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Abstract

This thesis explores the feasibility of using electroencephalogram (EEG) signals to determine whether

a person has been exposed to red, green, or blue (RGB) visual stimuli. If a classifier can be developed

to distinguish such stimuli, it could serve as the basis for a brain-computer interface (BCI), a system

for controlling computers by explicit manipulation of brain activity. In this work, deep neural net-

works (DNNs), specialized for EEG signals, have been employed to serve as classifiers. In addition to

the classifiers, efforts were focused on methods for manipulating the data to make it more suitable for

classification. Source reconstruction (SR), a method for estimating brain activity at a set of positions

in the brain based on EEG recordings, was used to produce a data representation with higher spatial

resolution than the raw electrode data. Both the raw electrode data and the source reconstructed

data contain channels, representing signals from scalp locations (for electrodes) or within the brain

(for source reconstruction). A channel selection method has been developed, using a genetic algo-

rithm (GA), to search for optimal subsets of channels to use when classifying brain activity elicited

by RGB stimuli. A dataset comprised of EEG recordings from 31 subjects was used to evaluate the

performance of the different methods and classifiers.

All the classifiers developed in this work have been intra-subject classifiers, meaning they are trained

on data from only one subject, and tested on data from the same subject. Four tests, with a total

of fourteen subtests, were performed to evaluate different combinations of the developed methods.

The results of these tests did not show an improvement in classification accuracy when using recon-

structed sources as opposed to raw electrode data. The best results obtained using electrode data had

an accuracy of 80%, averaged across subjects. With reconstructed sources, the best average accuracy

was 73%. The results proved that channel selection by use of GA is a suitable method for reducing the

number of channels without loss of classification accuracy. For reconstructed sources, the channel

selection reduced the number of channels by 59%, with the average accuracy remaining the same.

When using channel selection on electrodes, the number of channels was reduced by 83%, with an

increase in average accuracy of 3%. The dataset used in this thesis has been subject to study in pre-

vious research. The best result from that research was an average accuracy of 74%, for a subset of

subjects. With the best classifier from this work, the same subset had an average accuracy of 88%.
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Sammendrag

Denne oppgaven utforsker muligheten for å bruke elektroencefalografi (EEG) signaler for å avgjøre

hvorvidt en person undergår rød, grønn, eller blå (RGB) visuelle stimuli. Dersom en algoritme kan

utvikles, som kan klassifisere slike stimuli, kan den utgjøre grunnlaget for et hjerne-datamaskin grens-

esnitt (BCI), et system for å kontrollere datamaskiner ved eksplisitt manipulasjon av hjernesignaler.

Dype nevrale nettverk (DNN), spesialisert for EEG signaler, har blitt anvendt for å klassifisere data i

dette arbeidet. Utover dette har arbeidet vært rettet mot metoder for å manipulere data, slik at den er

mer tilrettelagt for klassifisering. En rekonstruksjonsmetode for å estimere kildene til signalene målt

med EEG ble benyttet for å lage en representasjon av EEG data med høyere romlig oppløsning enn de

direkte elektrodemålingene. Både elektrodemålingene og de rekonstruerte kildene har flere kanaler

med data, som representerer signaler fra posisjoner på hodebunnen (for elektroder) og i hjernen (for

rekonstruerte kilder). En metode har blitt utviklet, ved bruk av en genetisk algoritme (GA), for å lete

etter optimale undergrupper av kanaler til bruk i klassifisering av hjerneaktivitet forårsaket av RGB

stimuli. Et datasett bestående av EEG målinger fra 31 testpersoner ble brukt til å evaluere ytelsen til

de forskjellige metodene og klassifiseringsalgoritmene.

Alle klassifiseringsalgoritmene utviklet i dette arbeidet har blitt trent på data fra kun én person, og

testet på data fra den samme personen. Fire tester, med til sammen fjorten undertester ble utført, for

å evaluere forskjellige kombinasjoner av de utviklede metodene. Resultatene fra disse testene viste

ingen forbedring i klassifisering ved bruk av rekonstruerte kilder sammenliknet med direkte elek-

trodedata. De beste resultatene ved bruk av elektrodedata hadde en gjennomsnittlig nøyaktighet

på 80%. Med rekonstruerte kilder var den beste gjennomsnittlige nøyaktigheten 73%. Resultatene

viste at metoden for å lete etter undergrupper av kanaler med en GA var en egnet metode for å re-

dusere antallet kanaler, uten tap av nøyaktighet. For rekonstruerte kilder reduserte denne metoden

antallet kanaler med 59%, uten å påvirke nøyaktigheten av klassifiseringen. Med elektrodedata re-

duserte metoden antallet kanaler med 83%, og økte nøyaktigheten med 3%. Datasettet som ble brukt

i denne oppgaven har også blitt brukt i tidligere en tidligere studie. De beste resultatet fra det studiet

var en gjennomsnittlig klassifiseringsnøyaktighet på 74%, for et utvalg av testpersonene. Med den

beste klassifiseringsalgoritmen i dette arbeidet, har det samme utvalget en nøyaktighet på 88%.
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Chapter 1

Introduction

1.1 Background

Brain-computer interfaces (BCIs) are systems built to allow control of computer systems, through

explicit manipulation of brain activity [66]. Since BCIs do not rely on the physical use of muscles,

as keyboards and touch screens do, they can serve as alternative interfaces for users with physical

disabilities. People suffering from locked-in syndrome, who cannot use either traditional interfaces

or speech-controlled devices, may still use BCI systems. People that previously could not manipulate

their environment, might be able to interact with their surroundings through such systems, giving

them more freedom, control, and quality of life. Further into the future, with sufficient advances in

the technology, BCIs might also serve as a more efficient and seamless interface for any user.

The control tasks, the set of mental efforts performed by the user as input to the BCI [66], is an impor-

tant design choice. These mental efforts can be directly produced by the user (endogenous) or they

can be induced automatically by some external stimuli (exogenous). Control tasks such as motor im-

agery (MI) (where the user thinks of performing certain muscle movements) and imagined speech

(where the user thinks of saying certain words) are examples of previously studied endogenous tasks

[24, 15]. For exogenous tasks, sounds and visual cues can be used as part of the control task paradigm.

The user can be presented with several stimuli, and manipulate their brain activity by focusing on one

of them. Several considerations have to be made when designing the control tasks; There should be

an intuitive connection between the mental effort and the desired output, the brain activity from dif-

ferent tasks should be different enough to distinguish reliably, the tasks should be easy to perform

for anyone, etc. Exogenous paradigms typically have the advantage of being more robust and require

less user training than systems based on endogenous tasks [67]. On the other hand, the stimuli in

exogenous paradigms often cause fatigue and discomfort over time [48, 67].

Different colors could be used as external visual stimuli in a control task paradigm. By presenting

the BCI user with different colors, they could focus on a specific color to perform a specific task such

as opening and closing doors. Compared to common exogenous tasks, based on flashing lights or

letters [66], focusing on a static color may cause less fatigue, thus overcoming an often-mentioned

disadvantage of exogenous paradigms. Another advantage is that colors do not require electricity or

a display of some sort, making them more practical for integration in an environment than flashing
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lights and letters. Previous research has shown through behavioral and physiological studies, the abil-

ity of prelingual infants to distinguish and categorize colors [45, 7]. Such studies indicate an innate

ability of the human brain to separate colors. It is thus natural to assume that the brain activity in-

duced by different colors is separable. With a background in all these aspects, color stimuli could be

a promising part of a BCI paradigm.

To the knowledge of the author, the brain’s response to color stimuli has not yet been used as the

control task in any BCI, however, some research has been conducted on offline classification of brain

activity elicited by color stimuli [52, 4, 61, 60]. The methods of recording brain activity used in these

studies were electroencephalography (EEG) and magnetoencephalography (MEG). Of these meth-

ods, only EEG has properties suitable for integration in a BCI [66]. Although [52] and [4] demonstrate

that color stimuli can be decoded above chance level with EEG data, the accuracies were too low

compared to what should be expected of a robust BCI. In recent years, source reconstruction (SR)

has been demonstrated to improve the decoding accuracy of certain brain activities [50, 24, 9]. SR is

a method for estimating the brain activity at a set of positions in the brain, from EEG or MEG mea-

surements. It is thought that the improvement in classification achieved with SR can be attributed

to source-reconstructed data being more highly correlated to the control tasks, due to its high spatial

resolution compared with raw EEG data [22]. Preliminary studies, conducted by the author, explored

the use of SR for decoding color stimuli, however, these studies did not demonstrate an increase in

performance when using source-reconstructed data instead of raw electrode data [27]. Hence, the

questions remain open as to whether color stimuli can be decoded with high enough accuracy for

use in a BCI, and if SR can be used to improve performance in color stimuli classification.

This thesis explores methods for classifying stimuli from the primary colors red, green, and blue (RGB)

based on EEG recordings, and assesses the possibility of using such stimuli as part of a BCI paradigm.

The main focus has been the use of three distinct methods. Firstly, SR was used to transform the data

to a format that might improve classification. Secondly, a genetic algorithm (GA) was used to search

for a subset of data channels to use in the classification, to reduce the amount of data, and improve

the signal-to-noise ratio (SNR). Lastly, deep neural networks (DNNs) have been used to perform the

classification itself. These three methods are the focus of sections 3.2, 3.3, and 3.4 respectively.

1.2 Related Work

The design and implementation of the methods used in this work have been guided by previous re-

search in the field. Specifically, previous studies of decoding EEG signals using SR and decoding of

color stimuli have been important, as they give motivation for exploring SR and give an indication of

the state of the art in color decoding. This section provides a short description of some studies which

has been important for this work, for motivating certain methods, and for serving as benchmarks by

which the results could be evaluated.

1.2.1 Classification of Color Stimuli

[60] Rasheed et al., "EEG Spectral Analysis of Visual Evoked Potential Produced by RGB Color Stim-

uli"

An early study into color-induced brain activity, by means of EEG, was conducted by Rasheed et al..
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The aim of the study was to verify whether the response to the primary colors red, green, and blue

could be detected in EEG data. Time-frequency spectra of responses to the different colors revealed

some distinct differences between the colors. This result indicated that future BCI applications could

be feasible, and the paper encouraged further work on the subject.

[4] Åsly, "Supervised learning for classification of EEG signals evoked by visual exposure to RGB

colors"

The focus of this work was classifying responses to primary color stimuli in EEG signals. Results were

presented for traditional machine learning (ML) classifiers and DNN classifiers. The classifiers based

on traditional ML were trained and tested on both a subject-specific basis and across all subjects. The

DNN classifiers were tested only across all subjects. When trained across all subjects, the DNN was

reported to achieve 46% accuracy while the traditional ML classifier achieved 37%. For the subject-

specific ML classifiers, an average accuracy of 45% was attained.

[52] Ludvigsen et al., "The Augmented Human: Development of BCI for RGB colour-based automa-

tion"

In this study, traditional ML classifiers were developed to classify primary color responses in EEG

recordings. The classifiers were trained and tested using the same dataset as in this study. Hence,

their results served as good benchmarks for comparison with the results of this study. Their best re-

sults were obtained with a minimum distance to mean with geodesic filtering (FgMDM) Riemannian

classifier. The result was an average accuracy of 74.48% per subject, with intra-subject classifiers.

Classification of source-reconstructed data was also performed, with the best classifier having an av-

erage accuracy of 49.73%.

[61] Rosenthal et al., "Color space geometry uncovered with magnetoencephalography"

This study explored the brain’s response to visual stimuli of different colors and color words. The data

used in this research was recorded using MEG. Several properties of the responses were investigated,

among them the delay between stimulus onset and maximum decoding accuracy and the separa-

bility of different colors. It was reported that the maximum decoding accuracy was at 115ms after

stimuli onset. However, this varied substantially from subject to subject. The research also found that

a higher accuracy was achieved for decoding warm colors (such as pink) than cool colors (such as

green).

1.2.2 Classification of Reconstructed Sources

[9] Cincotti et al., "High-resolution EEG techniques for brain–computer interface applications"

This study aimed to investigate if using reconstructed source data could yield better classification

than when using raw EEG data. Brain activity was recorded with EEG while subjects were prompted

to perform four types of imagined limb movements. Both statistical analysis and online application

in a BCI paradigm demonstrated that using reconstructed sources could improve the performance of

a classifier.

[50] Li and Ruan, "A novel decoding method for motor imagery tasks with 4D data representation

and 3D convolutional neural networks"

This paper introduced a convolutional neural network (CNN) for decoding source-reconstructed data.

The data to decode was of different imagined movements. The developed CNN used three-dimensional
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(3D) spatial convolutions to take advantage of the spatial properties of the reconstructed sources. Re-

sults from testing the developed classifier on public datasets showed that it outperformed previously

proposed classifiers operating on raw EEG data.

[24] Fang et al., "Decoding motor imagery tasks using ESI and hybrid feature CNN"

This paper also introduced a custom CNN for classifying reconstructed sources. However, the data

input to this classifier had a two-dimensional (2D) spatial representation of the brain activity, as op-

posed to the 3D representation used in [50]. In addition, frequency features were extracted before

the data was fed into the classifier. Experiments showed that the proposed classification procedure

outperformed almost all other state-of-the-art methods.

1.3 Objectives

The overall aim of this thesis has been to explore methods for classifying color responses in EEG

signals. This exploration has been conducted with a focus on three distinct methods, which serve as

the objectives for the work:

O1: Explore the use of source reconstruction (SR) on EEG signals to create data with high spatial

resolution.

O2: Implement a genetic algorithm (GA) paradigm for selecting subsets of channels in EEG data

and source-reconstructed data, that are beneficial for classification accuracy.

O3: Explore and test deep neural network (DNN) architectures for classifying primary color

responses in source-reconstructed data.

1.4 Approach

This work builds upon the preliminary studies conducted in [27]. A dataset containing EEG record-

ings of a set of subjects receiving color stimuli has been the foundation of the research. This dataset

was divided into two parts: one used during the development and exploration of the different meth-

ods, and one used to test the fully developed methods. SR was then employed to create an alternative

representation of the dataset. Both the source-reconstructed and raw datasets were then used by

a GA to search for optimal subsets of sources and electrodes. The GA used the best classifier from

the preliminary studies conducted, to evaluate the performance of different possible subsets. Three

DNN architectures designed specifically for source-reconstructed data were implemented in an ef-

fort to take advantage of the high spatial resolution of such data. Finally, a set of tests were defined to

systematically evaluate the performance of different combinations of the developed methods.

1.5 Limitations

All classifiers developed in this project are intra-subject, they are trained and tested on data from

only one subject. This means that the results presented in this work reflect how well the proposed

classifiers can classify on subjects it is trained on. How well the classifiers would perform if presented

with data from other subjects than it is trained on has not been explored.
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The EEG data used in this work are recorded in a controlled environment with optimal conditions.

During recording, subjects were sitting down in a magnetically shielded room, and instructed to

refrain from moving and blinking, thus ensuring a minimal amount of artifacts and noise in the

recorded data. The color stimuli received was also occupying a substantial portion of their view, and

only one color was visible at a time. These conditions can not be expected in a BCI used in everyday

life, thus the results obtained in this research cannot be considered realistic estimates for the obtain-

able accuracy in a BCI using the same methods.

1.6 Outline

This introduction is the first of five chapters in this thesis. Chapter 2 covers some theory on brain sig-

nals, genetic algorithms, and machine learning, to provide sufficient background for the subsequent

chapters. Chapter 3 describes the materials and methods used in this work. The chapter covers four

main parts of this work: the dataset, channel selection with genetic algorithms, source reconstruc-

tion, and classification using deep learning. Chapter 4 presents the results obtained from a set of

tests performed to evaluate the various methods introduced in Chapter 3. Finally, Chapter 5 provides

a discussion of the results and experiences gained throughout the work. This last chapter also sug-

gests topics for further work and closes with a conclusion summarizing the work. In addition to these

chapters, there are three appendices in this thesis. The first, a list explaining all abbreviations used

in this thesis can be found in Appendix A. The second, Appendix B, is an abstract of the preliminary

work, accepted for the 2023 BCI Society Meeting. The final appendix, Appendix C, is a paper about

the preliminary work, accepted for the 2023 IEEE EMBC conference.

1.7 Contributions

This work contributes with both insight and methods for the decoding of EEG signals, with an em-

phasis on the decoding of RGB color stimuli. The major contributions are:

• An approach for reducing the number of channels in a source space representation of EEG data

without loss of decoding accuracy, using a GA.

• An evaluation of different DNN architectures, for decoding RGB color stimuli from source-

reconstructed data.

• A demonstration of deep learning’s ability to classify with high accuracy on EEG data with min-

imal preprocessing, and no artifact suppression.

The preliminary work also contributed to the evaluation of different DNN architectures. An ab-

stract of that work has been accepted for the 2023 BCI Society Meeting. This is a meeting for per-

sons involved in BCI research and clinical use. More information about this event can be found at

bcisociety.org/bci-meeting/. The preliminary work is also presented in a paper, which has been ac-

cepted for the 2023 IEEE EMBC conference. This is a conference bringing together companies, in-

stitutes, universities, and researchers in the field of biomedical science. More information on this

conference can be found at embc.embs.org/2023/
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Chapter 2

Theory

2.1 Brain Signals

The brain is the most complex organ in the human body, and is a part of the central nervous system

(CNS) [5]. It is responsible for interpreting many different sensory signals, and for producing the

signals that control muscle movement. In this section, some theory will be presented on how these

functions are achieved. The section will also cover the basics of recording brain signals using EEG.

The intention is to provide sufficient background theory for interpreting and discussing the data and

methods used in this work.

2.1.1 Generation of Signals in the Brain

In order to understand the signals recorded by an EEG, we must first have an idea of the function

of a single neuron. The adult human brain contains roughly 85 billion neurons, these are the cells

that communicate incoming sensory signals, and produce appropriate muscle signals for the body to

respond to its environment [5]. The function of a neuron can be attributed to three of its main parts:

• Dendrites: Tree-like structures on one end of the neuron, receiving inputs from other neurons

(or cells). Depicted on the left of the neuron in Figure 2.1.

• Axon: The long wire-like part of the neuron that transfers signals over a distance. The middle

part of the neuron in Figure 2.1.

• Axon terminal: The plates at the end of the axon. This is where the signal of one neuron is

transferred to the dendrites of another neuron (or to another type of cell). Seen on the right

side of the neuron in Figure 2.1

Signals travel through a neuron by a phenomenon called the action potential (AP) [34]. In its resting

state, the inside of the neuronal membrane has a negative electric charge in relation to the outside; it

is polarized. The AP is triggered by a depolarization of the membrane at the input side of the neuron.

When the membrane is depolarized above a certain threshold, ion channels in the membrane are

opened, causing a rapid flux of positively charged ions in through the membrane. This way, the charge

on the inside of the membrane becomes positive in relation to the outside. This change in charge
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causes ion channels to open in the neighboring part of the axon. This continues in a chain reaction,

creating a signal traveling along the axon, as illustrated in Figure 2.1.

Dendrites Axon Axon Terminal

(a) Neuron at rest. (b) Initial depolarization.

(c) Propagation of the AP.

Figure 2.1: An action potential. The action potential travels along the axon, by depolarization of the
neuronal membrane. The figure is adapted from [12].

2.1.2 Color Perception in the Brain

Different areas of the brain are responsible for different functions in the human body. Efforts in neu-

roscience have led to a topographic map associating different parts of the brain with different cogni-

tive functions [66]. One such function is sight, and having some insight into this function is helpful

when developing a system for decoding colors, and for interpreting EEG data from visual stimuli. This

section provides some theory on the overall structure of color perception in humans, based on theory

from [5].

