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Abstract

Artificial spin ices (ASIs) are magnetic metamaterials with emergent properties
that make them interesting candidates for new computing materials. Understand-
ing more of their behavior is crucial for development of these materials for such
purposes.

The goal of this thesis was to investigate properties and frustration of an
annulus-shaped square ASI with a topological lattice defect enforcing the presence
of a domain wall. For comparison, both structures with and without the lattice
defect were studied. Investigations were performed through simulations of ASI
systems using the simulator "flatspin", and through studying fabricated samples
using Magnetic Force Microscopy (MFM).

All physical structures were shown to retain a number of domain walls after
fabrication, which tended to form diagonally across the sample. The structures
without the lattice defect always had an even number of domain walls stretching
from the inner square to the outer edge, while the structures with the defect had
an odd number of domain walls.

The coupling strength between the magnets in the ASI influenced how easy
it was to switch the magnetization of the magnets. A weaker applied field and
less applied temperature is needed to flip the magnets if their coupling strength is
low. Square ASI systems with a high coupling strength showed rich domain wall
dynamics in simulations.

There are still many fundamental properties of ASIs that are not yet explored.
Further exploration of particularly designed ASIs and understanding such me-
ticulously tuned structures can be useful for applications in new computational
methods.
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Sammendrag

Kunstige spinn-is er magnetiske metamaterialer med unike emergente egenskaper,
som gjør de til gode kandidater for nye typer datamaskiner. Å forstå mer av op-
pførselen til disse materialene er essensielt for å utvikle de videre.

Målet med denne oppgaven var å studere en annulus-formet firkantet kun-
stig spinn-is med en topologisk gitterdefekt som tvinger frem en domenevegg.
Både strukturer med og uten gitterdefekten ble studert for å kunne gjøre sammen-
ligninger. Strukturene ble utforsket ved å simulere kunstige spinn-is-systemer, og
gjennom å studere fysiske prøver ved hjelp av et magnetkraftmikroskop.

Alle fysiske strukturer hadde domenevegger etter fabrikasjon, som la seg di-
agonalt på strukturene. Strukturene uten en gitterdefekt hadde alltid et partall
vegger som strakk seg fra den indre til den ytre kanten, mens strukturene med en
defekt hadde et oddetall vegger.

Koblingsstyrken til magnetene i den kunstige spinn-isen påvirket hvor lett det
var å bytte magnetiseringsretning i en magnet. Magneter snur magnetiseringen
under lavere felt og temperatur dersom koblingsstyrken er liten. I simuleringer
av firkantede kunstig spinnn-is-systemer med høy koblingsstyre var det mulig å
flytte på domeneveggene.

Det er fremdeles magne fundamentale egenskaper hos kunstig spinn-is som
ikke har blitt utforsket enda. Å fortsette å undersøke spesialdesignede kunstig
spinn-is-strukturer kan være nyttig for bruk i nye databehandlingsmetoder.
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Chapter 1

Introduction

We are approaching a critical point when it comes to global energy consumption.
Information and communication technology is one of the fastest growing energy
consumers, estimated to have a yearly growth of 7%, while the worldwide energy
consumption growth is expected to be 3%[2]. This trend can be opposed by cre-
ating smaller and less energy demanding transistors. However, we will soon be
approaching the lower limit of transistor size.[3]. To be able to sustain our energy
consumption, we are dependent on new and innovative ways to keep electrical
consumption low and computing power high.

Using brains as inspiration, reservoir computing was introduced as an alternat-
ive computing method to our current binary transistor-based computers. Reservoir
computing uses a non-linear reservoir layer mapping inputs to high-dimensional
space to execute the computing. A readout layer transfers the resulting signals to
readable output information. The reservoir layer has weighted nodes, but these
weights do not need to be adjustable, in contrast to other computing models based
on machine learning. Therefore, a variety of physical systems can be utilized. For
hardware implementation of reservoir computing, complicated and costly meth-
ods for training are needed, whereas by using physical systems as reservoirs, real
world physical phenomena can be utilized instead. Choosing the right material
to use as a reservoir layer is a major challenge, as the material needs to have
the ability to map to higher dimensions, have local interactions, and have global
non-linear properties[4].

A promising candidate for this application is artificial spin ice (ASI)[5]. ASIs
are comprised of small monodomain magnets, with emergent properties unlike
those of its building blocks. Although important reservoir properties such as scalab-
ility, high number of nodes and non-linearity are satisfied in ASIs, they have not
yet been realized as reservoir computers[6].

Tuning the state of an ASI is a key process for computing applications[5], and
can be done through globally or locally applied magnetic fields. ASIs are highly
tunable, with a large number of reachable states. However, it is difficult to retain
control over the exact states of the system. One way of having more control over
the magnetic states of the ASI is by tuning their geometry[7].

1



2 G. Holm: Domains in modified square artificial spin ice

Figure 1.1: Schematic of a 12 × 12 "modified donut" square ASI with an intro-
duced defect in the highlighted upper central part of the structure.

The goal of this thesis is to better understand the behavior of domains and do-
main walls in square ASI, which is a type of ASI built by combining square blocks
of four magnets into a larger grid. This will be done by investigating a particu-
lar square ASI shown in figure 1.1, hereafter known as a "modified donut". By
gaining more insight on domain dynamics and investigating systems with certain
properties, we are getting closer to realizing artificial spin ice as a reservoir layer
for reservoir computing.

1.1 Project outline

This project aims to investigate square ASI donuts using flatspin[8] simulations
and Magnetic Force Microscopy (MFM) imaging. The reader will first be intro-
duced to concepts relevant to this work that will shed some light on why these
structures are particularly interesting. The different techniques utilized to study
the structures are introduced, and the simulated field protocols and physical an-
nealing protocols are mentioned. Lastly, the results acquired are presented and
discussed, with a conclusion summarizing what has been done.

Figures are made using Inkscape[9]. Experimental images are processed in
Gwyddion[10] and GIMP[11].



Chapter 2

Theory

This chapter gives an introduction to magnetism and summarizes some important
concepts to understand when tackling the work conducted in this thesis. It starts
by introducing the main building block, the magnet, and its special behavior when
the dimensions are reduced to the relevant size. Artificial spin ices and their prop-
erties are presented. Lastly, the techniques that were employed are explained.
The goal of this section is to give the reader some background knowledge in the
theoretical concepts necessary to understand the results obtained in this project.

Relevant sections in this chapter have been reused from the similarly themed
project report written in the fall of 2022[1]. The section on magnetism is based
on Magnetism and Magnetic Materials(2009) by J.M.D. Coey[12].

2.1 Magnetism

Although most people have an intuition about what magnetism is from interacting
with everyday objects such as fridge magnets or a compass, the physics behind
magnets are quite complicated. Magnetism is a physical phenomenon between
moving charges leading to repulsive and/or attractive interactions. The moving
charges create magnetic fields around them, which can be described by Gauss’ law
of magnetism stating that

∇ ·B= 0, (2.1)

where B is the magnetic field. Since magnetic fields have no divergence, magnetic
field lines will have no sources or sinks, and will always have to come in pairs.
This is shown for a dipole magnet in figure 2.1.

Although a large magnet with a "north" and "south" pole is perhaps the best
known image of magnetism, the basic quantity of magnetism is the much smaller
magnetic moment, m, which has its origin from electron spin and orbital motion.
By averaging the magnetic moments in a solid on a mesoscopic scale in time, we
obtain a magnetic moment δm for a given volume δV ,

δm=MδV (2.2)

3



4 G. Holm: Domains in modified square artificial spin ice

Figure 2.1: A dipole with magnetic field lines going from one pole to the other.
All lines have to be connected, because there is no divergence in a magnetic field.

where M is the magnetization within the volume. This local magnetization
can be averaged over the macroscopic scale by summing over all subregions with
volume Vi ,

M=
∑

i

MiVi /
∑

i

Vi , (2.3)

where
∑

i Vi is the volume of the entire sample. The magnetization M usually
refers to this macroscopic average.

Magnetic interactions can be described through the magnetic field (or mag-
netic flux density) B. However, to avoid having to calculate the complicated local
field dynamics inside a sample when it is not necessary, it can sometimes be useful
to refer to the magnetizing field H. Inside a material, the two fields are related
through the magnetization M,

B= µ0(H+M), (2.4)

where µ0 is the vacuum permeability.
Outside a material the magnetization M is zero, and therefore B = µ0H. This

external field is known as the stray field or the demagnetizing field, and the po-
tential energy contained in the field is known as the magnetostatic energy Estr.
This energy is given by[13]

Estr = −
1
2

∫

µ0Hd ·MdV, (2.5)

where Hd is the demagnetizing field created by the magnetic body itself, and
V is the volume of the body.
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If a magnetic dipole is placed in an external field B, the potential energy of
the dipole becomes

Em = −M ·B, (2.6)

where M is the magnetic moment of the dipole. If two dipoles with magetic mo-
ments M1 and M2 and producing fields H1 and H2 are interacting with each other
at a separation r, their interaction energy is given by[13]

Edip = −
µ0

4π|r|3
[3(M1 · r)(M2 · r)−M1M2], (2.7)

which is known as the dipole-dipole interaction energy.

2.1.1 Magnetic ordering

Materials can have different types of magnetic ordering, depending on which
types of energies are dominant. Magnetic ordering can be defined by the mag-
netic response of the material to an applied field. Diamagnetism, paramagnetism,
ferromagnetism and antiferromagnetism are four of the most common types of
magnetic ordering. The three latter are shown in figure 2.2

Figure 2.2: Different types of magnetic ordering that can be present in a material.
From top to bottom right, the orderings shown are paramagnetism, ferromagnet-
ism and antiferromagnetism.

All materials exhibit a diamagnetic response to some extent, which is the tend-
ency of a material to oppose an external magnetic field, inducing a magnetization
in the opposite direction to the field. This effect is weak.
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In a paramagnetic state, all atomic magnetic moments sum to zero unless
a magnetic field is applied. At zero field, all magnetic moments are randomly
aligned, as shown in figure 2.2. Under an applied field, the magnetic moments
tend to align with the field, and thus inducing a net magnetization of the material.

Ferromagnets are characterized by an alignment of magnetic moments without
the influence of an external field, which leads to a net magnetic moment across
the material. This spontaneous magnetic moment happens due to exchange en-
ergy from the exchange interaction, which exists between electron spins of neigh-
boring atoms. The energy is given by

Eex = −2
∑

i> j

J ijSi · Sj,

and depending on the sign of the exchange integral J ij results in spins Si and
Sj aligning either in a parallel or an anti-parallel fashion. If the alignment is par-
allel, a ferromagnetic ordering emerges, and if the alignment is anti-parallel, an
antiferromagnetic order emerges.

Magnetic anisotropy describes a material’s tendency to align its magnetiza-
tion along a set of preferred directions. The preferred axis or axes are referred
to as the easy axes. Anisotropy can arise from crystal structure, material build or
shape. These effects are known as magnetocrystalline anisotropy, induced aniso-
tropy, and shape anisotropy. Magnetocrystalline anisotropy arises from the crystal
symmetry of a material, while induced anisotropy arises from stress or disordered
alloys. Shape anisotropy is present if a material is not perfectly spherical. The mag-
netization will then align along the longest axis to minimize the demagnetizing
field.

