
1.  Introduction
Obtaining a reliable characteristic remanent magnetization (ChRM) from volcanic rock samples is an impor-
tant challenge in paleomagnetism. Volcanic rocks acquire a thermoremanent magnetization when they cool in 
the Earth's magnetic field that is proportional to the direction and strength of the magnetic field at the time of 
cooling. TRMs of natural rocks are often regarded to be the most reliable data source for geomagnetic field 
models because of their ability to store information on the paleomagnetic field for thousands to millions of 
years (e.g., Panovska et al., 2019; Pavón-Carrasco et al., 2021). Full vector ChRMs consist of both directional 
and intensity information on the past geomagnetic field, but they can generally only be obtained for 10%–20% 
of volcanic samples carrying TRMs (e.g., Nagy et al., 2017; Tauxe & Yamazaki, 2015). One of the reasons for 
the low success rates is that only single domain (SD) or pseudo-single domain (PSD) iron oxide grains, typically 
with diameters <1 μm, are reliable recorders of the Earth's magnetic field. Larger multidomain (MD) grains are 

Abstract  The recently developed Micromagnetic Tomography (MMT) technique combines advances in 
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and signal strength ratio (SSR) for each solution. We show that the magnetic moments of a majority of grains 
under the inspected conditions are solved with very small uncertainties. However, increasing the grain density 
and sample thickness carry major challenges for the MMT inversions, demonstrated by uncertainties larger 
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Plain Language Summary  Iron-bearing rocks have the ability to capture and store the direction 
and strength of Earth's magnetic field. This information is used to unravel the behavior of the magnetic field 
that protects us from harmful solar radiation. However, obtaining a reliable signal from these rocks is difficult 
using existing methods because many iron-oxide grains exhibit complex magnetic behavior and obscure 
the magnetic information in them. To determine magnetic moments from individual grains, a new method 
known as Micromagnetic Tomography (MMT) has been developed. This method works similarly to imaging 
techniques in hospitals, but now a thin slice of rock containing magnetic grains is scanned. By using computer 
models we discovered that MMT is able to reliably extract magnetic signals from a majority of grains in many 
rock samples. Additionally, we have developed two new parameters that help us to easily select the magnetic 
moments of the most reliable grains in a sample. In this way, the signal of those grains can be effectively used 
to provide accurate information on the present and past state of Earth's magnetic field.

OUT ET AL.

© 2022 The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided the 
original work is properly cited and is not 
used for commercial purposes.

A First-Order Statistical Exploration of the Mathematical 
Limits of Micromagnetic Tomography
Frenk Out1 , David Cortés-Ortuño1 , Karl Fabian2 , Tristan van Leeuwen3,4 , and 
Lennart V. de Groot1 

1Paleomagnetic Laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands, 
2Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 3Mathematical Institute, Faculty of 
Sciences, Utrecht University, Utrecht, The Netherlands, 4Department of Computational Imaging, Centrum Wiskunde & 
Informatica (CWI), Amsterdam, The Netherlands

Key Points:
•	 �The mathematical performance 

of Micromagnetic Tomography 
(MMT) is tested against the sample's 
geometry, instrumental noise and 
sampling interval

•	 �Sample thickness and grain density 
are the prime factors controlling the 
theoretical uncertainty of magnetic 
moments of individual grains

•	 �The mathematical accuracy of MMT 
results can be assessed using the 
signal strength ratio and uncertainty 
ratio

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
F. Out,
f.out@uu.nl

Citation:
Out, F., Cortés-Ortuño, D., Fabian, 
K., van Leeuwen, T., & de Groot, 
L. V. (2022). A first-order statistical 
exploration of the mathematical 
limits of Micromagnetic Tomography. 
Geochemistry, Geophysics, Geosystems, 
23, e2021GC010184. https://doi.
org/10.1029/2021GC010184

Received 4 OCT 2021
Accepted 21 MAR 2022

10.1029/2021GC010184
RESEARCH ARTICLE

1 of 18

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-1304-9095
https://orcid.org/0000-0003-3799-3141
https://orcid.org/0000-0002-3504-3292
https://orcid.org/0000-0002-8794-6426
https://orcid.org/0000-0002-1151-5662
https://doi.org/10.1029/2021GC010184
https://doi.org/10.1029/2021GC010184
https://doi.org/10.1029/2021GC010184
https://doi.org/10.1029/2021GC010184
https://doi.org/10.1029/2021GC010184
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021GC010184&domain=pdf&date_stamp=2022-03-31


Geochemistry, Geophysics, Geosystems

OUT ET AL.

10.1029/2021GC010184

2 of 18

typically prone to more unstable magnetic moments (Fabian, 2000, 2001; Néel, 1955). Natural rocks commonly 
contain a wide range of iron-oxide particle sizes. Magnetically adverse behaved MD grains are therefore often 
present. When measuring bulk rock samples the measured magnetic moment is a statistical summation of all 
the magnetic grains in the sample. The presence of MD grains therefore often explains the low success rate of 
extracting a reliable full vector bulk ChRM.

A solution to this problem would be to differentiate between signals stored in small and large grains by deter-
mining the magnetic moment of each iron-oxide grain in a sample separately. To obtain all individual magnetic 
moments, the magnetic flux above a thin sample produced by all grains inside is measured on a micrometer 
scale. Such a map of the magnetic flux with the necessary resolution in space and magnetic moments can be 
obtained from a scanning superconducting quantum interference device (SQUID; e.g., de Groot et  al.,  2018; 
Egli & Heller, 2000; Weiss et al., 2007) or a quantum diamond magnetometer (QDM; e.g., de Groot et al., 2021; 
Farchi et al., 2017; Glenn et al., 2017). Unfortunately, this is not sufficient to reconstruct the magnetic moments 
of individual grains inside the sample. To reduce the number of unknown variables in the inversion, the posi-
tion of the magnetic grains must be constrained further. Weiss et al. (2007), for example, applied a constraint 
related to the dipolar magnetization of all grains, by assuming that the magnetization for all grains is uniform in 
intensity and direction. The magnetic signal of grains close to the sensors that detect the surface magnetic field, 
however, is better modeled using multipoles than dipoles (Cortés-Ortuño et al., 2021). Additionally, since shapes 
and volumes of grains can vary, it appears unlikely that the magnetization of all grains are uniform in intensity 
and direction (Dunlop & Özdemir, 1997). To avoid further assumptions on the positions of grains, de Groot 
et al.  (2018) employed micro X-Ray Computed Tomography (MicroCT) to exactly determine these positions. 
By combining MicroCT with the surface magnetic field obtained by magnetometry the resulting mathematical 
inversion problem becomes well posed (Fabian & de Groot, 2019), and it is possible to compute the individual 
magnetic moments of every grain in the sample. It was recently shown that not only the dipole component of 
the grain's magnetic moments can be recovered, but also higher order multipole components can be determined 
(Cortés-Ortuño et al., 2021). This technique of combining scanning magnetometry data with MicroCT analyses 
to constrain the mathematical inversion and obtain magnetic moments of individual grains in a sample is now 
known as Micromagnetic Tomography (MMT).

Although the potential of MMT was illustrated by de Groot et al. (2018, 2021), significant challenges remain 
before this new technique is of experimental value for paleomagnetic and rock-magnetic studies. These chal-
lenges are of empirical nature on one hand, and of both mathematical and computational nature on the other. 
Examples of empirical challenges are the resolution of the MicroCT and magnetic scanning techniques, mapping 
between the two data sets and applying routine paleomagnetic and rock-magnetic treatments to the samples in 
the MMT workflow. Here, however, we focus on computational and mathematical challenges that remain, and 
provide a theoretical framework on how to obtain and treat uncertainties arising from MMT inversions. Further-
more, we provide new statistical parameters that describe and scrutinize MMT results and are therefore necessary 
to address the standing empirical challenges.

