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Abstract
1. In ecology, one of the most fundamental questions relates to the persistence of 

populations, or conversely to the probability of their extinction. Deriving extinction 
thresholds and characterizing other critical phenomena in spatial and stochastic mod-
els is highly challenging, with few mathematically rigorous results being available for 
discrete-space models such as the contact process. For continuous-space models of 
interacting agents, to our knowledge no analytical results are available concerning 
critical phenomena, even if continuous-space models can arguably be considered to 
be more natural descriptions of many ecological systems than lattice-based models.

2. Here we present both mathematical and simulation-based methods for deriving 
extinction thresholds and other critical phenomena in a broad class of agent-
based models called spatiotemporal point processes. The mathematical methods 
are based on a perturbation expansion around the so-called mean-field model, 
which is obtained at the limit of large-scale interactions. The simulation methods 
are based on examining how the mean time to extinction scales with the domain 
size used in the simulation. By utilizing a constrained Gaussian process fitted to 
the simulated data, the critical parameter value can be identified by asking when 
the scaling between logarithms of the time to extinction and the domain size 
switches from sublinear to superlinear.

3. As a case study, we derive the extinction threshold for the spatial and stochastic 
logistic model. The mathematical technique yields rigorous approximation of the 
extinction threshold at the limit of long-ranged interactions. The asymptotic valid-
ity of the approximation is illustrated by comparing it to simulation experiments. 
In particular, we show that species persistence is facilitated by either short or long 
spatial scale of the competition kernel, whereas an intermediate scale makes the 
species vulnerable to extinction.

4. Both the mathematical and simulation methods developed here are of very general 
nature, and thus we expect them to be valuable for predicting many kinds of critical 
phenomena in continuous-space stochastic models of interacting agents, and thus 
to be of broad interest for research in theoretical ecology and evolutionary biology.
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1  | INTRODUC TION

In ecology, one of the most fundamental questions relates to the 
persistence of populations, or conversely to the probability of their 
extinction. Much of our current understanding of factors influ-
encing extinction processes comes from theoretical models. One 
classical example is the metapopulation model of Lande (1988) that 
predicted that the northern spotted owl population will go extinct 
if the amount of habitat destruction exceeds a threshold amount. 
Since the model of Lande (1988), a rich body of theory on sto-
chastic models of population extinction has been developed (see 
Ovaskainen & Meerson, 2010 for a review). One particular aspect 
that has received much attention is how population persistence is 
influenced by habitat loss and fragmentation, including the spatial 
distribution of the remaining habitat (Fahrig, 2002). Many spatial 
population models are formulated in deterministic frameworks, 
such as reaction-diffusion models for continuous populations 
(Maciel & Lutscher, 2013) or systems of differential equations for 
metapopulations (Hanski & Ovaskainen, 2000). Spatial popula-
tion models have also been formulated in stochastic frameworks, 
such as cellular automata models on spatial grids (Bascompte & 
Sole, 1996), stochastic patch occupancy models (Moilanen, 2004) 
or models where individuals interact in continuous space (Bolker 
et al., 2000; Cornell et al., 2019).

While the importance of accounting for the effects of both space 
and stochasticity has long been acknowledged, it is highly challenging 
to achieve mathematical results for spatial and stochastic population 
models. The separation between parameter values that determine 
whether the population persists or goes extinct is an example of 
the very broad research field of phase transitions and critical phe-
nomena, which have been a central focus of research in theoreti-
cal physics and statistical mechanics (Domb et al., 1972–2001). As 
one example, the so-called contact process is a much-studied toy 
model of both population dynamics and the spread of infectious dis-
eases. The contact process is a continuous-time stochastic model 
on a regular grid in the d-dimensional space with mesh size 1/M 
(Durrett, 1999). At any given time, each site of the grid is either va-
cant or occupied. Occupied sites produce propagules at rate �. The 
propagule lands to one of the Md neighbouring sites, and colonizes 
it if it was vacant. Occupied sites go extinct at rate �, which can be 
normalized to �=1 without loss of generality. A well-known result 
is that there is a critical value �c, so that if 𝛽 <𝛽c, the system goes 
extinct, whereas if 𝛽 >𝛽c, it can persist indefinitely (Durrett, 1999). 
However, even for the most archetypal case where the process takes 
place on a two-dimensional lattice, there is no exact if expression for 
�c, just upper and lower bounds (Durrett, 1999). What is better un-
derstood is the mean-field limit of M→∞, at which limit the density 

of occupied sites qt at time t behaves according to the ordinary dif-
ferential equation. 

