel
Analysis and Secure Design: 5th International Workshop, COSADE 2014,
Paris, France, April 13-15, 2014. Revised Selected Papers 5, Springer,
2014, pp. 243–260.

[Reg09] O. Regev, «On lattices, learning with errors, random linear codes, and
cryptography», Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40,
2009.

[Reg10] O. Regev, «The learning with errors problem», Invited survey in CCC,
vol. 7, no. 30, p. 11, 2010.

[SBB18] P. Socha, J. Brejník, and M. Bartik, «Attacking AES implementations
using correlation power analysis on ZYBO Zynq-7000 SoC board», in
2018 7th Mediterranean Conference on Embedded Computing (MECO),
IEEE, 2018, pp. 1–4.

[Sho94] P. W. Shor, «Algorithms for quantum computation: Discrete logarithms
and factoring», in Proceedings 35th annual symposium on foundations of
computer science, Ieee, 1994, pp. 124–134.

[Sta10] F.-X. Standaert, «Introduction to side-channel attacks», Secure integrated
circuits and systems, pp. 27–42, 2010.

[WM21] M. E. Whitman and H. J. Mattord, Principles of information security.
Cengage learning, 2021.

[Wri87] P. Wright, Spycatcher: The Candid Autobiography of a Senior Intelligence
Officer. Heinemann, 1987.

[ZF05] Y. Zhou and D. Feng, «Side-channel attacks: Ten years after its publication
and the impacts on cryptographic module security testing», Cryptology
ePrint Archive, 2005.

[ÖOP03] S. B. Örs, E. Oswald, and B. Preneel, «Power-analysis attacks on an FPGA–
first experimental results», in Cryptographic Hardware and Embedded
Systems-CHES 2003: 5th International Workshop, Cologne, Germany,
September 8–10, 2003. Proceedings 5, Springer, 2003, pp. 35–50.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization



	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Background
	Cryptography
	Cryptographic schemes
	Quantum computing and cryptography

	Lattice problems
	Mathematical background
	Learning with errors
	Number theoretic transform
	CRYSTALS-Kyber


	Power analytical side-channel attacks
	Classification of side-channel attacks
	Power analytical SCA in practice
	SPA against vulnerable password checker
	Traditional DPA attack against AES
	CPA attack against AES

	Relationship between databus bit changes and processor power usage
	ChipWhisperer toolchain
	Hardware
	Firmware
	Software
	Tutorials

	Countermeasures

	Experimental Setup
	Environment
	Kyber implementation
	Communication system
	Power trace collection
	CPA attack implementation
	Improvements
	Secret key recovery


	Results
	CPA attack part 1
	1000 traces
	200 traces
	50 traces
	Summary

	CPA attack part 2
	1000 traces
	200 traces
	50 traces
	Summary

	Attack runtime
	Limitations
	Diversions from theory
	Applying the attack to other versions of CRYSTALS-Kyber
	Applying the attack to CRYSTALS-Dilithium

	Conclusion
	References

