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Abstract— Robot bin picking plays an important role in
modern manufacturing process. In order to make these manu-
facturing systems more efficient and productive, it is essential to
make a valid grasping plan from gripper design, industrial part
recognition, pose estimation, to grasping evaluation. This paper
proposes such a planning framework that enables the robot to
learn to grasp an industrial part and improve the performance
in two phases. First, prior knowledge of 3D model is utilized
for gripper selection, database generation and grasping point
evaluation in a design phase. Next, attempts for single part
grasping are made in a test phase, and grasping failures will
trigger the redesign in the previous phase. The grasping plan
is then used for grasping randomly distributed parts. A risk
assessment is made per part for selection of best candidate of
parts, taking both grasping efficiency and potential collision
into account. At last, pose adjustment is applied on the robot
to improve grasping capability. Through simulation and field
test, we demonstrate that the two-phase planning framework
is a practical solution for robot bin picking applications.

I. INTRODUCTION

Today, customer demands such as faster delivery time and
customized products with higher quality are driving manu-
facturing companies toward Industry 4.0 [1]. The transition
to Industry 4.0 requires the changes of physical infrastruc-
ture, sensor integration, as well as new technologies from
manufacturing process improvement to operational perfor-
mance optimization. Taking advantages of Industrial Internet
of Things (IIoT), the concept of smart manufacturing is
expected to change from traditional automation to advanced
manufacturing systems, where the production processes can
be adjusted for different types of products and changing
conditions [2]. To this end, digitalization of physical objects,
sensors and actuators in the manufacturing process becomes
necessary. It not only refers to digital representation such as
3D models and physical behavior models of machine, but
also includes virtual testing of the complete manufacturing
system with advanced tools [3].

The last decade has witnessed different types of robots
capable of responding to environmental changes [4], [5], [6].
The use of these intelligent robots in digital manufacturing in
various fields from automotive aerospace to medical to food
is promising [7]. Bin picking, as one of the manufacturing
applications, has attracted a lot of attention in the robotics
community [8]. Picking up industrial parts from a clustered
scene and placing them in order in a box or on a conveyor

1 G. Li, O. J. Monk and H. Zhang are with Department of Ocean
Operations and Civil Engineering, Norwegian University of Science and
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Fig. 1: Manulab at NTNU Ålesund.

belt is a challenging task. Generally, it requires manipulating
one or two robot arms with multiple degrees of freedom
(DOF) to approach a target part and grasp it in an appropriate
manner. The robot arms are usually equipped with 2D/3D
cameras for environmental perception, together with built-in
sensors such as IMU and encoder for intrinsic perception.
Many technical issues, such as industrial part recognition,
localization [9], pose estimation [10], and collision avoidance
should be considered in developing bin picking systems.

In the literature, many efforts have been made for de-
veloping bin picking technologies [11]. For example, Oh
et al. proposed a geometric pattern matching method for
2D image pattern recognition and 3D pose estimation by
using a stereo camera [12]. Martinez et al. developed a 3D
bin picking system using a 3D camera with a focus on
robust solution of randomly located parts [13]. Jonschkowski
et al. used an RGB-D camera to obtain vision data and
applied their proposed probabilistic multi-class segmentation
method to a warehouse picking setting [14]. A benchmark
was proposed by Mnyusiwalla et al, aiming for comparability
and reproducibility of bin-pinking systems in an easy-to-
reproduce environment [15]. There are also novel proposals
implemented in picking tasks in competitions, e.g. the Ama-
zon picking challenge held in 2015∼2017 [8]. Focuses are
more on efficient picking of unknown light-weighted objects.
Besides the visual data obtained from 2D/3D cameras, vari-
ous types of grippers using magnet, parallel jaw and vacuum
have been exploited for efficiently grasping objects. Many
machine learning based methods for grasp point detection
[16] and pose estimation [17] using 2D/3D images have been
proposed, which search in the image to find an optimal pose
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Fig. 2: Bin picking framework.

for grasping. Grasping planning is then used after the grasp
pose is determined. Some manipulator motion planning tools
such as MoveIt [18] and OMPL [19] are widely used in the
robotic field.

