
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

M
as

te
r’s

 th
es

is

Helene Maria Festø Pisani

Simulation-based testing of an
all-electric subsea valve for
safety demonstration

Master’s thesis in Cybernetics and Robotics
Supervisor: Mary Ann Lundteigen
Co-supervisor: Ludvig Björklund
June 2023

Helene Maria Festø Pisani

Simulation-based testing of an
all-electric subsea valve for
safety demonstration

Master’s thesis in Cybernetics and Robotics
Supervisor: Mary Ann Lundteigen
Co-supervisor: Ludvig Björklund
June 2023

Norwegian University of Science and Technology

Preface

This thesis, titled ”Simulation-based testing of an all-electric subsea valve for safety demon-
stration,” is written as part of the TTK4900 course, Master’s Thesis in Engineering Cy-
bernetics, at the Norwegian University of Science and Technology. The course carries a
weight of 30 credits. It builds upon the completion of the TTK4551 course, Specialization
Project in Engineering Cybernetics, during the autumn semester of 2022.

i

Acknowledgement

I would like to express my gratitude to my supervisor, Mary Ann Lundteigen, for her in-
valuable support and encouragement throughout the duration of my master’s thesis. Her
guidance and feedback have been immensely helpful in shaping the outcome of my re-
search. I appreciate her expertise in the field and her commitment to my academic growth.

I would also like to thank my co-supervisor, Ludvig Björklund, for his valuable insights,
technical expertise, and collaborative efforts. His guidance and feedback have been im-
mensely helpful.

Furthermore, I would like to extend my thanks to my fellow co-students in the master’s
program for their feedback and support.

Lastly, I want to acknowledge the support of my family and friends. Their encouragement
and understanding have been crucial throughout my five years of study. I am grateful for
their belief in me and their constant support.

ii

Summary

The Research Center for Subsea Production and Processing has an ongoing project to de-
velop a digital twin for the safety demonstration of an all-electric actuation system for
a subsea valve. The research is conducted by Ph.D. candidate Ludvig Björklund. All-
electric valves are not new to the industry but are new for safety-critical functions in Nor-
way. Before the all-electric valve can be used for this, it should be provided documentation
that the valve meets the safety requirements.

Digitization and automation continue to drive the emergence of complex systems. In this
context, novel techniques such as simulation-guided approaches are emerging for auto-
matic testing and verification of complex systems. These approaches utilize a digital model
and simulations to test different scenarios.

To address these challenges, this thesis investigates two types of simulation-guided testing
approaches where one is implemented on a digital twin. The all-electric valve’s digital twin
comprises a lithium-ion battery and a battery management system, among other things. For
this master thesis, a simple digital twin has been implemented by Ludvig Björklund. As
part of this thesis work, the digital twin has been exported to a functional mock-up unit
and implemented in Python to provide a versatile testing environment.

In Python, optimization-guided falsification using signal temporal logic and Bayesian opti-
mization have been implemented and applied to several fault scenarios on the digital twin.
The battery management system is responsible for observing and handling faults in the
battery. The objective was to use the optimization-guided falsified to search for bad inputs
to inject faults into the battery and observe the management of the battery management
system. One test case has been implemented in a graphical user interface to showcase the
testing method to test engineers.

The method successfully identified falsifying examples and injected faults the battery man-
agement system could not resolve.

iii

Sammendrag

Forskningsenteret for Subsea Produksjon og Prosessering har et pågående prosjekt med
formål å utvikle en digital tvilling for sikkerhetsdemonstrasjon av et hel-elektrisk aktua-
torsystem for en subsea ventil. Doktorgradskandidat Ludvig Björklund står for forsknin-
gen. Selv om hel-elektriske ventiler ikke er nye i bransjen, er de nye innenfor sikkerhet-
skritiske funksjoner i Norge. Før den hel-elektriske ventilen kan brukes til dette formålet,
kreves det dokumentasjon som viser at den oppfyller sikkerhetskravene.

Digitalisering og automatisering fortsetter å drive fremkomsten av komplekse systemer.
I denne sammenhengen har det dukket opp nye teknikker, som simuleringstyrte metoder,
for automatisert testing og verifisering av komplekse systemer. Disse metodene bruker
simuleringer av en digital modell for å teste ulike scenarioer.

For å takle disse utfordringene undersøker denne avhandlingen to typer simuleringstyrt
testingmetoder, hvorav den ene er implementert på en digital tvilling. Den digitale tvillin-
gen av den hel-elektriske ventilen inkluderer blant annet et lithium-ion-batteri og et bat-
teristyringssystem. I parallell med denne masteroppgaven har Ludvig Björklund imple-
mentert en enkel digital tvilling. Forfatteren av denne avhandlingen har eksportert og
implementert den digitale tvillingen i Python for å skape et allsidig testmiljø.

I Python har det blitt implementert optimeringsstyrt falsifisering ved hjelp av signaltem-
poral logikk og bayesisk optimering. Dette har blitt anvendt på flere feilscenarier på den
digitale tvillingen. Batteristyringssystemet har ansvaret for å observere og håndtere feil
i batteriet. Målet var å bruke optimeringsstyrt falsifisering for å finne dårlige parametere
som kan injisere feil i batteriet og observere håndteringen av batteristyringssystemet. Én
test-case er implementert i et grafisk brukergrensesnitt for å demonstrere testmetoden for
testingeniører.

Metoden klarte å identifisere eksempler på falsifisering og injiserte feil som batteristyringssys-
temet ikke klarte å håndtere.

iv

Table of Contents

Preface i

Acknowledgement ii

Summary iii

Sammendrag iv

List of Tables viii

List of Figures xi

List of Code xii

Abbreviations xiii

1 Introduction 1
1.1 Background . 1
1.2 Problem description . 2
1.3 Approach . 2
1.4 Assumptions and delimitations . 4
1.5 Structure of the report . 4

2 Safety valves in subsea Xmas trees 6
2.1 Electro-hydraulic Xmas trees . 6
2.2 The all-electric Xmas tree . 8

v

2.3 Governing standards and guidelines . 11

3 Digital twin and safety demonstration 15
3.1 Digital twin and industry 4.0 . 15
3.2 Level of integration . 16
3.3 Digital twin through the product lifecycle 18
3.4 Safety demonstration . 20

3.4.1 Safety 4.0 . 20
3.4.2 Digital twin for safety demonstration 22

4 Simulation-based testing and verification 25
4.1 Existing and emerging methods . 25
4.2 Preliminaries . 28
4.3 Signal temporal logic . 29
4.4 Optimization . 32
4.5 Optimization-guided falsification . 37
4.6 Simulation-guided Lyapunov Analysis 39

5 Lithium-ion Battery and BMS 43
5.1 Lithium-ion battery . 43
5.2 Battery management system . 44
5.3 Faults of Lithium-ion batteries . 45

5.3.1 Internal short-circuit . 46
5.3.2 Overcharge . 46
5.3.3 Overdischarge . 46
5.3.4 Sensor drift . 47
5.3.5 Accelerated degradation . 47
5.3.6 Thermal runaway . 48

5.4 Matlab model . 48
5.4.1 Modeling . 48
5.4.2 Test cases . 50

6 Implementation 53
6.1 From Matlab to Visual Studio Code . 53
6.2 Signal temporal logic . 58
6.3 Bayesian optimization . 59
6.4 Graphical user interface . 63

6.4.1 HTML . 63

vi

6.4.2 CSS . 66

7 Result 67
7.1 Original simulation . 67

7.1.1 DT1: Battery . 68
7.1.2 DT2: Battery and BMS . 69

7.2 DT1: Battery . 71
7.2.1 Manual testing . 71
7.2.2 Optimization-guided falsification 72

7.3 DT2: Battery and BMS . 75
7.3.1 Manual testing . 75
7.3.2 Optimization-guided falsification 77

7.4 Graphical user interface . 88

8 Discussion 93
8.1 Optimization-guided falsification for safety demonstration 93
8.2 Simulation-guided Lyapunov opportunities 94
8.3 Limitations . 95

9 Conclusion 96
9.1 Further work . 97

Bibliography 99

Appendix 106
A Inputs and outputs of the digital twins 107
B Python code . 109

vii

List of Tables

2.1 Failure modes of valve for isolating the well. Adapted from [1]. 10

6.1 Functions made in this master thesis for handling and altering the data for
simulation and testing. 56

7.1 Overview of test cases in the result section 67
7.2 Maximize function parameters . 73
7.3 Intervals for variables . 73
7.4 Output of optimization . 73
7.5 Constant for input . 76
7.6 Maximize function parameters . 78
7.7 Intervals for variables . 78
7.8 Output of optimization . 79
7.9 Maximize function parameters . 81
7.10 Intervals for variables . 81
7.11 Output of optimization . 82
7.12 Maximize function parameters . 85
7.13 Intervals for variables . 85
7.14 Output of optimization . 86

viii

List of Figures

1.1 Overview of the approach of this master thesis 3

2.1 Architecture of electro-hydraulic Xmas tree. Adapted from [2] 7
2.2 Architecture of all-electric Xmas tree. Adapted from [3] 9
2.3 Failure mode categories . 10
2.4 ESD hierarchy. Adapted from [4] . 14

3.1 The DT is on a computer while the physical valve is placed on the plat-
form. They are linked through data exchange. 16

3.2 Different types of DTs based on level of integration. Adapted from [5] . . 17
3.3 Product lifecycle. Adapted from [6] . 18
3.4 Safety demonstration in technology perspective. Adapted from [2] 21

4.1 Overview of testing and verification methods. Adapted from [7] 26
4.2 Figure to illustrate the difference between testing, verification, and falsifi-

cation given a safety requirement. 28
4.3 Example showing the robustness of a simulation trace. The STL formula

states the value of SOC Cell2 should always stay between 20% and 80%. 32
4.4 Three iterations of Bayesian optimization. Adapted from [8] 35
4.5 Five iterations of Bayesian optimization. Adapted from [8] 36
4.6 Eight iterations of Bayesian optimization. Adapted from [8] 36
4.7 Nine iterations of Bayesian optimization. Adapted from [8] 37
4.8 Overview of optimization-guided falsification. Adapted from [9] 37
4.9 Overview of part one of Simulation-guided Lyapunov verification by [10].

Adapted from [10] . 40

ix

4.10 Overview of part two of Simulation-guided Lyapunov verification. Adapted
from [10] . 42

5.1 Comparison of battery types. Adapted from [11] 44
5.2 Overview of BMS functions. Adapted from [12] 45
5.3 Overview of internal and external faults of Li-ion batteries. Adapted from

[10] . 46
5.4 Example of disbalanced cells. Adapted from [12] 47
5.5 Equivalent circuit model of Li-ion battery proposed by [13]. Adapted from

[13] . 49
5.6 Example of a lookup table. 49
5.7 Circuit of modeled ISC circuit. Adapted from [14] 51
5.8 Example of lookup table after multiplying R1 with 0.3. 52

6.1 To the left is how the start values are imported in Python, while the right
is how they were originally in Simulink. 57

6.2 Screenshot of the output of the maximize function. The pink row indicates
the last optimal point found. 62

6.3 HTML layout . 63

7.1 Voltage of cells . 68
7.2 Current of cells . 68
7.3 SOC of cells . 69
7.4 Voltage of cells . 69
7.5 Current of cells . 70
7.6 SOC of cells . 70
7.7 SOC estimated by BMS . 70
7.8 Voltage of cell 2 . 71
7.9 Current of cell 2 . 72
7.10 SOC of cell 2 . 72
7.11 Robustness of voltage of cell 2 . 74
7.12 Voltage of cell 2 . 74
7.13 Robustness of voltage of cell 2 . 75
7.14 Robustness of voltage of cell 2 . 75
7.15 Voltage of cells . 76
7.16 Current of cells . 76
7.17 SOC of cells . 77
7.18 SOC of cells estimated by BMS . 77

x

7.19 Robustness of voltage of cell 2 . 79
7.20 Voltage of cells . 79
7.21 Current of cells . 80
7.22 SOC of cells . 80
7.23 SOC of cells estimated by BMS . 81
7.24 Robustness of voltage of celltwo . 82
7.25 Voltage of cells . 83
7.26 Current of cells . 83
7.27 SOC of cells . 84
7.28 SOC of cells estimated by BMS . 84
7.29 Robustness of measured voltage of cell 3 86
7.30 Voltage of cells . 87
7.31 Voltage of cell 3: true and measured . 87
7.32 Current of cells . 87
7.33 SOC of cells . 88
7.34 SOC of cells estimated by BMS . 88
7.35 Screenshot of GUI startpage . 89
7.36 Closer screenshot of STL and Bayesian optimization parts of the GUI. . . 90
7.37 Screenshot of optimization output after pushing the optimize button. The

pink row is the optimum found. 91
7.38 Screenshot of whole GUI after pushing the simulate button. Plots can be

zoomed or panned. 92

xi

List of Code Listings

6.1 Jypiter notebook start part 1 . 54
6.2 Jypiter notebook start part 2 . 55
6.3 Calculate robustness . 59
6.4 Bayesian optimization object . 60
6.5 Black box function and parameter ranges 60
6.6 Utility function and probing . 61
6.7 Maximize function . 62
6.8 Code for HTML layout . 64
6.9 Callback of STL formula . 65
6.10 app.layout of GUI . 65
6.11 CSS code of optimization button . 66

xii

Abbreviations

Abbreviation Description

APS Abandon Platform Shutdown

ASC Actuation System Control

BMS Battery Management System

CAD Computer-Aided Design

DCV Directional Control Valve

DHSV Down Hole Safety Valve

DT Digital Twin

DTI Digital Twin Instance

DTP Digital Twin Prototype

E/E/PE Electrical/Electronic/Programmable Electronic

EPU Electric Power Unit

ESD Emergency Shutdown

EUC Equipment Under Control

FMU Functional Mock-up Unit

FMEA Failure Modes and Effects Analysis

FMI Functional Mock-up Interface

GUI Graphical User Interface

HDL Hardware Description Language

HSE Health, Safety and Environment

IEC International Electrotechnical Commission

IoT Internet of Things

ISC Internal Short Circuit

KISS Keep It Stupid Simple

Li-ion Lithium-ion

LP Low Pressure

LTL Liner Temporal Logic

MTL Metric Temporal Logic

Ni-Cd Nickel-Cadmium

PMW Production Master Valve

xiii

PFD Probability of Failure on Demand

PSA Petroleum Safety Authority

PSD Process Shutdown

PST Partial Stroke Test

SIL Safety Integrity Level

SIF Safety Instrumented Function

SOF State of Function

SOH State of Health

SOC State of Charge

SOV Solenoid-Operated Valve

STL Signal Temporal Logic

UCB Upper Confidence Bound

xiv

1
Introduction

1.1 Background

SUBPRO is a research-based innovation center that focuses on subsea production and
processing. It is funded by the Research Council of Norway, nine industrial partners,
and NTNU [15]. Established in 2015, the center has a planned duration of eight years.
As stated in the SUBPRO annual report [15], their objectives include reducing the cost
and complexity of subsea field developments, facilitating the development of new and
challenging oil and gas fields, increasing production, and extending the life of existing
fields, minimizing the environmental impact of subsea field developments, and ensuring
safety levels are maintained.

SUBPRO has several ongoing research projects, including developing a digital twin (DT)
of an all-electric safety valve. The goal is to use the DT to test and demonstrate that
the high software-dependent all-electric valve can reach a safe state in various scenarios
and are reliable enough according to governing standards compared to the state-of-the-
art hydraulic valve design [15]. The research is in collaboration with Aalen University.
The Ph.D. candidate, Ludvig Björklund, is working on developing the DT. He is also the
co-supervisor of this thesis.

Improved sensor technology and increasing computational power have opened up for the
use of more digital solutions offshore [16]. However, together with this, the scale and
complexity of systems have grown. Reaching the safe state is therefore reliant on the
execution of software-embedded functionality, increasing the complexity of demonstrating

1

1 Introduction 1.2 Problem description

the safety capabilities of the system. Testing and validating these complex systems present
challenges as the composition of parameters can become infinite. The traditional approach
of manually selecting test cases is time-consuming and may not provide comprehensive
coverage for these new systems.

Today, automatic simulation-based methods are emerging [9]. These methods use simula-
tions of a DT of the system as test coverage to demonstrate reliable behavior [7]. Various
approaches to simulation-based testing and verification are available. This thesis will look
into two of them.

1.2 Problem description

The objective of this master thesis is to implement fault scenarios into a DT for simulation-
based testing of the control system as part of the safety demonstration process and to
automate the process of finding issues in the control system. This master focuses on the
battery and battery management system (BMS) part of the DT.

The task of this master thesis is described by the bullet points below:

• Identify important goals and requirements for a safety demonstration process of a
control logic of a safety-critical system.

• Familiarize with current state-of-the-art methods on simulation-based testing with a
focus on STL and Lyapunov stability analysis.

• Implement the STL for fault injection on a simple model related to the all-electric
valve system and operation.

• Develop a simple user interface to run and visualize the results of the experiments.

• Discuss the results, including the pros and cons of STL in achieving goals of safety
demonstration. Indicate possible opportunities with Lyapunov.

1.3 Approach

An overview of this master thesis approach is shown in Figure 1.1. The work began with
a literature review on safety demonstrations for safety-critical systems. This was followed
by exploring existing and emerging simulation-based testing and verification techniques,
specifically focusing on STL and Lyapunov. Additionally, related work was examined,
and suitable software for implementing these techniques in Python was identified.

2

1 Introduction 1.3 Approach

During the search for information on Lyapunov, contact was made with Professor James
Kapinsky via email. Although a response was received, the conversation did not progress
further as the decision was made not to pursue the topic of Lyapunov.

Furthermore, an investigation was conducted on Li-ion batteries and BMS to gain insights
into common faults and how the BMS can effectively handle them.

Research was conducted to determine the appropriate tool or framework to implement the
graphical user interface (GUI).

The subsequent phase involved the implementation process, which was carried out itera-
tively in collaboration with the co-supervisor, Björklund. Weekly meetings were held with
Björklund, who developed the DT. The workflow typically involved Björklund creating
the DT in Matlab, followed by my implementation and testing in Python, and then jointly
evaluating the results and discussing test cases. Based on the evaluation, Björklund would
modify the DT as necessary for enhancing the results of the testing method.

Lastly, the testing method was implemented in a GUI.

Develop DT Test DT

STL +
Bayesian

optimization

Lyapunov

Literature study

Select testcases

Implementation

Lithium-ion
battery and

BMS

Safety
demonstration

Specialization
project

GUI

Figure 1.1: Overview of the approach of this master thesis

In addition, the completion of the specialization project and the corresponding specializa-
tion courses during the previous semester provided a solid foundation. The project’s main
objective was to gain knowledge about all-electric valves and their differentiation from
conventional hydraulic valves, as well as to understand DT and the concepts of safety

3

1 Introduction 1.4 Assumptions and delimitations

demonstration.

The subsea safety valves, DT, and safety demonstration chapters in this master’s thesis
have been derived from the specialization project, incorporating modifications.

1.4 Assumptions and delimitations

This thesis is specifically focused on examining the battery and BMS of the DT. However,
it is important to note that the ultimate goal is to include all components of the all-electric
valve in the DT, which may generate additional relevant test cases, such as evaluating the
behavior while simultaneously interacting with several different controller objectives.

It is worth highlighting that the DT was developed in collaboration and in parallel with this
master’s thesis and was not pre-existing. The DT was continuously adjusted and modified
throughout the process, which may introduce certain limitations.

As stated in the problem description, this thesis concentrates on testing and verification
methods using STL and Lyapunov analysis, although many other methods exist.

1.5 Structure of the report

The structure of this report is based on a template provided by NTNU [17].

The introduction begins with the thesis background and research questions. It also outlines
the objectives and limitations of the thesis.

In chapter 2, an overview of the all-electric actuation system and the current state-of-the-
art in hydraulic design is provided. It also covers the relevant guidelines and standards
necessary for valve development.

The next section, chapter 3, delves into the concept of Industry 4.0 and the development
of DTs within this context. It also explores safety demonstrations for novel technologies
and highlights the application of DTs in this process.

Moving on to chapter 4, various emerging simulation-based testing and verification tech-
niques are examined. This includes a detailed exploration of optimization-guided falsifi-
cation and simulation-guided Lyapunov analysis.

In chapter 5, a deeper investigation into lithium-ion batteries and the BMS is provided. It
includes a discussion of Li-ion battery failures and offers insights into the Matlab model
used and the implemented failure modes.

4

1 Introduction 1.5 Structure of the report

The implementation details are outlined in chapter 6.

The obtained results are presented in chapter 7.

Finally, the report concludes with a comprehensive discussion and conclusion section.

5

2
Safety valves in subsea Xmas trees

This chapter introduces the all-electric valve. The content primarily originates from the
specialization project, with the addition of information regarding previously utilized all-
electric valves.

A subsea xmas tree is a crucial component in offshore oil and gas production systems. It
is an assembly of valves, control systems, and other equipment installed on the seabed to
control the flow of hydrocarbons from the ground to the platform. The valves are called
downhole safety valve (DHSV), production master valve (PMV), and production wing
valve (PWV). The valves are normally open. Their main function is to maintain safety on
the platform by closing and stopping the flow of hydrocarbons during emergencies. Safety
is defined as freedom from risk that is not tolerable [18]. Today the electro-hydraulic Xmas
trees are the standard architecture worldwide [2]. Due to the increased digitalization and
electrification of subsea equipment, there is a proposal to make the valves all-electric.
The new design will reduce cost, be more environmentally friendly and be safer [1]. The
DHSV will still be hydraulic, only PMV and PWV are proposed to be changed to electric.

2.1 Electro-hydraulic Xmas trees

Figure 2.1 shows a simplified design of an electro-hydraulic Xmas tree. The figure is taken
from the book published by DNV [2]. A Xmas tree can have other designs and consist of
multiple types of valves, but they are not included in this figure because we want to address
the safety valves: DHSV, PMV, and PVW.

6

2 Safety valves in subsea Xmas trees 2.1 Electro-hydraulic Xmas trees

Production
master valve

(PMV)

Production
wing valve

(PWV)

Downhole safety
valve (DHSV)

Directional
control valves

Dump DCV valve

LP SOV HP SOV

Uninterruptible
power supply

Emergency
shutdown node

Hydraulic power
supply

Electric power
unit relay

Electric control
Hydraulic control

Production line

Figure 2.1: Architecture of electro-hydraulic Xmas tree. Adapted from [2]

The electro-hydraulic system described in the book published by DNV [2] works as fol-
lows: From below, the hydrocarbons first pass the DHSV, then the PMV and the PWV.
The DHSV, PMV, and PWV are hydraulic spring-return valves. They open and stay open
by the pressure from the hydraulic fluid. The valves close when the hydraulic pressure is
withdrawn. From the topside, the hydraulic pressure goes through the solenoid-operated
valves(SOV), through the umbilical and the directional control valves(DCV).

During normal operation, hydraulic pressure is available to the subsea Xmas tree, so the
valves stay open. The hydro-electro valve uses the de-energize-to-close principle, which
means it does not need energy to stay closed. Normally and during a low-level emergency
shutdown (ESD), the valves can be closed by using the DCVs.

During a high-level ESD and abandon platform shutdown(APS), the ESD node is used
to de-energize the low-pressure (LP) SOVs and the electric power unit (EPU) relay. Fol-

7

2 Safety valves in subsea Xmas trees 2.2 The all-electric Xmas tree

lowing, the hydraulic pressure supply and the electric power supply disconnect. This de-
energizes the Dump DCV valve, and the hydraulic fluid is drawn back, so the valves close.
Lastly, the high-pressure (HP) SOV is de-energized. With this method, the process goes
slower. Doing so makes the DHSV close last.

2.2 The all-electric Xmas tree

In 1999, TechnipFMC began exploring an alternative to the hydraulic-electric valve design
due to environmental concerns and cost considerations. In some parts of the world at that
time, hydraulic-fluid costs accounted for as much as 4-8 percent of OPEX expenditure
[19]. In addition, direct hydraulic technology yields slow response time, demands many
lines, and is not scalable [19]. The concept of an all-electric valve was introduced, but the
main challenge was to provide sufficient power to the valve. In contrast to the hydraulic
valve, the all-electric operates on an energize-to-close principle. Meaning that if power
is lost, the valve will not go to a safe state. As a result, maintaining a continuous power
supply becomes crucial for ensuring overall operational safety. One approach involved
a valve that derived power from the topside. However, due to long distances, a battery
was ultimately chosen as the solution. Over the years, various battery technologies have
been developed, ranging from lead-acid batteries in the early days to today’s lithium-ion
(Li-ion) batteries.

