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Abstract 
All teaching and learning are governed by conditions and constraints that encourage or 

discourage certain modes of study, inquiry, teaching, and learning. These conditions and 

constraints affect institutional positions in different ways (Chevallard, 2020a). In this 

dissertation, I report on research, presented in four papers, that identifies conditions and 

constraints that govern mainly the student position. But it also touches upon conditions and 

constraints for the positions of teacher and for textbook author. 

Two different theoretical frameworks are applied in the dissertation. The initial study 

was designed and analysed informed by the Instrumental Approach (Rabardel & Samurçay, 

2001; Trouche, 2004). But to expand the scope of the study to allow for an analysis that 

accounts for the transition of knowledge between different institutions, the switch was made to 

applying the Anthropological Theory of the Didactic (Chevallard, 2019). 

The study uses several sources of data and methodical approaches, all aimed at 

identifying different sets of conditions and constraints that govern the teaching and learning of 

calculus themes. The mathematical theme in three of the papers in the study is centred on the 

Fundamental Theorem of Calculus (FTC) and integration, and one paper is mainly centred on 

the theme of mathematical modelling. Of the three papers where the FTC is central, two of 

them were mainly based on data from a series of task-based interviews with six first-year 

university calculus students, and one paper is based on a didactic transposition analysis 

(Chevallard & Bosch, 2014) relating to a chapter on integration in a Grade 13 mathematics 

textbook. The last of the four papers in the dissertation is a presentation and analysis of a Study 

and Research Path (SRP) (Chevallard, 2020a). 

Four distinct sets of conditions and constraints were identified in the analyses. The first 

set of conditions relates to the use of tasks by students as instruments for developing 

mathematical competence. The research indicates that an awareness of how mathematical tasks 

can be modified and created, and that the students themselves get the opportunity to practice 

both modifying and posing of mathematical tasks are both conditions for the development of 

mathematical competence. The second set of conditions and constraints relates to the FTC. The 

lack of a concept of an area function, algebraically expressed as !(#) = ∫ '(())(!
" , hinders the 

development of techniques and theory that are necessary for solving one of the interview 

questions. Similarly, the lack of the idea of using general functions rather than specific 

functions in investigating mathematical problems made two of the other interview tasks 

impossible to solve. The third set of conditions and constraints appears in the analysis of the 
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textbook Matematikk R2 (Borge et al., 2022). The lack of the notion of boundedness of 

functions, and only a superficial treatment of integrability seem to constrain the expansion of 

the praxeology of integration in the textbook. Particularly, a set of three tasks found in the 

textbook, which could otherwise have served as the foundation for an expansion of the theme 

of integration, remain as separate, seemingly unrelated phenomena. The last set of conditions 

and constraints relate to the posing of a generating question in an SRP. In particular, the findings 

indicates that the set of preconditions, and expectations about the nature of a finally accepted 

answer to the generating question, both form important conditions and constraints that govern 

the course and outcome of an SRP. 

In general, this dissertation contributes to a better understanding of the conditions and 

constraints that govern the dissemination of integral calculus, in particular the FTC. It also 

provides a foundation for asking further questions about the responsibilities of the institutional 

positions of students and teachers, and about the role of textbooks under the new paradigm of 

questioning the world. 
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Samandrag 
All undervisning og læring er styrt av vilkår og avgrensingar som motiverer eller hindrar visse 

former for studie, undersøking, undervisning og læring. Desse vilkåra og avgrensingane 

påverkar institusjonelle posisjonar på ulike måtar (Chevallard, 2020a). I denne avhandlinga 

rapporterer eg frå forsking, presentert i fire artiklar, som identifiserer vilkår og avgrensingar 

som styrer hovudsakleg studentposisjonen. Men den rører også ved vilkår og avgrensingar for 

posisjonane som lærar og som lærebokforfattar. 

To ulike teoretiske rammeverk er nytta i avhandlinga. Den fyrste studien var designa 

og analysert ut i frå den Instrumentelle Tilnærminga (Rabardel & Samurçay, 2001; Trouche, 

2004). Men for å utvide omfanget av studien til også å tillate ei analyse som inkluderer 

transposisjon av kunnskap mellom institusjonar, vart det teoretiske rammeverket endra til den 

Antropologiske Teorien for det Didaktiske (Chevallard, 2019). 

Studien nyttar fleire datakjelder og metodar, som alle siktar på å identifisere ulike 

grupper av vilkår og avgrensingar som styrer undervising og læring av tema innanfor kalkulus. 

Det matematiske temaet i tre av artiklane i studien er knytt til Analysens Fundamentalteorem 

(AFT) og integrasjon, og ein artikkel er hovudsakleg knytt til temaet matematisk modellering. 

Av dei tre artiklane der AFT er sentralt, så er to av artiklane hovudsakeleg basert på data frå 

ein serie med oppgåvebaserte intervju med seks fyrsteårsstudentar i analyse, og ein artikkel er 

basert på ein didaktisk transposisjonsanalyse (Chevallard, 1989; Chevallard & Bosch, 2014) 

av eit kapittel i ei VG3 lærebok i matematikk. Den siste av dei fire artiklane i avhandlinga er 

ein presentasjon og analyse av ei Studie og Forskingsløype (SFL) (Chevallard, 2020a). 

Fire distinkte sett av vilkår og avgrensingar vart identifiserte i analysane. Det fyrste 

settet med vilkår og avgrensingar relaterer seg til studentars bruk av oppgåver som instrument 

for å utvikle matematisk kompetanse. Forskinga indikerer at medvit om korleis matematiske 

oppgåver kan modifiserast og lagast, og det at studentane får moglegheit til å øve på å 

modifisere og lage matematiske oppgåver sjølve er begge vilkår for å utvikle matematisk 

kompetanse. Det andre settet av vilkår og avgrensingar er relatert til AFT. Mangelen på eit 

konsept om ein arealfunksjon, uttrykt algebraisk som !(#) = ∫ '(())(!
" , hindrar utviklinga av 

teknikkar og teori som er nødvendige for å løyse eitt av intervjuspørsmåla. Ein liknande mangel 

på idéen om å bruke ein generell funksjon i staden for ein spesifikk funksjon i utforskinga av 

matematiske problem gjorde to av dei andre intervjuspørsmåla umoglege å løyse. Det tredje 

settet av vilkår og avgrensingar kjem fram i analysen av læreboka Matematikk R2 (Borge et al., 

2022). Mangelen på omgrepet avgrensing av funksjonar, og berre ei overflatisk behandling av 
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integrerbarheit, ser ut til å avgrense ei utviding av prakseologien for integrasjon i læreboka. 

Heilt konkret, så gjer dette at tre oppgåver, som elles kunne ha danna grunnlaget for ei utviding 

av temaet integrasjon, står som separate, tilsynelatande urelaterte fenomen. Det siste settet av 

vilkår og avgrensingar er relatert til det å stille eit genererande spørsmål i ei SFL. Funna 

indikerer særskild at settet av forutsetningar, og forventingar om karakteren av eit endeleg 

akseptert svar på det genererande spørsmålet begge dannar viktige villkår og avgrensingar som 

styrer gangen i og resultatet av ei SFL. 

Generelt bidreg denne avhandlinga til ei betre forståing av vilkår og avgrensingar som 

styrer formidlinga av integralrekning, særleg AFT. Den dannar også eit grunnlag for å stille 

vidare spørsmål om ansvaret som ligg i dei institusjonelle posisjonane som studentar og lærarar, 

og om rolla til lærebøker under det nye paradigmet om å stille spørsmål til verda. 
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1 Introduction 
All human activities are governed by conditions and constraints that either permit, facilitate, 

hinder, or even prevent certain actions (Chevallard, 2020b; Chevallard & Bosch, 2020), and so 

also with teaching and learning situations, no matter the scale of the situation. Classroom 

situations, where students are solving tasks individually or in groups, self-study situations with 

only the student present, or tutoring situations with a single student and a single teacher are all 

governed by conditions and constraints unique to the specific situation. Even the production of 

teaching materials, like tasks, lesson plans, and textbooks are governed by their own conditions 

and constraints. 

This dissertation builds on four different papers, where a common theme is the 

identification of conditions and constraints that govern different aspects of both study processes 

and the production of study materials. The work presented is multifaceted, with multiple 

sources of data, including student interviews, mathematics textbooks, and a report from a 

small-scale Study and Research Path (SRP). The Instrumental Approach (IA) (Rabardel & 

Samurçay, 2001; Trouche 2004) was used during the initial design of the research, and in the 

first paper (P1), but for reasons that will be discussed in Section 2.5, a switch was made to the 

Anthropological Theory of the Didactic (ATD) (Chevallard, 2019, 2020). 

1.1 Didactic Themes Discussed in the Papers 
The common strand that runs through all four papers are the notions of conditions and 

constraints (Chevallard, 2020b; Chevallard & Bosch, 2020). The precise definitions of these 

terms, and their relations to other notions will be described in Section 2.1.1. But in short, a 

condition is any aspect of a system that influences something within the system, while a 

constraint is a condition that seems unchangeable from within the frame, or the system 

considered.  

