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Our meta-analysis showing a dramatic decline effect in ocean acidification (OA) studies on fish

behavior [1] was criticized and reanalyzed by Dr. Munday [2]. After applying changes to the data-

set in a seemingly biased direction (see Supp. Data 1 at https://osf.io/7spzx/), Munday found a

slightly less “extreme” decline effect than the original. Nonetheless, Munday’s reanalyzed decline

effect remains one of the strongest examples of this phenomenon in ecology [3], despite the claim

that his “reanalysis shows there is not an extreme decline effect in fish ocean acidification studies.”
Why is the decline effect still present in the reanalysis, and why did early studies have such

inflated effect sizes? The reason is that many early papers by Munday and colleagues included

data that are extreme in and of themselves, and likely nonbiological in origin [4].

Alongside specific comments and revisions to our dataset based on subjective criteria

(some we accept, many we do not; Supp. Data 1, Supp. Table 1 at https://osf.io/7spzx/), Mun-

day critiques how we assigned values to means of zero when computing effect sizes. Since bio-

logical data rarely have means and variances of precisely zero, treating means of zero in meta-

analyses has not been extensively explored. We agree with Munday that a discussion about

how to handle mean values of zero in calculations of effect size is warranted, which we elabo-

rate upon in Box 1. Munday’s critique is that our use of small fractional means for percentage

and proportional data where the original means and variances are precisely zero “artificially

inflates” effect size estimates. But context matters—the “artificially inflated” effect sizes in early

studies are derived from initial data that are highly unlikely to begin with. For example, in a

paper by Dr. Dixson and colleagues [5], choice-flume experiments measuring time spent in

predator chemical cues yielded means for control and OA-exposed fish of precisely 0% and

100%, respectively, each with variances of exactly 0%.

Further examples of means of 0% and 100%, with extremely small variances, are present in

other papers led by Dixson and Munday (e.g., [6,7]). Using bootstrapping simulations (see

Supp. Appendix at https://osf.io/7spzx/ for details), with choice-flume behavioral data

extracted from videos available online from Munday’s lab [8], we demonstrate that such low

variances are highly improbable and likely nonbiological (Fig 1A–1C). These extreme data,

and the methods used to obtain them, are consistent with results in three publications by Dix-

son that were found to contain fabricated data [4,9]. Among these is a paper in Science that has

been retracted for data fabrication [10]. Thus, while Munday argues that our initial effect size

estimates are artificially “extreme,” the fact remains that those effect sizes are derived from

extreme and implausible initial data. Indeed, as concluded in our original analysis, the factor

with the highest explanatory power for the decline effect is still the influence of “authors,” spe-

cifically Dixson and/or Munday (Fig 1D and 1E).
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The rhetoric of Munday [2] implies that there is no decline effect in this field, but Munday’s

real argument is that the decline effect is not “extreme,” as stated in [1]. However, the decline

effect in Munday’s reanalysis is still numerically extreme; a decline in mean effect size magni-

tude (lnRR) from�3 to<0.5 (see Fig 1A in [2]) is a very large decline. For example, in [5], a

lnRR of 3.3 is derived from control and OA-exposed fish spending 3% and 85% of their time

in predator cues, respectively, while a lnRR of 0.4 comes from control and OA-exposed fish,

respectively, spending 12% and 18% of their time in predator cues. That is, to achieve lnRR

�3.3 (approximate mean lnRR of early studies using revised values for zero means), there is a

difference of 82% in the time spent in a predator cue between control and OA-exposed fish,

while lnRR�0.4 (approximate revised mean lnRR for later studies) results from a difference of

only 6%. To put this in the context of other decline effects in ecology and evolution, Jennions

Box 1. Assigning values to zero and near-zero means and variances

The main aspect of Munday’s revised dataset that reduces the magnitude of the decline

effect reported in our original analysis is the prescription of values to zero means. We

agree that effect sizes can be difficult to estimate for percentage data where one treat-

ment approaches 100% and the other approaches 0%. In panels G-H of Fig 2 in [2],

Munday reanalyzes our dataset by replacing our zero-mean values of 0.0001% for per-

centage data with values of 1% (0.01 for proportion data). With respect to these particu-

lar values presented in Munday’s Fig 2, using 1% is an inaccurate representation of 0%,

as the percentages in the actual data were not 1%, they were 0% with no variance. In

these papers, 0% is not derived from a single measurement but is the result of multiple

consecutive measurements on individual fish that all recorded 0% time in the chemical

cue side of a choice-flume. Hence, we can be very certain that the actual number is 0%.