Visual perception starts when light (electromagnetic waves in the visual spectrum) from the envi-

ronment enters the eye. Inside the eye, there is a set of photoreceptors, and when light hits such a

receptor, it depolarizes nearby cells, causing an AP. This AP travels along the optic nerve and enters

the brain for further processing. The path of the optic nerve is illustrated in Figure 2.3. There are

two types of photoreceptors: rods and cones. The cones are responsible for our ability to distinguish

color. There are three types of cones, each with maximum sensitivity to a certain wavelength of light,

as shown in Figure 2.2. Often these three types of cones are referred to as red, green, and blue cones, as

their sensitivity peaks roughly correspond to these colors. This means that the property we perceive

as color is in reality differences in wavelength. Light with different wavelengths will cause different

amounts of excitation in the different cones, and the brain can interpret colors by comparing these

different signals.
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Figure 2.2: The wavelength sensitivity of the three types of cone photoreceptors. Image source: [11].
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Figure 2.3: The pathway of the neural signals responsible for visual perceptions, starting in the eye
and ending in the primary visual cortex. Adapted from [13].

As mentioned, topographical maps relating areas of the brain to their function have been developed,

and Figure 2.4 illustrates such a mapping introduced by [51]. Visual area one (V1) in this figure in-

dicates the primary visual cortex, which is the area of the brain that receives visual stimuli from the

optic nerve. V1 and the other visual areas (V2, V3, etc.) are located in the section of the brain suitably

named the occipital lobe. This is the area colored pink in Figure 2.5. Figure 2.3 shows the pathway

of the signal from the eye to the visual cortex. The brain starts processing information such as mo-

tion, shape, and color in the visual cortex. However, the signals also propagate from V1 to other areas

for specific processing. Especially relevant for this work is the area indicated V8 in Figure 2.4, which

has been proven to be important for the perception of color. Evidently, the brain’s processing of vi-

sual stimuli is distributed, and no exact explanation of every aspect of visual perception has been

formulated. Naturally, visual stimuli will also cause less automatic responses such as feelings and

memories, activating other areas of the brain than just the visual areas in the occipital lobe.
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Figure 2.4: Topographical map of the areas of the brain, and their respective functions. The area V8 is
involved in color perception. The figure is adapted from [10].

2.1.3 EEG Recording

EEG is a method for recording the electrical activity in the brain. As pointed out in the previous

section, the electrical activity in the brain is in large part caused by neuronal activity. Thus, EEG

recordings can give information about the different actions performed by the brain. The recording

is performed by placing electrodes on the scalp. These electrodes measure the electric potential on

the scalp, with reference to some other potential. The reference is usually produced by placing a

reference electrode on some other part of the body, such as the ear lobe. Since each neuron behaves

as a tiny voltage source when producing an AP, they will cause small electric currents in the brain.

In the context of EEG, the head can be considered a volume conductor. The different tissues have

different conductance and hence attenuate the signal differently [65]. Therefore, to get the strongest

signal possible from neurons in a specific region of the brain, the electrode should be placed at the

part of the scalp closest to this region. Typically, EEG-caps will be used when recording brain activity.

These caps have many electrodes, spaced such that they cover a large area of the scalp, thus better

capturing the electrical activity of the whole brain. Data collected with such caps can also be used

to compute an estimate for the position of the activity in the brain that caused the signal measured.

This process is called SR and will be further described in section 3.2.

EEG-caps typically follow a standardized electrode layout such as the 10-20 system [41]. This is a

system where each electrode is placed based on landmarks on the skull. Each electrode is labeled

based on what area of the brain it is in the vicinity of. These regions are the Frontal pole (Fp), Frontal

(F), Central (C), Parietal (P), Temporal (T), and Occipital (O). The labels of the electrodes also contain

numbers representing the position relative to the mid-line of the scull (going from nasion to inion).

Electrodes in the right hemisphere are labeled with even numbers, and odd numbers are used for

electrodes in the left hemisphere. More recent systems use more electrodes and have thus expanded

on the original 10-20 system. [55] proposed a system adding intermediate regions. Electrodes in
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Figure 2.5: The 10-10 electrode placement system. The top right figure illustrates the regions of the
brain responsible for the naming of the electrodes. The bottom right figure indicates the landmarks
on the skull used to define the positions of the electrodes. Image source: [14].

these intermediate regions would be named based on the regions to whom they were intermediate.

For instance, electrodes in the region between the occipital and the parietal region would have the

label PO. An illustration of this modified 10-20 system, commonly referred to as the 10-10 system

[56], is provided in Figure 2.5.

2.1.4 EEG Noise and Artifacts

Artifacts of biological origin and noise from the environment often contaminate EEG recordings [26].

Among sources of environmental noise, interference from grid power lines may be the most com-

mon [49]. However, the electric fields of other electric devices in the vicinity of the EEG device also

influence the noise in the recording [39]. This external interference can be reduced by using shielded

cables or by performing the recording in a magnetically shielded room. Biological artifacts include

blinking and movement of eyes, use of muscles in the head and neck, and cardiac pulse [26]. Un-

like external sources of noise, this internal interference cannot be shielded against. A common way

to minimize the effect of these is to instruct subjects to refrain from blinking or moving. Obviously,

shielded rooms and avoiding blinking are impractical remedies for EEG in everyday use, such as in

BCIs. Several algorithms and methods have been proposed for removing both external and internal

interference automatically through software [26, 29, 68]. Such methods may help make EEG more

applicable for uses outside controlled environments and laboratories.

2.2 Genetic Algorithms

GAs are a class of metaheuristic algorithms inspired by the Darwinian theory of natural selection [42].

Metaheuristic algorithms are stochastic, and are not guaranteed to return an optimal solution, but are

meant to serve as an efficient and practical approach to complex optimization problems [70]. GAs
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mimic biological evolution, where individuals with advantageous properties are more likely to pro-

duce offspring, and thus pass on their properties to following generations. The NSGA-III algorithm,

described in subsection 2.2.2, was employed in this work for selecting subsets of data channels. This

was a complex problem, where a GA offered a relatively simple solution. Section 3.3 covers the usage

of NSGA-III in this work.

2.2.1 Basic Structure of a Genetic Algorithm

GAs use chromosome representation to define a point in solution space. A chromosome is a set of

genes, where each gene represents a variable in the optimization problem. The GA requires a fitness

function that takes as input a chromosome and returns the value(s) of the objective(s) for the prob-

lem at hand. The algorithm is initialized by randomly sampling a set of N chromosomes, this is the

initial population. All N individuals are evaluated with the fitness function, and a subset of the popu-

lation with the best fitness is chosen. This chosen set is used as parents to produce a new population

of N chromosomes, this is the second generation. Then, a similar selection is performed on the sec-

ond generation, and a third generation is produced. This process is repeated until a predetermined

number of generations is reached, or some other defined criteria is met.

The production of new generations is based on two operations, inspired by nature: crossover and

mutation. Crossover is an operation that takes as input two chromosomes (parents) and returns new

chromosomes (offspring) with genes that are some random combination of the original two. Muta-

tion is an operation that has a chance to randomly alter the value of some genes in a chromosome.

Crossover is used on the parents of one generation to produce N offspring. Mutation is added to the

offspring and the result is the next generation. The whole process is illustrated in Figure 2.6
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Generation 1

Individual 1

Individual 2
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...
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...

Generation m

Figure 2.6: The basic structure of genetic algorithms.

GAs can be applied to different problems by suitably defining the chromosome representation and

the fitness function. Multiobjective genetic algorithms (MOGAs) can also be implemented to find so-

lutions to multiobjective optimization problems. The goal of a MOGA is to generate a Pareto front

[42]. A Pareto optimal solution is a solution where no improvement can be made in any of the ob-

jectives without harming one or more of the others. The Pareto front (or non-dominated front) is

the set of all Pareto optimal solutions. These solutions are also referred to as non-dominated solu-

tions. When working with a multiobjective optimization problem we seek the Pareto optimal solu-

tions. Other solutions are less interesting, as there exist solutions that improve on some of the ob-

jectives, without having to compromise on others. When the Pareto front (or an approximation of it)

is found, some compromise has to be made to select one specific solution in this set. An example of
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Figure 2.7: An example of Pareto fronts. If one seeks to maximize performance and minimize cost,
the blue points are the Pareto optimal solutions.

such Pareto fronts is given in Figure 2.7. The figure demonstrates the concept with an optimization

problem where one seeks to maximize performance, whilst minimizing cost. Each point is a candi-

date solution. Only the blue points are interesting solutions, since for every green or orange solution,

there is a blue solution with better performance but similar or lower cost. Choosing among the blue

solutions on the other hand, requires a compromise between low cost and high performance.

2.2.2 NSGA-III

NSGA-III is a MOGA based on non-dominated sorting (NS) following the NSGA-II framework [19, 40].

NSGA-III has a similar structure to that illustrated in Figure 2.6, but it also implements an extra

step before the selection of parents in a generation. Each time a new generation Gi is created, a set

Ri =Gi ∪Gi−1 is defined. Non-dominated sorting is applied to Ri . This sorting works by partitioning

Ri into a set of groups F1,F2, etc. These groups are such that F1 is the Pareto front of Ri , F2 is the

Pareto front of Ri if all elements of F1 are removed, and so on. Each of these sets can be referred to

as a non-dominated front. A new set of N individuals is selected by adding the individuals of each

non-dominated front F1,F2, and so on in increasing order, until N or more individuals are selected.

If the last added front is of such a size that more than N individuals have been added, only an appro-

priate subset of this front will be selected such that the final population is N . Selection, crossover,

and mutation are then performed on this population as usual. Figure 2.8 shows how the NSGA-III

algorithm expands on the basic GA.

Child Population

Parent Population

N
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2N

New Parent
Population

Discarded

Selection
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Selection

Crossover

Mutation

Nondominated fronts

Figure 2.8: The role of non-dominated sorting in the NSGA-III algorithm.
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Creating each new population by non-dominated search on the combined set of the previous pop-

ulation and its offspring has the advantage of preserving elitism [20]. This means that the best indi-

viduals of the parent generation have the opportunity of being kept in the new population, such that

good solutions will not be lost in the crossover and mutation. Before the execution of the NSGA-III

algorithm, a set of reference points has to be defined. In the cases where only a subset of the last

non-dominated front is added, these reference points will be used to determine which solutions are

added to the next population. Solutions close to the reference points will be selected. Defining ref-

erence points in a structured manner in the solution space can help ensure diversity in the solutions

found by the algorithm.

2.3 Deep Learning

ML algorithms are computer programs that learn from data [30]. ML can be used to perform several

tasks such as classification, regression, anomaly detection, and more. When referring to methods and

theory of ML in this work, it is in the context of classification. Conventional ML methods typically do

not operate on raw data, but require a set of manually designed features extracted from the raw data

[47]. The design of such features often requires expertise in the domain of the problem at hand. In

contrast to conventional ML, representation learning is a class of methods that learns such features as

part of the training process. When an ML algorithm uses several consecutive layers of representation

learning it is referred to as deep learning [47]. The structure of deep learning methods facilitates the

learning of complex features with a high level of abstraction. This section will introduce some of the

main concepts and methods of developing an ML classifier. The section also covers some theory on

CNNs, a specific type of DNN especially relevant for decoding EEG signals.

2.3.1 Training and Testing of ML Classifiers

A classifier is a program meant to specify what class of n classes an input belongs to. One instance of

an input is often referred to as an example. The program "learns" how to do this by being presented

with a large set of training examples, each labeled with what class it belongs to. It will then use these

examples to update its internal parameters such that the program classifies the training examples as

correctly as possible. This is done by classifying the training examples, comparing the results with the

actual classes, and computing a training error. This process is iterated for a predetermined number

of times, or until some other condition is met. The goal of the training is to minimize the training

error. When developing any ML classifier it is crucial to test how well the algorithm performs. There

is no way to guarantee the performance of any ML classifier, unless it has been trained on all pos-

sible inputs, which for most real-world scenarios is infeasible. Instead, the conventional approach

is to present the fully developed classifier with new labeled data, that has not been used during the

training. In the same way, the training error is computed, this new data can be used to compute a test

error. This error will then serve as an estimate of how well the classifier would perform in a real-world

scenario. If the classifier performs well on this new data, it is said to generalize well, since it has found

class-descriptive features that hold not only for the training data, but also in general. Depending on

the application, it might be difficult and expensive to gather new data just for testing an algorithm.

Therefore, it is normal to collect a large dataset and split it up into two partitions: one for training

(training set) and one for testing (test set). When working with a dataset in this manner it is crucial
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that the test set is not involved in any part of the development of the classifier. If the test set affects the

classifier development in any way, one cannot get a true estimate of the generalization of the classifier

during testing.

An ML model will typically be a function class with a set of parameters, and the model is trained by

searching for optimal parameter values, such that we obtain an approximation of an optimal func-

tion. The capacity of the model is an informal measure of the range of functions that can be described

by the function class [30]. Complex function classes with many parameters have a high capacity and

can describe many different functions. If the capacity is too low, the function we seek to approximate

might not be in the range of the function class. This is problematic, as no matter the amount of train-

ing data and training, the model will never serve as a good approximation. This situation is known as

underfitting. Inversely, overfitting can happen when the capacity is too large. If this is the case, we

might find a function that is more complex than the one we seek to approximate. This function might

describe the training data very well, but in doing so it might also describe properties such as noise,

which are specific to that data. This will lower the generalization of the model. Figure 2.9 illustrates

the concept of over- and underfitting. It shows a regression task, where the function generating the

data is a quadratic function affected by noise. In the case of low capacity, only linear functions can

be described, hence no solution can be found that fits the data very well. For the case of high capac-

ity, the ML algorithm finds a function that fits the data almost perfectly, however, it is quite different

from the actual quadratic function. Thus, if the high-capacity model was used to predict data outside

the training set, it would probably perform worse than the model of appropriate capacity. Regression

was used as an example here, as it clearly conveys the problem of over and underfitting, but the con-

cept is the same for classification tasks. Choosing a function class with appropriate capacity is a great

remedy for over- and underfitting, however, for real ML applications it might be very difficult. There-

fore, other methods such as regularization, a topic covered in subsection 2.3.3, are also essential for

tackling these problems.

Low capacity Underfitting Appropriate capacity High capacity Overfitting

Figure 2.9: An illustration of over- and underfitting in ML (specifically for a regression task). The blue
points indicate the data available for training, and the black curves are the imagined output function
of three ML models with different capacities.

2.3.2 Convolutional Neural Networks

In this section, the concept of DNNs and CNNs will be introduced. However, some details of their the-

ory will be left out, as the section is only intended to cover the basic concepts needed for discussing

CNN designs and results in this work. DNN classifiers are ML models that try to approximate a func-

tion f ∗(xxx) = y∗, which takes the input example xxx and returns its correct class y∗. The conventional
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DNN is a function f (xxx;θθθ) = y , where θθθ are a set of parameters (weights) which can be adjusted. The

training of the model is the process of adjusting these parameters to achieve the best possible approx-

imation. The function is built up of a set of nodes, arranged in layers. The first layer is the input layer,

the last layer is the output layer, and all layers in between are hidden layers. Each node will compute

a linear combination of the outputs of the previous layer, and the parametersθθθ act as weights in these

linear combinations. The linear combination is then passed through an activation function. A typical

activation function is the rectified linear unit (ReLU) [3]: g (x) = max{0, x}. Another important activa-

tion function is the SoftMax function [44]. This function takes a set of real inputs and returns a set of

values in the range 0-1, and their sum will be 1. Therefore these can be interpreted as probabilities. In

classifiers, the last layer can have as many units as classes and use the SoftMax activation to produce

a probability distribution for the classes. The layers of a conventional DNN are often referred to as

fully-connected layers, as each node in one layer has a separate parameter for each node in the next

layer, "connecting" them. An example of such a conventional DNN is shown in Figure 2.10. In this

example, the node h1,1 would have the output as defined in Equation 2.1.

Figure 2.10: Basic structure of a DNN. x1 and x2 are the inputs to the network, h1,1−h2,3 are the nodes
of the hidden layers, and y is the output. θ1 −θ18 are the parameters of the model.

h1,1 = g

([
x1 x2

][
θ1

θ2

])
(2.1)

Since a DNN is a type of representation learning, it can take raw data as its input, and learn features

from this data. However, when working with raw data, such as images or time series, the dimension-

ality of an example can be large, for instance, an image of 256×256 pixels. In a fully-connected neural

network with for instance 256 nodes in the first layer, this would yield 256∗256∗256 ≈ 16.7∗106 pa-

rameters in just the first layer of the network. CNNs are proven to be an effective alternative to using

fully-connected layers, able to work with the same raw data, but using far fewer parameters [30].

In CNNs, the linear combinations of the conventional DNNs are replaced with convolution opera-

tions. The discrete convolution is an operation between two discrete functions defined as:

( f ∗ g )[n] =
∞∑

m=−∞
f [n −m]g [m] (2.2)

In CNNs, one of the functions will be the input to the layer, and the other will be the parameters of the
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Figure 2.11: An example of a 2D convolution operation.

layer (referred to as the kernel of the operation). Naturally, neither of these will be functions defined

for the whole set of integers, rather they are sequences of a finite length. Hence, the definition in

Equation 2.2 will not be valid for all values of m or n. The operation performed in CNNs is restricted

to the valid values, based on the length of the sequences. This modified convolution can be described

as:

( f ∗ g )[n] =
m=M∑
m=0

f [n +m]g [m], for n ∈ [0..N − (M −1)] (2.3)

In Equation 2.3, N is the length of the input sequence and M is the length of the kernel. A more

visual way of interpreting this operation is as described in Figure 2.11. This figure illustrates a two-

dimensional convolution, but the idea is the same as for the one-dimensional convolution. A result

of this operation is that the size of the output will be smaller than that of the input.

Since the same kernel is used across the whole input, the number of parameters will not be dependent

on the size of the input, just the size of the kernel. Similarly to conventional DNNs, each layer can

have several outputs, by having several kernels each producing its own output. These kernels are

often referred to as filters. In Figure 2.11 the kernel is shifted one index at a time, however, most CNN

frameworks allow for the shift to be defined with a parameter. This parameter is called stride and

will have the same number of dimensions as the kernel. To complete a CNN classifier, the features

learned in the convolutional layers can be used as input in a fully-connected layer, to produce a one-

dimensional output vector with the class probabilities.

2.3.3 Regularization

Although the aim of the training phase is to minimize the training error, fitting the algorithm to the

training set, the final goal of the ML algorithm is to minimize the test error, fitting the algorithm to any
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new data. Regularization in ML is a wide expression, covering strategies that are designed to lower the

test error, but potentially increase the training error [30]. The following list gives a brief introduction

to the regularization techniques employed in this project:

• Dataset augmentation: These are methods for creating fake training data, such that the train-

ing set increases, yielding better generalization. There are many ways of creating such data,

often the idea is to apply some transformation to the training set to create another training set

with the same labels.

• Max-norm constraints: Constraints can be applied to the parameters of the model, such that

their norm cannot exceed a certain value. This effectively reduces the capacity of the model, as

it has a more limited range of functions it can approximate.

• Dropout: This is a method whereby random parts of a DNN are dropped during training [64].

The result is a reduction in overfitting, as the algorithm cannot depend on any one part of the

net, instead, each part of the net has to learn useful representations of the data.

2.3.4 Layers of the Keras Framework

Keras [8] is a Python framework for developing neural networks (NNs). In Keras, NNs are defined as a

sequence of layers. These layers can be dense or convolutional, as those described in subsection 2.3.2,

but other layers implement dropout and other techniques as well. All DNNs created and used in this

project has been developed in the Keras framework. This section will provide some theory of the

layers used in the architectures described in sections 3.4.2, 3.4.3, and 3.4.4.

• Dense: Fully-connected layer. It takes as a parameter the number of units in the layer.

