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Abstract—This study investigates the potential of the elec-
trocardiogram (ECG) to perform early meal detection, which
is critical for developing a fully-functional automatic artificial
pancreas. The study was conducted in a group of healthy
subjects with different ages and genders. Two classifiers were
trained: one based on neural networks (NNs) and working on
features extracted from the signals; one based on convolutional
NNs (CNNs) and working directly on raw data. During the test
phase, both classifiers correctly detected all the meals, with
the CNN outperforming the NN in terms of misdetected meals
(MMs) and detection time (DT). Reliable meal onset detection
with short detection time has significant practical implications:
it reduces the risk of postprandial hyperglycemia and hypo-
glycemia, it reduces the mental burden of meal documentation
for patients and related stress.

Index Terms—Classification, meal detection, neural networks, dia-
betes mellitus type 1, electrocardiogram.

I. INTRODUCTION

Type 1 diabetes mellitus (DM1) is a chronic medical condition
that affects millions of individuals worldwide. It is characterized by
insufficient production of insulin by the pancreas, leading to high
blood glucose level (BGL) which can cause sustained impairments if
untreated [1]. Maintaining BGL within normal range is imperative for
the proper functioning of the human body, thus DM1 patients require
external insulin. Administering insulin manually can be a meticulous
and time-intensive procedure. Moreover, manual insulin dosing may
not be a practical solution for children and elderly patients, who may
struggle to either remember or self-administer the insulin injections
[2]. Continuous subcutaneous insulin injection (CSII) needs frequent
manual interventions which can add to stress of DM1 patients.

A hybrid artificial pancreas (HAP) can control BGL and comprises
of three key components: (i) continuous glucose monitoring (CGM)
system measuring BGL; (ii) insulin pump to deliver insulin; and (iii)
control system implemented in the insulin pump [3]. CGM-based
HAPs measure BGL in interstitial fluid, not capillary glucose, resulting
in a physiologic lag ranging from 5 min to 15 min, depending on
glucose-change rate [4]. To reduce postprandial glucose excursions,
meal bolus insulin should be infused prior to meal start. The HAP
depends on manual input (by the user) for meal-related information
(e.g. meal start and content), increasing management burden.

Automatic meal detection in an artificial pancreas enables more
precise and timely insulin dosing, ideally by reducing/eliminating
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manual meal-related input for patients and addressing challenges
related to latency and variability in glucose response. Several ap-
proaches for automatic meal detection have been recently investigated:
incorporating meal estimation based on CGM systems [5], using
abdominal-sound based methods to predict meals [6], [7] and using
hybrid models that combine model-based and data-driven approaches
[8], [9], [10]. As for detection time, the hybrid model requires
approximately 10 min whereas abdominal-sound methods ranges
within 5 min and 10 min [6], [7].

ECG-based meal-onset detection represents a robust alternative or
supplement to the approaches based on abdominal sounds. Unlike
abdominal sounds, ECG signals are unaffected by ambient sound,
thus offering better reliability. Meal intake evokes the sympathetic
activation of the cardiovascular system when preparing the body to
digest the incoming meal [11]. As a result, the heart rate and the
amount of blood pumped from the heart to the body increase [12].
Alterations are also seen in ECG parameters (e.g. shape and size
of T-wave, duration of QT interval, spectral powers associated with
sympathetic-parasympathetic activity) [11], [13], [14].

In this study, classifiers based on neural networks (NNs) and
on convolutional NNs (CNNs) are trained, tested and compared
using ECG signals. The reason for selecting NNs and CNNs is that
the former are among the most simple and basic machine-learning
method (thus representing a natural baseline), while the latter have
shown excellent combination in terms of performance, complexity
and training stability for time-series processing. A relevant overview
on recent data-driven methodologies for time series processing is
found in [15]. The paper is organized as follows: Sec. II describes the
hardware and the procedure for collecting the ECG signals; Sec. III
presents the data pre-processing for feature extraction from the ECG
signals and the classifiers used for meal detection; Sec. IV illustrates
the results; and finally Sec. V concludes the paper.

II. DATA ACQUISITION

The study is based on 24 recordings from 12 healthy volunteers
(at most 4 recordings per subject) without any reported history of
cardiovascular or gastrointestinal disorders. The participants were
instructed to consume breakfast 4 hours before the experiment and
abstain from consuming caffeine 1 hour before the start of the
recording. The study was approved by the Regional Committee for
Medical and Health Research Ethics (REK-midt approval no. 84374)
and was conducted at the Norwegian University of Science and
Technology, Trondheim, Norway.

During the experiment, a three-lead bipolar ECG was recorded
by placing a yellow electrode and a black electrode on the right
and left collar bone of the chest, respectively, while a blue electrode
was positioned above the umbilicus, as shown in Fig. 1. The ECG



Fig. 1: The electrode placement on body.
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Fig. 2: Timeline for the recording session.

signal was recorded with a sampling frequency of 2048 Hz using
software BioGraph Infiniti T7500M and ProComp Infiniti SA7500
encoder (ThoughtTech, Montreal, Quebec, Canada). The participants
remained seated during the entire procedure, and ECG signals were
recorded starting 15 min before meal intake and ending 45 min after
the meal was finished. The duration of the meal was approximately
15 min. The protocol is depicted in Fig. 2.