To assess the accuracy and uncertainty associated with magnetic moments of individual grains obtained with 
MMT, we consider five different factors that may substantially affect the theoretical uncertainty of MMT solu-
tions: (a) the thickness of the sample, (b) the area covered by the surface magnetic scan, (c) the grain density of 
the rock sample, (d) the distance between adjacent measurement points on the surface, and (e) the instrumental 
noise level of the surface magnetometry. We design numerical models to cover all combinations of these five 
factors. To determine the quality of the uniform magnetic moments as determined by MMT in a spherical coor-
dinate frame, we define a 95% confidence interval that we obtain from bootstrapping the covariance matrix 
produced by the MMT inversion. The 95% confidence interval gives a quantitative indication of the mathematical 
accuracy of the solution in a single parameter. Additionally, we evolve the V/R 3-ratio (Cortés-Ortuño et al., 2021) 
that relates the depth and volume of a grain to the strength of the magnetic signal that the grain can potentially 
produce on the surface of the sample, into the “signal strength ratio (SSR).” We then use this SSR to quickly 
discern which grains are solved with high confidence. Finally, we discuss the implications of our results on 
obtaining highly accurate ChRM measurements.

We selected five parameters for our study to assess the response of the accuracy of MMT results to variations 
in these boundary conditions. There are undoubtedly more factors influencing MMT solutions, but they are 
mostly of empirical nature, for example, grains not recognized by MicroCT, and co-registration errors related 
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to spatial distortions between MicroCT data and magnetic field data. These 
factors are challenging to model and depend primarily on the technical details 
and configurations of the instruments involved. They are therefore better 
solved by a technical assessment than by mathematical simulations. Further-
more, our study is limited in that we only assign representative uniform (i.e., 
dipolar) magnetic moments to all grains in our models; although multipole 
moments may be more realistic for the larger grains included. The MMT 
studies to date, however, mostly use this dipole approximation in their inver-
sions; MMT studies using higher order, multipole, moments were proposed 
only recently (Cortés-Ortuño et al., 2021). The statistical parameters to assess 
and scrutinize MMT results that we propose here will be applicable to higher 
order MMT results as well.

2.  Methods
2.1.  Model Design

The inversion routine we use here closely follows the procedure as described 
in de Groot et al. (2018, 2021), but we first define synthetic models given the 

five parameters that we consider in this study. This requires populating “sample volumes” with grains in random 
locations and assigning them a somewhat realistic uniform magnetization. Then we calculate the map of the 
magnetic flux on the surface of the sample and perturb these maps with realistic noise. Once the sample volumes 
and magnetic flux map are determined we apply the inversion routine but also produce the standard deviations 
associated with the individual magnetic moments. Lastly, we define the 95% confidence interval of magnetic 
moments to assess the performance of MMT as a function of the five input parameters for the models.

2.1.1.  Populating Sample Volumes

To define the input of the inversions we start with a rectangular sample volume with a predefined, rectangular, 
surface size and a set sample thickness. Inside this volume a number of modeled iron-oxide grains are randomly 
placed such that they do not intersect. The number and average volume of these grains determine the modeled 
iron-oxide grain density. We modeled samples with an area of 200 × 200 and 500 × 500 μm 2. The maximum 
thickness of the models was either 50 or 75 μm (Table 1). The individual grains used to populate the models 
with were taken from the actual geometries obtained from a MicroCT scan of a volcanic sample prepared from 
a sister sample of HW03 (de Groot et al., 2013, 2021; ter Maat et al., 2018). This sample was obtained from a 
lava flow active in 1907 on Hawaii. The sample was drilled at an elevation of 603 m (±4 m) with a latitude of 
19° 4.315′ and a longitude of 155° 44.314′. The sample was reduced to a thickness of 80 μm, after which the 
location and size of its magnetic grains were obtained with MicroCT. The MicroCT outputted each grain as a 
list of voxels with an elementary volume of 0.75 × 0.75 × 0.75 μm 3. The individual voxels were combined into a 
minimum amount of rectangular shaped cuboids, which together composed one grain, for optimization purposes. 
The MicroCT data showed that all grains have a diameter between 1 and 20 μm. We populated the models with 
these grains without changing their orientation until the respective grain density was reached, which is specified 
in Table 1. By using this range of grain densities, the models simulated both the low grain density of the synthetic 
sample of de Groot et al. (2018) and the high grain density of the volcanic sample of de Groot et al. (2021). Each 
grain was then placed at a random location within the model such that it does not intersect another grain or the 
boundaries of the model (Figure 1a). This random placement routine has been made more efficient by imposing 
that the top side of each grain could only be placed between the surface of the sample and 10 μm from the bottom 
of the sample, since most grains have diameters smaller than 10 μm. The sample thickness for some models could, 
therefore, be less than the indicated value. If the grain did not fit at the given location, we retried placing the grain 
up to a hundred times. If the grain did not fit by then, we selected at random another grain geometry and tried to 
fit the new grain up to a hundred times again.

2.1.2.  Assigning Realistic Magnetizations

In the next step, each individual grain was assigned a random magnetization M = (Mx, My, Mz), where |M| denotes 
its magnitude. Therefore, we treat all grains as equivalent SD grains. This implies that the cuboid components 
of each grain have the same strength and direction of magnetization as the whole grain. To obtain realistic 

Parameter Unit Modeled values

Sample surface size μm 2 200 × 200, 500 × 500

Sample thickness μm 50, 75

Grain density 10 3 grains per mm 3 2.5, 5.0, 10.0, 25.0

50.0, 75.0, 100.0

Sampling interval μm 1, 2, 4, 5

Noise level nT 5, 20, 50, 100

Note. Every possible combination of parameters is assessed in this study, 
resulting in 448 models. Each model is then ran 15 times to ensure statistically 
robust results.

Table 1 
Parameters Changed Between Models

 15252027, 2022, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021G

C
010184 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [06/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geochemistry, Geophysics, Geosystems

OUT ET AL.

10.1029/2021GC010184

4 of 18

magnetization values, the value of |M| was chosen to agree with the magnetization versus grain diameter trend for 
a natural volcanic sample presented in Figure 4d of de Groot et al. (2021). This trend is a SD grain magnetization 
representation of the magnetization intensity of PSD and MD grains and is in good agreement to the relation 
between the relative magnetization as function of grain diameter in Figure 29 of Dunlop (1990). The trend line in 
Figure 4d of de Groot et al. (2021) can be converted to the empirical relation:

|�| = �0 (�∕�0)�,� (1)

where V0 is the volume, and M0 the magnetization of a sphere with diameter 1 μm; α is the relation parameter, and 
|M| is the absolute expected magnetization of a grain with volume V. For the trend line in Figure 4d of de Groot 
et al. (2021) we obtained: M0 = 46.5 kA/m, and α = −0.355. To simulate the spread in the data points that define 
this relation, we add a perturbation to the magnetizations. To this end the magnetization norm |M| was multiplied 
by 𝐴𝐴 10𝑁𝑁(𝜇𝜇𝜇𝜇𝜇

2) , where N(μ, σ 2) represents the Gaussian distribution with a mean, μ, of zero and a variation, σ 2, of 
0.5 2, to produce the final magnetization norm |Mf|. Hereafter, we sampled the uniform distribution U(0, 2π) to 
obtain the angle ϕ of the magnetization vector in the x − y-plane. The angle θ with respect to the z-axis was 
sampled from the uniform distribution U(0, π). The norm and the two angles of the magnetization vector were 
then transformed into the Cartesian components Mx, My, and Mz.

2.1.3.  Calculating the Magnetic Flux Map

Once the particle positions and magnetizations are assigned, the grid of measurement points is defined on the 
surface z = 0. The sampling interval of the magnetic flux map is one of the parameters that we investigate in this 
study, so it is varied to represent different realistic sampling intervals (Table 1). The smallest sampling interval 
used in the analysis is 1 μm such that a measurement area of 200 × 200 μm 2 contains 201 × 201 (=40,401) meas-
urement points, and a model area of 500 × 500 μm 2 contains 501 × 501 (=251,001) measurement points. The 
largest sampling interval is set to 5 μm, so that the 200 × 200 μm 2 surface contains 41 × 41 (=1,681) data points 
and the 500 × 500 μm 2 surface is limited to 101 × 101 (=10,201) data points.