Three different types of systems are under consideration here. In papers P1 and P2, 

student interviews, where individual students are given a set of four mathematical tasks, are 

investigated. The system can therefore be described as the individual asking and solving 

mathematical tasks. In P2 the focus is on the student and the conditions and constraints that 

govern the solving process. While that is also an aspect of P1, an equally prominent aspect is 

the production of the interview tasks and what conditions and constraints governed the design 

choices. In P3 the chapter on integration, found in a Grade 13 textbook (Borge et al., 2022) has 

been analysed with a specific focus on the Fundamental Theorem of Calculus (FTC). There, 
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conditions and constraints which govern the design outcomes, as well as conditions and 

constraints imposed by the design choices themselves, are identified. These are conditions and 

constraints that influence what types of tasks can be found in the textbook, and likely also how 

these tasks can be used and connected in a teaching and learning situation. In P4, the conditions 

and constraints that govern the solving and evaluation of an SRP are identified, and in particular 

conditions and constraints related to preconditions and a-priori expectations about the nature 

of the accepted answer to a generating question. 

In three of the papers, P1, P2 and P3, the mathematical theme of integration, and in 

particular, the FTC is an important aspect. A description of this is given in Section 1.3. All of 

the papers do also rely on some form of mathematical questions, either as the foundation for 

interview tasks or for textbook tasks, or as generating questions of an SRP. Therefore, a 

description of the role of questions in Chapters 1 to 5 will follow in Section 1.2.1. 

In P1, the notion of competence, described by Niss and Højgaard as a “readiness to act” 

(Niss & Højgaard, 2011, p. 49) was also a guiding principle. Being ready to act stresses the 

two aspects of competence of both having the ability to carry out procedures, as well as being 

confident in this ability due to knowledge about why, when and how the procedures work. This 

notion is not used in paper P2, P3 and P4, however, as the notion of praxeologies (Chevallard, 

2019) replaces this as a model of mathematical knowledge and ability. 

1.2 Questions and a New Didactic Paradigm 

1.2.1 The Notions of Mathematical Questions and Tasks 
In the ATD the words tasks and types of tasks have quite a specific meaning (Chevallard, 2019). 

Any activity, according to the ATD, consists of a set of basic actions, called tasks. Each task 

can be analysed as being of a specific type, having in common that all tasks of the same type 

can be solved using the same technique. A more thorough description of this will be presented 

in Section 2.1.3. Colloquially, the word task is often used to denote typical textbook tasks, or 

more generally, written tasks (as in exam tasks, test tasks, etc.), that are still so prevalent in 

mathematics education (Watson & Ohtani, 2015). In this dissertation, the word task will be 

used generally for basic actions, while in cases where it is necessary to distinguish, the notions 

textbook tasks or interview tasks will be used. 

Related to, but distinct from the notion of mathematical tasks is the notion of 

mathematical questions. A task can often be formulated as a question, and a mathematical 

question is often the foundation of a task. For example, the task “Calculate the antiderivative 
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of '(#) = 3## − 4#” is a task, as it can be carried out as an action. At the basis of this task is 

the question “what is the antiderivative of '(#) = 3## − 4#? In cases like this, the task can be 

seen as answering a specific mathematical question. This relation between the mathematical 

tasks and mathematical questions is an essential one, and when I use the term task, there is 

always a mathematical question (explicitly or implicitly) at the core of the task. 

1.2.2 The Paradigm of Visiting Works 
To give students the opportunity to practice studying and answering mathematical questions, 

textbook tasks have long been utilised. Solving tasks has therefore been, and still is a staple in 

all levels of mathematics education as a primary method of mathematical study, both in general 

(Watson & Ohtani, 2015) and in calculus specifically (Broley & Hardy, 2022). In Norway and 

the Nordic countries in general, it is no different (Bergqvist, 2007; Lithner, 2017; Opsal & 

Topphol, 2015). In the Nordic countries, the situation where students are given task after tas by 

the teacher and solve them individually is identified by Stieg Mellin-Olsen (1996) as the task 

discourse1.  

A related term used in the ATD, with a somewhat broader meaning, is the Paradigm of 

Visiting Works (PVW) (Chevallard, 2015). This paradigm is characterised by a fragmentation 

of the knowledge base into smaller bits and pieces, where the problems and questions that 

generated this knowledge in the first place is largely absent. Moreover, the “students are 

reduced to almost mere spectators” (Chevallard, 2015, p. 175), that is, they do not participate 

significantly in the exploration of the mathematical themes but are given lectures and 

demonstrations by the teacher from the front of the classroom. And then, using the techniques 

presented by the teachers, students are given tasks to solve. One can thus say that the task 

discourse is one of the major symptoms of the PVW. 

1.2.3 A New Counter Paradigm 
There is no shortage of critical voices to the current situation. In the Nordic countries both Niss 

(2007), and Mellin-Olsen (1996) are two of them, voicing much of the same critique as 

Chevallard (2015). Mellin-Olsen points out the impact a strong focus on tasks and individual 

task solving has on education and teaching. By referring to an underlying counter discourse 

prevalent among teachers, he shows how teachers see the need for a new way of teaching that 

promotes understanding and includes a practical and complete mathematics. 

 
1 “Oppgavediskursen” in Norwegian. The word “oppgave” can mean both task and exercise depending on context. 
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There has been much effort to overcome this challenge. Both by communalizing and 

expanding upon the problem-solving process, as seen for example in Japanese lesson studies 

(Fernandez & Yoshida, 2004; Winsløw et al., 2018), to implement more carefully selected 

principles for task design (e.g., Coles & Brown, 2016; Lithner, 2017), or to introduce new 

inquiry-based methodologies (e.g., Artigue & Blomhøj, 2013; Skovsmose, 2003) and 

contextualised learning activities (Heckman & Weissglass, 1994). 

The solution to the challenge, suggested by the ATD is the counter paradigm called the 

Paradigm of Questioning the World (PQW) (Chevallard, 2015, 2022), a paradigm characterised 

by the study of questions instead of monolithic works. This process of study and research is 

done and modelled by what is called study and research paths (SRPs), which have been studied 

and applied extensively in the ATD (e.g., Barquero & Bosch, 2015; Barquero et al., 2018; 

Florensa, 2018; Jessen, 2017; Rodrígues-Quintana et al., 2008). 

In this dissertation, both study situations that have characteristics of the PVW, and study 

situations that are designed with the PQW in mind are prominent. In P1 and P2, study situations 

where students are solving mathematical tasks are presented and investigated, while P4 is based 

on a small-scale SRP. The paper P3, being an investigation of a chapter in the Grade 13 

mathematics textbook “Matematikk R2” (Borge et al., 2022), also shows evidence of the PVW. 

1.3 The Fundamental Theorem of Calculus 
The mathematical theme that is under question in the three first papers is the Fundamental 

Theorem of Calculus (FTC) (see e.g., Adams & Essex, 2018; Lindstrøm, 2016). The FTC is 

selected as a theme because of the significance it has for other fields of mathematics, like 

differential equations and Fourier analysis, and because of the difficulties students have in 

understanding integration calculus (see e.g., Thompson & Harel, 2021). In Norway, the theme 

of integration and the FTC is a part both of the Grade 13 curriculum and of first year university 

calculus and is therefore a theme that spans the transition from upper secondary education to 

tertiary education. 

The FTC is sometimes presented as one theorem with two parts (e.g., Adams & Essex, 

2018, pp. 313–314), or as a theorem and a corollary (e.g., Lindstrøm, 2016). In this dissertation, 

I follow a combination of these two approaches, with a Part 1, a corollary to the FTC Part 1, 

and a Part II, which is a generalisation of the corollary. Note, the FTC Part II presented here is 

not exactly the same as in Adams and Essex (2018, pp. 313–314), but based on Botsko (1991), 

which presents a more general form of the FTC Part II, which does not demand a continuous 

integrand. Since the student interviews focus purely on the use of the FTC, and since the 
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textbook analysis also mainly focuses on the consequences of the conditions for the 

applicability of the FTC, only the statement of the FTC is given here without the proofs.  

1.3.1 Statement of the FTC 

FTC Part I: 

Consider a real valued function '(#) which is continuous on an interval - on the real number 

line, and a number . ∈ -. Let 0(#) = ∫ '(())(!
"  for # ∈ -. Then 

0$(#) =
)
)#1'

(())(
!

"
= '(#), 

which means that 0(#) is an antiderivative of '(#) on -. 

Corollary: 

Consider a real valued function '(#) which is continuous on an interval - on the real number 

line, and two numbers ., 3 ∈ -. Let 4(#) be any antiderivative of '(#) on -. Then  

1'(#))#
%

"
= 4(3) − 4(.). 

