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Abstract

The oil and gas industry are under constant development to meet the energy needs of
the world’s population. As resources gradually get harder to recover, it is important to im-
prove the efficiency of the operations to stay competitive. An offshore drilling operation
is complex, and the trend is to increasingly move into harsher, deep-water areas to ex-
plore for, and potentially produce hydrocarbons. For water-depths surpassing 120 meters,
a floating drilling installation must be used to drill the well. A floating drilling installa-
tion is influenced by wave-induced forces that can cause significant heave, pitch, and roll
motions. The rig motions can disturb the drilling operation significantly if not properly
compensated for.

This thesis presents a Long-Short Term Memory (LSTM) artificial neural network for
predicting the heave motions of a semi-submersible drilling unit seconds ahead of time
using measurements from a Motion Reference Unit (MRU). The model is trained based
on real heave data from a rig operating in the North Sea. A Model Predictive Controller
(MPC) takes in the heave predictions and solves an optimization problem based on a rate
of penetration (ROP) model to steer and stabilize the ROP to the desired value for floating
drilling installations subject to wave-induced motions. The coefficients of the ROP model
are estimated in real time through using a least squares parameter estimation technique.

The system is implemented using Python libraries that are available to the public.
The controller performance is evaluated through two different simulation scenarios. First,
through observing parameter recommendations in open loop based on data from a real
well that has been drilled in the North Sea. Then, through connecting the controller to a
drilling simulator to assess the closed loop performance. Simulation results indicate that
the MPC can compensate for the predicted wave-induced motions by adjusting the drilling
parameters in real-time. Employing a LSTM neural network to predict heave motions sec-
onds ahead of time is a promising strategy based on the simulation results presented in this
thesis. Accurate heave predictions are a prerequisite for the proposed control strategy to
work.
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Sammendrag

Olje- og gassindustrien er under konstant utvikling for å møte energibehovene til ver-
dens befolkning. Ettersom ressursene gradvis blir vanskeligere å utvinne, er det viktig å
øke effektiviteten for å holde seg konkurransedyktig. En offshore boreoperasjon er kom-
pleks og trenden er i økende grad å bevege seg inn i mer tøffe, dype vannområder for å
lete etter, og potensielt produsere hydrokarboner. For vanndybder over 120 meter må det
brukes en flytende boreinstallasjon for å bore brønnen. Flytende borerigger påvirkes av
bølgeinduserte krefter som kan forårsake betydelig hiv, stamp og rull bevegelser. Rigg-
bevegelsene kan forstyrre boreoperasjonen betydelig hvis det ikke blir korrekt kompensert
for.

Denne oppgaven presenterer et kunstig nevralt nettverk med lang korttidshukommelse
(LSTM) for å forutsi hiv-bevegelsene til en halvt nedsenkbar boreenhet sekunder på forhånd
ved bruk av målinger fra en bevegelsessensor (MRU). Modellen er trent basert på reelle
hivdata fra en rigg som opererer i Nordsjøen. En prediktiv regulator (MPC) tar inn hiv-
prediksjonene og løser et optimaliseringsproblem basert på en modell av penetrasjon-
shastigheten (ROP) for å styre og stabilisere ROP til ønsket verdi for flytende boreinstal-
lasjoner under påvirkning av bølgeinduserte bevegelser. Koeffisientene i ROP modellen
estimeres i sanntid ved å bruke en minste kvadraters parameterestimeringsteknikk.

Systemet er implementert ved hjelp av Python-biblioteker som er tilgjengelige for
allmennheten. Kontrollerens ytelse evalueres gjennom to forskjellige simuleringsscenar-
ier. For det første scenarioet observeres parameteranbefalinger i åpen sløyfe basert på
data fra en ekte brønn som er boret i Nordsjøen. Deretter, for å vurdere lukket-sløyfe-
ytelsen til regulatoren, kobles den til en boresimulator for å studere utviklingen i ROP.
Simuleringsresultater indikerer at MPC regulatoren kan bruke hivprediksjoner til å justere
boreparametere for å undertrykke effekten av de bølgeinduserte bevegelsene. Å bruke et
LSTM kunstig nevralt nettverk til å predikere hiv-bevegelser flere sekunder frem i tid, er
en lovende strategi basert på de resultatene som er presentert i denne oppgaven. Nøyaktige
hiv-prediksjoner er en forutsetning for at den foreslåtte reguleringsstrategien skal fungere.
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1
Introduction

The demand for oil and gas is high and will continue to be a very important source for
energy in many years to come. Offshore exploration and production activities are increas-
ingly moving into waters where environmental conditions are harsher. Some prospects
have a complex geology to drill, in addition to the harsh environment encountered on the
surface. Strategies that can improve the efficiency and safety of harsh environment drilling
operations are important to be able to recover the resources cost-efficiently and without any
incidents. The drilling operation is simpler to execute if the wave-induced response of the
floating drilling installation is kept to its minimum. The rig motions are a disturbance to
the drilling process and are also challenging the integrity of the wellhead and the marine
riser.

Semi-submersible drilling units, like the one shown in Figure 1.1, have been the pre-
ferred choice for drilling in harsh environments for many years. A very low ratio be-
tween the waterplane area and mass gives great seakeeping capabilities over the frequen-
cies where the incident waves contain the most energy. Even with the perfect design, the
rig motions will be substantial under many sea states in the North Sea. The next step in
improving operations on harsh environment semi-submersible drilling units is to use the
predicted future motions in the control systems onboard to be able to drill more efficiently.
Through recent advances in drilling technology, the availability of downhole properties
measured in real-time have increased. This motivates the development of more sophisti-
cated controllers to use in the drilling operation.

The thesis is done in collaboration with Aker BP, which have provided the drilling data
used in the thesis. Aker BP have multiple harsh environment semi-submersible drilling
units on contract to drill prospects in areas ranging from the North Sea, Norwegian Sea,
including the Barents Sea. The response data from a semi-submersible drilling unit, mea-
sured by a Motion Reference Unit (MRU), have been provided by Odfjell Drilling.

1



1 Introduction 1.1 Motivation

Figure 1.1: Deepsea Nordkapp (Odfjell Drilling, 2022)

1.1 Motivation
During drilling operations from a floating drilling installation, rig motions induce drilling
instabilities such as vibrations, unstable weight on bit (WOB), issues for directional drilling
and surge-swab induced pressure oscillations. To ensure an efficient drilling operation, the
rig motions must be considered by the drilling control system, as well as in other decision-
making tools. A common strategy is to measure the rig motions with an MRU in the
drilling control system and take control action based on the measurements.

To improve performance, the rig motions can be estimated seconds ahead in time from
a wave induced response prediction model of the vessel. Knowing the heave motion sec-
onds ahead of time, a controller can therefore adjust drilling parameters based on the
predicted future motion to avoid drilling instabilities. The described system requires two
parts. The first part, a motion prediction system must be able to provide estimates of the
future motion with acceptable accuracy. The second part is a drilling model that contains
the context of the drilling operation, and that can control the drilling process.

1.2 Literature Review
The literature review carried out in the specialization project (Bjørlo, 2022) identified that
there had not been done any previous efforts in combining rig heave predictions seconds
ahead of time with rate of penetration (ROP) optimization. This section presents relevant
publications on wave-induced response predictions and drilling optimization considered
relevant for the thesis. The findings related to heave predictions are reproduced from the
specialization project (Bjørlo, 2022).

Kommedal (2021) formulated an auto-driller based on a Model Predictive Controller
(MPC) for use in drilling operations from a fixed drilling installation. Like this thesis, his
work was carried out in collaboration with Aker BP. The concept of linearizing a suitable
ROP model and formulating it as a quadratic programming (QP) problem will be adapted
in this thesis. It has been the desire to extend on this work in order for the controller

2



1 Introduction 1.2 Literature Review

to function for floating drilling installations as well, through the development of a heave
prediction module and including the heave predictions in the controller formulation. The
MPC in this thesis will also differ by exploring the use of another ROP model, which is
the Hareland model (Hareland and Rampersad, 1994). Other efforts related to MPC for-
mulations for use in offshore drilling includes work done by Sui et al. (2013). A nonlinear
MPC was formulated based on the Bourgoyne and Young (1974) ROP model to efficiently
adjust the WOB and rotational speed (RPM) to achieve the desired ROP.

Relevant work on drilling optimization related to heave motions includes the study by
Pastusek et al. (2016). The conclusion from that study was that the auto-driller control
system had a significant effect on the dynamic response of the drilling system when not
properly tuned. Also, that the heave motion gave large WOB variations overlapping with
the torsional period of the system inducing vibrations, stick-slip and other instabilities.

To drive the development of new drilling automation solutions, Gravdal et al. (2021)
shared learnings from the OpenLab Drilling Simulator at NORCE. It is a high-fidelity
drilling simulator open to the public. With an open application programmable interface
(API), different real-time drilling optimization objectives can be tested. Such as selection
of drilling parameters to achieve a specific rate of penetration (ROP) or pressure control in
managed pressure drilling. The OpenLab simulation environment will be used for verifi-
cation of the implemented system in this thesis.

Guo et al. (2021) presented an approach for predicting the heave and pitch motions of
a semi submersible by using neural networks. A Long Short-Term Memory (LSTM) based
machine learning model was trained on motion and wave measurements. The training and
test data were obtained from a model test in a wave basin. The model was able to predict
up to 46.5s into the future with an accuracy of close to 90%. The conclusion was that the
proposed LSTM model had a strong ability to predict vessel wave-excited motions, and as
a further step it was proposed that the model could be used to predict motions based on
only the motion itself.

Nielsen et al. (2018) formulated a prediction method by obtaining the sample autocor-
relation function (ACF) for a recent time window of the response. The prediction proce-
dure assumes that the response is characterized by a stationary process and has memory
in its behavior. This approach does not require information about the characteristics of the
incident wave system. The response was efficiently predicted 8-9 wave periods ahead of
time using data from a model test. Takami et al. (2021) proposed to use the instantaneous
autocorrelation function to address the problem of the assumption of the non-stationarities
of the waves, which will be encountered in irregular waves. The conclusion was that
this approach had better prediction accuracy than direct use of the sample autocorrelation
function.

In the specialization project the two methods were implemented and compared to each
other (Bjørlo, 2022). For this thesis it was decided to go further with the heave prediction
method using a LSTM artificial neural network. This was done due to the capabilities of a
neural network to learn nonlinear patterns in the wave-induced response, but at the cost of
requiring offline training.
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1.3 Objective and Scope
The objective of this master’s thesis is to formulate a heave prediction model based on
MRU measurements only and use the outputs in a MPC to optimize the drilling operation.

A heave prediction module based on a LSTM artificial neural network with a single
input feature is formulated. Accuracy of the predictions for various time horizons is as-
sessed. Real heave response data from a semi-submersible operating in the North Sea will
be used as input for the module to be implemented.

The MPC should be formulated with a suitable ROP model, such as the Hareland
model (Hareland and Rampersad, 1994), together with the predicted heave motions to ad-
just the WOB and RPM to achieve the desired ROP. A parameter estimation technique
should be implemented to capture the relevant drilling dynamics in the ROP model coeffi-
cients.

Verification of the system is done through two different operating modes. Advisory
mode simulations are based on drilling data from a real well in the North Sea, allowing
actual data to be used in the algorithms. Then, simulations in the OpenLab environment
are carried out to study the closed-loop performance of the MPC.

1.4 Outline of Thesis
The thesis consists of eight chapters including this introduction. Chapter 2 presents rele-
vant background theory on the response behaviour for a semi-submersible subject to in-
cident waves. A method for predicting future responses with a LSTM artificial neural
network is outlined.

Chapter 3 describes the fundamentals of offshore drilling. Different ROP models are
presented, and the choice of model serves as the starting point for the controller to be
implemented. At the end, the OpenLab environment is described, which will be used for
verification of the controller.

Chapter 4 covers the synthesis of the model predictive controller based on the selected
ROP model and the predicted heave motion that were presented in the two previous chap-
ters. A least-squares method for estimating coefficients in the ROP model, in real-time, is
outlined.

Chapter 5 covers the implementation specific details. First, handling of the drilling
data and MRU data are outlined. Then, the implementation specific details of the artificial
neural network for heave prediction and the model predictive controller are outlined. In
the end, the complete system is summarized.

Chapter 6 presents the results from two different simulation cases, advisory mode and
closed-loop mode. The accuracy of the heave predictions is assessed through two simula-
tion cases carried out with different training data.

Chapter 7 discusses the performance of the heave prediction module and the controller.
Challenges related to verification of drilling automation solutions in simulations are out-
lined. The observed strengths and weaknesses with the selected methods are also dis-
cussed.

Chapter 8 concludes the thesis and proposes further work actions.
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2
Wave-Induced Response Prediction

This chapter will give a brief overview of the behavior of a semi-submersible structure
subject to waves. In addition, information on the capabilities of neural networks to predict
the response are presented. The content is based on work carried out in the specialization
project (Bjørlo, 2022), but with an extension to the section about neural networks.

2.1 Physics of Fluid Motions
To calculate the response of a structure, the pressure acting on the body must be solved for
and integrated over the body. The Navier-Stokes equations are the governing equations for
fluid motions. The Navier-Stokes equations, given by (2.1), states that the local accelera-
tion and convective acceleration balance the pressure forces, shear forces and gravitational
forces of the fluid.

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ g + ν∇2u (2.1)

where u is the fluid velocity, p is the pressure and ν is the shear rate. But they are very
demanding to solve, despite all the work done on improving the numerical solvers. To
lower the complexity and get simpler relations that describe the fluid motion, potential
flow theory can be used. In most conditions, potential theory is sufficient to compute
an accurate prediction of the loads on a large-volume structure like a semi-submersible
(DNV, 2010), which is the marine structure of interest in this project.

2.1.1 Potential Flow Theory

A requirement for a potential flow is that the fluid is inviscid (ν = 0), which means that
there are no shear forces acting on the fluid. The flow is also assumed to be irrotational
(∇ × u = 0), that means there are no vortices in the flow. By limiting the flow to be
irrotational, the fluid velocity u can be expressed with a velocity potential φ such that
u = ∇φ. The problem is then to find the velocity potential φ that satisfies the Laplace
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2 Wave-Induced Response Prediction 2.1.1 Potential Flow Theory

equation (2.2) in the fluid domain Ω with boundary conditions.

∇2φ = 0 (2.2)

Figure 2.1 shows the setup of a nonlinear boundary value problem that can be solved to
get the velocity potential φ for a semi-submersible in waves.

ζ
p = pa on ζ

∇2φ = 0 in Ω

SS

∂φ
∂n = 0 on SS

SB
∂φ
∂n = U · n on SB

x

z

Figure 2.1: Boundary Value Problem Setup

The boundary conditions that must be considered are the kinematic and dynamic bound-
ary conditions, and will be briefly discussed in the next two sections. The indicated
boundary conditions in the figure are nonlinear and are required to be solved timestep
by timestep. When linearizing the boundary conditions, there exists frequency domain
solutions for the problem. The benefit of solving it in frequency domain is that there is
only necessary to perform one computation per wave frequency ω. The expressions for
the linearized boundary conditions will therefore also be briefly outlined.

Kinematic boundary condition

The kinematic boundary condition states that no fluid can enter through the body boundary
SB or seabed SS . In terms of the body velocity U , the solid boundary normal vector n and
surface S, the kinematic boundary condition is given by (2.3).

∂φ

∂n
= U · n on S (2.3)

A kinematic boundary condition must also be applied for fluid particles on the free surface
since a fluid particle on the free surface is assumed to stay on the free surface.