Other energy contributions can also lead to specific magnetic ordering, some
of the most important being the magnetostatic energy Estr, dipole-dipole interac-
tion energy Edip, magnetocrystalline anisotropy energy Ean and thermal energy
Eth. Magnetocrystalline anisotropy energy is the energy contribution needed to
switch a magnet away from its easy axis. Thermal energy is given by Eth= kBT ,
where kB = 1.38× 10−21 J K−1 is the Boltzmann constant and T is the temperat-
ure. The thermal energy can contribute to magnetic ordering in some cases when
the temperature is large enough.

The response of a material to an external field can be visualized through a hys-
teresis loop, where the magnetization of a material is plotted against the applied
field. When a field is first applied with increasing strength, the magnetization in-
creases until it reaches the saturation magnetization Ms. Reducing the field will
also reduce the magnetization. If the material is ferromagnetic, there will be some
remanent magnetization Mr that does not disappear when there is no external
field present. When applying a negative field, the magnetization will be reduced
even further, equalling zero at the coercivity Hc . When increasing the negative
field, the magnetization will again tend towards the saturation magnetization,
this time with the opposite sign. A hysteresis loop showing such a behavior is
shown in figure 2.3. Based on the shape of the hysteresis loop, a ferromagnet can



Chapter 2: Theory 7

Figure 2.3: Hysteresis curve of a hard ferromagnet. Hc is the coercivity, Ms is the
saturation magnetization, and Mr is the remanent magnetization.

either be hard or soft. A hard magnet has a large remanent magnetization when
an applied field is removed. A soft magnet has less remanent magnetization, and
thus a more narrow hysteresis loop.

2.1.2 Magnetic domains

As all physical systems, magnets want to minimize their energy. To minimize the
magnetostatic energy associated with stray fields, ferromagnets tend to form mag-
netic domains, which are regions within a sample where the local magnetization
is saturated[14], meaning that the magnetization is pointing in the same direction
across the region. Having multiple regions with different magnetizations means
that the overall magnetization of the sample can equal zero, as the regions can-
cel each other out. When applying a weak field to ferromagnetic materials, the
volume of domains aligned with the field will increase, and correspondingly the
volume of domains aligned against the field will decrease. If the field is sufficiently
strong, all the domains will align with the field, in which case the material only
contains one magnetic domain.

The borders between domains are known as domain walls. The formation of
domain walls increases the exchange energy at the domain walls, as the magnetic
moments on either side of the border are aligned in different directions, which is
unfavorable. The formation of domain walls is driven by a trade-off between the
minimization of the stray field and the exchange energy. In most cases, it will be
more energetically favorable for a permanent magnet to have multiple domains,
as shown in figure 2.4, which will lead to an increase in exchange energy and
decrease the stray field. However, as the size of the magnet is reduced to nanoscale
dimensions, the cost in exchange energy to form domain walls will be larger than
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the cost of the magnetostatic energy. Therefore, a nanomagnet prefers to only
form a single domain, resulting in a so-called monodomain magnet.

(a) (b) (c)

Figure 2.4: The transition from (a) a monodomain magnet through (b) two do-
mains to a (c) multidomain magnet, and how it affects the stray field.

Due to shape anisotropy, a monodomain magnet with one easy axis can be
approximated as a dipole, with all of its magnetization pointing in one of the two
directions along the easy axis. The magnet can switch between the two directions
under the influence of an applied field or temperature. This applied field has to
be large enough to overcome the energy barrier created by the anisotropy of the
magnet. By increasing the temperature of the system, the switching can happen
at lower field values, as an increase in thermal energy makes it easier for magnets
to switch. One monodomain magnet with uniaxial shape anisotropy only has two
magnetic configurations, but by combining multiple magnets in specific configur-
ations the magnet can be a building block of much more complex materials.

2.2 Artificial spin ice

The following section aims to review the basics of ASIs, while going a bit more
in-depth on square ASI and its properties. The content is based on the review
Advances in artificial spin ice by S.H. Skjærvø et al.(2020)[6].

The term "artificial spin ice" was coined by R.F. Wang et al. in 2006[15], build-
ing on the already investigated "spin ice" pyrochlorates. The spins of the spin ice
magnetic structures are arranged in such a way that all magnetic interactions can-
not be satisfied at the same time[16]. This is analogous to the way that oxygen
molecules in water cannot satisfy all their hydrogen bonds simultaneously, and
instead end up in a frustrated state[17].

Just like ice, ASIs exhibit local frustration. ASIs are built by combining nan-
omagnets into periodic and aperiodic structures, forming a larger metamaterial.
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(a) (b) (c)

Figure 2.5: Three common types of ASI; (a) square, (b) pinwheel and (c)
kagome.

A metamaterial is built by combining materials or structures into new materials
which retain new emergent properties. In ASIs, these properties arise from the
geometric ordering of single magnet building blocks, which prevent them from
having all their magnetic interactions satisfied simultaneously.

The building blocks of ASIs are nanoscale ferromagnets. The nanomagnets are
elongated along one direction, giving them shape anisotropy and a preferred easy
axis that the magnetiation will align with. The shape of the magnets can be var-
ied, as long as there is uniaxial shape anisotropy. The magnets are small enough
to be monodomain, and a good model for describing their individual interactions
is therefore to approximate them as dipoles with only two possible directions of
magnetization along the easy axis. Using equation 2.2 and assuming a ferromag-
net with a given volume V and uniform magnetization, the magnitude of total
magnetization of each magnet is given by

M = MSV, (2.8)

where MS is the saturation magnetization. The magnitude of magnetization
can thus be increased by increasing the volume of the magnets.

Each individual magnet can only have two possible magnetic states. However,
since ASIs are designed in such a way that the geometry forces the individual
magnets to be frustrated, the overall system will end up in different states de-
pending on which frustrations are dominating under an applied field. The beha-
vior of an ASI can be tuned, based on parameters such as lattice structure, lat-
tice spacing/pitch1, and size and shape of the individual nanomagnets. There are
multiple ways of combining magnets to form ASIs that uphold this geometrical
frustration, a few of which are shown in figure 2.5.

2.2.1 Square ASI

Square ASI consists of a lattice made up of multiple squares with one magnet
along each side, as seen in figure 2.5a. An n× n regular square ASI is defined as

1Lattice spacing and pitch will be used interchangeably throughout this thesis.
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Type 1 Type 2 Type 3 Type 4

Figure 2.6: Types of vertices that can be present in a square ASI. The weak gray
arrows in the background denote the net magnetization of the vertex, if present.

Figure 2.7: Expected ground state configuration for square ASI, illustrated by
clockwise and counter-clockwise loops.

having n magnets along each edge of the structure. The closed square ASI con-
tains a total of 2n(n+1) magnets including the two extra edges added to enclose
all squares in the structure. The points where four magnets meet are called ver-
tices. Due to each magnet having two possible magnetizations, there are a total of
16 possible vertex configurations. These are categorized in four types according
to their coupling energy, which are shown in figure 2.6. Type 1 has two magnets
with spins pointing inwards, and two pointing outwards. Because this configura-
tion has the lowest energy in a square ASI, it is defined as the ground state, even
though the magnets are frustrated. Type 2 vertices also have two spins pointing
inwards and two outwards, but additionally a net magnetic moment pointing di-
agonally across the vertex, which leads to slightly higher energy. Type 3 vertices
have three spins pointing inwards and one outwards, or vice versa. The least fa-
vorable configurations are type 4 vertices, where all spins are either pointing in
or out.

In the ground state, both the sublattice containing horizontal and vertical mag-
nets will have antiferromagnetic ordering. Thus, the entire system is classified as
antiferromagnetic. In this state, every second box will circulate in the same direc-
tion, both horizontally and vertically. This is shown in figure 2.7. There are two
possible degenerate ground state configurations for a square ASI, shifted by one
magnet either horizontally or vertically. This degeneracy arises from the antifer-
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romagnetic ordering, and can be visualized by flipping all magnets, which will
leave the system in an energetically equivalent state. If a square ASI is not fully
in one of its two possible ground states, it may have areas with both ground state
configurations. The border between these regions would consist of type 2 ver-
tices. Looking at square ASI as having antiferromagnetic ground state ordering,
the borders between the two ground state configurations could be characterized
as domain walls between two antiferromagnetic domains. Type 3 vertices might
also be present, most likely in connection with the domain walls or edges, as
the energy of the wall or edge vertices are higher than the ground state type 1
vertices. Type 3 vertices can also appear as separate single-magnet defects in a
ground state region. The frustration make it possible to have these domain wall
and defect configurations be metastable, and to transition between multiple meta-
stable states by means of external influences. This property makes ASI structures
extremely valuable for studying frustration.

Unlike in regular magnetic materials, unfavorable magnetic states can be in-
duced by altering the geometry of ASIs. Such a structure has been investigated
by Drisko et al.[18], where they presented a modified square ASI with a lattice
edge dislocation. The structure maintained a low energy state across the sample,
with the exception of a single domain wall stretching from the defect to the edge.
This domain wall would arise from topological frustration due to the dislocation,
which in this case means that its presence can be measured far away from the
actual defect site[18].

2.2.2 Reservoir computing in ASI

ASIs have many properties that make them beneficial for use in reservoir comput-
ing. They have a nonlinear response to magnetic fields, local interactions and rich
dynamics, while also being scalable[5]. Fabrication methods are well developed,
and there is a large number of reachable states through applying a magnetic field.
In a regular n × n square ASI, there are a maximum of 2n possible states. The
global frustration of the magnets give rise to complex, non-linear behavior, which
is ideal for a reservoir. In a reservoir computer, the states of the system are typ-
ically represented by the activations of neurons in a neural network[19]. In the
case of a reservoir computer that uses ASI as the physical substrate, the states of
the system could be represented by the magnetization of the magnets within the
material. The more states that can be reached, the more nodes in the reservoir
layers. Thus, finding new ways to reach more states are crucial to increase the
computing power.

2.3 flatspin

The following section gives an introduction into the ASI simulation tool flatspin.
The content is mainly adapted from flatspin: A large-scale artificial spin ice Simu-
lator (2020) by J.H. Jensen et al[8].
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Figure 2.8: In flatspin, each magnet i is represented as a point dipole with a pos-
ition ri defined from the origin O, an angle θi given with respect to the horizontal
axis, and a spin si that takes the value of either 1 or −1, depending on whether
the spin is aligned parallel or anti-parallel respectively along the defined angle.
The spin parameter is separate from the angle, as this may change during simu-
lations. Figure adapted from J.H. Jensen et al.[8].

flatspin is an ASI simulator enabling simulation of large scale ASIs. Micro-
magnetic simulation tools would need more computational power than what is
practical to capture long-range order and emergent phenomena in large ASI sys-
tems. flatspin reduces the computational cost by representing each magnet in the
ASI as a point dipole with a given position, angle, and spin. Here, spin refers to the
direction of the magnetization in a magnet, and can take the value 1 or −1, de-
pending on whether it aligns parallel or anti-parallel respectively with the defined
angle. The angle is given with respect to the horizontal axis, as shown in figure
2.8.

