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Abstract

Instances of repeated evolution of novel phenotypes can shed light on the conserved molecular mechanisms underlying morpho-
logical diversity. A rare example of an exaggerated soft tissue phenotype is the formation of a snout flap in fishes. This tissue flap 
develops from the upper lip and has evolved in one cichlid genus from Lake Malawi and one genus from Lake Tanganyika. To in-
vestigate the molecular basis of snout flap convergence, we used mRNA sequencing to compare two species with snout flap to their 
close relatives without snout flaps from each lake. Our analysis identified 201 genes that were repeatedly differentially expressed 
between species with and without snout flap in both lakes, suggesting shared pathways, even though the flaps serve different func-
tions. Shared expressed genes are involved in proline and hydroxyproline metabolism, which have been linked to human skin and 
facial deformities. Additionally, we found enrichment for transcription factor binding sites at upstream regulatory sequences of dif-
ferentially expressed genes. Among the enriched transcription factors were members of the FOX transcription factor family, espe-
cially foxf1 and foxa2, which showed an increased expression in the flapped snout. Both of these factors are linked to nose 
morphogenesis in mammals. We also found ap4 (tfap4), a transcription factor showing reduced expression in the flapped snout 
with an unknown role in craniofacial soft tissue development. As genes involved in cichlid snout flap development are associated 
with human midline facial dysmorphologies, our findings hint at the conservation of genes involved in midline patterning across 
distant evolutionary lineages of vertebrates, although further functional studies are required to confirm this.

Key words: RNA-seq, Lake Malawi, Lake Tanganyika, snout flap, cichlids, functional conservation.

Significance
The study of the evolution of similar physical traits across taxa can give insight into the molecular architecture underlying 
shared phenotypes. This has mostly been studied in bony structures, whereas soft tissue traits have been less intensely 
covered. We investigated the exaggerated snout in cichlid species from Lake Malawi and Lake Tanganyika and found 
that many genes involved in the development of the snout flap and are also associated with midline dysmorphologies 
in humans, implying a conservation across distant vertebrate lineages.
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Introduction
The repeated evolution of phenotypes, reflecting particular 
ecological specializations, is a ubiquitous characteristic of 
adaptive radiations (Schluter and Nagel 1995; Losos et al. 
1998; Rüber et al. 1999; Rundle et al. 2000). Cichlid adap-
tive radiations from the East African Great Lakes display an 
impressive array of repeated morphological traits (Kocher 
et al. 1993), including a few dramatic examples of exagger-
ated phenotypes like the overgrowth of craniofacial soft tis-
sues in various anatomical regions such as lips (Colombo 
et al. 2013; Manousaki et al. 2013; Machado-Schiaffino 
et al. 2014; Baumgarten et al. 2015; Henning et al. 2017; 
Lecaudey et al. 2019), the frontal head (nuchal hump) 
(Lecaudey et al. 2021), and the nose snout (or nose flap) 
(Concannon and Albertson 2015; Conith et al. 2018). 
Although there is increasing insight into the evolution of 
such phenotypic novelties, especially hypertrophid lips, ex-
aggerated soft tissue traits are less well studied than bony 
traits and the genetic mechanisms underlying these traits 
are not entirely understood. Comparative approaches can 
shed light on the genetic mechanisms that reconfigure 
the body plan and give rise to such complex traits. With ex-
amples of both parallel and non-parallel mechanisms 
underlying cases of repeated evolution (e.g., Colombo 
et al. 2013; Manousaki et al. 2013) of phenotypic novelties, 
such comparisons can thus help us to understand the mo-
lecular mechanisms that shape morphological diversity.

One such exaggerated repeated phenotype in cichlids is 
the snout flap, a pronounced projection that emanates 
from a flap of fibrous tissue just above the upper lip. It is 
a rare morphological innovation that has only evolved in 
two tribes of cichlid fishes from East Africa, the modern 
haplochromines in Lake Malawi and the Ectodini in Lake 
Tanganyika (fig. 1) (Concannon and Albertson 2015). 
When this snout is sexually monomorphic, it is thought to 
be a trophic adaptation that improves feeding efficiency 
(Konings 2007). When the snout is sexually dimorphic, it 
is hypothesized to be involved in sexual selection (Konings 
2007; Concannon and Albertson 2015). The cichlid snout 
flap has been studied at the molecular level only in the 
genus Labeotropheus from Lake Malawi where it is sexually 
monomorphic and functions as a trophic adaptation to ef-
ficiently leverage algae from rocks (Concannon and 
Albertson 2015; Conith et al. 2018). A similar snout struc-
ture has also been described in two species from the 
Ectodini tribe (Ophthalmotilapia nasuta and Asprotilapia 
leptura) from Lake Tanganyika. In A. leptura, it is sexually 
monomorphic and likely involved in increased foraging ef-
ficiency (similar to Labeotropheus), whereas in O. nasuta, 
it is only found in mature males and is likely a secondary sex-
ual character (Hanssens et al. 1999; Conith et al. 2019). 
Thus, the exaggerated snout is a convergent phenotype 

that evolved independently in two cichlid lineages that 
diverged >9.0 Ma (Irisarri et al. 2018; Conith et al. 2019).

In Labeotropheus, the snout is evident histologically by 
the time the yolk is absorbed and exogenous feeding occurs 
(∼1 month postfertilization) (Concannon and Albertson 
2015; Conith et al. 2018), and the early formation and 
growth of the snout are linked to the transforming growth 
factor beta (TGFβ) signaling pathway (Conith et al. 2018). 
However, it remains unclear which 1) genes and pathways 
contribute to the maintenance of this complex trait (i.e., its 
genetic architecture) and if 2) these candidate genes and 
pathways can be linked to more conserved patterning of 
craniofacial features. Furthermore, whereas previous re-
search focused on the TGFβ signaling pathway, a more ex-
tensive molecular interaction map of the formation and 
maintenance of this exaggerated phenotype remains to 
be unraveled. A transcriptome-wide overview is particularly 
important because it is well-known that there is molecular 
crosstalk between the TGFβ signaling pathway and several 
other pathways which all play a pivotal role in craniofacial 
morphogenesis and adaptive evolutionary divergence in 
teleost fishes (Ahi 2016).