Figure 1.  The Micromagnetic Tomography workflow of one of our models containing 75,000 grains per mm 3 with a dipolar 
magnetization. (a) Geometric overview of the model with a 200 × 200 μm 2 sample surface size. Each grain is assigned a color 
for clarity, the colors do not have further meaning. The sensor grid is located on top of the model at z = 0. Each grain is build 
from rectangular shaped cuboids. (b) Original magnetic field created by the signal of the grains and after adding noise with a 
level of 100 nT. (c) Magnetic field produced by the signal of grains with the inverted magnetization values. The unit of field 
strength in (b and c) is μT. (d) Residual field obtained by subtracting the original field in (b) from the forward field based on 
the inversion result in (c). The unit of field strength in (d) is nT.
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Now that the grain shapes and locations, and the grid of the measurement points on the surface are determined, 
the vertical magnetic flux field is calculated in each of the measurement points. The flux field is produced by all 
uniformly magnetized cuboids belonging to a grain and declines in strength when propagating to the sensors at 
the surface. To model this behavior the flux field is represented by a multiplication of the cuboids' magnetization 
components (Mx, My, and Mz) with a corresponding factor Q. This factor declines for increasing distance between 
sensor and cuboid, and is dependent on the direction of the magnetization components. Details for calculating this 
factor is found in the Supplementary Information of de Groot et al. (2018). All Q factors associated to the cuboids 
making a single grain are summed per magnetization component. This results in three factors Qxsg, Qysg, and Qzsg 
obtained for a grain g measured at a sensor s. To obtain the flux field ϕs measured at the sensor these factors are 
multiplied by the magnetization of the grain Mxg, Myg, and Mzg, respectively, and summed. The total flux field 
measured at one sensor, however, is not created by one grain but by K grains. For that reason, the total magnetic 
flux field ϕs measured at the sensor is a summation over the flux field of K grains, or

�� = ���1��1 +���1��1 +���1��1 +���2��2 +⋯ +�������

=
[

���1 ���1 ���1 ���2 ⋯ ����
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Since the magnetic flux field is obtained simultaneously at P sensors, the full representation of the forward prob-
lem in matrix notation is
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This forward problem, therefore, consists of P rows and 3 × K columns and will be written in the following short 
notation,

𝝓𝝓 = 𝑄𝑄𝐌𝐌𝑎𝑎.� (4)

In our models the magnetic signal at each measurement point is the total integrated magnetic flux from all grains 
through a rectangular sensor loop in the x − y-plane of the sample with side lengths 1 × 1 μm centered at the 
measurement point. To simulate the effect of instrumental errors introduced by a magnetometer, e, one of the four 
noise levels specified in Table 1 was added to the magnetic field of each model, �̃ = � + � . This adds white noise 
that is normally distributed with a standard deviation governed by the noise level and with a zero mean to the 
magnetic surface scan. These noise magnitudes are comparable to those described by Glenn et al. (2017). Now 
the maps of the magnetic flux at the surface of our models are known (Figure 1b).

2.1.4.  Inversion Procedure

Based on the methods of de Groot et al. (2018), Fabian and de Groot (2019), and de Groot et al. (2021), we used 
a least squares minimization to obtain the magnetization of individual grains in the sample, since the inverse 
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problem has a larger number of magnetic flux field observations than unknown magnetization components, that 
is, P > 3 × K (Snieder & Trampert, 1999). The magnetization solution, �̂� , is given by

�̂� = �†�̃,� (5)

with Q † being the pseudo-inverse of Q. The calculated magnetization is used to compute the forward magnetic 
flux field, �̂ (Figure 1c). This forward field is obtained through matrix multiplication of the calculated magneti-
zations with matrix Q, frequently called the Green's matrix,

�̂ = ��̂�.� (6)

Subtracting the initial magnetic field from the forward field results in the residual magnetic field (Figure 1d).

2.1.5.  Varying the Input Parameters

For each of the five input parameters we determined a range of realistic values to assess (Table 1). Incorporating 
all combinations of these five factors yields 448 different computational models, formed by all possible combina-
tions of two sample surface areas, two sample thicknesses, seven different grain densities, four different sampling 
intervals, and four different noise levels. We executed each of these models 15 times with different random grain 
locations and uniform magnetizations to attain enough inversion solutions for a stable and meaningful statistical 
underpinning of the results. The coarser sampling rates of 2, 4, and 5 μm grid spacing were simulated by sub-sam-
pling the 1 μm grid after noise was added. In this way, we make sure that each sampling rate uses the same noise 
contaminated magnetic field.

2.2.  Uncertainty Ratio

2.2.1.  Covariance and Standard Deviation

The inversion as used for MMT also allows for determining the standard deviation and covariance associated with 
each solution. To assess the accuracy and uncertainty of the MMT results we define a 95% confidence sphere. 
The 95% confidence sphere, which is similar to a 95% confidence interval in three dimensions, is obtained per 
grain through bootstrapping the covariance matrix for each solution that we obtain from the inversion routine. 
This is done such that if we would repeat the inversion procedure and redraw the Gaussian noise e a hundred 
times, we would expect for a grain that 95 out of the 100 associated 95% confidence spheres contain the “true” 
correct magnetization, M (Sim & Reid, 1999). The radius of the confidence sphere gives the precision of the 
corresponding magnetization solution, where a larger radius indicates a less precise solution.

The 95% confidence sphere is constructed by means of the magnetization solutions �̂� and the covariance matrix 
Cij. The covariance matrix is defined to indicate the expected relationship between two variables a and b relatively 
to the deviation from their expected values E[a] and E[b]. If the covariance between two magnetization variables 
M1 and M2 is positive, and if M2 is larger than expected, then this implies that M1 will be larger than expected 
and vice versa. Conversely, if the covariance is negative and if M1 is larger than expected, then this means that 
M2 will be smaller than the expected value and vice versa. The covariance of a magnetization variable with itself, 
Cii, is always positive and indicates the squared deviation from the expected value, which is frequently called the 
squared standard deviation. The covariance matrix is mathematically defined as

� = �
[

(

�̂� − � [��]
)(

�̂� − � [��]
)�

]

.� (7)

The value E[Ma] is known as the expected magnetization, which is the magnetization that would result from 
perfect magnetic flux observations without any observational noise

𝐸𝐸 [𝐌𝐌𝑎𝑎] = 𝑄𝑄†𝝓𝝓.� (8)
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Note the similarity between Equation 8 and Equation 5. If we theoretically obtain a magnetic flux field without 
any observational noise, then the magnetization calculated through Equation 5 is equal to the expected magnet-
ization of Equation 8.

By combining Equations 5 and 8, we can define �̂� as the sum of perfect observations and instrumental errors 
e, modeled as Gaussian noise,

�̂� = �†(� + �)

= �†� +�†�

= � [��] +�†�,

� (9)

with Q †e being the magnetization error caused by Gaussian instrumental noise. The definition for �̂� in Equa-
tion 9 is used to simplify Equation 7 to

𝐶𝐶 = 𝐸𝐸

[

(

𝐸𝐸 [𝐌𝐌𝑎𝑎] +𝑄𝑄†
𝐞𝐞 − 𝐸𝐸 [𝐌𝐌𝑎𝑎]

) (

𝐸𝐸 [𝐌𝐌𝑎𝑎] +𝑄𝑄†
𝐞𝐞 − 𝐸𝐸 [𝐌𝐌𝑎𝑎]

)𝑇𝑇
]

= 𝐸𝐸

[

(

𝑄𝑄†
𝐞𝐞
) (

𝑄𝑄†
𝐞𝐞
)𝑇𝑇
]

= 𝐸𝐸

[

𝑄𝑄†
𝐞𝐞𝐞𝐞

𝑇𝑇
(

𝑄𝑄†
)𝑇𝑇
]

.