At this limit, it is easy to see that the critical value is �c=1. What is also 
well-understood is how �c behaves near the mean-field limit. Namely, 
the difference �c (M)−�c (∞) between the critical value of the spatial 
model and its mean-field limit behaves for large M as C log (M) ∕M2 in 
the case of the two-dimensional lattice and as C∕Md in the case of d- 
dimensional lattice with d≥3 (Bramson et al., 1989; Durrett, 1999), 
where the constants C can be computed exactly (Durrett & 
Perkins, 1999). The single-species model of the contact process can be 
extended to multiple species, and the same modelling framework can 
be used to a rich variety of other kinds of ecologically and evolutionary 
relevant models (Durrett, 1999).

In this paper, we focus on a broad class of stochastic and spatial 
models called spatiotemporal point processes, defined in continu-
ous space rather than the discrete-space models discussed above. 
While spatiotemporal point processes can be used to model a rich 
array of ecological and evolutionary behaviours (e.g. Barraquand & 
Murrell, 2013; Bolker & Pacala, 1997; Cornell et al., 2019; Murrell & 
Law, 2003), and while they can arguably be considered to be more 
natural descriptions of many ecological systems that lattice-based 
modes, to our knowledge there are no rigorous results concern-
ing their critical behaviour. The analysis of spatiotemporal point 
processes has been mostly based on moment closure techniques 
(e.g. Barraquand & Murrell, 2013; Bolker & Pacala, 1997; Bolker 
et al., 2000; Law et al., 2003), which are intuitive but uncontrolled ap-
proximations that are not guaranteed to perform well in any particular 
limit (Murrell et al., 2004; Plank & Law, 2015). Thus, while analytical 
approximations related to extinction rates have been derived using 
moment closure techniques (e.g. Keeling, 2000), it is not clear at which 
part of the parameter space those approximations are accurate.

In this paper, we address the challenge of deriving extinction 
thresholds with a toy model that can be considered as a continuous- 
space analogue of the contact process: the Spatial and Stochastic 
Logistic Model (Bolker & Pacala, 1997; Law et al., 2003; Ovaskainen 
et al., 2014), henceforth, the SSLM. This model operates in continu-
ous space and continuous time. The state of the model at any time 
t is a configuration � t of points in the d-dimensional Euclidean space 
ℝ

d, of which we will mostly focus on the two-dimensional case d=2. 
The SSLM includes three processes, which we call density-indepen-
dent death, density-dependent death and reproduction. In the first 
one, the rate at which density-independent death takes place is a 
constant m. In the second one, the rate of density-dependent death 
for an agent located at x is 

∑

y∈� t�{x}
a−(x−y), where a−(x−y) is the 

(1)
dqt

��
=�qt

(

1−qt
)

−qt.

K E Y W O R D S

agent-based model, critical phenomena, extinction threshold, individual-based model,  
mean-field model, phase transition, spatial model, stochastic model
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competition kernel describing the increase in death rate of an agent 
located at x due to the presence of another agent located at y. In the 
third one, the per-unit-area rate of reproduction at a location y is 
∑

x∈� t
a+(x−y), where a+(x−y) is the reproduction kernel with mother 

located at x and the offspring emerging to location y.
The parameters of density-dependent death and reproduction 

are kernels, and thus they describe both the intensity of the inter-
action as well as its spatial distribution. The intensity is measured 
by the integral of the kernel, and we denote it by A− = ∫

ℝd a
−(x) dx 

for the kernel of density-dependent death, and by A+ = ∫
ℝd a

+(x) dx 
for the kernel of reproduction. The spatial distribution of the kernel 
is further described by its shape and scale. Out of these, our spe-
cial interest is in the scale parameter. To be able to vary the scale 
while keeping the intensity and shape constant, we introduced the 
scalings.