Although recent works have addressed specific bin picking
problems, there are still restrictions with respect to the bin
picking technologies in real applications. For example, the
computation time used in complex search algorithm and
the big database used in deep learning for grasping point
estimation hinder their use in industrial context. In practice,
industrial parts are usually known in advance, e.g. in CAD
format. Prior knowledge such as grasping point is therefore
obtained before designing the bin picking system. Our re-
search project aims to bridge the gap between academic
results and industrial needs for fast development and veri-
fication of bin picking systems in manufacturing laboratory.
The Manulab at NTNU in Ålesund plays such a role in
testing different manufacturing solutions [20]. It consists of
3D printer, laser cutter, collaborative robots, mobile robots
and delta robots etc., as shown in Fig. 1. In this paper, we
use an Omron manipulator in the Manulab and focus on
developing digital planner and 3D vision system for proof
of concept of bin picking system.

The rest of the paper is organized as follows. First, an
overview of a small-scale bin picking system implemented
in Manulab will be introduced in Section II. Next, the key
technologies about planning, 3D grasping will be presented
in Section III. After that, Section IV presents a case study
of bin picking task. Finally, conclusion and future work are
drawn in Section V.

II. ROBOT BIN PICKING SYSTEM
This section introduces the framework of the proposed

robot bin picking system and the Omron robot in Manulab
used for verification.

A. Framework

Fig. 2 illustrates the framework of the bin picking system.
It consists of a digital planner and a robotic system. In the
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Fig. 3: Example of (a) scenario setting, (b) dimension of
industrial part, and (c) suggested grasping area in a picking
task.

planner, efforts are made to model and simulate the picking
process, including modeling the robot, the industrial part, the
calibration platform and the picking scenario. Considering
in real applications the industrial parts are usually known
beforehand, the digital planner could import their 3D models
into simulation to evaluate the picking point/area, the gripper
type and size, and design the grasping strategy for collision
avoidance. We use RoboDK1 in this study. Fig. 3 shows an
example of a bin picking task implemented in RoboDK. The
scenario includes an Omron robot, a box of industrial parts,
a conveyor belt, a workstation, and a calibration table. By
importing the CAD file of the part, the planner could evaluate
the picking area based on the part’s weight, dimension and
center of gravity (COG).

After planning, the prototype system could be tested on
the real robot in Manulab. In this phase, efforts would be
made to check how successful the grasp will be if the robot
grasps the part from the grasping area. Failure of grasping
will be fed back to the planner, resulting a new round of
evaluation. Once safe grasping is achieved, recognition and
localization of industrial parts are designed in the planner
and tested in the physical system. As illustrated in Fig. 2, the
design process and its implementation between the planner
and the robotic system would be iterated and improved until

1https://robodk.com/
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TABLE I: Components used in the bin picking system

Component Description
Omron TM5-900 Universal robot for manipulation
Robotiq FT300 Force sensor
FH-SMDA 3D vision sensor
Festo OVEM-10-H-B-QO-OE-N-2P Vacuum generator
Festo VASB-40-1/4-PUR-B Suction cup

the robot is able to pick the part in a clustered scene and
place it to the target position.

B. Omron Robot

We use Omron TM5-900 for bin picking tasks. Fig. 4
shows the robot together with onboard sensors. The robot
has a weight of 22.6 kg, and can reach up to 900 mm with
max payload of 4 kg. There are six DOF with different joint
range in the robot. Joint 1 and 6 can move ±270◦; joint
2, 4, 5 have a smaller joint range of ±180◦, and joint 3
can only rotate within ±155◦. The robot has a flow chart
based programming environment, called TMflow. It enables
full control of the robot, safety setting, and built-in machine
learning tools for vision jobs.