� (10)

The matrix Q † is the least squares inverse of the Green's matrix Q, therefore it is defined as 𝐴𝐴
(

𝑄𝑄𝑇𝑇𝑄𝑄
)−1

𝑄𝑄𝑇𝑇  (Snieder 
& Trampert, 1999). The matrix is not a variable, therefore only the expected value of the errors of the magnetic 
field is left, E[ee T]. In this study we assume that the errors of the magnetic field are uncorrelated, because we 
disregard grain positioning errors caused by MicroCT (de Groot et al., 2018, 2021). Assuming that the errors are 
uncorrelated, E[ee T] is equal to the squared standard deviation of the error e times the unit matrix or σ 2I. Note that 
σ is the standard deviation of the expected instrumental noise in the data, which is one of the five parameters we 
vary in this study. Implementing this new expression into Equation 10 and rearranging gives the final equation 
for calculating the covariance matrix

𝐶𝐶 = 𝑄𝑄†𝐸𝐸
[

𝐞𝐞𝐞𝐞
𝑇𝑇
] (

𝑄𝑄†
)𝑇𝑇

= 𝑄𝑄†𝐸𝐸
[

𝐞𝐞𝐞𝐞
𝑇𝑇
]

(

(

𝑄𝑄𝑇𝑇𝑄𝑄
)−1

𝑄𝑄𝑇𝑇

)𝑇𝑇

=

(

𝜎𝜎2
(

𝑄𝑄𝑇𝑇𝑄𝑄
)−1

)𝑇𝑇

= 𝜎𝜎2
(

𝑄𝑄𝑇𝑇𝑄𝑄
)−1

,

� (11)

We deduced from Equation 7 that the covariance matrix is symmetric. Hence, 𝐴𝐴

(

𝜎𝜎2
(

𝑄𝑄𝑇𝑇𝑄𝑄
)−1

)𝑇𝑇

 is the same as 

𝐴𝐴 𝐴𝐴2
(

𝑄𝑄𝑇𝑇𝑄𝑄
)−1 . The inverse of the matrix Q TQ exists, because the problem is well posed (Fabian & de Groot, 2019). 

The squared standard deviations of the assigned magnetizations per grain are now found on the main diagonal 
of the 𝐴𝐴 𝐴𝐴2

(

𝑄𝑄𝑇𝑇𝑄𝑄
)−1 matrix. The root of the main diagonal therefore gives the standard deviations of the assigned 

magnetizations per grain and per x, y, and z-component. Now we have found an expression for the covariance and 
standard deviation of the three magnetization components for individual grains. We will use these expressions in 
the next section to calculate the 95% confidence sphere and the uncertainty ratio.

2.2.2.  Calculation of the 95% Confidence Sphere

The 95% confidence sphere is set-up by bootstrapping the covariance matrix and magnetization of all grains 
simultaneously; the radius of the sphere is determined per grain in such a way that 95% of the samples are located 
within the sphere. First, a multivariate normal distribution, which has as input both the total magnetization vector 
Ma and the complete covariance matrix, is sampled 10,000 times to generate 10,000 magnetization vectors for 
each grain at once. Then, we constructed per grain 10,000 difference vectors, which represent the difference 
between the bootstrapped vectors and the individual mean magnetization vector M. The norms of these difference 
vectors are sorted in ascending order and the 9,500th norm value is used as radius, r, for a 95% confidence sphere 
centered at M.
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By presenting uncertainty in this way, we have implicitly assumed that the 
bootstrapped magnetization vectors are Fisherian distributed, which means 
that the deviation from the mean is the same in every direction (Fisher, 1953). 
However, the standard deviations of magnetization are not equal in the x, y, 
and z-direction. The real distribution is probably more similar to an ellip-
tic Kent distribution (Kent, 1982). The downside of parametrizing the Kent 
distribution is the necessity to use three parameters to describe an ellipsoid. 
Nevertheless, it depends on the type of research whether the focus is put on 
either uncertainties in the orientation, the norm, or both. To accommodate 
both sides we assume a Fisherian distribution, which can be visually repre-
sented by a 95% confidence sphere around the mean magnetization vector.

After obtaining the 95% confidence sphere, we notice that the radius of the 
confidence sphere is an absolute measure. This makes it difficult to compare 
the magnetization uncertainties of grains with different mean magnetizations. 
Furthermore, the magnetization solution and thus the 95% confidence sphere 
is dependent on the volume of the grain. Unfortunately, the grain volume is 
not constrained well due to measurement errors of the MicroCT. To acquire 
a volume independent uncertainty parameter per grain, we have defined the 
uncertainty ratio. The uncertainty ratio can be calculated by dividing the 

radius of the 95% confidence sphere, u, by the mean magnetization vector |M| per grain, which eliminates the 
volume dependency (Figure 2):

uncertainty ratio =
𝑢𝑢

|𝐌𝐌|

× 100%.� (12)

2.3.  Signal Strength Ratio

The performance of the MMT technique depends on how well the magnetic moment of an individual grain is 
expressed in the magnetic flux map on the surface of the grain. To assess the potential maximum contribution 
to the magnetic flux on the surface of the sample arising from an individual grain Cortés-Ortuño et al. (2021) 
defined the V/R 3 ratio. This property is dependent on the distance of the geometric center of the grain to the 
scanning surface, R, and the volume of the grain, V (see Appendix of de Groot et al. [2018]). Unfortunately, the 
V/R 3 ratio does not account for the magnetization of grains as function of their volume. Smaller SD to PSD grains 
have on average stronger magnetizations than larger MD grains (de Groot et al., 2018, 2021; Dunlop, 1990). de 
Groot et al. (2021) showed that if the diameter of a grain increases one order of magnitude, then the magnetization 
decreases approximately by one order of magnitude for PSD and MD grains. We already have incorporated this 
relation in our models using Equation 1. This equation shows that the magnetization norm decreases with one 
order of magnitude if the volume increases by three orders of magnitude, equivalent to an increase in diameter of 
one order of magnitude. For this reason we have defined the signal strength ratio, SSR, as

SSR∶=
𝑉𝑉

𝑅𝑅3𝑑𝑑
,� (13)

with d the diameter of the grain in μm, assuming that the volume of the grain is shaped like a sphere. Figure 3a 
shows the effect of the signal strength. It shows that, although smaller grains are now parametrized to produce a 
stronger signal, larger signal strengths are still linked to predominantly larger grain volumes.

The cumulative distribution of the SSR per model is shown in Figure 3b. All models use the same randomly 
selected grains from the volcanic sample, therefore, we only distinguished a SSR distribution for the 50 and 
75  μm thick samples, since the thickness of the sample is the only factor influencing the SSR distribution. 
Because the 75 μm sample contains deeper grains, the minimum SSR for those models is lower than for 50 μm 
thick models. Approximately 70% of the grains in a 75 μm thick model have a SSR of at least 2.3 × 10 −4. This 
SSR is obtained, for example, for a grain with a volume of 10 μm 3 at a depth of 25 μm. On the other hand, 70% 
of the grains in a 50 μm thick model have a SSR larger than 9.8 × 10 −4. A grain with this SSR and a volume of 

Figure 2.  The construction of the uncertainty ratio. The covariance matrix is 
bootstrapped to generate a set of 10,000 possible magnetization vectors around 
mean magnetization vector M. The radius of a sphere containing 9,500 of 
the end-points of these vectors is defined as the 95% confidence sphere with 
radius u. The length of the magnetization vector |M| and u are then used to 
define the uncertainty ratio of a solution.

u

95% Confidence sphere
m

σx

σz

σy

Bootstrapping 
using covariance 

matrix

10000 times
All g

rains at once
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10 μm 3 would be located at a depth of 16 μm. Here, we have seen that a grain with a low SSR has more difficulty 
expressing its magnetic flux at the surface, but the exact relation between the grain's SSR and the uncertainty of 
a magnetization solution is not known and will be investigated in Section 3.2.