∂ζ

∂t
+

∂φ

∂x

∂ζ

∂x
+

∂φ

∂y

∂ζ

∂y
− ∂φ

∂z
= 0 on z = ζ(x, y, t) (2.4)

The kinetic free surface boundary condition is nonlinear due to that it contains the free
surface ζ, which is unknown before the problem is solved.
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2 Wave-Induced Response Prediction 2.1.2 Linear Wave Theory

Dynamic free-surface condition

The dynamic free-surface condition states that on the free surface ζ(x, y, t), the water
pressure p is equal to the atmospheric pressure pa. The Bernoulli equation relates the
pressure p to the fluid velocity, given by (2.5).

p+ ρgz + ρ
∂φ

∂t
+

ρ

2
∇φ · ∇φ = C (2.5)

where ρ is the fluid density, z is the vertical height and C is an arbitrary constant. By
selecting a constant C = pa/ρ the dynamic free surface condition is obtained

gζ +
∂φ

∂t
+

1

2

((
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2
)

= 0 on z = ζ(x, y, t) (2.6)

The dynamic free surface boundary condition is also nonlinear due to that the free surface
ζ is not known before the problem is solved.

Linearized free-surface conditions

The free-surface conditions are linearized by doing a transformation from the instanta-
neous free-surface at z = ζ(x, y, t) to the mean free surface at z = 0. The linearized
kinematic free surface condition is then given by (2.7), while the linearized dynamic free
surface condition is given by (2.8).

∂ζ

∂y
=

∂φ

∂z
on z = 0 (2.7)

gζ +
∂φ

∂t
= 0 on z = 0 (2.8)

2.1.2 Linear Wave Theory
The most general solution to the linear problem is when there are no body present in the
fluid domain, and that the free surface is of infinite horizontal extent. The solution to the
problem gives a velocity potential φ and free surface elevation ζ according to (2.9) and
(2.10), reproduced from (Faltinsen, 1990).

φ(x, z, t) =
gζa
ω

cosh k(z + h)

cosh kh
cos (ωt− kx) (2.9)

ζ(x, t) = ζa sin (ωt− kx) (2.10)

where k is the wave number and ω is the circular wave frequency. Once the wave velocity
potential φ has been solved for, the dynamic pressure term pD and velocity components u
and w can be found in both space and time with (2.11) - (2.13).

pD(x, z, t) = ρgζa
cosh k(z + h)

cosh kh
sin (ωt− kx) (2.11)

u(x, z, t) = ωζa
cosh k(z + h)

sinh kh
sin (ωt− kx) (2.12)

w(x, z, t) = ωζa
sinh k(z + h)

sinh kh
cos (ωt− kx) (2.13)
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2 Wave-Induced Response Prediction 2.1.3 Irregular Waves

For deep water depths, the solution is found by taking the limit when kh −→∞.

2.1.3 Irregular Waves
The linear wave equation and physical quantities presented previously applies for a single
wave component with amplitude ζa and frequency ω. Irregular waves can be described as
the sum of N different regular wave components of different amplitude Aj and frequency
ωj shifted with a uniformly distributed phase angle ϵj

ζ =

N∑
j=1

Aj sin(ωjt− kjx+ ϵj) (2.14)

The next question is to determine which amplitudes and frequencies that are relevant. To
describe waves in the North Sea, the JONSWAP wave spectrum S(ω) can be used.

S(ω) = 155
H2

s

T 4
1 ω

5
exp

(
−944
T 4
1 ω

4

)
(3.3)Y , Y = exp

(
−
(
0.191ωT1 − 1√

2 σ

)2
)

(2.15)

where T1 is a characteristic period of the spectra, Hs is the significant wave height and
σ is a shape factor. Figure 2.2 shows the JONSWAP wave spectrum S(ω) along the ver-
tical axis, the regular wave components derived from the spectrum in black propagating
along the time axis, and the resulting irregular wave realization in red. This figure clearly
demonstrates the link between the frequency domain and time domain representation of
waves.

S(ω)

ω

t

ζ

Figure 2.2: Irregular Wave Realisation

2.2 Response Computation
The response in irregular seas is the superposition of the responses due to the regular wave
components. Based on linear theory, it will be adequate to study the response in regular
waves. The steady state response of a structure will be (Faltinsen, 1990)

η =

N∑
j=1

Aj |H(ωj)| sin(ωjt+ δ(ωj) + ϵj) (2.16)
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2 Wave-Induced Response Prediction 2.3 Response Prediction Using Neural Networks

where |H(ωj)| is the transfer function between the incident wave amplitude and the re-
sponse amplitude, also known as a Response Amplitude Operator (RAO). The transfer
function can be calculated in a software like WAMIT or WADAM. The result implies that
the response will oscillate at the same frequency as the incident wave frequency ωj , only
shifted with a phase δ. It should be mentioned that this assumption only is valid for linear
conditions, the structure will be observed to oscillate at other frequencies due to nonlinear
effects.

Figure 2.3 shows a typical RAO in heave for a semi-submersible drilling rig. The
heave RAO indicates that incident waves with high frequency (0 < T < 7 s) will result in
minor heave motions. For swell, that have a low frequency, the motion amplification factor
is significant. But the energy content in long waves is low, such that the resulting heave
motion will be limited. This is a major benefit that drilling rigs with a semi-submersible
hull have, since the heave motion is disturbing the drilling process and should be kept to a
minimum.

0 5 10 15 20 25 30
0

0.5

1

1.5

Period T [s]

H
ea

ve
[m

/m
]

Figure 2.3: Typical RAO for a semi-submersible

A strategy that uses RAOs require input about the exciting wave system to estimate the
response. In addition, the RAOs must be known beforehand, or estimated during operation.
The scope of this thesis is to employ a strategy that can accurately predict the heave motion
to improve the drilling process, and a method using neural networks will be presented.

2.3 Response Prediction Using Neural Networks

In the specialization project (Bjørlo, 2022), two different methods for heave prediction
using the autocorrelation function (ACF) and a LSTM neural network were implemented
and compared against each other. The heave prediction method utilizing neural networks
will be further elaborated.
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2 Wave-Induced Response Prediction 2.3.1 Fundamentals of Neural Networks

2.3.1 Fundamentals of Neural Networks
An artificial neural network (ANN) is a data processing system that is inspired by the
human brain. An ANN is made up of multiple processing elements, named neurons, that
are connected to each other with an associated weight. Application areas for ANN include
pattern classification, function approximation, optimization, and time-series prediction,
where the last is of interest in this thesis.

A neural network can be characterized based on three properties (Fausett, 1993), sum-
marized below. The content is adapted from da Silva and Spatti (2016).

• Architecture: An ANN can be divided in three categories of layers as shown in
Figure 2.4. The input layer receives a specific number of features, or measurements,
from the environment of interest. The hidden layer consists of neurons perform-
ing the internal processing that extracts patterns from the system. The output layer
also consists of neurons and produce the final network outputs in a desired format.
The main architectures are mesh networks, single-layer feedforward networks, mul-
tilayer feedforward networks and recurrent networks. The recurrent network archi-
tecture will be further elaborated, as it has properties suited for response prediction.

• Training Procedure: The training procedure is responsible for determining the
weights and biases in the neural network to get the desired behavior. The different
training procedures are reinforcement learning, supervised learning, unsupervised
learning. The training can also be divided into online and offline (batch) learning.
In offline learning, the weight adjustments are performed after the full training set
has been made available. In online learning, the adjustments can be made when each
individual training sample are available. It is therefore more suited if the dynamics
of the system changes rapidly.

• Activation Function: Each neuron contains an internal state called the activation
level. The activation level is a function of the inputs that have been received. The ac-
tivation function decides the output from the neuron, given the weighted inputs that
have been received. A suitable activation function, denoted ϕ(z), can be the sigmoid
function σ(z) or the tanh(z) function. The two activation function candidates are
shown in Figure 2.5.

Input Layer Hidden Layer Output Layer

Figure 2.4: Artificial Neural Network Architecture
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2 Wave-Induced Response Prediction 2.3.2 Recurrent Neural Network (RNN)

−3 −2 −1 1 2 3

−1

1

z

ϕ(z)
tanh(z)

σ(z)

Figure 2.5: Activation Functions (σ and tanh)

2.3.2 Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) has properties that make it suitable for learning pat-
terns associated with sequential data. A time-series of the heave response is an example
of sequential data, and is the reason behind selecting a RNN for predicting the response
of a semi-submersible. In an RNN, the neurons send feedback signals allowing previous
outputs being used as inputs. The memory behavior of an RNN is what differs from other
neural network architectures where the input and output often are assumed to be indepen-
dent.

Schmidt (2019) gave a thorough mathematical explanation of RNNs. Denote the input
and hidden state at time t as Xt ∈ Rn×h and Ht ∈ Rn×h where n is the number of
samples, d is the number of inputs and h is the number of hidden units. Also, denote the
input-to-hidden-state weight matrix Wxh ∈ Rd×h, hidden-state-to-hidden-state weight
matrix Whh ∈ Rh×h and a bias vector bh ∈ R1×h. Let ϕ be an activation function
deciding the output from a neuron in the network. The relations for the hidden state Ht

and output state Ot are then given by

Ht = ϕh(XtWxh +Xt−1Whh + bh) (2.17)

Ot = ϕo(HtWho + bo) (2.18)

This can be compared to the expressions for regular feed-forward neural networks, given
by (2.19)-(2.20). The difference between the two architectures being the ability to take
into account previous inputs X0:t−1.

H = ϕh(WWxh + bh) (2.19)

O = ϕo(HWho + bo) (2.20)
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2 Wave-Induced Response Prediction 2.3.3 Supervised Learning

2.3.3 Supervised Learning

The goal of the learning process in neural networks is to fit the weights W and biases b
to minimize a cost function, given the predicted network output ŷ and the corresponding
label y. The cost function is a function of network weights and biases of all the neurons in
all the layers. Salehinejad et al. (2018) outlined the fundamentals of training RNNs which
will be presented in this section. For the neural network to be trained, a quadratic loss
function L will be considered

L(ŷ(j), y(j)) = 1
2 ||y

(j) − ŷ(j)||2 (2.21)

such that the scope of the training will be to minimize the quadratic loss function denoted
J(W,b), also known as the Mean Squared Error (MSE), over the entire training set con-
sisting of m samples.

J(W,b) =
1

2m

m∑
j=1

||y(j) − ŷ(j)||2 (2.22)

The Gradient Descent (GD) optimization method adjusts the weights of the model by
moving in the opposite direction of the minimum of the error function derivatives. The
gradient is computed for the whole dataset, and provides a single update

θt+1 = θt −
λ

m

m∑
j=1

∂Lj

∂θ
(2.23)

where λ is the learning rate and θ is a set of parameters. The GD optimization requires to
run through all the m training samples to update the parameters. This is a time-consuming
process when the training data set is big. To speed up the learning process, a Stochastic
Gradient Descent (SGD) method that estimate the gradient on a subset of the data, is
used. The ADAM optimizer, summarized in Algorithm 1, is an extended version of a SGD
method where estimation of the moments of the gradients is included to adapt the learning
rate.

The RNN is processing sequential data, which are a structure through time. The com-
putation of the gradient must be extended through time to train it, through Back Propa-
gation Though Time (BPTT). The strategy of BPTT is to propagate the network back in
time, keeping track of the error between the predicted and actual output. Then, the net-
work is rolled out again with updated weights. The network parameters are defined as
θ = [Whh,Wxh,Who,bx,bh,bo]. The gradients are written as

∂L
∂θ

=

T∑
t=1

∂Lt

∂θ
(2.24)

where the loss function gradient, by the chain rule, is given by

∂Lt

∂θ
=

t∑
j=1

(
∂Lt

∂Ht
· ∂Ht

∂Hj
·
∂H+

j

∂θ

)
(2.25)
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where
∂H+

j

∂θ is the partial derivative. The error can be transported in time from timestep t
back to timestep j with the relation

∂Ht

∂Hj
=

t∏
i=j+1

∂Hi

∂Hi−1
(2.26)

Algorithm 1: ADAM (Kingma and Ba, 2015)
Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates
Require: f(θ): Stochastic objective function, parameters θ
Require: θ0: Initial parameter vector
m0 ← 0
v0 ← 0
t← 0
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t stochastic objective)
mt ← β1mt−1 + (1− β1)gt (Update biased first moment estimate)
vt ← β2vt−1 + (1− β2)g

2
t (Update biased second raw moment estimate)

m̂t ← mt/(1− βt
1) (Compute bias-corrected first moment estimate)

v̂t ← vt/(1− βt
2) (Compute bias-corrected second raw moment estimate)

θt ← θt−1 − αm̂t/(
√
v̂t + ϵ) (Update parameters)

end
return θt (Resulting parameters)

Using the ADAM optimizer to fit the network parameters θ, where the gradients are
computed with Back Propagation Through Time (BPTT) concludes the supervised learn-
ing strategy for the neural network to be implemented.

Gradient magnitudes can shrink exponentially when propagating back with time, such
that long term dependencies in the data are ignored, namely the vanishing gradient prob-
lem. This is a potential issue when training regular RNN. The LSTM unit solves the
problem of learning long term dependencies in the data and will be presented in the next
section.

2.3.4 Long Short-Term Memory Unit
A LSTM unit is designed to handle the vanishing gradient problem that occurs for RNNs
and is therefore well suited to make predictions based on time-series data. Guo et al.
(2021) proposed that a LSTM neural network had the potential to predict the motion of
a marine vessel based on only the measured motion itself. This approach will be further
investigated, and a LSTM neural network will be trained based on heave data from an
MRU installed on a semi-submersible.

The LSTM unit structure was first presented by Hochreiter and Schmidhuber (1997)
and is visualized in Figure 2.6. The unit consists of an input gate, an output gate and a
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forget gate. Given an input sequence Xt, the expressions for the respective gates are given
by Schmidt (2019)

It = σ(XtWxo +Ht−1Who + bo) (2.27)
Ot = σ(XtWxi +Ht−1Whi + bi) (2.28)
Ft = σ(XtWxf +Ht−1Whf + bf ) (2.29)

where σ is the sigmoid function. The state weight matrices Wxo,Wxi,Wxf ∈ Rd×h,
hidden state matrices Who,Whi,Whf ∈ Rh×h and the bias terms bo,bi,bf ∈ R1×h

are fitted during the training of the model.
Introducing a candidate memory cell C̃t, with corresponding weights Wxc ∈ Rd×h,

Whc ∈ Rh×h and bias terms bc ∈ R1×h.

C̃t = tanh(XtWxc +Ht−1Whc + bc) (2.30)

The new memory Ct is computed from the previous memory cell content Ct−1 and the
candidate memory cell C̃t, based on how much of the memory to be preserved, given by

Ct = Ft ⊙Ct−1 + It ⊙ C̃t (2.31)

where the operator ⊙ represents the element-wise product. The hidden states Ht are then
given by

Ht = Ot ⊙ tanh(Ct) (2.32)

ct−1 x + ct

tanh

ht

htht−1

σ σ tanh

x

σ x

xt

Figure 2.6: LSTM Cell

The LSTM unit maintains a memory such that important features that are detected at
an early stage in an input sequence, can be captured and remembered over a long distance.
The cell is therefore efficient at capturing long-term features in the input. Patterns de-
veloping over multiple timesteps like in a time series can be efficiently predicted with a
model consisting of LSTM layers. The reader with an interest in a more comprehensive
comparison between LSTM and RNN should check out the paper by Chung et al. (2014).

The TENSORFLOW and KERAS libraries are open source Python libraries for creating
and training artifical neural networks (Chollet et al., 2015; Abadi et al., 2015). The LSTM
cell is available in the Keras library, which can be utilized when constructing the neural
network. The implementation will be discussed in a dedicated section.
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2 Wave-Induced Response Prediction 2.3.5 Hyperparameters

When constructing and tuning a neural network, the network must be properly tuned
to get good performance. The number of LSTM units will determine if the model is going
to underfit or overfit the data. The number of training epochs and size of batch are also
important tuning parameters, which will be covered in the next section.

2.3.5 Hyperparameters
A challenge when designing neural networks is to determine the best parameters for the
network to solve the problem of interest. The hyperparameters determine the learning ca-
pabilities of the network and are tuned for the specific challenge. Below are the parameters
to be determined listed, with a desciption of how the parameters effect the performance of
the network. Here, batch training is considered, weights and biases are updated after all
the inputs are passed to the network. This is opposed to the incremental training approach,
where the weights are updated each time an input is passed to the network. The content in
this section is based on considerations by Brownlee (2023).