In this study, we set out to investigate the molecular me-
chanisms that underlie the formation and evolution of the ex-
aggerated snout phenotype, in two non-sister cichlid lineages 
from Lakes Tanganyika and Malawi (fig. 1), and link it to con-
served molecular players in midline patterning in other verte-
brates. We compared two species that develop a snout: 1) 
Labeotropheus trewavasae (tribe Haplochromini) from Lake 
Malawi and 2) O. nasuta (tribe Ectodini) from Lake 
Tanganyika (fig. 1). As controls, we used two closely related 
species within the same tribes that do not develop such a 
structure: 1) the Lake Malawi mbuna species Tropheops 
tropheops (Haplochromini) and 2) the Lake Tanganyika 
featherfin cichlid Ophthalmotilapia ventralis (Ectodini) 
(fig. 1). We used mRNA-sequencing to quantify gene expres-
sion differences between the exaggerated snout and non- 
snout tissues for each lake. Altogether, we identified parallel 
and non-parallel molecular mechanisms that underlie the 
evolution of the snout flap in Lake Malawi and Lake 
Tanganyika cichlids. Our study design provides valuable 

FIG. 1.—Convergent cases of snout flap evolution. East African cichlid 
species used in this study. The area of the soft tissue that was dissected is 
depicted by  dashed lines. O. nasuta, Ophthalmotilapia nasuta; O. ventralis, 
Ophthalmotilapia ventralis; L. trewavasae, Labeotropheus trewavasae; T. 
tropheops, Tropheops tropheops.

Duenser et al.                                                                                                                                                                  GBE

2 Genome Biol. Evol. 15(4) https://doi.org/10.1093/gbe/evad045 Advance Access publication 17 March 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/15/4/evad045/7079962 by U

niversity of O
slo Library user on 05 Septem

ber 2023

https://doi.org/10.1093/gbe/evad045


information into conserved and unconserved regulatory me-
chanisms underlying the morphogenesis of a unique hyper-
trophic facial soft tissue in cichlids, which also exhibit 
striking similarity to those mechanisms driving craniofacial de-
velopment and midline patterning in other vertebrates includ-
ing humans. Cichlids have been proposed as an excellent 
model system to study craniofacial skeletal deformities in hu-
mans (Powder and Albertson 2016), and our study is one of 
the first indications that cichlids can be used as models to 
study deformities in facial soft tissues as well.

Results
To investigate molecular mechanisms underlying the for-
mation of a snout flap in two distant lineages of cichlids, 
we dissected the snout tissue of five biological replicates 
per species, which entailed the area above the upper lip in-
cluding the nostrils. These tissue samples consisted of epi-
dermis, dermis, and the underlying connective tissue 
(fig. 1). Subsequently, we extracted RNA of these five sam-
ples per species to quantify gene expression differences.

RNA-Sequencing, Gene Expression, and Downstream 
Analyses

The RNA-sequencing resulted in between 6.7 and 15.8 million 
reads per sample, and after filtering of low-quality reads, be-
tween 4.6 and 11.1 million reads were retained for each sam-
ple (supplementary table S1, Supplementary Material online). 
The raw data of sequence reads have been deposited in the 
Sequencing Read Archive (SRA; supplementary table S1, 
Supplementary Material online) of NCBI (accession number: 
PRJNA770252). The final annotation of all merged species in-
cluded 33,251 genes. Through pairwise comparisons between 
species of each lake radiation, we identified 832 of the 33,251 
genes (2.4%) with significant differential expression (false dis-
covery rate (FDR) cutoff at P < 0.05) for the comparison of O. 
nasuta versus O. ventralis, while the comparison between L. 
trewavasae and T. tropheops yielded 4,292 (12.7%) significant 
differentially expressed genes (FDR cutoff at P < 0.05).

Gene ontology (GO) enrichment analysis conducted 
for differentially expressed genes within each species 
pair comparison for Lake Tanganyika and Lake Malawi, 
respectively, revealed the involvement in biological processes 
like “peptidyl-proline modification,” “tendon develop-
ment,” and “cell adhesion” for the comparison of the 
Lake Tanganyika species (O. nasuta vs. O. ventralis), while 
the Lake Malawi comparison (L. trewavasae vs. T. tropheops) 
showed terms like “cell matrix adhesion,” “apoptotic pro-
cess involved in morphogenesis,” as well as “regulation of 
brown fat cell differentiation” among more cell-specific pro-
cesses (supplementary table S2, Supplementary Material
online).

To understand if similar genes were involved in the for-
mation of a snout across the two lakes, we investigated 

the intersection set of the two pairwise comparisons and 
could identify an overlapping list of 201 differentially ex-
pressed (DE) genes which were distinct between the 
flapped snout versus the non-flapped snout regions in 
both lakes (24.2% of the differentially expressed genes 
[DEG] for the Lake Tanganyika comparison and 4.8% for 
the Lake Malawi comparison) (fig. 2A) (supplementary 
table S3, Supplementary Material online). Among the 
shared DE genes, 84.6% showed the same direction of ex-
pression with 74 genes being upregulated and 96 genes 
being downregulated in the flapped snout tissues in both 
comparisons, which is a higher number of shared expres-
sion direction than one would expect by chance (hypergeo-
metric test, P < 0.05), whereas 31 genes showed 
expression differences in opposite directions across the 
comparisons for each lake (fig. 2B–D). The heat map clus-
tering of the DE genes showed that there are at least two 
major branches in each group of up- or downregulated 
gene sets, while the clustering of the DE genes with oppos-
ite expression pattern also revealed the presence of two 
major branches (fig. 2B–D). These clustering structures indi-
cate distinct transcriptional regulations within each group 
which potentially originated from the effects of different 
upstream regulators.

We performed GO enrichment analysis using the list of 
the shared 201 DE genes as the input, and the result 
showed significant enrichment of GO terms for several 
biological processes such as amino acid metabolism 
(particularly proline-related metabolic processes), “tendon 
development,” “positive regulation of BMP signaling path-
way,” and cell adhesion and cell fate (supplementary table 
S2, Supplementary Material online). When dividing the 
genes in their direction of expression in the snout flap, GO 
enrichment for upregulated genes was associated with 
“peptidyl-proline hydroxylation,” “tendon development,” 
“muscle attachment,” “endothelial cell development,” 
“negative regulation of Notch signaling pathway,” and, al-
though not significantly, “positive regulation of Wnt signal-
ing pathway.” The downregulated genes were involved in 
a lot of terms related to cell fate commitment and negative 
regulation of cell fate as well as “proline catabolic process” 
and “positive regulation of BMP signaling pathway” 
(supplementary table S2, Supplementary Material online).