3.  Results
First, we present the influence from sample surface size, sample thickness, grain density, noise level, and 
sampling interval on the uncertainty ratio of the obtained magnetizations. Thereafter we will focus on individual 
magnetization solution, where we inspect the minimally needed SSR to produce magnetization results with an 
acceptable uncertainty ratio.

3.1.  Uncertainty Ratio

3.1.1.  Grain Density

After running and combining results of all 15 iterations per model, the sizes of all uncertainty ratios are sorted per 
noise level and summarized in Figure 4 for the 200 × 200 and 500 × 500 μm 2 sample surface sizes. Per model, 
the distribution of the uncertainty ratio of all grains is presented in a box-plot. We indicate an uncertainty ratio 
of 10% as a reference size in the panels of this figure, because it is the largest uncertainty value still considered 
low (e.g., Berndt et al., 2016). A 10% uncertainty ratio means that 9,500 of the 10,000 bootstrapped vectors are 
located within a sphere, which has a radius of 10% of the norm of the mean magnetization vector.

For the samples with a surface size of 500 × 500 μm and a thickness of 50 μm we observe an exponential increase 
in uncertainty ratio with respect to grain density (Figures 4e and 4f). At least 75% of the grains in models with 
grain densities smaller than or equal to 10 4 grains per mm 3 are associated with small uncertainty ratios (<10%), 
which means that most grains in these distributions are relatively well solved. For grain density levels larger than 
25 × 10 3 grains per mm 3, uncertainty ratios of about 25% of the grains exceed 100%. These large uncertainties 
potentially mean that some grains in volcanic samples, which have similar grain densities, cannot be resolved 
well. However, more than half of the grains still have uncertainty ratios smaller than 1% for the best-case scenario 
(i.e., instrumental noise of 5 nT, sampling interval of 1 μm). Therefore, most grains can be well solved with a 
sufficiently small uncertainty.

3.1.2.  Noise Level

Increasing the noise level from 5 to 100 nT results in an overall increase of all uncertainty ratios between one and 
two orders magnitude (Figure 4e). These larger uncertainties are expected, because a larger noise level directly 
increases the standard deviation of the solution through the covariance matrix (see Equation 11). The median 
uncertainty ratio for the highest grain density increases from 0.5% to 10% for a noise level of respectively 5 and 
100 nT and the smallest sampling interval, but the median uncertainty ratio for the lowest grain density increases 

Figure 3.  (a) Relation between grain depth and grain volume as a function of signal strength ratio (SSR). (b) Reversed 
cumulative SSR distribution for a 50 and 75 μm thick sample based on grains of the volcanic sample of de Groot et al. (2013). 
This panels shows, for example, that 70% of the grains in a modeled sample with a thickness of 75 μm have a SSR larger than 
2.3 × 10 −4, as indicated by the red dotted lines.
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Figure 4.  Box-plots showing per model the distribution of the uncertainty ratio of all grains as a function of grain density. The red line in each box-plot indicates the 
median uncertainty ratio, the bottom and top edges of the solid rectangles show the first and third quartile respectively. The bottom and top of each box-plot show the 
minimum and maximum uncertainty ratio respectively per model. The set of panels (a–d) show results for a 200 × 200 μm 2 sample surface and the set of panels (e–h) 
show results for a 500 × 500 μm 2 sample surface. Each of the four box-plots per panel per grain density correspond from left to right to one of the four noise levels, 
respectively 5, 20, 50, and 100 nT. The top panels of each set (a–b and e–f) refer to a 50 μm thick sample. The bottom panels of each set (c–d and g–h) refer to a sample 
with a thickness of 75 μm. The first column of panels is constructed with a sampling interval of 1 μm and the second column is constructed with a sampling interval of 
5 μm.
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only from 0.01% to about 1%. This shows that the noise level has more influence on the total validity of a high 
grain density solution than on a low grain density solution, although this trend is partly obscured by the log scale 
in the figures.

3.1.3.  Sampling Interval

The sampling interval has an exponential effect on the uncertainty ratio, which looks similar to an intensification 
of the noise level (Figures 4e and 4f). Nevertheless, the increase becomes stagnant between a sampling interval 
of 4 and 5 μm, but is amplified between a sampling interval of 1 and 2 μm or 2 and 4 μm (Figures S1a–S1d in 
Supporting Information S1). This property can be attributed to the relatively smaller decrease in the number of 
surface magnetic scan points because the amount of points lowers by only 36% when reducing the sampling rate 
from 4 to 5 μm, yet the amount of points lowers by 75% when reducing the sampling interval from 1 to 2, or from 
2 to 4 μm.

The effect of a decreasing sampling rate on the solution uncertainty shows that the increase in uncertainty ratio 
becomes progressively larger for increasing grain density. Additionally, the combination of elevated noise levels 
and coarser sampling rates results in median uncertainty ratios over 10% for the largest grain density (Figure 4f). 
This makes a majority of the grains in such samples difficult to use in subsequent interpretation stages, as the 
uncertainty increases substantially. However, it is premature to state that using a coarser resolution always increase 
uncertainty. For example, scanning a sample four times with a resolution of 2 μm results into the same uncertainty 
ratio as obtained when scanning a sample once using a 1 μm resolution. Additionally, the inversion is proven to be 
faster for lower resolution due to the smaller number of data points. On the other hand, small scale features, which 
might be important for solving higher order multipole moments, may not be detected using a coarser resolution.

3.1.4.  Sample Thickness

Sample thickness is a major factor that influences the uncertainty ratio. A comparison of panels e against g, and 
f against h of Figure 4 shows that for every noise level and sampling interval scenario, the median uncertainty 
ratios of a majority of grains increase more than one order of magnitude when increasing the sample thickness 
from 50 to 75 μm. The first quartile for a grain density of 25 × 10 3 grains per mm 3 is below 10% for a 50 μm 
sample, but for a 75 μm sample this range is partly exceeding the 10% already for all sampling intervals. For the 
high grain density samples (>25 × 10 3 grains per mm 3) the effect of a higher sample thickness is more severe, 
because more than half of their grains have an uncertainty ratio of ≥10%. For the highest noise levels at least 50% 
of the grains have uncertainty ratios larger than 100%. However, low grain density samples (<25 × 10 3 grains 
per mm 3) still have a majority of grains with an uncertainty ratio <10% for every combination of noise level and 
sampling interval.

3.1.5.  Sample Surface Size

The effect of the sample surface size is small compared to sample thickness. A comparison of the panels a–d 
and e–h of Figure 4 indicates that the first and third quartiles of the uncertainty ratio distribution of the 75 μm 
samples for both domain sizes are very similar. The lowest grain densities of the 75 μm sample show somewhat 
lower and less scattered uncertainty ratios for the 200 × 200 μm 2 sample surface size than for the same sample in 
the 500 × 500 μm 2 sample surface. The uncertainty ratio distribution for the larger grain densities for both sample 
surfaces is on average the same. It is therefore reasonable to assume that the surface area of the sample does not 
play a major role in determining correct grain magnetizations for most grain densities, because the extra unknown 
grain magnetizations are balanced by the data from the increased amount of flux sensors at the top of the sample. 
The only downside of using a large sample surface size is the increased amount of computational power needed 
to solve the inversion, since the Green's matrix expands linearly for the number of grains, and expands squarely 
for the number of sensors.

3.2.  Signal Strength Ratio

Up to this point the distribution of the uncertainty ratios for combinations of different grain densities, noise 
levels, sampling intervals, sample thicknesses, and sample surface sizes have been assessed. From the results we 
observe that for samples with high uncertainty (e.g., 75 μm thickness and high grain density) it is possible to find 
small groups of grains with very low uncertainty ratios (<10%). To determine which grains in a certain model 
produce acceptable uncertainties, we assess the SSRs as function of the uncertainty ratios of the magnetizations. 
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In Figure 5 the minimally needed SSR to solve the magnetization of 99% of the grains with a certain uncertainty 
ratio is plotted as function of grain density in the models with a sample surface size of 500 × 500 μm 2. Each panel 
in the figure contains five uncertainty ratios, namely, 1%, 3%, 5%, 10%, and 20%.

