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Abstract

Cardiopulmonary exercise testing (CPET) is a non-invasive approach to measure the maxi-

mum oxygen uptake ( _VO2� max), which is an index to assess cardiovascular fitness (CF).

However, CPET is not available to all populations and cannot be obtained continuously.

Thus, wearable sensors are associated with machine learning (ML) algorithms to investigate

CF. Therefore, this study aimed to predict CF by using ML algorithms using data obtained

by wearable technologies. For this purpose, 43 volunteers with different levels of aerobic

power, who wore a wearable device to collect unobtrusive data for 7 days, were evaluated

by CPET. Eleven inputs (sex, age, weight, height, and body mass index, breathing rate, min-

ute ventilation, total hip acceleration, walking cadence, heart rate, and tidal volume) were

used to predict the _VO2� max by support vector regression (SVR). Afterward, the SHapley

Additive exPlanations (SHAP) method was used to explain their results. SVR was able to

predict the CF, and the SHAP method showed that the inputs related to hemodynamic and

anthropometric domains were the most important ones to predict the CF. Therefore, we con-

clude that the cardiovascular fitness can be predicted by wearable technologies associated

with machine learning during unsupervised activities of daily living.

Introduction

Noncommunicable chronic diseases (NCDs) are mainly responsible for all causes of death and

illness among adults aged between 35–70 years, and cardiovascular diseases are accountable

for the main cause of mortality in the world [1]. There are some modifiable risk factors associ-

ated with NCDs, such as high systolic arterial pressure, high fasting plasma glucose, as well as

low physical activity [2, 3].

It is known that the cardiovascular diseases and their modifiable risk factors lead to a reduc-

tion in cardiovascular fitness (CF) [4, 5]. Moreover, higher CF levels have a protective effect
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against cardiovascular diseases and all-cause mortality in varied populations [4, 6, 7]. Thus,

due to the considerable relevance of increasing population lifetime, the continuous measure-

ment of CF could be considered a vital sign, and thus, it should be a priority in public health

[8]; however, the definition and ways of evaluation of the CF are contradictory [9–11].

CF is commonly evaluated by measuring the maximum oxygen uptake ( _VO2� max), as the

index of maximal aerobic power, obtained during cardiopulmonary exercise testing (CPET)

[11–13]. The _VO2� max reflects the maximal capacity of the pulmonary, cardiovascular, and

metabolic systems to capture, transport, and utilize oxygen, respectively, which is directly

influenced by the CF [13, 14]. However, the _VO2� max measurement during the CPET requires

trained professionals and expensive equipment [15–17], and is rarely used as a prevention tool

in the general population. For this reason, the CF assessed by _VO2� max during CPET is not

available to all populations and cannot be obtained continuously.

Therefore, considering the difficulties of performing the CPET, but given the high clinical

value to assess cardiovascular fitness, new methods for continuous assessment of CF are

needed. These methods could be more realistic, unobstructive, and accessible to all popula-

tions if performed outside laboratory settings, during unsupervised activities of daily living

(ADL) [18]. Wearable sensors and vital signal fusion might represent a unique possibility to

infer CF continuously, allowing the use of this technology in the future for pre-symptomatic

detection of NCDs, especially cardiovascular diseases [6, 7].

Furthermore, there is an increasing number of studies that have combined the use of wear-

ables and machine learning techniques for monitoring patients with NCDs, especially in the

cardiorespiratory field [19, 20]. In fact, longitudinal data from wearables seem to contain

enough information to predict CF of healthy volunteers during unsupervised ADL from com-

plex machine learning algorithms [21–25].

However, despite the great potential of the combination between wearables and machine

learning, there is still a lack of evidence for using these technologies to predict CF in patients

with NCDs, especially in diabetes mellitus, chronic pulmonary disease, and cardiovascular dis-

eases. Furthermore, understanding how these models, trained from machine learning algo-

rithms, can transform vital signals into _VO2� max may provide complex mechanistic insights

regarding the differences in CF between volunteers. Due to the complexity of the _VO2� max pre-

diction algorithms based on features obtained from wearable technologies [25], the interpret-

ability of how longitudinal vital signals are being transformed into _VO2� max is exceptionally

low [26] because of the expected trade-off between the interpretability of a given model, and

its performance to predict health outcomes [27].