We also applied the same list of the shared 201 DE genes 
for interactome analysis which demonstrated a large, inter-
connected network of genes with molecular and functional 
associations. Some of the genes in the network formed an 
interaction hub with the highest level of associations (based 
on the number of predicted interactions with other DE 
genes) with other genes such as bmp2b, hif1an, and 
rac1a, suggesting their more pivotal role in the formation 
of the flapped snout structure in cichlids (fig. 3B). 
Furthermore, we conducted transcription factor (TF) bind-
ing motif overrepresentation analysis on the upstream 
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regulatory sequences of the DE genes through MEME tool 
(Bailey et al. 2009). In total, seven motifs were enriched on 
the upstream regulatory sequences of at least 40 out of 201 
DE genes (table 1). Next, we checked the similarities of the 
enriched motifs with known TF binding sites in vertebrates, 
and at least 11 TF candidates were identified to potentially 
bind to those motifs.

Expression Analysis by qPCR

Validation of DE genes from RNA-seq was accomplished via 

real-time quantitative polymerase chain reaction (qPCR), 

normalized to stably expressed reference genes (Kubista 

et al. 2006). In our previous studies of East African cichlids, 

we found that validation of reference gene(s) is an essential 

FIG. 2.—Differentially expressed genes in the snout regions. (A) Venn diagram of genes with differential expression between the snout regions (“snout” 
and “no snout”) for Lake Malawi and Lake Tanganyika and the overlap of 201 genes between the two comparisons of which 96 are downregulated and 75 
are upregulated in the flapped snout of both comparisons. Dendrogram clusters of the overlapping annotated genes showing upregulation (B) and down-
regulation (C) in expression in the flapped snout tissue, as well as those showing differential expression in both comparisons but in opposing directions (in-
cluding not annotated genes) (D). Orange and blue shadings indicate higher and lower relative expression, respectively. Lake Tanganyika: Ophthalmotilapia 
nasuta (O.n, dark blue), Ophthalmotilapia ventralis (O.v; light blue); Lake Malawi: Labeotropheus trewavasae (L.t; red), Tropheops tropheops (T.t; orange).
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step as genes only selected from literature are not necessar-
ily the best choice and can vary a lot between different spe-
cies and tissue types (Ahi, Singh, et al. 2019; Ahi, Richter, 
et al. 2019; Pashay Ahi and Sefc 2018; Ahi et al. 2020a, 
2020b). We chose six candidate reference genes with a 
small log2 fold change and the lowest coefficient of vari-
ation (CV) throughout all the samples (supplementary 
table S4, Supplementary Material online). Based on the 
rankings by the three software tools, BestKeeper, 
geNorm, and NormFinder, only one of the candidate refer-
ence genes, pak2b, showed consistent stability, that is, al-
ways ranked among top two most stable reference genes 
(table 2). Thus, we used the Cq value of pak2b in each 

sample to normalize the relative gene expression levels of 
our target genes.

Among the DE genes identified by RNA-seq, we chose 12 
genes with a known role in nose morphogenesis and/or other 
related functions in craniofacial development mainly based on 
genetic studies in humans (table 3), together with eight pre-
dicted upstream TFs (including ap4, foxd3, foxj1, foxp1, irf9, 
mef2a, rreb1a, and sp1) for qPCR analysis (fig. 4).

Based on the RNA-seq results, six of these candidate genes 
displayed upregulation in expression in the flapped snout 
(adprhl1, foxa2, foxf1, lyve1a, rac1, and ugdh), while the six 
other candidate genes (bmp2b, dusp22b, fgf22, hmx2, prod-
ha, and six2a) showed a downregulation in expression in the 

FIG. 3.—Functional analyses of the overlapping differentially expressed genes in the flapped snout. (A) Enrichment for gene ontologies of biological pro-
cesses using the shared 201 differentially expressed genes. (B) Functional interactions between the differentially expressed genes predicted based on zebrafish 
databases in STRING v10 (http://string-db.org/).
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Table 1 
Predicted Motifs and Upstream Regulators Potentially Binding to Them

TF Binding Site PWM ID Count Predicted Motif Sequence E-Value

FOXP1 M00987 71/201 AMAMACAMAMAMAMAMACACACAMAMACA 3.85E−12
FOXJ1 M00742 3.52E−08
RREB1 MA0073.1 1.87E−07
FOXJ1 M00742 47/201 AAAAASAAAMAAAMWMWCWKT 8.69E−10
FOX M00809 9.15E−07
FOXD3 MA0041.1 3.95E−07
SP1 MA0079.2 41/201 CHCCYCCYCCYCCSCYCTCCY 1.12E−08
IRF9 M00258 61/201 KTTTTTYTTTYYCWK 2.90E−09
MEF2 M00405 72/201 RTTAAAAAAAA 4.28E−08
AP4 M00927 93/201 CWGCTGCWGCTKSTS 7.38E−08
HEB/tcf12 M00698 66/201 NYYCTGCTGD 1.03E−06

NOTE.—Enriched motifs on upstream regulatory sequences of the DE genes are presented in degenerated sequence format. PWD IDs indicate positional weight matrix ID 
of predicted binding sites, and E-values refer to matching similarity between the predicted motif sequences and the PWD IDs. The count implies the number of genes 
containing the predicted motif sequence on their regulatory region.

Table 2 
Ranking of Reference Genes in the Nose Tissue Samples Using Three Different Algorithms

BestKeeper geNorm NormFinder

Ranking SD Ranking r Ranking M Ranking SV

sp3 0.461 pak2b 0.94 pak2b 0.369 nup58 0.310
pak2b 0.471 pphln1 0.931 flot2a 0.386 pak2b 0.408
flot2a 0.491 flot2a 0.926 pphln1 0.397 pphln1 0.443
nup58 0.509 vps26a 0.916 sp3 0.418 flot2a 0.498
vps26a 0.551 nup58 0.889 nup58 0.427 sp3 0.518
pphln1 0.587 sp3 0.887 vps26a 0.428 vps26a 0.646

SD, standard deviation; r, Pearson product–moment correlation coefficient; SV, stability value; M, M-value of stability.