Since 2006 TechnipFMC has been utilizing electric actuators for all non-safety-critical
production valves and chokes [19]. The next step was to evolve the technology into safety-
critical systems, which posed a more challenging task as the valves had to meet the gov-
erning requirements. In 2005, the first actuators featuring a fail-safe close functionality
were deployed as a pilot system in the Statoil Norne field, but this system was not certified
[19]. Nonetheless, it served as the foundation for the design of later certified solutions.

Figure 2.2 shows a generic architecture of an all-electric Xmas tree. The figure is a sim-
plified version of the figure in Mahler et al. [3]. The original contains more information
than is necessary for the safety perspective and is therefore not relevant to this thesis. Only
the PMV and the PWV are made electric. The DHSV will still be hydraulic and is, there-
fore, not in the figure. The box safety logic, battery and BMS, and switch module are for
safety’s sake [3].

8

2 Safety valves in subsea Xmas trees 2.2 The all-electric Xmas tree

Production
master valve

(PMV)

Production
wing valve

(PWV)

Safety logicMODEM, Controller
and I/Os

Actuation System
control

Switch Module

Input Power Supply

Battery and Battery
Management

System(BMS)

Actuator
1

Comms

Power

Subsea Electronic Module

Actuator
2

Figure 2.2: Architecture of all-electric Xmas tree. Adapted from [3]

In the all-electric Xmas tree, the power from the topside comes through the input power
supply. In addition, a battery is needed for an uninterruptible power supply. If the power
from the topside is lost, then the battery will ensure power to the valves at all times [1].
Along with the battery, a BMS is needed. The BMS monitors and controls the condition of
the battery. The main function of the BMS is to detect and prevent failures of the battery.
The battery and BMS will be further explored in chapter 5

The Switch Module on the Xmas tree is there to handle power to the actuators. To connect
or disconnect each actuator separately [1]. The switch unit is important as it prevents
a common cause failure, i.e., ”a failure that is the result of one or more events, causes
concurrent failures of two or more separate channels in a multiple channel system, leading
to system failure” [20]. E.g. a short circuit between the actuator and the battery. In this
case, the working actuator must be closed [21].

The safety logic block observes the system status and commands the valves to their fail-
safe position when necessary, e.g. in the event of power loss [1].

The Actuation System Control (ASC) communicates with the topside controller via a safe
communication link. The ASC also provides communications to the actuators, and it mon-
itors all of the safety-relevant system components.

9

2 Safety valves in subsea Xmas trees 2.2 The all-electric Xmas tree

Potential failure modes

A failure mode is a description of how a function can fail. Failure modes can divide
into safe and dangerous and then into detected or undetected, shown in Figure 2.3. The
strength of the red indicates how critical the failure is. A dangerous failure prevents the
system from executing the safety function when required [20]. Safe failures are failures
that do not prevent the safety function of a system from being executed and are, therefore,
not considered critical. Safe failures can still cause complications and inconvenience but
do not directly threaten the safety of users and surroundings. An undetected failure is a
failure that we cannot detect with traditional diagnostics. Detected dangerous failures are
less critical than undetected dangerous. This is because other measures can be taken to
maintain safety when the failure is known.

Figure 2.3: Failure mode categories

The paper by Mahler et al. [1] has performed a failure modes and effects analysis (FMEA)
of the all-electric Xmas tree. An FMEA is used to find the causes of potential failures and
evaluate their consequences. As a result, four main failure modes of the valve for isolating
the well are presented:

Failure mode Failure type

Fail to close Dangerous

Fail to open Safe

Internal leakage Dangerous

External leakage Dangerous

Table 2.1: Failure modes of valve for isolating the well. Adapted from [1].

10

2 Safety valves in subsea Xmas trees 2.3 Governing standards and guidelines

In the all-electric Xmas tree, failure of the individual components can lead to the failure
mode of the safety valves. A few examples are:

• The motor provides a force to the actuator to either close or open the valve. If the
torque is too big, the valve shaft can be damaged, which then can lead to leakage.

• A short circuit in an actuator can lead to failure mode Fail to close or Fail to open.
The risk of this is mitigated using redundancy. If one actuator fails, the switch
module disconnects the failed actuator and provides power to the other remaining
one working.

• Topside and subsea communicate with a digital communication link. However, it
is important to note that this digital communication link is susceptible to freezing,
which in turn can result in system failures [2].

• If the battery fails, the control of the valves is lost. The BMS is included to prevent
failures of the battery, but if the BMS fails, the safety function of the system will
fail. Failures of the battery will be introduced more thoroughly in chapter 5.

2.3 Governing standards and guidelines

For developing novel technology to be used in subsea oil and gas settings, the following
standards are useful, IEC 6108, NOG 070, and NORSOK S-001. This section is adapted
from the specialization project.

IEC 61508: Ensuring safety and reliability in industrial systems

The International Electrotechnical Commission (IEC) is an international organization that
develops and publishes standards for electrical, electronic, and related technologies. It is a
leading global organization in this field. Their objective is to promote international coop-
eration concerning standardization in electrical and electronic fields [20]. IEC 61508 is a
standard for functional safety achieved by safety-related systems that are primarily imple-
mented in electrical and/or electronic and/or programmable electronic (E/E/PE) technolo-
gies [20].

IEC 61508-0 describes functional safety as part of the overall safety relating to the equip-
ment under control (EUC) and the EUC control system that depends on the correct func-
tioning of the E/E/PE safety-related systems and other risk reduction measures [20].

The functional safety is executed by a safety instrumented function (SIF). The SIF acts
as a safety barrier, designed to intervene when a process or system exceeds certain safety

11

2 Safety valves in subsea Xmas trees 2.3 Governing standards and guidelines

limits or when a hazardous condition is detected [20]. The IEC 61508 gives advice on how
to maintain functional safety. It is a crucial tool to utilize when dealing with functional
safety and especially when introducing novel technology.

In the context of safety demonstration, IEC 61508 [20] plays an important role by provid-
ing a set of requirements and guidelines that systems must meet to be considered safe and
reliable. The standard defines the different safety integrity levels (SIL) that systems must
achieve. SIL is a quantified measure of the risk reduction level achieved or intended by a
SIF [20].

NOG070: Application of IEC 61508 and IEC 61511 in the Norwegian petroleum
industry

The NOG070 is a guideline on the use of IEC 61508 and IEC 61511 for the sake of the
Norwegian petroleum industry, where IEC 61511 is a standard on the functional safety
of safety instrumented systems for the process industry sector. The main purpose of the
guideline is to standardize and simplify the use of IEC 61508 and IEC 61511 [22]. While
the IEC 61508 and IEC 61511 gives a risk-based approach to identify the performance re-
quirements, NOG070 proposes a set of predefined performance requirements for functions
that are already identified as necessary by national and international standards used by the
Norwegian petroleum sector [22].

The guideline provides the probability of failure on demand (PFD) and, based on this,
the SIL of different SIFs. The PFD is the probability of the system not working when we
want it to execute the safety function [20]. The PFD is calculated in NOG070 by using data
from experience. The SIL tells us how much we can rely on the system to execute its safety
function when needed [20]. Table A.13.9 in NOG070 summarises the SIL requirements
for isolation of the subsea well [22]. The PMV and PWV make the secondary isolation
barrier of the production line and are given SIL 2.

NORSOK S-001: Technical safety

NORSOK S-001 is a national standard for technical safety [4]. The purpose of the standard
is to reduce the time and cost of the development and operation of petroleum installations
on the Norwegian continental shelf.

Included in this standard are hazard identification, risk analysis and evaluation, risk treat-
ment, and performance requirements. The standard describes the execution of ESD on the
platforms and when the different safety valves will close and are therefore helpful in this
article. The purpose of the ESD system is to prevent the escalation of abnormal conditions

12

2 Safety valves in subsea Xmas trees 2.3 Governing standards and guidelines

into a major hazardous event and to limit the extent and duration of any such events that
do occur [4]. The process safety system is part of the ESD system, and it is here the safety
valves are involved.

ESD Hierarchy

The ESD system is needed in multiple scenarios, from shutting down only the production
system to shutting down the whole platform. The shutdowns are triggered by either push
of a manual button or the detection of a dangerous event, such as a fire in a hazardous area.

The ESD functions are put in a hierarchy shown in Figure 2.4 [4]. The ESD levels are
divided into three where the APS is the highest, ESD 1 is in the middle, and lastly, ESD 2.
The process shutdown (PSD) is initiated by ESD 2. The hierarchy works so that a higher
ESD level should initiate a lower one, and a signal on a certain level should never initiate
shutdowns or actions on higher levels [22].

An example of such an action is shutting safety valves. ESD valves shall isolate and
sectionalize the process segments in a fast and reliable manner to reduce the number of
released hydrocarbons in the event of a leak.

The safety valves are closed by the action ”activation of the ESDV incl. MV and WV”,
which is highlighted in the ESD 2 box. The highlighted signals trigger the action:

• Manual push button

• Confirmed gas in a non-hazardous area

• Knock out drum LAHH (ESD)

• Confirmed gas in hazardous area

• Manual depressurization

• Confirmed fire in hazardous area

The action is also initiated in the event of APS or ESD 1.

13

2 Safety valves in subsea Xmas trees 2.3 Governing standards and guidelines

Manual push
button

APS

ESD 1

ESD 2

PSD

Confirmed gas in
non-​hazardous area

Manual push button

Immediate actions:
- Shutdown of

emergency generator /
emergency power

supply
- Shutdown of

bilge/ballast pumps
- Closure of ballast

valves

Activation of:
- DHSVs
- ASVs
- SSIVs

- Automatic
depressurisation

Timer based shutdown of:
- F&G system

- PAGA system
- ESD and PSD systems

- UPS systems
- Radio/external
communication

Start of emergency
generatorsConfirmed gas in

hazardous area

Knock out drum
LAHH (ESD)

Manual
depressurisation

Manual push button

Confirmed fire in
hazardous area

Shut down of:
- Main power/generator

- All essential equipment in
naturally ventilated areas

- Group 1 and 2 equipment
- Ventilation

Confirmed fire og gas detection
in wellhead or riser area

Secured well
(in drilling mode)

Ignition source isolation:
- All non-​essential

equipment in naturally
ventilated areas

- Possible ignition risk
reduction

Activation of
platform ESDVs
incl. MV & WV

Shutdown of fuel
gas supply

Activation of DHSV
and ASV (Detection

in wellhead area)

Activation of SSIV
(Detection in riser

area)
Stop source of import e.g.,

stop exprot source (stop
pump/close ESDV) at

connected facilities

Automatic depressurisation

Prepare to secure
well

(in drilling mode)

Figure 2.4: ESD hierarchy. Adapted from [4]

14

3
Digital twin and safety

demonstration

This chapter primarily builds upon the chapter about DTs from the specialization project.
However, the section on safety demonstration has been extensively revised.

3.1 Digital twin and industry 4.0

The fourth industrial revolution, known as Industry 4.0, refers to the ongoing trend of au-
tomation and data exchange in manufacturing technologies, including the use of advanced
technologies such as artificial intelligence, the Internet of Things (IoT), and machine learn-
ing [16]. This trend is leading to the development of more complex, software-dependent
systems that are capable of greater levels of automation and intelligence.

As part of the digitalization and the industry 4.0 initiatives, the development of DTs has
increased. DTs can be used to simulate and analyze the performance of a manufacturing
process or product in real time, allowing manufacturers to identify and address potential is-
sues before they arise. This can help improve efficiency, reduce downtime, and, ultimately,
enhance the overall performance of the manufacturing process.

15

3 Digital twin and safety demonstration 3.2 Level of integration

Offshore oil platform

Digital twin

Data
 ex

change

Figure 3.1: The DT is on a computer while the physical valve is placed on the platform. They are
linked through data exchange.

Multiple definitions of DTs exist. A DT, defined by DNV [23]: ”is a dynamic virtual
representation of a physical object or system across its lifecycle, using real-time data to
enable understanding, learning, and reasoning.” Figure 3.1 shows how the DT is on the
computer while the real system is offshore.

The book by Vickers et al. [6] addresses how we earlier only could have any knowledge
about a system or object by being right next to it and looking at it. Over the years, engi-
neers have found ways to have more and more knowledge about systems, both about their
design and functions. Firstly making national standards for products made it easier to mass
produce and repair. In the last half of the twentieth century, the transition toward digital
information became prevalent. Some sparse computer-aided design (CAD) illustrations
were the beginning of the DT [6]. These illustrations were just a static representation of
the object. Today we can make detailed simulations about the system, not only before it is
set up but also during its operation time.

3.2 Level of integration

Kritzinger et al. [5] distinguishes the DT into three forms based on the level of data
integration between the physical asset and the DT. Figure 3.2 visualizes the data flow
between the three DTs and the physical asset. The figure is inspired by the figures in the

16

3 Digital twin and safety demonstration 3.2 Level of integration

article by Kritzinger.

Real object or system

Virtual environment

Digital model Digital shadow Digital twin

Manual data exchange
Automatic data exchange

Figure 3.2: Different types of DTs based on level of integration. Adapted from [5]

The three forms of DTs described in Kritzinger et al. are:

The first form of DT is a simple digital replica of a physical asset. It is called a digital

model and typically only includes basic information about the asset, such as its shape, size,
and location. It may not be connected to any real-time data or information about the asset’s
performance or condition.

The second form of DT is called a digital shadow. It involves some level of data integration
between the physical asset and the DT. In this case, the DT may be connected to sensors
or other sources of real-time data about the asset’s performance or condition. This allows
the DT to provide more detailed information about the asset and its behavior.

The third form of DT is a fully integrated digital twin, in which the DT is closely connected
to the physical asset and is updated in real-time with data from sensors and other sources.
This type of DT can provide a highly detailed and accurate representation of the asset and
its behavior and can be used for a variety of purposes, including predictive maintenance,
performance optimization, and scenario planning.

Vickers et al. [6] propose a different way of classifying DTs, using the terms digital twin

prototype (DTP) and digital twin instance (DTI). In their approach, a DTP is a virtual
model representing a physical object and the requirements to produce a physical version

17

3 Digital twin and safety demonstration 3.3 Digital twin through the product lifecycle

that duplicates the virtual version. In other words, a DTP is a virtual representation of
an object used to design and develop the physical version of that object. On the other
hand, a DTI is a DT that is linked to a specific physical product. This means that the DTI
represents a specific instance of a physical product, and it remains linked to that product
throughout the life of the product. The DTI provides real-time data and information about
the physical product. It can be used for various purposes, such as predictive maintenance,
performance optimization, and scenario planning. Overall, both approaches to classifying
DTs are useful in different contexts. Depending on the specific use case and the goals of
the DT, one approach may be more useful than the other.

3.3 Digital twin through the product lifecycle

Systems are not always perfect on the first try and often require trial and error to develop
and improve [6]. This can be costly, inefficient, and even dangerous if not managed prop-
erly. Additionally, systems are not static and tend to evolve over time as they go through
their product life cycle. The product lifecycle presented by Vickers et al. [6] contains four
main stages presented in Figure 3.3.

Creation Operation

Disposal

Production

Figure 3.3: Product lifecycle. Adapted from [6]

During the creation and design phase, the engineers identify the concept and the overall
scope of the system. To support this process, standards and guidelines, such as IEC 61508
and NOG070, provide frameworks and guidance for designing and developing robust and

18

3 Digital twin and safety demonstration 3.3 Digital twin through the product lifecycle

reliable systems. These standards and guidelines help ensure that the system meets spe-
cific performance and safety criteria and can make designing and developing more robust
systems easier. The next step is to create a DTP to represent the physical asset.

Using a DTP to simulate the behavior of an asset can provide valuable insights and infor-
mation about the asset [24]. Testing the all-electric valve in the real world is more costly
because it requires physical equipment and may be limited to testing only certain param-
eters, such as a single valve size. In contrast, a DTP allows for testing a wider range of
parameters and settings, providing greater flexibility and insight.

In addition to testing correct functionality, injecting parameters to initiate failure modes in
the system’s DT can give valuable insight. This process involves simulating the system’s
behavior under various conditions and inputs and applying specific parameters known to
cause the system to fail. By simulating these failure modes and observing the system’s
behavior, developers can evaluate the system’s reliability and identify potential weaknesses
or vulnerabilities.

The next phase is the production phase. In this phase, the DTP is used to produce a physical
version of the asset, which is then linked to the DTI. The design of a system is not always
physically possible. Therefore the design usually changes during the production phase,
and because of these changes, undesirable system behaviors can arise [6]. By using a
DTI during production, changes can first be implemented and tested on the DTI before
implementing it on the physical system.

The third phase is the operation phase. In this phase, the DTI is used to provide real-
time data and information about the physical asset and to support various operations and
activities related to the asset. It is first here it is called a DT by Kritzinger et al. [5]
definition. Changes during the operation phase can first be implemented and tested on the
DTI before being implemented on the physical asset.

The last phase is the disposal phase. In this phase, the physical asset reaches the end of its
useful life and is decommissioned or retired. The DTI is also retired in this phase. Data
from the DTI can be stored and analyzed to make better systems in the future systems.

19

3 Digital twin and safety demonstration 3.4 Safety demonstration

3.4 Safety demonstration

Safety demonstration is defined as documentation, based on evidence and structured rea-
soning, that adequate safety criteria are specified and met [2]. This is an essential step
in developing and deploying systems, as it helps to ensure that the systems are safe and
reliable.

Demonstrating safety provides evidence that the system will not pose a risk to people,
property, or the environment. It is an important step when developing novel technology,
especially for safety-critical systems such as the all-electric Xmas tree.

3.4.1 Safety 4.0

Due to the trend of increased advanced technologies in manufacturing, such as artificial
intelligence and the IoT, more complex and software-dependent systems are developed.

The phrase ”Keep it stupid simple” (KISS) is often used in engineering and safety to
emphasize the importance of simplicity in design. The idea behind KISS is that simple,
straightforward designs are often the most effective and the easiest to understand, maintain,
and operate [2]. The emergence of software-dependent systems brings potential in terms of
cost-efficiency, safety, and environmental friendliness. However, the inherent complexity
of these systems poses a challenge that can comprise these advantages. The increasing
complexity sparked the inception of the Safety 4.0 project.

Safety 4.0 is a three-and-a-half-year project funded by the Research Council of Norway
and the project participants. The project has developed a safety demonstration framework
to enable and accelerate the safe adoption of new subsea solutions [2]. The framework
includes how to deal with diverse types of failures, increasing complexity, and uncertain
assumptions. Like the Norwegian regulations, Safety 4.0 refers to international safety
standards, e.g. IEC 61508.

The project utilizes the all-electric Xmas tree in the development of the framework with the
help of pre-approved standards and guidelines recommended by Norwegian Regulations.

20

3 Digital twin and safety demonstration 3.4.1 Safety 4.0

Determine what aspects are
novel

Specify adequate safety
criteria

Document that safety criteria
are met

Safety demonstration

0 1 2

Novelties: Technology elements
or application context

Functional performance
requirements and design

constraints

Verification of performance and
constraints; determination of

operational limits.

Technology perspetive

Figure 3.4: Safety demonstration in technology perspective. Adapted from [2]

Safety demonstration according to safety 4.0 [2] is based on three steps which are shown
in Figure 3.4:

0. Determine novel aspects of a solution.

1. Specify adequate safety criteria.

2. Provide arguments and evidence that these are met.

Combined with the three steps, the safety demonstration process divides into three sub-
processes, each with a different focus and perspective. Dividing makes it easier to identify
where the novelty occurs and where to put in the effort. The subprocesses are the activity

perspective, the strategy perspective, and the technology perspective. The technology per-
spective is most relevant for the battery and BMS part of the all-electric actuation system.

The technology perspective asks, ”Is the technology safe?”. It focuses on the technical as-
pects of the system, including the hardware and software components used. The technical
equipment must pass the performance requirements and operational constraints needed for
the activity to be safe and reliable [2].

DNV-RP-A203 is a recommended practice for technology qualification [2]. According to
DNV [25], technology qualification is the systematic process of obtaining evidence that
demonstrates the functionality of a technology within predefined operational limits while

21

3 Digital twin and safety demonstration 3.4.2 Digital twin for safety demonstration

maintaining an acceptable level of confidence. The qualification process involves three
main steps:

• Establishing the qualification basis

• Assessing technology risk

• Planning and executing qualification activities to verify performance.

The first is about establishing a set of criteria that will guide all qualification activities and
decisions. Here the standards NORSOK S-001 and IEC 61508 can be of relevant use.

Subsequently, the technology threat assessment needs to be conducted to identify signif-
icant uncertainties associated with the innovative technology and identify potential haz-
ards associated with the technology. It is noteworthy that DNV-RP-A203 highlights the
importance of establishing the probability of failure concerning individual failure modes.
Nevertheless, not all failure modes can be accurately characterized by failure probabilities.
E.g. systematic failures that occur under specific conditions.

Finally, the qualification activities should be planned and executed. This step includes the
qualification plan, the plan’s execution, and the performance assessment. The goal of this
step is to provide a convincing argument that the technology is safe and dependable. To
achieve this goal, it is essential to develop a detailed plan that encompasses the safety re-
quirements, the hardware and software components of the system, and the system’s design
choices.

The qualification activities involve testing. A technology must demonstrate safe perfor-
mance across a wide range of conditions based on multiple parameters. However, it is
not feasible to test every possible combination of parameters. Therefore, the intelligent
selection of test scenarios becomes essential in obtaining reliable safety conclusions while
minimizing resource costs.

DNV-RP-A203 also mentions virtual testing. Virtual testing, conducted through com-
puter simulations, presents an alternative approach that enables the evaluation of scenarios
that may be hazardous, time-consuming, challenging, or expensive to replicate in real-life
settings. An example of this is the utilization of a digital twin. Further exploration of
emerging techniques for more efficient testing and verification can be found in chapter 4.

3.4.2 Digital twin for safety demonstration

The SUBPRO project aims to develop and implement a DT of an all-electric Xmas tree
and to use this DT in the safety demonstration of the system. There are many benefits of

22

3 Digital twin and safety demonstration 3.4.2 Digital twin for safety demonstration

this.

DTs provide a safe and controlled environment for testing and evaluating the safety of a
system [26]. By simulating the system’s behavior on a computer, engineers can test and
evaluate the system’s safety without exposing it to real-world hazards. DTs allow testing
to be conducted in diverse ways to assess the performance and resilience of a system.
One approach involves intentionally injecting failures to evaluate the system’s ability to
withstand and recover from such faults. While demonstrating correct behavior is crucial
for safety, it is equally important to test how the system handles incorrect behavior or
unexpected events. This approach would not be as ideal on a physical system because of
cost and hazards.

It is efficient and cost-effective to use DTs as they provide the flexibility to alter system
parameters and settings. This allows for comprehensive testing without the need for mul-
tiple physical prototypes. This can save time and money and allow engineers to test and
evaluate the system’s safety more quickly and efficiently.

Another benefit is that a DT can simulate how the system will be after many years of
operation. Over time, certain components may degrade or become faulty. However, the
rest of the system can still function sufficiently.

DTs allow for real-time monitoring and evaluation of the system’s safety. Because DTs are
digital models, they can be updated and modified in real time based on new information
and data.

A challenge of using DTs for safety demonstration is ensuring that the DT accurately rep-
resents the behavior of the physical system. This can be difficult, as not all test scenarios
may be realistic enough on a computer, and the DT may not capture all the nuances and
complexities of the physical system. DNV has published a recommended practice for qual-
ification and assurance of DTs [23]. In order to ensure that the DTs behavior is realistic,
the DT should be verified and validated.

Verification is the process of checking whether the simulation model is correctly imple-
mented and accurately represents the conceptual model it is intended to simulate [27]. This
involves testing the model against a set of known solutions or benchmarks to ensure that
the model produces the expected output. Verification aims to ensure that the simulation
model is free from coding errors, algorithmic mistakes, and numerical instabilities.

Validation, on the other hand, is the process of determining whether the simulation model
accurately represents the real-world system it is intended to simulate [27]. Validation
involves comparing the simulation output with empirical data or other sources of informa-

23

3 Digital twin and safety demonstration 3.4.2 Digital twin for safety demonstration

tion to assess the degree to which the simulation model captures the essential features of
the real system. Validation aims to ensure that the simulation model is fit for its intended
purpose and can be used with confidence to make predictions or inform decision-making.

24

4
Simulation-based testing and

verification

This chapter focuses on emerging techniques for testing and verifying cyber-physical sys-
tems. Initially, various methods will be presented, followed by the specific methods chosen
in this thesis: optimization-guided falsification and simulation-based Lyapunov analysis.