Recently, explainable models have been used in medical science to better justify decision-

making of the prediction models [26]. It is known that wearable sensors are useful for the con-

tinuous biological data acquisition that can be associated with machine learning techniques,

such as Random Forest Regression, Neural Network and Support Vector Regression Machines

to predict CF [21, 25]. Thus, understanding these models might also indicate how the human

“black box” physiological systems interact with the environment, approximating the explain-

ability of these complex algorithms to what we experience when using simpler methods, such

as in linear regression models.

The SHapley Additive exPlanations (SHAP) is a valuable approach derived from the coali-

tional game theory, which can be used to interpret complex models built from supervised

machine learning methods obtained from biological data [26, 28]. In this paper, we investigate

the use of Shapley to assess the importance of features in the CF prediction problem. The main

motivation for its use relies on (1) its ability to be model agnostic (i.e., method for explainabil-

ity associated with any model to extract extra information about the prediction procedure
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[26]. In this case, we can simply replace linear models with complex models without losing

much interpretability; (2) to produce interpretations for a single data point; and (3) to produce

human-friendly explanations for linear regression results when we deal with multiple regres-

sion problems. Furthermore, Shapley-based methods can produce visual interpretations in

which we can easily visualize the global or local feature contributions [29].

Therefore, our main objective is to predict CF by using machine learning algorithms from

data obtained by wearable technologies of volunteers with a broad spectrum of maximal aero-

bic power (or _VO2� max, as an index of CF level). Afterward, an explainable artificial intelligence

(AI) method will be used to investigate “how” CF can be estimated from the longitudinal sig-

nals acquired by wearables during unobtrusive experimental protocols. Our hypothesis is that

machine learning algorithms can provide suitable models to predict _VO2� max when trained

with vital signals collected by wearables, and explainable AI methods can interpret the predic-

tion models’ output of these algorithms. By doing so, we have a better understanding of how

longitudinal signals during ADL are related with _VO2� max, which has clinical implications for

CF. Consequently, this study will demonstrate an innovative approach to predicting the onset

of NCDs in future studies by continuously evaluating _VO2� max, in addition to explaining the

differences in CF among volunteers through explainable methods.

Materials and methods

Study design

This longitudinal study was approved by the Federal University of Sao Carlos Ethics Commit-

tee (CAAE: 80459817.5.1001.5504), and it was conducted in the Cardiovascular Physiotherapy

Laboratory at the Federal University of Sao Carlos (UFSCar). All procedures followed the Hel-

sinki declaration, and all volunteers signed a free and informed consent form in accordance

with Resolution 466/2012 of the National Health Council.

The inclusion criteria were both sexes, ages of 18–80 years, and different levels of aerobic

power (including apparently healthy volunteers, with risk factors to develop NCDs, or with

type 2 diabetes mellitus, chronic obstructive pulmonary disease, or coronary arterial disease).

All volunteer clinical conditions were validated from a medical diagnosis. Volunteers were

excluded by orthopedic or neurological limitations; associated uncontrolled heart diseases,

abnormality in the resting or exercising ECG response (infra-uneven ST-segment > 2 mm,

unsustainable atrial tachycardia, atrial fibrillation or atrioventricular blocks, ventricular or

supraventricular arrhythmias) that would prevent them from following the proposed protocol.

Volunteers that wore the t-shirts for less than 5 days or less than 6 hours per day were also

excluded. For the volunteers with NCDs, the pulse saturation (SpO2) was verified at resting by

pulse oximeter (sense 10, ALFAMED, Lagoa do Sino, Brazil) for safety. The experimental pro-

tocol comprised three main steps.

Step one

During the first laboratory visit, volunteers were questioned about their health, lifestyle habits,

exercise practice, and disease conditions (if present). Afterwards, they performed a physical

evaluation comprising measurements such as weight, height, thorax, and abdominal circum-

ference, and resting vital signals (heart rate, breathing rate, and arterial pressure). Finally, the

researcher explained about using the wearable device, including how to wear it properly,

remove and wash it (smart shirt will be further explained in the text in the future) and how to

charge the battery.
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Step two

On the second day in the laboratory, volunteers performed the CPET on a cycle ergometer

(Quinton Corival1 400, Seattle, USA) with a ramp-type protocol to assess the CF. The power

increment was calculated using the formula described by Wasserman, considering height, age,

and sex [14]. The test consisted of: (1) five minutes at rest, (2) three minutes unloaded warm-

up, (3) 9.6±1.4 minutes ramp protocol (with 20.7±7.1 watts per minute increment), and (4) six

minutes unloaded cycling for active recovery. All volunteers were encouraged to keep a con-

stant cycling of 60 to 65 rpm and were stimulated to continue the CPET until volitional fatigue.