Figure 5a shows that up to a grain density of 10 4 grains per mm 3 in a sample with a thickness of 50 μm, SSRs of 
6.7 × 10 −5 can be solved within uncertainty ratios as small as 10% for a low noise level and a high sampling reso-
lution. This means, for example, that grains with a volume of 10 μm 3 can be solved with an uncertainty ratio of at 
least 10% at a maximum depth of 38 μm. However Figure 5b shows that for the worst possible conditions, that is, 
a noise level of 100 nT and a sampling rate of 5 μm, only grains with a SSR of 2.4 × 10 −3 can be solved at 10% 
uncertainty ratio, which corresponds to solving a 10 μm 3 volume grain at 12 μm depth. According to Figure 3b, 
about 55% of the grains have a SSR equal to or larger than 2.4 × 10 −3.

The 99% resolved SSR is rising quickly for grain densities higher than 10 4 grains per mm 3. For the largest 
grain density and best-case scenario, that is, a noise level of 5 nT and a sampling rate of 1 μm, SSRs larger than 
3.4 × 10 −3 can be solved within an uncertainty ratio of 10%. This SSR corresponds to solving about 50% of total 
amount of the grains. In a worst-case scenario grains with a SSR larger than 2.9 × 10 −2 can be solved for the same 
grain density and uncertainty ratio. For both scenarios only grains close to the sample surface produce a SSR 
large enough to be properly solved.

The sample thickness is again a major factor determining the minimally needed SSR to solve grains for a given 
uncertainty ratio as shown in Figures 5c and 5d. Especially the influence on small grain densities for the lowest 

Figure 5.  Signal strength ratio (SSR) resolved at 99% criterion, plotted against grain density for different uncertainty ratios 
for the 500 × 500 μm 2 sample surface. The top row of panels is obtained for a sample thickness of 50 μm. The bottom row 
of panels is based on a sample thickness of 75 μm. Panels a and c represent results for a noise level of 5 nT and sampling 
interval of 1 μm. Panels b and d show results for a noise level of 100 nT and sampling interval of 5 μm. Each panel contains 
five lines corresponding to different uncertainty ratios, namely, 1% (circle), 3% (upper base triangle), 5% (lower base 
triangle), 10% (cross), and 20% (star). The red dotted lines in panel a and b represent an example described in Section 3.2, 
which shows that the signal strength ratio (SSR) increases from 7 × 10 −5 to 10 −2 when experimental conditions deteriorate 
for a sample with a grain density of 10 4 grains per mm 3 and 10% uncertainty ratio. These signal strengths corresponds to, for 
example, solving a 10 μm 3 grain at a depth of 38 and 7 μm, respectively. Some points are missing because no SSR could be 
found for cases where 99% of the grains pass the uncertainty criterion.
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noise levels and sampling intervals is large. Only for an uncertainty ratio larger than 1% can all grains be solved 
for the smallest grain density. Furthermore, the larger grain densities contain few grains that can be solved for 
the highest noise level and sampling interval. For the smallest uncertainty ratios of 1% and 3% there are no SSRs 
for which 99% of the grains are solved. Nevertheless, comparing panels a–b against c–d in Figure 5 shows that 
the minimum SSR of the larger grain densities for the same noise level and sampling interval scenario does not 
change significantly. This means that a thicker sample does not increase the minimally needed SSR to solve a 
grain for a given uncertainty ratio, implying that shallow grains are not solved worse due to distortion of the weak 
signal of deep grains. The reason for solving less grains in thicker samples is, therefore, that less grains have, 
relatively, the minimally needed SSR, which is caused by a changed SSR distribution as shown by Figure 3b.

Decreasing the sample surface size causes minor changes in resolved SSR for both sample thicknesses (see 
Figures S5 and S6 in Supporting Information S1). The SSR of smaller grain densities decreased the most. This 
decrease in SSR makes it more likely for samples with grain densities up to 10 4 grains per mm 3 to obtain confi-
dence sphere sizes lower than 10%, even for high noise levels and coarse sampling rates.

4.  Discussion
4.1.  Parameter Impact on Uncertainty

We set up a range of numerical models to investigate the responses of grain density, sampling interval, noise level, 
sample surface size, and sample thickness on the uncertainty of magnetization solutions. Additionally, we assess 
which combinations of depth and grain size provide stable results given the changing initial conditions. The over-
all results indicate that the quality of the solutions is highly dependent on grain density in the sample. The grain 
density directly increases the amount of variables in the inversion, which leads to an increase in condition number 
and, therefore, in uncertainties. The grain density enlarges the uncertainty ratio distribution up to four orders of 
magnitude from the best to the worst case scenario in our models. The uncertainty ratio raises rapidly for grain 
densities larger than 10 × 10 3 grains per mm 3.

The effect of noise level and sampling interval on magnetization uncertainty is similar, because they both affect 
the uncertainty ratio with an increase of up to two orders of magnitude. Compared to the influence of grain 
density, however, we perceive the effect of noise level and sampling rate to be less severe over the magnetiza-
tion uncertainty. The noise level does not have a significant influence because the surface magnetic field has, 
on average, a strength in the order of 10 −6 to 10 −3 T, which is many times larger than the largest realistic noise 
level of 100 nT (Glenn et al., 2017). In the case of sampling interval, its limited influence can be attributed to the 
vastly overdetermined inversion system, considering that the system contains at least twice as many knowns than 
unknowns. Moreover, these two parameters can be directly controlled during the experimental set-up, hence the 
noise level and sampling interval can be further minimized when needed.

The sample surface size has the smallest effect on the magnetization uncertainty of all parameters tested here, 
because it does not change the ratio of known magnetic field data and unknown magnetization variables in the 
inversion. Nevertheless, results show that the smallest grain densities obtain slightly better solutions in smaller 
domain areas, which can only be attributed to the presence of less unknown magnetization variables in the corre-
sponding inversion.

Sample thickness has a major influence on magnetization uncertainty; the uncertainty can rise up to two orders of 
magnitude by increasing the sample thickness from 50 to 75 μm. This rise is partly caused by the SSR that quickly 
becomes lower for the additional deeper grains in the thicker sample (see Figure 3b). We suggest, therefore, that 
the distance between sample and sensor should be as small as possible to retrieve the strongest possible signals. 
This leads to relatively high SSRs, resulting into signals that are well visible above the noise.

4.2.  Implications for Uncertainties in Previous MMT Studies

In the study of de Groot et al. (2018) MMT was used for the first time to successfully obtain individual magnet-
izations while making use of scanning SQUID microscopy (SSM). They inverted magnetic signals from three 
subdomains in a synthetically created sample with low grain density, but without providing confidence limits for 
the solutions. The accuracy of the obtained magnetization solutions is hence unknown. With the results obtained 
here, the uncertainties of these magnetization solutions can finally be estimated.
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The study focused on solving the magnetization of grains in three subdo-
mains with an average area of 300 × 300 μm 2, a thickness of 50 μm, and an 
average grain density close to 2,500 grains per mm 3. The sampling interval 
is 1 μm and the height of the SSM sensor above the samples is 1–2 μm. The 
noise level of the magnetic field produced by SSM is estimated to be much 
lower than 5 nT, although positional noise can further increase the noise level 
(Lee et al., 2004; Weiss et al., 2007). We combined the provided information 
with the newly acquired results of Section 3.2. Based on the assumption that 
we approximately have a 200 × 200 μm 2 sample surface with a thickness of 
50 μm for compatibility, we conclude that the uncertainty ratios of the grains 
in the study were much smaller than 1% (see Figure 4a). In the extreme case 
that positional noise would increase the noise level to an unrealistically high 
level of 100 nT, grains with a SSR larger 9.7 × 10 −4 could still be solved with 
uncertainty ratios of 1%, which is about 70% of the total amount of grains 
(see Figure S5d in Supporting Information S1). The effect of the additional 
distance of 1–2 μm between sample and scanning sensor is not significant, 
considering that the comparison of panels a and c of Figure 5 show almost 
no difference in the minimally needed signal strength to solve a grain with an 
uncertainty ratio of 1% for a density of 2,500 grains per mm 3. In conclusion, 
the magnetization results in de Groot et al. (2018) were obtained with high 
precision.