The formula arrived at in the corollary is called the Newton-Leibniz formula. The 

conditions for the applicability of the corollary can be improved2 by considering boundedness 

as a criterion for the integrand instead of the criterion of continuity on I (Botsko, 1991). The 

reformulation of the corollary into what is called the FTC Part II can thus be described. 

FTC Part II: 

Consider a real valued function '(#) which is bounded on an interval - containing the points 

., 3 ∈ ℝ . Let 4(#)  be a continuous function defined on I and assume that 4(#)  is the 

antiderivative of '(#) almost everywhere on -. Then 

1'(#))#
%

"
= 4(3) − 4(.). 

The term antiderivative almost everywhere means for the function 4(#)  that it is the 

antiderivative of '(#) for all points in I, except for a set of points with measure 0. 

 
2 Improved in the sense of allowing for a wider range of integrands to be acceptable. 
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The corollary is what is typically included in textbooks, but Part II, following Botsko 

(1991), is included for a fuller understanding of the role of boundedness. This is particularly 

relevant for P3. The role of boundedness is explained in what follows. 

1.3.2 Notes on the Conditions for the FTC 
One can see three different sets of conditions here, one for the FTC Part I, one for the corollary, 

and one for the FTC Part II. For the FTC Part I, note first that the function ' is assumed to be 

continuous on an interval which contains the point a. This places some clear restrictions on 

what type of interval I can be. Any interval of the types (., 7), (., 7], (7, .) or [7, .) cannot 

function as I, since these do not include a. The intervals of the type [., 7], and even [., 7) will 

hold, so long as '(#) is defined and continuous on these intervals.  

For the corollary, the point b is an element of the interval I, and thus, assuming . < 3, 

the smallest interval I, for which the corollary holds, is the interval [., 3]. A consequence is 

that, since '(#) is continuous on I, '(#) must also be continuous on [., 3]. Since any function 

which is continuous on a closed interval, is also bounded on that interval, '(#) is bounded on 

[., 3]. 

This leads to the conditions for the FTC Part II. Here, the condition of continuity for 

'(#) is replaced by boundedness, which makes the FTC applicable to all Riemann-integrable 

functions 3 . This change of the conditions provides the foundation for applying existing 

techniques to integrands that are not continuous, but still Riemann-integrable. And importantly, 

it provides the foundation for understanding why some functions are not Riemann-integrable, 

and what one can do in those cases. For example, functions for which lim
!→'

'(#) → ±∞ for 

some A ∈ ℝ are not Riemann-integrable on intervals that include p. 

  

 
3 The Lebesgue condition for Riemann-integrability states that a bounded function on a compact interval is 
Riemann-integrable if and only if the set of points of discontinuity has measure zero (Brown, 1936). 
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2 Theoretical Tools Used in the Dissertation 
The two theoretical approaches applied in this dissertation, the IA (Rabardel & Samurçay, 

2001; Trouche 2004) and the ATD (Chevallard, 2019, 2020), will in this section be described 

in more detail. Most attention is given to the ATD, since this is the approach under which this 

document is framed, and since three out of the four papers are written under this approach. The 

IA will be given a shorter treatment, and only aspects that are directly relevant to the paper P1 

will be presented.  

Any theoretical approach of didactic needs to contend with what it means to know 

something. The view on the nature of knowledge and learning has wide ranging consequences 

for what we as researchers in the didactic of mathematics are able to say with any degree of 

certainty what it means to learn and to teach. In the IA and in the ATD, the knowledge of an 

object4 is modelled in different ways. The details will be described in the following sections. 

But the major difference is in what parts of knowledge is modelled. The ATD models 

knowledge in general as a relation between the knowing subject and the object which the 

subject knows something about (Chevallard, 2019). The IA models how an acting subject 

develops a relation to an artifact5, which can be used as an instrument in the subject’s activity 

(Rabardel & Samurçay, 2001; Vérillon & Rabardel, 1995), and the knowledge modelled is 

therefore that of knowing how and when a certain instrument can be used within an activity. 

2.1 The Anthropological Theory of the Didactic 
Being part of the French didactical tradition, the ATD is both an epistemological approach 

(Chevallard, 2006, 2007, 2022; Gascón, 2003) and an institutional approach (Chevallard, 1989, 

2019). As an epistemological approach, the ATD has a content specific focus, meaning that the 

nature of the knowledge at hand imposes conditions and constraints on the analytical approach.  

Knowledge is modelled through the concept of praxeologies, which accounts for both 

the active part of knowledge (know-how) and the explanatory part (know-why) (Chevallard, 

2019). Commonly in ATD research, an a-priori analysis of the content to be taught is carried 

out, called a praxeological analysis with respect to both the active and the explanatory part. 

Second, all knowledge is institutionally relative, that is, how knowledge of a given object 

appears is dependent upon the institution in which the knowledge is active (Chevallard, 1989). 

 
4 Any sort of object that “something can be known about”. These can be both concrete, like an animal or a city, 
or abstract, like mathematical or philosophical concepts. 
5 An artifact (from Latin arte factum – artificially made) is a thing made by “human workmanship or modification 
as distinguished from a natural object” (Merriam-Webster, n.d.). 
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And third, because of institutional relativity, when knowledge is adapted from one institution 

and implemented in another institution, the knowledge necessarily changes, dependent on the 

differences in conditions and constraints present in each of the two institutions (Chevallard, 

1989). 

The ATD goes beyond the institutional and introduces anthropological aspects. The 

ATD came about partly as a response to a challenge in describing how knowledge respond to 

transition between institutions, and how a person’s relation to an object of knowledge is 

changed when the institution in which they are operating changes. Under the name of the 

Theory of Didactic Transposition, Chevallard introduced this aspect on the French scene in 

1985 (Bosch & Gascón, 2006; Chevallard & Sensevy, 2014). 

2.1.1 Persons, Institutions and Institutional Positions 
The three concepts of persons, institutions and institutional positions are closely related 

(Chevallard, 2020b; Chevallard & Bosch, 2020). A person, x, is simply a human being, like a 

child or an adult of any capacity. An institution, I, is something which is instituted, that is, it is 

something which consists of persons joined for some reason, like a school, a class, a family, or 

an interview. Institutions are not simply a collection of persons, though, and in all institutions, 

there are institutional positions, p. In a class, there are the positions of teacher and of student; 

in an interview there are the positions of interviewer and interviewee. 

2.1.2 Conditions and Constraints 
A central notion in the ATD specifically, and in didactics in general, is the notion of conditions 

and constraints (Chevallard, 2020b; Chevallard & Bosch, 2020). A condition is, in general, 

“anything purported to have influence over at least something” (Chevallard, 2020b, p. xx). In 

a classroom situation this can be the different elements of the curriculum, the textbook used in 

a class, the explicit and implicit rules governing the interaction between the different persons 

in the class, or generally anything that influences the activity of the class. If the condition seems 

unchangeable for a person within the institution, this condition is now what is called a 

constraint. Indeed, “a constraint is any condition which appears to be unmodifiable by 

occupants – acting as such – of a given institutional position” (Chevallard, 2020b, pp. xx–xxi).  

2.1.3 Praxeologies: Models of Knowledge 
A fundamental tenet of the ATD is that all knowledge can be modelled by a praxeology (from 

Greek: πράξις – praxis, deed, action, and λογία – reason, account, explanation) (Chevallard, 

2019). The origin of the term is old, and at least one instance of its use goes back to 1608 
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(Timpler, 1608, p. 387): “Fuit aretologia: Sequitur praxiologia: quae est altera pars ethicae, 

tractans generaliter de actionibus moralibus” – “There was aretology: and following that, 

praxiology: which is a second part of ethics, which in general discusses moral actions”. 

Aretology (from Greek: ἀρετή – virtue) is the study of virtue or moral being. The origin of the 

term praxeology is therefore that of describing moral actions, or the praxis of a virtuous person, 

in contrast to being virtuous. In its modern form, often written with an e instead of an i, it is 

generalized to all motivated action, making praxeology “the formal science (logos) of praxis, 

or human actions” (Prychitko, 1994, p.77). It is the latter meaning of the word, that of a science 

of human actions, which is relevant to the ATD. 

The following description of the term praxeology is based on Chevallard (2019). A 

praxeology, B, consists of four components, T, τ, θ and Θ. Here, T is a type of tasks, or a set of 

types of tasks of which a numbered Ti is one certain type. The ATD also distinguishes between 

a certain type of task and a task t being of the type T. For example, a task t1 can be “calculate 

the definite integral ∫ sin # )#(/*
+(/*	 ”, while its type T1 is “calculate the definite integral 

∫ '(#))#"
+"  for an odd, continuous, bounded function f, and a real number a”. This relation is 

denoted ( ∈ E. 