As the magnets in an ASI lattice are approximated as point dipoles in flatspin,
it is not possible to vary the size of the magnets to tune the emergent behavior.
Instead, a new parameter, α, is introduced to compensate. The dipolar coupling
strength, α, is given by

α=
µ0M
4πa3

, (2.9)

where a is the lattice spacing , µ0 is the vacuum permeability, and M is the mag-
nitude of the magnetization. It is possible to tune the pitch directly in flatspin, but
the difference between tuning pitch and tuning α is that α also includes the mag-
netization. The magnetization is related to the volume through equation 2.2, so
the physical equivalent to tuning α would be changing lattice spacing and volume
of the magnets.

Any magnet i is influenced by up to three external fields

hi = hdip
(i) + hext

(i) + hth
(i), (2.10)

where hdip
(i) is the magnetic field stemming from magnetic dipole-dipole in-

teractions, hext
(i) is an applied external magnetic field, and hth

(i) is a random
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magnetic field representing thermal fluctuations.
The dipole interactions are given by[8]

hdip
(i) = α
∑

j ̸=i

3ri j(m j · ri j)

|ri j|5
−

m j

|ri j|3
, (2.11)

where ri j = ri − r j is the distance from spin i to spin j, m j is the magnetic
moment of magnet j, andα is the coupling strength. The dipole field affecting each
spin is determined by summing over the dipole interactions from the spins located
in its neighborhood. The size of the neighborhood is adjustable. External fields are
modeled as a combination of effective magnetic fields. An applied external field
can be set locally for each dipole, globally, or as a vector field varying across the
ASI. Thermal interactions can also be modeled, however this was not done in this
project and will therefore not be covered here. Further details can be found in
flatspin: A large-scale artificial spin ice simulator(2020) by J.H. Jensen et al[8].

Defects are always present in physical systems due to fabrication issues, ex-
ternal influences post-fabrication or other contaminations. Simulations are inher-
ently perfect, so to account for the imperfection found in physical systems a small
variation in the coercive field of the individual magnets kdisorder can be introduced.
The variation is obtained from a normal distribution with a standard deviation
given by σ = kdisorder·hk.

2.3.1 The Stoner-Wohlfarth model and switching

The Stoner-Wohlfarth model considers small ellipsoid-shaped objects that are uni-
formly magnetized with uniaxial anisotropy and coherent switching under influ-
ence of an applied magnetic field[20]. The applied magnetic field can be split up
to projections along the easy (h∥) and hard axis (h⊥) of the particle. The switching
field is then given by the following expression

h∥sw
2/3 + h⊥sw

2/3 = 1, (2.12)

plotted in figure 2.9. This plot is known as the switching astroid, and can be used
to determine whether switching will occur. If the left side of equation 2.12 is larger
than one, meaning that the field is outside of the astroid shown in figure 2.9, the
nanomagnet will switch.

The Stoner-Wohlfarth model is only valid for small ellipsoidal magnets, but
the model has been generalized by J.H. Jensen et al.[8] to allow asymmetry and
differences in the curvature of the magnet extrema. The generalized model is
given by

�

h∥
b

�2/γ

+
�

h⊥
c

�2/β

= 1, (2.13)

where the astroid parameters b, c, β , and γ can be tuned to match the shape and
size of the astroid. b and c define the height and width of the astroid, while β



14 G. Holm: Domains in modified square artificial spin ice

Figure 2.9: The Stoner-Wohlfarth astroid of an ellipsoid (red) and a stadium
magnet (blue). The axes correspond to the parallel and perpendicular field with
respect to the easy axis of the particle in question. The ellipsoid astroid is obtained
by using equation 2.13 with the parameters b = c = 1 and β = γ= 3. The stadium
astroid is obtained by using equation 2.13 with the parameters b = 0.42, c = 1,
β = 1.7 and γ = 3.4. Parameters for stadium magnet obtained from Jensen et
al[8].

and γ relate to the curvature of the easy and hard axis respectively. By using the
parameters b = c = 1 and β = γ = 3, the ellipsoid Stoner-Wohlfarth equation
2.12 is obtained. The astroid for a stadium-shaped particle is obtained by using
the parameters b = 0.42, c = 1, β = 1.7 and γ = 3.4[8]. From the switching
astroid, it can be seen that unlike for the ellipsoid, a stadium magnet has a smaller
switching field when applied along the easy axis than the hard axis. More notably,
the switching field is smallest at an angle of approximately 90◦ ± 22◦, or 270◦ ±
22◦, which means that applying a field at this angle will require the weakest field
to switch the magnetization of the magnet.

At each simulation step in flatspin, the total field hi of each magnet is cal-
culated. If the Stoner-Wohlfarth criteria is satisfied, magnets will start switching.
The magnet with the total field furthest from the switching astroid (figure 2.9)
switches first. After every step, the total field for each spin is recalculated, and the
process is repeated until there are no more spins that can be flipped. This process
assumes a static field during switching, sequential switching, and that the magnet
with the highest total field switches first.

2.4 Fabrication techniques

Electron beam lithography (EBL) is a fabrication technique that can be used to fab-
ricate structures of sub-micron size, either by using a positive or negative resist.
The resist will change solubility when exposed to an electron beam. Areas around
the electron beam spot will also be exposed due to scattering of electrons, limiting
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the resolution. A pattern is exposed on the resist-covered substrate using a nar-
row electron beam, which scans along the sample in a raster-like fashion. After
exposure, the sample is developed. If a positive resist is used, the exposed resist
will be dissolved, and leave a patterned photoresist layer on the substrate[21].

The entire sample, with patterned photoresist, is then metallized through elec-
tron beam evaporation. The photoresist is dissolved, lifting the metal deposited on
the remaining photoresist off the sample in a lift-off process. After lift-off, metal
remains only on the open areas of the patterned photoresist. However, incomplete
lift-off can occur, which would leave photoresist and metal in exposed areas on
the sample, and lead to larger conglomerations of metal[21].

2.5 Magnetic force microscopy

The following section on Magnetic Force Microscopy is mainly based on Introduc-
tion to Solid State Physics(2005) by C. Kittel[14].

Magnetic force microscopy (MFM) is an imaging technique based on atomic
force microscopy (AFM), where a vibrating cantilever with a small tip moves
across a sample surface in a raster-like fashion, measuring its topography. In AFM,
the topography of the sample is measured by exploiting the van der Waals interac-
tion between the tip and the sample. When brought in close vicinity to the sample,
the interactions between the sample and the tip will shift the cantilever propor-
tionally to the force, with the proportionality constant being the force constant
of the cantilever. The AFM is usually operated in static contact or dynamic non-
contact mode. In contact mode, the tip is dragged across the surface of the sample.
This may result in damage to the surface structure. Non-contact mode, where the
cantilever is oscillating at a distance from the sample, is less invasive than con-
tact mode. To avoid the tip crashing into the sample, a feedback loop adjusts the
height of the cantilever in response to the measured change in amplitude by the
interferometer.

In contrast to AFM, MFM images the magnetization of the sample. This is done
by utilizing a mangetic tip and lifting the cantilever to a certain height above the
sample using dynamic non-contact mode. When the tip was in contact with the
sample, the van der Waals forces were prominent. These forces scale with r−6,
and are therefore only prominent close to the sample. If a sample is magnetic, the
dipole interactions between the tip and the sample can be imaged by measuring
the phase change of the vibration of the cantilever under the influence of the
dipole coupling between the tip and the sample. This coupling scales with r−3

(equation 2.7), and will therefore be larger than the van der Waals forces at a
distance from the sample. The phase change between the applied and measured
vibration is then mapped onto a color scale. In the case of a single monodomain
magnet scanned and mapped onto a grayscale, one end of the magnet will be
white and one will be black.

A typical MFM setup is shown in figure 2.10. It consists of a piezo stage with
a sample holder, so that the sample can be accurately moved in the three spatial
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directions x , y and z. Above the sample, a cantilever is connected to an actuator
which applies a periodic force to the cantilever, causing it to oscillate. The can-
tilever position is measured by an interferometer, which uses a laser to measure
the deflection of the cantilever.

Interferometer

Cantilever
Tip

Sample

Piezo stage

Figure 2.10: Setup of a magnetic force microscope (MFM), including a sample
holder with a sample mounted on a piezo stage, a vibrating cantilever with a mag-
netized tip for MFM, and an interferometer using a laser to measure the position
of the cantilever.

Since the MFM tip is interacting with the sample, the tip can in some cases
change the magnetization of the sample it is scanning across. This has been done
controllably, and utilized to change the magnetization of samples by J.C. Gartside
et al[22]. Manipulation of the magnetization was done in AFM contact mode by
using a high-moment tip. The method was shown to create topological defects in
nanowires and utilized to write specific states in kagome ASIs[23]. Writing does
not occur at a tip-sample separation over 5 nm to 10 nm[23], which means that
moving it at a lift height higher than this should be safe.

2.5.1 Understanding MFM images

In a square artificial spin ice, the antiferromagnetic ground state ordering will
have the weakest contrast. Among the possible orderings in square ASI, this or-
dering consisting of type 1 vertices has the least frustration between dipoles, and
thus the least stray field, which again gives the weakest contrast. The gray low
contrast regions will still have a pattern, with slightly darker/brighter contrasts
around each end of the individual magnets, as seen in figure 2.11. Discrepancies
from this low contrast pattern will indicate a type 2 or 3 vertex. A type 2 ver-
tex indicates a domain wall or multiple magnet defects, and have to appear in
connection with edges or other type 2 or 3 vertices. A type 3 vertex can appear
either in connection with type 2 vertices, or in pair with another type 3 vertex of
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Figure 2.11: A simulated MFM image of a square ASI. The purple circle is a type
1 vertex, the green is type 2, the blue is type 3 and the orange is type 4. Simulated
using mumax3[24].

opposite contrast. Two type 3 vertices of opposite contrast indicate that a single
magnet has switched magnetization, which is known as a single magnet defect.
A change in contrast is expected to be seen along the edges of the donut, where
there is one or two less magnets in each vertex. These incomplete vertices will
have similar contrast to alternating type 3 vertices, with every other vertex being
bright or dark, and with contrast similar to type 2 vertices on the corners. Type
4 vertices are energetically unfavorable, and are therefore highly unlikely to be
observed physically in square ASI.

2.6 Annealing ASIs

Forcing an ASI into its ground state can be challenging, but one way of doing
it is through annealing. Annealing is the process of heating up a material and
then cooling it down, usually with a goal of changing its structure or behavior.
The thermal energy reduces the energy barrier needed to switch magnets, and
thus makes it easier to relax systems into a ground state. The thicker the magnets
in an ASI, the more energy is required to flip the magnets, and thus the higher
temperature is needed to reach a ground state[25].