4.3.  Convergence of Model Results

Although the models have been iterated 15 times, variations caused by model specific configurations can still 
persist in the obtained uncertainty ratios and distribution or SSRs. The variations in the uncertainty ratio distri-
bution (Figure 4) have been estimated by comparing the change in cumulative uncertainty ratio distribution each 
time after a model has been run. The change in median declines, on average, from 80% after two iterations to less 
than 5% after 15 iterations. Extending the amount of iterations appears to have no effect, as the average deviation 
remains around 5% and does not show a declining trend. The lowest grain densities show the highest deviations 
in median uncertainty ratio of up to 15%, probably because the confidence interval is averaged over less grains 
compared to denser samples.

The SSR distribution exhibits deviations of a quarter of a log scale after 15 iterations for most sampling intervals, 
noise levels, and sample thicknesses. The SSR associated with the lowest grain densities can change more than 
half an order in magnitude, contrary to denser samples that change on average less than a quarter of an order 
magnitude. Similarly to the uncertainty ratio distribution, lower grain densities have more difficulty to produce 
a constant signal strength average over the model iterations, because they have less grains to cover all positions 
in the model within 15 iterations. It is possible that increasing the number of iterations of the model can improve 
the convergence of the SSRs of grains with lower grain densities. On the other hand, low grain densities have on 
average a lower minimal SSR and initially a higher percentage grains that pass the uncertainty ratio. Therefore, 
an error of a quarter of magnitude that is introduced here will not increase the uncertainty ratio of the majority of 
the grains such that they become unusable for further analysis. The estimated errors for the higher grain densities, 
likewise, have little effect on the percentage of grains that can be solved, because the potential raise in minimally 
needed SSR will only result in the rejection of a very small percentage of grains (see Figure 5).

4.4.  Setting a SSR Threshold

The SSR is a powerful statistic to quickly discriminate between grains that are resolved well by the MMT inver-
sion and grains that are not properly resolved. For each MMT inversion it is important to set a useful threshold 
for the SSR for the specific purpose of a study. This threshold depends on the five parameters of the inversions 
as studied here, and on the required accuracy of the accepted magnetizations. The SSR threshold needs to be 
balanced between rejecting grains with an accurate solution that do not meet the SSR criterion and including 
grains that do fulfill the SSR requirements, but are not properly resolved by the inversion. In Figure 6 we illus-
trate this based on all grains in the models with dimensions 500 × 500 × 50 μm, a grain density of 10 5 grains per 

Figure 6.  Using the signal strength ratio (SSR) to select subsets of grains 
with accurately resolved magnetizations for our models with a grain density of 
10 5 grains per mm 3, sampling interval of 1 μm, and noise level of 5 nT for a 
500 × 500 × 50 μm sample surface. The grains are colored according to their 
uncertainty ratio. Four different SSRs select 99.9%, 99.0%, 95.0%, and 90.0% 
of the grains with an uncertainty ratio of maximum 10%.
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mm 3, sampling interval in the magnetic scan of 1 μm, and a magnetic noise level of 5 nT. We once again accept 
a magnetization solution as accurate if the uncertainty ratio is <10%. In total there are 18,750 grains in these 
models, of which 15,301 grains have uncertainty ratios <10%; they would ideally be selected as the accurate 
subset of grains. We determined SSRs to select sets of grains for which 90.0%, 95.0%, 99.0%, and 99.9% of all 
accepted grains have an uncertainty ratio <10%. When 99.9% of the grains in the subset must fulfill the uncer-
tainty ratio criterion, 6,565 grains are selected using a SSR of 8.6 × 10 −3, that is, only 42.9% of the desired grains 
are selected. When 1% of the grains are allowed to violate the uncertainty ratio criterion, the number of grains 
in the subset increases to 9,342, but 93 of these violate the uncertainty ratio criterion, so 58.0% of the desired 
grains are recovered by the SSR of 3.4 × 10 −3. For the case where 95% of the grains is allowed to have an uncer-
tainty ratio <10%, the SSR of 7.3 × 10 −4 accepts 13,863 grains. This implies that although there are 693 grains 
in this subset that violate the uncertainty ratio criterion, 86.1% of all desired grains are accepted. When 10% 
badly resolved grains are accepted, 16,289 grains pass the SSR selection of 2.8 × 10 −4, and 95.8% of all properly 
resolved grains pass, although also 1,629 grains that violate the uncertainty ratio criterion are accepted as well.

The SSR to select a set of accurately resolved grains can be estimated for inversions with different parameters by 
running computational models with these specific sample dimensions and magnetic scan parameters. Running 
these additional computational models to determine the best SSR for a specific MMT inversion and purpose 
of course takes some time, but it is currently the only way to select the most reliable subset of grains after an 
inversion in a objective way. Moreover, these computational models can also be analyzed before the actual MMT 
experiments are done based on the parameters that are difficult to control during the experiments (e.g., the grain 
density of the sample). This can help to determine to optimal sample dimensions and boundary conditions for the 
magnetic surface scans for the MMT experiments.

4.5.  A Preliminary Assessment of Empirical Uncertainties

Here we studied the mathematical accuracy and performance of MMT inversions by running simulations with 
varying boundary conditions. We proposed and assessed new statistical parameters to scrutinize MMT results 
that allow to select the magnetic moments of only well resolved grains. This theoretical framework will also aid 
solving the empirical challenges that the development of MMT still faces. A prerequisite for MMT, for example, 
is that all surface magnetic signals within a domain belong to grains within that same domain (Fabian & de 
Groot, 2019). This condition is often violated in MMT studies on natural samples because a proportion of small 
magnetic sources in samples are undoubtedly missed due to the resolution limits of the MicroCT experiments (de 
Groot et al., 2021). The currently used MicroCT analyses have resolutions >0.7 μm and inherently miss smaller 
grains. Small PSD and SD grains, therefore, remain undetected in natural samples even though they may produce 
a signal in the surface magnetic map. A comprehensive study on the impact of errors in the MicroCT analyses is 
currently an ongoing project but here we provide a preliminary assessment of the effect of missing grains.

We set up and inverted 15 models which also contain grains smaller than 1 μm 3. To obtain a realistic amount 
of small grains, a grain diameter distribution was defined by fitting a log-normal distribution to the MicroCT 
data described in Section 2.1.1 to populate our models (Smirnov, 2006; Yu et al., 2002). This distribution was 
created in SciPy (Virtanen et al., 2020) using the parameters scale = 0.9, shape = 0.9, and location = 0.0. Then 
this distribution was sampled to obtain approximately 550 spherical grains of which 200 grains have a volume 
larger than 1 μm 3. All grains were assigned a magnetization according to Equation 1 and were randomly placed 
in a 200 × 200 × 50 μm 3 domain without intersecting other grains. A forward field was obtained with a sampling 
interval of 1 μm and a noise level of 5 nT. Grains smaller than 1 μm 3 were then removed before the MMT inver-
sion, simulating missing grains in the MicroCT analysis. The remaining 200 grains, which represent a grain 
density of 10 5 grains per mm 3, were inverted and their relative magnetization error was assessed as function of 
SSR.