These scalings preserve the integrals A− and A+ of the kernels but make 
the spatial interactions increasingly long ranged when � approaches 
zero. In particular, at the limit �→0, the model convergences to the 
so-called mean-field model, in an analogous way of the contact process 
doing so when the neighbourhood size M→∞. In the space-homoge-
neous case, where the population density does not depend on the 
space variable, the mean-field model of the SSLM is the usual logistic 
model of population growth, defined by the differential equation.

where qt is population density at time t. We note that Equation 3 
is identical to Equation 1 up to parameterization. This mean-field 
model predicts that the population will go extinct if the rate of 

density-independent mortality is greater than the intensity of repro-
duction, that is if m>A

+, whereas the population will persist for indef-
initely long time if m<A

+. Thus, in the mean-field model the critical 
value mc (the threshold value) of the parameter m is mc = A

+.
In the simulation snapshots of the stationary state of the model 

with local interactions (𝜀>0), shown in Figure 1, all the other pa-
rameters of the model were kept fixed, but the rate of density- 
independent death m was altered. The values of the parameter 
m have been chosen so that the system is either much (m=1), 
somewhat (m=1.5) or just barely (m=1.627) above the extinction 
threshold. In addition to the population density decreasing with 
increasing mortality, also the spatial pattern of the distribution of 
individuals changes. In particular, near the extinction threshold the 
population becomes increasingly aggregated, so that the remaining 
individuals form distinct patches (Figure 1). The spatial aggrega-
tion of individuals is the reason why the population goes extinct 
with a lower value of the mortality parameter than would be case 
in the mean-field model, where the critical value would be m=2 
in the parameterization used in our simulation. As noted by Law 
et al. (2003), the aggregated pattern results in elevated competi-
tion among the individuals, leading to a lower population density 
than in the mean-field model.

The specific research question of this paper is to find the critical 
value mc of the parameter m that determines whether the popula-
tion goes extinct or not, when keeping the other parameters of the 
model constant. This question is motivated with the much more 
general question of how to analyse phase transitions mathemati-
cally in spatiotemporal models. We will build our work on recent 
mathematical results for predicting the dynamics of a general class 
of models (of which the SSLM is a special case) near the mean-field 
limit, that is for a positive but small values of the spatial scale pa-
rameter �. We thus seek for an expression for the critical value mc 
as a function of the spatial scale parameter �, that is an expression 

(2)a−
�
(x):=�da−(�x), a+

�
(x):=�da+(�x).

(3)dqt

��
=
(

A
+−m

)

qt−A
−
q2
t
,

F I G U R E  1   Snapshots of simulations from the quasi-stationary state of the SSLM. The dots show the locations of the individuals present 
at the time of the snapshot 1,000 time units after initialization. Simulations were done in a 200-by-200 unit area with periodic boundary 
conditions. Initial condition for individuals was Poisson with intensity of 1, reproduction kernel a+ and competition kernel a− had Gaussian 
shape (1∕2�) exp

(

− |x|
2 ∕2

)

 with length scale �=1, and intensities A+ =2 and A− =1. For computational reasons, the Gaussians were 
truncated with the radius of 3. Density-independent death rate m was 1, 1.5 and 1.627 in panels from left to right, respectively
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for mc (�). Based on the mean-field results, it is known that at the 
limit �→0 it holds that mc (0)=A+. For small but positive �, it is rea-
sonable to expect that mc (�) is close to mc (0). Our specific aim is 
to derive an expression for the deviation dc (�) :=mc (0)−mc (�) for 
small �. This deviation will describe how localized interactions in-
fluence the location of extinction threshold, compared to the case 
of global interactions.