Chapter 3

Methods

3.1 Design of modified donut structure

Two ASI structures were investigated in this project; a "donut" and a "modified
donut". The basis of the structures is an n × n regular square ASI comprised of
stadium-shaped magnets with lateral dimensions of 220×80 nm. The donut was
constructed by removing a k × k (where k = a/3) square ASI from the center of
the n× n square ASI, creating a square hole in the center of the original ASI and
ending up with a square annulus-like structure, as shown in figure 3.1a.

To make the modified donuts, a structural lattice defect was introduced by re-
moving one column of vertical and horizontal magnets from the top central square
of the donut. The magnets left in the top square were then shifted horizontally to
keep an even horizontal lattice spacing throughout the region. An example of a
modified donut is shown in figure 3.1b, with the modified lattice spacings shown
in table 3.1. This design was originally developed during the project report work
in the fall of 2022[1].

The geometry of the modified donut makes it impossible to have a uniform
ground state without a domain wall present, as shown by Drisko et al[18]. Theor-
etically, if there are multiple domain walls crossing from the inner square to the
outer rim, these have to appear in an odd number. This "parity rule" also holds

Top square pitch [nm] Top square nearest spacing [nm]
Regular donut 295 305 30 37

12× 12 393.3 406.7 68.5 76.8
24× 24 337.1 348.6 45.4 53.0
36× 36 321.8 332.7 39.5 46.9
72× 72 307.8 318.3 34.2 41.5

108× 108 303.4 313.7 32.6 39.8

Table 3.1: Horizontal pitch and nearest neighbor distance in the modified region
in modified donuts for given sizes and regular lattice spacings.

19
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k

(a)

n

(b)

Figure 3.1: (a) A square ASI regular donut and (b) a square ASI modified donut.
The modified region is highlighted in both structures. The size of the structures
n and an introduced size adjustment factor k = n/3 are shown. For this specific
structure, n= 12 and k = 4.

for the structure without the lattice defect, where the number of domain walls
always has to be an even number. A possible ground state of the defect region of
the structure is shown in figure 3.2.

But how can there be one domain wall and only one domain at the same time
- when a domain wall per definition is a wall between two domains? Or equally,
how can there be two different domains on either side of the domain wall, when
the domains that look to be different at the domain wall at the same time are con-
nected and part of the same domain everywhere else? To better understand this,
one can consider a Möbius strip[18]. If each length unit of the strip is represented
by a vector with a direction perpendicular to the strip surface, the local variation
between vectors will be minimal. However, at one point of the strip two vectors
pointing the exact opposite way will be adjacent to each other. In the same way,
a square ASI structure with a topological defect can be in one antiferromagnetic
ground state ordering throughout, except for one domain wall.

3.2 Simulations

flatspin[8] simulations were performed to gain an understanding of the effect of
an applied magnetic field on modified donuts. Simulations were performed on
three systems; a rectangular 24 × 8 square ASI, a 24 × 24 regular donut, and a
24 × 24 modified donut. Donut simulations with high αs were done using the
NTNU computing cluster IDUN[26].

The donuts were made using the CustomSpinIce class, with the SquareSpi-
nIce class as a basis for the positions and angles. In the modified donut, the lattice
spacing of the top square was modified to include one column less of horizontal
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Figure 3.2: The top region of a modified donut with a topological defect caus-
ing an interruption in the antiferromagnetic ordering of clockwise and counter-
clockwise loops.

and vertical magnets while still keeping an even lattice spacing throughout the
region.

An adjustable factor k = n/3 was included so that the size of the structure
could be easily adjusted. k corresponds to the number of magnets along the edges
of the inner square hole. The resulting geometry was exported as two files, one
containing position and one containing angles, which were used to create the
mask used in patterning the physical sample. These files were made during the
project report work done in the fall of 2022[1].

The magnetic configuration of the modified donut is expected to contain at
least one domain wall, as shown in figure 3.2. Thus, the ground state of this struc-
ture is initialized with one domain wall. Ideal placements of this domain wall is
determined through simulations.

The goal of the simulations is to look into the behavior of domain walls in
donuts under the influence of an applied field. This is done by initializing both
structures with either one or two domain walls, and applying field protocols.

3.2.1 Triangular field protocol

To facilitate switching of the magnets in the square ASI structure, a flatspin en-
coder called AngleTriangle was utilized[8]. This encodes the input field as the
angle of a triangle wave global field. The encoder has a constant field magnitude
H, and scales between two defined anglesφ0 andφ. A timestep parameter decides
the number of repetitions of the applied field. In this work, the encoder was given
angle input corresponding to ± 22◦ degrees of a given angle θ . These specific
angles are chosen to minimize the field needed to switch the magnet, according
to its Stoner-Wohlfarth astroid, shown in figure 2.9. θ+22◦ will either correspond
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Figure 3.3: A triangular field protocol applied at a 45◦ ± 22◦ angle with two
timesteps and a maximum field strength of 113 mT.

to a vertical or horizontal magnets’ easiest switching axis, and θ−22◦ will corres-
pond to the differently oriented magnets’ easiest switching axis. This "triangular
field protocol" is shown in figure 3.3 for a field of 113 mT and an angle of 45◦ ±
22◦.

3.2.2 Visualization

The standard flatspin plot shows all the magnets as color-coded arrows pointing
along the direction of the magnetization. Antiferromagnetic systems are difficult
to visualize using only this technique, as the images look very chaotic. Usually this
is solved by plotting the magnetization of vertices. Vertices are found using grids
defined on the structure. In the modified donuts this is problematic, as the lattice
spacing in the modified region is not equal to the rest of the structure. One pos-
sible plotting technique that does not rely on even lattice spacing is visualization
based on photoemission electron spectroscopy, where the magnitude of magnet-
ization of each magnet in a certain direction (here: 45◦) is plotted on a greyscale
with vectors indicating the direction. This technique works well for curved do-
main walls, but straight domain walls can be challenging to spot. Voronoi plots
plot the magnets as a vector pointing in the direction of magnetization, like the
two other techniques. In addition, the dipolar fields from neighboring magnets
are plotted using the backround of the region closest to each magnet. Different
colors correspond to different directions of the field, and intensity corresponds
to magnitude of the field. Voronoi plotting is not a linearly dependent operation,
and will therefore not fail in the region with the adjusted lattice spacing. The three
visualization techniques are shown in figure 3.4. Voronoi plots are used going for-
ward, as they clearly highlight domain walls when they are both regularly and
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(a) (b) (c)

Figure 3.4: A 24×24 donut with two diagonal domain walls visualized using dif-
ferent methods. In (a), the standard flatspin format plotting each magnet as an
arrow in one of four different colors corresponding to the direction of magnetiza-
tion. (b) uses a photoemission electron microscopy (PEEM) inspired visualization.
(c) uses a voronoi plot depicting the dipole field of the surrounding magnets.

irregularly shaped.

3.2.3 Determining the critical field

A critical field Hcr is defined through simulations for a given structure, size, angle
and α. First, a region of interest of field values is found by determining the field
strength needed for the first magnet to flip, and the field strength needed to polar-
ize the structure. Then, simulations are run for this region in increments of 1 mT.
The field value where magnets that are not connected to the domain wall or at
the edges start to flip is the critical field value Hcr.

3.2.4 Preliminary simulations

Preliminary simulations were performed to determine which α would result in
the most movement of the domain walls before the magnets in the ground state
domain(s) started to switch. Simulations were run on a rectangle made up of a
regular square spin ice initialized with one domain wall and αs stretching from
0.0005 to 0.003 in increments of 0.0005, plus an additional first alpha of 0.0001.
A field protocol with a triangular field switching back and forth between 45◦±22◦

was applied to the structure. For each simulation, the critical field was determined.
All simulations are shown in appendix 2.

3.3 Sample fabrication

The sample used for most results presented in this thesis is hereafter known as
sample B. Its design was made by Ida Breivik using position and angle data from
the performed flatspin simulations. The physical samples were fabricated at NTNU
NanoLab by Ida Breivik using an Electron Beam Lithography process, as described
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in section 2.4. The magnets were fabricated in permalloy on top of a silicon sub-
strate. The stadium-shaped magnets were 220× 80× 25 nm.

20 different structures were fabricated on sample B, ten regular and ten mod-
ified donuts, of sizes 12×12, 24×24, 36×36, 72×72 and 104×104, with a pitch
of 295 and 305 nm. This corresponds to the closest spacing between the nearest
neighbor magnets being 29.6 nm and 36.7 nm respectively.

Another sample with slightly different sample design was made by Anders
Strømberg for the project report work done during the fall of 2022[1]. These
samples were exposed in the fall of 2022. One of the remaining samples was
metallized in January of 2023 to be used in this project. The sample, hereby known
as sample A, was fabricated using a similar procedure to sample B, except for the
different sample design and structures included, and that the size of the magnets
was 220× 80× 10 nm.

3.4 Magnetic force microscopy

3.4.1 Image acquisition

Two samples were studied using MFM. All MFM measurements were performed
at room temperature. Each sample was glued to a sample holder with electrical
contacts using silver glue, to ground the sample. When the sample was mounted
in the MFM, the structures had to be found. An approximate position of the sample
was found by moving the piezo stage so that the alignment marks pointing out the
structures on the sample lined up underneath the cantilever. The exact position
was found by imaging an area and analyzing the structures found in the area. To
find structures within the field of view of the microscope, two techniques were
employed; either, MFM scans with low resolution and fast scan speeds were used,
or the tip was dragged across the field of view in contact AFM mode in different
directions, while the live feedback loop was being used to determine where the
structures are.

A selection tool was used to select the size and placement of the scan region.
The scan speed decides how fast the cantilever moves across the sample, and is
set for each scan. In MFM mode, the tip is not in contact with the sample, and can
therefore be set at a high speed, especially for high lift heights. In AFM contact
mode, the tip operates close to the sample, and must therefore be set to a lower
speed than in non-contact mode to avoid the tip crashing into the sample. Speeds
of 1 µms−1 to 2 µms−1 were utilized in this project.

After the desired sample area was found, preliminary scans with a high lift
height and low resolution were performed to scout for possible defects and to
determine what a safe lift height would be. This was usually done at about 120 nm
to 180 nm lift height with a speed of 10 µms−1 to 12 µm s−1, and a resolution of
150×150 pixels. When the proper imaging area was chosen, the selected area was
slope compensated. Final scans were performed at a lift height of 60 nm to 120 nm,
depending on what was determined to be safe, with a resolution of 400 × 400
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pixels and a speed of 6 µms−1 to 10 µms−1.
Multiple steps were taken to maximize contrast and quality of acquired MFM

images. A bias was applied to adjust the optical path distance from the cantilever
to the interferometer so that any change in the cantilever height would induce the
largest possible change in the measured interferometric distance. This was done
through dithering, by analyzing the change in amplitude depending on the applied
bias. The working point was set to the steepest point, which corresponds to one of
the midpoints on the sinusoidal-like curve. In addition, the cantilever excitation
frequency was adjusted to be as close as possible to the resonance frequency of the
cantilever, giving a higher amplitude for the applied excitation voltage. A z-axis
spectroscopy scan was performed to find the exact moment the tip is brought into
contact with the sample. To avoid crashing into the sample, the working point was
set to 80% of the amplitude of the cantilever when it is not in contact with the
sample.