4.1 Existing and emerging methods

Testing and verification are important parts of developing novel technology. This part helps
the developers increase their confidence that the safety and performance requirements are
met. Testing and verification can be costly and lengthy, occupying a significant portion of
the developmental process. Due to the increase in functionalities being reliant on software,
the sheer scale of the embedded software today makes formal verification an intractable
issue. To overcome this, new techniques are emerging. Figure 4.1 displays some testing
and verification techniques for cyber-physical systems today. The figure is taken from [7],
which is inspired by the figure in [9]. The techniques are informally categorized based
on scalability and exhaustiveness. Their scalability refers to their ability to handle large
or complex systems, while their exhaustiveness refers to how thoroughly an approach
considers all feasible behaviors of a model.

On the bottom right are what can be categorized as formal methods. They have high ex-
haustiveness but little scalability due to their high computational cost. Model checking and

25

4 Simulation-based testing and verification 4.1 Existing and emerging methods

ExhaustivenessTesting Verification

Simulation-based Methods

Manual Testing

Falsification

Multiple-shooting

Test Vector
Generation Simulation-guided

Lyapunov Analysis

Conolic Testing

S
ca

la
bi

li
ty

Analytical methods

Linear Analysis

Formal methods

Model
Checking

Stability
Proofs Theroem

Proving
Reachability

Anaysis

Figure 4.1: Overview of testing and verification methods. Adapted from [7]

theorem provers are two well-established verification methods for hardware and software
development [28]. The technique of model checking involves constructing a finite model
of a system and verifying whether a particular property is satisfied within that model [29].
Model checking is an efficient and automatic process that determines whether the system
is correct or it will output a counterexample which can be useful in debugging.

Theorem proving is a method that involves representing both the system and its desired
properties as formulas within a mathematical logic [29]. Theorem proving construct math-
ematical proofs to demonstrate that a model satisfies a given property. Theorem proving
can be an automated process or an interactive process that requires inputs from a user.

Reachability analysis is a numerical technique that provides a conservative estimation of
the potential behaviors that a closed-loop system model can demonstrate [30]. It approxi-
mates the set of possible behaviors that a system can exhibit and can be utilized to ensure
that a set of unsafe behaviors is never reached.

One disadvantage of model checkers and reachability analysis is their susceptibility to
the state-explosion problem, where the number of states increases exponentially with the
number of input variables [31]. Advancements in techniques and the availability of pow-
erful computers have enabled these methods to verify complex verification challenges.

26

4 Simulation-based testing and verification 4.1 Existing and emerging methods

However, they are still placed at the bottom of the figure because the type and complexity
of systems they can verify are more limited than the ones simulation-based methods can
verify.

The analytic methods are less exhaustive but more scalable than the formal ones. Linear
analysis refers to the process of linearising the system and then using Lyapunov’s indirect
method to prove stability [9]. The lineralization can be done both numerically and sym-
bolically. This method is placed where it is on the figure because it can only give local
proof and therefore is not fully exhaustive. Stability Proofs determine stability or invariant
sets of a system using Lyapunov’s direct method [9]. Unlike linear analysis, this approach
can verify global stability, which is why it is located further to the right in the Figure.

Simulation-based methods refer to creating a simulation model of a system together with
its operative environment to perform the testing on the simulation model instead of the ac-
tual system in the real world [7]. The simulation refers to manually or randomly selecting
inputs to the simulations and observing the system behavior. This method is very scalable
as it can be done on any system, but not exhaustive as the number of input variations can be
infinite. Simulation is, in general, only a testing method because a single simulation only
assesses behavior for a single test case. Simulation, in combination with valid processes
for test case selection methods, can provide extensive coverage and could potentially be
considered to provide verification in the sense that it is defined in [9].

Test-vector generation is an automated process used to generate system inputs that meet
specific coverage criteria [9]. Test-vector generation is located to the right of linear analy-
sis in the Figure, as it is expected to explore a wide range of system behaviors by utilizing
a finite collection of simulation traces. While Test-vector generation techniques may be
applied to any system that supports simulation, they may not achieve the desired level of
coverage for large models, placing them in the middle of the scalability dimension.

Concolic testing is a method that combines concrete and symbolic execution of the code
under test to generate new test inputs for better test coverage [32]. Concolic testing finds
counterexamples automatically for many systems but is limited due to computational cost.
However, there are various ways to apply concolic testing, so arguments could be made to
relocate its location on the Figure.

Multiple-shooting attempts to discover a counterexample by executing many partial simu-
lations instead of complete simulations and then joining the outcomes together to identify
a counterexample [7]. This method is suitable for testing hybrid systems because hybrid
systems consist of both discrete and continuous behavior and can therefore be challenging
to verify using other approaches [33].

27

4 Simulation-based testing and verification 4.2 Preliminaries

Falsification methods use a parameterization of test cases and apply optimization tech-
niques to search for cases with low performance [34]. Instead of searching for correct
behaviors, falsification methods search for counterexamples to prove that the system does
not hold for the requirements. These requirements are often given by STL semantics. This
method is the one that is going to be more explored in this thesis.

Simulation-guided Lyapunov analysis uses the direct method to search for a Lyapunov can-
didate that proposes the system is either stable or to find an invariant set [10]. This method
is exhaustive, hence a verification method. This method will also be further examined in
this thesis.

Kapinski et al. [9] deliver a more in-depth understanding of the concepts briefly explained
above. In this master thesis, the main focus will be instead on optimization-guided falsifi-
cation with STL and simulation-guided Lyapunov analysis.

4.2 Preliminaries

A model of the system is given by M [9]. The system has a set of parameters P and a set
of inputs U. A particular behavior of a system is given by Ψ(M,p, u), where p ∈ P and
u ∈ U . During testing and verification, the system is checked against a property ϕ.

Testing Verification Falsification

Subset
proven

Set of safe parametersSet of safe parameters

All proven

Set of safe parameters

Counterexample
proven

Figure 4.2: Figure to illustrate the difference between testing, verification, and falsification given a
safety requirement.

In addition to the definitions below, Figure 4.2 illustrates the differences between testing,
verification, and falsification.

28

4 Simulation-based testing and verification 4.3 Signal temporal logic

Definition 4.2.1 (Testing). Testing is the task of determining whether a subset of P and a

subset of U in M holds for ϕ. i.e. whether ψ(M, P̂ , Û) |= ϕ, where P̂ ⊆ P and Û ⊆ U

[9]

Definition 4.2.2 (Verification). Verification is the task of determining whether all sets of

P and U in M hold for ϕ. i.e. whether ψ(M,P,U) ̸|= ϕ, for a given P and U [9].

Definition 4.2.3 (Falsification). Falsification is the task of determining a specific param-

eter of P and input of U in M which do not hold for ϕ. i.e. ψ(M,p, u) ̸|= ϕ where p ∈ P

and u ∈ U [9].

For example, in the context of this thesis, the testing of a BMS aims to demonstrate that the
BMS behaves as intended within the defined subset of foreseeable scenarios. Verification
involves confirming that the BMS behaves correctly for all reasonable scenarios and pa-
rameters. Falsification refers to the process of identifying a set of parameters that indicate
incorrect behavior of the BMS.

Each of the three options has its own advantages and disadvantages. Testing is simple,
but verification is more comprehensive and provides a stronger proof of correctness than
testing [9]. If a model is verified, it cannot be falsified. Falsification, on the other hand,
can be useful for debugging the model by providing valuable information to the user.

4.3 Signal temporal logic

In 1977 Amir Pnueli introduced linear temporal logic (LTL) for program verification in
computer science to formally specify desirable and acceptable behaviors of reactive sys-
tems [35]. That is, systems that continuously interact with the environment. The fun-
damental concept of the method is the time dependence of events. Pnueli introduced
the concept of evaluating whether a system always or eventually holds for a condition.
The method became a turning point in formal verification, and Pnueli received the Turing
Award for his work.

The verification framework developed over the years. LTL operates on boolean signals in
discrete time. Different types of temporal logic have evolved from the original. Metric
temporal logic (MTL) was introduced to operate on boolean signals in continuous time.
Later Signal temporal logic (STL) came as an addition to MTL to operate on real-valued
signals in continuous time [7]. The motivation was to produce a verification method suit-
able for continuous and hybrid systems [36]. Moreover, STL is equipped with quantitative

29

4 Simulation-based testing and verification 4.3 Signal temporal logic

semantics that allows for the determination of a specification’s robustness value for a given
signal.

Before introducing the formal syntax of STL, an informal description of each operator is
presented as done in [7]:

• Conjunction: ϕ1 ∧ ϕ2 is true if both ϕ1 and ϕ2 are true.

• Disjunction: ϕ1 ∨ ϕ2 is true if either ϕ1 or ϕ2 are true.

• Negation: ¬ϕ is true if ϕ is false.

• Implication: ϕ1 =⇒ ϕ2 is true if ϕ2 follows from ϕ1, that is, ϕ1 =⇒ ϕ2 is false
if and only if ϕ1 is true and ϕ2 is false.

• Eventually: ♢ϕ is true if ϕ is true at some time.

• Always: □ϕ is true if ϕ is true at all times.

• Next: ⃝ϕ is true if ϕ is true at the next discrete time step.

• Until: ϕ1Uϕ2 is true if ϕ1 is true until ϕ2 first becomes true.

• Release: ϕ1Rϕ2 is true if ϕ2 is true until ϕ1 first becomes true.

Definition 4.3.1 (STL syntax). The formal syntax of an STL formula ϕ is given as follows:

ϕ ::= T | πc | ¬ϕ | ϕ1 ∨ ϕ2 | ⃝I ϕ | ϕ1Uϕ2 (4.1)

where πc is a predicate on the form π(x) > 0, T is the True constant and I is an interval.

A predicate π is a differentiable function that maps the state x to a scalar value [37].

Predicates are the building blocks in STL formulas.

Various articles present different definitions for the formal syntax of STL. However, in
this thesis, the syntax definitions proposed in [7] have been adapted due to their clarity and
comprehensiveness. It is worth noting that despite the different definitions, most logical
and temporal operators in STL can be derived from each other, which ultimately results in

30

4 Simulation-based testing and verification 4.3 Signal temporal logic

similar syntax definitions, e.g.:

ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2) (4.2)

ϕ1 =⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2 (4.3)

♢Iϕ ≡ TUIϕ (4.4)

□Iϕ ≡ ¬♢I¬ϕ (4.5)

ϕ1Rϕ2 ≡ ¬(¬ϕ1UI¬ϕ2) (4.6)

One notable attribute of STL is its ability to provide a robustness score. This distinguishes
STL from LTL, where users only receive a binary value indicating whether a formula is
satisfied or not. In contrast, the robustness semantics of STL provides a continuous real-
valued measure of the extent to which a signal satisfies or violates an STL formula [37].
Specifically, if the robustness score is less than zero, it indicates a violation of the formula,
while scores above zero indicate satisfaction. The lower the score is below zero, the greater
the degree of dissatisfaction.

Definition 4.3.2 (Robustness semantics). [37]

ρ(st, T) = ρmax where ρmax > 0 (4.7)

ρ(st, πc) = π(xt)− c (4.8)

ρ(st,¬ϕ) = −ρ(st, ϕ) (4.9)

ρ(st, ϕ1 ∧ ϕ2) = min(ρ(st, ϕ1), ρ(st, ϕ2) (4.10)

ρ(st, ϕ1 ∨ ϕ2) = max(ρ(st, ϕ1), ρ(st, ϕ2) (4.11)

ρ(st, ϕ1 =⇒ ϕ2) = max
t′∈I

(−ρ(st, ϕ1), ρ(st, ϕ2) (4.12)

ρ(st,♢Iϕ) = max
t′∈I

ρ(st′ , ϕ) (4.13)

ρ(st, ϕ1UI}phi2) = max
t′∈I

min(ρ(st′ , ϕ1), min
τ∈[t,t′]

ρ(sτ , ϕ2)) (4.14)

In Figure 4.3, a simulation trace is presented together with its robustness. The STL formula
specifies that the simulation trace must always remain within 20% and 80%, depicted by
the red area on the plot. Any values outside of this range indicate a violation of the STL.
The robustness trace drops below zero whenever the simulation trace deviates from the
STL. The magnitude of the negative robustness signifies the degree to which the simulation
trace deviates from the STL, indicating the extent of the violation.

An alternative approach to evaluating STL formulas called VBools is proposed in [38].

31

4 Simulation-based testing and verification 4.4 Optimization

Figure 4.3: Example showing the robustness of a simulation trace. The STL formula states the value
of SOC Cell2 should always stay between 20% and 80%.

The method is very similar to robustness, but the difference is that VBools allows the tester
to control how robustness is measured for each property, while robust semantics imposes
the same robustness measure on all properties. Then STL is used in falsification to find
counterexamples. VBools can be a better alternative. The interpretation of the severity
of a counterexample depends on the physical context of the property being evaluated,
implying that no single semantics approach can always be universally applied as the most
appropriate.

The article claims they have a strong suspicion that using VBools in optimization-based
falsification may actually improve bug-finding effectiveness. However, they do not have
enough experimental evidence yet to support this claim. As robustness is more widely
adapted, it is the approach employed in this master’s thesis.

4.4 Optimization

STL is used in falsification together with an optimization algorithm. Before diving into
optimization-guided falsification, an explanation of optimization will be done.

Optimization refers to the process of finding the best solution to a problem within a given
set of constraints [39]. Mathematically, optimization refers to the process of minimizing
or maximizing a function while considering constraints on its variables. The optimization
problem is stated in [39] as:

minRn f(x)

subject to ci = 0, i ∈ E
ci ≥ 0, i ∈ I

(4.15)

where

32

4 Simulation-based testing and verification 4.4 Optimization

• x is the vector of variables, also called unknowns or parameters.

• f is the objective function, a function of x that we want to maximize or minimize.

• ci are constraint functions, which are scalar functions of x that define certain equa-
tions and inequalities that the unknown vector x must satisfy.

The optimization problem is solved using optimization algorithms. These algorithms work
by iteratively refining a candidate solution until a satisfactory solution is found [39]. The
optimization algorithm typically starts with an initial guess for the solution and then makes
incremental changes to the variables in order to improve the objective function value. At
each iteration, the algorithm evaluates the objective function and uses this information to
determine the direction of the search for the next iteration.

The choice of the search direction and how to arrive at the optimum is determined by the
specific algorithm being used. For example, gradient descent algorithms use the gradient
of the objective function to determine the direction of the search [39]. These algorithms
depend on the objective function to be well-known and easy to evaluate and compute.

However, when evaluating cyber-physical systems, the objective function may be non-
differentiable, discontinuous, or noisy [34]. Computation of the gradient can be either ex-
pensive or not even possible. Therefore gradient-free optimization algorithms are needed.
Derivative-free optimization algorithms are a broad category of algorithms that do not use
gradient information to search for an optimal solution [39]. Instead, they rely on other
methods to explore the search space and refine the candidate solutions iteratively. Rel-
evant optimization algorithms in this thesis are linear programming, Nelder-Mead, and
Bayesian optimization.

In linear programming, the objective function and constraints are linear [39]. A linear
program can be solved in different ways. A common one is the simplex algorithm. It
is conceptually simple, computationally efficient for many practical problems, and it has
a sound theoretical foundation. The method starts with an initial feasible solution and
then iteratively improves it until the optimal solution is found. The method is primarily
derivative-free, but the gradient can be added for extra support. The algorithm is based on
a geometric interpretation of the problem, where the feasible region of the linear program-
ming problem is represented as a convex polytope. The algorithm moves from one vertex
of the polytope to another along the edges, and the objective function is improved at each
iteration. The fact that the feasible region is a convex polytope ensures that the algorithm
will always converge to an optimal solution.

The Nelder-Mead algorithm is a heuristic optimization method for finding the minimum

33

4 Simulation-based testing and verification 4.4 Optimization

of a nonlinear objective function in multiple dimensions [39]. It belongs to the family of
direct search algorithms, which do not require the calculation of derivatives, and can han-
dle non-smooth or non-convex functions. The algorithm starts with an initial set of points,
called the simplex, which defines a region of the search space. The simplex consists of
n+1 points, where n is the number of dimensions of the search space. In each iteration, the
algorithm generates a new point by reflecting the worst point about the simplex’s centroid.
Next, it generates a new point by extrapolating from the reflected point. If neither of the
two first steps results in a lower function value, the algorithm generates a new point be-
tween the best and worst points. If the function value still has not improved, a new point is
generated between the best point and other points in the simplex. The method terminates
if an optimum is found or the number of pre-set iterations runs out. The Nelder-Mead
algorithm is relatively easy to implement and can handle non-smooth or non-convex func-
tions that may cause gradient-based methods to get stuck in local minima. However, it
may not converge to the global minimum for highly non-convex functions and may be
sensitive to the choice of the initial simplex. Therefore, it is often used in conjunction with
other optimization methods or with randomized initialization of the simplex to improve its
performance.

Bayesian optimization is a technique used to optimize expensive objective function[40].
The objective function might be unknown or can only be evaluated through costly simula-
tions or experiments [8]. It is particularly useful in situations where the objective function
is non-convex, nonlinear, and has many local optima. Bayesian optimization has its name
after the theorem it is built upon: Bayes theorem [40], which is stated as:

Definition 4.4.1 (Bayes theorem).

P (A|B) =
P (B|A)P (A)

P (B)
(4.16)

Bayes theorem describes the probability of an event based on prior knowledge of condi-
tions that may be associated with the event [40]. Bayesian optimization works by main-
taining a probabilistic belief about the objective function, called a surrogate function, and
using an acquisition function to decide where to evaluate the function next. The surrogate
function is built using Gaussian processes. For each iteration, the Gaussian processes are
updated so the surrogate function becomes more and more like the true objective function.

Another benefit of Bayesian optimization is that it can balance the trade-off between explo-
ration and exploitation and avoid evaluating the objective function at unpromising regions.
Choosing exploration, the algorithm searches for points spread out across the whole range,

34

4 Simulation-based testing and verification 4.4 Optimization

while with exploitation, the algorithm searches for points with low mean, i.e. points around
the peak(s). This part is fundamental to a successful Bayesian optimization procedure. If
there is no exploration, the algorithm can get stuck in local minima.

There are different acquisition functions. A common one is the Gaussian process upper
confidence bound (UCB). For maximizing, it is:

Definition 4.4.2 (Guassian process upper confidence bound).

UCB(x) = µ(x) + κσ(x) (4.17)

where µ is the mean, σ is the standard deviation of the surrogate function and κ is a

constant for determining exploration or exploitation [40].

The method is visualized in Figure 4.4 to Figure 4.7. The figures are made by [8]. The up-
per plot represents the true function, while the lower plot displays the acquisition function.
Black dots on the true function indicate points where Bayesian optimization has identified
promising locations. The pink region represents the interval with a high probability of
containing the true function. The process involves maximizing the acquisition function to
determine the next point for evaluating the function. In this case, the acquisition function
employed is the UCB. As the iterations progress, the surrogate function, depicted in the
upper plot, increasingly approximates the true objective function. Gradually, the algorithm
approaches the true maximum.

Figure 4.4: Three iterations of Bayesian optimization. Adapted from [8]

In Figure 4.4, three iterations of Bayesian optimization are depicted, yet the optimal solu-

35

4 Simulation-based testing and verification 4.4 Optimization

tion has not been found. The yellow star on the acquisition function graph indicates the
next guess for Bayesian optimization.

Figure 4.5: Five iterations of Bayesian optimization. Adapted from [8]

Moving on to Figure 4.5, five iterations of Bayesian optimization have been performed.
Although the surrogate function shows an improved resemblance to the true function, fur-
ther progress is still required. The next guess for the optimum is located in the upper-right
section of the acquisition function.

Figure 4.6: Eight iterations of Bayesian optimization. Adapted from [8]

36

4 Simulation-based testing and verification 4.5 Optimization-guided falsification

After eight iterations of Bayesian optimization, the surrogate function closely resembles
the target function, but the optimum is still not found in Figure 4.6

Figure 4.7: Nine iterations of Bayesian optimization. Adapted from [8]

Finally, Figure 4.7 reveals that the next guess appears to be the optimum, leading to the
termination of the optimization in the subsequent iteration. Within only ten iterations, the
method successfully discovers the optimal solution.

4.5 Optimization-guided falsification

The optimization algorithm uses the STL robustness score in its search for an optimum.
The basic architecture of optimization-guided falsification is shown in Figure 4.8.

Simulation
Robustness

function
Bayesian

optimization

Optimum
found Stop

Start input Output
Objective function

value

Optimized input

STL
Spesification

Optimum
not found

Figure 4.8: Overview of optimization-guided falsification. Adapted from [9]

37

4 Simulation-based testing and verification 4.5 Optimization-guided falsification

Here are the steps:

1. Pick a start input x to all parameters

2. Compute the output by simulation

3. Calculate the robustness of the output using STL

4. Evaluate the robustness

5. If the robustness is lower than zero, a falsifying example is found, and the procedure
can halt

6. If not, compute optimization to search for input values that yield lower robustness

Related work

Optimization-guided falsification uses an optimization algorithm and a requirement to
guide the optimization. Which type of optimization algorithm used differs widely. Also,
it can be done on different platforms. Here are some related works worth mentioning
because of their broadness and their influence on this master’s thesis.

There exist two notable Matlab toolboxes for optimization-guided falsification. The first
toolbox is S-TaLiRo [41]. It accepts Simulink systems or user-defined functions of a
model, along with an MTL formula, to search for instances of poor robustness using op-
timization methods. The user can select from various stochastic optimization algorithms,
including Simulated Annealing, Ant Colony Optimization, Genetic Algorithms, and Cross
Entropy.

The second toolbox is Breach [42]. Breach differentiates from S-TaLiRo by treating ex-
ogenous inputs uniformly and offering users greater flexibility in placing control points
along the timeline [9]. Another difference is that Breach uses a nonlinear global optimizer
based on the Nelder–Mead simplex-based algorithm.

Zahra Ramezani completed her Ph.D. thesis on Optimization-Based Falsification of Cyber-
Physical Systems at the Chalmers University of Technology [34]. As part of her research,
she has published several papers exploring various approaches to optimization-based fal-
sification. Two of the papers are:

1. In [43], Ramezani et al. establish an optimization-free method called Hybrid Corner-
Random. The method explores extreme values within the allowed parameter ranges.
The method performs acceptably on some of the benchmark problems, but it cannot
handle the hardest ones. Further, they suggest a line-search falsification method,

38

4 Simulation-based testing and verification 4.6 Simulation-guided Lyapunov Analysis

which uses the line-search optimization algorithm, which is a gradient-free opti-
mization algorithm. This method, on the other hand, performs well in all test cases.

2. In [44], they explore the Bayesian optimization algorithm and its different alterations
of it. In [34], Ramezani concludes that the Bayesian optimization method, based
on the outcome of experiments, has a clear advantage over previously presented
methods.

Falsification of safety conditions with Bayesian optimization is done in [45] where he
presents pseudocode for a Bayesian optimization using upper confidence bound as the
acquisition function.

4.6 Simulation-guided Lyapunov Analysis

Simulation-guided Lyapunov analysis is an emerging method for verification of cyber-
physical systems [46]. This method uses Lyapunov’s theorem for stability.

Definition 4.6.1 (Lyapunov’s stability theorem [47]). Let x = 0 be an equilibrium point

for ẋ = f(x) and D ⊂Rn be a domain containing x = 0. Let V : D → R be a continuously

differentiable function such that

V (0) = 0 and V (x) > 0 in D\{0} (4.18a)

V̇ (x) ≤ 0 in D (4.19a)

Then x = 0 is stable. Moreover, if

V̇ (x) < 0 in D\{0} (4.20a)

Then x = 0 is asymptotically stable.

If a system is asymptotically stable, it means that all system states converge to a particular
value. By leveraging this concept, engineers and researchers can ensure that a system
meets the desired performance criteria. For instance, if the goal is for the system state to
converge to a particular reference value, asymptotic stability can be used to demonstrate
that the system will indeed converge to this value.

Lyapunov functions can be used to not only prove stability but also to perform other veri-
fication tasks of systems [9]:
Stability: property ϕ = ”is the system stable?”

39

4 Simulation-based testing and verification 4.6 Simulation-guided Lyapunov Analysis

Performance bounds: property ϕ = ”The system remains within some set S.”
Barrier certificate: property ϕ = ”Given that the system is initiated in χ0, it will never
reach F”

The method could be more mature and has been implemented on an academic scale [46].
This has been done in this article [10]. The article is made for hybrid systems, but the
method works on non-hybrid systems as well.

While Lyapunov functions are a powerful tool for proving stability and safety in nonlinear
and dynamical systems, finding a proper Lyapunov function is a challenging task. In [10],
they turn the problem around. Rather than starting with a Lyapunov function, the process
searches for a possible Lyapunov function, and if it finds one and the analysis is sound,
the system is verified. This is done using simulation traces and the assumption of a sum-
of-squares polynomial structure to obtain a candidate Lyapunov function. The process is
shown in Figure 4.9.