Sequence length

The sequence length is the number of entries in the input. For instance, if a model should
make a prediction based on the evolution of the last 30 samples, the sequence length should
be 30 samples. It should be long enough to capture the relevant sequential patterns in the
system. But at the same time, not so long such that non-relevant dynamics are included in
the prediction model. To get an early estimate of the relevant frequencies in the data that
should be covered, the Fast Fourier Transform can be applied to the data prior to training.
Given an input sequence xn = [x0, x1, . . . , xN−1], the Fast Fourier Transform will gener-
ate a new sequence Xk = [X0, X1, . . . , XN−1] in the frequency domain representing the
frequencies that are present in the input.

Xk =

N−1∑
n=0

xne
−i2πkn/N (2.33)

where k = 0, 1, . . . , N − 1. Another useful property to calculate is the autocorrelation
function R, which indicates similarities between the time-series and a delayed version of
itself as a function of the delay τ .

R(τ) =
1

N − τ

N−1∑
n=0

x(n)x(n+ τ) (2.34)

Number of hidden layers and nodes

The optimal number of hidden layers will depend on the complexity of the prediction
model, which is determined by knowledge of the dynamics in the model or monitoring
how the learning progresses for different setups. Increasing the number of layers means
that the model have more parameters available, thus it can learn more complex patterns.
The same applies to increasing the number of nodes. For models with multiple features,
adding more layers can be necessary to be able to learn the patterns. But for models with a
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single feature, adding multiple hidden layers and nodes can lead to overfitting the data. A
more comprehensive explanation on the selection of hidden layers and nodes is presented
in the paper by Stathakis (2008).

Number of epochs

The number of epochs determines how many times the entire training data set is worked
backwards and forwards through the network. The selection will govern how many times
the weights and biases in the network are updated during training and can be any value
in the range 1 −∞. Afaq and Rao (2020) studied the selection of an optimal number of
epochs, and concluded that it should be based on the evolution of the training loss and
validation loss. The training loss is a metric for how well the model is fitting the training
data set. The validation loss is a metric for how well the model fits new data from the
validation data set. Monitoring the learning curves during training gives an indication
whether the model is a good fit, or if it is underfitting or overfitting the training data.

Batch size

The number of batches make up an epoch and determines the number of input samples
that must be processed before updating the network weights. If the entire training data set
is run through before updating, then the batch size is equal to the number of samples. For
that approach the estimation of the gradient will be accurate, but at the cost of high compu-
tational load and significant memory requirements. The other alternative is selecting batch
sizes that are smaller than the number of samples, which means that there will be multiple
propagations with weight updates in the network. Selecting smaller batch sizes will lead
to fluctuations in the gradient, since it is estimated based on a subset of the data, but with
the benefit of having more frequent updates to the weights in the network.

Learning rate

The learning rate α determines how much to update the weights in the network based
on the estimated error gradient. Selecting a learning rate that is too low can result in
an inefficient training process, due to that the altering of the weights are limited. On
the other hand, having a too large learning rate can lead to a too aggressive selection of
weights resulting in a suboptimal prediction model that does not capture the most relevant
dynamics.

The ADAM optimizer included moments that are used to alter the learning rate. It is
done by increasing the learning rate when the error cost gradient is heading in the same
direction for a long time. The decay rate for the moment estimates, are a parameter that
can be selected to optimize the learning rate.
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3
Rotary Drilling

Drilling efficiently thousands of meters deep into the ground is a complex operation, re-
quiring highly specialized tools. High pressures and temperatures put the drilling equip-
ment under substantial mechanical and thermal stress. This chapter will give an overview
of the topside equipment and downhole tools required in a drilling operation. Drilling
related rock mechanics seen in context with hydraulics and drillstring dynamics in order
to avoid drilling incidents are discussed next. ROP models that provide a mathematical
description of the drilling process are outlined. Relevant drilling automation systems in-
cluding the auto-driller and advisory systems are covered at the end. The last two sections
are based on considerations from the specialization project (Bjørlo, 2022).

3.1 Drilling Rig Equipment
There are many different types of rig setups, depending on factors such as the geographic
location, type of well to be drilled and whether the site is located onshore or offshore. The
rig equipment described here will try to match the typical setup for a modern harsh envi-
ronment semi-submersible rig operating in the North Sea. The typical setup includes a top
drive system accompanied by an active heave compensated drawworks system (Saipem,
2022; Odfjell Drilling, 2022).

Top Drive System
The top drive system provides the necessary torque to the drillstring to be able to drill the
formation efficiently. Some top drive systems are able to provide up to 105,000 ft-lb, or
142 kNm of continuous torque to the drillstring (National Oilwell Varco, 2018). The top
drive is suspended from a hook on the travelling block in the derrick, and is free to move
vertically up or down. The ability to rotate and move vertically simultaneously is where
the top drive differs from the more traditional rotary table. Top drive systems are able to
run three joint stands of drillpipe, where rig setups with traditional rotary table are only
able to run single joints of drillpipe. A joint of drillpipe is 30 ft, which means that a three

17



3 Rotary Drilling 3.1 Drilling Rig Equipment
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Figure 3.1: Drilling operation from a semi-submersible

joint stand is 90 ft. When tripping in or out of the hole, that is moving the drillstring in or
out, making or breaking the connection at each stand is much more efficient then doing it
at each joint of drillpipe. When having to trip out, for instance when changing the drillbit,
a lot of time will be saved.

The rotational speed (RPM) of the top drive is an important controllable drilling pa-
rameter that the driller controls from the chair in the drillers cabin. The RPM is optimized
during an operation to avoid vibrations and get the desired ROP.

Dual Active Heave Drawworks

During drilling from a floating drilling installation, the drillstring will follow the vertical
motions of the rig if there are no heave compensation active. A heave compensation system
ensures that the drill string movement is decoupled from the rig motions, such that the
tension on the drill string is constant while drilling. With constant tension in the drillstring,
the WOB is kept constant, which is important to avoid instabilities such as vibrations.
There are two different categories of heave compensation systems, namely passive and
active heave compensation (Woodacre et al., 2015).

The passive heave compensation system uses a pneumatic or hydraulic dampening
system to minimize the effect from the rig heave on the drillstring. The passive system
has no active controller, nor requires any input power to function. A passive system can
typically not reach more than 80% heave decoupling (Hatleskog and Dunnigan, 2006). To
reach a higher heave decoupling ratio, which is important in harsh environments, an active
heave compensation system must be installed.

An active heave compensation system utilizes rig heave measurements from one or
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3 Rotary Drilling 3.1 Drilling Rig Equipment

multiple MRU sensors on the rig floor. Based on the measured heave motion, the draw-
works is rotated to keep the drillstring at a fixed position independent of the wave-induced
motions of the rig. The active heave compensation system requires a controller, as well
as input power. To ensure high hoisting capacity, operational redundancy and safety, the
concept of installing two drawworks were developed, known as Dual Active Heave Draw-
works (Fivelstad et al., 2014). If a lock-up occurs in one of the drawworks, there will still
be active heave compensation due to redundancy. The drawworks position also reflects the
amount of weight on bit (WOB) that is being applied. Which again is governing the Rate
of Penetration (ROP) being achieved.

Mud Pumps
The mud pumps are used to circulate drilling fluid from topside through the drillstring,
into the wellbore, and back up through the wellbore annulus. Due to high frictional losses
in the drillpipe and in the annulus when circulating at high flow rates, the pumps must be
able to handle high pressures. Being able to circulate at high flow rates is important for
cleaning the hole efficiently to avoid accumulation of cuttings in the wellbore. The mud
pumps are rated at maximum flow, maximum pressure, and horsepower. The mud pumps
are either duplex or triplex positive-displacement pumps, with triplex being used on the
modern rigs (Mitchell and Miska, 2011). For a triplex pump, the flow rate is calculated
from the stroke per minute of the pumps, and the known displaced volume at each stroke.

Slips
The slips are shaped like a wedge and are used to keep the drillstring suspended in the
rig floor. The slips are used when making or breaking a drillstring connection. When the
drillstring is suspended in slips, the heave compensation system is not active. For a floating
drilling installation, this means that the drillstring will follow the vertical rig motions. The
vertical motion of the drillstring will induce swab and surge pressure oscillations that can
exhaust the formation downhole.

There exist solutions for a heave compensated rig floor, such as the Heave Compen-
sated Floor (HCF) by Huisman. This will eliminate the heave motion of the drillstring
during connections, increase the weather window for installation of completions and en-
able managed pressure drilling (MPD) from floaters (Huisman, 2019). But for most rigs,
the rig floor will not be heave compensated, which means that the drillstring will not be
compensated when staying in slips during connections.

Marine Drilling Riser System
The marine riser connects the drilling vessel to the subsea BOP. At the top of the riser, a
diverter is responsible for redirecting potential hydrocarbon flows coming from the well
when the BOP has not yet been installed, which is typically during drilling the conductor
section of the well (API, 1993). Below the diverter, a telescopic joint is installed to make
sure the axial load on the riser is kept constant during operation.

Marine riser joints are connected to make up the riser. The riser joints are rated based
on diameter, thickness, and material grading (API, 1993). The inside diameter of the riser
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3 Rotary Drilling 3.2 Drillstring Components

must be large enough to run the planned casing through it, and the riser must be strong
enough to handle current, rig motions, tension, and internal pressure. The choke and kill
lines are placed on the outside of the riser main tube and provides circulation between the
well and the vessel when the BOP is closed.

Subsea BOP Stack

The BOP makes it possible to close of the well in case of a well-control incident. A
typical well-control incident is a kick, which is an unwanted inflow of hydrocarbons into
the wellbore. During a drilling operation from a semi-submersible the BOP is placed at
the seabed, such that the well can be shut in and the rig can disconnect safely.

A subsea BOP stack consists of a lower marine riser package (LMRP) and a lower BOP
stack. A flex joint connects the marine riser and the LMRP, to allow lateral movement of
the rig (Rick von Flatern, 2016). The LMRP typically consists of an annular preventer and
a control system. An annular preventer can provide sealing around circular objects such
as the drillpipe or BHA. The sealing element is made of hard rubber making it possible to
hoist or lower the drillstring, including the tool joints, through the annular preventer.

The lower BOP stack consists of ram-type preventers, the choke and kill lines. The
ram-type preventers are designed for providing sealing around a specific diameter of a
pipe, but in return has a higher maximum operating pressure than the annular preventer
(Mitchell and Miska, 2011). Ram-type preventers that provide sealing around a pipe are
named pipe rams, while the ram-types that can seal around an open hole are named blind
rams. The choke line is used to redirect flow from the wellbore to the choke manifold. The
kill line is used for pumping high density mud into the wellbore from the wellhead.

The integrity of the BOP stack is essential for the safety of a drilling operation in case
of an emergency. Rig motions in all degrees of freedom puts a challenge to the integrity of
the equipment. Monitoring fatigue and frequent testing of the equipment are carried out
during the whole operation.

3.2 Drillstring Components

The drillstring is made up from drillpipe and a bottomhole assembly (BHA). In addition,
comes components such as drilling jars, reamers, stabilizers and accelerators. The function
of the drillstring is summarized in the list below (Mitchell and Miska, 2011).

• Transmit rotary motion from the topdrive to the drill bit

• Transport drilling fluid to the working face of the bit

• Provide the necessary WOB for the drilling action

• Control the borehole direction

The relevant drillstring components are briefly described in the order from the top to the
bottom of the string.
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3 Rotary Drilling 3.2 Drillstring Components

Tool Properties

Directional Azimuth, Inclination, Toolface

Drilling Dynamics WOB, RPM, Torque

PWD Annular Pressure

GR Formation Gamma Radiation

Neutron Formation Porosity

Sonic Seismic Velocity

Resistivity Formation Fluid Saturation

Caliper Borehole Size/Shape

Table 3.1: Common M/LWD Tools

Drillpipe

The upper part of the drillstring is made up of drillpipe. Three joint stands of drillpipe are
made up before making a connection to minimize the amount of time in slips. Drillpipes
are classified based on the American Petroleum Institute (API) standard (API RP 7G,
1998). The classification is based on pipe dimensions, length, thickness and steel grading.
The drillpipe must be able to withstand the high tensions and bending moments that occurs
during drilling.

For conventional drillpipe, mud pulse telemetry is used to transfer data from downhole
tools to the topside and to transmit control signals down to operate the tools. Due to the
limited bandwidth, it is possible to achieve with mud pulse telemetry, wired drill pipe has
been developed. The data transfer happens through a data cable protected in a conduit on
the inside of the pipe joint. The wired pipe system has demonstrated data transmission
rates of up to 2,000,000 bits/sec (Jellison et al., 2003).

Measurements/Logging While Drilling (M/LWD)

The terms Measurement While Drilling (MWD) and Logging While Drilling (LWD) are
used interchangeably for the downhole measurement tools used during drilling. Table 3.1
shows some of the most common M/LWD tools used, and the properties that are derived
from the tool measurements (Bonner et al., 1993). The selection of tools to run will vary
for each section to be drilled and the purpose of the well, based on the data acquisition
requirements.

For drilling optimization, mainly the first three tools are of interest. The directional
tool is mostly relevant for steering, and the pressure is closely monitored to analyze the
well stability. For the section of the well analyzed in this thesis, the DrillDOC tool from
Halliburton (2019) was used to measure the downhole drilling dynamics. The downhole
measurements of WOB, RPM and torque will provide a much clearer view of the drilling
situation than relying solely on topside measurements. Having more accurate measure-
ments are valuable when optimizing the drilling parameters.
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3 Rotary Drilling 3.3 Drilling Geomechanics

Rotary Steerable System (RSS)
The Rotary Steerable System (RSS) is an enabler for efficient directional drilling. The
RSS eliminates the need to alternate between sliding with the mud motor and rotating the
string to steer. Continuous rotation of the string is favorable for avoiding drilling incidents
and have better hole cleaning. The system provides more accurate well placement and
higher drilling performance. The RSS is controlled from the surface by issuing commands
downhole by downlinking. There exist two categories of RSS, push the bit and point the
bit (Sugiura, 2008).

• Push the bit: Steering is achieved through external pads on the tool that are adjusted
to generate the desired side force against the formation.

• Point the bit: An internal drive shaft is bended to tilt the bit to the desired angle.

Drillbit
The purpose of the bit is to conduct the drilling action at the end of the drillstring. Different
designs may achieve the drilling action either by scraping, grinding, gouging, or chipping
the rock (Mitchell and Miska, 2011). The bits are divided in two categories, fixed-cutter,
and roller-cone bits.

• Fixed-cutter bits: Fixed-cutter bits have no moving parts, and removes rock by
scraping against the formation. The Polycrystalline Diamond Compact (PDC) bit is
an example of a fixed-cutter bit where the cutters are made up of synthetic diamond.

• Roller-cone bits: Roller-cone bits have rotating cones with teeth that crush the rock
when weight is applied to it. Then, the rotational motion of the teeth lifts the drilled
cuttings of bottom before the mud flow out from the jets transports the cuttings
further up. The cone teeth are selected based on the properties of the formation to
be drilled, such as the rock strength.

3.3 Drilling Geomechanics
To plan a well and avoiding drilling problems, knowledge about geomechanics is essential.
The wellbore stability analysis determines which mud weight to be used in the drilling
operation. The properties of the formation to be drilled determines operational limits such
as minimum and maximum ECD limit. The rock strength governs the achievable ROP,
and is taken into consideration in the drilling parameter selection. A geological prognosis
is made during the planning phase and will be updated as live measurements are available
during operations. Geomechanical considerations are inspired by the content in Aadnoy
(2011).

Overburden Pressure
The overburden stress σv exerted on a formation at depth D is the cumulative weight of
the overlying formations. It is computed by integrating the bulk density ρb(z) over the
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Figure 3.2: Geomechanical Log Curves

depth.