• Conv2D and Conv3D: Convolutional layers, for either two- or three-dimensional input data.

They take as parameters the number of filters in the layer, kernel size, and stride.

• Dropout: This layer will set some of the input units to zero, dropping them, at random. It takes

as a parameter the rate of units to drop. This layer will only be active during training, when

using the model for prediction this layer is inactive.

• BatchNormalization: This layer outputs a normalization of its inputs, by moving the mean

towards 0 and the standard deviation to 1. During training the layer computes a mean m and

a standard deviation σ of the inputs. When the model is used for prediction, these values are

used to normalize inputs.

• Activation: Implements standard activation functions such as the ReLU and SoftMax described

in subsection 2.3.2.

• Flatten: This layer takes inputs of any dimensions and reshapes them into a one-dimensional

vector. In CNNs, this layer is typically used as the connection between the multi-dimensional

convolutional part and the fully-connected part of a CNN classifier.

• MaxPooling2D and MaxPooling3D: Max pooling is used to downsample along two or three

dimensions in the data. The layer will be configured with kernel size and stride in the same

way as Conv2D and Conv3D. The kernel will then scan over the input similar to the convolution
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operation in Figure 2.11, but instead of producing features, the maximal input value for each

region will be outputted.

2.3.5 Hyperparameter Tuning

For most ML algorithms (especially DNNs) there will be a number of parameters that govern how the

algorithm behaves, but that cannot be included in the set of trainable parameters. Such parameters

are called hyperparameters [30]. Examples of such parameters are the number of layers and neu-

rons in a DNN, the probability of dropout, and the type of activation function used. The choice of

hyperparameters is important. For instance, the number of layers in a DNN will directly affect the

capacity of the model, which, as Figure 2.9 demonstrated, can be crucial for the performance of the

algorithm. Although some hyperparameters can be selected with a background in theory and rea-

soning, it is useful to explore different configurations and select the best one, a process known as

hyperparameter tuning. A hyperparameter configuration can be evaluated by training the algorithm

with the configuration, and then testing the resulting model on a new set of data, called a validation

set. As touched upon in subsection 2.3.1 it is important that this validation set is not the same set

used for the final testing, as this introduces the risk of hyperparameters being overfitted to the data.

Therefore, to allow for hyperparameter tuning, the dataset in an ML project is often divided into three

sets: training, validation, and test, as illustrated in Figure 2.12. The proportion of data used in each of

these sets is of course a free choice, however, it is desired to keep as much data as possible for training.

Training set Validation set Test set

All data

Used for model training

Used for developing model

Used for testing model

Figure 2.12: The typical segmentation of the dataset in an ML project.
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Materials and Methods

3.1 Dataset

When working with ML, the data used to train and test models play a crucial role in what results

are obtained, and how one should interpret them. Most often, ML research has the intention of dis-

covering approaches and solutions for real-world problems and tasks. Therefore, understanding the

data used in the research is vital for assessing the possibility of applying the research to these real-

world scenarios. This section provides a description of all the data used in this project, and how it

was collected, structured, and preprocessed. This data includes EEG recordings, magnetic resonance

imaging (MRI) recordings, and digitized electrode positions. The EEG data is the data that is directly

used in the training and testing of the ML classifiers. Therefore, it is this data that is referred to when

the "dataset" is mentioned throughout this paper. The data used in this work has been subject to

study in previous research [52], and in the preliminary work for this research [27].

3.1.1 Recording and Collection

The data was recorded at the Aalto Neuroimaging facility, Aalto University, with the intention of study-

ing the human brain’s response to visual primary color stimuli. It includes the recorded brain activity

(EEG measurements) of 31 subjects, both male and female, during their exposure to the primary col-

ors red, green, and blue (RGB).

EEG Recording

The EEG recording was performed with a 60-electrode EEG-cap. Two of these channels were used

to record ocular activity, electrooculography (EOG). The remaining 58 channels were EEG channels.

Figure 3.1 shows the layout of the EEG electrodes, which is similar to the 10-10 standard, but with

some electrodes left out. The recording was performed inside a magnetically shielded room, and

MEG recording was performed simultaneously. MEG data has not been used in this research. A stim-

uli signal was also produced, and synchronized with the EEG recording. This signal indicates what

stimuli were being applied (red, green, blue, or gray) at any given time.

During the recording, the subjects were placed in front of a display, which alternated between show-

ing gray and a random primary color. In total, each subject was stimulated with each color at least
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Figure 3.1: The layout of the 60-electrode EEG-cap used to record the dataset. The figure is adapted
from [14].

140 times. Figure 3.2 describes the protocol for applying these stimuli. Since undesired behavior of

a subject, such as lack of focus or excessive movement, can affect the EEG data, the subjects were

observed during the recording, and notes were taken of any undesirable behavior. These notes will

be provided later, in Table 3.1. After the recording, it was discovered that some electrodes were faulty

for some of the subjects. Another session of recording was performed for most of these subjects, with

all electrodes working.

MRI and Digitized Electrode Positions

MRI scans were performed on the head of each subject, and the positions of the electrodes relative

to each other in 3D space were measured. This data is needed to construct a mathematical model of

the transformation between electrical signals in the neuron of a subject, and the electrodes on their

Randomly select red,
green or blue.

Display red for 1.3
seconds.

Display green for
1.3 seconds.

Display blue for
1.3 seconds.

Display gray for a random interval
in the range 1.3-1.6 seconds. Break?

No

Show break screen
for 1 minute.

Loop until 140 samples of
each color are recorded.

Start

Yes

Figure 3.2: The stimuli protocol used for applying color stimuli during the recording of the EEG data.
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scalp. Such a model is used in SR, which will be described in section 3.2.

3.1.2 Preprocessing

The raw EEG data is one continuous time series for the whole recording session. Before the data

can be used to train and test ML classifiers, the sections of the time series corresponding to stimuli

responses have to be extracted and labeled. This process is called epoching. The basic principle

of this epoching is demonstrated in Figure 3.3. The first plot shows a section of raw data from one

electrode. The second plot shows the data of the stimuli channel for the same period of time. Every

time the color of the display changes, the stimuli channel will receive a pulse with a certain value

corresponding to the type of stimuli. For this particular example, there are three stimuli events, one

of each color, separated by the gray screen. During epoching, the peaks of the stimuli channel are

detected and used to extract data and label it, such as the last plot of Figure 3.3 shows.
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Figure 3.3: The epoching process. The raw electrode data is cropped and labeled based on the values
of the stimuli channel.

Some preprocessing can also be performed to increase the SNR of the data, such as low-pass filter-

ing and artifact removal. Two different preprocessing pipelines have been developed and explored

in this work. The first, which will be referred to as "full preprocessing", is the same preprocessing

as the one developed in the primary work [27]. The second, which will be referred to as "minimal

preprocessing", applies almost no preprocessing.
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Full Preprocessing

The full preprocessing paradigm applies a number of methods with the intention of increasing the

SNR of the data. A summary of the applied methods is provided in the list below:

• Notch filtering: To remove powerline noise.

• Downsampling: Applied to reduce the amount of data.

• Filtering: Filters out frequencies in the data that are not of interest.

• Signal-space projection (SSP): Eye blinks in the data are detected on EOG-channels, and used

to apply a projection for removing these artifacts in the EEG data.

• Epoching: Epochs are extracted. Epochs with too large peak-to-peak (PTP) amplitude are dis-

carded. Epochs with blinks occurring too close to stimuli onset are discarded.

• Baseline correction: Data of each epoch is shifted based on the average value of the data some

time before stimuli onset. This is done to correct for any slow-moving shift in electrode values.

• Standard Scaler: The mean and standard deviation of data used for training are calculated.

Then each sample is scaled by subtracting the mean and dividing by the standard deviation.

This is done on a subject-specific basis.

A more thorough description of this preprocessing pipeline is provided in [27].

Minimal Preprocessing

Since exhaustive preprocessing significantly increases the computation, it is undesirable for online

applications. Moreover, some of the methods in the full preprocessing results in discarded epochs,

thus less data is available for training and testing classifiers. With a background in this, a pipeline with

minimal preprocessing was also explored. Only baseline correction and standard scaling are applied

to the minimally preprocessed data.

3.1.3 Structure of the Dataset

After epoching, the dataset has its final shape: nsubjects×nepochs×nelectrodes×nsamples. Since one epoch

serves as an input to the classifier, the input shape is nelectrodes ×nsamples. The goal of this project,

differs somewhat from most conventional ML tasks, as the aim is not to find a specific DNN model

with trained weights, but rather to find a DNN architecture that generalizes well across subjects. To

facilitate this, the data was structured as illustrated in Figure 3.4. Firstly, the subjects are divided into

two groups: validation subjects and test subjects. The purpose of this division is to use data from the

validation subjects to explore different DNN architectures and configurations, to find an approach

that works well, independently of the individual it is trained on. The test subjects can then be used to

verify how well the DNNs perform when trained and tested on data from new individuals. The goal

is to create subject-specific classifiers, hence the only parameters that are "learned" and transferred

from the validation subjects to the test subjects are hyperparameters and model architecture. As

Figure 3.4 indicates, the examples (epochs) of each subject will also be divided into two sets: a training

set and a test set. These are the conventional datasets for training and testing classifiers. In this way,
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Validation Subjects Test Subjects

Training Examples Validation Examples Training Examples Test ExamplesModel Architecture
and

hyperparameters

... ...

... ... ... ...

Model weights Model weights

Figure 3.4: The structure of the dataset. The figure is adapted from the preliminary work [27].

each subject defines its own ML problem. Figure 3.4 summarizes the dataset used for classification.

The selection of validation subjects was done by random selection of eight subjects. Only data from

the eight validation subjects (VAL8) were used during the development and exploration of methods.

The remaining data was used in the tests introduced in Chapter 4.
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Number of epochs
(full preprocessing)

Number of epochs
(minimal preprocessing)

Subject
Used for

validation Red Green Blue Red Green Blue
Notes

sub-01 No 133 131 139 140 140 140 Oz and O2 not working
sub-02 No 137 139 137 140 140 140
sub-03 Yes 140 137 135 140 140 140
sub-04 No 127 120 116 140 140 140
sub-05 No 132 134 136 140 140 140
sub-06 No 138 140 138 140 140 140
sub-07 Yes 121 120 116 140 140 140
sub-08 No 131 128 135 140 140 140
sub-09 No 70 70 76 151 157 152 Oz and O2 not working and subject moved constantly
sub-10 No 126 122 123 140 140 140 Oz and O2 not working
sub-11 No 138 136 136 140 140 140
sub-12 No 112 101 87 140 140 140 Oz and O2 not working
sub-13 No 139 140 140 140 140 140
sub-14 No 140 141 140 140 140 140
sub-15 No 131 131 128 140 140 140
sub-16 No 135 133 139 140 140 140 CP3, CP5 and TP9 not working
sub-17 No 131 127 128 140 140 140 Oz and O2 not working and subject fell asleep
sub-18 Yes 136 137 138 140 140 140
sub-19 No 123 118 118 140 140 140
sub-20 No 139 139 140 140 140 140
sub-21 No 115 113 105 140 140 140
sub-22 Yes 111 129 117 140 140 140 Subject may have fallen asleep
sub-23 No 129 130 128 140 140 139
sub-24 No 139 139 138 140 140 140
sub-25 Yes 132 128 128 140 140 140
sub-26 Yes 137 137 139 140 140 140
sub-27 No 70 73 71 140 140 140 Subject fell asleep
sub-28 No 139 138 136 140 140 140
sub-29 No 127 128 127 140 140 140
sub-30 Yes 139 138 138 140 140 140
sub-31 Yes 140 140 139 140 140 140

Table 3.1: The dataset used for classification. The notes indicate if certain electrodes were not working
properly and if the subject’s behavior was not correct.
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3.2 Source Reconstruction

EEG signals are not a direct measurement of the neuronal activity in the brain. Each neuron con-

tributes with an electric potential, and this potential travels through the head volume before reaching

the EEG electrodes. The conductive properties of the tissues between the neuron and the electrode

will result in attenuation, distortion, and blurring of the signal [35]. This is called the head volume

conduction effect. The signal measured at each EEG electrode is thus a mixture of the electric activity

of all neurons in the brain. SR is a method aimed at unmixing EEG signals, to obtain a more accurate

representation of the brain activity, with higher spatial resolution [53]. The method consists of two

main steps: creating a forward model and solving the inverse problem. The forward model is a model

describing the transformation from the signals in the brain to the signals measured on the electrodes.

Since this model describes a transformation of signals from one space to another, the signals mea-

sured on electrodes are said to be in electrode space, and the original signals in the brain are said to

be in source space. The inverse problem is the problem of estimating the source space signals from

EEG signals, using a known forward model. Figure 3.5 illustrates the connection between the source-

and electrode space. This section will cover the main steps of implementing SR in general, as well as

the specifics of its implementation in this project.

Inverse Solution

Forward Solution

Source SpaceElectrode Space

Figure 3.5: The relationship between source space and electrode space. The figure is adapted from
the preliminary work [27].

3.2.1 Forward Model

The forward model describes the physical process that transforms brain activity into electric poten-

tials in the EEG electrodes. How accurate this model is, will affect the accuracy of source estimates

found by SR. Depending on the situation one might create a forward model that is tailored to a spe-

cific individual, for higher accuracy, or create a more generalized but less accurate model. This will

depend on the data and computational resources available, as will be further explained below. The

forward model can be divided into three main parts: A source space definition, a head model, and an

electrode space definition. This structure is illustrated in Figure 3.6.
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Source Space
The positions of the

sources.

Head Model
The geometric and

conductive properties
of the head

Electrode Space
The positions of the

electrodes

Figure 3.6: The structure of the forward model.

Head Model

The goal of the head model is to describe the volume conduction in the head, by describing its shape,

and the conductive property in each point of the volume. Head shape models used in SR vary from

simple shapes such as spheres, to complex realistic shapes based on MRI recordings [35]. Similarly,

the conductivity can be described simply by one homogeneous volume, or more realistically by seg-

menting the shape into different areas with different conduction, such as skull, skin, and so on. In

this project, the MRI recordings of each subject are available and have been used to create individ-

ual forward models. A common way to create a head model based on MRI is the boundary element

method (BEM) [28]. With this method, the head volume is segmented into three different compart-

ments: the skin, the skull, and the brain. Each of these compartments is considered to have known

homogeneous conductivity. The FreeSurfer [25] software was used to employ BEM in this project.

An illustration of the different compartments created during the procedure is provided in Figure 3.7.

Values for the conductivity of the different compartments were chosen according to optimal values

for BEM found in a previous study [65].

Figure 3.7: Example of three-layer BEM head segmentation done in FreeSurfer. The orange boundary
indicates the scalp surface, the yellow boundary indicates the skull surface, and the red boundary the
brain surface.

Source Space

The signals measured with EEG originate from the many billion neurons inside the brain, however,

it is neither feasible nor necessary to reconstruct the current in every single neuron. Instead, we can

model the brain activity as a set of current dipoles (sources) spread out in the brain volume [33]. As

with the head model, MRI can be used to create a set of realistic source positions, based on actual

brain geometry. Usually, the source space is restricted to the gray matter on the surface of the brain

(the cerebral cortex), as this is the main source of the electric potentials measured with EEG [33]. In

this project, FreeSurfer was used to create segmentations of white and gray matter from MRI data. An
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example of such a segmentation is provided in Figure 3.8. The MNE-Python software was then used

to distribute 8196 sources evenly across the border between the white and gray matter. This border

is defined by the red shapes in Figure 3.8. Figure 3.9 shows the distributions of the sources for one

subject.

Figure 3.8: Example of the white and gray matter segmentation. The white matter is the area inside
the red border. The gray matter is the area between the red and the green borders. Thus the red border
forms the gray-white matter boundary.

Electrode Space

Similarly to the sources, the position of each electrode has to be defined in order to compute the

forward model. As described in section 3.1, the positions of the electrodes relative to each other

were recorded. However, the electrode positions are not defined in the same frame as the MRI data.

Hence, a transformation is needed between the frame of the MRI data and the frame of the electrode

positions. The process of finding such a transformation is called co-registration, and MNE-Python

provides a tool for this purpose. Using this tool involves manual alignment of electrodes to the head

shape (provided by MRI), by moving and scaling the frame of the electrodes. The tool then stores the

transformation matrix yielding this alignment.

Lead Field

When the source space, head model, and electrode space are properly defined, the lead field can be

calculated. This is a matrix A ∈Rnelectrodes×nsources , describing a linear transformation from source space

to electrode space [18]. With this model, the potential at an electrode is a linear combination of the

current density of each source. The weights of this linear combination, the values of each row in A,

are calculated based on the known positions of sources and electrodes, and the conductivity of the

volume between them. The final forward model can then be described by the linear equation:

b(t ) = Ax(t ) (3.1)

Where b are the electrode potentials and x are the source currents. Figure 3.6 indicates the dimen-

sions of the elements of Equation 3.1. The use of such a linear model is an approximation, as it will

only account for attenuation in signals.
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Figure 3.9: The distribution of sources on the white matter surface. This is a left-side view of the white
matter of a subject. Each yellow point is a source.

3.2.2 Inverse Problem

The inverse problem is the problem of estimating current distributions in source space by using a

forward model and electrode space data. The system described in Equation 3.1 is underdetermined,

as there are more unknown variables (sources) than known variables (electrodes) [59]. There are over

8000 sources, and only 58 electrodes, so many different current distributions in source space will

yield the same measurement at the electrodes. Presented with only a set of electrode measurements,

there is no way of knowing which of these current distributions was the cause. Mathematically, this

manifests itself in A not being invertible, thus no unique solution can be found solving Equation 3.1

for source estimates x(t ). To obtain a unique solution, a priori knowledge has to be used to form

constraints on the problem. A commonly used method for doing this is the minimum norm estimate

(MNE) [53]. In this method, two a priori assumptions are made [16]:

• The source estimates x(t ) are assumed to be normally distributed with zero mean and covari-

ance matrix R .

• The measurements b(t ) are affected by additive noise such that b(t ) = Ax(t )+n, where the

noise n is normally distributed with zero mean and covariance matrix C .

As the name suggests, the method aims at minimizing the error of the source estimates. This means

it seeks a linear operator W such that:

W = argmin
W

||W b −x ||2 (3.2)

This linear operator is time-independent and can be used to find an estimate for the source distri-

bution at any time, given the electrode measurements. The solution to Equation 3.2, considering the

aforementioned assumptions is [16]:

W = R A⊤(AR A⊤+C )−1 (3.3)
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Once the linear operator W is calculated, source estimates x̂ are found with:

x̂(t ) =W b(t ) (3.4)

The covariances R and C act as parameters in the MNE method. Since R describes the correlation

between the different sources it can serve as a parameter for spatially smoothing the source esti-

mates. Since EEG data is available, an estimate of C can be computed using this data. A number of

methods expanding on the basic MNE method have been proposed, and several are available in the

MNE-Python software. In this work, the dSPM method in MNE-Python was used, which is a method

introduced in [17].

3.2.3 Template Forward Models

The SR described in the previous sections is an individual process, it requires MRI and other data

recorded of the individual. Hence, if SR is to be used in online applications such as BCIs, they can-

not be plug-and-play for the user. They would require an MRI recording session for each new user,

and subsequent configuration of the system using that data. Since the source space created for each

individual is different, the source space data from different individuals are difficult to compare. In

electrode space, electrodes are placed based on standard rules, such that the data recorded on a spe-

cific electrode has approximately the same position relative to the brain for different subjects. Thus,

it is reasonable to assume that the recordings on for example Fp2 have the same properties across

subjects, and that the data can be compared. In the individual source space, there is no such labeling

and standard layout.