2  | MATERIAL S AND METHODS

2.1 | Mathematical methods

We denote by k�,t (x) the expected population density at location x 
at time t, in a model where the kernels have been scaled with the 
parameter � as in Equation 2. We consider here the translationally 
invariant case with homogeneous initial condition, in which case 
the expected population density is independent of the spatial loca-
tion, and we may thus simply denote it by u∝ log10 U. Previous work 
(Ovaskainen et al., 2014) has shown that, for small �, the expected 
population density behaves as 

Here qt is the mean-field term discussed above, pt is the first-order 
correction to it and o

(

�d
)

 denotes a term that, when divided by �d,  
vanishes when �→0. This perturbation expansion follows from a 
mathematically rigorous derivation (Ovaskainen et al., 2014) that is 
not specific to the SSLM but holds for the very general class of so-
called reactant-catalyst-product models (Cornell et al., 2019), called 
henceforth the RCP models. We note that both the moment closure 
methods (see Section 1) and the perturbation expansion are approx-
imations aimed at making the infinite hierarchy of spatial moments 
tractable. The main difference between these two methods is that 
the perturbation expansion is a mathematically controlled approxi-
mation, as it can be proved to become increasingly accurate at the 
limit of �→0.

We focus on the stationary state of the model, achieved at 
the limit of t→∞, and denote the stationary population density by 
k∗
�
= lim

t→∞
k�,t. We further denote by q∗ = lim

t→∞
qt and by p∗ = lim

t→∞
pt, for 

which the following expressions can be obtained for A+
>m (see 

Supporting Information):

where ã denotes the Fourier tranform of the kernel a. In the Supporting 
Information, we develop a mathematical technique for deriving the 
leading behaviour (as �→0) of the critical value mc (�) that determines 
whether k∗

𝜀
>0. As a starting point of these derivations, we use the 

equation q∗ +�dp∗ +o
(

�d
)

=0.

2.2 | Simulation methods

We used the general simulator for RCP models (Cornell et al., 2019) to 
determine the behaviour of mc(�) numerically for small �. Determining 
the behaviour of mc(�) from simulations is challenging for three rea-
sons. The first reason for this is that while the theoretical results 
concern the infinitely large spatial domain ℝd, simulations need to be 
conducted on a finite domain. We used a rectangular domain with 
periodic boundary conditions, and denote the size of the domain by 
U×U. For any finite U, however large, the system goes eventually ex-
tinct with probability 1, even if the expected time to extinction can 
be astronomically large for cases that are much above the extinction 
threshold. To see why this is the case, we note that the probability of 
extinction is necessarily at least as great as the probability by which 
all individuals die before any new ones are born, which probability is 
positive (even if very small) for a finite system. For this reason, while in 
a simulation the system may appear to have reached a stationary state, 
mathematically it has reached only a quasi-stationary state (Darroch & 
Seneta, 1967). The second reason why it is difficult to determine mc(�) 
from simulations is that the transient period since the initial state until 
reaching the quasi-stationary state can be expected to be especially 
long near the extinction threshold (Hanski & Ovaskainen, 2002), which 
is exactly the parameter regime that we are here interested about. The 
third reason why it is difficult to determine mc(�) from simulations is 
that we are interested in the behaviour of mc(�) for small �, and in par-
ticular in evaluating the difference dc(�) for small �. With small �, the 
difference dc(�) will be small, and hence the simulations need to be the 
more accurate the smaller is �.