σv =

∫ D

0

ρb(z)g dz (3.1)

Typical values for the bulk density are between 1.8 g/cm3 to 2.2 g/cm3. As the depth
increases, the bulk density increases because of compaction of the grains. Figure 3.2a
shows a sample overburden pressure gradient colored in brown.

Pore Pressure
The pore pressure is the pressure exerted by the fluids that are contained in the formations.
For shallow formations that are normally pressurized, the pore pressure will be equal to the
normal pore pressure. The normal pore pressure equals the hydrostatic head at the depth of
interest. The pore pressure will often exceed the normal pore pressure due to overpressure
in case the fluid has been trapped inside the rock.

Eaton’s method 1975 can be used for estimating the pore pressure PP with the velocity
data from the Sonic Tool that were presented in the section about MWD Tools.

PP = OBG− (OBG− PPn)

(
∆tn
∆t

)n

(3.2)

where OBG is the overburden gradient, PPn is the normal pore pressure, ∆t is the com-
pressional transit time, ∆tn is the compressional transit time for a normally pressurized
formation and n is the Eaton exponent.

The pore pressure is a very important parameter to evaluate and study before and dur-
ing drilling. It serves as a lower limit for the pressure in the well. If the pressure falls
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3 Rotary Drilling 3.4 Drilling Process Modelling

below the pore pressure, it means that hydrocarbons are free to flow into the well, which
is called a kick. If this is to happen, it is a well control scenario and the hydrocarbons
must be safely circulated out before continuing to drill. Figure 3.2a shows a sample pore
pressure gradient colored in blue.

Fracture Pressure
The fracture pressure is the pressure where the formation will start to fracture. Matthew
and Kelly (1967) proposed an expression used to estimate the fracture pressure FP

FP = k(OBG− PP) + PP (3.3)

where k is the effective stress ratio. If the formation has been fractured, mud from the
wellbore can start to migrate into the formation. Mud losses into the formation can lead to
a well control scenario or a wellbore stability issue. Figure 3.2a shows a sample fracture
pressure gradient colored in red.

Unconfined Compressive Strength
The Unconfined Compressive Strength (UCS) is the highest axial stress that a cylindrical
shaped rock can withstand before breaking down. It is therefore also referred to as uniaxial
compressive strength. The rock strength has a direct impact on the ROP during drilling.
Hard stringers, which is areas with abnormally high UCS, are more challenging to drill
and must be carefully handled with contingency procedures. Figure 3.2b shows a sample
unconfined compressive strength (UCS) log curve.

Collapse Pressure
The collapse pressure is the minimum pressure required to prevent the well from collaps-
ing. The wellbore stability can be calculated with the Mohr-Coloumb criterion when the
pore pressure and rock strength have been estimated. Figure 3.2a shows the collapse pres-
sure gradient colored in yellow.

3.4 Drilling Process Modelling
The drilling process consists of drilling a section, running a casing, and cementing it in
place. The first step, drilling a section, is the point of interest for the models that are
presented.

3.4.1 Wellbore Trajectory
The wellbore trajectory is determined by taking measurements of the azimuth, inclination,
and measured depth (MD) at multiple stations along the well path. There is a dedicated
MWD tool for directional surveying as described earlier. The directional surveying is typ-
ically done for each stand (30 m), but high curvature sections may require more frequent
samples (Mitchell and Miska, 2011).
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3 Rotary Drilling 3.4.2 Rate Of Penetration (ROP) Modelling

There exist multiple methods to represent the wellbore trajectory based on the survey
stations. The minimum curvature method is the preferred method for representing a well-
bore trajectory. The North (∆x), East (∆y) and vertical (∆z) distance between two survey
stations are given by (Mitchell and Miska, 2011)

∆x = (sin I1 cosα1 + sin I2 cosα2)RF (3.4)
∆y = (sin I1 sinα1 + sin I2 sinα2)RF (3.5)
∆z = (cos I1 + cos I2)RF (3.6)

where I1, I2 are the inclination angles and α1, α2 are the azimuth angles of the two survey
stations respectively. RF is the ratio factor, defined by

RF =
∆s

β
tan

β

2
(3.7)

where ∆s is the well path segment connecting the two stations, defined as the difference
in the measured depth ∆MD. The dogleg β is defined by

β = cos
(
cos(I2 − I1)− sin I1 sin I2(1− cos(α2 − α1))

)
(3.8)

Table 3.2 shows a survey program and Figure 3.3 the corresponding trajectory when
using the minimum curvature method to calculate the North, East and vertical coordinates.

# MD [m] Incl. [o] Azi. [o]

1 0 0 0
2 374 0 0
3 430 0 0
4 470 2.13 60
5 510 3.13 60
6 540 6.13 60
7 570 10 60
...

...
...

...
200 5127 88 48

Table 3.2: Survey Program
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Figure 3.3: Trajectory

3.4.2 Rate Of Penetration (ROP) Modelling
The drilling speed, often referred to as the rate of penetration (ROP), is an important pa-
rameter to optimize during the drilling operation. There are multiple factors that govern
the ROP. The rock formation to be drilled, hole diameter, hole cleaning and hydraulics,
WOB, RPM and bit type Mitchell and Miska (2011). Some of the factors are control-
lable, such as the WOB and RPM. But factors such as the rock formation to be drilled
is not controllable and must therefore be carefully handled by optimizing the controllable
parameters.
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ROP Model Bingham Bourgoyne and Warren Hareland and
(1964) Young (1974) (1986) Rampersad (1994)

Operational Parameters
Weight-On-Bit (W ) ✓ ✓ ✓ ✓
Rotational Speed (Nr) ✓ ✓ ✓ ✓
Flow Rate (q) ✓ ✓
Well Depth (h) ✓
ECD (γc) ✓
Bit Wear (H) ✓ ✓

Rock Properties
Pore Pressure (ρp) ✓
UCS (σc) ✓

Bit Properties
Bit Diameter (db) ✓ ✓ ✓ ✓
Bit Nozzle Diameter (dn) ✓ ✓

PDC Cutters Design
Number of Cutters (Nc) ✓
Cutter Diameter ✓
Cutter Siderake Angle ✓
Cutter Backrake Angle ✓

Drilling Fluid
Mud Density (ρf , γf ) ✓ ✓
Viscosity (µ) ✓ ✓

Table 3.3: Required Drilling Parameters per ROP Model, adapted from Soares et al. (2016)

Already during the planning phase some choices that govern the ROP are made, for
instance when selecting the drilling fluid, BHA, and bit to use. How the planning phase
selections are optimized is not part of the scope of this thesis and will therefore not be
further outlined. But some parameters in the models that are presented originates from the
mentioned selections.

The controllable parameters to be optimized during operation, are the RPM, WOB
and flow rate. In this thesis, the controller is limited to only provide RPM and WOB
control inputs. Three different models for ROP expressed in form of the controllable
parameters are briefly outlined below. Some of the symbols in the equations have been
modified to have a consistent set of symbols. The Hareland model will be utilized in the
MPC controller to be implemented, due to that it has the most extensive list of parameters
to model PDC bits. Therefore, the most emphasis will be put on the Hareland model.
The other models are briefly outlined to indicate strengths and weaknesses in the different
models, and that accurate ROP modelling is complex involving nonlinearities and multiple
parameters.

Bingham Model
Bingham (1964) developed an empirical model that can be applied to both roller-cone and
fixed-cutter bits.

ROP = a

(
WOB
Db

)b

RPM (3.9)
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where ROP is the rate of penetration (ft/hr), WOB is the weight-on-bit (klb), RPM is the ro-
tational speed (rev/min), db is the bit diameter (in), and a and b are dimensionless constants
describing the drillability of the formation.

Bourgoyne and Young Model

The Bourgoyne and Young (1974) model is the most comprehensive model in terms of the
number of factors taken into account, given by

ROP = Exp

a1 +

8∑
j=2

ajxj

 (3.10)

where a1 is the formation strength parameter, a2 is the normal compaction trend exponent,
a3 is the under-compaction exponent, a4 is the pressure differential exponent, a5 is a bit
weight exponent, a6 is the rotational speed exponent, a7 is a tooth wear exponent and a8
is the hydraulic exponent.

Warren Model

Warren (1987) developed a model for predicting the ROP for roller cone bits in low bore-
hole pressure conditions. The starting point for the model is based on a perfect cleaning
model

ROP =

(
aσ2

cd
3
b

N b
rW

2
+

c

Nrdb

)−1

(3.11)

where db is the bit diameter, σc is the rock strength and a, b and c are empirical coeffi-
cients. Cuttings removal was incorporated into the perfect cleaning model (3.11) to give
the imperfect cleaning model and final expression for the ROP, given by

ROP =

(
aσ2

cd
3
b

NrW 2
+

b

Nrdb
+

cdbγfµ

Fjm

)−1

(3.12)

where γf is the mud density, µ is the mud viscosity and Fjm is the impact force from the
jets.

Hareland and Rampersad Model

The Hareland and Rampersad (1994) model considers the rock-bit interaction through
deriving the conservation of mass due to the penetration of the cutters into the formation.
When applying weight to the bit, the depth of each cutter penetrating the rock is a function
of the rock strength, number of cutters, the applied mechanical weight, and the lower
projected contact area of each cutter. The projected area at the front of the cutter is given
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by

Av = cosα sin θ

[(
dc
2

)2

cos−1

(
1− 4WOB

cos θπNcd2cσc

)

−
(

2WOB
cos θπNcσc

− 4WOB2

(cos θNcdcσc)2

)0.5(
WOB

cos θπNcσc

)] (3.13)

where α is the cutter siderake angle, θ is the cutter backrake angle, dc is the cutter diameter,
Nc is the number of cutters and σc is the unconfined compressive strength. The ROP is
equivalent to the amount of rock that the front of the cutters remove, given by

ROP =
14.14 Ns RPM Av

Db
(3.14)

where Ns is the number of cutters and Db is the diameter of the bit. An empirical correc-
tion factor COR is introduced to handle phenomena that the theoretical model is not able
to handle.

COR =
a

(RPMb WOBc)
(3.15)

where a is an empirical lithology correction factor, b is a bit rotation correction factor and
c is a mechanical weight-on-bit correction factor. The correction factor COR is multiplied
with the ROP expression in (3.14) to yield the full expression for PDC bits.

Soares et al. (2016) studied the selection of appropriate bounds on the a, b and c co-
efficients in the Hareland model in order to fit field data. The results from the study are
reproduced in Table 3.4. The upper bound of the a coefficient was selected in the same or-
der of magnitude as the highest observed UCS to balance the division of the rock strength.
Lower bounds for RPM coefficient b and WOB coefficient c were set at 0.5, which proved
to limit the model errors, even though it limits the relation between RPM and ROP to at
most a square root factor. Upper bounds for b at 1.5 and 1 for c resulted in the lowest
model errors when fitting the model to field data.

Coefficient Lower Bound Upper Bound

a 0.001 10000
b 0.5 1.5
c 0.5 1

Table 3.4: Recommended Bounds on Hareland Model Coefficients

3.5 Drilling Issues
This section briefly presents drilling problems related to vibrations. There also exists other
drilling issues such as hole cleaning problems and stuck pipe incidents, but these will not
be further elaborated due to not being relevant for the controller to be implemented.
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3.5.1 Vibrations
Excessive amounts of vibrations lower the drilling performance. In addition, it causes a
lot of stress to the downhole sensors and equipment. Vibration modes such as stick-slip
and bit bounce are briefly outlined.

Stick-slip
Stick-slip is a torsional vibration mode where the drillstring torque up and spins free at
regular intervals. For this mode, the downhole RPM can be multiple times higher than
the surface RPM. The problem typically arises for deep wells and when encountering hard
formations. The RPM fluctuations will reduce the quality of the drilling operation in the
form of lower rate of penetration (ROP). If the stick-slip severity is too high over a long
period of time, there will also be extra wear on the bit and other equipment in the bottom
hole assembly (BHA). Sensors will have lower accuracy and the steering capabilities of
the BHA will be reduced. The main indication that a stick-slip phenomena is occurring is
the observation of cyclic torque fluctuations.

A strategy for reducing stick-slip is to manually decrease the WOB setpoint and in-
crease the RPM, but this will often lead to poor drilling rates. Different practices for
preventing stick-slip were reviewed in (Johannessen and Myrvold, 2010), and a model
based controller was proposed to control the top drive speed in order to solve the stick-
slip problems. (Kyllingstad and Nessjøen, 2009) proposed to use a PI speed controller to
dampen the torsional vibrations at the stick-slip frequency. This was done by assuming
that the drill string is a transmission line for torsional waves and measuring the stick-slip
frequency. By automatically tuning the controller gains based on the stick-slip frequency,
the top drive speed controller provides torsional damping.

The heave motion of the rig can provoke stick-slip during drilling. Even with heave
compensation systems that are performing well, the WOB variation observed at the surface
can reach up to ±10000 lb (Pastusek et al., 2016). This equates to around 2.4 metric
tonnes. The periods of these oscillations will be around the heave motion period. The
torque variations at the bit, due to the WOB variations are estimated to represent 3400
ft-lb of torque variations. These WOB and torque variations are by itself enough to induce
stick-slip.

Bit bounce
Bit bounce is an axial vibration mode that is linked to the longitudinal motion of the
drillstring. The result of bit bounce is that there will be large WOB variations and possibly
accompanied by standpipe pressure (SPP) variations. This vibration mode can also be
directly linked with the heave motion of a floating drilling rig.

3.6 Drilling Automation
Some of the instabilities that can occur during a drilling operation has been mentioned.
This section will cover some software tools that are used to keep the instabilities at a low
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3 Rotary Drilling 3.6.1 Auto-driller

level. Decision support systems monitors the operation and provides advice on which
drilling parameters to use. Auto-drillers are the low-level controllers that drive the drilling
process to its desired setpoints.

3.6.1 Auto-driller

An auto-driller should enable drilling at maximum rate of penetration (ROP) while main-
taining a stable drilling operation. It must be able to deal with the frequent changes in
rock properties that were described in the section about geomechanics, while at the same
time avoid the instabilities mentioned in the section about drillstring dynamics. Badgwell
et al. (2018) studied the design and tuning strategies of auto-drillers. The article mentioned
that a typical auto-driller consists of a PID-controller that is tuned directly based on the
input desired ROP, and will therefore not change gains when the formation is varying, or
the controller is unstable. To improve the performance, an enhanced WOB controller was
presented. Figure 3.4 shows a typical setup for an auto-driller.

∆P
Controller

Torque
Controller

WOB
Controller

ROPMAX

∆PSP

∆PPV

TRQSP

TRQPV

WOBSP

WOBPV

ROP
Setpoint
Selector

ROP
Controller

ROP∆P

ROPTRQ

ROPWOB

ROPSP DRS

ROPPV

Figure 3.4: Auto-Driller Setup, adapted from (Badgwell et al., 2018)

The WOB, torque, differential pressure ∆P and ROP can be controlled by adjusting
the Drum Rotation Speed (DRS). PID controllers compute a desired ROP based on set-
points for differential pressure ∆PSP, torque TRQSP or weight on bit WOBSP. The output
is collected and compared to a maximum limit ROPMAX in a setpoint selector. The most
conservative value is chosen from the desired ROP setpoints. If the WOBSP setpoint is
used, then the auto-driller is in WOB mode. When the ROPMAX value is used, it is said to
operate in ROP mode. The last controller is the ROP controller which adjusts the Drum
Rotation Speed to achieve the desired ROP. It should be noted that there exist many dif-
ferent auto-driller designs, and that the one that was presented here is reproduced from
(Badgwell et al., 2018).
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3 Rotary Drilling 3.6.2 Decision Support System

3.6.2 Decision Support System
The goal of a decision support system in the context of a drilling operation is to provide
recommendations for controllable drilling parameters to help improve the drilling process
(Payette et al., 2015). It is therefore often referred to as an advisory system. An advice
from a decision support system can be to provide a maximum ROP limit, for instance
based on hole cleaning monitoring. The ROP limit can then be used as a input for the
maximum ROP limit in the auto-driller.