Simulation traces
Candidate Lyapunov

Function V

Output Candidate
Lyapunov Function V

Simulation traces
from falsifier

Min <
0?

Solve LP

Falsifier

Yes

No

Send V to validation

Figure 4.9: Overview of part one of Simulation-guided Lyapunov verification by [10]. Adapted
from [10]

The process starts by obtaining a collection of simulation traces. These are then formulated
as a linear program. For instance, the simulation traces are consolidated into a vector
encompassing all state values, denoted as ’x’. This vector is combined with an unknown
matrix ’P’, resulting in the formulation V(x) = xTPx. The objective of the linear program
is to explore suitable values for ’P’ that satisfy the Lyapunov conditions. If a suitable ’P’
is discovered, it implies the identification of a potential Lyapunov function candidate.

40

4 Simulation-based testing and verification 4.6 Simulation-guided Lyapunov Analysis

The constraints in the linear program are given by:
simulation trace θ and candidate Lyapunov function V (x) = xTPx. j is time steps, and i
is for switched mode for hybrid systems. For a non-hybrid system, i will be 1.

V (θ(tj)) > 0 (4.21)

V (θ(tj))− V (θ(tj+i))− γk||θ(tj)||2 > 0 (4.22)

γ > ϵ (4.23)

The constraints are formulated to check the Lyapunov stability definition. The first con-
straint guarantees the positive definiteness of the Lyapunov function. Meanwhile, the sec-
ond and third constraints are employed to examine the negative definiteness of the deriva-
tive of the Lyapunov function.

At this point, the system is only tested on a finite collection of simulation traces. There can
still exist simulations that do not hold for the stability criterion. The subsequent step is,
therefore, a falsifier. In the article, they used the global optimizer Nelder-Mead to search
for counterexamples that violate the Lyapunov conditions. In the falsifier, the Lyapunov
conditions are stated as the objective function. If the objective function is less than zero,
then a counterexample is found. The counterexample is then added to the constraints
in the linear program problem, and a new one will be executed, giving a new candidate
Lyapunov function. This loop continues until no new counterexample is found, resulting
in a Lyapunov function candidate.

As global optimization techniques are not exhaustive, it is essential to conduct a thorough
evaluation of the Lyapunov candidate [10]. Moving over to part two of the procedure,
shown in Figure 4.10. In the next step, a Satisfiability Modulo Theories solver is used to
validate the soundness of the Lyapunov candidates. Satisfiability Modulo Theories solvers
are automated reasoning tools that can efficiently decide the satisfiability of logical formu-
las involving complex theories or constraints [48]. This synthesis process ensures that the
Lyapunov function is constructed correctly and that its properties align with the desired
stability requirements. It is also in this step that the property to check for is specified,
whether it is a Lyapunov function to prove stability, a forward invariant set to check for
performance bounds, or a barrier certificate. If the analysis is sound, the procedure halts,
and the system is officially verified. [10] uses z3 [49] and dReal [50] and the symbolic
tools in Mathematica [51] to verify the obtained Lyapunov candidate function.

In [10], they have proven that the method works on examples with nonlinear or hybrid

41

4 Simulation-based testing and verification 4.6 Simulation-guided Lyapunov Analysis

Candidate Lyapunov
Function V

Halt: Analysis is sound

Counterexamples

Sat?

Generate Lyapunov candidate (part
one)

Formulate
solver query

No

Solver query

Run solver

Yes

Figure 4.10: Overview of part two of Simulation-guided Lyapunov verification. Adapted from [10]

dynamical systems. They state that there exist no guarantees that the procedure will ter-
minate with a sound analysis for all problems, but their examples prove that the method is
capable of verifying challenging systems.

42

5
Lithium-ion Battery and BMS

This chapter goes deeper into the Li-ion battery and BMS part of the all-electric actuation
control. Presenting failure modes of the Li-ion battery. Furthermore, the Matlab model
will be presented, along with the selected test cases.

5.1 Lithium-ion battery

As the world shifts towards more renewable energy sources and electrification, the use of
batteries is increasing. Li-ion batteries came on the market in 1991, and their popularity
has exploded since [52]. The idea behind Li-ion batteries is that they are built of the lightest
metal on the periodic table, Lithium. Because of this, they have a high energy and power
density compared to other batteries today. The energy density of Li-ion, nickel-cadmium
(Ni-Cd), and Lead-acid batteries are compared in Figure 5.1.

Another advantage of Li-ion batteries is their long cycle life, meaning they can be recharged
and discharged many times before their capacity decreases. This sets them apart from other
battery types, such as Ni-Cd batteries, which have a shorter cycle life and can suffer from
memory effect. That is, when Ni-Cd batteries are charged after not fully discharged, they
can ”remember” the shorter discharge cycle and gradually lose their ability to hold a full
charge [53].

Li-ion batteries also have a low self-discharge rate, allowing them to retain their charge
for longer periods of time when not in use [54]. This feature makes them an ideal choice
for devices that are not frequently used. e.g. ESD valve.

43

5 Lithium-ion Battery and BMS 5.2 Battery management system

Energy density (W h kg-1)

Li-ion
E

ne
rg

y
de

ns
it

y
(W

 h
 I

-1
)

Lead-acid

Ni-Cd

S
m

al
le

r
si

ze

Lighter weight

0 250

0

400

Figure 5.1: Comparison of battery types. Adapted from [11]

While Li-ion batteries offer many advantages, they do come with some drawbacks, in-
cluding a higher cost and the risk of fire if not handled or charged properly. Safety can
be ensured in multiple ways. On the battery cell level by space or isolation between the
cells. The placement of the battery in the environment to ensure cooling conditions and
fire detection [52]. Last but most importantly, Li-ion batteries need a BMS.

5.2 Battery management system

A BMS is an electronic system that plays a crucial role in ensuring the safety and optimal
performance of a battery [54]. The BMS monitors and controls the condition of the battery.
The main function of the BMS is to detect and prevent failures within the battery. A list of
functions of the BMS is shown in Figure 5.2.

The article [12] gives an overview of the functions of the BMS. In general, the BMS mon-
itors the state of the cells, battery health, voltage, current, temperature, and remaining
runtime. The BMS optimizes the battery’s performance by preventing and mitigating fail-
ures. The BMS ensures that each cell is charged and discharged properly to prevent any
cell from being overcharged or overdischarged. This is called cell balancing, and it is typ-

44

5 Lithium-ion Battery and BMS 5.3 Faults of Lithium-ion batteries

Battery management system
(BMS)

Input/output current and voltage monitoring

Battery cell monitoring

Charge and discharge control

State estimation (SOC, SOH, SOF)

Battery protection

Power management control

Cell balancing and equalization

Data storage

Data acquisition

Fault diagnosis and assessment

Communication and networking

Heat management

Operating temperature control

Figure 5.2: Overview of BMS functions. Adapted from [12]

ically done by diverting excess charge from the higher voltage cells to the lower voltage
cells [12]. In the event of abnormal conditions, the BMS is to put into measures to prevent
damage or combustion of the battery.

5.3 Faults of Lithium-ion batteries

The article [54] gives an overview of the failures of a Li-ion battery. The article builds upon
the study by Lyu et al. [55] that extensively examines battery failures at a chemical level.
This thesis will not go into the depth of the chemistry inside the Li-ion battery. Instead,
the focus is on understanding and modeling the outcome of failures. The referenced article
is utilized because it provides a broader overview, which aligns with the objectives of this
thesis.

[54] distinguish between internal and external faults as shown in Figure 5.3. The article
mentions more failures, but after conversations with the supervisor, some are not that
relevant for the battery in the all-electric Xmas tree and, therefore, not taken into here.

45

5 Lithium-ion Battery and BMS 5.3.1 Internal short-circuit

External Internal

Battery faults

Sensor fault:
- Voltage
- Current
- Temperature

Internal short circuit
Overcharge
Overdischarge
Accelerated degradition
Thermal runaway

Figure 5.3: Overview of internal and external faults of Li-ion batteries. Adapted from [10]

5.3.1 Internal short-circuit

An internal short circuit (ISC) is an issue that can occur in a battery when the separator
layer between the electrodes fails, causing the two electrode materials to be internally and
electronically interconnected [54]. This failure can be due to various reasons, such as high
temperature, cell deformation, dendrite formation, or compressive shock. The result is
high local current densities, self-discharge, and a temperature increase. As the lithium-
ions and electrons are released at the anode and travel across the electrolyte toward the
cathode, they trigger contact between the anode and cathode, leading to internal short-
circuiting. This failure can lead to thermal runaway.

5.3.2 Overcharge

The occurrence of overcharge in the battery cells is a prevalent issue that stems from
factors such as the variance in cell capacity within the pack, erroneous voltage and current
measurement, or imprecise state of charge (SOC) estimation by the BMS [54]. A regular
battery pack can also experience overcharge when the charger malfunctions. Overcharging
Li-ion batteries instigates electrochemical reactions among battery components, resulting
in the depletion of active materials. Furthermore, the accumulation of gases in sealed
batteries can lead to the battery bursting. Overcharge can lead to ISC due to an increase in
the battery’s surface temperature and ultimately lead to thermal runaway.

5.3.3 Overdischarge

Overdischarge occurs when the battery is discharged below its recommended lower voltage
limit. [56]. Overdischarge can be caused by the same factors as overcharge. This failure

46

5 Lithium-ion Battery and BMS 5.3.4 Sensor drift

can worsen the lifespan of the battery and lead to ISC and, ultimately, thermal runaway
[57]. Figure 5.4 shows how it looks when cells have different charges.

Cell 1 Cell 3 Cell 4Cell 2

Normal
Operating
Voltage
Range

Overcharged
Cell

Undercharged
Cell

Figure 5.4: Example of disbalanced cells. Adapted from [12]

5.3.4 Sensor drift

Sensor drift is a failure in one of the sensors in the battery, e.g. temperature, voltage, or
current, leading to incorrect measurements. The failure can be caused by physical factors
such as vibration [58]. The sensors help the BMS monitor the battery and manage the
battery operation effectively. Failure in temperature sensors can lead to inaccurate thermal
management, ISC, overheating, and ultimately, thermal runaway [59]. Voltage sensors
monitor cell voltages and help the BMS estimate the SOC of the cells [54]. If the BMS
cannot estimate the SOC correctly, it can lead to the failures overcharge and overdischarge.
A faulty current sensor can also result in an inaccurate estimation of SOC.

5.3.5 Accelerated degradation

Cell degradation is the gradual loss of a battery cell’s capacity and performance over time,
resulting from chemical and physical changes that occur during use [54]. The degrada-
tion process can be accelerated when the battery is stored at high temperatures [60]. This
should not be a problem for the battery in this thesis as it is to be placed at the ocean bot-
tom. Other factors are impedance increase, higher frequency of the charging and recharg-
ing cycle, change in SOC, and voltage rates [61; 62]. Accelerated degradation can lead to
ISC and, ultimately, thermal runaway.

47

5 Lithium-ion Battery and BMS 5.3.6 Thermal runaway

5.3.6 Thermal runaway

This failure is the most severe failure that can occur on the Li-ion battery [54]. It is trig-
gered by a cascade of exothermic reactions within the battery, leading to a rapid increase
in temperature and pressure that can ultimately cause the battery to explode and catch fire.

5.4 Matlab model

The DT of the battery is modeled with Simulink in Matlab by Ph.D. candidate Björklund.
The DT was developed in parallel with this master. Different prototypes were made and
tested on the way.

In this report, the result from two DTs is included:

DT prototype Number of cells Failures implemented

DT1: Battery 8 ISC

DT2: Battery and BMS 4 ISC, Cell balancing and sensor drift

5.4.1 Modeling

Battery

Accurately modeling the chemical reactions within a battery is challenging. To overcome
this, an equivalent circuit model is commonly employed. An electrical circuit model is
easier to model and simulate than chemical reactions, and studies show that they are reli-
able models with high accuracy [63]. In order to model the battery cells, a second-order
equivalent circuit model is used as shown in Figure 5.5.

The equivalent circuit model represents battery cells by employing resistors and capacitors
in series, effectively mimicking the behavior of a chemical cell [13].

To determine the parameters of the RC parallel network, i.e., the values of R1, R2, C1, and
C2, a lookup table approach is utilized. A lookup table is a Matlab Simulink block that uti-
lizes arrays of data to approximate mathematical functions to effectively map input values
to corresponding output values. The lookup table allows the model to adapt to changing
operating conditions to capture the expected behavior during higher temperatures, lower
load demands, and a reduced SOC. Utilizing lookup tables for the battery cell parameters
in the equivalent circuit model enables capturing behavior as a function of the current state
of the operational conditions. Figure 5.6 show an example of a lookup table. The plot
shows the R1 value for the different SOC and temperature values.

48

5 Lithium-ion Battery and BMS 5.4.1 Modeling

Figure 5.5: Equivalent circuit model of Li-ion battery proposed by [13]. Adapted from [13]

A battery exists of multiple cells. For each cell in the battery pack, an equivalent circuit
model is used to capture the dynamic behavior. However, the parameters of the lookup ta-
bles are set to unique parameters to account for variance between cells in terms of physical
properties.

Figure 5.6: Example of a lookup table.

49

5 Lithium-ion Battery and BMS 5.4.2 Test cases

BMS

The BMS is, among other things, used for SOC estimation of each cell. This is modeled
using an extended Kalman filter. The model and the measurements in the extended Kalman
filter are weighted and calibrated during the design period of the DT. The BMS gathers the
measured voltage and temperature of each cell. The model used in the Kalman filter is built
upon the first-order equivalent circuit model, in contrast to the cells, which are modeled in
the second order. The second order gives a more dynamic behavior.

In the extended Kalman filter, the model parameters are kept constant, whereas the DT of
the battery involves changing parameters. This discrepancy implies that the model used
in the extended Kalman filter differs from the DT model of the battery. Consequently,
when the Kalman filter receives data from the battery, accurate estimation becomes more
challenging due to the substantial divergence between the two models.

By modifying the internal parameters of the DT, it is possible to represent behavior caused
by physical degradation. This approach allows to assess the extent to which the DT can
deviate from the model before the extended Kalman filter can no longer provide accurate
estimations.

The extended Kalman filter also controls the charge and discharge cycle with a switch. The
BMS uses the cell with the smallest SOC value to turn it on and the cell with the highest
SOC value to turn the switch off. An incorrect estimation of the SOC of an individual cell
can cause a scenario of discharging/charging cells to accelerate degradation and reduce the
remaining useful life of the battery pack.

The BMS is responsible for cell balancing. This is done by measuring the voltages of the
cells and connecting a simple logic. Whenever a cell exhibits excessively high voltage, a
circuit is closed to divert the current away from the cell. During charging, the closed circuit
redirects current from the overcharged cell to an externally connected resistor promoting
a more balanced charge.

5.4.2 Test cases

Below are a description of the test cases implemented in the DT and which are tested in
this master thesis.

Internal short circuit

ISC is modeled by an extra circuit connected to all the cells with a resistance, R ISC.
When the R ISCR is high, the current goes where it should go, through the battery, and

50

5 Lithium-ion Battery and BMS 5.4.2 Test cases

the battery gets fully charged. When the R ISCR is small, some of the current will go
through the other circuit and not to the cell, leading to ISC.

The ISC is influenced by the internal resistance of each cell, denoted as Rs. The amount
of ISC is determined by the difference between Rs and R ISCR. When Rs is significantly
larger than R ISCR, the current will flow through the alternate circuit, resulting in ISC.
The internal resistance of a cell can increase due to failures in that cell.

Cell 3

Rs_1 Rs_2 Rs_3 Rs_4
VOC,2VOC,1 VOC,3 VOC,4

Cell 4

RISCR

Vt,p

Cell 2Cell 1

IL

Figure 5.7: Circuit of modeled ISC circuit. Adapted from [14]

The BMS itself does not have the ability to detect ISCs at their current state, but this
failure case is designed into the DT. Although a test case aimed at assessing the behavior
of an ISC detection algorithm is unavailable at the current time, the overall performance is
influenced by the short circuit.

Cell balancing

In order to evaluate the cell balancing function of the BMS, this test case involves modi-
fying a cell to create a discrepancy among the battery cells, consequently making it harder
for the BMS to efficiently balance the cells. This can be achieved by altering the parame-
ters R1, R2, C1, and C2 of each cell. This is done by multiplying each parameter with a
constant. The result of this can be seen in Figure 5.8. The above surface plot shows the
original R1, while the surface plot under is the new one after R1 is multiplied by 0.3.

51

5 Lithium-ion Battery and BMS 5.4.2 Test cases

Figure 5.8: Example of lookup table after multiplying R1 with 0.3.

The performance of the BMS becomes evident when examining the voltage plot, as ideally,
all cells should exhibit the same voltage. Additionally, the impact on SOC estimation can
also serve as evidence of the imbalance among the cells.

Sensor drift

To ensure the safety and optimal performance of batteries, it is imperative to have a de-
pendable sensor fault diagnostic scheme. Sensor drift was implemented by adding an
offset to the original voltage. A constant is added to the measured V terminal of cell 3. In
case of sensor drift, the BMS can still handle the battery quite well up until some point.

52

6
Implementation

This chapter describes the implementation of the DT from Matlab to Python, along with
the implementation of the optimization-guided falsification elements STL and Bayesian
optimization. Furthermore, this chapter presents the implementation of the GUI. To fa-
cilitate comprehension, code snippets are included throughout the chapter. However, for
convenience, the complete code can be found in a compressed zip folder alongside this
thesis. The appendix includes code from one of the test cases and the code of the GUI.

6.1 From Matlab to Visual Studio Code

The model of the battery and BMS was originally a Simulink model in Matlab, but for
better universality, Python has been used. The Simulink model has been exported into a
standalone Functional Mock-up Unit (FMU) using Functional Mock-up interface (FMI)
version 2.0. FMI facilitates the exchange of dynamic simulation models between different
programs. By exporting the model as an FMU, Python can simulate the model indepen-
dently without running Matlab in the background.

To save the Simulink model as an FMU, follow these steps: select ”Save” → ”Export
Model To” → ”Standalone FMU.”

It is important to note that all desired outputs in the standalone FMU must have an output
port in the Simulink model before exporting.

The FMU is then opened in Python with the help of the package FMPy [64]. The following
steps are involved:

53

6 Implementation 6.1 From Matlab to Visual Studio Code

• Starting the FMPy GUI with: Python -m fmpy.gui

• Open an FMU

• Tools → Create Jupyter Notebook

A Jupyter notebook is created, containing all inputs of the FMU as a dictionary and all
outputs as another dictionary. Dictionaries are a type of hash table data structure. They
consist of key-value pairs, where each value is associated with a specific key. The model
is simulated using the simulate fmu function from the FMPy package. The function takes
as arguments the filename of the FMU, the start values dictionary, the output values dic-
tionary, and the simulation time.

The results can be plotted by using plot result function from the FMPy package, which uti-
lizes the matplotlib package. Alternatively, the results can be stored in a Pandas DataFrame
for further analysis. In addition, specific plotting functions have been developed for this
thesis work, such as plot result plotly and plot robustness plotly, to improve code cleanli-
ness and visualization.

Code Listing 6.1 and Code Listing 6.2 below demonstrates how the data is rendered in the
Jupyter Notebook.

1 import fmpy

2 from fmpy import *
3

4 filename = 'BP_BMS_Passive_Cell_Balancing_SOC_Charging.fmu'

5

6 start_values = {

7 # variable start unit description

8 'Cell_1_C1_T[1,1]': 1834.8624, # Cell_1_C1_T(1,1)

9 'Cell_1_C1_T[1,2]': 12413.7931, # Cell_1_C1_T(1,2)

10 'Cell_1_C1_T[1,3]': 30000, # Cell_1_C1_T(1,3)

11 'Cell_1_C1_T[2,1]': 4492.7536, # Cell_1_C1_T(2,1)

12 'Cell_1_C1_T[2,2]': 18750, # Cell_1_C1_T(2,2)

13 'Cell_1_C1_T[2,3]': 32500, # Cell_1_C1_T(2,3)

14 'Cell_1_C1_T[3,1]': 23191.4894, # Cell_1_C1_T(3,1)

15 ...}

Code Listing 6.1: Jypiter notebook start part 1

54

6 Implementation 6.1 From Matlab to Visual Studio Code

1 output = [

2 'SOC_Cell1', # SOC_Cell1

3 'V_terminal_Cell1', # V_terminal_Cell1

4 'I_Cell1', # I_Cell1

5 'SOC_Cell2', # SOC_Cell2

6 'V_terminal_Cell2', # V_terminal_Cell2

7 'I_Cell2', # I_Cell2

8 'SOC_Cell3', # SOC_Cell3

9 'V_terminal_Cell3', # V_terminal_Cell3

10 'I_Cell3', # I_Cell3

11 'SOC_Cell4', # SOC_Cell4

12 'V_terminal_Cell4', # V_terminal_Cell4

13 'I_Cell4', # I_Cell4

14 'T_Cell1', # T_Cell1

15 'SOC_est_Cell1', # SOC_est_Cell1

16 'SOC_est_Cell2', # SOC_est_Cell2

17 'SOC_est_Cell3', # SOC_est_Cell3

18 'SOC_est_Cell4', # SOC_est_Cell4

19 'V_pack', # V_pack

20 'V_terminal_Cell3_measured', # V_terminal_Cell3_measured

21]

22 sim_time = 20000

23

24 result_org = simulate_fmu(filename, start_values=start_values, output=

output, stop_time=sim_time)

25 df_org = pd.DataFrame(result_org)

Code Listing 6.2: Jypiter notebook start part 2

When the FMU is imported in Python, all tables are divided into single elements with their
own key instead of being as a whole table as they were in Simulink. An example of this is
illustrated in Figure 6.1. This makes the handling of the data more challenging in Python.
This issue is resolved in the FMI version 3.0. However, this version was not available in
Matlab prior to the completion of this master thesis. Therefore, some functions were made
to make the testing process simpler. These are presented in Table 6.1.

55

6 Implementation 6.1 From Matlab to Visual Studio Code

Function name Input Output Description

sort start values start values start keys,
start values,
keys

Groups start values and keys associ-
ated with each input parameter. Cre-
ates a list of lists, where each sublist
corresponds to a specific input pa-
rameter and contains the respective
values. Similarly, it generates a sep-
arate list of lists containing the cor-
responding keys. For example, one
sublist would consist of all the keys
related to Cell 1 R1 T. Additionally,
the function provides the key for each
input parameter as part of its return
value.

make dict keys,
start values

d Links a key to each list in the list of
lists, similar to the example to the
left illustrated in Figure 6.1. This
function is added to simplify the
function multiply by constant and to
make testing easier.

multiply by
constant

d,
name,
constant

d Multiplies an input parameter with a
given constant. Returns a new dictio-
nary with updated values.

make start
values

d,
start key

d2 Rearranges the start values into their
original format, allowing the func-
tion simulate fmu to be called. This
function makes the start values look
like the right of Figure 6.1.

Table 6.1: Functions made in this master thesis for handling and altering the data for simulation and
testing.

56

6 Implementation 6.1 From Matlab to Visual Studio Code

'Cell_1_R1_T[1,1]': 0.022893,
'Cell_1_R1_T[1,2]': 0.0060907,
'Cell_1_R1_T[1,3]': 0.0027303,
'Cell_1_R1_T[2,1]': 0.014339,
'Cell_1_R1_T[2,2]': 0.0049875,
'Cell_1_R1_T[2,3]’: 0.0024937,
'Cell_1_R1_T[3,1]': 0.0088519,
'Cell_1_R1_T[3,2]': 0.0048968,
'Cell_1_R1_T[3,3]': 0.0024484,
'Cell_1_R1_T[4,1]': 0.0065021,
'Cell_1_R1_T[4,2]': 0.0030598,
'Cell_1_R1_T[4,3]': 0.0019124,
'Cell_1_R1_T[5,1]': 0.0060868,
'Cell_1_R1_T[5,2]': 0.0042423,
'Cell_1_R1_T[5,3]': 0.0025823,
'Cell_1_R1_T[6,1]': 0.0056501,
'Cell_1_R1_T[6,2]': 0.0030819,
'Cell_1_R1_T[6,3]': 0.0018834,
'Cell_1_R1_T[7,1]': 0.0048179,
'Cell_1_R1_T[7,2]': 0.0029252,
'Cell_1_R1_T[7,3]': 0.0018928,

'Cell_1_R1_T’: [0.022893,
0.0060907,
0.0027303,
0.014339,
0.0049875,
0.0024937,
0.0088519,
0.0048968,
0.0024484,
0.0065021,
0.0030598,
0.0019124,
0.0060868,
0.0042423,
0.0025823,
0.0056501,
0.0030819,
0.0018834,
0.0048179,
0.0029252,
0.0018928]

Figure 6.1: To the left is how the start values are imported in Python, while the right is how they
were originally in Simulink.