Table 3 
A Selected Set of Differentially Expressed Genes in the Flapped Snout Regions of Studied Cichlids With Known Related Functions in Nose Morphogenesis in 
Mammalian Models

Gene Related Function Organism References

adprhl1 Duplication of this gene is associated with prominent forehead, short and bulbous nose, 
and broad philtrum

Human (De Pater et al. 2005)

bmp2 A ligand of the TGFβ signaling and its monoallelic deletion is associated with short 
upturned nose and long philtrum

Human (Tan et al. 2017)

dusp22 Deletion at terminal end of this gene is associated with saddle shape nose morphogenesis Human (Hosono et al. 2020)
fgf22 Genomic rearrangement encompassing this gene is associated with elongation of nose 

with prominent nasal bridge
Human (Quigley et al. 2004)

foxa2 Both deletion and missense variation in this gene cause hallow nasal bridge, short upturned 
nose, and downturned nasolabial folds

Human (Dines et al. 2019)

foxf1 Duplication and triplication cause bulbous nose and wide nasal bridge Human (Kucharczyk et al. 2014)
hmx2 Hemizygous deletion in this gene causes broad nasal bridge and prominent nose Human (Miller et al. 2009)
lyve1 Dysregulation of this gene is associated with cutaneous angiosarcoma on the nose Human (Mitteldorf et al. 2018)
prodh Deletion and/or missense mutations in this gene cause frontal bossing, thin upper lip, and 

short nose
Human (Guilmatre et al. 2010)

rac1 Loss-of-function mutation in this gene causes failure in fusion of medial nasal processes and 
prominent nasal bridge

Human, 
mouse

(Thomas et al. 2010; 
Reijnders et al. 2017)

six2 Deletion in this gene causes frontonasal dysplasia syndrome in human with nasal clefting 
and broad nasal tip, and developmental deformities in nasal bridge in mouse

Human, 
mouse

(Hufnagel et al. 2016; Okello 
et al. 2017)

ugdh Missense mutation in this gene causes bulbous nose and smooth philtrum Human (Alhamoudi et al. 2020)
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flapped snout. The results of qPCR analysis confirmed that al-
most all of the genes showed expression patterns similar to 
RNA-seq results, except for bmp2b and hmx2 which showed 
no significant difference between the snout regions of L. tre-
wavasae and T. tropheops. Among the predicted TFs, only 
ap4 showed consistent differences across both comparisons 
displaying a slightly reduced expression in both species with 
protruded snouts (O. nasuta and L. trewavasae). This indicates 
potential transcriptional repressor effects of ap4 on the 
downstream genes in the hypertrophic snout region. Two 
predicted members of FOX transcription factors, foxj1 and 
foxp1, showed expression differences but only in one of the 
comparisons (O. nasuta vs. O. ventralis), which makes them 
unlikely candidates for upstream regulators of shared DEGs 
in both comparisons. Altogether, the qPCR results demon-
strate consistency between RNA-seq and qPCR results con-
firming the validity of our transcriptome data analysis.

Discussion
Cases of repeated morphological evolution can contribute 
significantly to our understanding of the molecular architec-
ture underlying repeated phenotypes. The snout flap of the 
Lake Malawi cichlid L. trewavasae is thought to have evolved 
through natural selection (Concannon and Albertson 2015) 
as it plays a distinct role in the foraging efficiency for algal 

scraping (Konings 2007; Conith et al. 2019). No difference 
in snout flap size has been detected between male and 
female of Labeotropheus, and its formation has been 
shown to coincide with the developmental time point when 
independent foraging begins, further supporting its 
ecological function (Concannon and Albertson 2015). In con-
trast, in Lake Tanganyika, only O. nasuta males show distinct 
snout flaps, implying a role in mate choice that evolved 
through sexual selction (Concannon and Albertson 2015). 
Both sexes of O. nasuta are planktivorous suction feeders, a 
feeding adaptation that is presumably not enhanced by a 
snout flap, although the snout of males continues to grow 
with increasing age (Hanssens et al. 1999). The morphologic-
al similarity of the snout flap across two cichlid radiations al-
lows us to investigate if conserved molecular players are 
involved in the formation of a snout, even if the morphologies 
possess different functions and differ in tissue composition 
and life history.

We found differing numbers of DE genes between the 
comparisons within Lake Malawi and Lake Tanganyika, 
with roughly five times more differentially expressed genes 
between the chosen species pair from Lake Malawi over the 
species pair from Lake Tanganyika. This, most likely, cannot 
be explained by the use of differing genera for the Lake 
Malawi comparison as the species flock shows a low se-
quence divergence of 0.1–0.25% probably due to the 

FIG. 4.—qPCR expression analysis of a selected set of candidate genes. qPCR validation of expression differences for selected sets of genes showing up-
regulation (A) or downregulation (B) in snout tissues. (C) qPCR expression analysis of predicted transcription factors. The bars indicate mean and standard 
deviation of RQ expression values for five biological replicates per species. The asterisks above the bar represent significant expression differences (*P <  
0.05; **P < 0.01; and ***P < 0.001). O.n, Ophthalmotilapia nasuta (dark blue); O.v, Ophthalmotilapia ventralis (light blue); L.t, Labeotropheus trewavasae 
(red); T.t, Tropheops tropheops (orange).
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young age of the radiation (Malinsky et al. 2018) 
(supplementary fig. S1, Supplementary Material online), 
but could be an indicator for a difference in tissue compos-
ition. Comparisons of snout flap tissues have found that the 
snout of Labeotropheus fuelleborni contains a lot more in-
termaxillary ligament and loose connective tissue (80%) 
than the snout of O. nasuta (50%) (Conith et al. 
2019). Additionally, the GO enrichment analyses for the 
two within-lake comparisons showed quite distinct enrich-
ment terms. GO enrichment analysis for DE genes within 
the Lake Malawi comparison between L. trewavasae and 
T. tropheops yielded terms like “cell–matrix adhesion,” 
“regulation of brown fat cell differentiation,” and “apop-
totic process involved in morphogenesis” among terms in-
volved in nerve development and different terms not readily 
connected to snout morphology (supplementary table S2, 
Supplementary Material online). This could hint at a stun-
ning difference in organization of connective tissue in 
Labeotropheus compared with Tropheops. Conith et al. 
(2018) found that the connective tissue (identified as the in-
termaxillary ligament) of Labeotropheus, which is high in 
collagen, invades the surrounding loose connective tissue 
and anchors to the epithelium potentially helping with 
the stiffness of the snout to improve foraging. The GO en-
richment for DE genes between O. nasuta and O. ventralis 
revealed terms linked to cell fate and cell shape regulation, 
“peptidyl-proline modification” and “tendon develop-
ment.” This suggests a difference in collagen/tendon devel-
opment and cell adhesion and fate between the two Lake 
Tanganyika species, where the structure is not as unique 
as in Labeotropheus and shows an overall increase in the 
proportion of skin and other tissue, much greater than in 
Labeotropheus (Conith et al. 2018).