The second component of a praxeology is the technique, τ. A particular technique is 

one specific way of solving a task ( ∈ E. For a given type of task there might also be more than 

one technique. So, for the example task t1, of solving ∫ sin # )#(/*
+(/* , one technique τ1a could 

be to “calculate using the Newton-Leibniz formula”, which yields the calculation 

∫ sin #(/*
+(/* )# = [− cos #]+(/*

(/* = 0. But since t1 is of type T1, where f is said to be odd, another 

technique, τ1b, is also possible, exploiting odd symmetry, by simply stating that 

“∫ sin # )#(/*
+(/* = 0, due to odd symmetry”. Thus, for the case of odd symmetry, a quicker 

technique than using the Newton-Leibniz formula exists. 

The pair, Π = [T / τ], is called the praxis block of the praxeology, and describes the 

active part of knowledge. That is, it describes what is being done by x, in relation to the object 

o, and how it is done. The two other components of the praxeology belong to what is called the 

logos block, Λ = [θ / Θ]. The logos deals with giving reasons for the praxeology’s working and 

existence. The first of these two elements, the technology, θ, provides the justification for why 

the technique, τ, works. Additionally, in an optimal technology, it should also aid the 

understanding of why the technique works, that is, it should not only justify, but also explain 

or clarify the technique.  
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A technology can consist of a formal proof, which is the most precise sort of 

justification, based on definitions, previously proved theorems, and axioms. In cases where a 

type of task has several correct techniques, each of the techniques has their own justification, 

and therefore their own corresponding technology. Less rigorous forms of justifications, like 

the use of paradigmatic examples or demonstrations relying on “common sense”, can also make 

up the core of a technology. For the FTC and the Newton-Leibnitz formula this can be a proof 

or demonstration that accounts for a subset of the functions for which the FTC is applicable to, 

like continuous, positive, and increasing functions. Or it can be a justification based mainly on 

informal argumentation supported by, for example a graph. 

The second component of the logos block, and the last component of a praxeology, is 

called a theory. In the ATD, a theory, Θ, denotes a discourse, that can “generate, control, justify 

and make intelligible a given technology” (Chevallard, 2019, p. 91). In broad terms, it is a 

justification for why one should even be interested in the given praxis in the first place, a raison 

d’être for the praxeology. For the FTC, such a raison d’être can be seen in the historical roots 

of calculus (Kline, 1972), by Newton and Leibniz independently, in the study of planetary 

motion, and physics more generally. It also lies in the fact that it connects the two important 

fields of calculus: differential calculus, which deals with tangents, slope, and rate of change; 

and integral calculus, which deals with accumulation, area, and volume calculations, among 

other things. 

The pairs Λ = [θ / Θ], the logos block, and Π = [T / τ], the praxis block, together make 

up a praxeology. This is commonly written as B = [T / τ / θ / Θ]. Using these notions, the ATD 

claims to be able to model knowledge in action, as a dialectic relationship between the four 

components of the praxeology. More precisely, it models knowledge by describing how a set 

of types of tasks is solved by the careful utilisation of a set of techniques connected to the types 

of tasks, and these techniques are in turn justified and clarified by a set of technologies, which 

again is justified, clarified, constructed, and organised by a theory. Thus, it can be said that the 

praxeological model of knowledge found in the ATD considers both the “know-how” with the 

praxis block, and the “know-why” with the logos block. These two blocks are connected in a 

complete knowledge structure, the praxeology, which models the dialectical relationship 

between these two modes of knowledge. 

2.1.4 Model of Didactic Moments 
In the ATD, the process of studying a question is modelled in terms of six didactic moments 

(Chevallard, 1999, 2022). The six didactic moments are: 1) the moment of the first encounter 
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– this moment is characterised by the student of B’s first encounter with the praxeology through 

the introduction to tasks of the type T; 2) the moment of the exploration of the type of tasks T 

and of the emergence of the technique τ; 3) the moment of the constitution of the technological-

theoretical environment [θ/Θ] – this moment is characterized by a first emergence of the logos 

block, where a justification of the technique τ in relation to the type of tasks, T, is developed; 

4) the moment of working on the praxeological organization B, in which the praxeology is 

further developed and elaborated – this moment is highly dependent on the availability of 

appropriate tasks, dependent on both the precise type of task at stake, and the scope of the 

praxeology (whether it is a point praxeology, local praxeology or a global praxeology); 5) the 

moment of institutionalisation of B – here, the elements relevant to the given institution are 

selected and integrated into B; 6) the moment of evaluation. 

The term didactic moments should not be understood in a temporary sense, where for 

example moment 1 necessarily precedes moment 2, and is never revisited after it has been 

visited once. Instead, the moments are to be understood functionally. They are working modes 

in the development of a praxeology, B, based on a type of task, T, in which a certain part or 

relation within the praxeology is being elaborated. Granted, a first encounter with a type of task 

often does precede the other moments. After all, to develop a technique for solving T does 

imply the existence of at least one task of type T. But a situation is completely conceivable, 

where a raison d’être for the existence of a task of the type T exists already at the inception of 

T. Thus, a justification in some form might already exist, making the technological-theoretical 

environment already a reality. 

2.1.5 Didactic Transposition: Institutional Relativity of Knowledge 
Praxeologies, didactic systems, and institutions do not live in isolation. Two main models, the 

theory of didactic transposition (Bosch & Gascón, 2006; Chevallard & Bosch, 2014) and the 

scale of levels of didactic co-determinacy (Bosch & Gascón, 2006; Chevallard, 2020a), have 

been developed within the ATD to describe how institutions interrelate, and how knowledge 

plays a role in this.  

The theory of didactic transposition (see Figure 1) (Bosch & Gascón, 2006; Chevallard, 

1989; Chevallard & Bosch, 2014) models how a knowledge object, created in one institution, 

is transformed when it passes to another institution. Typically, knowledge is created in a 

scholarly institution, as scholarly knowledge, it is then transformed in three stages, as it is 

adapted for teaching in a didactic institution. It is first prepared by the noosphere, as knowledge 

to be taught, before it is taught in the teaching institutions. The knowledge that is acquired by 
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the students is then a function of this teaching, as well as the conditions and constraints that 

govern both the teaching institution and the students, both as a group and as individuals.  

Figure 1 
The Model of Didactic Transposition (adapted from Chevallard & Bosch, 2014, p. 171) 

 
All these transpositions also entail a transformation of the knowledge object. For 

example, the Fundamental Theorem of Calculus (FTC) can be selected to be taught at a given 

secondary school. The conception of the FTC is often a very different one as scholarly 

knowledge, where it exists in a very formalised and rigorous shape, than what is taught in 

secondary school calculus classes, in which the goal often is to provide students with a method 

for calculating areas under the graph of a function. What students are left with is often 

something different from that again, maybe even lacking some of the technical details. A 

student might remember how to calculate the area under the graph of a positive valued function, 

but once it is negative, or even changes between positive and negative, the technique has been 

forgotten, or was not even properly learned at all. 

A characteristic of the epistemological approaches to didactic research is the priority of 

and significance of the subject matter to the whole process of research. Both the research 

questions, methods of analysis and the answers to the research questions are conditioned by 

the nature of the mathematical theme under study. To be able to study the whole process of 

didactic transposition, the researchers therefore need to be able to position themselves external 

to the institutions, with no priority to any of the internal positions. The researchers therefore 

need to continually develop and update a model of the body of knowledge under consideration 

which, although necessarily a product of the same processes that shape knowledge in general, 

is a representation of the researchers own perspective on the body of knowledge studied. This 

model, a reference praxeological model (see Figure 2) (Bosch & Gascón, 2006; Chevallard & 

Bosch, 2014; Wijayanti & Winsløw, 2017), used as the reference against which the 

praxeological organisation at a given institution or didactic system is analysed. This model, as 

it is the researchers’ attempt at distancing themselves from the institutional knowledges under 

study, should therefore be constantly updated and challenged. 
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Figure 2 
The Researcher’s Point of Reference (adapted from Chevallard & Bosch, 2014, p. 171) 

 
 

The scale of levels of didactic co-determinacy (Bosch & Gascón, 2006; Chevallard, 

2020a) models how conditions and constraints that affect learning in an institutional setting is 

not decided only by the given institution itself but at a higher level of organisation. For example, 

a school might decide methods used for teaching a certain theme, which imposes constraints 

on how classes can organise the teaching of that given theme. If a relatively large school, with 

a high number of students are following the same course, the school might decide to have two 

or more parallel classes following a common course. Then, it is typically not up to the teacher 

in one of the parallel classes to decide how much time is to be used on that one particular theme. 

Similarly, the school cannot typically decide completely freely what themes to teach. A given 

society, like a country, typically decides what themes are to be taught, which puts constraints 

on the teaching in the schools within the country. This phenomenon is described in terms of 

levels of didactic co-determinacy (Figure 3). 

Figure 3 
The Scale of Levels of Co-Determinacy 

 

2.1.6 Study and Research Paths: A Methodology for Questioning the World 
In the ATD, a study process, called Study and Research Paths (SRPs), can also be designed 

around a given generating question, Q, rather than a specific type of tasks (Chevallard, 2019, 

2022).  This is a part of the ATD’s answer to the challenge of the PVW, and it is the ATD’s 

model of inquiry. A more detailed description of such a process is found in P4. But a 
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characteristic of SRPs is that they aim at letting the questions, and the answers to these 

questions, arise naturally during the process of study. 