57

6 Implementation 6.2 Signal temporal logic

6.2 Signal temporal logic

To implement the STL component of the optimization-guided falsification process, the
stlcg package [37] from GitHub was utilized. Various options were explored, including
other Python packages developed by different authors. However, the stlcg package stood
out due to its comprehensive documentation and accompanying YouTube video, which
facilitated its implementation compared to other packages. Additionally, the decision to
utilize a preexisting package instead of writing the code from scratch was driven by effi-
ciency considerations.

The stlcg package provides functions for constructing STL formulas and calculating ro-
bustness traces from simulation traces.

calculate robustness

The function calculate robustness uses functions from stlcg to calculate the robustness of a
simulation trace against the STL formula given in Equation 6.3. calculate robustness takes
a DataFrame, a key, and the maximum and minimum values as arguments. It calculates
the robustness of the simulation trace according to the specified STL formula and adds it
to the DataFrame. The function returns an updated DataFrame and the smallest value of
the robustness trace.

ϕ1 = DataFrame[key] < max (6.1)

ϕ2 = DataFrame[key] > min (6.2)

ϕ = □ϕ1 ∧ ϕ2 (6.3)

The simulation traces must be of data type torch tensor for stlcg to calculate the robustness.
A torch tensor is a matrix of multi-dimensional size containing elements of a uniform
data type [65]. The traces are afterward transformed into pandas DataFrame for more
straightforward implementation.

58

6 Implementation 6.3 Bayesian optimization

1 def calculate_robustness(dataframe, robustoutput, min, max):

2

3 input = torch.tensor(dataframe[robustoutput], dtype = torch.float,

requires_grad=False)

4 input = torch.reshape(input, (1, len(input), 1))

5

6 val_max = torch.tensor(max, dtype=torch.float, requires_grad=True)

7 val_min = torch.tensor(min, dtype=torch.float, requires_grad=True)

8

9 ϕ1 = stlcg.LessThan(lhs=robustoutput, val=val_max)

10 ϕ2 = stlcg.GreaterThan(lhs=robustoutput, val=val_min)

11

12 ϕ1 = stlcg.Always(subformula=ϕ1, interval = [0,2])

13 ϕ2 = stlcg.Always(subformula=ϕ2, interval = [0,2])

14

15 ϕ = stlcg.And(ϕ1, ϕ2)

16

17 inputs = (input, input)

18 pscale = 1 # "pscale" is the scale used for evaluating predicates

19 scale = -1 # "scale" is the scale used in the maxish/minish

function. <0 defaults to the true min/max

20 rob = ϕ.robustness_trace(inputs, pscale=pscale, scale=scale)

21

22 rob2 = rob.detach().numpy()

23 robreverse = rob2[0,:]

24 dataframe["Robustness"] = robreverse

25 minval = dataframe["Robustness"].min()

26

27 return dataframe, minval

Code Listing 6.3: Calculate robustness

6.3 Bayesian optimization

In conjunction with STL, falsification is performed using Bayesian optimization. A pack-
age from GitHub called Bayesian-optimization [8] was utilized to simplify the implemen-
tation process. This package was chosen due to its eminent documentation and ease of
use. Notably, the package has garnered nearly 7k stars on GitHub, indicating its popular-
ity and reliability. Moreover, it leverages the capabilities of Scipy and Scikit-learn, two
widely-used Python packages specifically designed for optimization tasks.

The method begins by instantiating a BayesianOptimization object by specifying a func-
tion to be optimized f, and its parameters with their corresponding bounds, pbounds. This

59

6 Implementation 6.3 Bayesian optimization

is seen in Code Listing 6.4. The random state parameter determines the number of random
seeds for the Gaussian process initialization. However, in this thesis, the investigation of
this parameter has been omitted, and it is consistently set to one in all of the test cases.
Although this parameter has not been explored in this thesis, it could potentially impact
the optimization process.

1 optimizer = BayesianOptimization(

2 f=black_box_function,

3 pbounds=pbounds,

4 verbose=2, # verbose = 1 prints only when a maximum is observed,

verbose = 0 is silent

5 random_state=1)

Code Listing 6.4: Bayesian optimization object

1 def black_box_function(x1, x2, x3, x4):

2 s_key, s_value, keys = sort_start_values(start_values)

3

4 d = make_dict(keys, s_value)

5

6 d = multiply_by_constant(d, 'Cell_2_R1_T', x1)

7 d = multiply_by_constant(d, 'Cell_2_R2_T', x2)

8 d = multiply_by_constant(d, 'Cell_2_C1_T', x3)

9 d = multiply_by_constant(d, 'Cell_2_C2_T', x4)

10

11 d = make_start_values(d, s_key)

12

13 result = simulate_fmu(filename, start_values=d, output=output,

stop_time=sim_time)

14 df = pd.DataFrame(result)

15

16 df, minval = calculate_robustness(df,robust_output, min, max)

17 res = minval

18

19 return -res

20

21 # Bounded region of parameter space

22 pbounds = { 'x1' : (0.1,600), 'x2' : (0.1, 500), 'x3' : (0.1, 200), 'x4'

: (0.1, 200)}

Code Listing 6.5: Black box function and parameter ranges

60

6 Implementation 6.3 Bayesian optimization

The Code Listing 6.5 demonstrates the cell balancing test case. The black box function
takes four variables as input, which are to be optimized. Inside the function, the functions
from Table 6.1 is employed to multiply the input parameters by the optimizer variables,
simulate the FMU, and calculate the robustness. The value of robustness guides the opti-
mization process.

It is important to note that the aim is to find the smallest value of the robustness, indicating
a higher violation of the STL. However, the optimization process is set up as a maxi-
mization task. To address this, the function returns the negative value of the robustness,
effectively transforming the minimization problem into a maximization problem.

Subsequently, in Code Listing 6.6, the utility function is set to UCB. Kappa is used for
exploration and exploitation, explained in section 4.4. The parameter xi is not necessary
for the utility function UCB and is set to zero. The BayesianOptimization object allows
probing to guide the optimization. By default, these points are lazily explored by setting
lazy=True, meaning they will be evaluated only when the maximize function is called next.
This probing process occurs before the Gaussian process takes control. As the parameters
are initially multiplied by one, all parameters are probed to have a value of 1. This is done
in Code Listing 6.6.

1 utility = UtilityFunction(kind= "ucb", kappa=2, xi=0.0)

2

3 optimizer.probe(

4 params={'x1' : 1, 'x2' : 1, 'x3' : 1, 'x4' : 1},

5 lazy=True,

6)

Code Listing 6.6: Utility function and probing

Lastly, the function maximize can be called. Shown in Code Listing 6.7. In maximize,
two parameters need to be set:

• n iter: How many steps of Bayesian optimization to perform. The more steps, the
more likely the method finds a reasonable maximum.

• init points: How many steps of random exploration to perform. Random exploration
can help by diversifying the exploration space.

The maximize function generates step-wise output during its execution, which is displayed
in Figure 6.2. Currently, the implementation does not include a stopping condition for
when an optimum is reached. Consequently, the optimizer continues running until the

61

6 Implementation 6.3 Bayesian optimization

maximum number of iterations is exhausted. In practice, the optimizer may discover pro-
gressively improved optima or converge to a single optimum, depending on the character-
istics of the graph.

1 optimizer.maximize(

2 init_points=5,

3 n_iter=2,

4)

Code Listing 6.7: Maximize function

Figure 6.2: Screenshot of the output of the maximize function. The pink row indicates the last
optimal point found.

62

6 Implementation 6.4 Graphical user interface

6.4 Graphical user interface

To improve user experience and facilitate visualization, the code has been integrated into
a GUI using Dash. Dash is a Python framework developed by Plotly designed explicitly
for creating interactive web applications. With its powerful capabilities, Dash enables
the construction of interactive Python dashboards and provides convenient figure-plotting
functionalities. It utilizes a Python-based language resembling HTML, making it user-
friendly and well-documented.

6.4.1 HTML

Layout

The HTML code is implemented in the file app.py. Here the layout functions of the dash-
board are set. The app.layout function is utilized to arrange and position all the compo-
nents within the HTML structure. The layout is sectioned using the html.Div function,
which divides the pages into sections. The layout of the dashboard is visualized in Fig-
ure 6.3, and the code relating is in Code Listing 6.8.

container

left-container center-container

STL

bayesian-optimization

STL-output

optimization-output

simulation-output

Figure 6.3: HTML layout

63

6 Implementation 6.4.1 HTML

1 app.layout = html.Div([

2 html.Div([

3 html.Div([...

4 html.Div([], id = 'STL-output')

5], id = 'STL',),

6 html.Div([...

7], id = 'bayesian-optpimization'),

8 html.Div([...

9], id = 'optimization-output'),

10], id = 'left-container'),

11

12 html.Div([

13 html.Div([], id = 'simulation-output'),

14], id = 'center-container'),

15], id = 'container')

Code Listing 6.8: Code for HTML layout

Inside each html.Div other HTML components can be put, for example, a button or a
header. In addition to the basic HTML components, Dash has some of their own called
Dash Core Components(DCC). For instance, dcc.Input is used to gather user input. This
component plays a crucial role in supporting callbacks, a vital function in Dash applica-
tions.

Callbacks

Updates are made using callbacks. They are implemented as functions that are triggered
whenever there is a change in the property of an input component. Their purpose is to
update a corresponding property in another component, which acts as the output.

To create a callback in Plotly Dash, we use the app.callback function. This function defines
the inputs and outputs of the callback, while the associated function specifies the actions
to be performed based on the input and output.

The Code Listing 6.9 shows an example from the GUI where the STL formula is displayed
and updated. The inputs for this callback include a dropdown for selecting the output
parameter of the DT, as well as the minimum and maximum values for the STL formula.

The output produced by Code Listing 6.9 will be placed in the designated html.Div element
in the app.layout with the id ”STL-output” in Code Listing 6.10.

64

6 Implementation 6.4.1 HTML

1 @app.callback(

2 Output('STL-output', 'children'),

3 Input('STLdropdown', 'value'),

4 Input('STLmin', 'value'),

5 Input('STLmax', 'value')

6)

7 def update_STL(STLdropdown, STLmin, STLmax):

8 return html.Div(["ϕ1 = {} is less than {}".format(STLdropdown,STLmax),

9 html.Div(html.P([html.B()])),

10 "ϕ2 = {} is more than {}".format(STLdropdown, STLmin),

11 html.Div(html.P([html.B()])),

12 "ϕ = Always ϕ1 And ϕ2"])

Code Listing 6.9: Callback of STL formula

1 app.layout = html.Div([

2 html.Div([

3 html.Div([

4 html.H2("STL"),

5 dcc.Dropdown(['SOC_Cell1', 'V_terminal_Cell1', 'I_Cell1', '

SOC_Cell2', 'V_terminal_Cell2', 'I_Cell2', 'SOC_Cell3', '

V_terminal_Cell3', 'I_Cell3', 'SOC_Cell4', 'V_terminal_Cell4', '

I_Cell4', 'T_Cell1', 'SOC_est_Cell1','SOC_est_Cell2', 'SOC_est_Cell3',

'SOC_est_Cell4', 'V_pack', 'V_terminal_Cell3_measured'],

6 'V_terminal_Cell2',

7 clearable = False,

8 id = 'STLdropdown'),

9 html.Div(html.P([html.B()])),

10 "Max:",dcc.Input('5', type = 'number', step = 0.01, id = '

STLmax', style = {'width': '15%'}),

11 html.Div(html.P([html.B()])),

12 "Min:",dcc.Input('4', type = 'number', step = 0.01, id = '

STLmin', style = {'width': '15%'}),

13 html.Div(html.P([html.Br()])),

14 html.Div(id = 'STL-output')

15

16],id = 'STL', style = {'display': 'inline-block'}),

17

18 ...])

Code Listing 6.10: app.layout of GUI

65

6 Implementation 6.4.2 CSS

6.4.2 CSS

To style the GUI, a Cascading Style Sheet (CSS) is used. CSS is a style sheet language
that defines the presentation and formatting of an HTML document. Its primary purpose is
to enhance the visual appeal of the GUI and arrange elements in an aesthetically pleasing
manner. CSS achieves this by specifying various properties, such as padding, which cre-
ates space around components, and sizing, which determines the dimensions of elements.
CSS is used to place and size the html.Div elements on the page.

The provided Code Listing 6.11 below demonstrates the application of CSS to the optimize
button with the id ”opt btn”. It showcases how the CSS code defines the button’s size,
color, hover effect, and other visual aspects.

The full CSS code can also be found in the attached zip folder or in section B

1 #opt_btn{

2 width: 120px;

3 height: 50px;

4 cursor: pointer;

5 border: 0px;

6 border-radius: 5px;

7 background-color:#a54cee98;

8 color: rgb(255, 255, 255);

9 text-transform: uppercase;

10 font-size: 15px;

11 border: 2px solid;

12 border-color: #a54cee98;

13

14 }

15 #opt_btn:hover{

16 background-color: #a54cee98;

17 }

Code Listing 6.11: CSS code of optimization button

66

7
Result

This chapter presents each test case with the input values chosen and the plots of the system
outputs. Each optimization-guided falsification test cases present the Maximize function
parameters and intervals. Tables show the optimization’s complete output, where the pink
rows indicate the last found optimum. Note that the output is a positive value but negative
in the plots because the optimizer solves a maximization problem while, in practice, it is a
minimization as mentioned in chapter 6. The manual test cases chose the inputs randomly.

DT1: Battery DT2: Battery and BMS
Test cases Manual Optimization-

guided falsification
Manual Optimization-

guided falsification
Internal short circuit x x x
Cell balancing x x
Sensor drift x

Table 7.1: Overview of test cases in the result section

7.1 Original simulation

These plots show the original simulation of the DTs with the original input values. The
simulation time is 25000 seconds.

67

7 Result 7.1.1 DT1: Battery

7.1.1 DT1: Battery

A pulse is sent to the current in the battery to show the behavior of the battery through
charge and discharge.

Figure 7.1: Voltage of cells

Figure 7.1 shows the voltages of each cell. During charge, the voltages decrease. Fig-
ure 7.1 highlights a notable distinction between the majority of the voltages at the battery
terminals and the voltage observed in cell 1. This discrepancy can be attributed to substan-
tially different internal parameters within that particular cell. This observation underscores
the reliance on internal models for computing simulation iteration results. It suggests that
the internal characteristics of individual cells play a crucial role in determining the overall
behavior and performance of the battery system.

Figure 7.2: Current of cells

Figure 7.2 displays the current of the battery. A pulse of current is sent to the battery. The
first half of the plot shows the current going out and discharging the battery. Then the
second half shows the recharging of the battery.

68

7 Result 7.1.2 DT2: Battery and BMS

Figure 7.3: SOC of cells

Figure 7.3 shows how the SOC of the cells is full at the beginning. When the battery is
discharging, the value of SOC goes down. When it is neither charging nor discharging, the
SOC stands still. The SOC fluctuates within the range of 0% to 100%.

7.1.2 DT2: Battery and BMS

In this simulation, the battery is discharged and charged over and over. The simulation
time is 20,000 seconds.

Figure 7.4: Voltage of cells

In Figure 7.4, cell voltages are shown. Initially, the cells are similar. During discharge,
their voltages gradually decrease. When fully charged, cell voltages peak at around 4.1V,
while when fully discharged, they reach around 3.5V.

69

7 Result 7.1.2 DT2: Battery and BMS

Figure 7.5: Current of cells

In Figure 7.5, the currents of each cell are presented. Compared to DT1 in Figure 7.2, a
higher amplitude of the current is injected. In DT1, the current only goes up to 2, whereas
in DT2, it goes up to 6.

Figure 7.6: SOC of cells

In Figure 7.6, the SOC of each cell is presented. Initially, there is no cell degradation, and
all the cells have a similar SOC. The SOC fluctuates within the range of 10% to 90%.

Figure 7.7: SOC estimated by BMS

In Figure 7.7, the SOC of each cell estimated by the BMS using an extended Kalman filter

70

7 Result 7.2 DT1: Battery

is displayed. It closely resembles Figure 7.6, indicating that the BMS effectively estimates
the SOCs of the cells.

7.2 DT1: Battery

7.2.1 Manual testing

Before implementing the BMS, testing was conducted on a DT of only the battery. This
testing aimed to detect and analyze the battery’s behavior in various failure scenarios,
providing valuable insights into its performance. By thoroughly assessing the battery’s
response, the testing phase served as a validation process for the DT, ensuring its accuracy
and reliability.

Internal short circuit

In this test case, the input parameter Cell 2 R ISCR is multiplied by 0.04, which should
lead to ISC. The simulation time is 20,000 seconds.

Figure 7.8: Voltage of cell 2

In Figure 7.8, the voltage of cell 2 is plotted both before and during an ISC event. During
the ISC, the voltage of cell 2 drops significantly lower compared to its original voltage,
indicating the impact of the internal short circuit on the cell’s voltage level.

71

7 Result 7.2.2 Optimization-guided falsification

Figure 7.9: Current of cell 2

In Figure 7.9, it appears that there is a fault in the DT model. Normally, during an ISC, the
current in the affected cell should be lower compared to the original scenario without an
ISC. However, if the current in the cell with an ISC is shown to be higher than the original,
it indicates a fault in the DT modeling.

Figure 7.10: SOC of cell 2

In Figure 7.10, the SOC of cell 2 is presented before and after experiencing an ISC. The
new SOC of cell 2 is noticeably lower than the old SOC, indicating a significant decrease
in its capacity. The inability of the SOC to reach 100% after the ISC suggests degradation
of this particular cell. This degradation could be attributed to the internal short circuit and
highlights the impact of such events on the overall battery performance.

7.2.2 Optimization-guided falsification

The DT of only the battery served as an initial model for implementing optimization-
guided falsification. In this context, a cell balancing test case was conducted. Without the
BMS in place, there is no cell balancing.

72

7 Result 7.2.2 Optimization-guided falsification

Cell balancing

STL:

ϕ1 = Vterminalcell2 < 5 (7.1)

ϕ2 = Vterminalcell2 > 3 (7.2)

ϕ = □ϕ1 ∧ ϕ2 (7.3)

The value of the voltage of cell 2 should always be between 3 and 5.

Bayesian optimization:

κ 2

init points 5

n iter 2

Table 7.2: Maximize function parameters

Input variable Parameter Interval

Cell 2 R1 T x1 (0.1, 6)

Cell 2 R2 T x1 (0.1, 5)

Cell 2 C1 T x1 (0.1, 2)

Cell 2 C2 T x1 (0.1, 20)

Table 7.3: Intervals for variables

Iteration Target x1 x2 x3 x4

1 0.64 1.0 1.0 1.0 1.0
2 0.8443 2.56 3.63 0.1002 6.116
3 0.5404 0.9659 0.5525 0.4539 6.977
4 0.7851 2.441 2.74 0.8965 13.74
5 0.5929 1.306 4.403 0.152 13.44
6 0.8688 2.562 2.838 0.3667 4.042
7 0.9219 2.912 3.807 0.1762 4.762
8 1.308 5.115 3.684 0.1 4.484

Table 7.4: Output of optimization

By applying a probe at one point and setting the number of iterations (n iter) to two, along
with five initial points (init points), the Bayesian optimization process runs for a total of
eight iterations until an optimal solution is found. In this optimization, the Kappa value is
set to two, favoring exploitation over exploration.

The input variables Cell 2 R1 T, Cell 2 R2 T, Cell 2 C1 T, and Cell 2 C2 T are mul-
tiplied by the parameters to be optimized, denoted as x1, x2, x3, and x4, respectively.

73

7 Result 7.2.2 Optimization-guided falsification

The intervals for the parameters are: x1 ∈ (0.1, 6), x2 ∈ (0.1, 5), x3 ∈ (0.1, 2), and
x4 ∈ (0.1, 20).

By multiplying Cell 2 R1 T by 5.115, Cell 2 R2 T by 3.684, Cell 2 C1 T by 0.1, and
Cell 2 C2 T by 4.484, the lowest obtained robustness score is -1.308.

Figure 7.11: Robustness of voltage of cell 2

In Figure 7.11, the voltage of cell 2 is presented after the optimization process, along with
its corresponding robustness value. The simulation trace generally adheres to the STL
specification for the majority of the time but deviates below the desired threshold after
approximately 11,000 seconds.

Figure 7.12: Voltage of cell 2

In Figure 7.12, the voltage behavior of cell 2 is displayed, showcasing a comparison be-
tween the new and old voltages. By modifying the values of resistors R1 and R2, as well
as capacitors C1 and C2, the voltage behavior of the cell has been altered. These changes
in component values have influenced the voltage response, resulting in a different voltage
behavior compared to the original scenario.

74

7 Result 7.3 DT2: Battery and BMS

Figure 7.13: Robustness of voltage of cell 2

The new and old currents of cell 2 remain identical in Figure 7.13, indicating that the
changes in component values do not affect the current behavior in this particular test case.

Figure 7.14: Robustness of voltage of cell 2

The new and old SOC values of cell 2 also remain identical. The changes in component
values have no influence on the SOC in this particular test case, as seen in Figure 7.14.

7.3 DT2: Battery and BMS

The rest of the test cases is on the DT of both the battery and BMS. The simulation time
is 20,000 seconds.

7.3.1 Manual testing

During the manual testing phase, various values were examined to assess their impact on
the battery and BMS. One example of such testing is provided below. In manual testing,
robustness calculations were not performed. The primary objective of manual testing was
to observe how different inputs affected the outputs of the battery and BMS.

75

7 Result 7.3.1 Manual testing

Cell balancing

Below Table 7.5 indicating the values multiplied by their corresponding constants. In the
given test case, the simulation time is set to 25,000 seconds.

Input variable Constant

Cell 2 R1 T 0.225

Cell 2 R2 T 200.34

Cell 2 C1 T 40.25

Cell 2 C2 T 0.054

Table 7.5: Constant for input

Figure 7.15: Voltage of cells

Upon reviewing Figure 7.15, it can be observed that the voltage of cell 2 deviates from
the other cells. This discrepancy indicates a difference in the voltage behavior of cell 2
compared to the rest of the cells during the simulation.

Figure 7.16: Current of cells

The current plot displayed in Figure 7.16 exhibits unusual behavior, suggesting that the
inputs provided may not accurately reflect realistic conditions. The parameters R1, R2,

76

7 Result 7.3.2 Optimization-guided falsification

C1, and C2 have realistic values within a specific range. However, in this case, it appears
that the values used for these parameters may fall outside of these ranges. This deviation
could be attributed to the use of a relatively high multiplication factor.

Figure 7.17: SOC of cells

In Figure 7.17, it can be observed that after 20,000 seconds, the SOC of cell 2 is slightly
shifted to the right compared to the other cells. Additionally, the interval of SOC values
for cell 2 appears to be lower than that of the other cells.

Figure 7.18: SOC of cells estimated by BMS

In Figure 7.18, it is evident that the BMS effectively estimates the SOC of the cells, in-
cluding cell 2. Despite the differing SOC behavior of cell 2, the BMS accurately captures
and reflects this behavior in its estimations.

7.3.2 Optimization-guided falsification

In this section, the multiplication constants were determined using optimization-guided
falsification techniques. The simulation time is 20,000 seconds.

77

7 Result 7.3.2 Optimization-guided falsification

Cell balancing

STL:

ϕ1 = Vterminalcell2 < 5 (7.4)

ϕ2 = Vterminalcell2 > 4 (7.5)

ϕ = □ϕ1 ∧ ϕ2 (7.6)

The value of the voltage of cell 2 should always stay between 4 and 5.

Bayesian optimization:

κ 2
init points 5

n iter 2

Table 7.6: Maximize function parameters

Input variable Parameter Interval
Cell 2 R1 T x1 (0.1, 6)
Cell 2 R2 T x2 (0.1, 5)
Cell 2 C1 T x3 (0.1, 2)
Cell 2 C2 T x4 (0.1, 20)

Table 7.7: Intervals for variables

By probing one point and setting n iter to two and init points to five, the Bayesian opti-
mization iterates for a total of eight iterations as shown in Table 7.8. The value of Kappa
was set to two, favoring exploitation in the optimization process.