Therefore, a decision support system can be tied in with an auto-driller to achieve au-
tomatic, and ultimately autonomous drilling. The determination of setpoints for WOB,
torque ROP or differential pressure is equally important as the low-level auto-driller con-
troller to achieve good performance.

3.6.3 OpenLab Drilling Simulator
The OpenLab Drilling Simulator can simulate transient hydraulics, temperature, torque
and drag, and cuttings transport (Gravdal et al., 2019). The Python library OPENLAB
can be used to set up new wellbore configurations and configure drilling parameters, as
well as reading the simulation results. The OpenLab environment is useful when devel-
oping and testing new automation solutions, as it provides an interface to efficiently run
closed-loop drilling simulations. The OpenLab environment will be utilized to validate the
performance of the MPC controller to be implemented in this thesis.

The first step when setting up simulations in OpenLab is to input wellbore configura-
tion parameters. The required hole section information includes the wellbore diameter to
be drilled, casing setting depths and dimensions. The well path is configured with a sur-
vey program in the same format as shown in Table 3.2. Drilling mud properties including
density and viscosity are required, and extra attention should be paid to the mud details if
the drilling hydraulics are of interest. BHA properties that must be configured are lengths,
weights, and dimensions of the components and this will have impact on the drillstring dy-
namics calculations. Geological properties that must be defined are the pore pressure and
fracture gradient, as well as the rock strength, that were presented in section 3.3. The last
set of input is the rig information covering the pump, drawworks and top-drive properties.

Setpoint Unit

DesiredROP [m/s]
DesiredWOB [kg]
SurfaceRPM [rps]
TopOfStringVelocity [m/s]
FlowRateIn [m3/s]
BopChokeOpening [%]
ChokeOpening [%]
WOBAutoDriller [-]

Table 3.5: OpenLab Setpoints

Result Unit

HookLoad [kg]
SurfaceTorque [Nm]
SurfaceRPM [rps]
WOB [kg]
InstantaneousROP [m/s]
SPP [bar]
TD [m]
BitDepth [m]

Table 3.6: OpenLab Results

Drilling parameters are configured through a set of sequences with setpoints and can
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3 Rotary Drilling 3.6.3 OpenLab Drilling Simulator

be changed at each timestep in the simulation through the interface. Setpoints that can
be configured are shown in Table 3.5. Regular drilling is assumed, which means that the
choke opening is set to 100 % during the entire drilling simulation. The output of the
controller to be implemented is the WOB and RPM required to reach a specific ROP.

Relevant simulation results that are available each timestep are shown in Table 3.6. The
simulation engine considers the inertia of the top drive system and the drawworks, and the
actual WOB and RPM that are applied is available. The InstantaneousROP, measuring the
achieved drilling performance, can be extracted, and passed on to the controller.
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4
Model Predictive Control

This chapter covers the application of Model Predictive Control (MPC) for optimizing the
drilling process. First, the essentials of MPC are outlined. The next section covers the
formulation of a state-space model for ROP based on work by Sui et al. (2013). Then, the
proposed incorporation of the heave predictions and the Hareland model into the MPC are
outlined. Linearizing an ROP model and formulating it as a quadratic programming (QP)
problem are based on the proposed framework by Kommedal (2021). The last section
covers a parameter estimation technique for estimating the coefficients in the ROP model.

4.1 Model Predictive Control (MPC)
The idea of Model Predictive Control (MPC) is to predict the future behavior of a system
over a specified prediction horizon and based on the prediction compute an optimal control
input. The formulation is done in terms of minimizing a dynamic objective function J on
the form (Qin and Badgwell, 2003)

J =

Np∑
j=1

||ek+j
y ||2Qj

+

M−1∑
j=0

||∆uk+j||2Sj
+

M−1∑
j=0

||ek+j
u ||2Rj

(4.1)

subject to the model constraints

xk+j = f(xk+j−1,uk+j−1), ∀j = 1, Np (4.2)

yk+j = g(xk+j) + bj , ∀j = 1, Np (4.3)

and subject to the inequality constraints

y ≤ yk+j ≤ y, ∀j = 1, Np (4.4)

u ≤ uk+j ≤ u, ∀j = 0,M − 1 (4.5)

∆u ≤ ∆uk+j ≤ ∆u, ∀j = 0,M − 1 (4.6)
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4 Model Predictive Control 4.1 Model Predictive Control (MPC)

The first term in the objective function penalize the deviation from the desired response,
denoted ek+j

y , over the prediction horizon Np to control the plant output to the desired
reference value. The second term penalize rapid changes in the input, denoted ∆uk+j,
over the control horizon M . The third term control input behaviour by introducing input
penalties ek+j

u over the control horizon M . The time-dependent weight matrices Qj , Sj

and Rj are controlling the contribution from each of the terms in the objective function.
The model constraints xk+j and yk+j represent the predicted states and outputs over the
prediction horizon Np. The inequality constraints on yk+j, uk+j, ∆yk+j adds upper and
lower bound to the outputs, inputs and the rate of change on the input. The solution to the
problem is a set of M input adjustments

uM = [uk,uk+1, . . . ,uk+M−1] (4.7)

The first input uk is appended to the system, and the process is repeated. Figure 4.1 shows
a visualization of the concept of MPC, which is that the future output is driven towards the
reference trajectory through selecting the optimal input sequence based on the predicted
future output.

Past Future

k − 2 k − 1 k k + 1 k + 2 k + 3 . . . k +Np

Reference Trajectory

Predicted Future Output

Past Output

Future Control Input

Past Control Input

Prediction Horizon, Np

Control Horizon, M

Figure 4.1: Model Predictive Control (MPC) Scheme

The reasoning behind developing and employing a MPC controller for drilling a well
are briefly outlined in the list below.

• Multivariable Optimization: The drilling process is highly nonlinear and multi-
variable, as indicated by the ROP models presented in section 3.4.2. The MPC can
find the optimal adjustment to multiple inputs to get the desired output, which is
useful for drilling applications where RPM and WOB should be controlled. This is
capabilities that controllers such as a regular PI controller does not possess.

• Constraint Handling: To drill a well safely and efficient, constraints on the inputs
and outputs are defined in operational procedures. A constraint may for instance be
that the maximum weight applied to the bit should be 30 tons, to not damage the
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4 Model Predictive Control 4.2 State-Space ROP Formulation

bit. For MPC, the constraints on inputs and outputs can be formulated as shown in
(4.4)-(4.6).

• Real-Time Data Availability: Through the development of wired pipe, vast amounts
of information about the drilling process are made available. This has not been the
case before and is one of the reasons that more sophisticated control strategies than
traditional PI-control have not been deployed.

• Predictive Ability: In the advancement towards autonomous drilling, the MPC has
the ability to take into account events before they occur. The proactive control action
can handle varying formation properties, or as studied in this thesis, mitigate the
effects from the wave induced motion of the rig. All while preserving the safety of
the operation thorugh constraints on the inputs and outputs.

4.2 State-Space ROP Formulation
The first and fundamental step in designing a robust MPC controller, is to select an appro-
priate model. The Hareland and Rampersad (1994) model was selected, as it accurately
can predict the evolution of ROP when drilling with PDC bits.

Sui et al. (2013) formulated the ROP dynamics in state-space form for the Bourgoyne
and Young ROP model. The formulation is adopted and have been modified to apply for
the Hareland model. The ROP is the instantaneous slope of the measured depth h, which
can be mathematically defined by the differential

ROP(t) =
dh

dt
(4.8)

The evolution of the depth h from time t to t + 1 are developed using the forward Euler
method, which gives the expression

h[k + 1] = h[k] + ∆tROP[k] (4.9)

where ∆t is the sampling time. The error e(t) is defined as the difference between the real
ROP and the estimated ROP.

e[k] = ROP[k]− R̂OP[k] (4.10)

Combining the expressions from (4.9) and (4.10) yields

h[k + 1] = h[k] + ∆t(R̂OP[k] + e[k]) (4.11)

Gathering h[k] and e[k] into the state vector x[k], which will be denoted xk for simplifi-
cation of notation. The WOB w[k] and the RPM r[k] are gathered in the input vector u[k],
denoted uk. The vector αk is defined to express the time dependent factors in the ROP
model.

xk =

[
h[k]
e[k]

]
, uk =

[
w[k]
r[k]

]
(4.12)

αk =
[
a[k] b[k] c[k] σc[k]

]
(4.13)

35



4 Model Predictive Control 4.2.1 Linearized State-Space Model

where a[k], b[k], c[k], σc[k] are the time dependent coefficients that goes into computing
R̂OP[k]. The ROP dynamics can then be expressed in terms of the state space model given
below

xk+1 = f(xk,uk,αk) (4.14)

yk = g(xk,uk,αk) (4.15)

4.2.1 Linearized State-Space Model

Formulating the MPC controller in terms of the nonlinear state-space model of the ROP
dynamics requires to solve a constrained nonlinear optimization problem online at each
sampling instance. Linearizing the state space model gives a model that can be applied to
reduce the computational effort required in the optimization.

A function f(x) can be approximated around a small perturbation δx = x− xp of the
operating point xop by taking the Taylor expansion and keeping only the terms that are
linear in δx (Balchen et al., 2016).

f(x) = f(xop + δx) ≈ f(xop) +
∂f

∂x

∣∣∣∣
x=xop

δx (4.16)

This approach is applied to the state space model on the form presented in (4.14)-(4.15).
The resulting linearized version of the state space model is given by xk+1

L and yk
L.

xk+1
L = f(xk,yk,αk) ≈ f(xop,uop) +Atδx+Btδu (4.17)

yk
L = g(xk,yk,αk) ≈ g(xop,uop) + Ctδx+Dtδu (4.18)

where the linearized state space matrices At, Bt, Ct and Dt are given by

At =

{
∂fi
∂xj

∣∣∣∣
p

}
, Bt =

{
∂fi
∂uj

∣∣∣∣
p

}
, Ct =

{
∂gi
∂xj

∣∣∣∣
p

}
, Dt =

{
∂gi
∂uj

∣∣∣∣
p

}
(4.19)

where |p means that the differential is evaluated at the operating point. Carrying out this
operation on the ROP dynamics based on the Hareland model then yields the linearized
state space matrices

At =

[
1 ∆t
0 1

]
(4.20)

Bt =

[
∆tR̂OPJu,11 ∆tR̂OPJu,12

0 0

]∣∣∣∣
p

(4.21)

Ct =
[
0 1

]
(4.22)

Dt =
[
R̂OPJu,11 R̂OPJu,12

]∣∣∣
p

(4.23)
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where

Ju,11 =

[
707NcN

1−b
r a cos(α) sin(θ)

[√
2

(
4Ncσc cos(θ)

√
−W (−κ+ 2W )

κ2

)−1

−

√
− 2W (−πκ+2W )

Ncσc cos(θ)κ

(Ncσcπ2 cos(θ))
+

√
2W (−κπ + 4W )

2N2
c σ

2
cπ

2 cos(θ)2κ
√
−W (−κπ+2W )

Ncκσc cos(θ)

]]
(50DbW

c)
−1

−

[
707NcN

1−b
r ac cos(α) sin(θ)

[
d2c
4

(
π − cos−1

(
−κ+ 4W

κ

))

−
√
2W

√
−W (−κπ + 2W )

κNcσc cos(θ)
(Ncσcπ

2 cos(θ))−1

]]
(50DbW

c+1)−1

(4.24)

and

Ju,12 = 707a cos(α) sin(θ)

(
4
√
2W

π

√
−W (−κπ + 2W )

Ncσc cos(θ)κ

− κπ

(
π − cos−1

(
−κ+ 4W

κ

)))
b− 1

200DbN b
rW

cσcπ cos(θ)

(4.25)

where the constant κ is introduced to simplify the expressions, given by

κ = Ncσc cos(θ)d
2
c (4.26)

The terms Ju,11 and Ju,12 are evaluated at the operating point, which is the last input
uk−1. The bit specific parameters α, θ, Nc, Db and dc are static for a BHA run and
are given by the specifications from the bit manufacturer. The strategy for finding the
coefficients a, b and c in the model are based on fitting the fully nonlinear model to field
data and will be further outlined in the next section.

The model is further extended to consider the effects that the wave induced motions of
the rig have on the ROP. The desired control action is to gradually provide more weight to
the bit when the rig is moving upwards, and the opposite when the rig moves downwards,
as shown in Figure 4.2.

Proposing a linear relationship between the heave motions of the rig η3, the WOB and
the resulting change in ROP as given in (4.27). The idea is that during upwards heave
motions, the effectiveness of the applied WOB on the ROP is reduced by a factor of Cηη3,
requiring increased WOB to maintain the ROP. During downwards heave motions, the
effectiveness of the applied WOB is increased by a factor of Cηη3, such that slacking off
on the weight will be required to keep the ROP.

δROP = −Cηη3δWOB (4.27)

where Cη is a heave correction factor given by (4.28). The heave correction factor con-
siders that the elasticity of the drillstring will dampen the effect of the heave motion when
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Figure 4.2: Rig Heave and WOB Correction

the length of the drillstring increases.

Cη =
ξ

EL
(4.28)

where E (MPa) is the elasticity of the drillpipe and L (m) is the length of the drillstring.
The empirical coefficient ξ is introduced to account for unmodelled effects such as the
type and efficiency of the installed drawworks.

The heave compensated and extended ROP dynamics model are then differentiated
to yield the additional terms to be added to the original Bt and Dt state space matrices,
giving Bt,η and Dt,η

Bt,η = Bt +

[
−∆tR̂OPCηη3 0

0 0

]
=

[
∆tR̂OP(Ju,11 − Cηη3) ∆tR̂OPJu,12

0 0

]
(4.29)

Dt,η = Dt +
[
−R̂OPCηη3 0

]
=
[
R̂OP(Ju,11 − Cηη3) R̂OPJu,12

]
(4.30)

4.3 Quadratic Programming (QP) Formulation
The strategy for solving the MPC optimization problem numerically is to formulate it on
a quadratic programming (QP) format, for which there exists extensive and highly effi-
cient solvers. The general formulation of a QP problem involves minimizing a quadratic
objective function with linear constraints on the form given below

min
x∈Rn

1

2
xTHx+ fTx

s.t. Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

(4.31)

Defining the evolution of the inputs and outputs over the prediction horizon by uk =
{uk,uk+1, . . . ,uk+Np−1} ∈ RNp·ny and yk = {yk,yk+1, . . . ,yk+Np−1} ∈ RNp·ny .
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The reference trajectory for the outputs are denoted by ry ∈ RNp·ny . The corresponding
errors in the outputs are denoted eyk = yk − ry ∈ RNp·ny . Input references are denoted
ru ∈ RNp·nu , with the corresponding input error denoted as euk = uk − ru ∈ RNp·nu

The unconstrained control objective can be formulated by keeping the terms penalizing
the deviation from desired outputs and inputs given by the first and third term from the
formulation in (4.1) to obtain the cost function Jy,u given below.

Jy,u = ||eyk||
2
Q + ||euk||2R = eyk

T
Qeyk + euk

TReuk (4.32)

The development of the tracking error eyk must be derived in order to find Jy,u. Zhakatayev
et al. (2017) formulated the development of the tracking error based on a linearized state
space model, which have been adopted in this thesis, reflected in (4.35) and the corre-
sponding matrix form of the development.

Further, Kommedal (2021) formulated the QP problem for an MPC auto-driller to
include constraints on the maximum ROP and rate of change in the inputs, which have
been adopted in this thesis and are outlined in (4.35)-(4.48).