In an SRP, a generating question Q0 is studied, and used as the starting point for an 

inquiry (Chevallard, 2019). The SRP is conducted through a process of searching for answers, 

in a collection of works, and through this process, arriving at a final question agreed upon by 

the participants of the didactic system in which Q0 is studied. As a consequence, in an SRP 

aimed at studying mathematical themes, the generating question would need to either be a 

mathematical question itself, or a question that is likely to lead to the discovery of works that 

are mathematically themed. 

The process can be modelled symbolically by the Herbartian schema (Chevallard, 

2019). The Herbartian schema describes how a didactic system S, through the interaction with 

a didactic milieu M, produces an answer A♥, to the question Q0.  

The didactic system (Chevallard, 2019, 2022), S, consists of the participants together 

with the didactic stake, or the thing to learn or study. A didactic stake can be a question, as in 

an SRP, or more generally, any object o that can be studied. The participants in the didactic 

system are the students, denoted as a group with a capital X, of which there are individual 

students # ∈ I, and the different “helpers”, Y, whose jobs are to help the student to study in 

different ways. An individual “helper”, J ∈ K, can for example be a teacher, a librarian, or any 

person assigned with the task of assisting in a study process. Algebraically, a didactic system 

can be described as S(X, Y, o), or S(X, Y, Q0), in the case of the didactic system in an SRP. 

The semi-developed Herbartian schema, written as [S(X, Y, Q0)➦M]➥A♥, describes 
the process of inquiry (Chevallard, 2019). The didactic system both interacts with and produces 

the didactic milieu, and through this interaction, the answer A♥ is built up. The superscript ♥ 

denotes that A♥ is an answer, that under the given conditions and constraints, is the optimal 

answer that S can produce. 

The Herbartian schema can be further developed into the developed Herbartian schema 

(Chevallard, 2019) by considering the components of the milieu. A didactic milieu consists in 

general of the four components A♢i, Wj, Qk, and Dl. A♢i denotes the pre-existing institutional 

answers to Q0 that the group of students X discover in the institutions they interact with. Wj are 

additional works in which the A♢i are found, and which are used to make sense of the A♢i. 

Through the study of these pre-existing answers, works, and generating question, derived 

questions, Qk, also arise, and will need to be answered to produce A♥. The last element, the Dl, 

are sets of data gathered during the inquiry process, and which functions as a foundation for 
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the answers of the didactic system. Thus, in the developed Herbartian schema, the letter M is 

replaced with the expression 

L = M!-♢, … , !.♢ ,O./-, …O0, P0/-, …P', Q'/-, …Q1R. 

2.2 The Instrumental Approach 
The instrumental approach (IA) is a theory developed originally by Pierre Rabardel (Rabardel 

& Samurçay, 2001; Vérillon & Rabardel, 1995) to describe the human-instrument interaction 

and the processes through which human activity is mediated by the use of tools. After the 

introduction to mathematics, this approach has been connected strongly with digital tools 

(Trouche, 2004), but not exclusively (e.g., Mesa et al., 2021; Shinno & Mizoguchi, 2021). The 

main idea behind the IA lies in the distinction between a tool and an instrument. The tool is 

described as “something which is available for sustaining human activity” (Trouche, 2004, 

p. 282). A tool is simply an artifact, meaning that it is a man-made object, and even if it has 

been specifically created for the purpose of being used as an instrument, it is not yet an 

instrument, before it has become appropriated by an acting subject, and incorporated into the 

subject’s activity (Vérillon & Rabardel, 1995). A tool is also not part of the human body itself, 

but it can be said to extend it, by adding functionality that otherwise would either be difficult 

or even impossible, like the way snowshoes make walking on snow easier, or a hammer makes 

it possible to hammer in a nail. An activity, mediated by the usage of an instrument, is called 

an instrumented activity. For the tool to become an instrument, and the activity of the subject 

to become instrumented, utilisation schemes for the utilisation of the tool needs to be developed. 

A utilisation scheme can be defined as the “structured set of the generalizable characteristics 

of artifact utilization activities” which “form a stable basis for [their] activity” (Vérillon & 

Rabardel, 1995, p. 86). The utilisation schemes can be private, relating an individual subject’s 

activity to the artifact. They also have a social dimension, both because they emerge from a 

collective process of usage and design, and because of the social transmission processes 

involved in teaching and learning how a tool can be used. Without these schemes, the tool will 

not become an instrument. 

The process of learning to use a tool as an instrument is in the IA called an instrumental 

genesis (Rabardel & Samurçay, 2001), and is characterised by the two subprocesses of 

instrumentalisation and instrumentation. Instrumentalisation is the process of turning the tool 

into an instrument through modifications done to the tool (selection of functionalities, physical 

modifications, grouping it with other artifacts, etc.). Instrumentation is the process in which 

the acting subject becomes a tool user by incorporating social utilisation schemes into their 
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private set of schemes. Instrumentation is governed by the instrument’s characteristics 

(Drijvers & Trouche, 2008). These include constraints6, or the characteristics of an instrument 

which discourage or hinder certain actions, and possibilities, or characteristics that enables or 

encourages actions. These characteristics shape the thinking of the subject. 

Instrumentalisation consists of three stages, namely discovery and selection of relevant 

functions, personalisation, and transformation of the artifact (Trouche, 2004). Discovery and 

selection of relevant functions is exactly what the term describes, and exploration of the 

different operations possible to carry out with a tool, like the different operations programmed 

into a calculator, and the selection of what functions are relevant to the activities of the subject.  

Personalisation is different from discovery and selection of relevant functions in that it is a 

process of figuring out how the functionality of the tool best fits the personal activity of the 

subject. Trouche uses the metaphor that “one fits the artifact to one’s hand” (Trouche, 2004, 

p. 293). The stage of transformation of the artifact is the direct modification of the tool, like 

making custom keyboard shortcuts in a digital tool, or adding physical modifications to a tool 

for it to best fit the subject’s activity. 

As the instrument refers mainly to the mental construction of the tool user, the tool does 

not need to be a physical, concrete object (Lagrange et al., 2001). Indeed, a tool can be material, 

like a hammer or a computer, but it can also be immaterial, like a procedure, technique, or even 

a task (Trouche, 2004). 

2.3 Networking of Theories 

2.3.1 Networking Methodologies Using the ATD 
As a means of connecting the results of the papers in this dissertation, it is necessary to know 

how the two theoretical frameworks can communicate. The link between P1 and P2 is 

particularly important, because these two papers both use the interviews as the main data 

material. In this section, the aim is therefore mainly to make a connection between these two 

papers.  

Several ways of networking theories have been described (Bikner-Ahsbahs & Prediger, 

2014), ranging from making theories understandable to other approaches, applying different 

theoretical lenses to the same problem in a process of comparison and contrasting, to different 

degrees of combinations and integrations of either parts of theories, or whole theoretical 

approaches (Bikner-Ahsbahs & Prediger, 2010). Within the ATD, some work has been done to 

 
6 Note the difference in usages of the notion of a constraint between the IA and the ATD. 
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explore the possibility of networking ATD with other theoretical approaches (Artigue & Bosch, 

2014; Bosch et al., 2017; Rodrígues-Quintana et al., 2008). 

In Rodrígues-Quintana et al. (2008), the challenge of using one framework to answer a 

research question formulated in another framework was explored. It was pointed out that a 

research question formulated within one framework might not always be meaningful in another 

framework. This is due to differences in both terminology, epistemological and ontological 

assumptions, and research priorities. They do, however, demonstrate a method based on 

identifying a problematic question which lies at the origin of the research project, and use that 

to compare and contrast the findings from the two theories. A problematic question is to be 

understood as a naturally occurring question, which is not yet formulated in scientific terms. 

In the method devised, the problematic question is seen as the “common denominator of the 

theoretical developments that are to be compared” (Rodrígues-Quintana et al., 2008). 

2.3.2 A Change of Theoretical Framework From the IA to the ATD 
A consideration specific to this dissertation is that a change of theoretical frameworks 

is prompted by a necessity of expanding the didactic frame, from a local focus on tasks, to a 

wider focus including a description of people and knowledge undergoing institutional 

transitions. The method used for combining results from the two theoretical approaches 

therefore needs to account for both the work that is done using the two theoretical lenses, and 

the reasons for the switch from one theory to the other. What made it beneficial to switch from 

an IA approach to that of the ATD? 