To understand if similar molecular mechanisms underly 
these morphologically similar (yet histologically different) 
phenotypes across both lakes, we looked at the intersection 
set of both comparisons and found many of DE genes, both 
upregulated and downregulated, that are associated with 
craniofacial development and involved in human dys-
morphologies, many with midline facial defects including 
those that effect the nose in literature. Among the upregu-
lated genes with related functions were adprhl1 
(De Pater et al. 2005), angptl2 (Ehret et al. 2015), colec12 
(Zlotina et al. 2016), cx43 (McLachlan et al. 2005), foxa2 
(Dines et al. 2019), foxf1 (Kucharczyk et al. 2014), galnt10 
(Starkovich et al. 2016), got1 (Tomkins et al. 1983), 
lyve1 (Mitteldorf et al. 2018), mdfic (Kosho et al. 2008), 
mid1 (Preiksaitiene et al. 2015; Hüning et al. 2013), nudcd1 
(Selenti et al. 2015), pacs2 (Holder et al. 2012), plxnb1 
(Haldeman-Englert et al. 2009), rac1 (Thomas et al. 2010; 
Reijnders et al. 2017), rspo1 (Wieacker and Volleth 2007), 
s100a10 (Sawyer et al. 2007), slc25a18 (Chen et al. 
2013), slc6a6 (Kariminejad et al. 2015), ugdh (Alhamoudi 
et al. 2020), vgll4 (Czeschik et al. 2014; Barrionuevo et al. 

2014), and vwa1 (Giannikou et al. 2012). Among the 
downregulated genes, we also found the following candi-
dates to have such roles: acsl1 (Yakut et al. 2015), adgb 
(Alazami et al. 2016), arl13 (Brugmann et al. 2010), 
ATP6v0c (Mucha et al. 2019; Tinker et al. 2021), bmp2 
(Tan et al. 2017), cntn3 (Ţuţulan-Cuniţǎ et al. 2012), 
dusp22 (Hosono et al. 2020; Martinez-Glez et al. 2007), 
fgf22 (Quigley et al. 2004), gdpd3 (Dell’Edera et al. 
2018), grina (Bonaglia et al. 2005), hmx2 (Miller et al. 
2009), hoxa13 (Fryssira et al. 2011), il23r (Rivera-Pedroza 
et al. 2017), ppp1r42 (Mordaunt et al. 2015), prodh 
(Guilmatre et al. 2010), six2 (Hufnagel et al. 2016; Okello 
et al. 2017), srsf3 (Pillai et al. 2019), syt9 (Sofos et al. 
2012), and trpc2 (Sansone et al. 2014; Zhang et al. 
2010). Interestingly, one of the downregulated genes, 
pi15, is known as an important molecular player in beak 
formation in birds (Nimmagadda et al. 2015). Even among 
the overlapping DE genes which showed opposing expres-
sion patterns between the two comparisons, we still found 
at least four genes to have been associated with craniofa-
cial midline defects in other vertebrates, including ccne2 
(Jain et al. 2010), plekha8 (Schulz et al. 2008), rab1b 
(Alwadei et al. 2016), RBPJ (Nakayama et al. 2014), and 
tgfbr3 (Lopes et al. 2019). The most likely explanation for 
opposing expression of these genes can be the existence 
of bimodality in their expression pattern. Bimodality of 
gene expression is a mechanism contributing to phenotypic 
diversity (Ochab-Marcinek and Tabaka 2010), and it can be 
reflected by up- or downregulation of a gene during the 
same biological process. This regulatory bimodality can 
have various causes such as differential/opposing action 
of transcription factors (e.g., negative feedback loop), post- 
transcriptional factors (e.g., microRNA and circular RNA), 
and stochastic events. Interestingly, a highly conserved 
negative feedback loop in Notch signaling has already 
been shown to be mediated by opposing roles of RBPJ 
(Tanigaki and Honjo 2010). This indicates a potential bi-
modality of rbpj expression through a negative feedback 
loop in regulation of Notch signaling, which plays a crucial 
role in the formation of the midline structures including na-
sal structures (Tanigaki and Honjo 2010). Including devel-
opmental time series for expression profiling in future 
studies can help to identify whether the shared DEGs 
with opposing expressions also show bimodality in their 
expression.

These findings demonstrate that similar sets of genes are 
involved in midline patterning and growth across evolution-
ary distant vertebrates. Thus, functional studies investigat-
ing their specific role in divergent morphogenesis of 
snout structures in fish can provide valuable information 
about the conserved molecular mechanisms underlying 
the formation of facial soft tissues (Powder and Albertson 
2016). Future studies with developmental time series, histo-
logical analyses, experimental crosses (particularly for 
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species from Lake Malawi), and female O. nasuta are required 
to explore underlying mechanism of repeated evolution and 
to tease apart genes involved in snout development from 
those that only play a role in exaggeration of the snout.