The oxygen uptake and minute ventilation were measured breath-by-breath by a metabolic

system (Vmax29c, Sensor Medics, Yorba Linda, CA, USA) calibrated before each experiment,

according to the manufacturer’s manual. Moreover, heart rate (HR) was calculated during the

exercise based on a single lead ECG system (BioAmp FE132, ADInstruments, Australia).

The interruption criteria were according to previous work [16], and just one volunteer had

the CPET interrupted due to the unexpected (excessively high) increase in arterial pressure.

One volunteer was also excluded from this study due to oxygen desaturation on resting imme-

diately before the CPET.

Step three

The last step took seven days, where the vital signals from the wearable sensors were collected

during unsupervised ADL, in an unobtrusive way, where participants maintained their daily

routine. The volunteers were instructed to use the smart shirt for seven days, at least for eight

active hours per day, except during showering and water activities. The smart shirt has three

embedded sensors, and the raw signals were used to obtain biological and environmental data

by a previously validated [30] proprietary algorithm. The HR data was measured by an ECG

system (one-lead ECG channel, frequency: 256 Hz and with 12 bits resolution), and an algo-

rithm that filters and averages the HR over the last 16 heartbeats. The breathing rate (BR),

minute ventilation (Ve), and tidal volume (Vt) were estimated by the thoracic and abdominal

belts. The Vt variable was obtained by dividing Ve by BR (Vt = Ve/BR). The respiratory belts

were based on inductance plethysmography (sampled at 128 Hz with 16 bits resolution), and

BR, Ve, and Vt were averaged over the last seven respiration cycles. The environmental data

from total hip acceleration (Acc), and walking cadence (Cad) were based on triaxial acceler-

ometer signals located at the right side of the hip. It was collected at 64 Hz, with a 13 bits reso-

lution and a range of 16 g (with 0.004 g of resolution step). All data were resampled at 1 Hz.

Data analysis

During the CPET, the following metabolic variables were measured: oxygen uptake ( _VO2);

carbon dioxide output ( _VCO2); and respiratory exchange ratio (RER, or _VCO2=
_VO2). Data

were pre-processed in MatLab routine where the data were interpolated at 1 Hz, and then, the

metabolic data were synchronized with HR, which was also used as a secondary criterion to

confirm _VO2� max, as described in Table 1 [31]. For each variable, the maximum (including the

_VO2� max, RERmax, and HRmax) was considered as the average of the last 20 s of the exercise pro-

tocol, before the CPET interruption. The _VO2� max (as a surrogate for CF) was considered as

the ground truth for the machine learning algorithms training that should predict the _VO2� max

(pred _VO2� max) based on the inputs from the wearables and volunteer´s personal information.

Another MatLab routine was used to process the unobtrusive longitudinal data from the

smart shirt. Initially, the 1-Hz variables were downloaded from the Hexoskin’s dashboard

(please check the documentation at https://www.hexoskin.com/pages/hexoskin-connected-
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health-platform –as of August 2021). Each downloaded dataset (~7 days) was combined into a

single dataset consisting of 65±13 hours; For HR, beats/min lower than 30 and higher than 220

were excluded. For respiratory measurements, BR values lower than 3 and higher than 79 were

used as a reference to exclude data also from Ve and Vt variables, beyond BR. Finally, the aver-

age response for all variables (μHR, μBR, μVe, μVt, μAcc, μCad) was computed and used as the

inputs for the machine learning algorithms.

Framework

As described before, the MatLab scripts were used to calculate the biological signal-derived

inputs and the output data ( _VO2� max). Beyond the inputs from wearables (i.e., μHR, μBR, μVe,

μVt, μAcc, and μCad), the age, sex, weight, height, and body mass index (BMI, weight/height2)

of each volunteer were also used as inputs to estimate the pred _VO2� max by machine learning

algorithms (further explained). These steps are illustrated in Fig 1.