For this configuration, without missing grains, a SSR of 2 × 10 −3 was sufficient to solve 99% of the grains with 
an uncertainty level of 10%, according to our SSR analysis in Section 3.2 (Figure S5a in Supporting Informa-
tion S1). However, the results obtained when grains are missed by the MicroCT show that a SSR of approximately 
10 −1 is required to obtain an uncertainty level of 10% for 99% of the grains in the inversion. We observe that this 
occurs independent of noise level, sampling interval, grain density, and domain size, indicating that every grain 
would require a SSR of 10 −1 when a MicroCT with 1 μm resolution is used. Remarkably, even in the present 
very unfavorable scenario MMT is still capable of producing accurate results for both large and shallow grains in 
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the sample. Given the preliminary nature of these results we must remark that to fully quantify the impact of the 
effect of missing grains by MicroCT analysis on MMT results it is required to do a focused future in-depth study.

4.6.  Limitations and Future Research

This modeling study is the first attempt to quantify errors associated with individual magnetization solutions as 
produced by MMT. We have made, therefore, some simplifying assumptions. First of all, we assumed uniform 
magnetization sources for all grains. Most natural grains will not have a uniform magnetization structure, but a 
more complex magnetic structure best represented by a multipolar approximation (Butler, 1992; Cortés-Ortuño 
et al., 2021). This complex structure could introduce additional uncertainties in the inversion, since the sensitivity 
to noise of quadrupole, octupole, and higher order magnetization terms is currently unknown. However, results 
from Cortés-Ortuño et al. (2021) show that the solved dipolar magnetization changes when multipole terms are 
added to the calculation. Also the amount of variables to solve per grain increases when solving for multipole 
terms, while the amount of data points in the magnetic surface scan does not increase. Therefore, it would be 
worthwhile to investigate the sensitivity of these higher order multipole terms to noise, and to study the effect 
of adding these higher order terms on the uncertainty of the total solution. Fortunately, the magnetic response of 
multi-domain grains quickly declines with increasing depth, hence we would solely need to model multi-domain 
grains until a depth of 10–20 μm (Cortés-Ortuño et al., 2021).

Furthermore, we assumed that the noise in the magnetic field scan is Gaussian distributed. This assumption 
is incorrect for natural samples for a couple of reasons. First of all, most grains have a complex multi-domain 
magnetization structure, but they are solved as if they were in a uniform state. This means that residuals caused by 
unsolved higher order magnetic moments will introduce correlated noise to the magnetic surface field. This prob-
lem can be approached by using a computational code that allows for solving higher order multipole moments 
(Cortés-Ortuño et al., 2021).

Another problem that persists within MMT is the limited amount of grains we can invert for at once. Compu-
tationally, we can now run an MMT inversion for a sample of 500 × 500 × 75 μm and a grain density of 10 5 
grains per mm 3. This requires a computational system with 52 cores and 192 GB of RAM, which enables us to 
invert for almost 2,000 grains at once. Currently, the main limitation for the inversion of larger samples is the 
RAM capacity of the machine. The RAM requirements can be lowered in the future with further optimizations 
to the numerical code (e.g., Kabir et al., 2017). Alternatively, it is also possible to reduce the resolution of the 
scanning grid or reduce the amount of variables by grouping grains when solutions, according to the covariance 
matrix, are strongly correlated and consequently have a high individual uncertainty ratio. Although this does 
not decrease the number of data points at the surface, the uncertainty of the grouped grains is improved and the 
amount of variables is reduced. Another option is to invert smaller subdomain regions that can be handled by the 
computational system. Nonetheless, problems will arise in consistency of the magnetization solution of grains 
near the boundaries of the subdomains, because the subdomains are likely magnetically joint, thereby violating 
the assumption of magnetic independent regions (Fabian & de Groot, 2019). Nevertheless, the inner grains of 
the subdomains might still have reliable solutions as long as sufficient information on their produced magnetic 
surface field is available in the subdomain. An option is to use a thicker sample, which will immediately increase 
the number of grains without changing the amount of data points in the magnetic surface scan. However, we have 
shown that increasing the sample thickness leads to a significant increase in uncertainty ratio, because the deeper 
grains have an insufficient signal strength to be noticeable at the surface.

4.7.  Paleomagnetic Outlook

One of the ultimate aims of MMT studies is to derive paleomagnetic interpretations, that is, paleodirections and 
paleointensities, from subsets of grains in a sample. In our study we assigned the magnetizations of our grains 
randomly. Therefore, an interpretation of the magnetic moment of the entire sample of subsets of grains in our 
model is meaningless. Nevertheless, future MMT studies could obtain a total magnetic moment vector of a real 
sample by plotting the magnetic moment solutions and respective uncertainties of each grain on a polar plot. Then 
by applying appropriate statistics (e.g., Fisher, 1953; Kent, 1982) an estimate of the total magnetic moment vector 
of a sample can be obtained. Conclusions about paleointensities are even harder to obtain. As shown by Berndt 
et al. (2016), at least 10 million small SD grains are required to obtain a proper estimation of the paleomagnetic 
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field. But it is currently unknown under which conditions larger, PSD or MD, grains may provide valuable 
paleomagnetic information; and if so, how many of these grains would be sufficient for a reliable interpretation 
of paleodirections and/or paleointensities. Recently, PSD grains receive increasingly more attention as reliable 
paleomagnetic recorders. For example, Nagy et al. (2017) suggests that grains with diameters up to 1 μm are 
capable of retaining stable magnetizations of geologic timescales. Solving for the magnetization of PSD grains 
using MMT is currently still challenging since most MicroCTs cannot completely detect grains <1 μm, creating 
errors in the magnetic moments (see Section 4.5). The MicroCT scans for ongoing MMT studies, however, attain 
resolutions <500 nm, implying that the detection of large PSD grains is within technological reach. Given the 
technological developments in MicroCT scanners combined with the rapidly maturing MMT inversion technique, 
we believe that MMT will be a valuable asset in the paleomagnetic toolbox in the near future.

5.  Conclusions
In this study we have acquired a first order estimation of the uncertainties of individual magnetization solutions 
using MMT. With the help of numerical models we showed that grain density and sample thickness are the 
major factors influencing the mathematical uncertainty of the magnetization solutions. Noise level and sampling 
interval are of secondary importance, because these parameters are controllable during experiments. The sample 
surface size minimally influences the results and should only be decreased when the size of the surface magnetic 
scan leads to overflowing computer memory.

Using the SSR as defined in this study helps to identify individual grains with an accurate magnetic solution 
as indicated by a low uncertainty ratio, even when a specific combination of the investigated parameters (grain 
density, noise level, sampling interval, sample surface size, and sample thickness) pose a challenge to the MMT 
inversion. The SSR is based on volume and depth of a grain, hence it is not necessary to rerun the inversion to 
obtain individual uncertainty levels through the covariance matrix. The thresholds for the SSR obtained in this 
study can, therefore, be applied to other MMT studies that involve the same inversion procedure. In this way, we 
can extract individual well-resolved grains from overall challenging samples and obtain an accurate magnetic 
moment solution from only those grains.

We verified that the results for uncertainty ratio distribution and SSR converge within 15 model iterations. Never-
theless, the stability of magnetization results can degrade due to undetected grains in the MicroCT scan. Through 
the ongoing development of MicroCT, this challenge will eventually be solved for. Additionally, errors caused by 
incorrectly solving shallow multi-domain grains using the dipole assumption might influence the solution, but 
this source of error can be controlled by employing the multipole method of Cortés-Ortuño et al. (2021). In this 
context, modeling shallow grains with higher order magnetic moments will allow to observe the effect of higher 
order terms on the uncertainty of the individual magnetization solutions in a future study. In summary, by analyz-
ing the effect of five strongly influencing parameters in MMT experiments we have provided a first framework to 
quantify the uncertainties of the magnetization solutions of natural magnetic grain samples. Consequently, these 
results can be applied to further paleomagnetic studies to determine the accuracy of obtained natural remanent 
magnetizations and to individually select reliable grains from bad samples.

Data Availability Statement
The data that support the findings of this study are openly available on Zenodo at https://doi.org/10.5281/
zenodo.6390295.
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