First, the state-space matrices are rewritten to simplify the notation and gathering con-
stant terms in ϕ in state equation and γ in output equation.

xk+1
L = f(xop,uop) +At(x

k − xop) +Bt,η(u
k − uop)

= Atx
k +Bt,ηu

k + ϕ

yk
L = g(xop,uop) + Ct(x

k − xop) +Dt,η(u
k − uop)

= Ctx
k +Dt,ηu

k + γ

(4.33)

The evolution of the estimated output error eyk = {eky, ek+1
y , . . . , e

k+Np−1
y } over the

prediction horizon are developed based on the state and output equations in (4.33).

eky = Ctx
k +Dt,ηu

k + γ − rk

ek+1
y = Ctx

k+1 +Dt,ηu
k+1 + γ − rk

= CtAtx
k + CtBt,ηu

k +Dt,ηu
k+1 + Ctϕ+ γ − rk+1

ek+2
y = Ctx

k+2 +Dt,ηu
k+2 + γ − rk+2

= CtA
2
tx

k + CtAtBt,ηu
k + CtBt,ηu

k+1 +Dt,ηu
k+2

+ CtAtϕ+ Ctϕ+ γ − rk+2

(4.34)

The terms are gathered and structured in matrix form as shown below
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ek
y

ek+1
y

ek+2
y

...

e
k+Np−1
y

 =


Ct

CtAt

CtA
2
t

...

CtA
Np−1
t

xk +


Dt,η 0 0 . . .

CtBt,η Dt,η 0 . . .
CtAtBt,η CtBt,η Dt,η . . .

...
...

...
. . .

CtA
Np−2
t Bt,η CtA

Np−3
t Bt,η CtA

Np−4
t Bt,η . . .



·


uk

uk+1

uk+2

...

uk+Np−1

+


0
Ct

Ct(I +At)
...

Ct(I +
∑Np−2

i=1 Ai
t)

ϕ+


I
I
I
...
I

 γ −


rky

rk+1
y

rk+2
y

...

r
k+Np−1
y


For ease of notation, the matrices P,H,K, INp ∈ RNp are introduced, which yields

the compact form for the ROP tracking error ek

ek = Pxk +Huk +Kϕ+ INpγ − rk (4.35)

Constant terms are gathered to form the M matrix, which gives the final expression for the
ROP tracking error

ek = Pxk +Huk +M (4.36)

Inserting the expression into the cost function and simplifying to get the H̃ and fT matri-
ces.

J =
1

2
uT
k(H

TQH +R)uk + ((xk)TPTQH +MTQH − ukR)uk

=
1

2
uT
kH̃uk + fTuk

(4.37)

Constructing the H̃ and fT matrices at each timestep and proceeding to use a QP solver to
get the optimal inputs u concludes the unconstrained control strategy.

H̃ = HTQH +R (4.38)

fT = (xk)TPTQH +MTQH − ukR (4.39)

The unconstrained objective is now augmented to include constraints. A slack variable s is
introduced, and the objective function is augmented to include a linear and quadratic slack
term with corresponding weight variables w and W.

J =
1

2
xTHx+ fTx+ sTW s+wTs (4.40)

Constraints on the rate of change in the inputs ∆uk are added to avoid significant jumps in
the WOB and RPM. Denoting the upper and lower limit to the rate of change in the input
as ∆u and ∆u. At sample time n into the future, the control input development is given
by the cumulative sum of input changes ∆uk, ∆uk+1, . . . , ∆uk+n and the initial input
uk−1.

uk+n = uk−1 +

n∑
i=1

∆uk+i (4.41)
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The development of the input uk over the entire prediction horizon is represented in matrix
form below. 

uk

uk+1

...
uk+Np−1

 =


uk−1

uk−1

...
uk−1

+


I 0 . . . 0
I I . . . 0
...

...
. . .

...
I I . . . I




∆u1

∆u2

...
∆uNp

 (4.42)

Introducing D as the lower triangular identity matrix, such that the input development can
be written in compact form by

uk = uk−1 +D∆uk (4.43)

Solving for ∆uk and adding lower bound ∆u and upper bound ∆u to the rate of change
in the input

∆u+D−1uk−1 ≤ D−1uk ≤ ∆u+D−1uk−1 (4.44)

Defining Ah =
[
D−1 −D−1

]T
and bh =

[
∆u+D−1uk−1 −∆u−D−1uk−1

]T
such that the inequality can be written as

Ahuk ≤ bh (4.45)

The ROP development is obtained by removing the reference output from the tracking
error expression in (4.35).

yk = Pxk +Huk +Kϕ+ INp
γ (4.46)

Forcing yk ≤ y + s such that the corresponding inequality is then found by solving for
Huk, further introducing by to gather all terms.

Huk ≤ y − Pxk −Kϕ− INp
γ + s = by + s (4.47)

The objective function (4.40) is reorganized on matrix form, which gives the final system.

min[
uk

s

] 1

2

[
uk

s

]T [
H̃ 0
0 W

] [
uk

s

]
+

[
f
w

]T [
uk

s

]

s.t.


Ah 0
H −I
−I 0
I 0
0 −I


[
uk

s

]
≤


bh
by
lb
ub
0


(4.48)

where the inequality represent the two inequalities in (4.45) and (4.47), the lower and upper
bounds on the inputs and a lower bound on the slack to force it to be strictly positive.
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4.4 Parameter Estimation for ROP Model
The ROP models contain empirical coefficients that must be estimated based on field data
in to have an accurate model for control. The coefficients have upper and lower bounds that
must be considered. The strategy is to solve a bound-constrained minimization problem
on the form below

min
x∈Rn

f(x)

s.t lb ≤ x ≤ ub
(4.49)

where f : Rn 7→ R1 is the objective function, lb ∈ Rn are the lower bounds and ub ∈ Rn

are the upper bounds on the decision variables x.
The strategy will involve using a least squares trust region approach to solve the opti-

mization problem. The main idea is to compensate the bounds by scaling the variables and
have been adopted from Branch et al. (1999). The method is outlined below, based on the
implementation that is available through the SciPy library (Virtanen et al., 2020). Defining
a vector v = [v1, . . . , vi] , i = 1, . . . , n, where each component represent the distances to
the bounds, only if it is finite

vi =


ubi − xi, if gi < 0, ubi <∞
xi − lbi, if gi > 0, lbi > −∞
1, otherwise

(4.50)

where g is the gradient of a cost function. Defining the a scaling matrix D = diag{v0.5}.
First-order optimality conditions can be stated as

D2g(x) = 0 (4.51)

Next, let the Newton step satisfy a new optimization problem, given below

(D2H + diag{g}Jv)p = −D2g (4.52)

where H is the Hessian matrix, Jv is the Jacobian matrix of v (-1, 1 or 0), such that all
elements of matrix C = diag{g}Jv are non-negative. Based on a change of variables
x = Dx̂, the new expression is given by

B̂p̂ = −ĝ (4.53)

where B̂ = ĴT Ĵ ,Ĵ = JD and ĝ = Dg. A trust-region problem based on the Newton step
in the new variables is formulated below.

min{ 12 p̂
T B̂p+ ĝT p̂ : ||p̂|| ≤ ∆} (4.54)

In the original space, given by B = H +D−1CD−1, the equivalent trust-region problem
is given by

min{ 12p
TBp+ gT p : ||D−1p|| ≤ ∆} (4.55)
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4 Model Predictive Control 4.4 Parameter Estimation for ROP Model

The residual function ρ to be used for fitting the drilling coefficients is chosen as the
deviation between the estimated ROP and the field data, given by

ρ = R̂OP− y (4.56)

The time horizon of drilling a section can span over multiple days. Therefore it is
favorable to fit the model parameters only based on the most recent data points. This will
ensure that the relevant drilling dynamics are properly captured in the coefficients to be
estimated. Multiple effects such as the bit wear and differences in the lithology can affect
the ROP coefficient over short time differences. Sui et al. (2013) presented using a sliding
data window in order to gather only the most recent drilling data. The sliding data window
of size L is defined as the set Φ, given by

Φ(t) = {ROP(t− L), . . . ,ROP(t− 1)} (4.57)

Figure 4.3 visualizes a sliding data window Φ for the values of ROP to be used in the
parameter estimation algorithm.

Time

ROP

Φ(t)
Φ(t+ 1)

Φ(t+ 2)

t− L . . . t t+ 1 t+ 2

Figure 4.3: Sliding Data Window Φ
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5
System Implementation

This chapter presents the details behind the implementation of the system. The first section
covers the processing of the raw MRU and drilling data. The next section presents the neu-
ral network setup, training, tuning, and exporting. The neural network implementation is
outlined first, and then the model predictive controller setup using predicted heave motion
is presented. The last section presents the complete system. All names that are written in
the style foo foo refer to functions, classes, and other objects in the source code. De-
tails for accessing the source code for the work carried out in this thesis are available in
Appendix B.

The system has been programmed using the Python language. There are multiple
powerful and well documented open source scientific and computing Python libraries,
available for download through The Python Package Index (PyPI). The packages that are
used in this project are summarised below.

The NUMPY library is utilized to have efficient multidimensional array computing
for the project. The SCIPY package provides linear algebra and non-linear optimization
utilities. The PANDAS package was used for handling the input drilling data and MRU
data. The CVXOPT library has an efficient quadratic programming (QP) solver used for
solving the QP formulation of the MPC. The TENSORFLOW machine learning platform
is used together with the KERAS library to construct the heave prediction model for the
project. Setting up and running drilling simulations are done through the OPENLAB client.

5.1 Data Handling

The MRU data for this project is from a semi-submersible rig operating in the North Sea
and have been provided by Odfjell Drilling. The drilling data originates from a well in the
North Sea and have been provided by AkerBP.
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Figure 5.1: Raw MRU Input Data

5.1.1 MRU Data
The MRU data were given as an export from a database that aggregates and stores time-
series from different sensors on the rig. The format of the export was a comma-separated
value file (.csv) with measurements for a period of a month. The file had two columns,
the average of three MRU measurements from the drillfloor, together with a timestamp.
Figure 5.1 shows the MRU input data. The raw data did not have a constant sampling rate,
due to compression of the measurements for minimizing storage footprint. The first step
is to resample it. The sampling rate was selected at 2 Hz and linear interpolation was used
for computing the new values. A function load heave is implemented to handle the raw
MRU input data and resamples it to 2Hz. Figure 5.2 shows a comparison between the raw
input and the resampled MRU data for a 250 seconds data window.
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Figure 5.2: Resampled MRU data

The input data are split into three separate sets. That is, a training, validation, and
test set. A division of 70%-20%-10% between the training, validation and test set was
selected. The purpose of the mentioned sets are briefly outlined below.

• Training Set (70%): In the training process, the weights and biases in the neu-
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5 System Implementation 5.1.1 MRU Data

ral network are fitted based on the training set. Each sample of the training set is
again divided into input and output (label) arrays as shown in Figure 5.3, with in-
puts in blue and labels in green color. In the figure, a sample in the training set
consists of 210 values corresponding to 105 seconds, where two thirds of the sam-
ple are selected as inputs, and one third are chosen as labels. The setup indicates
that 70 seconds of MRU measurements are aggregated and used to predict the heave
response for the next 35 seconds.

• Validation Set (20%): When a model is being fitted during the training proce-
dure, predictions based on the validation set are evaluated in order to quantify the
performance of the model. The measure of the performance is used to avoid over-
/underfitting of the data. The training process can be terminated early to avoid over-
fitting of the data if the prediction error of the validation set increase with extended
training.

• Test Set (10%): The test set is used for providing a final metric of the performance
of the fitted model after the training has finished.
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Figure 5.3: Inputs and Labels in the Training Data Set

The function split dataset(s,testsize,trainsize) handles the partition-
ing of the data frame s into the training, validation and test sets according to the specified
parameters for the fraction division (0-1) of the test set testsize and the training set
trainsize.

The sets that have been partitioned are stored in a Window object. To construct
the window object, the parameters input width, label width and shift are re-
quired. The input width specifies the number of values that are aggregated before making
a prediction. The label width determines how many predictions are to be made. The
shift parameter specifies the relative placement of the labels versus the inputs, or how
far into the future the predictions are to be made. In Figure 5.3 the shift was set to the
number of labels, such that there are no gaps between the inputs and labels. The mem-
ber function split window() does the input and label partitioning. A last parameter
label columns facilitates having multiple features if desired, but the implementation
in this thesis covers one feature, which are the MRU measurements MRU VALUE.

The make dataset member function handles the sequential data, through the Keras
timeseries dataset from array utility method.
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5.1.2 Drilling Data Handling
The drilling data were given as an export from a data acquisition system. The format was
tabular in the form of an Excel file (.xlsx) for a BHA run from a real well in the North Sea.
The RPM and WOB measurements are from downhole tools, delivered through wired pipe
telemetry. The flow rate and ROP are measured topside and is therefore aggregated from
the drilling control system. The first step was gathering the relevant data by removing the
logs for operations such as tripping in/out of the hole. The next step carried out was to
remove all erroneous measurements such as negative WOB values from the time series.

Figure 6.6 shows the raw input drilling data for a duration of around 2 hours and 30
minutes. The two intervals that are relevant to sort out, are straight before 04:20 and before
05:40. Here it can be seen that the ROP, RPM, WOB and flow rate goes to zero for a long
period of time. Also, the block position is at the lowest point during the operation before
it is increased up to 40 meters again. This indicates that a stand has been drilled, which
means that there is made a new connection to have more length of pipe available to drill.
The mentioned intervals are removed from the time series as only the drilling part is of
further interest.

5.2 Neural Network Architecture and Training
Construction and training of the network is done in the create model procedure. The
Sequential model is used, since there is time-series data involved. After the input layer,
there is a LSTM layer consisting of 50 units. A dense layer is added, consisting of 70
neurons. The last step involves reshaping the output to y ∈ R70×1. Figure 5.5 shows
the architecture that have been implemented and will be used for the simulation scenarios
later. The number of layers and nodes to select in the model is not an exact science. The
network only has a single feature, and a therefore a single layer of LSTM was selected.
The constructed neural network is going to take in input values x ∈ R140×1, and produce
the predicted output y ∈ R70×1 values into the future. The reasoning behind selecting 70
nodes in the dense layer is to match the number of outputs. The compile and fit pro-
cedure specifies a callback function to terminate the training procedure by monitoring the
validation loss. The training procedure terminates when the mean absolute error (MAE)
of the predictions in the validation set increase from an epoch to another.

MAE =

∑n
i=1 |yi − xi|

n
=

∑n
i=1 |ei|
n

(5.1)

where n is the number of samples and ei is the error between the predicted value yi and
the true value xi. The optimizer used is the ADAM method, that were presented in algo-
rithm 1.

5.3 Controller Architecture
The setup function handles all the static configuration variables required for the con-
troller and drilling simulations. The static configuration includes the Hareland model bit
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Figure 5.4: Drilling Data

parameters, the length of the sliding data window L, and initial guesses for the drilling
coefficients a,b,c to be used in the parameter fitting. Number of inputs, outputs and states
are defined as well as prediction horizon. Weighting matrices Q, R, S are defined. Upper
and lower limits for WOB, RPM are defined in addition to maximum rate of change to the
MVs. For advisory mode, the drilling response is read through an input file, coming in as
an export from a M/LWD data acquisition system. For closed loop simulations, the Open-
Lab simulation is configured to constantly be stored and used as input. The two different
scenarios will be further outlined later.

A function hareland contains the full definition of the Hareland model, as given
in (3.14). Formulas within the field of drilling engineering often employ imperial units
instead of metric which applies to the Hareland model as well. The input to the function is
the RPM [rpm], WOB W [klbs] and the drilling coefficients a,b,c. The function returns the
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Figure 5.5: Model Architecture

resulting ROP [ft/hr]. get linearized model computes the linearized state space
matrices At, Bt, Ct and Dt for the Hareland model. The parameters are the sampling
period dt, the estimated ROP, drilling coefficients a, b, c and the input operating points
in which the linearization happens around (W , Nr). The terms J11 ev and J12 ev are
evaluated based on the analytical expressions (4.24), (4.25) and are split into separate
functions J11 and J12.