Machine learning algorithm

Support vector machine (SVM) comprises a set of supervised learning algorithms used for

classification and regression analysis. Introduced by Cortes and Vapnik [32], SVM is one of

the most robust and flexible machine learning algorithms that has been successfully applied to

several different problems [32]. In short, SVM algorithms build a model by finding a hyper-

plane in an n-dimensional space in which data points could be distinctly classified. Differently

from other linear regression methods, the SVM algorithm creates a safety boundary from both

sides of the hyperplane (known as margins), which is paramount information for better

Table 1. Characteristics of volunteers, peak variables obtained during the cardiopulmonary exercise testing, and

the mean response of the variables obtained by the wearable.

Characteristics of Subjects (n = 43)

Anthropometric

Sex (M/F) 32/11

Age (years) 37.50(25.00–55.00)

Weight (kg) 75.41±13.12

Height (m) 1.74±0.09

BMI (kg/m2) 24.84±3.12

CPET Peak

_V_O2� max (l/min) 2.42±0.80

RERmax 1.28±0.10

HRmax (bpm) 169.27(155.71–183.50)

Wearable

μBR (rpm) 17.92(16.48–19.77)

μVE (l/min) 15.86±4.71

μAcc (g) 0.06±0.03

μHR (bpm) 84.09±8.57

Cad (spm) 5.61(3.47–8.38)

μVt (ml/min) 896.80±251.03

M: male; F: female; BMI: body mass index; CPET: cardiopulmonary exercise testing; _V_O2-max: maximum oxygen

uptake; RERmax: maximum respiratory exchange ratio; HRmax: maximum heart rate; BR: breathing rate; VE: minute

ventilation; Acc (g): total hip acceleration, by gravity; Cad (spm): walking cadence, by steps per minute; μ: mean

response.

https://doi.org/10.1371/journal.pone.0282398.t001
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modelling the uncertainties in the decision boundary zone considering two-class distribution.

Thus, the SVM algorithm maximizes the separation (margin) between two classes in a higher-

dimensional space from the input features. In the context of regression analysis, the SVM algo-

rithm aims to find a linear function f(x) under the condition that f(x) is within a required accu-

racy epsilon from the y(x) of every data point, i.e., |y(x)-f(x)|� ε where ε is the distance

between observed and predicted values for each data point. This work adopted the use of Sup-

port Vector Regression (SVR), an SVM formulation for regression problems [33] operating

with a radial basis function as Kernel.

In turn, the SVM algorithms can produce more accurate and flexible models, despite the

lack of some interpretability. SVM models can be considered partially interpretable models as

we can determine which training data point is relevant for the prediction (i.e., the support vec-

tors). On the other hand, it is hard to infer the contribution of features to the model’s output

as the input data points are projected into a higher-dimensional space to decide the predicted

output value. To have accurate, and yet interpretable models, our methodology considers the

use of a specific method for interpretable machine learning methods. In this work, we adopted

the use of the SHapley Additive exPlanations (SHAP) method to estimate a local surrogate

model, which was used to explain individual predictions. Thus, we can better manage the

trade-off between accuracy and interpretability by taking advantage of robust regression algo-

rithms and the SHAP method, which is described in the next section.

Fig 1. The wearable system has embedded cardiac, respiratory, and movement sensors that measure unsupervised and unobtrusive biological data. These raw data

are processed, filtered, and averaged. Mean response to heart rate (μHR), breathing rate (μBR), minute ventilation (μVE), tidal volume (μVt), total hip acceleration (μAcc),

and walking cadence (μCad), as well as sex, age, weight, height, and body mass index (BMI), were used as inputs to predict the maximum oxygen uptake (pred _V_O2� max).

The resultant prediction model is a black box due to its high complexity and low explainability; therefore, explainable methods are necessary to extract meaningful

knowledge that might have clinical applications.

https://doi.org/10.1371/journal.pone.0282398.g001

PLOS ONE Characterizing cardiovascular fitness using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0282398 March 2, 2023 6 / 18

https://doi.org/10.1371/journal.pone.0282398.g001
https://doi.org/10.1371/journal.pone.0282398


Explainable methods

The ability to explain and interpret the prediction model’s output is essential since the under-

standing of these models might also indicate how the human physiological systems interact

with the environment. EXplainable Artificial Intelligence (XAI) is a growing research topic in

the machine learning community and several methods have been proposed recently [34]. We

can categorize the current approach for XAI as global and local explainable methods. While

local methods provide explanations for each data point individually [35], global methods are

able to provide explanations that make the entire model easier to understand, in addition to

providing the rationale for the models to produce all possible results [34].