The input variables Cell 2 R1 T, Cell 2 R2 T, Cell 2 C1 T, and Cell 2 C2 T were mul-
tiplied by their corresponding parameters to be optimized: x1, x2, x3, and x4, respec-
tively. The parameter intervals for these variables were defined as follows: x1 ∈ (0.1, 6),
x2 ∈ (0.1, 5), x3 ∈ (0.1, 2), and x4 ∈ (0.1, 20).

During the optimization process, three instances of worse robustness scores were found,
indicated by pink highlights in Table 7.8. The last instance was discovered by multiplying
Cell 2 R1 T with 5.372, Cell 2 R2 T with 5.0, Cell 2 C1 T with 0.1, and Cell 2 C2 T
with 4.96. This particular combination yielded the lowest robustness score of -0.5276
among the optimization iterations.

78

7 Result 7.3.2 Optimization-guided falsification

Iteration Target x1 x2 x3 x4

1 0.4633 1.0 1.0 1.0 1.0
2 0.504 2.56 3.63 0.1002 6.116
3 0.4616 0.9659 0.5525 0.4539 6.977
4 0.4901 2.441 2.74 0.8965 13.74
5 0.4713 1.306 4.403 0.152 13.44
6 0.4997 2.562 2.838 0.3667 4.042
7 0.519 3.118 4.159 0.117 4.876
8 0.5276 5.372 5.0 0.1 4.96

Table 7.8: Output of optimization

Figure 7.19: Robustness of voltage of cell 2

In Figure 7.19, the allowed STL region is indicated by the red section on the y-axis, span-
ning from 4 to 5. It is evident that the voltage of cell 2 consistently violates the STL
criteria, as it frequently falls outside the designated red region. This violation can be ob-
served in the voltage plot of cell 2, where the values predominantly lie outside the specified
range. Additionally, the robustness plot consistently remains below zero, further indicating
the non-compliance of cell 2 with the desired STL constraints.

Figure 7.20: Voltage of cells

79

7 Result 7.3.2 Optimization-guided falsification

In Figure 7.20, the voltage behavior of cell 2 is noticeably lower compared to the other cell
voltages. This discrepancy is attributed to the fact that the STL constraints are consistently
violated by cell 2, leading to attempts to adjust the voltage plot in an effort to bring it out-
side the STL region. As a result, the plots are drawn down, resulting in a worse robustness
score. Despite finding a test case that does not exhibit the worst behavior, the adjustments
made to meet the STL criteria ultimately lead to a decreased robustness score.

Figure 7.21: Current of cells

The currents of the cells, particularly cell 2, are not significantly affected by the new
inputs for R1, R2, C1, and C2. This can be observed in the plot shown in Figure 7.21,
which remains similar to the original plot displayed in Figure 7.5.

Figure 7.22: SOC of cells

In Figure 7.22, the SOC of cell 2 exhibits some variation compared to the other cells, but
overall, the plot closely resembles the original simulation plot shown in Figure 7.6.

80

7 Result 7.3.2 Optimization-guided falsification

Figure 7.23: SOC of cells estimated by BMS

In Figure 7.23, the SOC estimation by the BMS for cell 2 appears to be lower compared
to the SOC values observed in Figure 7.22.

The test case conducted in this scenario was not particularly extreme, suggesting that there
may be more room for the optimization algorithm to explore different possibilities. For
example, by setting Kappa to more exploration or making the intervals for x1, x2, x3, and
x4 larger, or by increasing the number of iterations.

Internal short circuit

In this particular test case, the focus is on evaluating the effects of two parameters: the
internal resistance of cell 1, Rs, and the internal short-circuit resistance, R ISCR. The
simulation time is 20,000 seconds.
STL:

ϕ1 = Vterminalcell1 < 5 (7.7)

ϕ2 = Vterminalcell1 > 4 (7.8)

ϕ = □ϕ1 ∧ ϕ2 (7.9)

The value of the voltage of cell 1 should always stay between 4 and 5.

Bayesian optimization:

κ 5
init points 5

n iter 4

Table 7.9: Maximize function parameters

Input variable Parameter Interval
Cell 1 Rs T x1 (2, 5)

Cell 1 I R ISCR T x1 (0.02, 1)

Table 7.10: Intervals for variables

In this test case example, Bayesian optimization is performed with the following configu-

81

7 Result 7.3.2 Optimization-guided falsification

ration: probing one initial point and setting the number of iterations (n iter) to four, along
with five initial points (init points). The optimization process consists of a total of 10
iterations, and the results are presented in Table 7.11.

In this optimization, a value of Kappa is set to 5, indicating a balance between exploration
and exploitation. The input variables, Cell 1 Rs T and Cell 1 I R ISCR T, are multiplied
by optimization parameters x1 and x2, respectively. The parameter intervals for x1 and x2
are defined as x1 ∈ (2, 5) and x2 ∈ (0.02, 1).

In this particular test case, a lower robustness is found three times, but subsequently, the
optimization fails to find a lower value. The final point obtained has a robustness score
of -0.5474, achieved by multiplying Cell 1 Rs T with 5.0 and Cell 1 I R ISCR T with
0.497.

Table 7.11: Output of optimization

Iteration Target x1 x2
1 0.4518 1.0 1.0
2 0.5045 3.251 0.7259
3 0.4885 2.0 0.3163
4 0.4871 2.44 0.1105
5 0.4913 2.559 0.3586
6 0.5023 3.19 0.548
7 0.5412 4.634 0.8239
8 0.5496 5.0 0.02
9 0.5489 5.0 1.0

10 0.5474 5.0 0.497

Figure 7.24: Robustness of voltage of celltwo

In Figure 7.24, the red interval from four to five on the y-axis represents the STL interval.
The dark purple line represents the voltage of cell 1. It can be observed that only the
peaks of the graph fall within the STL interval, while the majority of the data points lie

82

7 Result 7.3.2 Optimization-guided falsification

outside of it. The robustness line, indicated by the purple line, consistently remains below
zero except for the peaks, indicating a significant violation of the STL and poor robustness
performance.

Figure 7.25: Voltage of cells

In Figure 7.25, it can be observed that the voltage of cell 1 experiences a larger drop
compared to the rest of the cells. This behavior is attributed to the presence of an ISC.

Figure 7.26: Current of cells

In Figure 7.26, the effects of the ISC can be observed. The frequency of charge and
discharge cycles is higher compared to the original simulation. This is due to the presence
of the ISC. The ISC provides an additional discharge path, leading to accelerated energy
loss and a higher demand for recharging to compensate for the reduced capacity.

83

7 Result 7.3.2 Optimization-guided falsification

Figure 7.27: SOC of cells

Because of the internal short circuit, the SOC does not fluctuate between 10% and 90%,
only between 50% and 90%. The whole battery pack is affected by the ISC. Due to the
presence of the ISC, the SOC of the battery cells is affected in Figure 7.27.

Figure 7.28: SOC of cells estimated by BMS

In Figure 7.28, the estimation of the SOC of cell 1 is significantly different from the ac-
tual SOC shown in Figure 7.27. The BMS utilizes the SOC values of the highest and
lowest cells to determine the charging and discharging thresholds. As a result, the bat-
tery’s performance is compromised, and its ability to deliver its full capacity and power is
diminished.

Sensor drift

The last test case shows the sensor drift. The simulation time is 20,000 seconds.
STL:

ϕ1 = VterminalCell3measured < 4.08 (7.10)

ϕ2 = VterminalCell3measured > 3.5 (7.11)

ϕ = □ϕ1 ∧ ϕ2 (7.12)

84

7 Result 7.3.2 Optimization-guided falsification

The value of the measured voltage of cell three should always stay between 3.5 and 4.08.

Bayesian optimization:

κ 10

init points 5

n iter 10

Table 7.12: Maximize function parameters

Input variable Parameter Interval

V cell3 offset x1 (0.2, 7)

Table 7.13: Intervals for variables

By probing one point and setting n iter to ten and init points to five, a total of 16 iterations
of Bayesian optimization were performed in this test case, as shown in Table 7.14. The
value of Kappa was set to 10, indicating a preference for exploration during the optimiza-
tion process.

In this specific test case, the input variable V cell3 offset was multiplied by a parameter
x1 in order to optimize its value. The parameter interval for x1 was set to (0.2, 7).

During the optimization process, lower robustness values were found three times. The last
point with a robustness value of -0.3175 was obtained by multiplying V cell3 offset with
a value of 5.367. It is important to note that in all other test cases, V cell3 offset was set
to zero, but in this particular test case, it was initially set to 0.01 before the multiplication,
resulting in an offset of 0.05367.

The original robustness value was 0.3039, and the optimizer was able to find worse robust-
ness values through the optimization process.

85

7 Result 7.3.2 Optimization-guided falsification

Iteration Target x1
1 0.3039 1.0
2 0.3013 3.036
3 0.3011 5.098
4 0.2981 0.2008
5 0.3046 2.256
6 0.2994 1.198
7 0.3175 5.302
8 0.3006 5.847
9 0.3046 2.256

10 0.3175 5.367
11 0.3171 5.519
12 0.317 6.998
13 0.3174 6.812
14 0.3174 6.57
15 0.3005 6.343
16 0.3118 4.035

Table 7.14: Output of optimization

Figure 7.29: Robustness of measured voltage of cell 3

In Figure 7.29, The peaks in the graph of the voltage of cell 3 exceed the STL criteria.
This violation of the STL results in negative robustness values at those specific points in
time.

86

7 Result 7.3.2 Optimization-guided falsification

Figure 7.30: Voltage of cells

In Figure 7.30, the voltages of the cells are plotted. It is observed that the voltage of cell 3
deviates slightly from the voltages of the other cells.

Figure 7.31: Voltage of cell 3: true and measured

In Figure 7.31, the real voltage of cell three is plotted alongside the measured voltage with
the offset. It is observed that the offset is slightly higher than the real voltage of cell 3. This
means that the BMS perceives the voltage of cell 3 to be higher than its actual value. As a
result, the BMS may provide less charge to cell 3, leading to a lower voltage compared to
the other cells.

Figure 7.32: Current of cells

87

7 Result 7.4 Graphical user interface

The current is not significantly affected by the sensor drift. In Figure 7.32, the plot of the
current fluctuates between 0 and 6 as in the original simulation Figure 7.5.

Figure 7.33: SOC of cells

In Figure 7.33, it is evident that the offset introduced in the voltage measurement leads to
a lower SOC for cell 3.

Figure 7.34: SOC of cells estimated by BMS

The BMS estimates the SOC of cell 3 to be higher than it actually is. In Figure 7.34, the
smallest value of SOC of cell three starts at 25%, while in Figure 7.33, the SOC of cell
three starts at 18%.

7.4 Graphical user interface

This GUI shows the cell balancing test case on the DT of the battery and BMS. This is the
only test case implemented in the GUI. Figure 7.35 shows the dashboard when starting.
To the left, the user can change the values for the optimization-guided falsification.

88

7 Result 7.4 Graphical user interface

Figure 7.35: Screenshot of GUI startpage

89

7 Result 7.4 Graphical user interface

(a) STL (b) Bayesian optimization

Figure 7.36: Closer screenshot of STL and Bayesian optimization parts of the GUI.

The STL part of the GUI, shown in Figure 7.36a, lets the user choose which output of the
DT to check the robustness for. Right now, the only input that works in the dropdown is
V terminal cell2, but the dropdown is there to present an example of future extensions.
Text boxes are provided to insert max and min values. The complete STL formula is
printed below. The text is updated as the input text boxes are updated.

The Bayesian optimization part, shown in Figure 7.36b, lets the user define the inputs for
the Bayesian optimization. First, one can choose which intervals to let the x1, x2, x3, and
x4 have in the optimization. Maximize function parameters need to be set. Kappa for
exploration or exploitation. The number of iterations and the number of iterations before
the exploration starts. Here the Maximize function parameters are written out for more
user-friendliness instead of using Kappa, n iter, and init point. After preferred values are
chosen, the button ”optimize” can be pushed. The optimization is then initiated, and after
a short while, the output of the optimization is written out.

When the code is done optimizing, the result from the optimization is shown in Fig-
ure 7.37. The last found optimum is shown in pink. Here the target is shown with a
minus sign before to indicate that the robustness is negative even though the optimization
is a maximization problem.

90

7 Result 7.4 Graphical user interface

Figure 7.37: Screenshot of optimization output after pushing the optimize button. The pink row is
the optimum found.

When the optimization is done, the button simulate can then be pressed, and plots will
show up. A textbox is implemented for the user to decide the simulation time. This textbox
is stated as an input in the code, so whenever it is altered, the plots will change without
having to push simulate again. Figure 7.38 shows the GUI after pushing the simulate
button.

91

7 Result 7.4 Graphical user interface

Figure 7.38: Screenshot of whole GUI after pushing the simulate button. Plots can be zoomed or
panned.

92

8
Discussion

8.1 Optimization-guided falsification for safety demonstra-
tion

Traditionally, test case selection for safety demonstration has been a manual process based
on risk analyses and experience. One advantage of optimization-guided falsification is
its efficiency compared to manual testing. Simulation-based approaches offer faster and
more flexible testing capabilities. This allows for exploring numerous test cases without
subjecting individuals to potential risks or hazardous situations. Optimization-guided fal-
sification also diminishes the number of simulations needed to find failures. By guiding
the simulation and attempting to optimize for finding physical parameters that can cause
issues with the software, the number of required iterations for identifying possible failure
is reduced.

The main goal of safety demonstration is to demonstrate compliance with specific safety
requirements. The falsification process is useful in proving that the system fails to meet
such requirements. If a model has been successfully verified, it cannot be falsified, and vice
versa. If the optimizer can still identify falsifying points, it indicates that the model cannot
be verified. However, if the parameters or the combination of parameters leading to an
issue can be considered highly unlikely, it could be arguable to pass the system despite the
identified parameters. Especially if the parameters are trackable, i.e., the degradation can
be foreseen and integrated into the maintenance schedule. For example, if the methodology
shows, on a qualified and assured digital twin, that the SOC of the estimator will cause

93

8 Discussion 8.2 Simulation-guided Lyapunov opportunities

issues if the battery degradation reaches a certain point, then this can be overcome by
suggesting a rejuvenation strategy for the model parameters of the extended Kalman filter,
attempting to update the parameters.

Falsification works especially well for the battery and BMS, where the goal is to inject
failures rather than correct behavior. However, the quality of the testing depends on the
forming of STL requirements and the ranges put on the parameters to be optimized. It
is interesting to compare the manual and optimization-guided testing of cell balancing.
The optimization is guided by poorer robustness. Therefore the values are more drawn
downwards. In comparison, manual testing is only decided by random input values. It
should be noted that forming the STL for the particular test cases could be done another
way to enhance the safety argument.

Optimization-guided falsification offers flexibility with multiple parameters to guide the
optimization process. It offers the freedom to select from various acquisition functions
that can influence the optimization procedure. Although this thesis did not extensively
explore these different acquisition functions, utilizing UCB proved sufficient to identify
poor robustness areas.

Falsification can be valuable for debugging the model as it provides important informa-
tion to the user. Testing the digital twin uncovered faults, a critical aspect of digital twin
development. Even small faults can easily arise in complex models, making simulation a
valuable tool for verifying the behavior of the digital twin.

However, while simulation-based testing offers a solid verification platform, combining
it with valid processes for test case selection, evaluation of results, and test coverage as-
sessment is crucial. This thesis acknowledges the limited knowledge about the correct
behavior of the DT and highlights the need for further research in this area. This does not
affect this method as, in the future, the DT will be validated and assured, and the inputs
will have a clear and defined range of operability. Provided by the DT developer.

8.2 Simulation-guided Lyapunov opportunities

In theory, the simulation-guided Lyapunov analysis can be implemented on the DT of
the battery and BMS. The approach would involve simulating the system multiple times
using different inputs known to be safe. These simulations would generate data points
representing safe system behavior. To utilize this data for Lyapunov analysis, the collected
instances of safe behavior could be compiled into a linear program. And further, use a
falsifier as described in section 4.6

94

8 Discussion 8.3 Limitations

It is worth noting that this method may incur significant computational costs due to the
large number of inputs of the DT of the battery and BMS. However, this challenge can be
addressed by selectively modifying certain inputs, similar to the approach used in STL.
Different inputs affect different failures of the battery.

The property to verify in this context would be a safe set or a barrier certificate, ensuring
the battery’s safe performance.

Simulation-guided Lyapunov analysis offers several benefits for a safety demonstration. It
provides a verification process and employs a falsifier to search for traces that do not meet
the specified properties, making it an exhaustive method. Furthermore, the use of external
verification tools can further enhance its reliability.

Generally, simulation-guided Lyapunov analysis offers stronger proof than optimization-
based falsification alone, making it an appealing approach to explore in future research
endeavors.

8.3 Limitations

This thesis primarily focuses on implementing the testing method rather than the execu-
tion of perfect test cases for the battery. The thorough examination of parameters to be
tested and their corresponding ranges has not been fully conducted. The test case selection
was conducted in collaboration with DT developer Björklund, but determining appropriate
parameter ranges requires further attention.

One notable limitation of the test method is the potential error when using excessively
large parameter ranges, leading to the optimization algorithm failing. However, such a
scenario is not necessarily feasible in reality. To address this, the tester should have a wider
understanding of the system. Suitable test cases and parameter ranges should be provided
by the DT developer. This applies to both the development of the STL requirements and
the selection of parameters in Bayesian optimization.

Creating accurate and useful requirements in any testing and verification approach is a cru-
cial but often overlooked task. It is essential to carefully craft requirements that precisely
capture the system’s intended behavior, especially for a safety demonstration.

Another limitation arises from the limited prior knowledge of Python before undertaking
this master’s thesis. This research endeavor was a valuable opportunity to enhance pro-
ficiency in Python programming. Consequently, the organization of the code may have
room for improvement.

95

9
Conclusion

The focus of this thesis has been on safety demonstration and simulation-guided testing
methods of a DT of a battery and BMS that is to be implemented into a bigger DT of
an all-electric subsea valve. The focus has been on implementing the method in Python
and using the method on different test cases. This thesis has implemented a way of using
optimization-guided falsification for a DT of a battery and BMS for an all-electric safety
valve. The DT will play an important part in the safety of the valve, and using good and
efficient testing methods is important.

This thesis aimed to investigate methods for automatic select test cases for implementing
fault scenarios into a DT for simulation-based testing of the control system as part of the
safety demonstration process. This master has implemented a falsifying method that finds
bad inputs to inject faults to the DT for the BMS, i.e., the control system to handle. It is
paramount in safety demonstration to have correct and valid test cases. In this thesis, the
input parameters may not be valid, so safety demonstration can be available. So rather, this
method serves as part of the safety demonstration by searching and providing falsifying
examples that the technology is not safe.

The main contribution of this work is implementing a strategy to automate the selection
of parameters, limiting the number of simulations needed to find a fault scenario on a DT,
along with the implementation of the DT and a test environment in Python. Furthermore,
the creation of a GUI for a universal design further streamlines the use of the method. The
GUI has been implemented to facilitate the method’s usability for test engineers.

This work has significantly contributed to validating the DT through simulation and eval-

96

9 Conclusion 9.1 Further work

uating the results. The successful implementation and testing of optimization-guided fal-
sification on the DT of the battery and the BMS demonstrate its effectiveness.

9.1 Further work

This thesis has implemented a way of using Bayesian optimization for the falsification of
a DT of a battery and BMS. If it is relevant to work further with this project, several points
can be mentioned as further work with this report.

As mentioned, this thesis did not look into how to perfectly select parameter ranges. In
order to fully utilize this recommended methodology for safety demonstrations using DTs,
the developer of the DT should specify the physical limitations modeled in the DT, the
boundaries of the parameters, and the assumptions and limitations of the DT. Furthermore,
specifying the important parameters could help generalize testing.

STL requirements options are broad, and there could be more exploration of different ways
to write the STL arguments. This is easier to do with more information about the DT and
parameters. Some of the other formulations can be more relevant for different failures.
The STL could be implemented using the VBools mentioned in chapter 4.

The GUI has room for expansion and further improvements. Currently, it only includes
one test example. However, it should be enhanced to allow for modifying all inputs and
testing of various test cases, including those not covered in this thesis. To enhance the GUI,
visual representations of the battery could be implemented. This could involve displaying
a figure illustrating the battery pack of cells and their corresponding voltages, SOC levels,
and current. It would be helpful to highlight cells close to failure by blinking them in red.

Currently, the GUI only displays plots from the final optimum found. However, if there
are multiple simulations, it would be beneficial to provide an option to plot multiple results
simultaneously.

Consider implementing the GUI using a more advanced framework like React, which can
offer enhanced functionality and a more visually appealing interface. Plotly Dash may not
be efficient enough for large web applications.

Furthermore, demonstrating compliance with standards such as IEC 61508 should be con-
sidered more in-depth. Future work can aim to identify what parts of the standard can be
reached utilizing a DT-based falsification approach. Therefore the GUI can be augmented
and adjusted to cover and present the simulation results that will be used as evidence to
make a claim about the SIL of the system.

97

9 Conclusion 9.1 Further work

To prevent the optimization process from exploring the same points repeatedly, it is advis-
able to save the falsified points. If the STL argument is altered for a particular test case,
the optimizer can avoid revisiting the previously falsified points.

Lastly, as a recommendation for further work, the exploration and evaluation of the Lya-
punov method show great promise. Therefore, it should be considered a valuable avenue
for future investigation and development.

98

Bibliography

[1] Safety Capability of an All-Electric Production System, ser. OTC Offshore
Technology Conference, vol. Day 3 Wed, May 08, 2019, 05 2019, d031S041R003.
[Online]. Available: https://doi.org/10.4043/29472-MS

[2] K. Berg, A. Hafver, O. I. Haugen, K. Kvinnesland, M. van der Meulen, T. Myhrvold,
F. B. Pedersen, B. Søgård, M. A. Lundteigen, N. A. Zikrullah, A. Falck, R. Flage,
C. B. Nyvik, and H. Kim, Demonstrating safety of software-dependent systems.
Høvik, Norway: DNV AS, 2022.

[3] C. Mahler and M. Glaser, “Application of functional safety in all-electric control
systems,” in Underwater Technology conference, Bergen, Norway, 2018.

[4] NORSOK, “NORSOK S-001 Technical safety,” Standard, NORSOK, 2021.

[5] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital twin
in manufacturing: A categorical literature review and classification,” IFAC-

PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018, 16th IFAC Symposium on
Information Control Problems in Manufacturing INCOM 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896318316021

[6] M. Grieves and J. Vickers, Transdisciplinary Perspectives on Complex Systems,
2017.

[7] T. R. Torben, J. A. Glomsrud, T. A. Pedersen, I. B. Utne, and A. J. Sørensen,
“Automatic simulation-based testing of autonomous ships using gaussian processes
and temporal logic,” Proceedings of the Institution of Mechanical Engineers, Part

O: Journal of Risk and Reliability, vol. 0, no. 0, p. 1748006X211069277, 0.
[Online]. Available: https://doi.org/10.1177/1748006X211069277

99

https://doi.org/10.4043/29472-MS
https://www.sciencedirect.com/science/article/pii/S2405896318316021
https://doi.org/10.1177/1748006X211069277

[8] F. Nogueira, “Bayesian Optimization: Open source constrained global
optimization tool for Python,” 2014–. [Online]. Available: https:
//github.com/fmfn/BayesianOptimization

[9] J. Kapinski, J. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-based ap-
proaches for verification of embedded control systems: An overview of traditional
and advanced modeling, testing, and verification techniques,” IEEE Control Systems,
vol. 36, pp. 45–64, 12 2016.

[10] J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and N. Arechiga, “Simulation-
guided lyapunov analysis for hybrid dynamical systems,” in Proceedings of the

17th International Conference on Hybrid Systems: Computation and Control, ser.
HSCC ’14. New York, NY, USA: Association for Computing Machinery, 2014, p.
133–142. [Online]. Available: https://doi.org/10.1145/2562059.2562139

[11] J. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium bat-
teries,” Nature, vol. 414, pp. 359–67, 12 2001.

[12] M. A. Hannan, M. M. Hoque, A. Hussain, Y. Yusof, and P. J. Ker, “State-of-the-art
and energy management system of lithium-ion batteries in electric vehicle applica-
tions: Issues and recommendations,” IEEE Access, vol. 6, pp. 19 362–19 378, 2018.

[13] L. W. Yao, J. A. Aziz, P. Y. Kong, and N. R. N. Idris, “Modeling of lithium-ion
battery using matlab/simulink,” in IECON 2013 - 39th Annual Conference of the

IEEE Industrial Electronics Society, 2013, pp. 1729–1734.

[14] M. Seo, T. Goh, M. Park, and S. W. Kim, “Detection method for soft internal short
circuit in lithium-ion battery pack by extracting open circuit voltage of faulted cell,”
Energies, vol. 11, p. 1669, 06 2018.