Table I lists the involved components for the bin picking
application. A 3D camera FH-SMDA with a dimension of
53 × 110 × 77 mm is mounted on the robot. The camera
with depth information is used for visual data acquisition. Its
measurement range is 400 × 300 × 200 mm. For each pick,
the robot will take a picture to localize the best candidate
part and then grasp. A Festo suction gripper is selected in
this case. It works together with a Festo vacuum generator

3D model

Design phase

Gripper 

selection/design

Database for pattern 

recognition

Grasping point/

area evaluation

Single 

part

Rand. 

dist. parts

Calibration
Part(s)

recognition 

Pose 

estimation
Grasping 

Risk 

evaluation

Pose 

adjustment

Failed

Test phase

Fig. 5: Flow chart of the bin picking system development.

to provide suction while gripping. In addition, a force/torque
sensor Robotiq FT300 is utilized for collision detection and
safe grasping. The sensor has a force range ±300 N and a
torque range ±30 N. By properly setting the force/torque
threshold, the robot could detect collision with the part,
activate the vacuum generator, and guild the suction tool to
attach the part for grasping.

III. GRASPING PLANNING
The development of grasping planning consists of two

phases: a design phase and a test phase, as shown in
Fig. 5. As mentioned in Section II, prior knowledge of the
industrial part including the dimension, weight and COG is
beneficial for tool length and size determination, and gripper
type selection. For example, regarding the industrial part
illustrated in Fig. 3b, suction gripper is selected since safe
grasping is of highest priority in the task. A 40 mm suction
cup is selected based on the size of cross section of the
part, so as to maximize the contact area and generate enough
suction. Thanks to the 3D model of the part, the grasping
point/area, as illustrated in Fig. 3c, could be evaluated for
better balance when grasping. A data set with pictures of the
part in different angles could be generated for training of part
recognition. In addition, the tool length could be optimized
for easy grasping in an upward-facing box where the depth
is the largest dimension in this phase.

In the test phase, grasping of a single part is conducted
at the beginning. First, the single part is calibrated on the
calibration table as shown in Fig. 3a. By using OpenCV,
part contour could be detected to obtain its location coordi-
nates in frame, and further to calculate the conversion rate
from pixels in the image to millimetres. After calibration,
pattern recognition of random placement of the single part
is performed, based on which we can locate the part and
estimate its pose using the conversion rate for grasping.
However, grasping may be failed due to improper design in
the previous phase. For example, the failure of recognition
may result from insufficient pictures of different poses for
training; wrong type of gripper, or unbalanced grasping due
to improper grasping point yield grasping failure. All types
of failures will be fed back to the design phase, requiring
for design improvement for stable grasping.
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Fig. 6: Pose estimation for part grasping.

Until a single part is grasped successfully, the test scene
becomes a random distribution of parts. From Fig. 5, the
process is the same as the single part grasping except a ‘risk
evaluation’ module and a ‘pose adjustment’ module. Among
the recognized parts, the ‘risk evaluation’ module plays a role
in identifying which part is most suitable for grasping. First,
those parts that are hindered by other parts are neglected.
Then, the eligible parts are assessed and ranked by the
following criteria:

• the vertical distance from the tool position to the grasp-
ing point of the part;

• the closest distance between the grasping point pro-
jected to the box plane and the edges of the box.

The first criterion considers the grasping efficiency, while the
second one takes collision with the box into consideration.
After that, the pose of the top ranked part will be calculated.
As illustrated in Fig. 6, given the estimated pick position P =
[x, y, z]T , and its pose θ = [θx, θy, θz]

T , the transformation
for the robot to grasp the part can be expressed as:

T = Trans(x, y, z) ·R(θx) ·R(θy) ·R(θz) (1)

where Trans stands for the translation matrix and R repre-
sents the rotation matrix.

In order to guarantee the part is safely grasped, the
‘pose adjustment’ module utilizing the force/torque sensor
is proposed, as shown in Algorithm 1. A threshold of 15 N
is used to ensure that the suction cup is in contact with the
part without causing the part to displace. A strategy of small
rotation about the suction tool’s x and y axes is applied to
the part, aiming to enhance grip adhesion. As a result, the
part can be successfully picked up, and placed to a desired
position afterward.

Algorithm 1 Safe grasping using force/torque sensor
Parameters: pickPos – the pick position of the part;
picturePos – the position for taking a new picture;
vaccumOutput – turn on/off the vacuum generator;
vaccumInput – binary signal from vacuum sensor for safe
grasping; actionStp – action steps.