The SHapley Additive exPlanations (SHAP) approach [36] aims to explain the prediction of

a given data point by computing the Shapley value for each feature input, which represents

how much the features contribute to the model’s prediction value. The concept of the Shapley

value was originally introduced by Lloyd in the context of the cooperative game theory [37]

that involves a fair distribution of both gains and costs to several players acting in coalition.

Thus, Shapley value tries to ensure that each actor gains as much or more as they would have

from acting independently. In explainable machine learning, the Shapley value of a feature

input comprises its contribution to the model’s prediction value, weighted and summed over

all possible feature input combinations.

To evaluate the robustness and reliability of the regression models built in this study, we

adopted the use of k-fold cross-validation. The evaluation protocol adopted in this study was

designed to have predictions for each participant. To do this, we split the data into k folds (k = 9)

disjoint among participants, which means that we do not have the same participant in two or

more folds. Fig 2 illustrates the methodology adopted in this study. Typically, k-fold implementa-

tions available in well-known software packages fill the gaps by duplicating some arbitrary data

points when there is no integer division between the data point and the number of folds. We

decided to avoid this duplication due to the possibility of biasing our results. This strategy resulted

in 9 values of R-squared, Mean Absolute Error (MAE) and Pearson correlation coefficient (R),

and we assess the overall performance of our algorithm by computing the average of these metrics.

Then, we estimated a regression model for each fold by using the k-th fold for validation purposes

and the remaining folds for training purposes. To evaluate the effectiveness of built models, we

computed the average of MAE and R between the observed ( _VO2� max) and predicted

(pred _VO2� max) value of _VO2� max. For the MAE metrics low values are better, while for the Pear-

son correlation coefficient, values near 1.0 indicate a near-perfect correlation.

Statistical analysis

We calculated the R and the Bland Altman plot to further investigate the agreement level

between the _VO2� max and the pred _VO2� max for each volunteer. The Bland-Altman plot was

done in Microsoft Excel (Office package 365, Microsoft Corporation, Redmond, WA), and the

prediction quality was classified as “valid” when the R-value was higher than 0.7 [38].

The source of the data variability of the Shapley value of each input feature (i.e., their contri-

bution for the predicted value of pred _VO2� max) originated from the cross-validation method

described above. The Shapley data normality was tested by the Shapiro Wilk test, and all the

Shapley values presented a non-normal distribution. Thus, Friedman repeated-measures anal-

ysis along with the post-hoc Tukey Test was used to compare the final Shapley values (obtained

from SHAP) between all inputs, since the Shapley values are normalized between the inputs.

In addition, the Shapley values for each eleven inputs were grouped into four domains:

Anthropometric (age, weight, height, sex, and BMI), Hemodynamic (HR), Physical Activity
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(Acc and Cad), and Pulmonary (BR, Ve, and Vt). For each input, nine Shapley values were

computed from the cross-validation. Afterward, within each domain, the Shapley values of the

inputs were summed and divided by the number of inputs for this domain. Moreover, Fried-

man repeated-measures analysis or One Way Repeated Measures Analysis (depending on the

data distribution tested by Shapiro-Wilk), with the post-hoc Tukey Test, were used to compare

the final domain importance level between the four domains. Finally, the Spearman correla-

tion (as the data were non-normally distributed) was used to verify the correlation level

between all the Shapley values of the inputs (i.e., sex, age, weight, height, and BMI, BR, Ve,

Acc, HR, Cad, and Vt).

Statistical analyses and graphs were done in Sigma Plot 14.0 (Systat Software Inc, Chicago,

2018). The statistical significance level (p) was set at 0.05.

Results

As presented in Fig 3, 43 volunteers were included in the statistical analysis.

The demographic and anthropometric characteristics of the volunteers are presented in

Table 1. From the 43 volunteers, 74.4% were men, and the age ranged from 19 to 72 years.