To overcome the issues caused by the individual source space data, several studies have been con-

ducted to develop template forward models [37]. These templates are created from MRI recordings

of a group of subjects and serve as an approximate model of the average human head. Although all

heads are different, there are some common factors. Thus, a template model can still provide a priori

information in the SR method. Naturally, the individual forward models are better approximations

[37], but the templates produce data in a standard source space. In this project, a template forward

model was used to search for good subsets of sources to use for classifying RGB stimuli. This proce-

dure is described in section 3.3. The FsAverage template from FreeSurfer was used for this purpose.

It is an average head model, based on MRI data from 40 individuals [25].
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3.3 Channel Selection with Genetic Algorithm

Throughout this work, the terms "channels," "electrodes," and "sources" will be frequently used. It is

important to note that in this work the term "channel" encompasses both electrodes and sources, de-

pending on the specific context. In the preliminary work conducted in [27], the classifiers were tested

with all electrodes and with a selected subset of eight electrodes close to the occipital lobe. Similarly,

in source space, the classifier was tested with all sources and with a subset of sources located in the

occipital lobe. There was a small increase in accuracy when using the subsets, instead of all chan-

nels, in both source- and electrode space. These results demonstrated that the choice of channels is

important for the task at hand. If some channels do not contribute information relevant to the task,

including them in the dataset might lower the SNR. If this is the case, there should exist an optimal

subset of channels to include in the dataset, for maximizing the classification accuracy. Using fewer

channels is beneficial for online applications, as it requires less computation, and in the case of elec-

trodes: less hardware. Thus, finding a subset of channels to include is desirable in itself. One way

to search for an optimal channel configuration is by using a GA. This has already been explored in

the context of EEG decoding [54]. The results showed that including only a subset of the electrodes

in the dataset could increase the accuracy of decoding epileptic seizures. In light of this, the genetic

algorithm NSGA-III [19, 40] was used to search for optimal channel configurations in both electrode

space and source space. This section presents the methods used to perform this channel selection,

and the results obtained.

3.3.1 Implementation

The problem of choosing an optimal channel configuration is an optimization problem. However, it

cannot be described on the conventional form, as an equation with a set of input variables and output

objectives. The process for evaluating a configuration involves creating and training a classifier with

the appropriate dimensions and testing it. This process is both complex and non-deterministic, as

the training involves stochastic operations. GAs are a group of methods well suited for solving such

problems, as they treat the objective function as a black box. Defining a GA paradigm for the channel

selection problem requires the formulation of two GA components:

• Chromosome representation: A datatype must be defined that can represent any channel con-

figuration.

• Fitness function: A function that takes as input a chromosome (channel configuration) and

returns an objective value, reflecting how well the classifier performs with that chromosome.

The rest of the GA is independent of the problem, therefore, the GA itself does not need to be imple-

mented for this exact problem. A multi-objective optimization framework for Python, called pymoo,

was used to implement the GA [6]. This framework has an implementation of the NSGA-III algo-

rithm, which was used. Whether the channels to be selected are electrodes or sources does not affect

the chromosome representation or the fitness function, except for a few parameters, which will be

explained below.
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Chromosome Representation

Any configuration of n channels can be represented as a list of n binary values, where the i -th ele-

ment represents whether the i -th channel is to be included in the subset or not. The chromosome

representation was chosen to be such a list. Each element of the list, each gene, could take the value

0 or 1, representing whether the corresponding channel should be included or not. Figure 3.10 illus-

trates the chromosome representation. The representation is valid for both sources and electrodes,

the only difference is the length of the list, which has to be either nsources or nelectrodes respectively.

1 0 0 1 1 0 0 0 0 1 0 0 1 0

Chromosome

...

Figure 3.10: The chromosome representation. A binary array of length nchannels is used to represent a
unique channel configuration. The configuration used is an example of an arbitrary electrode selec-
tion.

Fitness Function

The channel configuration serves as a kind of hyperparameter with respect to the DNNs used for the

classification. Therefore it has to be set before the training of the DNN. The evaluation of a given

channel configuration thus involves: building a DNN with correct dimensions, training it, and then

testing it. Finally, the function will return the accuracy achieved during testing. This process is illus-

trated in Figure 3.11. The best classifier from the preliminary work, deepConvNet [62], was used for

classification in the fitness function. Since the channel selection is a form of hyperparameter tuning,

it cannot be done using all data available, as no data would be left for the final testing of the classifiers.

The VAL8 subjects were used to produce the accuracy returned by the fitness function. This means

that the channel configurations returned by the GA will be suitable for these eight subjects. Whether

these configurations were suitable also for the other subjects, is discussed in subsection 5.2.3. For

the selection of sources, the dataset used to train and test the DNN was source space data, and for

electrode selection, data in electrode space was used. Except for this difference, the fitness function

is identical for the two scenarios. The fitness function also returns the number of selected channels,

such that the GA has two objectives to optimize. Accuracy should be maximized and the number of
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channels should be minimized.

The fitness function
Chromosomes Objectives

Decode chromosome Train classifier Test classifier1011 0

The Algorithm
NSGA-III

Figure 3.11: The fitness function. For each chromosome, a new DNN is trained and tested. Then, the
accuracy and number of selected channels are returned.

3.3.2 Electrode Selection

The electrode selection was run with a population size of 20, for 100 generations. All solutions re-

turned by the GA are presented in Figure 3.12. These are five non-dominated solutions, using 4, 5,

6, 7, and 10 electrodes. Figure 3.13 shows which electrodes were selected for the 4- and 10-electrode

solutions. These results indicate that using more than the 10 electrodes will not yield any increase in

accuracy. To better compare these solutions to the solutions found using all electrodes in [27], a new

training and testing was run using these solutions, to get the accuracy of each individual subject in

each configuration. Table 3.2 shows the results of this test compared to the results of [27]. The results

in this second test are somewhat different from those returned by the GA. In [27] it was found that the

accuracy of classifiers had a standard deviation of 0.04, so such a difference is to be expected. In the

second test, all of the configurations had a lower average accuracy than that achieved with all elec-

trodes. However, there is a difference of only 0.01 for the 10-electrode configuration and 0.03 for the

4-electrode configuration (both within the standard deviation found in [27]). As Figure 3.13 shows,

the most important electrodes for achieving high accuracy are placed close to the occipital lobe. Al-

though the 10-electrode configuration does include electrodes in the frontal, central, and temporal

areas of the brain, it does also include all electrodes used in the 4-electrode configuration.

Subject All electrodes 10 electrodes 7 electrodes 6 electrodes 5 electrodes 4 electrodes

sub-18 0.92 0.90 0.90 0.92 0.90 0.90
sub-26 0.86 0.77 0.78 0.82 0.87 0.82
sub-07 0.85 0.88 0.82 0.83 0.85 0.82
sub-31 0.74 0.77 0.75 0.73 0.73 0.67
sub-22 0.68 0.67 0.81 0.65 0.74 0.76
sub-03 0.80 0.77 0.82 0.87 0.80 0.80
sub-30 0.87 0.81 0.77 0.81 0.82 0.81
sub-25 0.75 0.78 0.71 0.71 0.65 0.65

average 0.81 0.80 0.79 0.79 0.79 0.78

Table 3.2: Results from testing the channel configurations from channel selection with genetic algo-
rithm in electrode space.
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Figure 3.12: The solutions of channel selection in electrode space. Each point indicates the number
of electrodes and achieved accuracy of a pareto-optimal solution found by the GA.

(a) The 4-electrode solution configuration. (b) The 10-electrode solution configuration.

Figure 3.13: Two electrode configurations found by GA channel selection.

3.3.3 Source Selection

Approach

As there are more than 8000 sources and only 58 electrodes, the channel selection problem becomes

considerably larger when selecting sources rather than electrodes. The effects on complexity when

having more channels are twofold. Firstly, the amount of data increases, thus training and testing of

the DNN require more computation. Secondly, the solution space is larger; there are more different

configurations to explore, thus the GA will likely need larger populations and more generations than

for the electrode problem to converge on good configurations. To limit the number of channels in

the source selection problem, a routine was established to select a subset of the sources, based on the
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electrodes returned by the electrode selection. The routine is as follows:

1. Project the digitized positions of the selected electrodes onto the MRI scalp surface. Thus ob-

taining a vector normal to the scalp at the electrode position.

2. For each selected electrode, define a sphere with a center on the line defined by the normals

obtained in the previous step. These spheres should be tangent to their respective projected

electrode positions, with their centers falling within the head volume.

3. Select all sources that reside within the volume defined by the union of the spheres defined in

the previous step. The selected sources are the sources to be used in the GA channel selection.

Figure 3.14 illustrates the idea behind this routine.

This method was designed based on the reasoning that the electrodes providing the best accuracy,

are likely to be placed close to the areas of the brain where the activity of color responses occur. In

this way, the electrodes are used to define regions of interest (ROIs) in the brain. Limiting the set of

sources available in the GA to these ROIs might keep most of the sources that make up an optimal set,

while significantly reducing the amount of computation needed in the GA. How many sources this

routine selects will depend on the number of selected electrodes and the radius of the sphere. The 6-

electrode configuration presented in subsection 3.3.2 was used to select sources. After this selection

had been made, the radius of the spheres was tuned such that a reasonable number of sources were

selected. This yielded 474 sources.

Since the source selection, similar to the electrode selection, is intended to yield a set of sources

that are optimal not just for one individual, but that is suitable for any subject, the data used in the

fitness function should come from the set of validation subjects. However, the source space used to

produce the dataset described in section 3.2 is tailored to each subject, based on their individual MRI

data. A general source space needs to be established, such that a configuration of selected sources

will be applicable to the reconstructed sources for any subject. This was achieved by using the same

forward model for all subjects when doing source reconstruction. This common forward model was

computed using the FsAverage head. FsAverage is a template head model developed using MRI data

from a set of subjects and is meant to serve as a template for the average human head. It is part of the

FreeSurfer software [25].

Results

After running the GA for 100 generations, with a population size of 20, the four configurations shown

in Figure 3.15 were obtained. The pareto front estimated by these solutions is very similar in nature

to the one obtained in electrode space (Figure 3.12). As for the electrode space results, new tests were

run for each configuration to evaluate their performance on each individual validation subject. The

results of those tests are provided in Table 3.3. Just as for the results in electrode space, the average

accuracy for all configurations is slightly lower, than the accuracies returned by the GA. This trend will

be discussed in Chapter 5. Regardless of this discrepancy, all the configurations yield better results

than using all 474 sources. Table 3.3 also shows that it is very subject-dependent whether the source

selection is beneficial or not. For instance, subject 26 has a substantial increase in performance with

all configurations, as opposed to using all sources. Meanwhile, both subject 31 and subject 25 perform
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(a) Left side view. (b) Right side view.

(c) Top view. (d) Back view.

Figure 3.14: The source selection based on selected electrodes. The green points on the scalp indicate
the selected electrodes. The blue spheres constitute the volume within which sources are selected.
The green points on the white matter surface indicate which sources would be selected with this
configuration.
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Subject All sources 192 sources 161 sources 151 sources 149 sources

sub-18 0.52 0.48 0.49 0.48 0.55
sub-26 0.68 0.87 0.84 0.77 0.81
sub-07 0.48 0.50 0.54 0.54 0.49
sub-31 0.48 0.37 0.35 0.48 0.40
sub-22 0.38 0.53 0.46 0.50 0.56
sub-03 0.55 0.70 0.71 0.72 0.69
sub-30 0.60 0.73 0.80 0.78 0.72
sub-25 0.43 0.40 0.44 0.54 0.40

average 0.52 0.57 0.58 0.60 0.58

Table 3.3: Results from testing the channel configurations from channel selection with genetic algo-
rithm in source space.

worse or similar with selected sources. To investigate this difference further, these three subjects were

used in a new test described in the following section.
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Figure 3.15: The solutions of channel selection in source space. Each point indicates the number of
sources and the achieved accuracy of a pareto optimal solution found by the GA.

Subject-specific Selection in Source Space

Since the channel selection in source space required the use of a template head, it is natural to assume

that the approach would be better suited for subjects with heads resembling the template. This could

explain the substantial difference in performance seen in Table 3.3. To test this, channel selection

on an individual basis was performed for three subjects. This was done using the same method as

previously, except the forward model used in the SR was based on MRI from the individuals. Since

the white-matter surfaces of these individuals are different from that of the template head, sources

will not have the same positions as those depicted in Figure 3.14. Therefore, when using the sphere

volume selection method on the individual source space, the number of sources selected will not

be exactly the same as for the template. It was ensured that the number of sources for the three

subjects did not deviate too much from the number of sources selected in the template head. The

results of these tests are presented in Table 3.4. It should be noted that the minimal preprocessing
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Sub-25
Sources Accuracy

149 0.64
151 0.64
161 0.67
192 0.69
all 0.60
144 (subject-specific) 0.62
145 (subject-specific) 0.62
147 (subject-specific) 62
154 (subject-specific) 0.67
all (subject-specific) 0.62

Sub-26
Sources Accuracy

149 0.90
151 0.86
161 0.86
192 0.86
all 0.83
133 (subject-specific) 0.88
134 (subject-specific) 0.88
137 (subject-specific) 0.88
159 (subject-specific) 0.88
all (subject-specific) 0.88

Sub-31
Sources Accuracy

149 0.81
151 0.71
161 0.83
192 0.76
all 0.86
133 (subject-specific) 0.83
136 (subject-specific) 0.79
166 (subject-specific) 0.80
all (subject-specific) 0.86

Table 3.4: Results from subject-specific source selection. The results from channel selection using
individual forward models are indicated with subject-specific. The other results are from the channel
selection with the template forward model.

pipeline was used to obtain these results, while the full preprocessing was used to obtain the previous

results. As the results suggest, using minimal preprocessing improves the classification accuracy for

all the subjects. However, there is still a noticeable difference in accuracy between the three subjects,

similar to what was seen in Table 3.3. When comparing the subject-specific results against the results

using the template head, there does not seem to be a significant difference. There is also little to no

increase in accuracy with the selected sources in the subject-specific results, compared to using all

subject-specific sources. In general, there is very little variation in performance within each subject.

This was not expected and will be further discussed in Chapter 5.

Distribution of Selected Sources

The position of the sources selected by the GA is an important part of the result. How the selected

sources are distributed in the brain could reveal information about the way our brain interprets color.

The source distribution could also serve as a guide for optimizing electrode placement for decod-

ing colors. Figure 3.16 illustrates the distribution of sources in the 192-source configuration in the

different ROIs defined by the parcellation from [21].

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of selected sources in ROI

Figure 3.16: The distribution of selected sources in each ROI, for the 192-source configuration.
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Region of Interest Number of selected sources

Inferior occipital gyrus and sulcus (lh) 8 (of 20)
Paracentral lobule and sulcus (lh) 9 (of 14)
Cuneus (lh) 9 (of 26)
Cuneus (rh) 4 (of 15)
Lingual gyrus(lh) 2 (of 2)
Middle occipital gyrus (lh) 19 (of 42)
Middle occipital gyrus (rh) 15 (of 29)
Superior occipital gyrus (lh) 6 (of 28)
Superior occipital gyrus (rh) 16 (of 41)
Angular gyrus (rh) 2 (of 7)
Superior parietal lobule (lh) 11 (of 25)
Postcentral gyrus (lh) 10 (of 28)
Precuneus (lh) 2 (of 10)
Precuneus (rh) 3 (of 4)
Occipital pole (lh) 17 (of 39)
Occipital pole (rh) 7 (of 16)
Calcarine sulcus (lh) 4 (of 9)
Central sulcus (lh) 1 (of 3)
Marginal branch of the cingulate sulcus (lh) 0 (of 1)
Posterior transverse collateral sulcus (lh) 1 (of 3)
Intraparietal sulcus and transverse parietal sulci (rh) 1 (of 3)
Middle occipital sulcus and lunatus sulcus (lh) 15 (of 24)
Superior occipital sulcus and transverse occipital sulcus (lh) 8 (of 20)
Superior occipital sulcus and transverse occipital sulcus (rh) 13 (of 33)
Anterior occipital sulcus and preoccipital notch (lh) 1 (of 7)
Parieto-occipital sulcus (rh) 3 (of 10)
Postcentral sulcus (lh) 4 (of 13)
Superior temporal sulcus (lh) 1 (of 2)

Total 192 (of 474)

Table 3.5: The distribution of sources in ROIs, for the 192-source selection. The ROIs are defined by
the parcellation introduced in [21].

Table 3.5 presents the exact distribution of the 192-source configuration. From the figure, it can be

observed that especially many sources are located in or close to the primary visual cortex (V1). The

figure can be somewhat misleading, as the number of sources available for selection varies signifi-

cantly from region to region. Also, due to the restriction made by the sphere selection, the channel

selection could only select sources in certain regions in the back of the head. To overcome these is-

sues, a source selection was done using the full source space. To limit the complexity of the problem,

a lower resolution source space was created, with roughly 2000 sources. Source selection with GA was

performed on all these sources, for 100 generations with a population size of 20. Figure 3.17 shows

the distribution of the sources when the GA was free to select among all the 2000 sources throughout

the whole brain. This distribution is fairly even, and most ROIs have around 40% of their sources se-

lected. This suggests that most areas of the brain are relevant for decoding the color responses. The

electrode selection indicates the opposite, as all electrode selections preferred electrodes close to the

occipital lobe. It could be that the number of generations and population size was too small for the

problem, as choosing a configuration of 2000 sources is substantially larger than choosing among 58

electrodes.
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Figure 3.17: The distribution of selected sources in each ROI, from a selection based on a complete
source space.
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3.4 Classification

In the preliminary work, three DNN architectures were implemented and tested for decoding RGB

responses. Of these, the deepConvNet architecture, originally proposed in [62], had the best perfor-

mance. For this reason, the deepConvNet was used as the classifier in the fitness function for the

channel selection described in section 3.3. However, in the preliminary work, it was also pointed out

that deepConvNet has a focus on temporal features, as it is a CNN performing convolutions only over

the temporal dimension. As described in subsection 2.1.2, the spatial position of neural activity may

also be descriptive for color responses, so facilitating learning spatial features could be beneficial.

Since the source-reconstructed data has a high spatial resolution it should be well suited for finding

spatial features. Due to the nature of the source-reconstructed data, it is not straightforward to apply

spatial convolutions. Some additional transformations, which are the topic of subsection 3.4.1, are

required for facilitating spatial convolutions. In this work, three models using spatial convolutions

were explored: 3M3DCNN [50], 2DCNN [24], and ST3DCNN a novel architecture developed as part of

this work.

3.4.1 Structured Spatial Source Representation

CNNs take advantage of information embedded in the structure of the input data. For instance, if

the input is an image, the only explicit data is the color values of each pixel. However, the position

of the pixel in the 2D grid contributes spatial information. In a picture, pixels close to each other

are often part of the same feature, while pixels far away from each other likely have no correlation.

CNNs take advantage of this information, as the kernel only produces features from pixels within a

certain distance from each other. The data produced by SR is a matrix with shape (nsources×nsamples).

The second dimension, representing time, is structured. So data which is close to each other in this

dimension of the matrix were recorded close in time. Thus, convolution can be applied in this di-

mension. The first dimension on the other hand, is not structured. It is a random ordering of all the

sources. Applying a convolution in this dimension would not be meaningful, as there is no reason

to assume that a source is more correlated to sources close in the matrix than to sources far away.

Figure 3.18 demonstrates the difference between the structured and unstructured dimensions. This

section will outline a method for structuring this dimension, and introduce two CNNs specialized for

classifying data with this new structure.