The function run mpc wraps all logic for the MPC at each timestep. The drilling data
and heave data is partitioned with partition drilling data and partition
responsedata. This is done based on the sliding window approach. Then, there is a
startup procedure used for drilling as shown in Figure 5.6, which must be executed in order
to run the MPC in OpenLab. The actions are not required for running it in the advisory
mode. Circulation is established by increasing the flowrate up to the desired value. Then,
the drillstring rotation is started by gradually increasing the RPM. First, when bottom have
been tagged, the MPC algorithm will start to act on the system.

The QP problem is formulated and solved for optimal inputs through get opt
drillparams. The optimal control input is either applied to the system if running
closed loop simulations, or just stored in memory and presented to the user when running
in advisory mode.

The function run openlab opens the connection to OpenLab, that is a cloud hosted
application requiring credentials to access. The step duration, configuration name and
simulation name must be applied in addition to credentials. The well configuration can
be accessed through the web client. A parameter simulation time specifies how many
timesteps the simulation is going to run for.
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Figure 5.6: Startup of Drilling Procedure

5.4 Final System
An overview of the components in the system that have been implemented are shown
in Figure 5.7. The MRU measurements are passed to a LSTM artificial neural network
that make predictions about the future heave response of the rig. The future predicted
heave response is passed to an MPC. The MPC solves an optimization problem based on
a linearized Hareland ROP model. The MPC is constrained with upper and lower limits
in the input variables, and on the maximum ROP. The solution is an optimal set of WOB
(wopt) and RPM (ropt).

The dashed rectangles that are colored red and blue represent the two different operat-
ing modes of the system. Red box shows the advisory mode of the system, where M/LWD
downhole sensor data from a real well is passed to the MPC. The optimal WOB and RPM
will for this mode be based on actual drilling data from a well in the North Sea. Blue box
shows the closed loop simulation mode, where the OpenLab drilling digital twin is used.
The optimal WOB and RPM is applied to the drilling digital twin and the corresponding
response of the system is passed back to the MPC.
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6
Results

This chapter presents the simulation results from the implemented system. First, the per-
formance of the heave prediction system is assessed. Then, the performance of the MPC
controller utilizing the heave predictions to optimize the drilling parameters are presented.
The MPC controller was run in two different operating modes. Advisory mode is based on
data from a real well. Closed loop simulations are run against the OpenLab environment.

6.1 Heave Prediction
Two different simulation cases are evaluated for the heave prediction module. The pro-
cedure consists of using a training dataset, as shown in Figure 6.1 for the first case, and
training the neural network based on the selected data. Only 500 seconds of MRU data
were considered for the first simulation. Batch size was set to 10 and the number of epochs
was set to 20. Since the validation set is defined as 20% of the total input, the validation
loss was not monitored during the training. Three random inputs that are outside the train-
ing set are passed to the model that have been trained, and the accuracy of the prediction is
evaluated. Figure 6.2 shows graphs of the result from the three different input sequences.
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Figure 6.1: MRU Training Data, Case 1

The blue line shows the actual response, where the first 70 seconds (140 measurements)
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Figure 6.2: LSTM Heave Predictions, Case 1

Prediction Horizon 5 s 10 s 15 s 20 s 25 s 30 s 35 s

RSSI [m] 0.012 0.044 0.111 0.209 0.247 0.338 0.611
RSSII [m] 0.019 0.031 0.744 1.717 2.376 3.992 4.087
RSSIII [m] 0.121 0.179 0.217 0.243 0.676 0.747 0.827

Table 6.1: RMSE of Heave Predictions, Case 1

are passed as input to the neural network, and the next 35 seconds (70 measurements) are
used for evaluating the accuracy of the prediction. An orange dotted line indicates the pre-
dictions made based on the input. The metric used for evaluating the prediction accuracy is
the residual sum of squares RSS =

∑n
i=1(ŷi−yi)2, where an estimated value is denoted ŷi

and the actual is denoted yi. Table 6.1 shows the development of the RSS for a prediction
horizon varying from 5 seconds up to 35 seconds. In the first graph for simulation case
1, the RSS values are only slightly increased for increasing prediction horizons. By visual
inspection, the predictions are reasonable for the first 30 seconds.

For the second case, there is a large increase in RSS starting for prediction horizons
longer than 10 seconds. This is also identified when looking at the graph, where it also
can be seen that the prediction even goes 90 degrees out of phase compared to the actual
response after 20 seconds of predictions have been made, which means at 90 seconds.

In the last case, the RSS is high already for low prediction horizons with 0.121 for a 5
seconds prediction horizon. It is observed that the predictions start to slowly move out of
phase from the actual response after 20 seconds into the future.

For all three cases, it can be seen that a prediction horizon of 10 seconds yields rea-
sonably accurate predictions, based on a RSS of 0.044, 0.031 and 0.179 respectively.
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Figure 6.3: MRU Training Data, Case 2
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Figure 6.4: Training and Validation Loss, Case 2

The heave training data for the second simulation case is increased to 1500 seconds as
shown in Figure 6.3. The batch size and number of epochs are the same as for the last
case. In this case, there will be validation samples available during the training procedure.
The concept of early stopping was therefore employed for this simulation case. The vali-
dation loss and training loss are shown in Figure 6.4, and the development in the validation
loss indicates that increasing the number of epochs even further can lead to overfitting of
the data, so the learning process has terminated before the maximum amount of epochs
have been reached. Table 6.2 shows an overview of the RSS development for the three dif-
ferent inputs over different prediction horizons. The first observation is that the increased
amount of data used in training the model indicates to have improved the predictive abili-
ties for longer horizons, with a RSS of respectively 2.494, 0.265 and 0.368 for a 35 seconds
prediction horizon. With 10 seconds of prediction horizon, the RSS were 0.096, 0.011 and
0.127 for the three simulations.

Prediction Horizon 5 s 10 s 15 s 20 s 25 s 30 s 35 s

RSSI [m] 0.016 0.096 0.331 1.071 1.983 2.331 2.494
RSSII [m] 0.004 0.011 0.025 0.029 0.041 0.139 0.265
RSSIII [m] 0.031 0.127 0.202 0.244 0.331 0.359 0.368

Table 6.2: RMSE of Heave Predictions, Case 2
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Figure 6.5: LSTM Heave Predictions, Case 2

6.2 Drilling Performance

The drilling performance is assessed through two simulation modes, the advisory mode
and closed loop mode. The advisory mode is based on data from a real well drilled in
the North Sea from a floating drilling installation. Closed-loop simulation mode use the
OpenLab simulation environment, such that the optimized drilling parameters from the
MPC can be applied in a drilling environment to generate a response. The input drilling
data for the advisory mode is shown in Figure 6.6 for the time horizon of drilling a stand,
and will also be used to assess the accuracy of the parameter estimation method. The ROP
setpoint in the auto-driller was set to 30 m/h during the drilling operation. The logs show
that the measured ROP in the input data has amplitudes ranging from as low as 25 m/h
up to as high as and even exceeding 35 m/h. The block position decreases as the stand is
drilled, and there is a corresponding increase in the measured depth. The WOB is ranging
from above 6 tons to below 1 tonne. The RPM is at 140 rpm, with occasional deviations
of up to 1 rpm. The flow rate is stable around 4375 lpm.

Both operating modes require to configure the parameters of the Hareland ROP model.
The static properties that have been used in the model for both operating modes are shown
in Table 6.3. The bit properties used are representative for a PDC bit and are going to
be constant for a BHA run. The UCS was assumed to be constant during the drilling
simulation, which is a reasonable assumption for short simulation drilling only a couple
of meters. Also, because eventual changes in UCS will be compensated for in the model
through the fitting of the lithology coefficient a.
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Figure 6.6: Input Drilling Data

Parameter Value

Bit Diameter 12.25 [in]
Number of Cutters 50 [-]
Cutter Diameter 0.7 [in]
Backrake Angle 10 [deg]
Siderake Angle 30 [deg]
Bit Wear 1 [-]
UCS 80 [psi]

Table 6.3: Hareland Model Properties

6.2.1 Model Parameter Estimation

Having reasonable accuracy on the real-time estimations of the coefficients in the ROP
model are important for achieving accurate predictions in the MPC. Coefficients a, b and c
capture the lithology properties and the effectiveness of the WOB and RPM applied in the
drilling operation. The results of the parameter estimation process for a sliding window
size of L = 20 samples are shown in Figure 6.7. The first graph shows the estimation
of the lithology coefficient a. The value of a is mostly trending around 2000. Some
areas including before 500 seconds, the coefficient is increasing above 5000 and up to
the predefined coefficient bound of 10000. The second graph shows the estimated RPM
coefficient b, which is fluctuating between the coefficient bounds of 0.5 and 1. The third
graph shows the WOB coefficient c, that mostly trends towards the lower limit at 0.5 with
areas increasing up to the upper limit of 1.5.
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Figure 6.7: Parameter Estimation, L = 20

Figure 6.8 shows the estimated ROP in red against the real ROP in blue, indicating a
good model fit to the actual data based on the estimated model parameters a, b and c. The
estimation accuracy between the predicted value ŷi and the actual value yi is assessed with

the RMSE =
√

1
N

∑N
i=1(yi − ŷ) . The RMSE between the estimated ROP and the actual

ROP was 1.25 m/h for a sliding window size L = 20.

The parameter estimation exercise was carried out for a range of different window
lengths L, with the results shown in Table 6.4. The accuracy is lowered with increasing
window size, which is due to the inclusion of the process dynamics from longer back in
time when estimating the coefficients at the current timestep.
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Figure 6.8: ROP Based on Estimated Parameters
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Window Length L 20 s 30 s 40 s 50 s

RMSEROP [m/h] 1.25 1.61 2.01 2.05

Table 6.4: RMSE ROP Estimations for different window sizes L

6.2.2 Parameter Recommondations in Advisory Mode

In advisory mode, the controller is running in the background providing recommendations
on the set of optimum WOB and RPM in open loop. The control action can be chosen to
be, or not to be, applied to the system. The predefined ROP setpoint was set to 30 m/h.
The setpoint corresponds to the ROP setpoint that was desired and used in the auto-driller
during the operations. The sampling period of the MPC was set to 1 second. The output
tracking penalizing weight was set to 1000. The linear and quadratic weights on the slack
in the ROP was set to 1. Minimum and maximum rate of change in WOB was set to 2
tons. For RPM it was set to 3 rpm. The weights penalizing the input deviation was set to
1. The prediction horizon of the MPC was set to 12 samples, corresponding to 12 seconds.
The heave correction factor Cη was set to 0.001. At each timestep in the simulation, the
first recommended advice over the prediction horizon have been extracted.

The advisory mode simulations are carried out for two different heave time series in-
puts that are assumed to be the output from the LSTM heave prediction module. The
results from the two simulations are shown in Figure 6.9 and Figure 6.10. The time hori-
zon of the simulations has been set to 800 seconds. The first graph in both the figures
shows the heave response that was provided to the MPC. The second plot shows the ROP
setpoint (dotted green line), against the actual ROP (red line) that was achieved during the
offshore drilling operation. The third and fourth graph shows the actual values of WOB
and RPM in red, against the controller recommendations in blue. In the legends of the
plots, Rec. is shorthand for recommended and Act. is shorthand for actual.

In the first simulation, shown in Figure 6.9, the heave input to the algorithm had a
amplitude mostly between 0.5 meters and 2 meters. The recommendation during the first
150 seconds is to lower the WOB below the actual applied value in order to drive the ROP
towards the setpoint. Then, for the next 50 seconds the recommendation is to raise and
lower the WOB to meet the objective of the desired ROP and the heave motion suppression.
At around 400 and 600 seconds it recommends running with lower values for the WOB.

In the second simulation, shown in Figure 6.10, the heave input to the algorithm had
a amplitude mostly between 0.2 meters and 0.5 meters. The recommendation are like the
first case, but with larger frequency than in the first case. Also, the WOB recommendation
are oscillating at a lower amplitude than in the first case.

For both simulation cases, the effect of the heave compensation on the drilling param-
eters are best shown in the last 200 seconds. Here, the field ROP data is mostly stabilized
around the ROP setpoint and the parameter recommendation mostly reflects the effects due
to the predicted heave motions. When the process value deviates from the set point, the
WOB correction can be seen as the sum of correcting the deviation and suppressing the
wave induced motion. A significant deviation from the setpoint leads to minor parameter
oscillations for the periods where this is the case, such as at 100 seconds and 400 seconds.
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Figure 6.9: Parameter Recommondations (Blue) and Actual Parameters (Red), Case 1
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Figure 6.10: Parameter Recommondations (Blue) and Actual Parameters (Red), Case 2

59



6 Results 6.2.3 Closed-Loop Controller Performance on a Simulated Well

6.2.3 Closed-Loop Controller Performance on a Simulated Well

To evaluate the closed-loop performance of the controller, two simulation scenarios have
been run against the OpenLab drilling simulator. The first simulation of the MPC is for a
constant ROP setpoint to look at the heave compensation capabilities of the system when it
has reached steady state. A second simulation scenario involving multiple ROP setpoints
have been run to assess the tracking capabilities of the MPC. The tuning parameters of the
MPC have been set to the same as for the advisory mode.

The well, BHA and mud specific configuration data that were used for setting up the
drilling simulations will be briefly outlined. In OpenLab this configuration can be done
through the Python interface, or by accessing the web client. The simulations used the
inclined well template that are available through the web client.

Table 6.5 shows the dimensions of the hole section to be drilled and the dimensions of
the casing that are going to be run. The 12 1

4” section has been configured to be drilled.
The hole size to be drilled will be most relevant for the ROP dynamics, but the casing
dimensions must also be configured, even though they are most relevant for the hydraulic
calculations.

Hole Type OD ID Hanger Shoe
Size [in] [in] [in] Depth [m] Depth [m]

36 Casing 32 30 3
4

200 260

26 Casing 20 18 23
32

200 830

16 Casing 13 3
8

12 13
32

200 1550

12 1
4

Casing 10 3
4

9 15
16

200 2183

Table 6.5: Hole Section Configuration

Table 6.6 shows the configuration data for the BHA. A 12 1
4” PDC bit is used for

drilling the section. A M/LWD package is included in the BHA, which reflects the sensors
that gather the directional and drilling dynamics data. 5” drillpipe is used in the BHA.

In the first simulation case, the ROP setpoint is set to 30 m/h for the entire simulation
duration. The objective for the MPC is to reach a ROP of 30 m/h, and suppress heave
motion disturbances when it has reached steady state. The heave compensation factor
was set to Cη = 0.001. Figure 6.11 shows the simulation results for the first closed-
loop simulation. For this compensation factor it can be seen that the amplitude of the
recommendations of WOB for most of the large heave prediction inputs, are equal. This
is due to that the computed WOB recommendation is restricted by the bounds in the MPC
formulation, such that pairs of recommended values appear equal. The ROP reaches steady
state between 300 seconds and 400 seconds. Due to the inertia of the drawworks and the
controller associated with it, the actual WOB deviates from the recommended value from
the MPC.

Figure 6.12 shows the result from a simulation with a lower heave compensation factor
of Cη = 10−6. Here it can be seen that there are almost no action in the recommended
WOB compared to the first simulation case.

Figure 6.13 displays only the data from 400 seconds up to 600 seconds in the first
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Figure 6.11: Controller Performance, Fixed Setpoint (Cη = 0.001)
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Figure 6.12: Controller Performance, Fixed Setpoint (Cη = 10−6)
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# Type Length [m] OD [in] ID [in] Weight [kg/m]

1 Drillpipe 2000 5 4 9
32

33

2 HW Drillpipe 54 5 3 76

3 Jar 9.4 6 1
2

2 1
2

139.7

4 HW Drillpipe 44.9 5 3 76

5 Drillcollar 28.8 6 1
2

2 13
16

145.7

6 MWD 7.9 6 7
8

3 139.6

7 LWD 6.4 6 7
8

3 134.6

8 Drillcollar 2 5 1
2

3 84.5

9 Float sub 1 6 3
4

3 146

10 RSS 7.7 6 3
4

3 148

11 Bit 0.3 12 1
4

3 150

Table 6.6: BHA Configuration

simulation case. From maximum values of the heave response from 520 seconds to 600
seconds, there is a corresponding maximum recommended WOB, which was the purpose
of the controller in the first place. There is not possible to simulate rig heave in OpenLab,
so the only reasonable metric to observe is the development of the controller WOB. But
to estimate an ROP value, in order to compare the effects with and without the controller,
an ROP disturbance has been assumed to be proportional to the heave motion disturbance.
The blue graph shows the ROP development based on the previous assumption and is
marked with ROP w/o (without) in the legend. It serves as an indication of the ROP devel-
opment in the case where the controller runs without heave compensation. The red graph
is the actual development of the ROP with the controller active. Under the assumptions
that have been made, the actual ROP tracks the reference closer than the ROP without
heave compensation.