3.4.2 Image processing

Gwyddion[10] was used to process the raw images when needed. Uneven back-
grounds were removed by mean plane subtraction, and the rows were aligned
using either a median or linear fit method, depending on what gave the best
alignment. GIMP[11] was used to crop and rotate images, and to highlight or
mark specific areas.

3.4.3 Quantization of data

To extract quantized data from the images, features were counted so they could
be plotted against each other. Four main types of feature were counted: Domain
walls stretching from the hole in the middle to the outer edge, domain walls that
either bite their own tails and form a loop or start and end at the edges, magnet
defects in the modified region, and magnet defects in the entire structure. Magnet
defects are type 2 or 3 vertices not connected to a domain wall, or type 3 vertices
connected to a domain wall. This definition is used so that domain walls, which
consist mainly of type 2 vertices, can be counted separately. If there are multiple
type 2 vertices close to each other, but no ground state region between them, they
are counted as magnet defects.

3.5 Annealing procedure

An annealing protocol was performed to relax the investigated ASI structure. The
sample was removed from the sample holder and put on a hot plate. The hot plate
was heated to 300◦C, and kept at that temperature for 4 minutes. After annealing,
the sample was removed and put on a room tempered metal slab to cool. When the
sample reaches room temperature, it was mounted back on the sample holder and
reinstated in the MFM. Initial imaging after annealing showed minimal change, so
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the sample was dismounted again and annealed at 400◦C for 5 minutes, followed
by cooling on the tempered metal slab.
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Results and discussion

4.1 Preliminary simulations

Preliminary simulations were performed on a rectangular 24 × 8 square ASI, to
determine the ideal working αs for maximum domain wall movement.

An initial disorder of 5% was tested for square ASI simulations. For small sys-
tems, the presence of disorder made it difficult to know whether the domain wall
had been moved, or whether random disorder switching was the cause of magnets
close to the domain wall switching. Simulations were therefore performed with
0% disorder for the results presented in this thesis.

4.1.1 Initializing the domain wall

The three simulated systems, a 24×8 square ASI, a regular donut and a modified
donut, were initialized to contain one (square ASI and modified donut) or two
(regular donut) domain walls. In the square ASI, the domain wall was initialized
vertically between the 11th and 12th magnet, as seen in figure 4.1a. The initial
domain wall was made up of type 3 vertices.

A field was then applied to an initialized square ASI with α = 0.002. The
field was applied using the triangular field protocol at 135◦ ± 22◦, and increasing
the field by 1 mT for every simulation run. At 69 mT, single magnets close to the
domain wall started to switch. At 73 mT, the domain wall shifted to the state
shown in figure 4.1b, where the domain wall now consisted of only type 2 vertices.
At 90 mT, central magnets started to switch. Excluding the edge magnets, the
shape of the domain wall was still the same as the one shown to the right in figure
4.1b until central magnets started to switch. Similar procedures were performed
along both diagonals in both directions, namely 45◦ ± 22◦, 225◦ ± 22◦ and 315◦

± 22◦, all showing a similar slight initial movement of the domain wall relaxing
into a type 2 domain wall.

The goal of the simulations were to move the domain wall away from its re-
laxed state. As the domain wall relaxed away from the first initialized state, the
new type 2 domain wall configuration shown in figure 4.1b was used going for-

27
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(a) (b)

Figure 4.1: (a) The first initialized domain wall in a sqare ASI, consisting of type
3 vertices marked with orange circles. (b) The domain wall after a field of 79 mT
has been applied at at 45◦ ± 22◦, consisting of type 2 vertices marked with blue
circles.

ward as the initial state, so that any deviation can be assumed to correspond to
an increase in frustration. Type 2 vertices have lower energy than type 3 vertices,
and so the observed relaxation into this configuration is expected. A type 2 initial
ground state configuration was also used for simulating donuts, due to the relaxed
type 2 domain walls found in the preliminary simulations.

4.1.2 Coupling constant (α)

Preliminary simulations that were performed on a 24×8 square ASI to determine
the ideal working α are presented in figure 4.2. Movement of the domain wall was
measured relative to the expected ground state shown in figure 4.1b. Movement
was quantized by counting the horizontal distance in magnets at two points; from
the flipped spin furthest away from the initialized domain wall that was still con-
nected to the domain wall, and from the place the domain wall crossed the middle
row of the structure. A schematic representation of the movement measurement
is shown in figure 4.2b.

Simulations were performed using a 45◦ ± 22◦ triangular field protocol. For
each α, a run of simulations were performed. The critical field value for the simu-
lated αs are shown in table 4.1. The movement of the domain wall was defined as
the amount of movement present after applying field values just below this critical
value.

From the results presented in figure 4.2, it seems like a larger α will lead to
more movement of the domain wall under the influence of an applied magnetic
field. However, this comes at a large energetic cost, as a higher α requires a higher
applied field to switch magnets.
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(a) (b)

Figure 4.2: (a) Amount of shifting of a domain wall depending on the coupling
parameter α. (b) shows how the two movements of the domain wall is measured,
by overlaying an image of a moved domain wall over the initial wall. The max-
imum movement is the number of magnets between the flipped magnet furthest
away from the domain wall that is still connected to the wall, and the initial-
ized domain wall. Middle movement is the number of magnets from the place
where the domain wall crosses row 4 to the initialized domain wall. Simulations
were performed on a 24×8 magnet regular square ASI, and the applied field was
113 mT following a triangular field protocol applied in the 45◦ ± 22◦ direction.

Coupling constant Critical field [mT]
0.0001 77
0.0005 80
0.001 83
0.0015 96
0.002 103
0.0025 106
0.003 114

Table 4.1: Critical field Hcr for a 24× 8 square ASI with different coupling con-
stants.
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(a) (b) (c)

(d) (e)

Figure 4.3: (a) A 24× 24 donut initialized with two domain walls along the 45◦

diagonal. (b) The initialized donut after an applied field of 113 mT applied at a
45◦ ± 22◦ angle. (c) The initialized donut after an applied field of 113 mT applied
at a 135◦ ± 22◦ angle. (d) The initialized donut after an applied field of 113 mT
applied at a 225◦ ± 22◦ angle. (e) The initialized donut after an applied field of
113 mT applied at a 315◦ ± 22◦ angle.

4.2 Donut simulations

The critical field value Hcr of a 24×24 regular donut with α= 0.003 was determ-
ined to be 113 mT from similar simulations as in section 3.2.3. A 113 mT field was
applied along both diagonals and in both directions, namely 45◦ ± 22◦, 135◦ ±
22◦, 225◦ ± 22◦ and 315◦ ± 22◦. The initial domain wall aligned along the 135◦

or 325◦ diagonal is shown in figure 4.3a. When applying the triangular field pro-
tocol in the 45◦ ± 22◦ direction, the domain walls flipped 90◦ and aligned with
the 45◦ diagonal, as seen in figure 4.3b. When a field was applied in the 315◦ ±
22◦ direction, the domain walls observed aligned with the 315◦ diagonal, as seen
in figure 4.3e. Similar diagonal alignment were seen for the 135◦ ± 22◦ and 225◦

± 22◦ field directions as seen in figure 4.3c and 4.3d. It seems like domain walls
tend to align in the direction of the applied field.

Similar simulations were performed on the modified donut, with the domain
wall initialized along the lower right diagonal as seen in figure 4.4a, but the large
lattice spacing in the modified region made moving the domain wall more diffi-
cult. As the critical magnetic field Hcr value where magnets started to switch was
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(a) (b) (c)

Figure 4.4: (a) A 24×24 modified donut, initialized with one domain wall along
one side of one of the diagonals. (b) The initialized donut after an applied field
of 112 mT applied at a 45◦ ± 22◦ angle. (c) The initialized donut after an applied
field of 113 mT applied at a 45◦ ± 22◦ angle.

much lower in the region with larger lattice spacing, the domain wall was slightly
widened, but did not move before the critical value of 102 mT was reached. The
shape of the domain wall stayed the same until the entire modified region was
polarized, which can be seen in figure 4.4b. When increasing the field further, the
domain wall would shift. A new critical value Hcr-mod was defined as the value
when magnets outside the region with larger lattice spacing started to switch.
This new critical value of 113 mT equals the critical value of the same size regu-
lar donut having the same α. Applying the higher critical field Hcr-mod needed to
move domain walls in the regularly spaced region polarized the modified region,
making it impossible to track domain wall movement in this region. Going for-
ward, the critical field value will refer to Hcr for regular donuts, and Hcr-mod for
modified donuts.

The creation of new domains was seen close to the critical value for both the
regular donut (figure 4.3) and the modified donut (figure 4.4). This is interest-
ing, as inducing domain walls in a structure could be another way to reach more
magnetic states. However, multiple domain walls appearing at a single 1 mT in-
crement makes it challenging to design a protocol to controllably set magnetic
states.

An α as high as 0.003 is not physically realizable due to limitations in fabrica-
tion. It is possible that the domain wall creation happens because of the artificially
high α. As mentioned, high α leads to more switching before the critical field is
reached. If so, this behavior is unlikely to appear in physical systems unless fab-
rication techniques improve, making it possible to realize higher αs.

Multiple field protocols were tested, listed in appendix 2. Although some of
the simulation protocols shifted the domains and the domain walls, and even
created new ones, it proved difficult to control the movement through a specific
protocol. In the future it would be helpful to simulate on larger systems with some
introduced disorder, and with a physically realizable α.
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(a) (b)

Figure 4.5: SEM images of 108× 108 donut structures. (a) Donut from sample
A with a pitch of 325 nm. Infield is a zoomed in image of the same structure. (b)
Donut from sample B with a pitch of 305 nm.

4.3 SEM imaging

Two samples, sample A and sample B, were investigated, mainly using MFM. Scan-
ning Electron Microscopy (SEM) images were acquired after fabrication. There are
significant differences between the single magnets in the two ASI structures, as
seen in figure 4.5. Figure 4.5a show differences in contrast across each magnet,
while the magnets in figure 4.5b are more uniform.

The irregularities seen in sample Awere also seen in SEM images of the samples
metallized for the project report work in October 2022[1]. The uneven intensity
across the magnets suggests a difference in height or composition of the magnets.
As all samples exposed and developed in the same batch showed the same types
of irregularities, it seems likely that the irregularities appeared before the metal-
lization step. As sample A was exposed and developed as part of the sample batch
created for the project report in October 2022[1], the resist was quite old when
metallization and lift-off was performed in January 2023. It is possible that there
were remaining pieces of resist left in the exposed areas after exposure. If so, the
permalloy would get deposited unevenly on top of this. Dust could possibly have
contaminated the surface, or it is possible that something happened during metal-
lization. The samples from the first batch were metallized at different times, and
thus it seems unlikely that the same metallization contaminations would affect
both samples. After metallization, the sample could have been oxidized. Oxid-
ation takes some time, and because of the relatively short time frame between
metallization and preliminary imaging, this seems unlikely too.
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(a) (b)

Figure 4.6: (a) MFM image of a 36 × 36 modified donut from sample A. (b)
Simulated MFM image of a 36×36 regular donut with random magnetization in
all magnets. Simulated using mumax3[24].