Voxelization and Pixelization

The position of each source in 3D space is known. To structure the source data based on these posi-

tions, we can voxelize the data. Voxelization is the process of converting any sort of 3D data into a 3D

array of voxels (volume pixels) [36]. Source space data is represented as a point cloud, as illustrated

in Figure 3.19. To voxelize this data, one can define a box including all the points, and discretize this

volume into cubes, these cubes are the voxels. Then each voxel will take the average value of all points

residing within it. The algorithm used in this work for creating the map from point cloud to voxels is

described in Algorithm 1. It takes the 3D positions of all sources and returns their respective indices

in a voxelized 3D array. Figure 3.19 shows an example of a source space point cloud, and the voxelgrid

obtained after voxelizing it.
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Figure 3.18: An illustration of the structure in the temporal dimension, and the lack of such a structure
in the source dimension. This figure is adapted from the preliminary work [27].

Point cloud Voxelgrid

Figure 3.19: Voxelization of point cloud for source space data. In this illustration voxels that do not
contain any points are not drawn, however, the voxelization returns a 3D matrix with all voxels, not
just those containing points.
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An important consideration when doing the voxelization is the size of the voxels, as this effectively sets

the resolution of the voxel representation. If the voxels are big, many points will end up inside each

voxel, and the resulting spatial resolution will be lower. On the other hand, if the voxels are small, the

spatial resolution will be higher, but the data size will also increase significantly. Thus selecting the

voxel size becomes a compromise between spatial resolution and data size. As shown in Algorithm 1,

the voxel size can be set indirectly by defining the size of each dimension in the 3D voxel grid. One

of the DNNs employed in this project, described in subsection 3.4.3, requires source space data with

a 2D spatial representation. Such a representation was obtained by performing a projection from

above on the voxel grid representation. The result is then a 2D pixel grid (an image). A visualization

of what these data representations will look like is provided in Figure 3.20. The temporal dimension

is still preserved, so the data from one epoch would have the shape (width×height×depth×nsamples)

or (width×height×nsamples) for voxels and pixels respectively.

Algorithm 1 Voxelization

1: function VOXELIZEPOINTCLOUD(poi nt s, wi d th,hei g ht ,depth)
2: maxx ← max(poi nt s.x),mi nx ← min(poi nt s.x)
3: maxy ← max(poi nt s.y),mi ny ← min(poi nt s.y)
4: maxz ← max(poi nt s.z),mi nz ← min(poi nt s.z)
5: for all p in poi nt s do
6: p.x ← (p.x −mi nx )∗ (wi d th/maxx )
7: p.y ← (p.y −mi ny )∗ (hei g ht/maxy )
8: p.z ← (p.z −mi nz )∗ (depth/maxz )
9: end for

10: poi nt s ← FLOOR(poi nt s)
11: return poi nt s
12: end function
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(a) 3D Voxel representation.
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(b) 2D Pixel representation.

Figure 3.20: Voxel and pixel representations of source space data. In this example, the pixel represen-
tation is a projection from above of the voxel data.
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3.4.2 3M3DCNN

3M3DCNN, as named by its developers, is a DNN developed for decoding MI from source-reconstructed

EEG signals [50]. The architecture was designed to make full use of the high resolution of the spatial

dimensions of source space data. 3M3DCNN takes as input four-dimensional (4D) data, with three

spatial dimensions and one temporal dimension. Time of interest (TOI) selection was used to select

three samples in time to include in the temporal dimension. The spatial dimensions were defined by

a voxelization, with a reasonable size considering the computer memory. The resulting input shape

was (width×height×depth×TOIs)=(30× 38× 28× 3). In [50], this data representation is referred to

as 4D dipole feature matrix (4DDFM). Results from tests on public datasets showed that 3M3DCNN

could outperform proposed classifiers operating on raw EEG data.

Architecture

Three modules make up the 3M3DCNN architecture. The first two perform 3D convolutions on the

spatial dimensions, and the last has dense layers. The architecture with all its layers is described in

Table 3.6.

Layer #Filters/Units Kernel size #Parameters Output Activation Options
Input (30,38,28,T (3))
Conv3D 32 (3,3,3) 2624 (30,38,28,32) padding = same, stride = (1,1,1) (3,3,3)
BatchNormalization 128 (120) (30,38,28,32)
Activation (30,38,28,32) ReLU
Conv3D 32 (3,3,3) 27680 (30,38,28,32) padding = same, stride = (1,1,1) (3,3,3)
Activation (30,38,28,32) Softmax
MaxPooling3D (3,3,3) (10,13,10,32) padding = same, stride = (3,3,3)
Dropout (10,13,10,32) p = 0.5 (not specified)
Conv3D 64 (3,3,3) 55360 (10,13,10,64) padding = same, stride = (1,1,1) (3,3,3)
BatchNormalization 128 (120) (10,13,10,64)
Activation (10,13,10,64) ReLU
Conv3D 64 (3,3,3) 110656 (10,13,10,64) padding = same, stride = (1,1,1) (3,3,3)
Activation (10,13,10,64) Softmax
MaxPooling3D (3,3,3) (4,5,4,64) padding = same, stride = (3,3,3)
Dropout (4,5,4,64) p = 0.5 (not specified)
Flatten 5120
Dense 512 2621952 512 Sigmoid
BatchNormalization 2048 512
Dropout 512 p = 0.5 (not specified)
Dense 3 (4) 1539 (2052) 3 (4) SoftMax

Table 3.6: The 3M3DCNN architecture. There are some deviations from the architecture proposed in
[50] and the architecture implemented in this project. For these discrepancies, the original values are
provided in red.

Implementation

There is no code available from the original implementation of 3M3DCNN, so not all details of the

implementation are known. Keras was used to implement the 3M3DCNN architecture in this project.

There are some discrepancies between the 3M3DCNN architecture defined in [50] and the adaption

of 3M3DCNN used in this work. These discrepancies are marked in red in Table 3.6:

• The strides of the convolution layers in the original architecture are (3,3,3), while they are (1,1,1)

in this paper. In the Keras framework, using a stride of (3,3,3) will reduce the output dimensions.

Therefore, the stride was changed to (1,1,1) to ensure the data dimensionality follows that of the

original paper.
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• In the original paper, the rate of units to drop in dropout layers is not specified. Hence, 0.5 was

selected as this has been used in other successful DNNs for decoding EEG [62, 46].

• The number of parameters of the batch normalization layers differs. The original paper has

120 parameters in these layers, while they have 128 parameters in the implementation of this

project. This might be due to a difference in the framework used in [50] and Keras.

• The last dense layer is different. Since this layer serves as the output of the classifier, it has to

be configured based on the paradigm. In [50], there were four classes, in this project there are

three. Thus, the output layer has three instead of four units. As a result, it also has a different

number of parameters.

• The temporal dimension of the input had a size of 3 in the original paper. It was left as a param-

eter in this project, such that different TOIs could be explored.

In [50] only three samples are used as TOI. Different selections of three samples were explored in

this work, but with poor results. In the end, a TOI selection was performed, which is described in

subsection 3.4.5. Based on this selection all samples from 0-400ms were selected as the TOI.

3.4.3 2DCNN

A DNN for classifying MI tasks, based on a 2D representation of source space data, was proposed

in [24]. This architecture is referred to as 2DCNN in this work. Unlike the 3M3DCNN architecture

described in subsection 3.4.2, the input to 2DCNN has only two spatial dimensions. The 2D source

space representation is achieved by a projection from above, as described in section 3.4.1. Although

the 2DCNN classifier uses deep learning, [24] proposes a feature extraction based on continuous

wavelet transform (CWT), to be performed on the data before it is sent to the model. The feature

extraction produces three features: the average power of three frequency bands. These three bands

were selected for their known correlation to MI tasks [24].

Architecture

The 2DCNN architecture uses seven layers of 2D convolution. After the convolution, a small fully-

connected network is used to produce the output. Between the convolutional layers, batch normal-

ization and max pooling is used. The detailed description of all the layers is provided in Table 3.7

Implementation

No code was provided in the paper proposing the 2DCNN architecture. In this project, Keras was

used for the implementation. There are some known discrepancies between the 2DCNN architecture

defined in [50] and the adaption of 2DCNN used in this work. These discrepancies are marked in red

in Table 3.7:

• The reported number of parameters in the convolutional layers differ. However, it is likely that

the original paper only reported the number of parameters per input. If the number of inputs is

taken into account, the number of parameters in the original paper would match those reported

in this work.
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Layer #Filters/Units Kernel size #Parameters Output Activation Options
Input (64,64,3)
Conv2D 32 (3,3) 896 (288) (64,64,32) padding = same, stride = (1,1)
Activation (64,64,32) Leaky ReLU
BatchNormalization 128 (64,64,32)
Conv2D 32 (3,3) 9248 (288) (64,64,32) padding = same, stride = (1,1)
Activation (64,64,32) Leaky ReLU
BatchNormalization 128 (64,64,32)
MaxPooling2D (2,2) (64,64,32) padding = valid, stride = (2,2)
Conv2D 32 (3,3) 9248 (288) (32,32,32) padding = same, stride = (1,1)
Activation (32,32,32) Leaky ReLU
BatchNormalization 128 (32,32,32)
Conv2D 32 (3,3) 9248 (288) (32,32,32) padding = same, stride = (1,1)
Activation (32,32,32) Leaky ReLU
BatchNormalization 128 (32,32,32)
MaxPooling2D (2,2) (16,16,32) padding = valid, stride = (2,2)
Conv2D 64 (3,3) 18496 (576) (16,16,64) padding = same, stride = (1,1)
Activation (16,16,64) Leaky ReLU
BatchNormalization 256 (16,16,64)
Conv2D 64 (3,3) 36928 (576) (16,16,64) padding = same, stride = (1,1)
Activation (16,16,64) Leaky ReLU
BatchNormalization 256 (16,16,64)
MaxPooling2D (2,2) (8,8,64) padding = valid, stride = (2,2)
Conv2D 128 (3,3) 73856 (1152) (8,8,128) padding = same, stride = (1,1)
Activation (8,8,128) Leaky ReLU
BatchNormalization 512 (8,8,128)
MaxPooling2D (2,2) (4,4,128) padding = valid, stride = (2,2)
Flatten 2048
Dense 512 1049088 512 None
Dense 3 (2) 15391024 3 (2) SoftMax

Table 3.7: The 2DCNN architecture. There are some deviations from the architecture proposed in
[24] and the architecture implemented in this project. For these discrepancies, the original values are
provided in red.

• The values of the last dense layer differ from the original implementation. This is due to the

different number of classes to classify.

As mentioned, the original paper used feature extraction. Three features were extracted from the time

series of each pixel in the 2D source representation. Transforming the input data from (64×64×ntimes)

to (64×64×3). The three features extracted are the spectral power averaged over a frequency band

and over time. The three frequency bands were the α (8-14Hz), β (14-30Hz), and θ (4-8Hz) bands

[24]. There exist several definitions of these bands and it is not clear from the paper exactly what

frequencies define the bands, so in this work, the definitions from [2] were used. Figure 3.21 illustrates

the feature extraction. The three first figures are the maps for the individual frequency bands. The last

figure is the combined map and illustrates the complete data sent as input to the 2DCNN architecture.

As the figures show, the projection from 3D to 2D was done from behind, not from above. A projection

from behind gives better coverage of the data originating from the occipital lobe, and should therefore

be beneficial for the task of decoding visual stimuli. The feature extraction was performed using

MNE-Python.

3.4.4 ST3DCNN

Three architectures proposed by previous papers have been explored in this work: deepConvNet,

3M3DCNN, and 2DCNN. DeepConvNet relies heavily on temporal convolutions, while the two others
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Figure 3.21: Feature extraction for 2DCNN. The three first figures illustrate the average powers of the
θ, α, and β bands respectively. The last figure is a composition of these three features into an RGB
map.

use spatial convolutions. However, none of these combines both spatial and temporal convolutions.

This work proposes an architecture combining both spatial and temporal convolutions, inspired by

the three other architectures. This novel architecture is referred to as ST3DCNN (spatiotemporal

3DCNN). The architecture takes as input a 3D representation of source space data, two spatial di-

mensions, and one temporal. This input is similar in nature to the input used in 2DCNN, except there

is no feature extraction.

Architecture

The architecture is very similar to that of the deepConvNet proposed in [62], consisting of five sec-

tions. The first four have the same layer structure: Convolution, batch normalization, activation,

maxpooling, and dropout. This is the same structure used in deepConvNet. ST3DCNN employs 3D

convolutions, with two spatial dimensions and one temporal. The three first segments perform con-

volutions on all three dimensions, while the final convolution is only temporal. The sizes of the ker-

nels in the convolution- and maxpooling layers are modeled after deepConvNet and 2DCNN. The

strides have been designed to ensure suitable dimensions of the data throughout the DNN. Finally,

there is a dense layer with softmax activation, to produce the output. The details of the ST3DCNN

architecture are provided in Table 3.8.

3.4.5 Time of Interest Selection

As demonstrated in previous research, using data from only certain time intervals can improve color

classification accuracy [61, 50]. Similar to the spatial ROI selection, it can be advantageous to seek

out certain TOIs. The advantage of using a set of TOIs, as opposed to the entire time series, is two-

fold. Firstly, the accuracy can be increased [50]. Secondly, the data size is reduced, meaning less

memory and computational resources are needed. To seek out TOIs, the data of the VAL8 subjects

was divided into windows of 100 ms. A classifier was trained and tested for each of the subjects on

each of the windows. The average accuracy of all subjects for one window served as an indication of

the relevance of that window. These results are shown in Figure 3.22.
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Layer #Filters/Units Kernel size #Parameters Output Activation Options
Input (64,64,T ,1)
Conv3D 25 (3,3,8) 1825 (21,21,T1,25) padding = valid, stride = (3,3,1)
BatchNormalization 100 (21,21,T1,25)
Activation (21,21,T1,25) Leaky ReLU
MaxPooling3D (1,1,2) (21,21,T2,32) padding = valid, stride = (1,1,2)
Dropout (21,21,T2,32) p = 0.5
Conv3D 50 (3,3,8) 90050 (19,19,T3,50) padding = valid, stride = (1,1,1)
BatchNormalization 200 (19,19,T3,50)
Activation (19,19,T3,50) Leaky ReLU
MaxPooling3D (3,3,1) (6,6,T3,50) padding = valid, stride = (3,3,1)
Dropout (6,6,T3,50) p = 0.5
Conv3D 100 (3,3,8) 360100 (4,4,T4,100) padding = valid, stride = (1,1,1)
BatchNormalization 400 (4,4,T4,100)
Activation (4,4,T4,100) Leaky ReLU
MaxPooling3D (3,3,1) (1,1,T4,100) padding = valid, stride = (3,3,1)
Dropout (1,1,T4,100) p = 0.5
Conv3D 200 (1,1,8) 160200 (1,1,T5,200) padding = valid, stride = (1,1,2)
BatchNormalization 800 (1,1,T5,200)
Activation (1,1,T5,200) Leaky ReLU
Dropout (1,1,T5,200) p = 0.5
Flatten 1600
Dense 3 4803 3 SoftMax

Table 3.8: The ST3DCNN architecture. T is the size of the temporal dimension in the input. T1 = T −7,
T2 = T //2, T3 = T2 −7, T4 = T3 −7, T5 = (T4 −7)//2

41% 49% 48% 38% 35% 36% 33% 32% 32% 36% 35% 33%

Time [ms]

Average TOI accuracies

Figure 3.22: TOI selection results. The percentages at the bottom of the figure indicate the average
accuracy achieved when using only that TOI for classification on the VAL8 subjects. The plot shows
the average epoch of the VAL8 subjects.

Since this is a three-class classification paradigm, the chance level is at 33%, thus the results indi-

cate that the intervals after 400ms do not contribute much information relevant to the classification.

These results indicate that the most important TOI is from 100ms-200ms, which coincides well with

the results of [61], which reported a peak decoding accuracy at 115ms after stimuli onset. Following

these results it seems that 0-400ms would be a suitable TOI for this paradigm. For the tests performed

on the three new architectures explored in this work, this interval was used. For the deepConvNet ar-

chitecture 0-800ms was used.
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3.4.6 Data Augmentation

How well an ML classifier generalizes is dependent on the amount of training data available [30].

However, data collection is often expensive and time-consuming. This is certainly the case for ac-

quiring EEG data such as in this project. Data augmentation is a method whereby fake data is added

to the training set of an ML algorithm, to increase the generalization of the algorithm [30]. That is,

certain transformations can be applied to an original example of a class, to create a new example of

the same class. Figure 3.23 demonstrates this principle with a simple example. If we are classifying

shapes into squares and circles, transformations in size and color can be applied to original exam-

ples. Such transformations would yield new examples that belong to the same class as the original

examples. Naturally, the task of finding such transformations is more challenging in the case of EEG

Circles

Squares
Original Dataset

Data
Augmentation

Circles

Squares

New Circles

New Squares

Dataset After
 Augmentation

Figure 3.23: An example of data augmentation. By transforming the color and size of the original
examples, a new set of examples can be created, which still belong to the classes from which they
originated. Thus, the dataset has been doubled in size.

decoding, since it is not known exactly what properties separate the examples of the different classes.

Still, data augmentation has been successfully applied to previous EEG decoding tasks [24]. Fang

et al. explored four different methods for augmenting EEG data for a motor imagery classifier. Two

of these, noise addition and sliding window, yielded an increase in classification accuracy. These two

methods were also explored in this project. The basic principle and implementation of these are cov-

ered in the following paragraphs. The results obtained when exploring these methods are presented

in subsection 4.1.3.

Noise Injection

A simple way to augment training data is by adding noise to it. This method has been successfully em-

ployed in several other EEG decoding tasks [24, 69, 38]. Since additive white Gaussian noise (AWGN)

will appear naturally in EEG signals [29], creating augmented examples with new AWGN, should pre-

serve the properties making the example distinct to its class, while making the classifier more robust.

When generating the AWGN to be injected into the data, the mean and variance of this noise must be

chosen. In this work, the mean was set to zero, and the variance was chosen based on the variance of

the training data itself. Several values were tested with the validation subjects. Finally, a variance of

10% of the data variance was selected to be used in the test presented in subsection 4.1.3. This means

the noise injection doubled the number of epochs available for training, as noise will be added to

each original epoch to create an augmented epoch.
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Sliding Window

Several crops of the same trial can be made with a sliding window technique, to increase the amount

of data in the training set. For EEG decoding this has been applied in a number of previous studies

[62, 50, 24, 71]. The implementations of this method vary somewhat, but the basic principle is the

same. Suppose the data has a temporal dimension of size T . By creating a window of length T ′ < T ,

a set of T −T ′+1 different crops can be created from one single trial, by sliding the window across

the temporal dimension. For instance, if T = 10 and T ′ = 8 three different crops could be created:

crop1 = {t0, t1 . . . , t7}, crop2 = {t1, t2 . . . , t8}, and crop3 = {t2, t3 . . . , t9}. For this case, the number of ex-

amples in the training set has been tripled. Here the window was moved by only one sample for each

crop, but this would be a choice in the implementation. In [62, 71], cropped sets were used in the

training phase and the testing phase. During testing, each trial would be split into a set of crops,

these would be evaluated individually, then the results from all crops would be aggregated into one

prediction for the original trial. In [24] the sliding window was only applied to the training data, while

the testing data was left unchanged. Naturally, the data in the test set still has to have the same shape

as the training data. To achieve this, the test data can use the center of the crops performed on the

training data. For the example above, the test set would be cropped to crop2 = {t1, t2 . . . , t8}. This is

how the sliding window method was applied in this project. Different sliding window configurations

were tested with the validation subjects. The configuration selected for the final test used three win-

dows, sliding the window by two samples each time. With this configuration, the number of epochs

available for training is tripled, as each original example will be transformed into three epochs shifted

by two samples in time.