In our simulation experiments, we fixed all the parameters of 
the model to those described in Figure 1, except for the focal pa-
rameter m and for the length-scale parameter �. To mimic an infinite 
domain in which the system can be expected to persist indefinitely 
(assuming that parameter values are above the extinction threshold 
and that the initial condition is constant positive density), we run 
the simulations for increasing values of the domain size U, set as 
U=25, 50, 100, 200, 400, 800 for the spatial models (𝜀>0), in addi-
tion to which we applied also U=1600 for the non-spatial model (�=0).  
To examine the behaviour of mc(�) as a function of � at the regime 
of �→0, we varied the length-scale parameter as �=1,

1

2
,
1

4
,
1

8
,

1

16
 

and �=0.
For each value of �, we performed the simulations for a set of 

values of m. The selection of these was based on the mathemati-
cal results of Sagitov and Shaimerdenova (2013) on the non-spatial 
stochastic logistic model, thus corresponding to our case of �=0.  
Denoting by MTE the mean time to extinction, Sagitov and 
Shaimerdenova (2013) showed that the log(MTE) increases lin-
early with log(U) for the critical value of m=mc, whereas log(MTE) 
increases sublinearly with log(U) for m>mc and superlinearly with 
log(U) for m<mc. This behaviour is illustrated in Figure 2, where we 
have simulated the model with different domain sizes, for values of 
the parameter m that are both just below and just above the critical 
value of mc=A+. While we are not aware of a mathematically rig-
orous result that would show that the dependency of log(MTE) on 

(4)k�,t=qt+�dpt+o
(

�d
)

.

(5)q∗ =
A+−m

A− ,

(6)p∗ =−
1

A− ∫
ℝd

ã+(k)−q∗ ã−(k)

A
+−

(

%ã+(k)−q∗%ã−(k)
) ã−(k) dk,
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log(U) would change from sublinear to superlinear at the extinction 
threshold also for spatial models, it is reasonable to assume that 
this would be the case. We thus selected a set of value of m for 
each value of � so that the resulting numerically observed depen-
dencies between log(MTE) and log(U) included a switch from sub-
linear to superlinear behaviour. We initialized each simulation by a 
homogeneous Poisson process at density of 1, and continued the 
simulation until either the system went extinct, or until the simu-
lation time exceeded 105 time units. We then estimated the mean 
time to extinction (MTE) as the average time to extinction from 100 
replicate simulations.

For each value of �, the simulations described above yield esti-
mates of MTE for a combination of the parameter values m and U. To 
estimate the value of mc(�) from these simulation results, we took a 
statistical approach, where we considered the simulated estimates of 
log(MTE) as the response variable, and the parameters m and log(U) as 
explanatory variables. As a visual inspection of the data did not sug-
gest any simple parametric relationship between the response and 
explanatory variables, we modelled the data as a Gaussian process 
(Rasmussen & Williams, 2006). We aided the model fitting by impos-
ing a set of constrains based on qualitative a priori expectations on 
the systems behaviour. First, we constrained the Gaussian process 
with the requirement that the response variable decreases with the 
parameter m. Second, based on the expected switch from superlin-
ear to sublinear behaviour, we constrained the second derivative of 
log(MTE) with respect to log(U) to decrease from positive to negative 
values as a function of the parameter m. We fitted the constrained 
Gaussian process with the method of Maatouk and Bay (2017), the 
technical details being given in the Supporting Information. We then 
estimated the critical value mc from the fitted model as the value 
of as m for which the second derivative was predicted to switch its 

sign. The above-described procedure is illustrated in Figure 2 for the 
non-spatial case (�=0) and for a spatial case (�=1∕2). We note that 
the estimate of mc (0)≈2.0000 for the non-spatial case coincides with 
the exact value of mc (0)=2.

3  | RESULTS

The leading term of dc(�) for small � behaves for d≥3 as C�d, and for 
d=2 as CW

(

�−2
)

�2, or equivalently as 2C(− log�)�2. Here W(x) is the 
so-called Lambert W function and the dependency of the constants 
C on the kernels a+, a− and can be explicitly determined (for the deri-
vation, see Supporting Information).