Conducting GO enrichment analysis on the list of upre-
gulated DE genes also revealed the involvement of several 
biological processes such as proline metabolism, “tendon 
development,” as well as Notch and Wnt signaling 
pathways (although Wnt signaling not significantly). 
Interestingly, defective proline and hydroxyproline metab-
olism has been associated with a range of skin and facial de-
formities including abnormal nose morphogenesis in 
humans (Kiratli and Satilmiş 1998; Kretz et al. 2011; 
Baumgartner et al. 2016; Zaki et al. 2016). Defective proline 
metabolism is known to severely affect collagen formation 
and extracellular matrix integrity and subsequently cell ad-
hesion (Xinjie et al. 2001; Javitt et al. 2019; Velez et al. 
2019; Karna et al. 2020; Noguchi et al. 2020). We found 
genes involved in “peptidyl-proline hydroxylation” en-
riched in the upregulated genes as well as “proline catabol-
ic process” in the enrichment analysis of downregulated 
genes. In addition, it has been recently shown that the bio-
synthesis of proline is tightly regulated by TGFβ (Schwörer 
et al. 2020), a TF that also plays role in the early develop-
ment of the flapped snout in cichlids (Conith et al. 2018). 
We also found components of this pathway (e.g., tgfbr3) 
to be differentially expressed, and both enriched pathways, 
Wnt and Notch, have conserved crosstalk with TGFβ signal 
in regulation of various molecular, cellular, and develop-
mental events (Attisano and Labbé 2004; Chesnutt et al. 
2004; Klüppel and Wrana 2005; Ahi 2016; Arnold et al. 
2019). In addition, Wnt and Notch signaling pathways are 
known to play a pivotal role in craniofacial development 
and morphogenesis, including the formation of middle 
structures including nasal structures (Brugmann et al. 
2007; Wang et al. 2011; Penton et al. 2012; Pakvasa 
et al. 2020; Singh et al. 2021).

The induction of TGFβ signaling is required for the 
establishment of cell–cell contacts in different tissues, 
whereas later induction of Notch signal stabilizes the 
TGFβ-mediated effects (Klüppel and Wrana 2005). In the 
context of the snout, it is possible that activation of TGFβ 
is required for early snout induction (Conith et al. 2018) 
and that continued snout growth is maintained via Notch 
signaling. This potential time-dependent crosstalk may be 
mediated through the downstream targets of Notch and 
TGFβ signals, because it is shown that both signals can 
regulate similar target genes (De Jong et al. 2004; 
Klüppel and Wrana 2005), including foxa2, a member of 
the FOX family of transcription factors (both signals sup-
press foxa2 expression) (Liu et al. 2012; Kondratyeva 
et al. 2016). In our study, we found upregulation of foxa2 
in the flapped snout region, and interestingly, a recent 
study in human shows that a deletion in Foxa2 can cause 

a variety of nasal deformities (Dines et al. 2019). 
Moreover, we found rbpjb, a major transcription factor me-
diating canonical Notch signal (Tanigaki et al. 2002), to be 
differentially expressed in the flapped snout of both spe-
cies. In mice, Rbpj is shown to regulate a receptor of 
TGFβ signal (Tgfbr1), thus making a reciprocal positive 
regulatory loop between the two pathways (Valdez et al. 
2012). We also found another receptor of TGFβ signal 
(tgfbr3) to show a similar expression pattern as rbpjb raising 
the possibility of the existence of such a reciprocal regula-
tory loop in flapped snout cichlids. In human, a deletion 
in RBPJ gene has been linked to abnormal thickening of 
the nose and lip (Nakayama et al. 2014). On the other 
hand, Bmp2 signal, which is regarded as another molecular 
cross point between TGFβ and Notch pathways (De Jong 
et al. 2004), mediates its signal through Tgfbr3 (Hill et al. 
2012). Previous studies in cichlids had proposed variations 
in Bmp expression as a molecular player in adaptive mor-
phological divergence in different skeletal structures 
(Albertson et al. 2005; Gunter et al. 2013; Hulsey et al. 
2016; Ahi et al. 2017). We found downregulation of 
bmp2b expression suggesting that a key regulator linking 
both pathways is affected in the flapped snout region. 
Furthermore, deletion of Bmp2 in human has been re-
ported to cause a range of nose and lip deformities (Tan 
et al. 2017). Taken together, these findings suggest com-
plex interactions between Notch and TGFβ signals in the 
formation and possibly the maintenance of the flapped 
snout structure in cichlids.

Finally, we found several potential binding sites for TFs 
that may play a role in the formation of a flapped snout. 
The most represented TF binding sites belonged to mem-
bers of FOX transcription factor family, for example, 
foxd3, foxj1, and foxp1, as well as a consensus binding 
site for the FOX family. In East African cichlids, both 
foxd3 and foxp1 were predicted to regulate a gene net-
work involved in exaggerated fin elongation (Pashay Ahi 
and Sefc 2018; Ahi, Richter, et al. 2019). Additionally, 
foxp1 was recently suggested as an upstream regulator of 
genes involved in the formation of the hypertrophic lip in 
another East African cichlid species (Lecaudey et al. 
2021). None of the predicted FOX members ( foxd3, 
foxj1, and foxp1) displayed consistent differential expres-
sion across both comparisons. It is, therefore, possible 
that the two other FOX members identified by RNA-seq 
and qPCR, foxf1 and foxa2, are the key regulators of the en-
tire list of DEGs, because they might bind to the predicted 
consensus FOX binding site. In addition, both foxf1 and 
foxa2 displayed consistently increased expression in the 
flapped snout in both comparisons and are also implicated 
in the nose morphogenesis in mammals (Kucharczyk et al. 
2014; Dines et al. 2019). We have recently found foxf1 
among the differentially expressed genes in hypertrophied 
lips of an East African cichlid species as well (Lecaudey et al. 
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2021), suggesting a potential role of foxf1 in soft tissues ex-
aggeration in cichlids.

Among the other predicted TF binding site, we found 
overrepresentation of binding motif for tcf12, a transcrip-
tion factor with known roles in development and morpho-
genesis of the frontal bone and cranial vault thickening 
in mammals (Sharma et al. 2013; Piard et al. 2015). We 
have previously identified tcf12 as a potential key player 
in the formation of a nuchal hump in an East African cichlid 
(Lecaudey et al. 2019). In this study, we did not detect its 
differential expression in the snout. However, there might 
be other types of potential variations in these TFs (e.g., al-
ternative splicing; Singh and Ahi 2022), which are not ne-
cessarily reflected in their overall expression differences, 
but still lead to changes in their regulatory effects. 
Interestingly, mutations causing missense, frame shift, 
and splicing changes are already reported for tcf12, which 
could lead to craniofacial deformities in humans (Sharma 
et al. 2013).