The aim of both P1 and P2 was, partially, to examine how first-year university students 

work with a set of unfamiliar tasks and learn from them. Formulated as a question, this would 

be: “How do first-year university students work with unfamiliar tasks?” In P1, the goal was to 

demonstrate that tasks could be analysed as instruments, and that an instrumental genesis could 

be identified in a student’s work with a set of tasks, while in P2 the main goal was to examine 

the praxeology that a student demonstrated and developed through working with the same set 

of tasks (see Section 4.2.1 for the description of the tasks). The problematic question is 

therefore the “common denominator” between P1 and P2 that allows a connection between these 

two papers, and through this, a connection to the rest of the dissertation is possible. In handing 

this problematic question, the ATD and the IA provide two different approaches.  
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The IA, which was applied in the initial work on the dissertation, provides a way to 

view tasks as a human made tool, which can be used for learning. A definition of tasks7, 

conductive to this sort of approach, was devised for the analysis. In this definition, the purpose 

of a given task was central. In order to examine how a task could be used as a tool, it was 

assumed to be important to know why this task existed, and what sort of mathematical theory 

and techniques can be relayed by giving this specific task to a student. 

The ATD, on the other hand, has tasks, or more precisely types of tasks as an integral 

part of the notion of a praxeology (Chevallard, 2019). Thus, there is a difference in the use of 

terminology and focus that makes the two theories not directly compatible. A notion of 

constraints (Chevallard, 2020b; Chevallard & Bosch, 2020) found in the ATD, is also 

seemingly paralleled in the IA. In the IA, a constraint is a characteristic of an instrument 

(Drijvers & Trouche, 2008) which hinders or discourages a certain action using the given 

instrument (it constrains the action). This function of discouraging an action is not an essential 

part of a constraint in the ATD usage of the term, but rather a constraint is a condition which 

cannot be changed by the members of a given institution in which the constraint is acting 

(Chevallard & Bosch, 2020). This again adds to the incommensurability of the terminology, 

and a choice therefore needs to be made about which set of terms to use. Since most of the 

dissertation is framed as an ATD study, the ATD notions of conditions and constraints are used 

generally in the dissertation. 

There is, nevertheless, some correspondence between the ATD notion of types of tasks, 

and the notion of tasks presented in P1, which makes it possible to recontextualise some of the 

notions developed for that paper. First, it is clear that tasks are only one part of knowledge, 

evident from the definition of knowledge as praxeologies. The dialectic between tasks and other 

components of knowledge, represented in the IA as a tool-utilisation scheme dialectic, is 

therefore paralleled in the ATD in the form of a dialectic between types of tasks and techniques. 

Asking about the role of tasks therefore still makes sense in the ATD. Second, the ATD provides 

a way of describing how the work on a given unfamiliar task develops into a praxeological 

organisation, through the theory of the didactic moments. Thus, some sort of usage of these 

tasks can be seen in this description, and the developmental aspect is also preserved. Third, and 

last, the description of a technique, τ1, being divisible into smaller tasks needed to be performed 

to solve the type of task, T1, that τ1 is created to solve, corresponds well with the observation 

 
7 In P1 called formal tasks. This definition is not used in the rest of the dissertation, but the notion of a purpose of 
a task, and how a task can potentially condition an activity is important also for the rest of the dissertation. 
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of students identifying subtasks when working on the tasks they were given. Thus, a 

recontextualisation of the study under the ATD is possible, by reframing the question of using 

tasks as instruments, to asking a question about what roles they play in study situations, and 

thus, how they can condition the formation of the technological-theoretical block of a 

praxeology. 

What proved difficult to do with the tools of the IA was to describe the transition of 

knowledge between institutions. This prompted the change of theoretical approach. Three 

options existed for the expansion of the theoretical framework. The tools could be developed 

from notions already existing in the activity theoretical tradition (Engeström, 1978; Leont’ev, 

1978; Vygotsky, 1978) within which the instrumental approach lives. Alternatively, they could 

be incorporated into the IA from another theory. Or lastly, the project could be reframed within 

another theoretical approach better suited for the task. 

These realisations, that the notion of types of tasks within the notion of praxeologies, 

and the language for describing the institutional relativity of knowledge were well suited both 

to describe the data material and to handle the question of transition between educational 

institutions made the switch of theoretical approaches well justified. What is gained from the 

work carried out under the IA should nevertheless not be bypassed, and in the following, the 

main contributions from the work done using the IA will be described. 

2.3.3 Contributions From the Instrumental Approach 
There were two main contributions from the work done in P1, and the IA. First, the description 

of tasks as instruments used for the development of mathematical competence, proved to be a 

guiding principle in the question asking within the further research and analysis, carried out 

using the ATD. Concretely, it allowed me to realise a particular set of conditions and constraints 

surrounding the posing of tasks. By considering that mathematical tasks are not and should not 

be the ends of the praxeologies of teaching and learning a mathematical theme, but rather the 

tasks are used as means for teaching and learning mathematical practices and theory, it allowed 

me to question the role of tasks within a study situation. This idea then guided the work 

presented in both P2 and P3. 

The second contribution is a methodological development originating from this same 

idea. Resulting from the work presented in P1 is the use of the notion of subtasks as an analytical 

tool for the data from student interviews. By observing and identifying how students divided 

the tasks they were given into subtasks in the study process, it was possible to map out the 

argumentative nature of the students’ explorations in flowcharts, resembling tree structures, or 
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argumentation trees. An example of these flowcharts and how they are constructed can be found 

in Section 4.4.2. 
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3 Research Questions 
With this background, a statement of the goal of this research project can be presented. The 

general goal is to examine conditions and constraints that govern the dissemination, teaching, 

and learning of calculus, particularly integral calculus. Related to this are three subgoals. The 

first goal is the examination of the work done by a group of students on a set of unfamiliar 

tasks based on the FTC, and identification of conditions and constraints that govern the 

development of praxeologies related to these tasks. The second goal, related to this, is to 

investigate how the conditions and constraints originating from the praxeological organisation 

of the FTC in a Grade 13 mathematics textbook affects what types of tasks can be posed, how 

they are answerable, and possible consequences this might have for the further development of 

a praxeology of integration tasks. The third goal, related to mathematical questions in general, 

is to examine an SRP, and through it, also explore a problematique relating to the formulation 

of the generating question, Q0, and the explicit and implicit preconditions, and expectations 

about how the question will be answered.  

The claim that the set of tasks given to the students is unfamiliar is a bold claim and 

should be treated carefully. It is of course not possible to guarantee in advance that a set of 

tasks is unknown to a group of students. The claim will, nevertheless, be substantiated, both by 

the nature of the tasks, and by reference to statements made by the students during interview 

sessions. 

Table 1 
Research Questions in the Papers of the Dissertation 

Paper Research Questions 

P1 RQ1: Based on a series of task-based interviews in early university calculus, and 
using the instrumental approach, what sort of evidence is there for saying that tasks 
can be used as instruments for developing mathematical competence? 

P2 RQ2: Given a set of four tasks, t1 to t4, what is the praxeology constructed by a first-
year university mathematics student to solve these tasks, and what are the tools used 
in this construction? 

P3 RQ3,1: What sort of changes have been made during the transposition of the theme 
of integration, and particularly the FTC, from scholarly knowledge to knowledge to 
be taught in upper secondary school? 
RQ3,2: In case of any unused potential in the presentation of the FTC, with regard to 
strengthening its logos, what does this potential consist of? 

P4 RQ4: What sorts of mathematical models are used to answer Q0, and how are they 
interconnected? [Q0 = “Why do babies die of heat stroke in cars parked in the sun”] 
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4 Methodology 
The central place of the object of knowledge in the ATD has consequences for the methodology, 

and how the methods are applied. This is particularly true for how the analyses are conducted. 

The main types of analyses from the ATD used in this dissertation are praxeological analyses 

(Chevallard & Bosch, 2020) and didactic transposition analyses (Chevallard, 1989; Chevallard 

& Bosch, 2014)), both of which are based on a careful description of the epistemological 

foundation of the praxeologies under study by creating a praxeological reference model. 

The focus on the object of knowledge under study also governs what types of data will 

be needed, specifically, data that are rich enough to identify significant praxeological elements. 

This can include interview data and questionnaires (e.g., González-Martín & Camacho, 2004; 

Ladage et al., 2020), classroom observations (e.g., Artaud, 2020), and written or printed 

materials (e.g., Strømskag & Chevallard, 2022; Wijayanti & Winsløw, 2017). 

4.1 Emergence of the Published Papers 
The Instrumental Approach (IA) (Rabardel & Samurçay, 2001; Trouche, 2004) was used in the 

beginning both to guide the initial design of the project and as the analytic tool in the first paper. 

But as the research also included an interest in the effects of how knowledge and people move 

from one institution to another, the Anthropological Theory of the Didactic (ATD) (Chevallard, 

2007, 2019) seemed like a better fit for the study. In addition, due to the Covid-19 lockdown, 

the intended form of data collection, a longitudinal interview intervention, was not possible. 

Only the first part of the data collection was possible to carry out. A result of this broadening 

of the data collection and the change of theoretical approaches is a collection of four very 

different papers. 

The ordering of the papers in the dissertation is mainly thematic. The papers P1, P2 and 

P3 all have some themes in common which are not present in P4. The papers P1–P3 have the 

common themes of mathematics tasks and the FTC, while the themes of P4, of SRPs and 

modelling, are not so directly connected to the three other papers. P1, P2, and P3 are in their 

temporal ordering, due to how the writing of one paper leads to questions that were later 

examined in the later paper. 