In Figure 3, we compare simulation results (dots) with analytical 
results (lines) for the case of d=2. In the upper panels of Figure 3, we 
assume Gaussian kernels with identical length scales, for which case 
it further holds that

where the constants C1 and C2 are given in the Supporting Information. 
We note that the constant C2 does not influence the leading term and 
hence may be ignored if interested only in the leading asymptotic be-
haviour when �→0. In particular, these results shows that d�

c
(0)=0, and 

thus at the left-hand side of the left-hand panel the slope of the curve 
is exactly zero. For large � the simulations clearly deviate from the ana-
lytical prediction, but our main interest is on verifying that the analyti-
cally derived approximation is accurate for small �, that is that 
lim
�→0

(

dM
c
(�)∕dS

c
(�)

)

=1, where we have distinguished the mathematical 
(M) and simulation-based (S) solutions by the superscripts. This crite-
rion can be written equivalently as log

(

dM
c
(�)

)

− log
(

dS
c
(�)

)

→0 as 

(7)dc(�)=C1�
2W

(

C2�
−2
)

+o
(

W
(

�−2
)

�2
)

,

F I G U R E  2   Illustration of how the critical density-independent death rate mc(�) was estimated from simulations for each value of �. The 
letters show the mean extinction time from 100 replicate simulations for each combination of density-independent death rate m and domain 
size u∝ log10 U. The lines show the posterior mean prediction of a fitted constrained Gaussian process model, as explained in the Methods 
and in more detail in the Supporting Information. The critical density-independent death rate mc(�) was estimated as the value m for which 
the Gaussian process model predicted the second derivative of the visualized curves to switch from negative to positive, as illustrated by the 
dashed lines, and giving the estimates shown in the tops of the panels. The parameter values of the model are set as in Figure 1. The panels 
show the results for the non-spatial model (�=0) and for the spatial model with �=1∕2, for corresponding figures for other values of ε see 
the Supporting Information
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�→0, which is indeed supported by the dots approaching the line in 
the upper right-hand panel of Figure 3 as �→0.

In the lower panels of Figure 3, we have relaxed the assump-
tion of identical length scales for the competition kernel (denoted 
by s−) and the reproduction kernel (denoted by s+). Instead, we have 
now fixed one of the length scales, and varied the other one in over 
a logarithmic scale. As the lower panels are shown for the case of 
�=1 rather than for the limit of �→0, it is fully expected that the 
analytical predictions do not match quantitatively with the simula-
tion results. However, the analytical and simulation results match 
in their qualitative behaviour. Namely, for a fixed length scale s− of 
the competition kernel, the extinction threshold increases mono-
tonically as the length scale s+ of the reproduction kernel increases. 
Furthermore, for a fixed length scale s+ of the reproduction kernel, 
the extinction threshold behaves non-monotonically with the length 
scale s− of the competition kernel, reaching its lowest value for an 
intermediate value of the length scale s−.

4  | DISCUSSION

Extinction thresholds and other critical phenomena are of central 
interest in theoretical ecology and evolutionary biology, but their 
mathematical analyses have mainly been restricted to deterministic 
and non-spatial models. The methods presented here greatly extend 
the toolbox of theoretical ecologists by enabling them to ask how 
extinction threshold and other critical phenomena are influenced by 
spatially localized interactions and stochasticity caused by the dis-
crete nature of the interacting agents. As a case study to develop 

and illustrate the methodology, we used the SSLM, which can be 
considered as the continuous-space analogy of the much-studied 
discrete-space contact process. As the parameter � in our continuous- 
space model plays the role of the parameter 1/M in the discrete-
space contact process, we note that our results are equivalent with 
those of the contact process (see Introduction). This is encouraging, 
as it suggests that the qualitative results do not depend on the tech-
nical details of how the model is implemented, for example whether 
space is discrete or continuous.