[15] SUBPRO, “SUBPRO annual report 2021/2022,” 2022.

[16] M. Ghobakhloo, “Industry 4.0, digitization, and opportunities for sustainability,”
Journal of Cleaner Production, vol. 252, p. 119869, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0959652619347390

[17] U. A. Lindgren. Latex template. [Online]. Available: https://www.itk.ntnu.no/
ansatte/lundteigen ma/tips

[18] ISO/IEC, NEK ISO/IEC GUIDE 5, 2014.

[19] Real Application of Electric Controls Technology to Subsea Systems: Success,

Learnings and Recommendations, ser. OTC Offshore Technology Conference,

100

https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://doi.org/10.1145/2562059.2562139
https://www.sciencedirect.com/science/article/pii/S0959652619347390
https://www.itk.ntnu.no/ansatte/lundteigen_ma/tips
https://www.itk.ntnu.no/ansatte/lundteigen_ma/tips

vol. Day 3 Wed, May 03, 2017, 05 2017, d031S038R004. [Online]. Available:
https://doi.org/10.4043/27657-MS

[20] IEC, “IEC 61508, functional safety of electrical/electric/programmable electric
safety-related systems,” Standard, IEC, 2010.

[21] T. Winter, M. Glaser, B. Bertsche, S. Imle, and J. Popp, “Analysis of an all-electric
safety subsea actuation system architecture,” in 2020 Annual Reliability and Main-

tainability Symposium (RAMS), 2020, pp. 1–7.

[22] O. NORGE, “070 – Offshore Norge application of IEC 61508 and IEC 61511 in the
Norwegian petroleum industry,” Guideline, NOG, 2020.

[23] DNV, DNV-RP-A204, Qualification and assurance of digital twins. Recommended

practice, 2020.

[24] A. Parrott and L. Warshaw, “Industry 4.0 and the digital twin,” Deloitte, 2017.

[25] DNV, DNV-RP-A203, Technology qualification. Recommended practice, 2021.

[26] J. Wang, L. Ye, R. X. Gao, C. Li, and L. Zhang, “Digital twin for rotating
machinery fault diagnosis in smart manufacturing,” International Journal of

Production Research, vol. 57, no. 12, pp. 3920–3934, 2019. [Online]. Available:
https://doi.org/10.1080/00207543.2018.1552032

[27] R. Sargent, “Verification and validation of simulation models,” vol. 37, 01 2011, pp.
166 – 183.

[28] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and future
directions,” ACM Comput. Surv., vol. 28, no. 4, p. 626–643, dec 1996. [Online].
Available: https://doi.org/10.1145/242223.242257

[29] ——, “Formal methods: State of the art and future directions,” ACM

Comput. Surv., vol. 28, no. 4, p. 626–643, dec 1996. [Online]. Available:
https://doi.org/10.1145/242223.242257

[30] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic, and O. Maler, “Recent
progress in continuous and hybrid reachability analysis,” in 2006 IEEE Conference

on Computer Aided Control System Design, 2006 IEEE International Conference on

Control Applications, 2006 IEEE International Symposium on Intelligent Control,
2006, pp. 1582–1587.

[31] B. Meyer and M. Nordio, “Tools for practical software verification,” in Lecture Notes

in Computer Science, 2012.

101

https://doi.org/10.4043/27657-MS
https://doi.org/10.1080/00207543.2018.1552032
https://doi.org/10.1145/242223.242257
https://doi.org/10.1145/242223.242257

[32] K. Sen, “Concolic testing,” in Proceedings of the 22nd IEEE/ACM International

Conference on Automated Software Engineering, ser. ASE ’07. New York, NY,
USA: Association for Computing Machinery, 2007, p. 571–572. [Online]. Available:
https://doi.org/10.1145/1321631.1321746

[33] A. Zutshi, J. V. Deshmukh, S. Sankaranarayanan, and J. Kapinski, “Multiple shoot-
ing, cegar-based falsification for hybrid systems,” in International Conference on

Embedded Software, 2014.

[34] Z. Ramezani, “On optimization-based falsification of cyber-physical systems.”
Chalmers, 2022.

[35] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium on Founda-

tions of Computer Science (sfcs 1977), 1977, pp. 46–57.

[36] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,”
in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
Y. Lakhnech and S. Yovine, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 152–166.

[37] K. Leung, N. Aréchiga, and M. Pavone, “Back-propagation through signal tempo-
ral logic specifications: Infusing logical structure into gradient-based methods,” in
Workshop on Algorithmic Foundations of Robotics, 2020.

[38] K. Claessen, N. Smallbone, J. Eddeland, Z. Ramezani, and K. Åkesson, “Using
valued booleans to find simpler counterexamples in random testing of cyber-
physical systems,” IFAC-PapersOnLine, vol. 51, no. 7, pp. 408–415, 2018, 14th
IFAC Workshop on Discrete Event Systems WODES 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896318306633

[39] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York, NY, USA:
Springer, 2006.

[40] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning,” CoRR, vol. abs/1012.2599, 2010. [Online]. Available:
http://arxiv.org/abs/1012.2599

[41] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-taliro: A tool for
temporal logic falsification for hybrid systems,” in Tools and Algorithms for the Con-

struction and Analysis of Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 254–257.

102

https://doi.org/10.1145/1321631.1321746
https://www.sciencedirect.com/science/article/pii/S2405896318306633
http://arxiv.org/abs/1012.2599

[42] A. Donzé, “Breach, a toolbox for verification and parameter synthesis of hybrid sys-
tems,” in Computer Aided Verification, T. Touili, B. Cook, and P. Jackson, Eds.,
Springer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 167–170.

[43] Z. Ramezani, K. Claessen, N. Smallbone, M. Fabian, and K. Åkesson, “Testing cy-
ber–physical systems using a line-search falsification method,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 8, pp.
2393–2406, 2022.

[44] Z. Ramezani, K. Šehić, L. Nardi, and K. Åkesson, “Falsification of cyber-physical
systems using bayesian optimization,” 09 2022.

[45] T. Akazaki, “Falsification of conditional safety properties for cyber-physical systems
with gaussian process regression,” in Runtime Verification, 2016.

[46] J. Kapinski, J. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-guided ap-
proaches for verification of automotive powertrain control systems,” in 2015 Ameri-

can Control Conference (ACC), 2015, pp. 4086–4095.

[47] H. K. Khalil, Nonlinear systems; 3rd ed. Upper Saddle River, NJ: Prentice-Hall,
2002, the book can be consulted by contacting: PH-AID: Wallet, Lionel. [Online].
Available: https://cds.cern.ch/record/1173048

[48] C. Barrett and C. Tinelli, Satisfiability modulo theories. Springer, 2018.

[49] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceedings of the

Theory and Practice of Software, 14th International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems, ser. TACAS’08/ETAPS’08.
Berlin, Heidelberg: Springer-Verlag, 2008, p. 337–340.

[50] S. Gao, S. Kong, and E. M. Clarke, “dreal: An smt solver for nonlinear theories
over the reals,” in Automated Deduction – CADE-24, M. P. Bonacina, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 208–214.

[51] S. Wolfram, The MATHEMATICA® book, version 4. Cambridge university press,
1999.

[52] H. Weydahl, “Li-ion batteries - hazards and mitigation,” IF´S

RISK MANAGEMENT JOURNAL, no. 2, p. 16–17, jan 2017.
[Online]. Available: https://www.if-insurance.com/globalassets/industrial/files/
risk-consulting-magazine/risk-consulting-2017-2.pdf

103

https://cds.cern.ch/record/1173048
https://www.if-insurance.com/globalassets/industrial/files/risk-consulting-magazine/risk-consulting-2017-2.pdf
https://www.if-insurance.com/globalassets/industrial/files/risk-consulting-magazine/risk-consulting-2017-2.pdf

[53] S. Petrovic, Nickel–Cadmium Batteries. Cham: Springer International Publishing,
2021, pp. 73–88. [Online]. Available: https://doi.org/10.1007/978-3-030-57269-3 4

[54] M.-K. Tran and M. Fowler, “A review of lithium-ion battery fault diagnostic
algorithms: Current progress and future challenges,” Algorithms, vol. 13, no. 3,
2020. [Online]. Available: https://www.mdpi.com/1999-4893/13/3/62

[55] D. LYU, B. Ren, and S. Li, “Failure modes and mechanisms for rechargeable lithium-
based batteries: a state-of-the-art review,” Acta Mechanica, vol. 230, 03 2019.

[56] A. Manthiram, “An outlook on lithium ion battery technology,” ACS Central

Science, vol. 3, no. 10, pp. 1063–1069, 2017, pMID: 29104922. [Online]. Available:
https://doi.org/10.1021/acscentsci.7b00288

[57] D. Ouyang, M. Chen, J. Liu, R. Wei, J. Weng, and J. Wang, “Investigation
of a commercial lithium-ion battery under overcharge/over-discharge failure
conditions,” RSC Adv., vol. 8, pp. 33 414–33 424, 2018. [Online]. Available:
http://dx.doi.org/10.1039/C8RA05564E

[58] M.-K. Tran and M. Fowler, “Sensor fault detection and isolation for degrading
lithium-ion batteries in electric vehicles using parameter estimation with
recursive least squares,” Batteries, vol. 6, no. 1, 2020. [Online]. Available:
https://www.mdpi.com/2313-0105/6/1/1

[59] N. E. Galushkin, N. N. Yazvinskaya, and D. N. Galushkin, “Mechanism
of thermal runaway in lithium-ion cells,” Journal of The Electrochemical

Society, vol. 165, no. 7, p. A1303, may 2018. [Online]. Available: https:
//dx.doi.org/10.1149/2.0611807jes

[60] W. Diao, Y. Xing, S. Saxena, and M. Pecht, “Evaluation of present accelerated
temperature testing and modeling of batteries,” Applied Sciences, vol. 8, no. 10,
2018. [Online]. Available: https://www.mdpi.com/2076-3417/8/10/1786

[61] B. Xu, Y. Shi, D. S. Kirschen, and B. Zhang, “Optimal regulation response of
batteries under cycle aging mechanisms,” in 2017 IEEE 56th Annual Conference on

Decision and Control (CDC). IEEE Press, 2017, p. 751–756. [Online]. Available:
https://doi.org/10.1109/CDC.2017.8263750

[62] J. Xu, R. D. Deshpande, J. Pan, Y.-T. Cheng, and V. S. Battaglia, “Electrode
side reactions, capacity loss and mechanical degradation in lithium-ion batteries,”
Journal of The Electrochemical Society, vol. 162, no. 10, p. A2026, jul 2015.
[Online]. Available: https://dx.doi.org/10.1149/2.0291510jes

104

https://doi.org/10.1007/978-3-030-57269-3_4
https://www.mdpi.com/1999-4893/13/3/62
https://doi.org/10.1021/acscentsci.7b00288
http://dx.doi.org/10.1039/C8RA05564E
https://www.mdpi.com/2313-0105/6/1/1
https://dx.doi.org/10.1149/2.0611807jes
https://dx.doi.org/10.1149/2.0611807jes
https://www.mdpi.com/2076-3417/8/10/1786
https://doi.org/10.1109/CDC.2017.8263750
https://dx.doi.org/10.1149/2.0291510jes

[63] M. Chen and G. Rincon-Mora, “Accurate electrical battery model capable of predict-
ing runtime and i-v performance,” IEEE Transactions on Energy Conversion, vol. 21,
no. 2, pp. 504–511, 2006.

[64] D. Systemes, “Fmpy,” 2023. [Online]. Available: https://github.com/
CATIA-Systems/FMPy

[65] T. L. Foundation. Pytorch. [Online]. Available: https://pytorch.org/docs/stable/
tensors.html

105

https://github.com/CATIA-Systems/FMPy
https://github.com/CATIA-Systems/FMPy
https://pytorch.org/docs/stable/tensors.html
https://pytorch.org/docs/stable/tensors.html

Appendix

106

A Inputs and outputs of the digital twins

Digital twin 1: Battery
In

p
u

ts:

C
ell

C
ell 2

C

ell 3

C
ell 4

C

ell 5

C
ell 6

C

ell 7

C
ell 8

C
ell_

1
_

C
1

_
I_

b
p

C
ell_

1
_

C
1

_
S

O
C

_
b

p

C
ell_

1
_

C
1

_
tab

le

C
ell_

1
_

C
2

_
I_

b
p

C
ell_

1
_

C
2

_
S

O
C

_
b

p

C
ell_

1
_

C
2

_
tab

le

C
ell_

1
_

C
ap

acity

C
ell_

1
_

O
C

V

C
ell_

1
_

R
1

_
I_

b
p

C
ell_

1
_

R
1

_
S

O
C

_
b

p

C
ell_

1
_

R
1

_
tab

le

C
ell_

1
_

R
2

_
I_

b
p

C
ell_

1
_

R
2

_
S

O
C

_
b

p

C
ell_

1
_

R
2

_
tab

le

C
ell_

1
_

R
_

IS
C

R

C
ell_

1
_

R
_

N
O

_
IS

C
R

C
ell_

1
_

R
s_

I_
b

p

C
ell_

1
_

R
s_

S
O

C
_

b
p

C
ell_

1
_

R
s_

tab
le

C
ell_

1
_

S
O

C

C
ell_

1
_

S
O

C
0

C
ell_

1
_

t_
IS

C
R

C
ell_

2
_

C
1

_
I_

b
p

C
ell_

2
_

C
1

_
S

O
C

_
b

p

C
ell_

2
_

C
1

_
tab

le

C
ell_

2
_

C
2

_
I_

b
p

C
ell_

2
_

C
2

_
S

O
C

_
b

p

C
ell_

2
_

C
2

_
tab

le

C
ell_

2
_

C
ap

acity

C
ell_

2
_

O
C

V

C
ell_

2
_

R
1

_
I_

b
p

C
ell_

2
_

R
1

_
S

O
C

_
b

p

C
ell_

2
_

R
1

_
tab

le

C
ell_

2
_

R
2

_
I_

b
p

C
ell_

2
_

R
2

_
S

O
C

_
b

p

C
ell_

2
_

R
2

_
tab

le

C
ell_

2
_

R
_

IS
C

R

C
ell_

2
_

R
_

N
O

_
IS

C
R

C
ell_

2
_

R
s_

I_
b

p

C
ell_

2
_

R
s_

S
O

C
_

b
p

C
ell_

2
_

R
s_

tab
le

C
ell_

2
_

S
O

C

C
ell_

2
_

S
O

C
0

C
ell_

3
_

C
1

_
I_

b
p

C
ell_

3
_

C
1

_
S

O
C

_
b

p

C
ell_

3
_

C
1

_
tab

le

C
ell_

3
_

C
2

_
I_

b
p

C
ell_

3
_

C
2

_
S

O
C

_
b

p

C
ell_

3
_

C
2

_
tab

le

C
ell_

3
_

C
ap

acity

C
ell_

3
_

O
C

V

C
ell_

3
_

R
1

_
I_

b
p

C
ell_

3
_

R
1

_
S

O
C

_
b

p

C
ell_

3
_

R
1

_
tab

le

C
ell_

3
_

R
2

_
I_

b
p

C
ell_

3
_

R
2

_
S

O
C

_
b

p

C
ell_

3
_

R
2

_
tab

le

C
ell_

3
_

R
_

IS
C

R

C
ell_

3
_

R
_

N
O

_
IS

C
R

C
ell_

3
_

R
s_

I_
b

p

C
ell_

3
_

R
s_

S
O

C
_

b
p

C
ell_

3
_

R
s_

tab
le

C
ell_

3
_

S
O

C

C
ell_

3
_

S
O

C
0

C
ell_

4
_

C
1

_
I_

b
p

C
ell_

4
_

C
1

_
S

O
C

_
b

p

C
ell_

4
_

C
1

_
tab

le

C
ell_

4
_

C
2

_
I_

b
p

C
ell_

4
_

C
2

_
S

O
C

_
b

p

C
ell_

4
_

C
2

_
tab

le

C
ell_

4
_

C
ap

acity

C
ell_

4
_

O
C

V

C
ell_

4
_

R
1

_
I_

b
p

C
ell_

4
_

R
1

_
S

O
C

_
b

p

C
ell_

4
_

R
1

_
tab

le

C
ell_

4
_

R
2

_
I_

b
p

C
ell_

4
_

R
2

_
S

O
C

_
b

p

C
ell_

4
_

R
2

_
tab

le

C
ell_

4
_

R
_

IS
C

R

C
ell_

4
_

R
_

N
O

_
IS

C
R

C
ell_

4
_

R
s_

I_
b

p

C
ell_

4
_

R
s_

S
O

C
_

b
p

C
ell_

4
_

R
s_

tab
le

C
ell_

4
_

S
O

C

C
ell_

4
_

S
O

C
0

C
ell_

5
_

C
1

_
I_

b
p

C
ell_

5
_

C
1

_
S

O
C

_
b

p

C
ell_

5
_

C
1

_
tab

le

C
ell_

5
_

C
2

_
I_

b
p

C
ell_

5
_

C
2

_
S

O
C

_
b

p

C
ell_

5
_

C
2

_
tab

le

C
ell_

5
_

C
ap

acity

C
ell_

5
_

O
C

V

C
ell_

5
_

R
1

_
I_

b
p

C
ell_

5
_

R
1

_
S

O
C

_
b

p

C
ell_

5
_

R
1

_
tab

le

C
ell_

5
_

R
2

_
I_

b
p

C
ell_

5
_

R
2

_
S

O
C

_
b

p

C
ell_

5
_

R
2

_
tab

le

C
ell_

5
_

R
_

IS
C

R

C
ell_

5
_

R
_

N
O

_
IS

C
R

C
ell_

5
_

R
s_

I_
b

p

C
ell_

5
_

R
s_

S
O

C
_

b
p

C
ell_

5
_

R
s_

tab
le

C
ell_

5
_

S
O

C

C
ell_

5
_

S
O

C
0

C
ell_

6
_

C
1

_
I_

b
p

C
ell_

6
_

C
1

_
S

O
C

_
b

p

C
ell_

6
_

C
1

_
tab

le

C
ell_

6
_

C
2

_
I_

b
p

C
ell_

6
_

C
2

_
S

O
C

_
b

p

C
ell_

6
_

C
2

_
tab

le

C
ell_

6
_

C
ap

acity

C
ell_

6
_

O
C

V

C
ell_

6
_

R
1

_
I_

b
p

C
ell_

6
_

R
1

_
S

O
C

_
b

p

C
ell_

6
_

R
1

_
tab

le

C
ell_

6
_

R
2

_
I_

b
p

C
ell_

6
_

R
2

_
S

O
C

_
b

p

C
ell_

6
_

R
2

_
tab

le

C
ell_

6
_

R
_

IS
C

R

C
ell_

6
_

R
_

N
O

_
IS

C
R

C
ell_

6
_

R
s_

I_
b

p

C
ell_

6
_

R
s_

S
O

C
_

b
p

C
ell_

6
_

R
s_

tab
le

C
ell_

6
_

S
O

C

C
ell_

6
_

S
O

C
0

C
ell_

7
_

C
1

_
I_

b
p

C
ell_

7
_

C
1

_
S

O
C

_
b

p

C
ell_

7
_

C
1

_
tab

le

C
ell_

7
_

C
2

_
I_

b
p

C
ell_

7
_

C
2

_
S

O
C

_
b

p

C
ell_

7
_

C
2

_
tab

le

C
ell_

7
_

C
ap

acity

C
ell_

7
_

O
C

V

C
ell_

7
_

R
1

_
I_

b
p

C
ell_

7
_

R
1

_
S

O
C

_
b

p

C
ell_

7
_

R
1

_
tab

le

C
ell_

7
_

R
2

_
I_

b
p

C
ell_

7
_

R
2

_
S

O
C

_
b

p

C
ell_

7
_

R
2

_
tab

le

C
ell_

7
_

R
_

IS
C

R

C
ell_

7
_

R
_

N
O

_
IS

C
R

C
ell_

7
_

R
s_

I_
b

p

C
ell_

7
_

R
s_

S
O

C
_

b
p

C
ell_

7
_

R
s_

tab
le

C
ell_

7
_

S
O

C

C
ell_

7
_

S
O

C
0

C
ell_

8
_

C
1

_
I_

b
p

C
ell_

8
_

C
1

_
S

O
C

_
b

p

C
ell_

8
_

C
1

_
tab

le

C
ell_

8
_

C
2

_
I_

b
p

C
ell_

8
_

C
2

_
S

O
C

_
b

p

C
ell_

8
_

C
2

_
tab

le

C
ell_

8
_

C
ap

acity

C
ell_

8
_

O
C

V

C
ell_

8
_

R
1

_
I_

b
p

C
ell_

8
_

R
1

_
S

O
C

_
b

p

C
ell_

8
_

R
1

_
tab

le

C
ell_

8
_

R
2

_
I_

b
p

C
ell_

8
_

R
2

_
S

O
C

_
b

p

C
ell_

8
_

R
2

_
tab

le

C
ell_

8
_

R
_

IS
C

R

C
ell_

8
_

R
_

N
O

_
IS

C
R

C
ell_

8
_

R
s_

I_
b

p

C
ell_

8
_

R
s_

S
O

C
_

b
p

C
ell_

8
_

R
s_

tab
le

C
ell_

8
_

S
O

C

C
ell_

8
_

S
O

C
0

O
u

tp
u

ts:

C
u

rren
t

S
tate o

f ch
arg

e
V

o
ltag

e
O

th
er

I_
ch

arg
e_

d
isch

arg
e_

cu
rren

t_
C

ell1

I_
ch

arg
e_

d
isch

arg
e_

cu
rren

t_
C

ell2

I_
ch

arg
e_

d
isch

arg
e_

cu
rren

t_
C

ell3

I_
ch

arg
e_

d
isch

arg
e_

cu
rren

t_
C

ell4

I_
ch

arg
e_

d
isch

arg
e_

cu
rren

t_
C

ell5

I_
ch

arg
e_

d
isch

arg
e_

cu
rren

t_
C

ell6

I_
ch

arg
e_

d
isch

arg
e_

cu
rren

t_
C

ell7

I_
ch

arg
e_

d
isch

arg
e_

cu
rren

t_
C

ell8

S
O

C
_

C
e
ll1

S
O

C
_

C
e
ll2

S
O

C
_

C
e
ll3

S
O

C
_

C
e
ll4

S
O

C
_

C
e
ll5

S
O

C
_

C
e
ll6

S
O

C
_

C
e
ll7

S
O

C
_

C
e
ll8

V
_

term
in

al_
C

ell1

V
_

term
in

al_
C

ell2

V
_

term
in

al_
C

ell3

V
_

term
in

al_
C

ell4

V
_

term
in

al_
C

ell5

V
_

term
in

al_
C

ell6

V
_

term
in

al_
C

ell7

V
_

term
in

al_
C

ell8

V
_

t_
C

ell1

V
_

p
ack

107

Digital twin 2: Battery and BMS

In
p

u
ts :

C
ell 1

C

ell 2

C
ell 3

C

ell 4

O
th

er

 C
ell_

1
_

C
1

_
T

C
ell_

1
_

C
1

_
T

_
K

F

C
ell_

1
_

C
2

_
T

C
ell_

1
_

C
ap

acity

C
ell_

1
_

R
1

_
T

C
ell_

1
_

R
1

_
T

_
K

F

C
ell_

1
_

R
2

_
T

C
ell_

1
_

R
_

IS
C

R

C
ell_

1
_

R
s_

T

C
ell_

1
_

R
s_

T
_

K
F

C
ell_

1
_

S
O

C
0

C
ell_

1
_

S
O

C
_

T

C
ell_

1
_

T
em

p
_

T

C
ell_

1
_

V
o

cv

C
ell_

1
_

b
al

C
ell_

1
_

d
V

0
_

m
at

C
ell_

2
_

C
1

_
T

C
ell_

2
_

C
1

_
T

_
K

F

C
ell_

2
_

C
2

_
T

C
ell_

2
_

C
ap

acity

C
ell_

2
_

R
1

_
T

C
ell_

2
_

R
1

_
T

_
K

F

C
ell_

2
_

R
2

_
T

C
ell_

2
_

R
_

IS
C

R

C
ell_

2
_

R
s_

T

C
ell_

2
_

R
s_

T
_

K
F

C
ell_

2
_

S
O

C
0

C
ell_

2
_

S
O

C
_

T

C
ell_

2
_

T
em

p
_

T

C
ell_

2
_

V
o

cv

C
ell_

2
_

b
al

C
ell_

2
_

d
V

0
_

m
at

C
ell_

3
_

C
1

_
T

C
ell_

3
_

C
1

_
T

_
K

F

C
ell_

3
_

C
2

_
T

C
ell_

3
_

C
ap

acity

C
ell_

3
_

R
1

_
T

C
ell_

3
_

R
1

_
T

_
K

F

C
ell_

3
_

R
2

_
T

C
ell_

3
_

R
_

IS
C

R

C
ell_

3
_

R
s_

T

C
ell_

3
_

R
s_

T
_

K
F

C
ell_

3
_

S
O

C
0

C
ell_

3
_

S
O

C
_

T

C
ell_

3
_

T
em

p
_

T

C
ell_

3
_

V
o

cv

C
ell_

3
_

b
al

C
ell_

3
_

d
V

0
_

m
at

C
ell_

4
_

C
1

_
T

C
ell_

4
_

C
1

_
T

_
K

F

C
ell_

4
_

C
2

_
T

C
ell_

4
_

C
ap

acity

C
ell_

4
_

R
1

_
T

C
ell_

4
_

R
1

_
T

_
K

F

C
ell_

4
_

R
2

_
T

C
ell_

4
_

R
_

IS
C

R

C
ell_

4
_

R
s_

T

C
ell_

4
_

R
s_

T
_

K
F

C
ell_

4
_

S
O

C
0

C
ell_

4
_

S
O

C
_

T

C
ell_

4
_

T
em

p
_

T

C
ell_

4
_

V
o

cv

C
ell_

4
_

b
al

C
ell_

4
_

d
V

0
_

m
at

P
0

Q

R

S

S
O

C
_

v
ec

T
_

v
ec

V
0

_
m

at

V
_

cell3
_

o
ffset

V
_

cell3
_

o
ffset_

ram
p

V
_

cell3
_

o
ffset_

start_
tim

e

h

th
erm

al_
m

ass

 O
u

tp
u

ts:

S
tate o

f ch
arg

e
V

o
ltag

e
C

u
rren

t
S

tate o
f ch

arg
e estim

ated

O
th

er

S
O

C
_

C
e
ll1

S
O

C
_

C
e
ll2

S
O

C
_

C
e
ll3

S
O

C
_

C
e
ll4

V
_

term
in

al_
C

ell1

V
_

term
in

al_
C

ell2

V
_

term
in

al_
C

ell3

V
_

term
in

al_
C

ell4

I_
C

ell1

 I_
C

ell2

I_
C

ell3

I_
C

ell4

S
O

C
_

est_
C

ell1

S
O

C
_

est_
C

ell2

S
O

C
_

est_
C

ell3

S
O

C
_

est_
C

ell4

V
_

term
in

al_
C

ell3
_

m
easu

red

V
_

p
ack

T
_

C
ell1

108

B Python code

Bayesian optimization of DT2 testcase cell balancing

1 from functions import *
2 from DT_inputs_output import *
3

4 start_values_DT2['V_cell3_offset'] = 0 #set to zero when no sensor drift

5

6 sim_time = 20000

7

8 result_org = simulate_fmu(filename_DT2, start_values=start_values_DT2,

output=output_DT2, stop_time=sim_time)

9 df_org = pd.DataFrame(result_org)

10

11 robust_output = 'V_terminal_Cell2'

12 min = 4

13 max = 5

14

15 s_key, s_value, keys = sort_start_values(start_values_DT2)

16

17 df_org, minval = calculate_robustness(df_org,robust_output, min, max)

18

19 print(minval)

20

21 plot_result_plotly(df_org, 20)

22 plot_robustness_plotly(df_org, 20, robust_output, min, max)

23

24

25 def black_box_function(x1, x2, x3, x4):

26 s_key, s_value, keys = sort_start_values(start_values_DT2)

27

28 d = make_dict(keys, s_value)

29

30 d = multiply_by_constant(d, 'Cell_2_R1_T', x1)

31 d = multiply_by_constant(d, 'Cell_2_R2_T', x2)

32 d = multiply_by_constant(d, 'Cell_2_C1_T', x3)

33 d = multiply_by_constant(d, 'Cell_2_C2_T', x4)

34

35 d = make_start_values(d, s_key)

36

37 result = simulate_fmu(filename_DT2, start_values=d, output=output_DT2,

stop_time=sim_time)

38 df = pd.DataFrame(result)

39

40 df, minval = calculate_robustness(df,robust_output, min, max)

41 res = minval

109

42

43 return -res

44

45 # Bounded region of parameter space

46 pbounds = { 'x1' : (0.1,600), 'x2' : (0.1, 500), 'x3' : (0.1, 200), 'x4'

: (0.1, 200)}

47

48 optimizer = BayesianOptimization(

49 f=black_box_function,

50 pbounds=pbounds,

51 verbose=2, # verbose = 1 prints only when a maximum is observed,

verbose = 0 is silent

52 random_state=1,

53)

54

55

56 utility = UtilityFunction(kind="ucb", kappa=2, xi=0.0)

57

58 optimizer.probe(

59 params={'x1' : 1, 'x2' :1,'x3' :1, 'x4' : 1},

60 lazy=True,

61)

62

63 optimizer.maximize(

64 init_points=5,

65 n_iter=2,

66)

67

68 optimalpoint = optimizer.max

69 print(optimalpoint)

70

71 params = optimalpoint.get('params')

72 x1 = params.get('x1')

73 x2 = params.get('x2')

74 x3 = params.get('x3')

75 x4 = params.get('x4')

76

77 s_key, s_value, keys = sort_start_values(start_values_DT2)

78 d = make_dict(keys, s_value)

79 d = multiply_by_constant(d, 'Cell_2_R1_T', x1)

80 d = multiply_by_constant(d, 'Cell_2_R2_T', x2)

81 d = multiply_by_constant(d, 'Cell_2_C1_T', x3)

82 d = multiply_by_constant(d, 'Cell_2_C2_T', x4)

83 print(s_key)

84 d = make_start_values(d, s_key)

85

110

86 result = simulate_fmu(filename_DT2, start_values=d, output=output_DT2,

stop_time=sim_time)

87

88

89 df = pd.DataFrame(result)

90

91 df, minval = calculate_robustness(df,robust_output, min, max)

92

93 plot_result_plotly(df, 20)

94 plot_robustness_plotly(df, 20, robust_output, min, max)

Graphical user interface

1 from functions import *
2 from DT_inputs_output import *
3

4 df_opt = pd.DataFrame(columns= ['iter', 'target','x1','x2','x3','x4'])

5

6 app = dash.Dash(__name__)

7

8 app.layout = html.Div([

9 html.Div([

10 html.Div([

11 html.H2("STL"),

12 dcc.Dropdown(['SOC_Cell1', 'V_terminal_Cell1', 'I_Cell1', '

SOC_Cell2', 'V_terminal_Cell2', 'I_Cell2', 'SOC_Cell3', '

V_terminal_Cell3', 'I_Cell3', 'SOC_Cell4', 'V_terminal_Cell4', '

I_Cell4', 'T_Cell1', 'SOC_est_Cell1','SOC_est_Cell2', 'SOC_est_Cell3',

'SOC_est_Cell4', 'V_pack', 'V_terminal_Cell3_measured'],

13 'V_terminal_Cell2',

14 clearable = False,

15 id = 'STLdropdown'),

16 html.Div(html.P([html.B()])),

17 "Max:",dcc.Input('5', type = 'number', step = 0.01, id = '

STLmax', style = {'width': '15%'}),

18 html.Div(html.P([html.B()])),

19 "Min:",dcc.Input('4', type = 'number', step = 0.01, id = '

STLmin', style = {'width': '15%'}),

20 html.Div(html.P([html.Br()])),

21 html.Div(id = 'STLoutput')

22

23],id = 'STL', style = {'display': 'inline-block'}),

24

25 html.Div([

26 html.H2("Bayesian optimization"),

27 "Cell_2_R1_T, x1 interval: ", dcc.Input('0.1', type = 'number'

,step = 0.01, id = 'x3_bottom', style = {'width': '15%'}), ' to ', dcc

111

.Input('2', type = 'number', max = 1000,step = 0.01, id = 'x3_top',

style = {'width': '15%'}),

28 html.Div(html.P([html.B()])),

29 "Cell_2_R2_T, x2 interval: ", dcc.Input('0.1', type = 'number'

, step = 0.01, id = 'x4_bottom', style = {'width': '15%'}), ' to ',

dcc.Input('2', type = 'number', max = 1000, step = 0.01, id = 'x4_top'

, style = {'width': '15%'}),

30 html.Div(html.P([html.B()])),

31 "Cell_2_C1_T, x3 interval: ", dcc.Input('0.1', type = 'number'

, step = 0.01, id = 'x1_bottom', style = {'width': '15%'}), ' to ',

dcc.Input('2', type = 'number', max = 1000,step = 0.01, id = 'x1_top',

style = {'width': '15%'}),

32 html.Div(html.P([html.B()])),

33 "Cell_2_C2_T, x4 interval: ", dcc.Input('0.1', type = 'number'

, step = 0.01,id = 'x2_bottom', style = {'width': '15%'}), ' to ', dcc

.Input('2', type = 'number',max = 1000, step = 0.01, id = 'x2_top',

style = {'width': '15%'}),

34

35 html.Div(html.P([html.B()])),

36 html.P(["Hyper parameters:"], style = {'font-weight':' bold'})

,

37 "Exploitation vs exploration: ",dcc.Input('2', type = 'number'

, step = 0.1, id = 'kappa', style = {'width': '15%'}), "(0.1 - 10)",

38 html.Div(html.P([html.B()])),

39 "Number of iterations:", dcc.Input('4', type = 'number', step

= 1, id = 'n_iter', style = {'width': '15%'}),

40 html.Div(html.P([html.B()])),

41 "Iterations before exploration:", dcc.Input('5', type = '

number', step = 1, id = 'init_points', style = {'width': '15%'}),

42 html.Div(html.P([html.B()])),

43 html.Button('Optimize', type = 'submit', id = 'opt_btn'),

44 html.Div(html.P([html.B()])),

45], id = 'bayesianopt'),

46 html.Div([

47 html.Div(id = 'opt_output'),

48] ,id = 'simulation')

49], id = 'left-container', style = {'display': 'inline-block' }),

50

51 html.Div([

52 html.H2('Simulate'),

53 dcc.Store(id='store-data', data=[], storage_type='memory'), #

'local' or 'session'

54 "Simulation time: ", dcc.Input('20000', type = 'number', id =

'sim_time', style = {'width': '5%'}, step = 1000),

55 html.Div(html.P([html.B()])),

56 html.Button('Simulate', type = 'submit', id = 'sim_btn'),

112

57 html.Div([],id = 'outputsim'),

58], id = 'center-container', style = {'display': 'inline-block' }),

59

60], id = 'container')

61

62 ####################################

63

64 @app.callback(

65 Output('STLoutput', 'children'),

66 Input('STLdropdown', 'value'),

67 Input('STLmin', 'value'),

68 Input('STLmax', 'value')

69)

70 def update_STL(STLdropdown, STLmin, STLmax):

71 return html.Div([" 1 = {} is less than {}".format(STLdropdown, STLmax

),

72 html.Div(html.P([html.B()])),

73 " 2 = {} is more than {}".format(STLdropdown, STLmin

),

74 html.Div(html.P([html.B()])),

75 " = Always 1 And 2 "])

76

77 ###

78

79 @app.callback(

80 Output('store-data', 'data'),

81 Input('opt_btn', 'n_clicks'),

82 State('sim_time','value'),

83

84 State('STLmin','value'),

85 State('STLmax','value'),

86

87 State('x1_bottom', 'value'),

88 State('x1_top', 'value'),

89 State('x2_bottom', 'value'),

90 State('x2_top', 'value'),

91 State('x3_bottom', 'value'),

92 State('x3_top', 'value'),

93 State('x4_bottom', 'value'),

94 State('x4_top', 'value'),

95

96 State('kappa', 'value'),

97 State('init_points', 'value'),

98 State('n_iter', 'value'), prevent_initial_callback = True,

99)

100

113

101 def optimize(opt_btn, sim_time, STLmin, STLmax, x1_bottom, x1_top,

x2_bottom, x2_top, x3_bottom, x3_top, x4_bottom, x4_top, kappa,

init_points, n_iter):

102 if (sim_time == 0) or (x1_bottom==0) or (x1_top == 0) or (x2_bottom)

== 0 or (x2_top == 0) or (x3_bottom == 0) or (x3_top == 0) or (

x4_bottom == 0) or (x4_top == 0):

103 return dash.no_update

104 elif opt_btn:

105 start_values_DT2['V_cell3_offset'] = 0 #no sensor drift

106 result_org = simulate_fmu('

BP_BMS_Passive_Cell_Balancing_SOC_Charging.fmu', start_values=

start_values_DT2, output=output_DT2, stop_time=sim_time)

107 df_org = pd.DataFrame(result_org)

108

109 df_org, minval = calculate_robustness(df_org, 'V_terminal_Cell2',

float(STLmin), float(STLmax))

110 def black_box_function(x1, x2, x3, x4):

111

112 s_key, s_value, keys = sort_start_values(start_values_DT2)

113 d = make_dict(keys, s_value)

114

115 d = multiply_by_constant(d, 'Cell_2_R1_T', x1)

116 d = multiply_by_constant(d, 'Cell_2_R2_T', x2)

117 d = multiply_by_constant(d, 'Cell_2_C1_T', x3)

118 d = multiply_by_constant(d, 'Cell_2_C2_T', x4)

119

120 d = make_start_values(d, s_key)

121

122 result = simulate_fmu('

BP_BMS_Passive_Cell_Balancing_SOC_Charging.fmu', start_values=d,

output=output_DT2, stop_time=sim_time)

123 df = pd.DataFrame(result)

124

125 df, minval = calculate_robustness(df,'V_terminal_Cell2', float

(STLmin), float(STLmax))

126 res = minval

127

128 return -res

129

130 pbounds = { 'x1' : (float(x1_bottom), float(x1_top)), 'x2' : (

float(x2_bottom), float(x2_top)), 'x3' : (float(x3_bottom), float(

x3_top)),

131 'x4' : (float(x4_bottom), float(x4_top))}

132

133 optimizer = BayesianOptimization(

134 f=black_box_function,

114

135 pbounds=pbounds,

136 verbose=2, # verbose = 1 prints only when a maximum is

observed, verbose = 0 is silent

137 random_state= 1,

138)

139 utility = UtilityFunction(kind="ucb", kappa=int(kappa), xi=0.0)

140

141 optimizer.probe(

142 params={'x1': 1, 'x2' :1, 'x3' :1, 'x4' :1},

143 lazy=True,

144)

145

146 optimizer.maximize(

147 init_points=int(init_points),

148 n_iter=int(n_iter),

149)

150

151 data = optimizer.res

152 return data

153

154

155

156 ###

157 @app.callback(

158 Output('opt_output', 'children'),

159 Input('store-data', 'data'), prevent_initial_callback = True,

160)

161 def utskrift(opt_data):

162 if (opt_data is None): #<--- correct the condition

163 return dash.no_update

164 else:

165 iter_list = []

166 target_list = []

167 x1_list = []

168 x2_list = []

169 x3_list = []

170 x4_list = []

171 for i in range(0, len(opt_data)):

172 iter_list.append(i)

173 target_list.append(round(opt_data[i]['target'], 3))

174 x1_list.append(round(opt_data[i]['params']['x1'], 3))

175 x2_list.append(round(opt_data[i]['params']['x2'], 3))

176 x3_list.append(round(opt_data[i]['params']['x3'], 3))

177 x4_list.append(round(opt_data[i]['params']['x4'], 3))

178

179

115

180 neg_target_list = [-x for x in target_list]

181

182 df_opt_result = pd.DataFrame(columns= ['iter', 'target','x1','x2',

'x3','x4'])

183 df_opt_result['iter'] = iter_list

184 df_opt_result['target'] = neg_target_list

185 df_opt_result['x1'] = x1_list

186 df_opt_result['x2'] = x2_list

187 df_opt_result['x3'] = x3_list

188 df_opt_result['x4'] = x4_list

189

190 return html.Div([

191 dash_table.DataTable(df_opt_result.to_dict('records'), [{"name

": i, "id": i} for i in df_opt_result.columns], style_table={'height':

'200px', 'width': '400px', 'overflowY': 'auto'}, style_header={

192 'color': 'black',

193 'fontWeight': 'bold'

194 }, style_cell_conditional=[

195 {'if': {'column_id': 'iter'},

196 'width': '20px'},

197 {'if': {'column_id': 'target'},

198 'width': '10px'},

199 {'if': {'column_id': 'x1'},

200 'width': '10px'},

201 {'if': {'column_id': 'x2'},

202 'width': '10px'},

203 {'if': {'column_id': 'x3'},

204 'width': '10px'},

205 {'if': {'column_id': 'x4'},

206 'width': '10px'},

207], style_data_conditional=[{'if': {'filter_query': '{{target}} =

{}'.format(df_opt_result['target'].min())},

208 'color': 'magenta'}]),

209])

210

211 ##

212

213 @app.callback(

214 Output('outputsim', 'children'),

215 State('store-data', 'data'),

216 Input('sim_btn', 'n_clicks'),

217 Input('sim_time', 'value'),

218 State('STLmin','value'),

219 State('STLmax','value'),

220)

221

116

222 def runsimulation(opt_data, sim_btn, sim_time, STLmin, STLmax):

223 if (opt_data is None) or (sim_time == 0):

224 return dash.no_update

225 elif sim_btn:

226 filename = 'BP_BMS_Passive_Cell_Balancing_SOC_Charging.fmu'

227 opt_max = max(opt_data, key=lambda x:x['target'])

228 opt_max_params = opt_max['params']

229 x1 = opt_max_params.get('x1')

230 x2 = opt_max_params.get('x2')

231 x3 = opt_max_params.get('x3')

232 x4 = opt_max_params.get('x4')

233

234 s_key, s_value, keys = sort_start_values(start_values_DT2)

235 d = make_dict(keys, s_value)

236 d = multiply_by_constant(d, 'Cell_2_R1_T', x1)

237 d = multiply_by_constant(d, 'Cell_2_R2_T', x2)

238 d = multiply_by_constant(d, 'Cell_2_C1_T', x3)

239 d = multiply_by_constant(d, 'Cell_2_C2_T', x4)

240

241 d = make_start_values(d, s_key)

242

243 result = simulate_fmu(filename, start_values=d, output=output_DT2,

stop_time=sim_time)

244

245 df = pd.DataFrame(result)

246 df, minval = calculate_robustness(df,'V_terminal_Cell2', float(

STLmin), float(STLmax))

247

248 fig1 = go.Figure()

249 fig1.add_trace(go.Line(x=df["time"], y=df["V_terminal_Cell1"],

name = "V terminal Cell1"))

250 fig1.add_trace(go.Line(x=df["time"], y=df["V_terminal_Cell2"],

name = "V terminal Cell2"))

251 fig1.add_trace(go.Line(x=df["time"], y=df["V_terminal_Cell3"],

name = "V terminal Cell3"))

252 fig1.add_trace(go.Line(x=df["time"], y=df["V_terminal_Cell4"],

name = "V terminal Cell4"))

253 fig1.update_layout(

254 font_family = "Trebuchet MS",

255 title_font_family = "Trebuchet MS",

256 title = 'Voltage of cells',

257)

258 fig1.update_xaxes(title_text="Time [min] ")

259 fig1.update_yaxes(title_text="Voltage [V]")

260

261 fig2 = go.Figure()

117

262 fig2.add_trace(go.Line(x=df["time"], y=df["V_terminal_Cell2"],

name = "V terminal Cell2"))

263 fig2.add_trace(go.Line(x=df["time"], y=df['Robustness'], name = "

Robustness"))

264 fig2.update_layout(

265 font_family = "Trebuchet MS",

266 title_font_family = "Trebuchet MS",

267 title = 'Robustness of voltage of cell 2',

268)

269 fig2.update_xaxes(title_text="Time [min] ")

270 fig2.update_yaxes(title_text="Voltage [V]")

271 fig2.add_hrect(y0=STLmax, y1=STLmin, line_width=0, fillcolor="red"

, opacity=0.2, annotation_text="STL")

272

273

274 fig3 = go.Figure()

275 fig3.add_trace(go.Line(x=df["time"], y=df["I_Cell1"], name = "I

Cell1"))

276 fig3.add_trace(go.Line(x=df["time"], y=df["I_Cell2"] , name = "I

Cell2"))

277 fig3.add_trace(go.Line(x=df["time"], y=df["I_Cell3"], name = "I

Cell3"))

278 fig3.add_trace(go.Line(x=df["time"], y=df["I_Cell4"], name = "I

Cell4"))

279 fig3.update_layout(

280 font_family = "Trebuchet MS",

281 title_font_family = "Trebuchet MS",

282 title = 'Current of cells',

283)

284 fig3.update_xaxes(title_text="Time [min] ")

285 fig3.update_yaxes(title_text="Ampere [A]")

286

287 fig4 = go.Figure()

288 fig4.add_trace(go.Line(x=df["time"], y=df["SOC_Cell1"], name = "

SOC Cell1"))

289 fig4.add_trace(go.Line(x=df["time"], y=df["SOC_Cell2"], name = "

SOC Cell2"))

290 fig4.add_trace(go.Line(x=df["time"], y=df["SOC_Cell3"], name = "

SOC Cell3"))

291 fig4.add_trace(go.Line(x=df["time"], y=df["SOC_Cell4"], name = "

SOC Cell4"))

292 fig4.update_layout(

293 font_family = "Trebuchet MS",

294 title_font_family = "Trebuchet MS",

295 title = 'State of charge of cells',

296)

118

297 fig4.update_xaxes(title_text="Time [min] ")

298 fig4.update_yaxes(title_text="Percent [%]")

299

300 fig5 = go.Figure()

301 fig5.add_trace(go.Line(x=df["time"], y=df["SOC_est_Cell1"], name =

"SOC estimated Cell1"))

302 fig5.add_trace(go.Line(x=df["time"], y=df["SOC_est_Cell2"], name =

"SOC estimated Cell2"))

303 fig5.add_trace(go.Line(x=df["time"], y=df["SOC_est_Cell3"], name =

"SOC estimated Cell3"))

304 fig5.add_trace(go.Line(x=df["time"], y=df["SOC_est_Cell4"], name =

"SOC estimated Cell4"))

305 fig5.update_layout(

306 font_family = "Trebuchet MS",

307 title_font_family = "Trebuchet MS",

308 title = 'State of charge of cells estimated by BMS',

309)

310 fig5.update_xaxes(title_text="Time [min] ")

311 fig5.update_yaxes(title_text="Percent [%]")

312

313 return html.Div([dcc.Graph(id = 'figure1',

314 figure = fig1),

315 dcc.Graph(id = 'figure2',

316 figure = fig2),

317 dcc.Graph(id='figure3',

318 figure = fig3),

319 dcc.Graph(id='figure4',

320 figure = fig4),

321 dcc.Graph(id='figure5',

322 figure = fig5),])

323

324

325 ##################################

326

327 if __name__ == "__main__":

328 app.run_server(debug=True)

119

	Preface
	Acknowledgement
	Summary
	Sammendrag
	List of Tables
	List of Figures
	List of Code
	Abbreviations
	Introduction
	Background
	Problem description
	Approach
	Assumptions and delimitations
	Structure of the report

	Safety valves in subsea Xmas trees
	Electro-hydraulic Xmas trees
	The all-electric Xmas tree
	Governing standards and guidelines

	Digital twin and safety demonstration
	Digital twin and industry 4.0
	Level of integration
	Digital twin through the product lifecycle
	Safety demonstration
	Safety 4.0
	Digital twin for safety demonstration

	Simulation-based testing and verification
	Existing and emerging methods
	Preliminaries
	Signal temporal logic
	Optimization
	Optimization-guided falsification
	Simulation-guided Lyapunov Analysis

	Lithium-ion Battery and BMS
	Lithium-ion battery
	Battery management system
	Faults of Lithium-ion batteries
	Internal short-circuit
	Overcharge
	Overdischarge
	Sensor drift
	Accelerated degradation
	Thermal runaway

	Matlab model
	Modeling
	Test cases

	Implementation
	From Matlab to Visual Studio Code
	Signal temporal logic
	Bayesian optimization
	Graphical user interface
	HTML
	CSS

	Result
	Original simulation
	DT1: Battery
	DT2: Battery and BMS

	DT1: Battery
	Manual testing
	Optimization-guided falsification

	DT2: Battery and BMS
	Manual testing
	Optimization-guided falsification

	Graphical user interface

	Discussion
	Optimization-guided falsification for safety demonstration
	Simulation-guided Lyapunov opportunities
	Limitations

	Conclusion
	Further work

	Bibliography
	Appendix
	Inputs and outputs of the digital twins
	Python code