3.4.7 Training and Testing Routine

After exploring and testing different methods such as data augmentation, channel selection, and TOI

on the validation subjects, the best configurations can be tested on the test subjects. Chapter 4 will

present the various tests performed and the results obtained. All these final tests were performed with

cross-validation. This is a method for increasing the statistical certainty of the test results and is often

used for small datasets. With cross-validation, the dataset is divided into a set of equal partitions.

Then, the classifier is trained on the data from all but one of these partitions. After training, the last

partition is used to test the trained classifier, and the test accuracy is stored. Then the process is

repeated, leaving out a different partition. Each repetition is called a fold. When the process has been

repeated for all possible folds, the standard deviation and average of all accuracies can be calculated.

In Figure 3.24 the cross-validation process is illustrated for a five-fold scenario, which was used in

this work. As explained in section 3.1, each subject defines its own ML problem, so cross-validation

is performed for each subject individually.
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Figure 3.24: The cross validation method. This example illustrates a five-fold cross-validation.

An important hyperparameter for any DNN is the number of iterations used during training. For

each iteration the algorithm will update the model parameters to better adapt to the training data,

thus a large number of iterations can lead to overfitting [30]. Training is computationally expensive,

so training more iterations than needed is also unwanted from a resource perspective. On the other

hand, if the model is not trained enough, it will not have time to learn from the data. Choosing a suit-

able number of iterations can be difficult, as the size of the dataset, the architecture, and the number

of parameters in the DNN will affect the training process. A method called early stopping was used

to decide the number of training iterations for the tests performed in Chapter 4. In early stopping,

the training error of each iteration is monitored. Whenever the training error has not decreased for a

certain number of iterations, the training is stopped. Instead of running the early stopping for each

subject, it was used on one validation subject, and the resulting number of iterations was rounded

to the nearest multiple of 10 and used for all other subjects. As will be explained in Chapter 4, sev-

eral different configurations were tested. Early stopping was used to select an appropriate number of

iterations for each of these configurations. The exact number of iterations is provided in Chapter 4.
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3.5 Software and Hardware

The methods described in this chapter, be it source reconstruction, genetic algorithms, or deep neu-

ral networks, are all established methods, with many previous implementations. Naturally, no two

implementations are identical, and different implementations might lead to somewhat different re-

sults. So, for the sake of comparability and reproducibility, this section provides insight into exactly

what software and hardware were used for the different approaches.

3.5.1 Software

FreeSurfer [25]

FreeSurfer is an open-source software for visualizing and working with MRI data. This software was

used to segment the subject MRIs into layers of skull, skin, and brain, using the BEM method as

described in subsection 3.2.1. FreeSurfer was also used to create the parcellation of the brain, which

was used to analyze ROIs in the selected sources in section 3.3.

MNE-Python [31]

MNE-Python is an open-source Python library for working with neurophysiological data. This soft-

ware was used extensively for preprocessing the EEG dataset, and for performing the source recon-

struction. The exact use of MNE-Python for the preprocessing has been described in further detail

in the preliminary work [27]. All visualizations of the brain, source space, and MRI segmentations

presented in this work have been produced using the MNE-Python software.

pymoo [6]

Pymoo is an open-source Python library for performing multi-objective optimization. Pymoo was

used to implement the data channel selection paradigm in section 3.3. More specifically, the Pymoo

framework for defining optimization problems was used to define the chromosome representation

and fitness function for the problem. Then, the Pymoo implementation of the NSGA-III algorithm

was used to search for optimal solutions to the problem.

Keras [8]

Keras is an open-source Python library, serving as a deep learning framework using TensorFlow [1].

All the DNN classifiers used in this work were implemented using Keras. The implementation of

these models in Keras is described in tables 3.7, 3.6, and 3.8. Such a description of the DeepConvNet

implementation can be found in the preliminary work [27].

3.5.2 Hardware

Recording Equipment

The data used in this work was recorded as part of a previous study. Details of the hardware used for

this recording can be found in [52].
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IDUN [63]

IDUN is a high-performance computer cluster at the Norwegian University of Science and Technol-

ogy (NTNU). This cluster was used to perform the most demanding computations in this work, in-

cluding the channel selection, all training and testing of DNNs, and the SR. The computer cluster is

equipped with NVIDIA A100, V100, and P100 graphics processing units (GPUs), which were used to

accelerate the training and testing of DNNs.
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Results

4.1 Tests Performed

To systematically test the different methods and approaches explored in this work, a final set of tests

were defined, to be performed using all subjects. Each test is defined such that it singles out a certain

method or parameter to be tested independently. This section provides a description of each test

and its purpose. The exact details of the parameters in each test and the results are presented in

section 4.2.

4.1.1 Test 1: Full vs Minimal Preprocessing

As covered in subsection 3.1.2, two different preprocessing pipelines were developed in this work.

One of them, the full preprocessing, uses a number of methods to increase the SNR of the data, while

the other uses a minimal amount of preprocessing. Test 1 is designed to investigate how these two

pipelines affect the performance of the classification. The test has four sub-tests: full preprocessing

in electrode- and source space, and minimal preprocessing in electrode- and source space.

4.1.2 Test 2: All vs Selected Channels

This test evaluates the channel selection from section 3.3. The channel selection was performed

based on the performance of the evaluation subjects, this test will demonstrate whether those chan-

nel selections are beneficial for other subjects as well. Although many pareto-optimal channel config-

urations were found in section 3.3, only the best configurations in terms of classification accuracy will

be tested in this test. These were the 10-electrode configuration of Table 3.2 and the 151-source con-

figuration of Table 3.3. Four sub-tests were performed: All channels in electrode- and source space,

and selected channels in electrode- and source space.

4.1.3 Test 3: Data Augmentation

The methods for data augmentation introduced in subsection 3.4.6, noise injection and sliding win-

dow, are applied and tested in this test. The three sub-tests were: No data augmentation, noise injec-

tion, and sliding window.
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4.1.4 Test 4: 3M3DCNN, 2DCNN, and ST3DCNN

This test explores the different architectures using a structured spatial source representation. These

are the 3M3DCNN, 2DCNN, and ST3DCNN architectures, covered in sections 3.4.2, 3.4.3, and 3.4.4.

All three architectures require somewhat different input, so there is some difference in the prepro-

cessing of the data. However, since these are necessary operations for the architecture, the test still

serves as a way of comparing the performance of the three architectures.

4.2 Test Results

This section presents and describes the results obtained from the four final tests, using the test sub-

jects. The specification of each test is listed in Table 4.1. Some remarks should be made regarding the

results. Firstly, subjects are marked either red, gray, or white in the result tables. In [52], some sub-

jects were excluded from the research, due to requirements of correct behavior, no faulty electrodes,

and enough data remaining after preprocessing. The subjects considered insufficient for inclusion in

[52] are marked red. The validation subjects are marked gray, and the remaining subjects are marked

white. The intention of this coloring is to highlight the performance of these different groups of sub-

jects. The last row in each table provides the average accuracy for the given tests across all test subjects

(white and red). Behind these accuracies, in parentheses, are the average accuracy of all subjects. The

columns marked σ report the standard deviation from the cross-validation of the tests.

Test Preprocessing Channel type
Channel
selection

Architecture
Data

augmentation
Number of

training iterations
TOI

T1.1 Full Electrodes Best DeepConvNet None 80 0-800ms
T1.2 Full Sources Best DeepConvNet None 80 0-800ms
T1.3
T2.3

Minimal Electrodes Best DeepConvNet None 60 0-800ms

T1.4
T2.4
T3.3

Minimal Sources Best DeepConvNet None 50 0-800ms

T2.1 Minimal Electrodes All DeepConvNet None 50 0-800ms
T2.2 Minimal Sources All DeepConvNet None 50 0-800ms
T3.1 Minimal Sources Best DeepConvNet Noise injection 50 0-800ms
T3.2 Minimal Sources Best DeepConvNet Windowing 50 0-800ms
T4.1 Full Sources All 3M3DCNN None 70 0-400ms
T4.2 Full Sources All 2DCNN None 90 0-400ms
T4.3 Full Sources All ST3DCNN None 80 0-400ms

Table 4.1: Overview of the different test configurations. For channel selection, ’Best’ means that the
configuration with the highest accuracy from the GA channel selection was used.

4.2.1 Test 1: Full vs Minimal Preprocessing

The results are presented in Table 4.2. The aim of the test was to compare the two preprocessing

pipelines. A significant increase in classification can be seen in both source space and electrode space

when using minimal preprocessing instead of the full preprocessing pipeline. In electrode space min-

imal preprocessing yields an increase in average accuracy of 8%, and in source space the increase is

16%. This result is counterintuitive, as all the steps in the full preprocessing are designed with the

intention of increasing the classification performance. Naturally, this is a promising result for online

applications, as minimal preprocessing implies a simpler and less computationally complex pipeline.
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Subject T1.1 σ T1.2 σ T1.3 σ T1.4 σ

sub-13 94 3 59 7 96 2 85 3
sub-21 93 2 75 4 93 3 90 3
sub-02 87 4 65 7 97 2 77 5
sub-07 87 2 59 5 87 3 89 3
sub-24 87 5 50 4 91 3 70 4
sub-14 85 2 70 3 94 2 87 6
sub-20 85 2 59 3 89 2 73 5
sub-26 85 4 67 5 84 4 88 3
sub-29 85 3 80 5 93 4 75 12
sub-06 84 4 64 8 92 3 90 4
sub-18 84 5 54 6 91 4 72 4
sub-19 84 5 60 10 92 3 72 5
sub-23 83 4 51 9 78 3 68 3
sub-05 80 2 46 6 84 3 53 8
sub-15 76 3 48 6 79 4 69 5
sub-30 76 4 65 4 84 4 71 14
sub-08 75 4 41 7 89 3 75 3
sub-31 75 3 40 5 79 5 76 3
sub-11 74 2 59 6 81 3 51 5
sub-03 72 3 61 4 80 3 85 4
sub-16 66 4 49 5 79 4 51 5
sub-25 63 3 45 4 84 1 62 6
sub-22 62 1 44 2 74 5 52 3
sub-27 59 8 59 8 62 5 69 9
sub-04 57 4 41 6 80 6 64 4
sub-28 57 3 41 5 75 5 85 7
sub-17 52 5 38 6 52 4 71 6
sub-01 51 2 43 1 58 5 49 5
sub-10 50 4 54 7 59 7 74 5
sub-09 45 4 50 6 52 3 80 6
sub-12 45 2 47 6 65 4 40 7

average 72(73) 4(3) 54(54) 6(5) 80(80) 4(4) 70(71) 5(5)

Table 4.2: The results from test 1, comparing full and minimal preprocessing. T1.1: Full preprocess-
ing in electrode space. T1.2: Full preprocessing in source space. T1.3: Minimal preprocessing in
electrode space. T1.4: Minimal preprocessing in source space.

This result will be discussed further in subsection 5.2.1. It can also be observed that the average ac-

curacy is almost identical with or without the validation subjects. This result indicates that there has

not been an overfitting to the validation subjects. Lastly, the subjects marked in red tend to perform

worse than other subjects, demonstrating that correct behavior and working electrodes are important

factors for the performance of the decoding.

4.2.2 Test 2: All vs Selected Channels

The results are presented in Table 4.3. For this test, the expected result was that the use of channel

selection would improve the classification in both source space and electrode space. However, the

results show no significant difference between the use of all channels and the use of selected chan-

nels, neither in electrode space nor source space. The average accuracy with selected channels in

source space is 3% higher than with all electrodes, but considering that the standard deviation is 4%,
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Subject T2.1 σ T2.2 σ T2.3 σ T2.4 σ

sub-02 94 3 72 5 97 2 77 5
sub-13 94 3 86 4 96 2 85 3
sub-29 93 2 78 4 93 4 75 12
sub-06 92 3 89 4 92 3 90 4
sub-21 92 3 89 5 93 3 90 3
sub-14 91 4 90 3 94 2 87 6
sub-18 90 4 71 4 91 4 72 4
sub-24 90 2 72 2 91 3 70 4
sub-07 89 3 93 2 87 3 89 3
sub-23 88 3 65 8 78 3 68 3
sub-19 87 4 73 5 92 3 72 5
sub-08 84 2 75 5 89 3 75 3
sub-05 83 6 54 11 84 3 53 8
sub-20 83 6 70 3 89 2 73 5
sub-26 82 4 90 3 84 4 88 3
sub-11 81 2 55 6 81 3 51 5
sub-16 81 4 53 3 79 4 51 5
sub-25 80 5 64 2 84 1 62 6
sub-30 80 5 91 10 84 4 71 14
sub-03 78 5 89 2 80 3 85 4
sub-15 78 6 74 3 79 4 69 5
sub-04 76 4 59 2 80 6 64 4
sub-31 73 8 76 3 79 5 76 3
sub-22 72 4 52 3 74 5 52 3
sub-28 70 2 77 6 75 5 85 7
sub-10 60 7 68 10 59 7 74 5
sub-12 60 2 40 4 65 4 40 7
sub-01 53 4 47 3 58 5 49 5
sub-27 53 2 67 6 62 5 69 9
sub-09 50 4 82 7 52 3 80 6
sub-17 48 3 67 8 52 4 71 6

average 77(78) 4(4) 70(72) 5(5) 80(80) 4(4) 70(71) 5(5)

Table 4.3: The results from test 2, comparing channel selection vs. all channels. T2.1: Electrode space
all channels. T2.2: Source space all channels. T2.3: Electrode space selected channels. T2.4: Source
space selected channels.

this is not a very notable difference. Although the channel selection did not lead to any increase in

performance, the result is still very relevant, as the number of channels has been reduced substan-

tially, without loss of performance. The channel selection was one of the classifier configurations

most heavily adapted to the validation subjects. Still, the results show that the performance is similar

between validation and test subjects.

4.2.3 Test 3: Data Augmentation

The results are presented in Table 4.4. Data augmentation was only tested with source space data.

Both noise injection and sliding window have proved to be useful techniques for improving EEG de-

coding in previous studies, however, the improvement is minimal in this work. The average accuracy

has an increase of 1% and 3% for the noise injection and sliding window respectively. This increase

is not very significant, as the results will vary somewhat anyways, as indicated by the standard de-
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viation of 5%. Although the increase in performance was not that notable on average, sub-30 had

a significant improvement when using data augmentation. In fact, the accuracy reached for sub-30

using sliding window (T3.2) was 99%, the highest accuracy achieved of any subject in any of the tests

performed.

Subject T3.1 σ T3.2 σ T3.3 σ

sub-30 91 11 99 1 71 14
sub-06 90 4 91 3 90 4
sub-07 90 2 91 4 89 3
sub-14 90 6 91 4 87 6
sub-26 90 2 88 3 88 3
sub-03 88 3 86 2 85 4
sub-09 87 3 88 2 80 6
sub-21 86 4 89 3 90 3
sub-13 85 2 85 2 85 3
sub-28 81 8 90 2 85 7
sub-02 80 7 78 7 77 5
sub-29 80 8 85 4 75 12
sub-31 79 2 77 5 76 3
sub-08 78 4 76 7 75 3
sub-10 74 9 74 10 74 5
sub-20 74 3 75 4 73 5
sub-15 72 2 75 8 69 5
sub-24 71 5 72 3 70 4
sub-27 71 6 71 6 69 9
sub-17 69 6 71 4 71 6
sub-18 68 2 70 3 72 4
sub-19 68 4 73 5 72 5
sub-23 67 3 70 2 68 3
sub-04 66 5 61 4 64 4
sub-25 64 4 67 3 62 6
sub-11 56 9 61 5 51 5
sub-05 54 6 60 7 53 8
sub-22 53 3 52 4 52 3
sub-16 52 7 52 5 51 5
sub-01 47 3 49 5 49 5
sub-12 44 6 45 4 40 7

average 71(73) 5(5) 73(75) 5(4) 70(71) 5(5)

Table 4.4: The results from test 3, comparing data augmentation methods. T3.1: Noise injection.
T3.2: Sliding window. T3.3: No data augmentation.

4.2.4 Test 4: 3M3DCNN, 2DCNN, and ST3DCNN

The results are presented in Table 4.5. All three architectures performed worse on average than the

deepConvNet. The novel architecture ST3DCNN performs better than 3M3DCNN and 2DCNN. It is

worth noting that the best results obtained in source space with deepConvNet using full preprocess-

ing were an average accuracy of 54% in test T1.2, which is only 6% more than the results obtained

with ST3DCNN. Thus, using spatial convolutions for decoding RGB responses demonstrates some

potential, which will be further discussed in subsection 5.2.4. Although minimal preprocessing has

proved to be favorable for accuracy, it does increase the data size. This is further discussed in sub-
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section 5.2.1. Due to this increase, the computational complexity of testing 3M3DCNN, 2DCNN, and

STDCNN with minimal preprocessing is substantial. To keep the complexity reasonable, these mod-

els were therefore only tested with full preprocessing.

Subject T4.1 σ T4.2 σ T4.3 σ

sub-13 70 13 48 4 71 5
sub-29 65 7 47 5 78 6
sub-26 61 4 39 2 60 6
sub-03 60 7 34 6 56 8
sub-02 57 14 50 7 54 7
sub-14 57 7 41 5 53 5
sub-21 56 7 48 5 78 5
sub-06 51 7 42 2 63 8
sub-23 49 6 41 5 53 5
sub-30 48 3 43 7 56 8
sub-11 47 2 44 3 45 5
sub-24 44 6 37 3 50 2
sub-19 42 5 42 3 47 7
sub-07 41 4 39 3 42 7
sub-18 41 7 39 5 45 5
sub-05 40 7 41 4 39 4
sub-08 39 4 39 6 39 7
sub-15 39 5 37 5 34 5
sub-20 39 5 38 6 39 6
sub-27 38 11 42 10 46 6
sub-31 38 5 44 5 41 5
sub-09 37 7 36 12 43 9
sub-16 37 1 42 4 41 6
sub-25 37 2 40 4 44 7
sub-28 37 3 38 4 40 4
sub-01 36 3 34 4 31 4
sub-22 36 4 39 5 40 2
sub-04 34 4 34 7 38 8
sub-10 33 5 37 3 36 3
sub-17 33 2 35 4 41 3
sub-12 30 8 38 4 39 6

average 44(44) 6(6) 40(40) 5(5) 48(48) 5(6)

Table 4.5: The results from test 4, comparing 3M3DCNN, 2DCNN and ST3DCNN. T4.1: 3M3DCNN.
T4.2: 2DCNN. T4.3: ST3DCNN.

4.2.5 Comparison with Previous Studies

The dataset used in this work was also used to test classifiers in [52] and in the preliminary work [27].

Therefore, results from these studies offer the opportunity to directly compare the performance of

the approaches taken in this work with those employed in previous research. Table 4.6 compares

the best results from these previous studies with the results obtained in this work. Since [52] only

included a subset of subjects in their study, the average accuracies achieved among those subjects

are provided in the column "Good subjects". In [52], the best classifier in electrode space used a

minimum distance to mean with geodesic filtering (FgMDM) Riemannian classifier. Their best results

in source space were obtained using shrinkage linear discriminant analysis (sLDA). The best results in

58



CHAPTER 4. RESULTS

Test/Study Channel Type Acc. all subjects Acc. good subjects

T1.1 electrodes 73 81
T1.2 sources 54 57
T1.3 = T2.3 electrodes 80 88
T1.4 = T2.4 = T3.3 sources 71 73
T2.1 electrodes 78 86
T2.2 sources 72 73
T3.1 sources 73 74
T3.2 sources 75 76
T4.1 sources 44 48
T4.2 sources 40 42
T4.3 sources 48 52

[27] sources 54 58
[27] electrodes 77 84
[52] sources - 50
[52] electrodes - 74

Table 4.6: Comparison with results from a previous study [52] and the preliminary study for this work
[27], which both used the same dataset as in this work. The column "Good subjects" are the accura-
cies averaged across subjects fulfilling the criteria for inclusion in the dataset in [52]. The column "All
subjects" are the accuracies averaged across all subjects.

the preliminary studies, for both source- and electrode space, were obtained using the deepConvNet

classifier. The best results in electrode space from this study outperform all previous results, while

the source space results of this study have an increase in accuracy of over 20% compared to previous

results in source space.