According to a previous publication [39]; 5%, 21%, 51%, 21%, and 2% of the volunteers were

classified as very low, low, fair, good, and excellent aerobic power, respectively accordingly

their _VO2� max in relation to the participant’s weight, which indicates a broad aerobic power

spectrum. All CPET were interrupted due to volitional fatigue where the mean of maximum

respiratory exchange ratio (RERmax) among all participants was higher than 1.1. In addition,

Fig 2. Evaluation protocol adopted for this study. Given a dataset containing wearable data from 43 participants, we first use the k-fold cross-validation

(k = 9) to evaluate generalization aspects of regression models. Then, we use the R-squared measure to select the best model, which is used to build an

explainable model via Shapley values to assess the feature contributions. We also computed the average Mean Absolute Error (MAE), and Pearson correlation

to assess the accuracy of regression models.

https://doi.org/10.1371/journal.pone.0282398.g002
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the mean of the maximum heart rate (HRmax, described in Table 1) reached during CPET

(among all participants) represented 91.5% of the predicted heart rate by age (HRpredicted =

220-age) [31]. For each participant, the RERmax and HRmax were calculated as the mean value

of the last 20 s of the incremental exercise. The number of days and time per day of the longitu-

dinal data collection, as well as the average response for all variables (μBR, μVe, μVt, μHR,

μAcc and μCad) are also shown in Table 1.

Fig 3. Flowchart of screening, evaluation and inclusion and exclusion criteria for the study. This flow diagram

illustrates the sample size and the volunteer characteristics. DM: diabetes mellitus; COPD: chronic obstructive

pulmonary disease; CAD: coronary artery disease.

https://doi.org/10.1371/journal.pone.0282398.g003
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General prediction model validation

The reproducibility and validity of the prediction of the _VO2� max (pred _VO2� max) were tested

using SVR, as described in Fig 4. The Bland-Altman analysis was used to verify the reproduc-

ibility between the _VO2� max measured during the CPET and the pred _VO2� max. We found that

the mean differences between model and observations was low (0.038 l/min). Furthermore,

the agreement level by the Pearson correlation coefficient (R = 0.804, p< 0.001) was high and

positive between the _VO2� max and the pred _VO2� max.

Evaluation protocol

As mentioned before, we generalization aspects of the built models by adopting the k-fold

cross-validation evaluation protocol (see Fig 2). To measure the effectiveness of models, we

computed the average of Mean Absolute Error (MAE) and the Pearson correlation coefficient

(R) between the observed and predicted _VO2� max for each fold.

We observed a slight variability in the performance of the results achieved for the nine

models. On average of MAE, the SVR regressors reached 0.384±0.134. In addition, the Pearson

coefficient was high and positive (R = 0.8).

Explainable models

According to the game theory [40], the resultant Shapley value from the above described

SHAP method indicates the importance level of each input feature used to predict the variable

pred _VO2� max. Fig 5 shows the median Shapley values for each regression algorithm and the

statistical differences between each input feature considered in this study. The feature age had

the highest values, and the HR, height, weight, and Acc are ranked in the top-five list of the

most important features. While the last four places are represented by respiratory measure-

ments, such as the BR and Vt, Cad, and BMI. Moreover, when grouping the inputs into four

domains (Anthropometric, Hemodynamic, Physical Activity, and Pulmonary), the

Fig 4. Linear correlation between maximum oxygen uptake during CPET and the predicted maximum oxygen uptake by machine learning technique

(on letter A) and Bland-Altman plot of maximum oxygen uptake and prediction of the maximum oxygen uptake with the bias and the confidence

interval (CI95) (on letter B). Support vector regression (SVR); Pearson coefficient (R).

https://doi.org/10.1371/journal.pone.0282398.g004
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Fig 5. Shapley values (importance level) of the inputs used to predict cardiovascular fitness. A- Median and 25-

75th percentile of Shapley values of the inputs from the Support Vector Regression (SVR). � Significant difference

between age and BR (p> 0.001), between age and BMI (p> 0.001), between age and Cad (p = 0.006). † Significant

difference between HR and BR (p = 0.003). ‡ Significant difference between height and BR (p = 0.004). § Significant

difference between Weight and BR (p = 0.049). B- Mean±SD of Weighted average of Shapley values of the domains

from the Support Vector Regression (SVR) model. � Significant difference between Hemodynamic and Physical