For the last simulation case, the initial ROP setpoint is set to 40 m/h at 50 seconds. At
350 seconds the setpoint is set to 70 m/h, before it is lowered to 20 m/h at 550 seconds.
During the whole simulation, the maximum ROP is set to 60 m/h. The heave correction
factor is set to 0 during the whole simulation period. The reason for running the second
simulation case is for validating the tracking properties of the MPC, as well as ensuring
that the ROP does not surpass the maximum bound. It also serves as a validation simula-
tion for employing the Hareland model in a MPC. Figure 6.14 shows the results from the
simulation case. The ROP manages to reach the specified setpoints, and the output does
not violate the specified maximum bound on the ROP.
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7
Discussion

During the literature review process there was identified that there had not been done any
previous work on combining heave response predictions and ROP optimization in real
time. This thesis has done an effort in merging the fields of marine, drilling and control
engineering in order to realize a controller that address this gap. Simulation results shows
that the system can adjust drilling parameters based on the predicted heave and that it has
potential to stabilize the ROP by mitigating effects due to heave. There are however some
weaknesses associated with the implementation, mostly around the verification strategy.
This chapter will discuss the strengths and weaknesses that have been identified.

7.1 Heave Predictions using Neural Networks
Employing a LSTM neural network to predict heave motions are a feasible strategy, based
on the simulation results. The accuracy of the prediction model is high for short prediction
horizons. When the horizon is longer than 2 response periods, the accuracy drops signif-
icantly. A neural network has the learning capabilities, pattern recognition properties and
possibility to deal with nonlinear relations which made it a robust strategy. There have
been done previous work on using LSTM for heave prediction as mentioned in the liter-
ature review section. The model proposed by Guo et al. (2021) used wave measurements
and heave response as input to a LSTM model. The LSTM model implemented in this the-
sis only used the heave response as input, meaning that the corresponding neural network
had a single feature. A benefit of implementing it with a single feature is that the neural
network is a lot less complex to construct. With only a single feature to fit parameters for,
the number of layers and nodes required are less than for multiple features. The model
will therefore be simpler to train. For use in an operation, a single feature means that it
only requires measurements from a single sensor to function. The model in this project
was trained on, and compared against real data from a semi-submersible in the North Sea,
which further proves the capabilities of the method.

Another point that must be taken into consideration is how much data should be used
to train the neural network and how often to update the weights in the model. It was
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7 Discussion 7.2 Drilling Optimization using MPC

observed that when increasing the amount of data to train the model on, the predictions
became more accurate for long horizons. The network architecture that was described and
implemented, had a layer consisting of 50 LSTM nodes and a layer of 70 dense nodes.
The implemented network configuration provided reasonable predictions, but the optimal
number of layers and nodes to use in a response prediction neural network can differ from
the selection used in this thesis.

However, there are some weaknesses involved with the selected method for heave pre-
diction. Firstly, it does require offline training, meaning that it cannot update the weights
and biases of the network as new measurements come in. Also, since the method is en-
tirely data-driven, it does not contain details about the fundamental physics of the system
to guide the system. This translates into that the data used in the training process must be
properly handled beforehand, such that irrelevant dynamics are not introduced to the neu-
ral network. A weakness of using only the MRU measurements, is that the neural network
does not know anything about the incident wave properties when making the prediction.
The mentioned weaknesses are the reason that the method performs worse for longer pre-
diction horizons. The implementation by Guo et al. (2021) included wave measurements
in the neural network, and this can be one of the reasons they reported high accuracies on
predictions with horizons of over 40 seconds.

For operations that require prediction horizons longer than 10 seconds, such as for
downhole pressure control when making a connection, the strategy should be enhanced by
improving the mentioned weaknesses. But for the case of adjusting drilling parameters,
a 10-15 seconds look ahead in time of the response will be more than enough, making a
LSTM neural network with a single feature sufficient for the purpose.

7.2 Drilling Optimization using MPC
A least squared parameter estimation method was able to fit the model coefficients effi-
ciently within the specified bounds. For a sliding data window size of L = 20 samples,
the RMSE of the estimated ROP was 1.25 m/h. For increasing window sizes, the RMSE
of the ROP increased accordingly. Selecting the window size was a tradeoff between the
accuracy of the estimation and how long dependency of the ROP dynamics to include.
The RPM coefficient goes in saturation between the bounds of 0.5 and 1, which is a con-
sequence of restricting the allowable values for the coefficient.

Based on simulations in advisory mode, the simulation that was running with more
substantial heave motions was more aggressive in terms of the WOB corrections. Dur-
ing periods of significant offsets from the setpoint, the recommendation shows signs of
providing reasonable recommendations for how to correct for the offset.

The closed loop performance of the controller was tested by running simulations against
the OpenLab simulator. Tracking performance of the ROP was assessed through a simu-
lation scenario with different ROP setpoints. The controller was successfully able to steer
the ROP to the desired value through applying an optimal set of WOB and RPM through
the OpenLab simulator interface. There was identified that the drawworks seems to lag
the recommendations, such that the applied WOB shows indications of not being able to
follow the recommended WOB. The second simulation case was done for a constant ROP
setpoint to study the effect of the heave compensation. Due to that the applied WOB by
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7 Discussion 7.3 Verification of System

the drawworks lagged the recommendations of the MPC, the heave correction factor was
set to 0.001 to generate a sufficient ROP response.

Sui et al. (2013) and Kommedal (2021) both employed an MPC for use in a drilling
operation. Compared to the mentioned contributions, the MPC presented in this thesis
considers the predicted future wave induced motion of the rig when solving the optimiza-
tion problem. Another difference compared to the previous efforts are that the Hareland
ROP model have been used in this thesis, compared to the Bourgoyne and Young model
that was used in the mentioned efforts. Various ROP model candidates have been outlined,
each with different parameters that are taken into account in the model. The Hareland
model was chosen due to the abilities to accurately represent a PDC bit that is penetrating
the formation. Simulations show that the Hareland model is a promising model to employ
in a MPC. In the effort by Sui et al. (2013), the optimization problem was formulated as a
nonlinear MPC, which can be a more promising solution than linearizing the model. This
thesis did like Kommedal (2021), and linearized the process model to use it in a MPC.

7.3 Verification of System
There are advantages and disadvantages of the selected verification strategies in this thesis,
which were the advisory mode and closed-loop mode. A benefit of running the controller
in advisory mode is that one gets to run real-world drilling data through the algorithms.
The parameter recommendations are then based on data from a real well, and if the study
proves the recommendations to be reasonable, then there is some evidence for deploying
it offshore. But there are some weaknesses in assessing the full system potential through
the advisory mode. It is not possible to apply the recommended WOB, and RPM to the
system and study the closed-loop response without testing it on an actual offshore rig. A
benefit of running the MPC in a simulation environment, such as the OpenLab drilling
simulator used in the thesis, is that it is possible to study the closed-loop response. This
provides insight into whether the control action is going to drive the ROP to the desired
value. Another benefit of a simulation environment is the possibility to isolate the factors
that are not of interest. An example from the simulations was to make sure that the ROP
was around the setpoint during most of the simulation period. This was identified as an
issue when running it in advisory mode, since it was difficult to directly identify the effect
of the heave compensation due to periodic significant deviations from the setpoint. In a
more controlled environment it was simpler to isolate the heave compensation effects in
the recommended drilling parameters.

Some additional words to the simulations carried out in the OpenLab drilling simulator.
It was impossible to recreate drilling instabilities such as stick-slip in the simulator, which
means that it is difficult to say how exact drilling performance of the controller would
perform in a real environment. Another issue was that the WOB controller in the simulator
controls the speed of the drawworks in order to get a stable WOB. This had large inertia,
so the drawworks could not keep up with the recommendations from the MPC controller.
Also, the simulator could not simulate the effect of rig heave on ROP, and it was proposed
to make an assumption of the ROP development such that a controller with and without
the heave compensation could be compared. Further improving the verification strategy
requires to pursue new simulation models that fully capture the dynamics of rig heave.
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8
Conclusion

This thesis has investigated the possibility of using rig heave predictions to optimize the
drilling process through the development of a heave prediction module together with an
MPC. MRU measurements from the rig are passed through a LSTM artificial neural net-
work, providing rig heave predictions multiple seconds ahead in time. The MPC selects
the optimal combination of WOB and RPM based on a linearized Hareland ROP model
corrected for the predicted heave motion through a heave correction factor. The coeffi-
cients of the Hareland model are calibrated at each timestep through sampling a sliding
data window and minimizing the least squares error of the estimated ROP.

Using a LSTM artificial neural network to predict the heave motion seconds ahead of
time based on MRU measurements has shown promising results. The method proved to
have the best accuracy for shorter time horizons. The performance of the heave compen-
sated MPC was assessed through two simulation cases. The first simulation case involved
running the controller in advisory mode based on downhole sensor data from a real well in
the North Sea. The second case assessed the closed-loop performance of the controller by
using the OpenLab Drilling Simulator. Both simulation cases indicate that the controller
has promising abilities to mitigate drilling instabilities due to rig heave by predicting the
rig heave motion ahead in time, and compensating for it in the controller.

8.1 Further Work
During the work carried out in this thesis, there were identified further work actions which
are outlined in the list below.

• Explore how to improve the accuracy in the heave prediction module for longer
prediction horizons. Possibly through including wave radar data as a feature in the
artificial neural network. By introducing the properties of the incident waves, it
could potentially improve the predictions. Another potential measure to increase
the accuracy is to combine the data-driven model that have been outlined in this
thesis with a physics based model.
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8 Conclusion 8.1 Further Work

• Look into a strategy for updating the weights in the artificial neural network online,
such that the training process can happen continuously and not requiring to be fully
re-trained as the implemented system in this thesis.

• Investigate the possibility to use the heave predictions as input to other operational
decision making systems onboard the rig, or even for other marine vessels such as a
wind turbine installation vessel.

• Look into steering the drawworks directly, by taking in the heave predictions in the
controller steering the drum rotational speed. In the work that have been presented,
the drawworks action is provided through the increased or decreased WOB compen-
sation through the MPC.

• Provide future values of the UCS to the MPC formulation. The MPC can therefore
guide the drilling process to modify parameters based on known formation proper-
ties beforehand (proactive), and not after it has been detected.
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Appendix
A Wellpath OpenLab

MD Azi. Incl.
0 0 0
43.5 0 0
152 40.6 0
291 360 0
301 180.37 0.27
311 174.74 0.29
321 172.9 0.24
331 192.63 0.17
341 232.7 0.17
351 231.94 0.19
361 195.7 0.25
371 194.19 0.13
381 309.46 0.1
391 288.51 0.12
401 248.95 0.14
411 214.46 0.25
421 193.84 0.39
431 173.65 0.33
441 115.8 0.23
451 77.82 0.37
461 72.57 0.39
471 95.72 0.2
481 162.91 0.2
491 154.82 0.31
501 149.29 0.26
511 152.96 0.23
521 145.39 0.37
531 145.9 0.44
541 144.1 0.39
551 134.02 0.27
561 144.09 0.19
571 136.05 0.32
581 129.87 0.46
591 139.12 0.43
601 141.82 0.48
611 135.37 0.54
621 127.57 0.47
631 122.87 0.39
641.01 129.13 0.39
651.01 143.68 0.44
661.01 152.3 0.55
671.01 161.7 0.71
681.01 179.94 0.86
691.01 203.66 1.18
701.01 218 1.86
711.02 222.5 2.6
721.03 223.45 3.32
731.05 223.02 4.04
741.08 222.88 4.75
751.12 224.41 5.48
761.18 225.84 6.27
771.25 226.82 7.1
781.33 227.48 7.91
791.44 228.12 8.63
801.56 229 9.36
811.71 229.57 10.12
821.88 229.78 10.73
832.06 229.91 11.31
842.27 230.17 11.95

MD Azi. Incl.
852.51 230.49 12.72
862.78 230.9 13.54
873.08 231.27 14.36
883.43 231.5 15.23
893.81 231.58 15.89
904.21 231.69 16.33
914.65 231.86 16.71
925.1 231.83 17.13
935.57 231.75 17.57
946.07 231.9 17.93
956.6 232.03 18.29
967.14 232.05 18.71
977.71 232.06 19.17
988.32 232.2 19.69
998.96 232.28 20.28
1009.64 232.19 20.97
1020.38 232.37 21.85
1031.19 232.83 22.78
1042.07 233.08 23.54
1053 233.17 24.17
1063.99 233.29 24.61
1074.99 233.49 24.77
1086 233.78 24.72
1097.01 233.83 24.66
1108.01 233.64 24.64
1119.01 233.55 24.59
1130 233.57 24.52
1140.99 233.7 24.48
1151.98 233.73 24.38
1162.95 233.59 24.23
1173.91 233.51 24.17
1184.88 233.46 24.21
1195.84 233.53 24.21
1206.8 233.82 24.07
1217.74 234.01 23.93
1228.68 234.03 23.91
1239.62 234.03 23.86
1250.55 234.05 23.77
1260 237.71 24.71
1270 239.38 25.51
1280 239.75 26.06
1290 239.95 26.62
1300 239.76 27.18
1310 239.56 27.8
1320 238.99 28.76
1330 238.92 29.65
1340 238.52 30.47
1350 238.02 31.46
1360 237.78 32.29
1370 237.54 33.23
1380 237.35 34.15
1390 236.89 35.25
1400 236.86 36.28
1410 236.78 37.35
1420 236.59 38.44
1430 236.72 39.45
1440 236.61 40.31
1450 236.82 41.16
1460 237.02 41.99

MD Azi. Incl.
1440 236.61 40.31
1450 236.82 41.16
1460 237.02 41.99
1470 236.98 42.8
1480 236.76 43.59
1490 236.76 44.51
1500 236.82 45.37
1510 236.87 46.35
1520 237.31 47.14
1530 237.94 47.62
1540 238.17 47.96
1550 238.24 48.12
1560 237.82 48.25
1570 238.01 48.24
1580 237.99 48.3
1590 237.79 48.32
1600 237.58 48.3
1610 237.3 48.48
1620 237.29 48.37
1630 237.35 48.41
1640 237.41 48.37
1650 237.05 48.18
1660 237.05 48.12
1670 237.18 48.27
1680 237.37 48.37
1690 237.29 48.59
1700 237.32 48.62
1710 237.86 48.28
1720 237.84 48.07
1730 238.16 47.82
1740 238.15 47.82
1750 238.08 47.82
1760 238.28 47.91
1770 238.43 47.92
1780 238.31 48.02
1790 238.39 47.72
1800 238.3 47.7
1810 238.08 47.82
1820 238 47.91
1830 237.82 47.97
1840 237.8 47.84
1850 237.76 47.86
1860 237.79 47.88
1870 237.75 47.82
1880 237.98 47.64
1890 238.39 47.38
1895.96 238.48 47.52
1917.09 240.3 47.34
1951.24 239.64 47.66
1978.29 240.38 47.53
2005.57 242.56 47.54
2032.83 246.01 47.52
2060.11 250.16 47.66
2087.38 253.25 47.03
2124.31 256.97 45.44
2151.72 259.17 44.66
2179.2 259.12 42.66
2206.68 259 41.12
2233.58 260.78 39.96
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B Source Code
The source code can be accessed by scanning the QR code below, or by following the URL
to the Git repository: https://github.com/jonasbjorlo/mpc-drilling.
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