As the variance around the 0% mean is also zero, the precision of the mean is interpreted

to be very high and confidence in the real mean value being 0% is similarly high. From a

Bayesian perspective, confidence in the mean being 0% increases the more times the val-

ues are 0%, including across individuals (e.g., it would be highly unlikely that 30 fish in a

row spend 0.4% of their time in predator cue; chance would have some of them fall over

to 0.6% and thus give a few 1% recordings). It is therefore incorrect to use 1% as an esti-

mate for a mean of 0% (and similarly incorrect to use a proportion of 0.01 to estimate a

mean proportion of 0), given the number of times 0% was recorded without any variance

around that mean. Using the reasoning for precision estimates above, we estimated

mean percentages to four decimal places in our original analysis [1]. While meta-analysis

best practices are not available for such data, and we can appreciate the position that

0.0001 may overestimate the precision of the measurements, using 1% is nonetheless

incorrect. Munday’s use of 0.1% to estimate 0% (0.001 for proportional data) in his Fig 1

in [2], is reasonable and still depicts an extreme decline effect for this field. It is impor-

tant to note here, however, that the actual means and variances reported in these studies

are precisely zero and that such means and variance are highly unlikely for biological

data—particularly for something as inherently variable as animal behavior. Our initially

reported decline effect, therefore, is not simply a statistical artifact but represents the

extreme differences between treatment means, and the highly improbable variances

around those means, in early studies. The choice of values to represent 0% means simply

dictates the magnitude of extremeness.
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and Møller [3] reported that the strongest decline effects in their dataset of ecological meta-

analyses had Z-transformed Spearman correlation coefficients for the relationship between

year and mean effect size between −0.5 and −0.7 (n = 4 of 44 studies; see Fig 1 in [3]). Compar-

atively, the Z-transformed Spearman correlation in Munday’s reanalysis is −0.679 (computed

using the data underlying Fig 1D in [2]; see Supp. Data 3 at https://osf.io/7spzx/), compared to

a Z-transformed Spearman correlation of −0.904 in our original analysis [1]. Similarly, the

Pearson correlation for the relationship between year and mean effect size in Munday’s

Fig 1. (A–C) Distributions (vertical bars) of the probability of obtaining a particular variance around a mean value of

“percent time in chemical alarm cue” when examining groups of juvenile spiny chromis (Acanthochromis
polyacanthus) with sample sizes of 15 (A), 20 (B), and 30 (C). Distributions were produced from 10,000 bootstrapping

simulations per panel when using the control (white bars) and high CO2 (grey bars) data obtained from behavioral

videos from Munday’s lab (see Table A1 in Supp. Appendix) and defining the stated sample sizes. Sample sizes were

selected to match those reported in previous papers by Munday and Dixson (colored circles from a subset of references

noted in each panel), where a range of species have been tested using various chemical cues (not all associated with

ocean acidification). Circle symbols are sometimes hidden behind each other. Note that all papers by Munday and

Dixson contain data with variances that are lower than plausible based on the available video evidence. Full references

for the papers identified in the figure panels can be found in Supp. Appendix. (D, E) Mean effect size magnitude

(absolute lnRR ± upper and lower confidence bounds) for each year of publication online estimated from our revised

dataset (i.e., after including or excluding Munday’s data “corrections”; see Supp. Data 1) including all studies (D) and

the dataset excluding studies authored or coauthored by Dixson and/or Munday (all papers before 2012 were authored

by Dixson and/or Munday) (E). Mean effect size magnitudes and confidence bounds were estimated using Bayesian

simulations and a folded normal distribution. Colors in panels D and E are aesthetic in nature and follow a gradient

according to year of publication. Effect size magnitudes and their uncertainty were estimated from our revised dataset

using the same analytical approach as detailed in [1]. Annotated R code and raw data files for the meta-analysis in

panels D and E are in Supp. Code, Supp. Data 2, and Supp. Data 3. Panels A–C were created using SigmaPlot Version

11.0 (Systat Software, San Jose, CA), while panels D and E were created using R (ggplot2 package; [13]). Underlying

data for each figure panel can be found in Supp. Data 2. All supplementary files can be found at https://osf.io/7spzx/.

https://doi.org/10.1371/journal.pbio.3001996.g001
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reanalysis is −0.697 (−0.711 in our original analysis)—a negative Pearson correlation exceeded

by only 3 out of 466 ecological meta-analyses identified in a recent meta-meta-analysis of

decline effects from Costello and Fox ([11]; see Fig 2A therein]). Thus, the decline effect identi-

fied in Munday’s reanalysis remains one of the most extreme in ecology and evolution.

We are thrilled to see that sharing our raw data and code has led to reanalysis of our original

dataset—a testament to the value of open science [12]. We are also thankful that a few errors in

data extraction were identified, so that they could be corrected. Notably, Munday’s reanalysis

shows that these errors did not alter the main findings of our work despite the rhetoric of his

comment implying no decline effect.

Whether one calls it “extreme,” “strong,” or without adjective, the field of ocean acidifica-

tion and fish behavior constitutes a clear, textbook example of the decline effect that is most

parsimoniously explained by the authors of the papers included in the meta-analysis. Our anal-

yses ([1]; Fig 1D and 1E) and Munday’s reanalysis [2] all support this conclusion.
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