Activity (p = 0.010), between Hemodynamic and Pulmonary (p = 0.003). ‡ Significant difference between

Anthropometric and Pulmonary (p = 0.023). HR: heart rate, Acc: total hip acceleration; BMI: body mass index; BR:

breathing rate, Vt: tidal volume; Cad: walking cadence, Ve: minute ventilation.

https://doi.org/10.1371/journal.pone.0282398.g005
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Hemodynamic domain presented statistically (p<0.05) higher importance to predict the

_VO2� max compared with the Physical Activity and Pulmonary domains. Moreover, the Anthro-

pometric domain was statistically (p<0.05) higher than the Pulmonary domain. We did not

find any evidence of statistically significant differences (p>0.05) between the Hemodynamic

and Anthropometric domains. Similarly, we also did not find any evidence of statistically sig-

nificant differences between the Physical Activity and Pulmonary domains.

Finally, the correlations between the Shapley values of the inputs were calculated. We found

some statistically (p<0.05) high and positive correlations between the Shapley values. For the

SVR model, there were two high and positive correlations between Acc and age (R = 0.817,

p = 0.004); and between minute ventilation (Ve) and height (R = 0.767, p = 0.012).

Discussion

The SVR method showed to be reliable to predict maximal oxygen uptake (cardiovascular fit-

ness), with an average MAE of 0.38±0.13 l/min. Afterward, we identified the most important

inputs (and their respective domains) modelled to predict the _VO2� max, using the explainable

model. Hemodynamic and Anthropometric domains were more important to predict cardio-

vascular fitness than the Physical Activity and Pulmonary domains.

As previously reported, the CF measurement by CPET was predicted by machine learning

techniques [24, 25], however the _VO2� max prediction from data exclusively obtained during

unobtrusive ADL protocols is still under investigation. Our results corroborate with previous

studies, as mentioned before as the pred _VO2� max and _VO2� max were statistically similar

(p = 0.602 for SVR) and the predictions were reliable as verified by the low MAE and high R.

Moreover, our mean errors of the Bland-Altman were low (SVR = 0.038 l/min), and these

results are very close to what were previously described in a study (0.22 l/min) [41] that used

the same wearables that we used. However, our agreement limits were higher (0.970 to -0.894

l/min) than Amelard, Hedge and Hughson, 2021 (0.218 to—0.262 l/min), although our data

being within the agreement limits.

The SVR using a radial basis function (RBF) as Kernel, can estimate a non-linear machine

learning model that takes a small number of critical boundary samples, called support vectors.

These optimize the predictions compared with models limited to single-dimension linear

boundaries, such as the linear regression [42]. Therefore, SVR should allow the expression of

more complexities from the input-output relationships, improving the results of regressions.

In addition, SVR has been used in Medical Sciences to predict coronary artery disease and

stroke [19].

Similar to our study, previous reports [24] used SVR models to identify the activity levels of

unsupervised ADL from HR and accelerometer data in healthy adults (both sexes, 25.1±6.0

years, 22.7±2.5 kg/m2). These authors used linear regression models to estimate the CF by

wearables. In our study, we used unobtrusive longitudinal data collected by a wearable system

that also considered more physiological inputs (such as the Ve and BR from the respiratory

sensors). These signals were then used to train machine learning models to predict the

_VO2� max of volunteers with a broad spectrum of aerobic power, which included (contrary to

previous publications) apparently healthy volunteers with risk factors for NCDs and with

NCDs. Therefore, our results add to the current literature to further support the use of

machine learning models to predict CF in the general population, including diseased groups.

Once the prediction models were validated for this broad spectrum of CF, the Shapley

method was applied to check the importance level of these 11 measured inputs (i.e., sex, age,

height, weight, BMI, μBR, μVe, μAcc, μHR, μCad, and μVt). All inputs were considered as
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“good players”, according to the Shapley value that represents the contribution of each input

feature to predict CF [28, 43].

It is worth mentioning that the Shapley values are able to better isolate each input individual

influence over the predictions, thus it is less influenced by expected multicollinearities between

the input features [43, 44], as we expect in the relationship between age and CF, for example.

The values were expressed as positive (all the cases in our study) or negative, which means that

the contribution of a particular input led to a better output prediction, i.e., pred _VO2� max [45].