4.4 MFM imaging

4.4.1 Sample A

The sample was analyzed using MFM, but the resulting images showed diffuse
contrasts across the sample, as shown in figure 4.6a. The contrast is not periodic
enough to suggest a ground or polarized state. The seemingly random dispersion
of weak magnetizations suggest that the magnets are highly irregular, and thus
exhibit no uniform magnetic state. The obtained image is compared with a sim-
ulated MFM image with random magnetization, leading to magnets no longer
being single-domain, shown in figure 4.6b. The images shows a similar type of
ordering, which might suggest that the magnets are not monodomain.

To investigate this further, height profiles were extracted from AFM images
of the structures. These are shown in figure 4.7. The irregular height profile of
sample A could explain the random magnetization, as height difference in itself
would give variations in contrast due to the dipolar coupling scaling with r3 and
thus being weaker when the tip is further away from the sample. It is also possible
that the loss of uniformity would make the small magnets form multiple magnetic
domains both within and out of the x y plane, as the samples are no longer purely
uniaxial. As the height of the magnets in sample A is comparable to sample B,
it is likely that most of the magnetization will still be pointing along the easy
axis. Because of the coarse structure on the surface, it is however possible that
there are small local variations in magnetization. Depending on the origin of the
irregularities, the permalloy could be strained. All of these things would lead to
changes in the local magnetization, and thus change the dipole-dipole interactions
between the sample and the tip.
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(a) (b)

Figure 4.7: Height profiles across different magnets from (a) sample A and (b)
sample B. Acquired using AFM.

(a) (b)

Figure 4.8: MFM image of a 108 × 108 donut with a pitch of 295 nm (a) from
sample A and (b) from sample B.

As the magnets were showing such highly irregular behavior, sample A could
not be used for analysis of domains. A second batch of samples were fabricated,
and these looked much more promising. Sample B from the second batch was
used for all the following analysis.

4.4.2 Sample B

Sample B was fabricated to replace the irregular sample A. There was an im-
mediate difference in magnetic contrast between the two samples, as shown in
figure 4.8. Where sample A appeared to have random magnetization, sample B
had mostly ground state ordering, with some domain walls and defects breaking
up the ordering. Preliminary flatspin simulations presented in figure 4.2 showed
that a higher α would be beneficial for the movement of domain walls, and so
the samples were made to be thicker than the previous batch (25 nm compared
to the previous 10 nm) to increase α. Using equations 2.8 and 2.9, and an MS
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(a) (b)

Figure 4.9: Acquired MFM images of the 24×24 (a) regular donut and (b) mod-
ified donut, both with a pitch of 295 nm.

of 860 × 103 A/m for permalloy, this corresponds to an estimated α of 0.00147
for the donuts with lattice spacing of 295 nm, and 0.00133 for the donuts with
lattice spacing 305 nm. Adjusting for physical impurities such as the magnets not
being dipoles based on experiences in the research group, α can be estimated to
be 0.0023 for the donuts with lattice spacing of 295 nm, and 0.0021 for the donuts
with lattice spacing 305 nm. Both of these estimations are significantly lower than
the simulated alpha of 0.003. α will be even smaller for the modified regions with
increased lattice spacing.

The sample consists of twenty structures, half being regular donuts and half
being modified donuts. In figure 4.9, two donuts with the same size (24×24 mag-
nets) and lattice spacing (295 nm) are shown. The only difference is the modified
region. The change in lattice spacing in this region can be seen in the change
of contrast in the upper central region in image 4.9b. The modified region has
more contrast due to the dipole-dipole energy between the magnets and the tip
being stronger when the magnets are further apart. A larger distance leads to less
frustration between the stray fields of the magnets, and thus a larger stray field,
which in turn will lead to stronger dipole-dipole interactions between the tip and
the sample and give more contrast.

When acquiring MFM images, sample B required slightly higher slope com-
pensation than sample A in the x direction. Along the y axis, the slope compens-
ation had flipped. Where negative compensation was needed for sample A, it was
necessary to use positive compensation for sample B. This change in slope could
be because old silver glue residue from the former sample was not removed prop-
erly before attaching the new sample.
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(a) (b)

Figure 4.10: Number of domain walls stretching from the central hole to the
edges in different sized (a) regular donuts and (b) modified donuts, with two
different lattice spacings, 295 nm and 305 nm. Note that the number of domain
walls is always even for regular donuts and odd for modified donuts. Counted
from MFM images, all of which are shown in appendix 1.

4.4.3 Domains and domain walls

There are multiple domains in all structures imaged in this work. The lack of
ground state order can come from a multitude of things, including external fields
from surroundings, contaminations, defects, physical shape variations of the mag-
nets or temperature influences.

Figure 4.10 shows the number of domain walls stretching from the inner
square to the outer rim in each structure. The number of domain walls was pre-
dicted to always be an even number for the regular donuts and an odd number for
the modified donuts, which is also seen in figure 4.10. Structures with larger lat-
tice spacing seem to form more domain walls than structures with smaller lattice
spacing.

Figure 4.11 shows the simulated and the experimental image of a 12 × 12
regular donut. The ground state ordering can be seen throughout most of the im-
age, with two domain walls and some single-magnet defects along the edges or
connected to the domain wall breaking the ordering. The domain walls separat-
ing the two domains consist almost exclusively of type 2 vertices, except for one
type 3 vertex below the square hole. The upper domain wall winds a bit back
and forth, while the domain wall in the lower right corner follows a straight di-
agonal. The image has been shaded corresponding to the two different magnetic
domains present in the structure. The blue domain of the experimental image (fig-
ure 4.11b) has the same degenerate ground state as the simulated ground state
in figure 4.11a. This can be seen by for example comparing the lower edge. The
alternating black and white contrast regions are similar along the lower edge,
but when passing the domain wall on the right side into the orange domain, the
parity switches and the alternating black and white regions are now opposite of
the simulation. This clearly exemplifies the difference between the two possible
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(a) (b)

Figure 4.11: (a) Simulated and (b) experimental MFM image of a 12×12 regular
donut with a pitch of 295 nm and a lift height of 120 nm. The two domains in (b)
are highlighted in different colors. Simulations were done using mumax3[24].

domains; the domains are equivalent, they are just shifted one magnet compared
to each other.

The ground state ordering in the experimental images is not identical to the
simulated MFM image. In the experimental images, the magnetization seem to
"bleed" more, that is, fills in the regions between the vertices. This behavior could
stem from a number of things, including low resolution due to the tip, local differ-
ences in magnetization stemming from the magnets not being completely single-
domain, distortion, external vibrations and disturbances.

Figure 4.12 shows a 72 × 72 regular donut, shaded with colors correspond-
ing to different domains. In the image there are domain walls stretching from the
outer edge to the inner square, as well as domain walls starting and ending at the
edge of the structure. There is an important difference between the two: Domain
walls stretching from the inner square to the outer edge have to obey the previ-
ously mentioned parity rules, while domain walls starting and ending up on the
same edge add an even number of domain wall nucleation sites to the rim that
they are attached to. Thus, if there is already an odd number of walls connected
the number will still be odd, and if there is already an even number it will still be
even, and there is no issue with parity.

For some of the smaller domain walls residing along the edge in figure 4.12
it can be difficult to separate them from clusters of singular defects. In this work,
the chains of type 2 vertices were not defined as domain walls if they did not
encompass any ground state area. These were therefore not colored in the figure.

Studying the bottom line of the empty square in the middle more closely, an
almost perfect pattern of every second dot being black and white emerges, with



38 G. Holm: Domains in modified square artificial spin ice

Figure 4.12: As-grown images of a 72× 72 regular donut, highlighted to show
the different domains.

the exception of a double black dot where the domain wall attaches to the central
square edge. The other sides and the external edge are more irregular, but as this
is a regular donut with no lattice defect, the total number of discrepancies from
the expected ordering along the inner edge must be an even number.

Figure 4.13 shows an image of the 108×108 modified donut. There are three
different colors needed to color the regions, even though there are only two types
of domain present. This is due to the topological lattice defect, as explained in
section 3.1. The modified region can be thought of as a bridge, connecting the
two domains but not being part of either, and simultaneously being part of both.

The different lattice spacing and the transition area is hard to spot in larger
structures compared to smaller ones. In a 108× 108 modified donut with an ori-
ginal lattice spacing of 305 nm, the lattice spacing in the modified region will be
314 nm. This 9 nm difference in lattice spacing is small and thus hard to spot.
There are 3 domain walls stretching from the inner square to the outer rim in this
structure, which is a sign that there must be a lattice defect present.

The smallest donuts are made of 12×12 magnets. The modified region is much
clearer in these images, as can be seen in figure 4.14. For the 12× 12 donut with
a lattice spacing of 295 nm, the modified lattice spacing becomes 393 nm, while
the 12 × 12 donut with 305 nm lattice spacing has a modified lattice spacing of
407 nm, as shown to the left in table 3.1. As the differences are approximately
100 nm, it makes sense that these regions will have a much larger impact than
they do in the larger structures, where the difference can be as low as 8.4 nm.

The larger contrast makes it more challenging to immediately decide whether
there is a domain wall present or not. From the parity rule we know that there
must be an odd number of domain walls present in the structure, and since there
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Figure 4.13: As-grown MFM image of a 108× 108 modified donut, highlighted
to show the different domains.

are two clearly shown domain walls in both images, it is expected that there is
either one or three domain walls in the region with changed lattice spacing. Al-
though it is not trivial to immediately spot the domain wall(s), the types of vertices
are still recognizable. By analyzing these, it becomes clear that the structure with
a pitch of 295 nm shown in figure 4.14a has one domain wall, while the structure
with a pitch of 305 nm shown in figure 4.14b has one regular domain wall, and
two rows of type 2 vertices right next to each other.

For most donut sizes, there are more domain walls in the modified than in the
regular donuts, with one exception, as shown in figure 4.15. The total number of
domain walls across sizes is still significantly higher in the modified structures. The
difference between the total number of domain walls is 13, which corresponds to
1.3 domain walls extra per modified structure, on average. As the modified donuts
must have at least 1 domain wall, as opposed to the regular which may have 0, it
seems reasonable that the average difference in number of domain walls should
be close to 1. The remaining 0.3 could correspond to domains being more easily
created in the modified region due to the larger lattice spacing.

The domain walls are mostly diagonal, however, some smaller regions are ho-
rizontal or vertical. Figure 4.16a shows a segment of a 36×36 modified donut that
has both diagonal and vertical domain wall sections. Primarily diagonal aligning
with a few vertical sections interfering was also seen in simulations.