The only predicted TF with consistent expression differ-
ence in both comparisons was ap4 (alias tfap4), that shows 
slight but significant reduced expression in the flapped 
snout. Transcription factor ap4 encodes a member of the 
basic helix–loop–helix–zipper (bHLH-ZIP) family and can 
act as a transcriptional activator or repressor on a variety 
of downstream target genes mediating cell fate decisions 
(Wong et al. 2021). We also found both up- and downregu-
lated genes among the predicted downstream targets of 
ap4 (i.e., 93 genes contained ap4 binding site), which con-
firms its potential transcriptional activating or repressing 
roles. The exact role of ap4 in craniofacial morphogenesis 
of soft tissues is unclear, and although deletions in a gen-
omic region containing this gene cause facial dysmorph-
isms in humans such as prominent beaked nose and 
micrognathia (Gervasini et al. 2007), these phenotypes 
are mainly thought to be linked to mutations in a neighbor-
ing gene (CBP or CREBBP) in this region. Future functional 
studies are required to verify the potential role of ap4 in for-
mation and morphogenesis of craniofacial soft tissues in 
fish.

Conclusions
The snout flap in L. trewavasae and O. nasuta is a striking 
and rare example of an exaggerated soft tissue trait that 
has evolved repeatedly in cichlid radiations of Lake 
Malawi and Lake Tanganyika, albeit for different functions. 
Comparing the transcriptional landscape of the snout flap 
tissue of these two species with the snout of close relatives 
that do not develop such a structure, we identified 201 
genes that were repeatedly recruited to give rise to the 
snout flap phenotype even after >9.0 Ma of divergence. 
Our study provides support for a change in proline hydrox-
ylation, a mechanism also linked to human facial 

deformations, to be a mechanism for metabolic changes 
involved in the formation of the snout flap in fish. We 
found complex interactions between the TGFβ, regulating 
the biosynthesis of proline, and Notch signalling, which 
are known players in craniofacial development and mor-
phogenesis, in the formation and maintenance of the 
snout flap. We identified transcription factors belonging 
to the FOX family (especially foxf1 and foxa2) which are 
both linked to nose morphogenesis in mammals and 
ap4, a transcription factor that is transcriptionally re-
pressed in species with a snout flap, but with a 
previously unknown role in craniofacial soft tissue forma-
tion. Our study emphasizes that studying the genes in-
volved in fish snout morphogenesis can shed light on the 
conserved molecular mechansisms crucial for the develop-
ment of soft facial tissues. In the future, it would be im-
portant to build on these findings and confirm the reuse 
of these genes and pathways across more distant teleost 
groups.

Materials and Methods

Fish Rearing and Tissue Sampling

Five captive-bred males of each O. nasuta and O. ventralis 
and five captive-bred females of L. trewavasae and T. tro-
pheops were raised and kept in a large tank (approximately 
450 l) containing multiple stony shelters to decrease com-
petition stress. All specimens were at the young adult stage 
and have been fed with the same diet, tropical multi- 
ingredient flakes suitable for omnivorous cichlids. The 
two species in each comparison were sampled at the 
same time when the protrusion of the flapped snout had al-
ready appeared (fig. 1). To perform the dissections, we used 
a solution with 0.3 g MS222 per 1 l water to euthanize the 
fish, and similar snout regions, an area above the upper lip 
encompassing the nostrils which includes epidermis, der-
mis, and the underlying soft connective tissues, were 
sampled for each fish (fig. 1). The sampled snout tissues 
for each individual were placed into separate tubes contain-
ing RNAlater (Qiagen) and stored at −20 °C. The sacrificing 
of fish followed the guidelines of the Federal Ministry of 
Science, Research and Economy of Austria according to 
the regulations of the BMWFW.

RNA Extraction and cDNA Synthesis

Total RNA was extracted from 20 dissected snout tissue 
samples (five biological replicates per species) following 
the TRIzol method (Thermo Fischer Scientific). Each dis-
sected sample included epidermis, dermis, and the under-
lying fibrous/connective tissues of the specified nose 
regions (fig. 1). Tissue samples were placed into tubes con-
taining 1 ml of TRIzol with a ceramic bead (1.4 mm) and 
homogenized using a FastPrep-24 Instrument (MP 
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Biomedicals, CA, USA). RNA extraction followed the proto-
col of TRIzol RNA extraction from Thermo Fischer Scientific. 
A DNA removal step with DNase followed the extraction 
(Invitrogen). The total RNAs were dissolved in 50 µl 
nuclease-free water, and their concentrations were quanti-
fied through a Nanophotometer (IMPLEN GmbH, Munich, 
Germany). We measured the quality of RNAs with the 
R6K ScreenTape System using an Agilent 2200 
TapeStation (Agilent Technologies) and RNA integrity num-
bers (RIN) above 7 were aimed at for all samples. To synthe-
size cDNA for qPCR analysis, we used 500 ng of the total 
RNA per sample and followed the manufacturer’s protocol 
of the High Capacity cDNA Reverse Transcription kit 
(Applied Biosystems), and the resulted cDNAs were diluted 
1:4 to be used for the qPCR reaction.