While we focused here on methodology rather than ecology, our 
results related to the length scales of reproduction and competition 
kernels are interesting also in terms of their ecologically interpreta-
tion. The monotonously increasing value of the extinction threshold 
as a function of the length scale s+ of the reproduction kernel can be 
expected to be the case, because increasing the length scale of the 
reproduction kernel decreases the level of population aggregation, 
which in term decreases the adverse effect of density-dependent 
mortality. Perhaps less trivially, we observed that the value of the 
extinction threshold is minimized for an intermediate value of the 
length scale s− of the competition kernel. To see why this can be 
expected to be the case, we note that for very large length scale of 
the competition kernel, the local density determining the density- 
dependent mortality is an average over a large spatial area, and thus 
the effect of density-dependent mortality is not elevated due to the 
local aggregation of the individuals. Conversely, for very small length 
scale of the competition kernel, competition is intensive but it in-
fluences only a small spatial extent. If two individuals are located 
close to each other, one of them will die very fast. However, with a 
small length scale s−, it is rare that individuals are sufficiently close 

F I G U R E  3   Comparison between 
mathematically predicted (the lines) and 
simulation-based (the dots) estimates of 
the critical density-independent death 
rate mc(�). The mathematically predicted 
estimates are based on Equation 7, and 
the simulation-based estimates are 
derived for each value of � using the 
procedure illustrated in Figure 2. The 
upper panels assume equal length-scale 
parameters s+ = s− =1 for the reproduction 
and competition kernels. The left-hand 
panel shows mc(�) versus �, whereas the 
right-hand panel shows the same data as 
log2

(

dc(�)
)

 versus log2(�). The parameter 
values of the model (except �) are set as 
in Figure 1. The lower panels show cases 
where �=1, one of the two length-scale 
parameters is fixed to the value of 1 and 
the other length-scale parameter is varied 
in a logarithmic manner
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to experience competition, and thus at the limit of s−→0 the pop-
ulation-level effect of competition can be expected to vanish. The 
importance of spatial scales of ecological processes on the dynam-
ics and persistence of populations has been noted also in several 
previous studies. For example, Murrell and Law (2003) found in a 
two-species model that coexistence is promoted if interspecific 
competition occurs over shorter distances than intraspecific com-
petition. As another example, Keeling (2000) used moment closure 
methods to study how the rate of metapopulation extinction de-
pends on what proportions of reproduction and density-dependent 
competition take place locally at the patch level versus globally at 
the metapopulation level, which proportions can be interpreted to 
represent spatial scales of these processes.

We developed the mathematical and simulation results spe-
cifically in the context of the SSLM (Bolker & Pacala, 1997; Law 
et al., 2003; Ovaskainen et al., 2014). The mathematical and simu-
lation methods developed here are however of general nature, and 
thus we expect them to apply to the large class of continuous-space 
spatial and stochastic processes that can be formulated as RCP 
models (Cornell et al., 2019). In particular, as illustrated by previ-
ous studies that have applied either the RCP framework (Cornell 
et al., 2019) or formulated equivalent models in the terminology of 
spatial moment equations (e.g. Barraquand & Murrell, 2013; Murrell 
& Law, 2003), this family of models can incorporate any number of 
interacting agent types (e.g. multispecies models or models with 
within-species heterogeneity), as well as spatiotemporal variation in 
environmental conditions. The RCP methodology further applies not 
only to stationary state, but also to transient dynamics, as well as to 
inhomogeneous initial conditions (Cornell et al., 2019).

While the simulation methods presented here can be readily ap-
plied to any RCP model with arbitrary level of complexity, a limitation 
of the mathematical methodology is that the derivations are relatively 
involved (see Supporting Information), and thus it is not straight-
forward to systematically apply them to the general family of RCP 
models. In Ovaskainen et al. (2014), we developed the perturbation 
expansion methodology for first and second spatial moments using 
the SSLM as the toy model, which methods Cornell et al. (2019) later 
extended so that they can be easily applied to the full family of RCP 
models. In the same way, here we developed the extinction threshold 
methodology using the SSLM as a toy model, for the reason that its 
simplicity makes it a good test case for developing new methodology. 
We hope that future work will take the next step of making the meth-
ods presented here more easily applicable to the full family of RCP 
models. Thus, the present paper should be taken mainly as a proof of 
concept of it being possible to rigorously analyse extinction thresh-
olds in continuous-space models of stochastic population dynamics.
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