4.2.6 Confusion Matrices

Confusion matrices are one way to present the performance of a classifier. These matrices have two

dimensions: one represents the actual class of an example, and the other represents the predicted

class by the classifier. In a confusion matrix Cclasses×classes, element ci , j represents the number of

examples with the actual class i , which are classified as class j . An ideal classifier will only have ele-

ments on the diagonal, as all examples are classified into the correct class. If any examples are wrongly

classified, the confusion matrix provides information about which classes the classifier confuses for

other classes. Confusion matrices have been produced for all the tests, and are presented in figures

4.1, 4.2, 4.3, and 4.4. The matrices include the data from each fold in the cross-validation from each

subject, so all possible examples are included. It is important to note that the number of examples

from each class is not exactly the same, which means that the coloring in the matrices can be slightly

misleading as they represent the number of examples classified to a given class, not the percentage.

When analyzing the confusion matrices, the interesting aspect is the distribution of the wrongly clas-

sified examples. For instance, in the T1.1 matrix of Figure 4.1, all the off-diagonal elements are fairly

similar, while in T1.2 it is clear that red is classified wrong significantly more often than blue is. When

considering all the confusion matrices, a few common trends can be observed. Red is classified as

green more often than it is classified as blue, and blue is classified as green more often than it is clas-

sified as red. For green, there is a fairly equal distribution of misclassifications. This indicates that red

and blue are the easiest colors to separate.
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Figure 4.1: Confusion matrices from Test 1
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Figure 4.2: Confusion matrices from Test 2
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Figure 4.3: Confusion matrices from Test 3
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Figure 4.4: Confusion matrices from Test 4
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Discussion, Conclusion, and Further Work

5.1 Summary of Findings

The aim of this work has been to explore different methods for improving the classification of RGB

responses in EEG signals. Three main methods were explored: Source reconstruction, channel se-

lection with GA, and classification with DNNs. In addition to these methods, some different pre-

processing pipelines and data augmentation has also been implemented. A set of tests were de-

fined to evaluate the performance of each method. Each of these tests can be thought of as a spe-

cific pipeline for the data, as shown in Figure 5.1. In general, it was found that pipelines including

minimal preprocessing performed better. It was also observed that classification in electrode space

outperforms classification in source space. In an effort to take advantage of the high spatial resolu-

tion of the source space, three DNN architectures designed specifically for source-reconstructed data

were implemented. None of these performed better than any of the pipelines using the deepCon-

vNet architecture. Both methods for data augmentation led to a minor increase in performance. The

selection of channels with GA led to a 3% increase in accuracy with electrodes, but no change in elec-

trode space. So the effects on accuracy were relatively insignificant. However, the effect on channel

reduction was substantial. In electrode space, the reduction in channels was from 58 to 10 electrodes,

a reduction of almost 83%. In electrode space the reduction was from 474 to 192 sources, a reduction
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Figure 5.1: The various data pipelines that have been explored and the accuracies achieved with them.
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of almost 60%. The significance and implication of all these findings will be discussed in section 5.2.

Some suggestions for further work, based on the results and experiences obtained in this work, are

provided in section 5.3

5.2 Discussion of Findings

5.2.1 Choice of Preprocessing

Test 4 compared the full and minimal preprocessing pipelines, and yielded a somewhat unexpected

result. With minimal preprocessing, the classifiers performed better in both source space and elec-

trode space. This result is favorable for online applications, as it means higher accuracies can be

attained, while reducing computational complexity. But the result is unexpected, as the operations in

the full preprocessing are designed to reduce SNR and thus facilitate better classification. One possi-

ble explanation for this counterintuitive result is that some data is discarded in the full preprocessing.

This rejection is based on artifacts and high PTP amplitudes. Since the minimal preprocessing does

not discard any data, it has a larger training set. That the minimal preprocessing yields better results

could indicate that the data discarded by the preprocessing is still descriptive enough to improve the

generalization of the classifiers. Another possible cause is the filtering and downsampling performed

in full preprocessing. A low-pass filter of 45Hz was applied and followed by a downsampling from

1000Hz to 200Hz, which reduces the data size by 80%. This process removes information about higher

frequencies and reduces data size, which might contribute to the reduction of classification accuracy.

To investigate the effect of the increased number of training examples with minimal preprocessing,

Table 5.1 was created. The table shows the difference in data size and classification accuracy for each

subject when going from full to minimal preprocessing. The data is taken from the T1.2 and T1.4

tests. If minimal preprocessing yields an increase in accuracy due to an increased number of train-

ing examples, subjects with a large difference in the amount of training data should also have a large

difference in accuracy. So the two columns in Table 5.1 should be positively correlated. However, the

table gives no indication of such a correlation. For instance, subject 12 has a data increase of 40%, but

the accuracy is reduced by 12%. Thus it seems likely that the downsampling could be the cause of the

difference in classification accuracy between full and minimal preprocessing pipelines.

5.2.2 Source Space for Improved Classification

The results indicate that classification is not improved by a source space representation of the data.

This was also the result found in the preliminary studies. It was expected that channel selection could

be a method for facilitating better classification in source space, but results from T2.2 and T2.4 indi-

cate no increase in accuracy with channel selection. The use of DNN architectures specifically de-

signed to classify source space data was another approach explored for improving source space clas-

sification. However, all three architectures performed particularly poorly, compared to the deepCon-

vNet architecture. There are some caveats with the implementation of both channel selection and

the three new architectures which might explain their inability to yield better performance. These

caveats are discussed in sections 5.2.3 and 5.2.4. Still, the research indicates that source space data

overall is less suited for classification than the raw electrode data.

One possible explanation is that the parameters of the source reconstruction are not optimal. The
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T1.2 → T1.4
Subject

∆ Data (%) ∆ Accuracy (%)

sub-09 +134 +60
sub-27 +96 +17
sub-21 +43 +20
sub-12 +40 -15
sub-07 +18 +51
sub-22 +18 +18
sub-19 +17 +20
sub-04 +16 +56
sub-10 +13 +37
sub-29 +10 -6
sub-17 +9 +87
sub-15 +8 +44
sub-23 +8 +33
sub-25 +8 +38
sub-08 +7 +83
sub-01 +4 +14
sub-05 +4 +15
sub-16 +3 +4
sub-02 +2 +18
sub-03 +2 +39
sub-11 +2 -14
sub-26 +2 +31
sub-28 +2 +107
sub-06 +1 +41
sub-18 +1 +33
sub-24 +1 +40
sub-30 +1 +9
sub-13 +0 +44
sub-14 +0 +24
sub-20 +0 +24
sub-31 +0 +90

Table 5.1: A comparison between the increase in data examples and the increase in accuracy between
minimal and full preprocessing. This is based on the source space results from tests T1.2 and T1.4.

results of Table 3.4 could support this. These tables compared source selection on sources recon-

structed based on the FsAverage template head and individual MRI data. Since the SR will be more

accurate when using MRI data from the individual, it was expected that the results would be better

with the individual models. However, there is no noticeable difference in performance between the

two. This could be an indication that the SR is not optimal.

5.2.3 A Review of Channel Selection

Channel selection with the NSGA-III algorithm was performed in both electrode space and source

space. In electrode space using the selected electrodes as opposed to all electrodes yielded an in-

crease in accuracy of only 3%. The source space channel selection led to no increase in accuracy. The

hypothesis was that the channel selection would improve classification, by removing channels that

lowered the SNR of the data. That no such improvement was found could indicate that the DNNs are

robust to channels that do not contribute information about RGB responses. This would explain why

the performance is similar when using all channels and a selected optimal subset.
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The GA used in the channel selection returned a set of solutions. Each solution was a configuration

of channels and their fitness (accuracy and number of channels). These were the results presented in

Figure 3.12 and Figure 3.15. It was pointed out that when these configurations were tested again, the

results had a slightly lower accuracy. This trend was observed for all configurations in both source-

and electrode space. For each individual in each generation of the GA, the DNN is trained on the

training examples. This training is based on the stochastic optimizer ADAM [43]. Since there is a

stochastic element to the training phase, the same channel configuration will not give exactly the

same results if trained twice. This could explain why the GA returned slightly better results than those

observed during later testing. Since the GA trains and tests very many configurations, it is likely that

some of them end up having an especially favorable training phase, and that these will be returned as

solutions. Hence, the GA might yield somewhat optimistic results.

Certain aspects of the implementation could contribute to the limited improvement obtained with

channel selection. For instance, a template head was used to create a common source space for

all subjects. The SR will be less accurate with this approach, as the template head always deviates

somewhat from the actual head geometries of the subjects. One method to remedy the issue with

a template head is morphing all the individual source spaces [32] into a common space. With this

method, the source estimates are computed using the individual forward models. Then the source

estimates are morphed into a template head. This way the individual MRI can be taken advantage of,

while still having the same source space definition across subjects.

That the channel selection yielded better results in electrode space than in source space could also

indicate some shortcomings in the implementation. As touched upon in subsection 3.3.3, the opti-

mization problem becomes drastically more complex in source space, as the number of channels is

substantially larger. Due to the computational complexity, the same population size and number of

generations in the GA were used for both electrode and source selection. It is reasonable to assume

that the number of source configurations explored with these parameters is too small to converge on

an optimal solution. This would also explain why the full brain source selection seemed to distribute

sources across the whole brain. There could be that the channel selection would converge on a small

subset of sources in certain ROIs if only it had a larger population and a larger number of generations.

Due to the large number of sources in the source space, it was not computationally feasible to per-

form source selection on the complete source space. A routine for selecting a subset of sources based

on electrodes from electrode selection was developed. With this method, 474 of the 8196 sources were

selected, and channel selection with GA was performed on those 474 sources. The routine for select-

ing those 474 sources was relatively pragmatic. It is possible that this routine excludes some sources

that would contribute relevant information for the classification. For instance, since the electrodes

are on the surface of the head, the volume selection around these electrodes will favor sources closer

to the surface. Since the V8 region described in Figure 2.4 is on the underside of the brain, sources in

this region were not selected with this routine.

5.2.4 Structured Spatial Source Representation

The voxelization and pixelization of source space were performed to obtain a source space repre-

sentation that allowed spatial convolutions. The aim was to explore DNN architectures with spatial
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Projection from behind

Red areas are covered by projection

Figure 5.2: The effects of pixelization by projection from behind. The area V8, involved in color per-
ception, is badly covered by such a projection. Adapted from [10].

convolutions, that could take advantage of the high spatial resolution in source space, by finding

more complex spatial features. Although this approach has demonstrated good results in other stud-

ies [50, 24], the three architectures explored with this approach in this work were all outperformed by

deepConvNet.

Tests T4.1, T4.2, and T4.3, testing the three architectures with spatial convolutions, were all performed

using the full preprocessing pipeline. When comparing them to the only test of deepConvNet using

full preprocessing (T1.1), the difference in performance is not as big. T4.3, using the ST3DCNN ar-

chitecture got an average accuracy of 48% compared to 54% achieved in T1.1. Since the change to

minimal preprocessing yielded a substantial increase in performance with deepConvNet, it is natural

to assume that the other architectures would also benefit from this pipeline. The higher sampling

rate of the minimal preprocessing made the voxelized and pixelized source space considerably larger,

making the training phase very computationally heavy. Due to this, the 3M3DCNN, 2DCNN, and

ST3DCNN architectures were only tested with full preprocessing.

One factor that could limit the performance of the 2DCNN and ST3DCNN architectures, is the ge-

ometry of the brain in the ROIs for color responses. Both these architectures expect an input with

two spatial dimensions. To achieve this representation a projection from behind is performed on the

voxelized data. The V8 area, which has been proven to be involved in color perception, is not well

covered by this projection, due to the geometry of the brain. Figure 5.2 illustrates this problem. In the

paper introducing 2DCNN, the projection is done from above, to cover the areas of the brain related

to movement, as the activity to decode was motor imagery. The shape of the top of the brain is flatter,

and thus the 2D projection will get better coverage. This could be part of the reason that 2DCNN and

ST2DCNN did not perform well on the task of decoding RGB color responses.

Another conclusion that could be drawn from the results, is that spatial features are not as descrip-

tive for RGB color responses as for motor imagery tasks. The 3M3DCNN and 2DCNN architectures

were both used to classify motor imagery in their original papers. The 3M3DCNN architecture is not

limited by the projection, as it takes 3D voxel grids as input, yet it still performs significantly worse

than the deepConvNet architecture. This could indicate that temporal features are more relevant for

distinguishing color responses than spatial features.
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5.2.5 Data Augmentation

On average, neither of the data augmentation methods employed led to any notable increase in clas-

sification accuracy. Still, it only affects the time it takes to train the classifiers, it does not add any

computational complexity when using the classifiers, and so does not affect the applicability to on-

line uses. Given this, and its ease of implementation, the methods seem sensible to employ in any

EEG decoding paradigm. For subject 30, the accuracies with no data augmentation, noise injection,

and sliding window were 71%, 91%, and 99% respectively. It is not clear why this subject had such an

increase in performance, but it is possible that it is partly due to the stochastic nature of the training

and testing process. The random segmentation into training and testing sets, and the training proce-

dure itself will cause the results to vary somewhat. Thus, it could be that tests T3.1 and T3.2 had very

advantageous outcomes from these stochastic operations for subject 30. This being said, the perfor-

mance increase was so significant for both tests, that it is natural to assume that data augmentation

was especially favorable for the data from subject 30. It indicates that data augmentation may be of

great advantage in some cases.

5.2.6 A Review of BCI Applicability

One of the main motivations for exploring the decoding of color responses in EEG signals is to assess

the possibility of it being used in a BCI system. The work in this thesis has led to insight into the

applicability of both the RGB stimuli paradigm and the methods employed.

RGB Stimuli as Control Task

Naturally, the decoding accuracy of the control tasks is an important measure of their usability. What

should be considered an acceptable accuracy depends on the system to be controlled and on the

user’s requirements. If the BCI turns on and off lights, one might accept a lower accuracy than if it

is used to turn on an alarm requesting immediate assistance. The best results reported in this work

(T1.3) had an accuracy of 52% for the worst-performing subjects, and 97% for the best-performing

subject. An accuracy of 97% might be considered useful in some scenarios, but 52% should certainly

be considered unacceptable. However, all the subjects with the worst performance in this test had

faulty Oz and O2 electrodes or were noted to be sleepy or sleeping. The worst subject, if disregarding

the ones with faulty electrodes and incorrect behavior, had an accuracy of 75%. This is still low, as

it means one in every four inputs to the BCI would result in the wrong command. Lastly, it should

be reinstated that the data used in this research is likely unobtainable in a real-world scenario. The

recording was done under optimal conditions, with the stimuli coming from a screen placed directly

in front of the subjects. If the stimuli were coming from colored signs taking up less of the subjects’

field of view, it is only natural to assume the decoding would perform worse. In a realistic scenario,

the user would also be presented with several colors, and only focus on one of them, it is also likely

that this would make the decoding more difficult.

Feasibility of Methods in an Online Scenario

Although many of the methods employed in this work were computationally demanding, they might

still be useful for online applications. For instance, the channel selection is a method that would be
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employed offline during development, and which actually would reduce the computational complex-

ity for the online scenario. It has been demonstrated in this work that channel selection can be suc-

cessfully employed to reduce the number of channels, without loss of accuracy. Another important

result from the channel selection was that the validation subjects and the test subjects had similar

performances using the selected channels. This means that a selection of sources or electrodes that

are favorable for one person tends to be favorable for other persons as well. For BCIs, this is relevant,

as it means channel selection can be performed as part of the development, without needing data

from the users of the BCI.

The use of SR would require a bit more computation also for the online scenario. Computing the for-

ward model, the most demanding part of the SR process, only has to be done once, so it can be part of

an offline setup process. Still, computing the inverse solution has to be done online, and the resulting

data will be much larger than the raw electrode data. Since SR did not improve classification in this

research, it would not be sensible to employ it in a BCI, but for approaches where SR successfully im-

proves classification, source selection could be a great way to make it more suitable for online appli-

cations. The discovery that the minimal preprocessing approach yielded better results is also relevant

for BCI applications. Since the minimally preprocessed data has a higher sampling frequency, it is not

necessarily a less computationally costly approach, so this would have to be investigated further to

determine the optimal preprocessing for an online scenario.

5.3 Suggestions for Further Work

5.3.1 Inter-Subject Classifiers

This work has only explored intra-subject classifiers. If such classifiers are to be realized in a BCI, each

new user is required to go through the process of recording their responses to RGB stimuli, in a similar

fashion to the subjects used for the dataset in this research. Creating an inter-subject classifier would

alleviate new users from an exhausting and potentially costly recording session. One possible way to

implement such an inter-subject classifier would be to train a classifier on a pool of subjects during

development, and afterwards adapt the classifier to a new user by training it on a relatively small set

of examples for this new user. Such an approach has been explored with success in previous studies

[23].

5.3.2 Investigate Different Source Reconstruction Methods

The comparison between source selection in the subject-specific source space and the template source

space, indicated no advantage with using the individual source space. This could be a sign that the SR

is not optimal. An interesting subject for further study would be a systematic evaluation of different

SR methods and parameters. Several sets of data could be created using different SR approaches and

then tested using the classifiers explored in this project. The classification accuracy could then serve

as an indirect measure of how successful the SR was. The dSPM method was employed in this study,

but MNE-Python also has implementations of the sLORETA [58] and eLORETA [57] methods. Exper-

imenting with these methods and their parameters, could lead to more accurate SR and thus better

classification performance.
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5.3.3 4D Spatiotemporal Convolutions

The complete voxel grid representation of source space data has four dimensions: three spatial and

one temporal. Still, none of the DNNs employed in this work has performed 4D convolutions. ST3DCNN

explored the combination of spatial and temporal convolutions, but was limited to two spatial dimen-

sions, as Keras does not provide 4D convolutional layers. Developing an architecture that can perform

4D convolutions on source space data would be an interesting topic for future studies.

5.3.4 More Extensive Source Selection

The electrode selection led to several configurations, one of which used only 4 of the 58 available

electrodes. This configuration performed only marginally worse than the other configurations when

testing on the validation subjects. These four electrodes were all in the occipital region, indicating

that the channel selection could be used not only to improve classification, but also to localize areas

of interest for a given control task paradigm. In source space, the channel selection did not single out

areas in the same manner, but seemingly returned sources with a quite even distribution throughout

the original pool of sources. As discussed, this could be due to the limited scope of the GA. Perform-

ing source selection on the full source space, with a larger population size and a larger number of

generations, might result in a more distinct selection of sources. Such a selection could be interesting

not only in the context of classification, but could also reveal the spatial properties of color responses

with high spatial resolution. Such knowledge could for instance be used to optimize the positioning

of EEG electrodes for the RGB control task.
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5.4 Conclusion

The work presented in this thesis has provided grounds for assessing certain methods in the context

of classification of RGB visual stimuli in EEG signals, both in terms of their ability to yield high classifi-

cation accuracies and in the feasibility of their implementation in a BCI system. The work has shown

that channel selection by use of a GA could reduce the number of channels in both electrode- and

source space, without loss of classification accuracy. Channel selection was most effective in elec-

trode space, where it had a channel reduction of 83%, and caused an increase in accuracy of 3%. That

channel selection was less advantageous in source space could be attributed to the larger number of

channels to choose from. Performing channel selection in source space with a larger population and

for more generations may result in a larger channel reduction, a higher classification accuracy, and

a better understanding of the spatial distribution of color responses in the brain. The use of source

space data did not yield an increase in performance in this work, despite its high spatial resolution.