Domain walls consist primarily of type 2 vertices. These have a net magnetiz-
ation pointing in a diagonal direction, as seen in figure 4.16. The large proportion
of type 2 vertices in a diagonal ordering compared to horizontal or vertical order-
ing are pointing to this being a preferred aligning. It would make sense that the
aligning in figure 4.16c would be less energetically favorable than the aligning
in figure 4.16b, since the magnetic moments are tilted, and thus more frustrated.
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(a) (b)

Figure 4.14: A 12×12 modified donut with a pitch of (a) 295 nm and (b) 305 nm.
Both are highlighted with green circles encompassing type 2 vertices and blue
circles encompassing type 3 vertices in and around the modified region.

Figure 4.15: Number of domain walls in regular and modified donut structures.
Both domain walls spanning from the inner hole to the outer edge and looping
domain walls are counted. The total number of domain walls in the regular donuts
are 51, and the modified donuts contain 64.
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(a) (b) (c)

Figure 4.16: (a) A segment of a 36× 36 modified donut. Two domain wall con-
figurations are highlighted; to the left, a blue diagonal domain wall, and to the
right, an orange vertical domain wall. Schematic representations of the magnetic
moments of type 2 vertices of a (b) diagonal and (c) vertical domain wall are
shown. Note that the vectors represent the magnetic moment of the type 2 ver-
tices, not of the individual magnets.

This can be visualized by comparing the distance between the similar end of two
different vectors. In the diagonal configuration, these repulsing ends will be fur-
ther away from each other than in the vertical configuration, thus leading to less
frustration.

All images obtained show a variety of defects. Figure 4.17 shows the correla-
tion of number of defects and number of domain walls for all as-grown structures.
The plot shows a clear correlation between the number of domain walls and the
number of defects in a sample. A concrete example can be seen in figure 4.12,
where multiple type 3 vertices can be seen in the domain walls. A smaller num-
ber of single-magnet defects can also be seen in the ground state ordered regions.
Finding most of the defects in the domain walls was expected, because the energy
barrier to change a type 2 vertex to a type 3 is much lower than changing a type 1
vertex to a type 3. The correlation plot shows that this holds for the obtained data.
Both domain walls and defects arise from magnets having switched compared to
the ground state. An important difference is that domains in as-grown samples
have local ground states. If parts of a sample was initialized in one of the two de-
generate ground states, and another part was initialized in the other ground state,
the sample would have to form a domain wall between these regions. Removing
this domain wall entirely would mean that all magnets in one of the two domains
would have to switch. To remove a single-magnet defect, only one magnet has to
switch. Thus, after fabrication, changes in single-magnet defects are much more
likely than changes in the number of domain walls present.
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Figure 4.17: Number of domain walls plotted against number of defects for the
as-grown structures studied in this project.

4.4.4 Lattice spacing

The studied structures have two different lattice spacings, 295 nm and 305 nm.
The lattice spacings do not affect the dipole-dipole coupling between the magnets
directly, but an increased lattice spacing will also increase the nearest neighbor
spacing. The nearest neighbor spacing, which is the closest distance between the
two closest magnets, is related to the dipolar coupling by a power of −3, as seen
in equation 2.7.

Figure 4.18 shows the total number of defects for different sizes and lattice
spacings. The smaller lattice spacing has less defects present than the larger. This
difference gets bigger for larger structures. For the two largest structures, the num-
ber of defects is roughly half in the smaller lattice spacing, compared to the larger
spacing.

Structures with larger lattice spacing have more domain walls and defects.
This makes sense, as larger lattice spacing between the magnets give weaker
dipole-dipole coupling. Weaker coupling will mean that the magnets are less "stuck",
and thus switch more easily. The same effect was also seen in simulations of the
coupling constant α. For smaller α, a weaker field was needed to switch magnets.

In figure 4.19, the number of defects in the modified region is shown for mod-
ified and regular donuts. For given sizes, two of the structures have more defects
in the regular structure, and two have more defects in the modified structure. The
total number of defects in the modified area in modified donuts is significantly lar-
ger than the regular donut. An important point to remember when discussing the
modified region is that it is only the horizontal lattice spacing that has changed.
This means that the nearest neighbor spacing has not changed as much as when
comparing different structures with different lattice spacings. All the modified lat-
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Figure 4.18: Total number of defects for different sized donuts and different
pitch.

Figure 4.19: Number of defects in the modified region for modified and regular
donuts.
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Figure 4.20: Number of domain walls before and after annealing.

tice spacings and nearest neighbor spacings are shown in table 3.1. As mentioned,
the dipole-dipole interactions are related by r−3 to the nearest spacings. These in-
teractions are weaker in the modified region, where the magnets are further apart.
As the interactions are weaker, the magnets are more "free" to switch, as was seen
for the structures with larger lattice spacing as well.

In the 12 × 12 modified donut structures seen in figure 4.14, it can be chal-
lenging to separate the magnetic defects from the domain walls in the area with
increased lattice spacing. These two structures are therefore not included in stat-
istical representations that count the number of defects. This can for instance be
seen in figure 4.19, where the smallest structure recorded is 24× 24.

4.4.5 Annealing

After the sample was annealed at 300 ◦C for 4 minutes and then 400 ◦C for 5
minutes, changes in magnetization were observed. The overall number of domain
walls did not change much, as shown in figure 4.20. The only complete relaxing
of domain walls was seen for the largest structures imaged after annealing, the
72×72 donuts, where two domain walls disappeared. However, multiple changes
in magnet defects were observed.

A 24× 24 donut is shown in figure 4.21 with some of its changes during an-
nealing circled. The blue circles are showing relaxing motions going from higher
order to lower order vertices. These are to be expected during an annealing pro-
cess. The middle blue circle shows multiple magnet defects relaxing, and the blue
circle furthest to the left shows a single-magnet defect disappearing during an-
nealing. The orange circles are showing examples of single-magnet defects that
appeared during annealing. The blue circle to the right is showing part of a domain
wall, with changed magnetization after annealing. This change can be viewed as
the domain wall shifting upwards. It is however very possible that the change is
a single magnet switching, relaxing a neighboring magnet and thus giving the
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(a) (b)

Figure 4.21: A 24×24 modified donut with a pitch of 305 (a) before and (b) after
annealing. The blue circles denote some of the defects or domain wall segments
that disappeared during annealing, while the orange circles denote some of the
defects or domain wall segments that appeared during the annealing process.

appearance of a shifting domain wall.
Perhaps more surprising is the appearance of single-magnet defects after an-

nealing. The increase in temperature and fluctuations make switching of magnets
more likely, and is therefore done to lower the switching energy barrier for the
magnets so that they will relax into their ground state configuration more easily.
However, the increase in thermal energy of the magnets make all kinds of switch-
ing more likely. Although the appearance of single defects cannot be explained
by lowering of the interaction energy, local disturbances or random switching is
more likely under heated conditions[25].

There is a difference in contrast between the two images, where the ground
state seems to have stronger contrast in figure 4.21b than in figure 4.21a. This
does not necessarily reflect actual change in magnetization between the images.
Quantization of contrast in MFM images is almost impossible, due to external
factors influencing the measurement.

The difference in number of defects before and after annealing is shown in
figure 4.22 for six selected structures. There is a significant number of defects ap-
pearing during annealing in the structures with large lattice spacing. However, in
the structures with small lattice spacing, the trend is opposite; there are fewer de-
fects than before annealing. It is expected that less changes in defects will happen
with smaller lattice spacings, from previous discussions of α. However, the overall
reduction of defects only happening for smaller pitched structures is unexpected.
It can be theorized that a higher α might "force" a ground state, however, the op-
posite behavior was seen for simulated domain wall movement, where a higher
alpha led to more movement. It is possible that the combination of a high α and
a high temperature during annealing led to a relaxing of the structure.
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Figure 4.22: Number of defects before and after annealing for six selected struc-
tures. The structures were selected based on image quality. The structures are a
24× 24 modified donut with a pitch of 295 nm, a 36× 36 modified donut with
a pitch of 295 nm, and regular and modified 24× 24 and 36× 36 donuts with a
pitch of 305 nm.

The magnets in sample B were 25 nm thick. Thick magnets require more heat
to switch than thinner magnets. To induce more switching of magnetization from
heating at a given temperature, thinner magnets will be more suited. This behavior
was also seen for lower alphas during preliminary simulations, where a lower field
value was needed to start switching magnets with a smaller α.

Although some defects present before annealing were removed, a large num-
ber of new defects appeared. Especially curious was the high number of magnet
defects appearing along horizontal, diagonal and other straight lines, as seen in
figure 4.23. As mentioned, when annealing a sample, the expected result would
be that single-magnet defects would disappear rather than appear. In addition,
multiple single-magnet defects appearing in straight lines is not common, and en-
ergetically unfavorable. Thus, it seems unlikely that these rows of magnets would
appear from random stochastic switching of single magnets.

The magnetic tip of the MFM can be used for writing magnetic states, as men-
tioned in section 2.5, by scanning across the sample in contact AFM mode. The
observed lines do not always follow the scan direction of AFM scans. It is possible
that the observed horizontal lines can have been written during AFM scanning,
but the other lines of defects are stemming from something else. One of the tech-
niques used while looking for samples described in section 3.4.1 utilizes contact
AFM mode to look for samples while scanning in all kinds of directions. This type
of multi-directional movement matches with the lines seen in the images. The
magnet defect lines do not stretch across the sample, but rather appear and then
disappear unpredictably. If the magnet defects arise from multi-directional contact
AFM mode scans, the uneven writing would make sense, as the feedback loop is
responding to uneven changes in the material. When scanning, a low scan speed
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(a) (b)

(c)

Figure 4.23: (a) A 36× 36 modified donut, (b) a 72× 72 modified donut, and
(c) a 36× 36 regular donut after annealing. The highlighted orange areas show
sequences of single magnet defects that appeared during the annealing process.
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Figure 4.24: A 12× 12 modified donut. Image taken at a lift height of 60 nm. In
the highlighted area, there is a change of contrast across one of the magnets as
the sample is scanned.

is utilized to avoid this exact problem. When moving back and forth, however,
the MFM utilizes a slightly higher speed. This speed increase makes the move-
ment and the height of the cantilever more unpredictable, with loss of control for
the operator. The lack of control and increased speed, and the shape of the mag-
net defect rows, point to the MFM tip having induced this magnetization in the
sample. This is something to be aware of for users operating an MFM. A safer way
of searching for areas of interest is utilizing another searching technique, such as
taking quick MFM pictures at a high lift height.

Knowing that these magnet defects most likely stem from MFM tip writing,
statistics could theoretically be presented omitting these written lines, and thus
providing an accurate analysis of what happened during analysis. However, the
uneven response of the tip when being operated at such high speed, and the fact
that there are rows of three or less magnet defects seemingly stemming from MFM
writing in some of the images (shown in figure 4.23c), make it seem possible that
the tip could have written separated single-magnet defects as well. This makes
it difficult to know which magnet defects were induced by the tip. The change
in defects for the structures with a lattice spacing of 295 nm might be the most
accurate analysis, as they show no signs of writing. They show few induced single-
magnets overall, but multiple single-magnet defects that were relaxed into the
ground state. This is expected behavior during annealing procedures.