III. DATA PROCESSING

A pre-processing phase mitigates noise in the ECG signal by using
a 4th-order low-pass Butterworth filter with cutoff frequency 40 Hz.

A. NN-Based Classifier

The first classifier is based on a fully-connected (FC) NN
architecture processing features extracted from ECG signals.

After low-pass filtering, the initial part (approximately 30 min)
of each recording is considered, with the start time of the meal
occurring after about 15 min (in all cases between 12 min and
21 min). The truncated signals are downsampled to 256 Hz and
both original and downsampled versions are segmented into 𝑆 = 359
consecutive frames with 10 s duration and 50% overlap for features
extraction. A total of 𝑁 = 27 features per frame are extracted
including higher order statistics, temporal-domain and spectral-
domain representations. Statistical features like kurtosis, skewness,
energy and variance are calculated from the frames of the original
signal. ECG signals contain relevant information related to five peaks
called fiducial points (namely P, Q, R, S, and T), and several features
are related to the amplitude and the (relative) temporal location
of the fiducial points. The R wave was detected using the Pan-
Tompkins algorithm [16]. Spectral features related to energy and
energy ratios in various frequency bands (very low: 0.003−0.04 Hz,
low: 0.04−0.15 Hz and high: 0.15−0.5 Hz) of heart rate variability
are also computed from the frames of the downsampled version.

A feature matrix X ∈ R𝑆×𝑁 is created for each recording to
be used as the input to the classifier. When preparing the feature
matrix for the NN-based classifier, min-max scaling is applied to each
feature column for data normalization followed by median filtering
for outliers removal. A binary response vector y ∈ R𝑆×1 is introduced

as the output of the classifier for training, where the 𝑠th entry is 0
(resp. 1) if the 𝑠th frame happens before (resp. after) the meal start.

The NN-based classifier is made of:
• Input layer with 𝑁 nodes;
• FC layer with 100 nodes, followed by Leaky Re-Lu activation

function;
• FC layer with 50 nodes, followed by Leaky Re-Lu activation

function and a dropout layer (to prevent over-fitting);
• FC layer with only one output, followed by Sigmoid activation

function.
For training purposes, we utilized the ADAM optimizer [17] with a
learning rate of 10−5 and employed the mean squared error (MSE)
as the objective function.

B. CNN-based Classifier

The second classifier is based on a 1D CNN architecture directly
processing raw data1.

After low-pass filtering, min-max scaling is introduced for data
normalization, and finally downsampling by a factor of 8 is performed
to match the frequency of 256 Hz and speed up successive
computations. Frames with 10 s duration and 50% overlap for building
feature matrices are identified and analogous response vector as in
the case of the NN classifier are introduced. In this case, each column
of the feature matrix contains raw signal data.

The overall structural details of the considered CNN are:
• 1D Conv with 16 output channels, a kernel size equal to 512

and stride 2, followed by Leaky Re-Lu activation function;
• 1D Conv with 8 output channels, a kernel size equal to 512

with stride 2 followed by Leaky Re-Lu activation function;
• Max pooling with a window of size equal to 5 and stride 2;
• FC layer with output size equal to 100, followed by Leaky

Re-Lu activation function, and a dropout layer;
• FC layer with only one output, followed by Sigmoid activation

function.
For training purposes, we utilized the ADAM optimizer with a
learning rate of 10−4 and employed MSE as the objective function.

C. Classification

In this work, 24 recordings from 12 volunteers are utilized for
the purposes of training, validation, and testing: 16 of these are
designated for training and validation, employing the leave-one-out
cross-validation (LOOCV) method, while the remaining 8 are reserved
for testing (3 subjects were in common in all sets). Selecting 1 meal
from the 16 options results in 16 distinct combinations or folds,
which are employed to train and validate the classification models
more effectively. Also, for improved robustness, we selected 5 trained
models (based on their performance in terms of detection time, we
excluded the best and the worst models) and perform detection based
on a fusion strategy among those models.

More specifically, each classifier (NN-based and CNN-based)
provides a soft decision 𝑑𝑠 ∈ [0, 1] about the 𝑠th frame. The soft
output from the classifier is filtered according to an Exponentially
Weighted Moving Average (EWMA) for an individual (hopefully
more reliable) decision. EWMA [20] is a sequential change detection

1Over the past two decades, CNNs have demonstrated their effectiveness in
extracting features from raw data in several applications [18] [19].



procedure that exploits past observations and is applied to reduce the
number of false alarms. EWMA relies on the following equation:

𝑧𝑠 = 𝛼𝑑𝑠 + (1 − 𝛼)𝑧𝑠−1 , (1)

where 𝛼 is a parameter determining a trade-off between current and
past values from the classifier. The outputs (𝑧𝑠) from the 5 classifiers
are then averaged and the result is converted to a final binary decision
based on a threshold mechanism.