Explainable methods are used as an explanatory tool for complex models, especially when

the resultant model is derived from a machine learning approach with a considerable number

of hyperparameters and weights or coefficients, such as the SVR method. Thus, the Shapley

values provided an approximation for the global input importance in predictions of complex

responses, as we expect from biological systems [28, 46]. In fact, the CF level depends on sev-

eral factors [47–51] that can be tracked by some inputs used in our study, including those mea-

sured by the wearable sensors.

Among all the inputs, age was the most important variable for both models, which also cor-

roborates with the model-agnostic characteristics of the SHAP method. In a systematic review

that aimed to identify the determinants of CF, the authors found that more than 80% of the

studies identified an inverse relationship between CF and age [51]. This relationship might be

justified by the influences of the aging process over the aerobic response, including the reduc-

tion of lean mass. In addition, the decrease of the _VO2� max by aging, might be also related to

the reduction of the activity levels and the diseased states [52, 53].

When comparing the Shapley values (importance levels), the feature age was highly (and

positively) correlated with the Shapley value of feature Acc. Thus, when age was more impor-

tant for the CF definition (i.e., prediction), Acc was also more important. In a longitudinal fol-

low-up of 8 years, Katzel, Sorkin, and Fleg 2001, found that maintaining a high level of

training is inversely related to the rate of decline of aerobic power, due to aging [54]. Thus, the

SVR model was able to identify this expected observation. It is known that the _VO2� max during

CPET on cycle ergometry is influenced by sex, age, weight, and height [55]. Thus, in our study,

the Anthropometric domain of the inputs took second place for the CF prediction. In addition,

this domain was not statistically different from the Hemodynamic domain, but statistically dif-

ferent from the Pulmonary domain.

Between the vital signals measured by the wearable system, the Hemodynamic domain

(evaluated here by the μHR) was the most important input for the _VO2� max prediction, which,

to some extent, corroborates with previous literature [51] that associated resting HR with max-

imal aerobic power. High values of resting HR were related to low values of _VO2 and conse-

quently, lower levels of CF [56]. Altini et al., 2016 [25] found that HR explained 64% of CF

variability when including sex, weight, and age as predictors, and this percentage rise as the

intensity of physical activities increased. In our results, the μHR was very crucial to our predic-

tions, maybe because μHR also includes a great deal of information regarding the resting HR

as it was calculated as the average HR response throughout 7 days that comprise many resting

periods.

Study limitations

Some limitations of the present study should be considered. As described before, the feature

extraction method (simple average of the longitudinal signal) might have reduced the com-

plexity of the data from the wearable system. Thus, more studies are necessary to develop new

feature extraction methods for mining longitudinal data and extracting more complex and

meaningful information. Although the volunteers wore the wearables for most of the day, they
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did not use it full time, including during sleep, and two volunteers practiced swimming as

their main sport activity. Collecting information during sleep and water activities might

improve the understanding of the CF from longitudinal data obtained from wearable sensors.

It is known that HR and mean blood pressure have been used for assessing hemodynamic con-

ditions, however assessing blood pressure must be done invasively or indirectly (which

depends on the HR to be calculated), [57] thus we only consider HR as the hemodynamic

domain. In this study, we used the SVR with an RFB Kernel, which means that we have a two-

dimensional parameter space. Due to the low complexity of searching hyperparameters in this

parameter space, we adopted a simple, effective, and well-known method named Grid Search

[58]. In short, given a set of values for the variables that comprise the model, i.e., the parame-

ters C and Gamma, the Grid Search algorithm makes a direct search on a set of all trials, which

is formed by assembling every possible combination of values for the C and Gamma. This

approach does not guarantee the best values for the parameters, which could be a limitation of

this study. However, it is one of the most widely used approaches for hyperparameter training

in machine learning [58].

Conclusion

Cardiovascular fitness can be predicted by wearable technologies associated with artificial

intelligence. Explainable models can be used to extract clinical insights from these predictions.

Therefore, the pred _VO2� max showed to be reproducible and valid in volunteers apparently

healthy, with risk factors to develop NCDs and with NCDs. Thus, the association between lon-

gitudinal and unobtrusive biological data from wearables, machine learning, and explainable

models represents a unique framework in Health Science.
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