P1 was a consequence of an interest in tasks, and how tasks can be used by students, in 

different ways, as instruments for learning integral calculus. P2 is the paper where the data from 

the student interviews are most deeply examined and is also the first paper where the ATD is 

used as an analytical tool of the interview data. P3, about the praxeological analysis of an upper 
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secondary mathematics textbook, was a result of questions arising in the work with P2 regarding 

the connection between the praxeologies observed in the student group, and indications of some 

of the causes of shortcomings of these praxeologies.  

P4, which is ordered last in the dissertation, did not arise from a question prompted by 

any of the other three papers. It is included in the dissertation because it exemplifies the 

alternative way that the ATD proposes for the teaching and study of open questions. Under the 

PQW, as opposed to PVW, the methodology of study and research paths (SRPs) is utilised to 

focus on the exploration of a question, or set of questions, as a driver of exploration and 

learning. This is contrasted with learning defined through a pre-defined set of particular 

knowledges, typically described through curriculum bullet points. 

The studies in this dissertation were designed (with the exception of the SRP), 

conducted, transcribed, and analysed by me. I have a master’s degree in mathematics, with 

focus on numerical integration, and pedagogical education. Before starting the PhD work, I 

had six years of experience in teaching mathematics in upper secondary school. I am also the 

main author of all the papers that the dissertation builds on, the sole author of the papers P1, P3 

and P4. The SRP was designed by the lecturer of the course it was part of. 

4.2 Data Material and Data Collection 
Two of the papers (P1 and P2) are based on interviews. The interviews were conducted in two 

periods during the autumn of 2019, in a first-year calculus course at NTNU. The interviews 

were task-based, and semi-structured, and video recordings were made and analysed. The 

students were all enrolled in the course “MA1101 – Grunnkurs i Analyse 1” (MA1101 – Basic 

Calculus 1) (MA1101, n.d.) at the Norwegian University of Science and Technology, during 

the autumn of 2019. A third interview was planned for the end of the spring semester of 2020, 

after they had finished the course “MA1102 – Grunnkurs i Analyse 2” (MA1102 – Basic 

Calculus 2) (MA1102, n.d.), and possibly also “MA1103 – Flerdimensjonal Analyse” 

(MA1103 – Vector Calculus) (MA1103, n.d.). But the last interview round was cancelled due 

to lockdown. 

Four tasks were given, and the students were told to solve them while explaining their 

thought process during the solving of the tasks. Video recordings, with the camera focused on 

the table between the student and the interviewer, were used for documentation, and the 

interviews were later transcribed with focus on spoken words. Other modes of communications 

were also included in the transcriptions when they were found relevant (e.g., pointing, hand 

gestures, drawings). All the interviews were conducted and transcribed in Norwegian, but 
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translations into English of relevant sections for inclusion in published work. The interviews 

were with individual students, and in each interview only the student and the interviewer were 

present. The didactic system can thus be represented as S(x, y, k), where x is the student 

interviewed, y is the interviewer, and k is the knowledge at stake. A part of the explicit contract 

was that y should not give any hint about the solution of the task while x was solving it. The 

only permissible gestures for y were to present the task, by handing a printed paper with the 

task written on it, receiving the task when x had decided to finish it, and to prompt x to speak 

more or louder if deemed necessary. “Finishing the task” was x’s own privilege, and x could 

decide to stop at any point, whether the task was solved, in x’s opinion, or not. This was all 

made clear to the students beforehand. 

The tasks were designed with the specific goal that they should be of a type that the 

students had most likely not seen before. This is naturally difficult to be certain about, but 

comments by the students during the interviews did indicate that the types of tasks were 

unfamiliar to the students, except for the first task. The second task was also of a form that 

would resemble a type of task likely to be familiar to the students, but with some information 

missing, making it impossible to solve without making some interpretations of the task itself. 

The two last tasks were selected to be tasks of proving propositions, and to be more similar to 

tasks they would likely meet in university mathematics, and at the same time more advanced 

than what would be expected from upper secondary integration tasks. 

In P2 and P3, mathematics textbooks are also used as data material. In P2, a textbook 

was used as additional support and warrant for the results emerging from the analysis of the 

interview data, while in P3 textbooks were the main source of data. Two different editions of 

the textbooks entitled Matematikk R2 were used (Borge et al., 2022; Heir et al., 2016). In P2, 

the edition from 2016 was used, as this is the textbook that the interviewed student had used 

during his Grade 13 mathematics course, and in P3 the edition from 2022 was analysed. 

Between the publishing of the two editions of Matematikk R2, a new curriculum reform was 

implemented (Directorate for Education and Training, 2020b). By selecting the edition of 

Matematikk R2 published after 2020 (Borge et al., 2022), an insight into how the new 

curriculum has been implemented in a textbook was possible. 

The last paper, P4, is based on materials collected from an SRP. This includes handouts 

that were given before the start of the SRP, works (scientific articles, news articles, webpages, 

etc.) collected during the performance of the SRP, and a report written by the participant of the 

SRP. 
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Interview Tasks Used in P1 and P2 
Four tasks were used in the student interviews referred to in P1 and P2. These tasks are: 

t1: Integrate the function '(() = (# + 2(. 

t2: Integrate the following function. (“function” refers to the graph in Figure 4) 

Figure 4 
Graph of the Function Found in Task t2 

 
 

t3: What can you say about 4′(#) in Figure 5? 

Figure 5 
General Function 

 
t4: What can you say about 4′(#) in Figure 6? 

Figure 6 
Periodic Function 

 
Suggested solutions of the tasks, and reasons for the design of the tasks, can be seen in 

Topphol & Strømskag (2022). 
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4.3 Research Participants 
The studies in this dissertation were designed (with the exception of the SRP), conducted, 

transcribed, and analysed by me. I have a master’s degree in mathematics, with focus on 

numerical integration, and pedagogical education. Before starting the PhD work, I had six years 

of experience in teaching mathematics in upper secondary school. I am also the main author of 

all the papers that the dissertation builds on, the sole author of the papers P1, P3 and P4. 

The main supervisor of the PhD participates as the co-author on P2 and is the designer 

of the SRP presented in P4.  

In the interview, six first-year mathematics students volunteered for being interviewed. 

All the students took part in a first-year university calculus course (MA1101, n.d.) in the 

autumn of 2019, and in lectures and task sessions during the beginning of the course the 

students were informed about the study and recruited in person by me. Five of the students 

participated in two interviews each, while one student participated in one interview. Each 

interview was with one student, making each interview a didactical system with two persons, 

the student and the interviewer, participating. All interviews were conducted by me. 

4.4 Data Analysis 

4.4.1 Analysis of a Process of Instrumental Genesis 
In P1, where the IA was used, the analysis was based on the two components of the instrumental 

genesis, the instrumentation and instrumentalisation (Rabardel & Samurçay, 2001), the focus 

being on instrumentation. The paper was mainly written as a theoretical paper, and the analysis 

presented was aimed at being a support for the claim that tasks can be seen as instruments. To 

do this, an instrumental genesis of mathematics tasks had to be identified, and essential to this 

analysis was therefore the identification of an instrumentation process. The method is based on 

observing statements and gestures consistent with the three phases of instrumentation, the 

discovery and selection of relevant functions, personalisation, and transformation of the 

artifact (Trouche, 2004). Instrumentalisation was assumed to occur whenever a student learns 

something from a task, since the task would then act upon the student by allowing the 

acquisition of new knowledge, and thus the task “prints its mark on the subject” (Trouche, 

2004, p 290). 
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4.4.2 Analysis Using the Model of Didactic Moments 
The interview data were first transcribed, with a focus on utterances and on what was written 

and drawn by the students. Gestures were transcribed when deemed relevant to the 

communication about the tasks. These were typically pointing or hand gestures indicating 

specific areas of interest on a graph, formula, or equation, or “drawing in the air” suggesting 

overall shape of functions or curves. 