Move to pickPos
vaccumOutput = True
actionStp = 0
while not vaccumInput do

if forceInput ≤ 15N
z− = 5mm

else if forceInput > 15N AND actionStp == 0
θx += 5◦

else if forceInput > 15N AND actionStp == 1
θx −= 10◦

else if forceInput > 15N AND actionStp == 2
θx += 5◦

θy += 5◦

else if forceInput > 15N AND actionStp == 3
θy −= 5◦

else
actionStp = 0
vaccumOutput = False
Move to picturePos

end if
actionStp ++

end while

1 2

3 4

Fig. 7: Simulation of a bin picking task in RoboDK.

IV. EXPERIMENT

We conducted a simulation in RoboDK environment and
a field test in Manulab to verified the proposed planning
framework.

The simulation scenario is the same as the one illustrated
in Fig. 3a. The task is to pick up randomly distributed
parts as shown in Fig. 3b from a box and place it on to
the conveyor belt. Fig. 7 shows a complete picking process
from part recognition, evaluation, grasping, to placement. In
the simulation, since the simulated camera is a 2D camera,
we cannot obtain the desired distance for approaching the
part. An alternative is to use RoboDK’s collision detection
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Fig. 8: The variation of (a) joint angle and (b) angular
velocity over time, and (c) the corresponding gripper tool
trajectory in the picking process in simulation.
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Fig. 9: Parts evaluation from (a) depth image and (b) esti-
mated grasping pose in the Omron TMflow system.

method. Thus, once the robot moves towards a part and
collides with it, it can be assumed that a successful grasp has
occurred. The robot then can rotate about 180◦ and place the
part onto the conveyor belt.

Fig. 8 shows the changes of the six joint angles and their
angular velocities of the robot, as well as its tool trajectory
in one complete picking process. The whole picking process
lasts about 6 s. It is noted from joint 5 in Fig. 8a that
approaching the part and grasping occurs around 1.5 ∼ 3.0 s.
Combining with the same time period shown in Fig. 8b,
the successful grasp happens at 2.3 s, where all the joints’
angular velocities are close to 0 ◦/s , indicating a stationary
state at that moment. From Fig. 8b, it is also noted that
there are 6 such stationary states in the whole process. They
correspond to the positions highlighted in Fig. 8c. The pick
position in Fig. 8c is determined by the position of the top
ranked part after risk evaluation. Except for that, the other
positions are predefined in the case study. For example, the
first sub-figure of Fig. 7 is the position for taking pictures
for grasping, and the the last sub-figure of Fig. 7 is the
position for placing the part. The simulation result shows
the feasibility of the bin picking application.

The proposed planner was further tested on the Omron
robot in Manulab. Fig. 9 is an example of industrial part
evaluation. By taking pictures from the 3D camera on the
Omron robot, a depth image was obtained and the parts were
segmented and recognized, as shown in Fig. 9a. According
to the risk evaluation criteria, the top ranked part was high-
lighted and the corresponding grasping pose was estimated,
as shown in Fig. 9b. Then a grasping can be conducted.
Fig. 10 shows the screenshots from a video of bin picking.
Note that we simplified the process by replacing placement
of the parts on the conveyor belt with dropping them in
another box. It should be noted from the second and the
third sub-figures that a pose adjustment was performed by
using Algorithm 1. The robot twisted the suction gripper
a little bit about the x and y axes of the gripper. As a
result, the part stuck to the suction cup better and the robot
successfully grasped it and placed it to the other box. The
results shows the effectiveness of the proposed method in
bin picking applications.
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V. CONCLUSIONS

Robot bin picking is widely used in industrial automation
scenes. In this study, we propose a framework for designing
and testing of robotic grasping system using 3D vision. By
making use of 3D model of the part, grasping strategy and
recognition database could be generated, followed by a single
part testing from calibration, recognition, pose estimation
to grasping. Success of single part grasping supports the
development of grasping among randomly distributed parts.
A risk evaluation method and a pose adjustment method
are proposed in this phase for part selection and stable
grasping, respectively. A simulation in RoboDK and field
test on Omron robot in Manulab were conducted. The results
shows that the proposed framework is efficient in grasping
planning in bin picking applications.

For future work, focus will be on enhancing the risk
evaluation method, especially for assessing unstable parts
due to interaction of parts in the box. In addition, efforts
will be made to improve the design of the gripper to
accommodate any potential changes to the part.
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