This being said, the DNNs implemented to take specific advantage of the source space representation

were somewhat limited due to computational complexity and framework restrictions, and sugges-

tions for further work on the topic have been provided. Lastly, the results of this work demonstrate

that responses to RGB visual stimuli can be classified from EEG signals with an accuracy of 88%, aver-

aged across subjects, under the correct conditions. This does not yet provide evidence that RGB stim-

uli can serve as the control tasks in a robust BCI, especially considering that the data was recorded

under optimal conditions. However, the best subject had an accuracy of 97%, demonstrating that

higher accuracies are obtainable.
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Appendix A

List of Abbreviations

BCI brain-computer interface

ML machine learning

GA genetic algorithm

MOGA multiobjective genetic algorithm

NS non-dominated sorting

EEG electroencephalography

MRI magnetic resonance imaging

DNN deep neural network

BEM boundary element method

ROI region of interest

MEG magnetoencephalography

CNS central nervous system

AP action potential

CNN convolutional neural network

EOG electrooculography

AWGN additive white Gaussian noise

SR source reconstruction

TOI time of interest

MNE minimum norm estimate

SNR signal-to-noise ratio

RGB red, green, and blue
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APPENDIX A. LIST OF ABBREVIATIONS

NN neural network

MI motor imagery

2D two-dimensional

4D four-dimensional

3D three-dimensional

ReLU rectified linear unit

4DDFM 4D dipole feature matrix

V1 visual area one

NTNU Norwegian University of Science and Technology,

GPU graphics processing unit,

CWT continuous wavelet transform

SSP signal-space projection

PTP peak-to-peak

VAL8 the eight validation subjects
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Decoding primary color responses in EEG signals with deep learning in the
source space

Simen Fløtaker1∗, Andres Soler1, Marta Molinas1
1Norwegian University of Science and Technology, Trondheim, Norway

∗ O. S. Bragstads Plass 7034, Trondheim, Norway. E-mail: simenpf@stud.ntnu.no

Introduction: The brain’s response to visual stimuli of different colors might be used in a
brain-computer interface (BCI) paradigm. Allowing the user to control certain elements
in its environment by looking at corresponding signs of different colors could serve as an
intuitive interface. This paper presents work on the development of a classifier for red,
green, and blue (RGB) visual evoked potentials (VEPs) in recordings performed with
electroencephalography (EEG).

Material, Methods and Results: The classifiers developed in this work were trained and
tested on a dataset of primary colors (RGB) visual stimulation. The dataset contains
60-channel EEG recordings from 31 subjects. The RGB colors were displayed on a screen
in front of the subjects for intervals of 1.3 seconds, in random order with 140 repetitions
for each color. Three convolutional neural networks (CNNs) were explored for this classi-
fication task: A graph CNN (GCNN) [1], EEGnet [2], and deep convNet [3]. Intra-subject
classifiers were developed for all 31 subjects. EEGnet and DeepCNN were trained in both
electrode and source space. The best classifier, deep convNet using all electrodes, yielded
an average accuracy of 77%. A previous study developing classifiers for the same dataset,
using conventional machine learning, reported an average accuracy of 74.43% for a subset
of subjects [4]. In this study, the same subset achieved an average accuracy of 84%.

Discussion: The results indicate that it is possible to distinguish between the primary
color responses. The hyperparameters of the three networks employed in this work have
been left unchanged (except for some modifications necessary for integration). Consid-
ering this, it is reasonable to assume that some tuning of these hyperparameters could
yield better results. The classifiers were expected to perform better in source space than
electrode space, however, this was in general not the case. This unexpected result could
be attributed to the fact that all three neural networks were originally developed for use
in electrode space.

Significance: The results of this work demonstrate that it is possible to classify between
primary color responses in EEG recordings. The results also show that deep learning
methods can be suitable alternatives to traditional machine learning for decoding pri-
mary color responses.
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Primary color decoding using deep learning on source reconstructed
EEG signal responses

Simen Fløtaker1, Andres Soler1 and Marta Molinas1

Abstract— The brain’s response to visual stimuli of different
colors might be used in a brain-computer interface (BCI)
paradigm, for letting a user control their surroundings by
looking at specific colors. Allowing the user to control certain
elements in its environment, such as lighting and doors, by
looking at corresponding signs of different colors could serve
as an intuitive interface. This paper presents work on the
development of an intra-subject classifier for red, green, and
blue (RGB) visual evoked potentials (VEPs) in recordings
performed with an electroencephalogram (EEG). Three deep
neural networks (DNNs), proposed in earlier papers, were
employed and tested for data in source- and electrode space.
All the tests performed in electrode space yielded better
results than those in source space. The best classifier yielded
an accuracy of 77% averaged over all subjects, with the best
subject having an accuracy of 96%.

Clinical relevance— This paper demonstrates that deep
learning can be used to classify between red, green and blue
visual evoked potentials in EEG recordings with an average
accuracy of 77%.

I. INTRODUCTION

Brain-computer interfaces (BCIs) are systems built to
let the user control devices with their brain activity. Such
systems can be of great assistance for persons with physical
disabilities, as an alternative to traditional systems, which
often require physical interaction with the device. For a BCI
to be implemented, it requires some form of measurement of
brain activity. One common way of doing this is electroen-
cephalography (EEG). EEG can be non-invasive and it can
meet high real-time demands, making it a suitable component
for a BCI [1].

After recording the brain activity, the BCI also has to
interpret that data. This often involves classifying the data
into a set of classes, each corresponding to a desired action of
the BCI. Performing this classification is a crucial component
of the BCI. Without a robust classification method, the
actions performed by the BCI might be spurious, which
is unacceptable for most control systems. Creating a ro-
bust classifier for any signal requires firstly identifying the
features of the signal that are relevant to the task, and
secondly performing a classification based on these features.
Traditionally, feature extraction is done manually and the
classification by machine learning (ML). Understanding what
features are relevant for which tasks may require expertise
in the field, and can be very difficult for novel tasks. Deep

1Department of Engineering Cybernetics, Norwegian University of
Science and Technology, Norway. simenpf@stud.ntnu.no,
andres.f.soler.guevara@ntnu.no,
marta.molinas@ntnu.no

learning is an interesting alternative to traditional ML, as it
learns both features and classification from data [2]. This
facilitates finding novel features for any task, as well as
lessening the need for expertise in the field.

For any BCI paradigm, one has to establish a set of brain
activities the user should exert, each different enough to be
distinguishable. Eliciting such signals may be nonintuitive
and difficult for the user [1]. Moreover, Allison et al. [1] point
out that the signals for different users might be very different,
even if attempting to elicit the same brain activity. As
humans, our response to colors is very well-trained, we can
identify whether something is blue or red without thinking.
Since color vision is such a primal part of human life and we
easily distinguish between colors, it is natural to assume that
color stimuli elicit distinguishable brain activity. A classifier
able to separate what color a subject is looking at could be
of use in a BCI. For instance, looking at signs of different
colors could allow control of the user’s environment, such
as opening and closing doors, and turning on and off lights.

Several previous studies have explored classification of
brain activity in subjects visually stimulated with red, green
and blue (RGB) colors. One study achieved an accuracy of
58%, for a naive Bayes RGB classifier [3]. In [4], the same
dataset used in this study was used to train and test machine
learning classifiers. Their best results were obtained with
a minimum distance to mean with geodesic filtering (Fg-
MDM) Riemannian classifier, yielding an average accuracy
of 74.48% per subject. In this study, in an attempt to better
untangle the encoded colors, source reconstruction, a method
for estimating the magnitude and location of neural activity
in the brain from EEG signals, was used in combination with
deep learning.

This paper is structured into four main sections: This
introduction, material and methods, results, and discussion.
The dataset used in this paper, the source reconstruction,
and classification methods are all described in the section
materials and methods. Finally, a conclusion is provided. A
more exhaustive report on this work is available online [5].

II. MATERIAL AND METHODS
A. DATASET

The classifiers developed in this work were trained and
tested on a dataset where the participants were exposed to
primary colors (RGB). The colors were displayed on a screen
in front of the participant for intervals of 1.3 seconds, in
random order with 140 repetitions for each color. Between
each repetition, a gray screen with a cross in the middle
was displayed for a random interval of 1.3-1.6 seconds. This



Randomly select red,
green or blue.

Display red for 1.3
seconds.

Display green for
1.3 seconds.

Display blue for
1.3 seconds.

Display gray for a random interval
in the range 1.3-1.6 seconds.

Start

Fig. 1. The stimulus protocol during EEG recording.

protocol is illustrated in Fig. 1. The dataset consists of 60-
channel EEG recordings during color presentation and struc-
tural MRI from 31 participants (10 females) with an average
age of 28.8 (sd 7.4) years old, the participants had normal or
corrected-to-normal vision without color impairments. The
study was carried out in accordance with the Declaration of
Helsinki and all participants provided their informed consent
prior to participation. The study was approved by the Data
Protection Authority (NSD, reference number 968653). The
dataset was recorded at the Aalto NeuroImaging facility of
Aalto University.

B. PREPROCESSING

The raw EEG recordings were preprocessed before being
used to train and test the neural network classifiers. A notch
filter of 50Hz was applied, in order to reject the interference
from the powerline. A bandpass filter with the frequency
range 0.1-45Hz was applied, in order to filter out frequencies
not of interest. After the filtering, the data were downsampled
to 200Hz. The recordings were split into separate epochs, one
for each stimulus event. The epoch interval was chosen to
be from -0.2 seconds before the stimulus to 1.25 seconds

Validation Subject Test Subjects

Training Examples Validation Examples Model Architecture
and

hyperparameters

...

... ...

Model weights

Training Examples Test Examples

... ...

Model weights

Fig. 2. The structure of the dataset. The validation subject is used to test
different hyperparameters and architectures, and the best choice is selected
for testing. The validation subject (sub-18), was randomly selected.

after. Baseline correction was applied, by calculating the
mean of the 0.2 seconds of data from all channels and
then subtracting these means from their respective channels
throughout the whole epoch. Blinking artifacts were detected
by a peak-finding algorithm. Epochs were discarded if a blink
artifact was found within a 200ms interval centered around
the onset of the stimulus. Signal-space projection (SSP) was
employed to reduce the remaining blink artifacts. A criterion
for the maximal acceptable peak-to-peak amplitude of 150
µV within each epoch was set. Thus, any epoch where
the difference between the maximal and minimal value for
at least one EEG channel was larger than 150 µV, was
discarded. All preprocessing was done using MNE-Python
[6].

C. SOURCE RECONSTRUCTION

The forward model was created using individual magnetic
resonance imaging (MRI) data for each subject. Coregis-
tration was manually performed for each subject, such that
digitized electrode positions were best transformed into the
MRI frame for the forward modeling. A boundary element
model (BEM) was used to define the conduction of the
brain volume. The sources were distributed on the surface
of the white matter. The inverse problem was then solved
with the dSPM method [7]. The source space data were
aggregated into regions of interest (ROIs) using the automatic
parcellation of the brain volume proposed by [8], resulting
in 150 dipoles (75 in each hemisphere). In order to aggregate
the sources in a ROI into one single value, two steps were
taken: First, find the sign of the value for each source and
select the sign most represented as the dominant sign. Flip
all source values that do not have the dominant sign. Use
the mean of all resulting source values as the ROI value. For
most applications, the direction of the dipoles is not relevant
[9], rather the amplitude is the important information. By
flipping the signs, an average value of the amplitudes in
the ROI is obtained, avoiding the cancellation of opposing
signs during the averaging. The source reconstruction and
parcellation was done using MNE-Python [6].

D. CLASSIFICATION METHODS

The work was focused on exploring EEG classification
using source space representation. Since the data is of a
similar nature in both source- and electrode space (nchannels×
ntimes, with nchannels being the number of dipoles or electrodes
for source- and electrode space respectively), the same neural
network architectures can be used for both types of data,
by modifying the input layer of the network. Three neural
networks were employed in this work, using Keras [10]:

• Shallow EEG-GCNN (Graph Convolutional Neural
Network), [11]

• EEGNet (Convolutional Neural Network), [12]
• Deep ConvNet (Convolutional Neural Network), [13]

All three networks were implemented with the same hyper-
parameters as in the papers they were originally proposed
(except for some minor modifications necessary for integra-
tion). The graph convolutional neural network (GCNN) uses



an adjacency matrix to represent the data structure as a graph.
Each dipole is treated as a node and the time series of that
dipole is treated as its feature vector. The edges between
node i and j is represented by the value of element aij in
the adjacency matrix. In this work, if the ROIs represented by
two nodes i and j share a border, aij was set to 1, otherwise
it would be set to 0.

Only intra-subject classifiers have been explored in this
work. Hence, each classifier had to be trained and tested on
data from only one subject. To explore different configura-
tions and hyperparameters before testing, the following rou-
tine was developed: The subjects are randomly divided into
two groups: validation subject and test subjects. The dataset
from the validation subject are each randomly segmented into
its own training set and validation set. The datasets from the
test subjects are each randomly segmented into a training
set and a test set. Fig.2 depicts this structure. In practice,
the segmentation within each subject was done with cross-
validation. The purpose of separating into validation subject
and test subjects is to explore different DNN architectures
and hyperparameter configurations. Different configurations
can be trained on the validation subject, and then evaluated
on its validation set. Several configurations can be found by
iterating this process. However, the accuracy found for the
validation subject must be considered overly optimistic due
to possible overfitting. So the final configuration is tested on
the test subject, to see how well it generalizes.

Using only a subset of ROIs/electrodes for classification
may be beneficial. Some regions of the brain may be more
descriptive than others for the task at hand, thus using only
those could reduce the overall signal-to-noise ratio in the
data, and improve the classification. For instance, since the
aim is to discriminate visual evoked potentials (VEPs), the
occipital lobe might be such a region, as it is the brain area
that interprets visual stimuli [14]. No optimal selection was
performed to select a certain set of ROIs/electrodes in this
work, but two different configurations were tested: using all
ROIs/electrodes and using a selected set of ROIs/electrodes.
In source space, the selected set was all 24 ROIs of the
occipital lobe. In electrode space, the selected set was eight
electrodes placed in the vicinity of the occipital lobe.

III. RESULTS

EEGNet and deep ConvNet (DCN) classifiers were trained
and tested in both source- and electrode space. All these clas-
sifiers were developed for both channel configurations (all
channels and selected channels). The GCNN was only built
for source space using all ROIs. The results presented are the
accuracies and standard deviations of intra-subject classifiers
tested using a 5-fold cross-validation, those accuracies are
presented in Table II. Two trends can be observed from the
results: DCN performs better than EEGNet, and electrode
space classifiers tend to perform better than source space
classifiers. For all classifiers, especially those performing
well, there is a noticeable difference between the best and the
worst-performing subjects. This can be partially explained by
some subjects not having correct behavior during the EEG

recording. The subjects were observed during the recording,
and notes were taken of some subjects being sleepy or
moving excessively. The results show that these subjects
tend to perform worse than the average. In addition, for one
subject two of the EEG channels located in the vicinity of
the occipital lobe did not function correctly and delivered
no signal. This subject was among the worst-performing
subjects in all tests. In a previous study using the same
dataset [4], a choice was made to leave out a set of subjects.
The motivation for leaving out these subjects was a set of
requirements for a session to be allowed in their study, such
as correct behavior of the subjects and no flat channels on
the visual cortex. For the same subset of subjects used in
this previous study, the best results in this paper (using
deepConvnet with all electrodes) yield an average accuracy
of 84%. Table I compares the results of this study to those
reported in [4].

TABLE I
CLASSIFICATION RESULTS USING THE SAME SUBJECT SUBSET AS IN

[4]

This study Previous study [4]Electrode space Source Space
Best acc. 0.96 0.87 0.93
Average acc. 0.84 0.58 0.75
Average std. 0.04 0.05 0.08
Worst acc. 0.66 0.38 0.54

IV. DISCUSSION

All average performances of EEGNet and DCN were
better in electrode space than source space, regardless of
electrode and ROI selection. This was not the expected result,
seeing as the source space representation theoretically has a
higher spatial resolution [9], and thus different conditions
should be easier to discriminate. One possible explanation
for this unexpected result is that both networks were de-
veloped for electrode space classification. Although both
representations have a similar nature, it is not necessarily
the case that a given DNN architecture is equally suitable
for source- and electrode space. When averaging the sources
much of the spatial resolution might be lost. It is effectively
a spatial downsampling of the source space. Thus, some
of the advantages gained in spatial resolution, by using
source reconstruction, may be lost. As mentioned, the use
of only some specific ROIs may serve as a method for
improving classification. This method also has the advantage
of reducing data dimensionality. Instead of reducing the data
size by averaging into different regions, one could rather
select a subset of sources from the entire set of sources (ca.
8000). By selecting certain regions expected or demonstrated
to be relevant for decoding color stimuli, one could keep a
high spatial resolution in those areas, while also reducing the
data size.

The architectures evaluated in this study have been used
with their original hyperparameters, the results also serve
as an example that certain DNNs can be applicable across
different tasks. One of the concerns regarding deep learning,



TABLE II
CLASSIFICATION RESULTS

Classifier Accuracy best Accuracy average SD average Accuracy worst
DCN, source space (selected, 24) 0.87 0.54 0.05 0.38
DCN, source space (all, 150) 0.79 0.53 0.05 0.43
EEGNet, source space (selected, 24) 0.71 0.48 0.05 0.37
EEGNet, source space (all, 150) 0.68 0.53 0.05 0.42
GCNN, source space (all, 150) 0.47 0.36 0.05 0.29
DCN, electrode space (selected, 8) 0.96 0.77 0.04 0.46
DCN, electrode space (all, 60) 0.95 0.72 0.04 0.37
EEGNet, electrode space (selected, 8) 0.92 0.67 0.05 0.41
EEGNet, electrode space (all, 60) 0.88 0.59 0.06 0.34

raised in [2], is the often unjustified selection of param-
eters in DNNs, making it difficult to rule out that some
tuning based on the test set has occurred. That EEGNet
and DCN, with their original hyperparameters, classify with
higher accuracy than previous studies on RGB stimuli, is
further evidence that these architectures are suitable for EEG
decoding, and that their parameters are not overfitted to the
test sets of the original papers

There are several reasons to believe that further work
can achieve better performance than that reported in this
project. Both EEGNet and DCN performed reasonably well,
however, no modifications have been done to the design
or hyperparameters of these architectures. It is reasonable
to assume that these architectures could be tailored more
specifically to the task of classifying RGB stimuli, and
thus achieve better results. Such tailoring could for instance
involve testing different numbers and widths of layers in the
model.

The results show that choosing a subset of channels in
the vicinity of the occipital lobe does yield an increase in
performance. In light of this, it seems natural that there is an
optimal subset of channels to use. This should be explored
by employing a structured search for an optimal channel
subset. Not only could this help develop a better-performing
classifier, but choosing a subset of channels would also result
in less data and fewer electrodes needed. This would make
the classifier more applicable to a BCI, where few electrodes
and low computational cost are important factors.

Variability of light conditions and color tones were not
considered in this study. Towards a BCI implementation the
variability of these parameters should taken into account,
further studies should clarify the color classification in more
naturalistic scenarios. The color vision impairment can be a
limitation of the usability of a BCI based on colors, future
evaluations on color blind participants could help to clarify
the boundaries of this approach.

V. CONCLUSIONS

In conclusion, the results reported in this study suggest
that deep learning can be a suitable approach for classifying
RGB stimuli. All architectures employed in this project have
been implemented with minimal adaption to the task at
hand. Thus, the level of accuracy of both EEGNet and DCN
suggests that some DNNs can be suitable across different
tasks. Moreover, it is reasonable to believe that modifying
these architectures for the classification of RGB responses

would yield better results.
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