RNA-seq Library Preparation and Gene Expression 
Quantification

To attain transcriptome data of the snout tissues, we con-
ducted RNA-seq library preparation with 1000 ng of total 
RNA per tissue sample as input and following the protocol 
of the Standard TruSeq Stranded mRNA Sample Prep Kit 
(Illumina) with indexing adapters. The library qualities were 
assessed using D1000 ScreenTape and reagents (Agilent) 
on a TapeStation 2200 machine (Agilent). In order to reach 
an optimal quantity recommended for sequencing, we di-
luted the libraries and pooled them with equal molar concen-
tration for each library. The RNA-sequencing was conducted 
in the NGS Facility at Vienna Biocenter Core Facilities (VBCF, 
Austria) on an Illumina HiSeq2500 and generated between 
6.7 and 15.8 million paired-end reads with 125 bp length 
per sample (supplementary table S1, Supplementary 
Material online). Raw reads were demultiplexed based on un-
ique barcodes by the same facility. The quality of the reads 
was assessed with FastQC (v0.11.8) (Andrews 2012), and 
reads were filtered for a quality >28 and a minimum length 
of 70 bp with Trimmomatic (v0.3.9) (Bolger et al. 2014). 
Reads were aligned to the Oreochromis niloticus reference 
genome (Conte et al. 2017) of the University of Maryland 
using RNAstar (v2.7.3.a) (Dobin et al. 2013). To check the 
mapping statistics, we used samtools idxstats (v1.9) 
(Danecek et al. 2021) (supplementary table S1, 
Supplementary Material online) and further merged the sin-
gle files for species and lake with picard (v2.21.7) (Picard 
Toolkit. 2019. Broad Institute, GitHub Repository, https:// 
broadinstitute.github.io/picard/). We used StringTie (v.2.0.6) 
(Pertea et al. 2015) to assemble the alignments into potential 
transcripts without a reference. This step was conducted sep-
arately for single files (per biological replicate) and the merged 
files (per species and per lake). The single files per biological 
replicate were further merged into species. This process of re-
peated merging steps was implemented to reduce the prob-
ability of false positives. To assess the accuracy of the 

mapping, we used gffcompare (v0.11.2) (Pertea and Pertea 
2020) to compare our annotations with the reference anno-
tation. Subsequently, we filtered for monoexonic transcripts 
that were not contained in our reference and the transcripts 
assigned the class code “possible polymerase run-on” by 
gffcompare. As the maximum intron length of the O. ni-
loticus reference is 200,000 bp, we also filtered for that 
in the produced annotation. The expression estimates 
for each transcript were based on these annotations and 
generated with StringTie (v.2.0.6) with no multimapping al-
lowed. The final raw count matrices were produced 
from the expression estimates with a Perl script from the grif-
fith lab (https://github.com/griffithlab/rnaseq_tutorial/blob/ 
master/scripts/stringtie_expression_matrix.pl), and the 
code used in this analysis is available at this github repository 
(https://github.com/annaduenser/snout_flap_RNAseq).

Differential expression analysis was conducted using 
DESeq2 (Love et al. 2014) in R (R Core Team 2017) running 
comparisons for each lake separately. DESeq2 estimates 
variance–mean dependence based on a model using nega-
tive binomial distribution using the raw counts (Love et al. 
2014). A FDR of P < 0.05 was chosen as the cutoff for the 
adjusted P value to determine differentially expressed 
genes.

For the downstream analysis, an enrichment step for 
GO terms of biological processes was conducted in R using 
topGO (v2.48.0) (Alexa and Rahnenfuhrer 2019) with the 
method weight and using Fisher’s exact tests for the en-
richment analysis, while GO terms for O. niloticus were ac-
quired via the biomaRt package (v2.46.1) (Durinck et al. 
2005, 2009) from the Ensemble database. To further 
group functionally similar GO terms, we also used 
REVIGO (Supek et al. 2011) using simRel scores 
(Schlicker et al. 2006). To predict the potential upstream 
regulators of DE genes, we conducted motif overrepresen-
tation analysis on 4 kb upstream sequences (promoter and 
5′-UTR) of these genes using the annotated genome of the 
Nile tilapia (Zerbino et al. 2018) and MEME tool (Bailey 
et al. 2009). The motifs that were present in the promoters 
of at least one-fifth of the total 201 DEGs were compared 
with position weight matrices (PWMs) in the TRANSFAC 
database (Matys et al. 2003) via STAMP (Mahony and 
Benos 2007) in order to identify matching TF binding sites. 
In addition, we investigated the functional interactions be-
tween the products of DE genes through STRING v10 
(http://string-db.org/), a knowledge-based interaction 
prediction tool, and zebrafish databases for protein inter-
actomes (Szklarczyk et al. 2017).

Primer Design and qPCR

We designed the qPCR primers on conserved regions of 
the selected candidate genes by aligning their assembled 
sequences to their already available homologous mRNA 
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sequences from O. ventralis (Böhne et al. 2014), 
Metriaclima zebra, Pundamilia nyererei, Neolamprologus 
brichardi, and Astatotilapia burtoni (Brawand et al. 2014), 
as well as O. niloticus. After aligning the conserved se-
quence regions across the abovementioned East African ci-
chlids, we identified the exon junctions (using CLC 
Genomic Workbench, CLC Bio, Denmark, and annotated 
genome of A. burtoni in the Ensembl database, http:// 
www.ensembl.org). The primer designing steps were con-
ducted as described previously (Pashay Ahi and Sefc 
2018; Ahi, Richter, et al. 2019) using Primer Express 3.0 
(Applied Biosystems, CA, USA) (supplementary table S5, 
Supplementary Material online). The qPCR was performed 
based on the protocol provided by Maxima SYBR Green/ 
ROX qPCR Master Mix (2X) (Thermo Fisher Scientific, 
Germany) following the guidelines for optimal experimen-
tal setup for each qPCR run (Hellemans et al. 2007). The 
qPCR program was set for 2 min at 50 °C, 10 min at 
95 °C, 40 cycles of 15 s at 95 °C, and 1 min at 60 °C, fol-
lowed by an additional step of dissociation at 60–95 °C. 
The primer efficiency (E-values) for each gene was calcu-
lated through standard curves generated by serial dilutions 
of pooled cDNA samples. The standard curves were run 
in triplicates and calculated using the following formula: 
E = 10(−1/slope) (supplementary table S5, Supplementary 
Material online).

In order to select stably expressed candidate reference 
genes, we filtered for genes with a low log2 fold change 
and subsequently ranked the remaining genes according 
to low coefficient of variation. The top six most stable genes 
shared across the transcriptome comparisons were selected 
as candidate reference genes (supplementary table S4, 
Supplementary Material online). After qPCR expression 
analysis of the six genes across all samples, we ranked 
them based on their expression stability by three different 
algorithms: BestKeeper (Pfaffl et al. 2004), NormFinder 
(Andersen et al. 2004), and geNorm (Vandesompele et al. 
2002). We used the Cq values of the top most stable refer-
ence genes to normalize Cq values of target genes in each 
sample (ΔCq target = Cq target − Cq reference). The rela-
tive expression levels (RQ) were calculated by 2−ΔΔCq meth-
od (Pfaffl 2001), and the log-transformed RQ values were 
used for independent samples t-tests to calculate the stat-
istical differences.

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).
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