D. Performance Metrics

The performance of two classifiers is assessed in terms of: true
positive rate (TPR) and false positive rate (FPR), from a sample-by-
sample perspective; number of misdetected meals (MMs), number
of undetected meals (UMs), and detection time (DT), from a meal-
event perspective. DT is computed as the difference in the meal
start between the actual meal given by the response vector and the
predicted vector from the trained model. The meal start is defined
as the time instant when the label vector transits from 0 to 1. UMs
happen when the actual label from the response vector shows the
presence of the meal, but the classifier fails to detect it. MMs happen
when the meal is predicted by the classifier, while the actual labels
from the response vector shows no meal.

IV. NUMERICAL RESULTS

This section presents the performance results of the two classifiers,
both implemented in python using Pytorch package. The Receiver
Operating Characteristic (ROC) curve is computed for both the
LOOCV and test sets. The parameter 𝛼 in Eq. (1) impacts the overall
performance such that both the TPR and the DT decrease with it, for
a fixed FPR, until saturation. Negligible FPR is prioritized to avoid
hypoglycemia, thus comparisons with a meal-event perspective are
made with a threshold providing FPR approximately equal to 0.015.

Fig. 3 shows that both classifiers exhibit interesting performance
from a sample-by-sample perspective. Fig. 3(a) shows the perfor-
mance during validation for different values of 𝛼, with the CNN
outperforming the NN when operating at low FPR. Assuming a
probability of false detection equal to 0.1 (and excluding the case
with 𝛼 = 1), the CNN-based classifier achieves probabilities of
detection in the range (0.9, 1), while the NN-based classifier in the
range (0.7, 0.9). Fig. 3(b) shows the performance during testing with
𝛼 = 0.05. Apparently, the CNN-based classifier is significantly better
than the NN-based classifier on the test set: when operating at FPR
up to 0.2, the range for TPR increases from (0.3, 0.8) to (0.6, 0.9).

The impact of the parameter 𝛼 is also shown in Fig. 4 where
the meal-event perspective is considered. Performance metrics are
shown for different values of 𝛼, with 𝛼 = 0.05 being a desirable
solution with minimized numbers of MM and UM, and reduced DT.
It is worth noticing that the calculation of the DT only includes
correctly-detected meals.

Fig. 5 shows the performance in terms of DT on the test set of
the selected classifiers (with 𝛼 = 0.05 and FPR≈ 0.015). Again, the
CNN-based classifier outperforms the NN-based classifier on the test
set: the DT for every test meal is kept below 4 min only for the CNN
case. The negative bars represent MM, showing how early they are
declared before the meal actually starts.

Table 1 summarizes all the experimental results. Both classifiers
perform similarly, but the CNN-based classifier exhibits better
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Fig. 3: ROCs for NN (dashed lines) and CNN (solid lines) classifiers.
Table 1: Meal-Detection Result Summary

Classifiers CNN NN

# Training Meals (Each Training Term) 15 15

# Validation Meals (Each Training Term) 1 1

# Test Meals 8 8

# Misdetected Meals (MMs) - (LOOCV) 1 3

# Undetected Meals (UMs) - (LOOCV) 0 2

Average Detection Time (DT) in min - (LOOCV) 1.87 1.51

# Misdetected Meals (MMs) - (Test) 0 3

# Undetected Meals (UMs) - (Test) 0 0

Average Detection Time (DT) in min - (Test) 1.83 2.63

generalization capabilities than the NN-based classifier (both from
sample-by-sample and meal-event perspectives) as shown during the
performance comparison on the test set. Also, CNNs operate directly
on raw data, thus not requiring features extraction and selection. We
remark that the overall achieved performance is better than previously-
published solutions based on CGM or sound, which exhibit lower
detection capabilities (TPR< 0.5) and longer DT in the order of
10 − 40 min [8], [9] and 4 − 10 min [6], [7], [21], respectively.

V. CONCLUSION

Automated early meal detection is crucial for insulin infusion in an
artificial pancreas. We compared two data-driven classifiers, based on



MM UM DT
0

2

4

6

8

10

NN

MM UM DT
Metrics

0

2

4

6

8

10

CN
N

(a) 𝛼 = 1

MM UM DT
0

2

4

6

8

10

NN

MM UM DT
Metrics

0

2

4

6

8

10

CN
N

(b) 𝛼 = 0.25

MM UM DT
0

2

4

6

8

10

NN

MM UM DT
Metrics

0

2

4

6

8

10

CN
N

(c) 𝛼 = 0.05

MM UM DT
0

2

4

6

8

10

NN

MM UM DT
Metrics

0

2

4

6

8

10

CN
N

(d) 𝛼 = 0.025

Fig. 4: Impact of 𝛼 on MMs, UMs and DT [min] in validation meals.
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Fig. 5: DT performance on the test set (𝛼 = 0.05 and FPR≈ 0.015).

NNs and on CNNs, for early meal detection using ECG signals from
real-world experiments. EWMA is introduced as a tuning mechanism
to reduce false alarms and detection delay. Compared with existing
algorithms, based on CGM and sound, the proposed approach appears
faster (DT< 2 min vs. > 4 or 10 min) and safer (TPR≈ 0.7 vs. 0.5),
thus potentially providing better glucose control in DM1 patients.
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