In the image of a 12×12 structure shown in figure 4.24 aquired at a lift height
of 60 nm, the orange circle highlights a magnet that has black contrast on the left
side and white contrast to the right for the first couple of scan rows. Then the
magnetization switches, and there is white contrast to the left and dark contrast
to the right. At the upper edge of the sample it then looks like the magnet switches
back. As mentioned in section 2.5, when the tip-sample separation is more than
5 nm to 10 nm, writing is not expected to occur. However, it looks like this is exactly
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what is seen in figure 4.24. Bad slope compensations and external factors such as
vibrations can make the actual tip-sample distance be lower than the lift height. As
the effect is only seen in the upper part of the figure, it seems likely that bad slope
compensation in the y direction might play a part. The MFM slope compensation
tool was found to be unpredictable at times, possibly because the sample was
mounted slightly slanted onto the sample holder.

Writing magnetization using MFM can be used as an advantage to tune samples
to wanted magnetic states, however, in this particular case it made it more diffi-
cult to correctly analyze the obtained data. A solution to the problem could be to
record the images at a higher lift height, which in turn would most likely reduce
the magnetic contrast.
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Conclusion

In this project, square artificial spin ices (ASIs) were studied, with the aim of un-
derstanding domain and defect formation in magnetic metamaterials. To analyze
domain formation, ASIs were fabricated in the shape of a square annulus. This
caused domain walls to form around the central square hole. A region with mod-
ified lattice spacing was introduced in the top central square of some of the struc-
tures. These "modified donuts" were studied both by simulations using flatspin[8]
and by magnetic force microscopy (MFM) imaging of physical samples.

Both the physical systems and the simulations showed a tendency of the do-
main walls to order diagonally, and followed a set of "parity rules": All the regu-
lar donuts had an even number of domain walls, while the modified donuts had
an odd number of domain walls. The number of domain walls in a structure was
higher for structures with larger lattice spacing and thus less coupling between the
magnets. The coupling affects the switching of magnets, in that a stronger coup-
ling makes it harder for magnets to start switching. This was shown for square ASI
structures under an applied field in simulations, and by comparing the number of
defects in physical donuts with different lattice spacing.

Simulating systems with different coupling parameters showed that a stronger
coupling made it possible to move or create domains by applying a global uniform
magnetic field across the structure. This was difficult to do controllably, and the
presence of different lattice spacings complicated the domain wall analysis.

Two samples, sample A and B, with magnet thicknesses of respectively 10 nm
and 25 nm, were fabricated for analysis. Samples were analyzed using MFM. MFM
is a practical tool for imaging small magnetic systems, however, if one is not care-
ful, the magnetized tip of the cantilever used for scanning can write unwanted
magnetic states into the material. This might interfere with other types of ana-
lysis, such as domain wall or defect counting.

The magnets in the ASIs need to be uniform enough that they exhibit monodo-
main behavior. If not, MFM analysis will show diffuse magnetic contrast, as was
the case for sample A. MFM analysis of sample B showed a range of domain walls
and defects. Single-magnet defects appear more often along domain walls and in
structures with large lattice spacing. By annealing the sample, we can relax some
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of these single-magnet defects into a ground state ordering of type 1 vertices.
More research and knowledge about ASI as a metamaterial and its possible

applications is necessary to further advance it as a candidate for physical reservoir
computing.

Further work

Initial examinations of this specific square ASI structure are promising for under-
standing frustration and domain wall properties, however, the ultimate goal of
moving the domain walls controllably by applying a certain magnitude of field
was not achieved. It is possible that this could be done by testing more field pro-
tocols and tuning parameters, however, after initial investigations this seems un-
likely. Future simulations should be performed on a larger system with disorder,
and with a physically realizable α, to more closely mimick physical systems.

Another option going forward would be to investigate physical samples more
thoroughly and applying a field, maybe even in combination with a set temper-
ature, to promote switching. Introducing the topological defect in the modified
donut structure can be done in multiple different ways. By designing the struc-
tures differently, for example by rotating magnets to compensate for missing rows
instead of changing the lattice spacing, the problems that arose from the large lat-
tice spacing can be avoided. If the goal is to have magnets switch at low applied
field strengths a thinner sample will be beneficial, while a thicker sample will give
more rich dynamics of magnetic domains under a high applied field.

The statistics presented in this paper are based on counting domain walls and
other type 2 and 3 vertices manually from the images shown in appendix 5. Stat-
istics on the number of defects were included to show trends and compare struc-
tures, which could be done since all the structures were counted in the same way.
Developing a method to analyze the types of vertices computationally could be
advantageous for future research, as it would remove the human error aspect,
as well as be more efficient for larger numbers of images. A more exact analysis
would be to base the statistics on vertices, rather than separating between do-
main walls and non-domain walls. If vertices were counted instead of defects and
domain walls, this would lead to a high count of type 2 vertices, as all the long
domain walls would be broken town into its components, which are mainly type
2 vertices. The length of domain walls is not part of the analysis done in this
thesis. For future work, it could be interesting to see what influences the length
of domain walls, and how strongly correlated it is to the number of domain walls.
Counting domain walls and defects in 20 structures that are all slightly different is
statistically a small amount of data. More data is needed to corroborate the trends
presented in this thesis, especially those pertaining to only a small number of the
investigated structures.
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Appendix 1: MFM images of sample B

(a) 108× 108 modified donut, pitch
295

(b) 108× 108 modified donut, pitch
305

(c) 108× 108 regular donut, pitch
295

(d) 108× 108 regular donut, pitch
305

Figure 1: 108× 108 modified and regular donuts with different pitches, before
and after annealing.
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(a) 72× 72 modified donut,
pitch 295

(b) 72× 72 modified donut,
pitch 305

(c) 72× 72 modified donut,
pitch 295, after annealing

(d) 72× 72 modified donut,
pitch 295, after annealing

(e) 72× 72 without defect,
pitch 295

(f) 72× 72 without defect,
pitch 305

(g) 72× 72 without defect,
pitch 305, after annealing

Figure 2: 72×72 modified and regular donuts with different pitches, before and
after annealing.
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(a) 36× 36 modified donut,
pitch 295

(b) 36× 36 modified donut,
pitch 305

(c) 36× 36 modified donut,
pitch 295, after annealing

(d) 36× 36 modified donut,
pitch 295, after annealing

(e) 36× 36 regular donut,
pitch 295

(f) 36× 36 regular donut,
pitch 305

(g) 36× 36 regular donut,
pitch 305, after annealing

Figure 3: 36×36 modified and regular donuts with different pitches, before and
after annealing.
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(a) 24× 24 modified donut,
pitch 295

(b) 24× 24 modified donut,
pitch 305

(c) 24× 24 modified donut,
pitch 295, after annealing

(d) 24× 24 modified donut,
pitch 295, after annealing

(e) 24× 24 regular donut,
pitch 295

(f) 24× 24 regular donut,
pitch 305

(g) 24× 24 regular donut,
pitch 305, after annealing

Figure 4: 24×24 modified and regular donuts with different pitches, before and
after annealing.
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(a) 12× 12 modified donut,
pitch 295.

(b) 12× 12 modified donut,
pitch 305

(c) 12× 12 modified donut,
pitch 295, after annealing

(d) 12× 12 modified donut,
pitch 295, after annealing

(e) 12× 12 regular donut,
pitch 295

(f) 12× 12 regular donut,
pitch 305

(g) 12× 12 regular donut,
pitch 305, after annealing

Figure 5: 12×12 modified and regular donuts with different pitches, before and
after annealing.
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Appendix 2: flatspin simulations

Structure Size Alpha Angle(s) Min.field Max.field
Square ASI 8 0.0001 45 76 78
Square ASI 8 0.0005 0 68 100
Square ASI 8 0.0005 45 78 80
Square ASI 8 0.001 0 70 80
Square ASI 8 0.001 45 70 80
Square ASI 8 0.001 45 79 87
Square ASI 8 0.0015 45 95 96
Square ASI 8 0.002 0 75 84
Square ASI 8 0.002 45 64 91
Square ASI 8 0.002 45 70 82
Square ASI 8 0.002 45 101 103
Square ASI 8 0.002 135 68 90
Square ASI 8 0.002 315 64 91
Square ASI 8 0.002 315+315+45 89 89
Square ASI 8 0.002 45+45+0+0+315+315 74 89
Square ASI 8 0.002 45+45+315 89 89
Square ASI 8 0.002 45+45+315+315+0+0 89 89
Square ASI 8 0.002 45+45+315+45 89 89
Square ASI 8 0.0025 45 100 110
Square ASI 8 0.003 45 110 114
Square ASI 8 0.003 135 113 115
Square ASI 8 0.003 225 113 114
Square ASI 8 0.003 135+45 113 114
Square ASI 8 0.003 45+135 113 113
Square ASI 8 0.003 45+135+225 113 113
Square ASI 8 0.003 45+135+225+315 113 113
Square ASI 8 0.003 45+225 113 113
Square ASI 8 0.003 45+225+45 113 113
Square ASI 8 0.003 45+225+45+45 113 113
Square ASI 8 0.003 45+225+45+45+45 113 113
Square ASI 8 0.003 45+225+45+45+45+45 113 113
Square ASI 8 0.003 45+225+45+45+45+45+45 113 113
Regular donut 8 0.001 45 80
Regular donut 8 0.001 45 84
Regular donut 8 0.001 45 90
Regular donut 8 0.003 45 100
Regular donut 8 0.003 45 105
Regular donut 8 0.003 45 108
Regular donut 8 0.003 45 110
Regular donut 8 0.003 45 112



Bibliography 61

Regular donut 8 0.003 45 113
Regular donut 8 0.003 45 113.5
Regular donut 8 0.003 45 113.5
Regular donut 8 0.003 45 113.56
Regular donut 8 0.003 45 114
Regular donut 8 0.003 135 113.5
Regular donut 8 0.003 225 113
Regular donut 8 0.003 225 113.5
Regular donut 8 0.003 315 113
Modified donut 8 0.003 45 100
Modified donut 8 0.003 45 101
Modified donut 8 0.003 45 102
Modified donut 8 0.003 45 103
Modified donut 8 0.003 45 105
Modified donut 8 0.003 45 110
Modified donut 8 0.003 45 112
Modified donut 8 0.003 45 112
Modified donut 8 0.003 45 113
Modified donut 8 0.003 45 113.5
Modified donut 8 0.003 45 114
Modified donut 8 0.003 135 112.1
Modified donut 8 0.003 135 112.5
Modified donut 8 0.003 135 113
Modified donut 8 0.003 135 113
Modified donut 8 0.003 135 113
Modified donut 8 0.003 225 113
Modified donut 8 0.003 315 113

Table 1: flatspin simulations run. The simulations with both min and max field
were run for all field values in between, in increments of 1 mT.
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