The analysis can be divided in two steps. First, a general step, where information about 

the argumentation built up by and communicated by the students was organised in flowcharts 

(see an example in Figure 7). The subtasks that the students derived from the tasks they were 

given were identified by examining the choices that the students made during the solving 

process and by examining utterances and gestures. Each time a student mentioned a question 

about the task, a challenge found in the task, made a choice, or expressed the necessity to do 

something to solve the task, it was interpreted in the analysis as a subtask. Thus, the solution 

presented in the flowcharts are often not the optimal solutions, as they include investigations 

or tasks that do not lead to the solution presented in the end. 
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Figure 7 
Flowchart Mapping out the Exploration Process of a Task 

 
In the graphic representation, each Tn denotes a subtask or subproblem, and each Ln a 

corresponding solution or answer. The numbering of the subtasks is done according to when 

they first appeared in the interview data, while the numbering of the answers indicates which 

subtask the given answer belongs to. Further, two types of connections between subtasks and 

solutions are illustrated. A solid arrow indicates a direct derivation, generalisation, or 

interpretation of a task. This is either a new subtask, possibly necessary to solve the task it is 

derived from, or an answer to the given task. The dotted arrows indicate warrant, that is, it 

shows how the answer to one subtask lends support to another connection. For example, in the 

example above (Figure 7), the student had forgotten the point-slope formula, and could 

therefore not formulate the general function, as described in T4, as a specific function, as in T7, 

without working out this formula. Therefore, the answer L6, to the task T6, enables the student 
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to make the connection (a reformulation) between T4 and T7, and is thus interpreted as 

supporting this connection. In the example above (Figure 7), one can see how the student 

generalises the task of integrating a function found in a graph (T1), to the task of integrating the 

function J = -
# # + 1. The student also explicitly identified the need to find the slope of the line, 

and by mentioning this, it gave reason for analysing this as a subtask. Note, however, that the 

possible subtask of finding the y-intercept of the function is not represented as a subtask. That 

is because it was not mentioned in any way by the student as a specific “thing to do”. The 

technique was just applied without any mention. 

By identifying the subtasks that the students communicated, and by identifying 

connections between them, the flowchart, resembling a directed graph, is constructed. This is 

then used in the second step of the analysis, a praxeological analysis (Chevallard, 1989; 

Chevallard & Bosch, 2014). In the analysis presented in P2, the praxeological analysis of the 

work of the observed student is centred on the notion of didactic moments. As part of the 

praxeological analysis of the student work, a praxeological reference model is constructed, 

against which the student work is analysed. 

4.4.3 Didactic Transposition Analysis 
In both P2 and P3 sections of Grade 13 mathematics textbooks are analysed. P2 contains a short 

analysis of themes relevant to the analysis of the interview data. In the paper, one student was 

selected as a particular case, and the section of the textbook that he had used in Grade 13, 

containing a presentation and treatment of the FTC was therefore analysed. Using this analysis 

of the textbook, causal relations between the mathematical organisation found in the textbook 

and the praxeological development of the student could be identified. 

The paper P3 presents a praxeological analysis of the textbook chapter detailing the 

FTC in the textbook Matematikk R2 (Borge et al., 2022). The analysis is modelled partially 

after the analysis found in Wijayanti and Winsløw (2017). An addition to Wiyajanti and 

Winsløw’s method is a structuring of the analysis around the terms structure, functioning, and 

utility (Chevallard, 2022) of the mathematical object under study. 

The analysis follows Wijayanti and Winsløw (2017) by being a didactic transposition 

analysis. The analysis consists of three steps. First, a reference praxeological model of the 

theme of integration is constructed. The goal of the reference model is to present a general 

statement of the FTC, a description of which concepts are connected by the theorem, and what 

sort of tasks and techniques can be derived from the theorem. This serves as a general model 

of the theme, and as a model of scholarly knowledge, as well as being a reference towards 
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which knowledge to be taught, knowledge taught, and learned knowledge can be analysed.  

Specifically, to P3, it serves as a general model of knowledge of the FTC, towards which 

knowledge to be taught, as represented by the Grade 13 textbook Matematikk R2 (Borge et al., 

2022), can be analysed. The second step consists of analysing the textbook by identifying the 

praxeological elements present in the textbook. The third step is to compare the praxeological 

organisation found in the textbook to the reference model. In that way, the results of the didactic 

transposition that has generated the organisation in the textbook can be identified, together 

with what consequences this might have for teaching and learning using the textbook. 

Where the analysis in P3 diverges from Wiyajanti and Winsløw is in the explicit 

organisation of each of the three steps of the analysis around the notions of structure, 

functioning and utility of the mathematical object. By doing this, the analysis enables an 

identification of characteristics of the mathematical object under study, the FTC. These 

characteristics again imposes certain conditions and constraints for the teaching of the FTC and 

integral calculus, and on what sort of insights students are able to get from the study of the FTC 

using the textbook which has been analysed in P3. 

4.4.4 Analysis of the Construction of an SRP 
The last numbered paper in the dissertation, P4, presents an analysis of an SRP based on the 

generating question Q0 = “Why do babies die of heat stroke in cars parked in the sun?”. The 

question was accompanied by a handout describing the SRP, including the question Q0, a 

guideline that pointed out that the answer should be mathematically oriented. 

The analysis was carried out in two phases. The first phase consisted of conducting the 

SRP. This was done by first investigating the generating question and the literature provided in 

the handout. From this, more questions are derived, the derived questions. The derived 

questions are categorised according to what sorts of answers are likely to emerge from 

answering them. As the guideline pointed out a mathematical orientation, and in particular 

mathematics focused on modelling a physical system, this was also a categorisation criterion. 

A literature search was then conducted, both by following the trail of references found in the 

handed-out literature, and by general search using keywords related to hyperthermia, heat death, 

babies, parked cars, allometry, biological scaling, surface area, and heat transfer. 

The second phase consists of an analysis of the didactic potential of the generating 

question. This includes both a description of how the answers came about as a result of the 

generating question, and what other potential avenues of investigations could be derived from 

Q0, that was not investigated in this SRP. A particular focus is on how the SRP is not only 
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conditioned and constrained by Q0, but also by the implicit and explicit preconditions and 

expectations surrounding the answers to Q0. 

4.5 Strengths and Limitations of the Reported Research 
One structural characteristic of this research project gives rise to both strengths and limitations, 

namely the differences in both theoretical, methodological and thematical foci in the four 

papers. By basing the dissertation on four so diverse papers, a deep examination of one single 

didactical theme is difficult. Consequently, the conclusions arrived at in the papers are to some 

degree four separate conclusions. Care must therefore be taken when trying to generalise from 

the findings. 

What the study lacks in deep focus on one single and specific didactic phenomenon, 

however, it gains in being able to identify multiple facets relating to more general didactical 

themes. An important part of these multiple facets is the fact that the reported studies focus on 

different institutional positions. P1 is seen partly from the position of task designer. Here 

considerations necessary for creating tasks that allow students to use tasks as tools in a study 

process are identified. The position as student is also seen in P1, which identifies some 

possibilities under the conditions and constraints imposed by a study situation with a single 

student solving exercises designed to be unfamiliar. P2 is focused on the position as student, 

facilitated by the tool of flowchart, which visualises the choices that students make in a solving 

process, and therefore also help in indicating conditions and constraints that govern the solving 

process. P3 focuses on the position of textbook designer and can therefore identify conditions 

and constraints that govern the writing of a textbook chapter. It also identifies how the choices, 

shaped by those conditions and constraints, in turn creates conditions for the classroom setting. 

P4 focuses on the position as student in an SRP, and both serves to contrast the study in P2, and 

to highlight unique conditions and constraints that govern the study of a more open question. 

It affords a study of the expectations, both implicit and explicit, about the nature of the answer 

to the studied question  

The studies report on small-scale8 study processes (P1, P2, and P4 specifically), which 

stands in contrast to what is common in research in the ATD (e.g., Bourgade, 2016; Florensa, 

2018; Jessen, 2017). The studies therefore occupy a place which is relatively unique in the ATD 

tradition. The didactical systems seen in the studies are closer to the ones seen in a tutoring 

situation or autonomous self-study processes. In the light of promoting the PQW to all types of 

 
8 Small-scale in terms of numbers of participants, with each of the study situations containing only one student, 
and either one or zero “helpers”. 
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study processes (not only large scale and cooperative study processes) the studies in the 

dissertation can therefore give valuable insights to the conditions and constraints that govern 

studies with more limited resources and workforce. 

4.6 Ethical Considerations 
All participation in the interviews was voluntary, and the selection was done by actively opting 

in. All students who opted in were part of the study. As required by Norwegian regulations, the 

project has been registered in Sikt (formerly NSD, the Norwegian Agency for Shared Services 

in Education and Research, https://sikt.no/en/home), and the collection, storing and handling 

of personal information has been approved, with project reference number 806467. All 

participants in the interviews have been informed in writing about their rights and have signed 

a consent form. The interview data have been transcribed in anonymous form, and references 

to the individuals participating in the interviews are by codenames, to secure the participants’ 

anonymity. 

The authors of the textbooks analysed in P2 and P3 have been noticed in writing about 

the project. High resolution versions of illustrations and digital versions of the referenced 

chapters of the textbooks have been made available to the research project upon request. 

Permissions to use the texts and the original illustrations have been given, provided that the 

illustrators, as well as the authors are given due credit in the papers. This has been followed in 

both P2 and P3. In addition, the editorial director of the textbooks has requested to be notified 

of the publishing of P2 and P3, and to receive copies of the finally published papers. This request 

will be followed as soon as the papers have been published. 
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5 Results and Discussion 

5.1 Summary of Results From Individual Papers 
In this part of the dissertation, I will summarise the individual contributions of each of the 

papers, before I explain the relationship between the published works, and how they all relate 

to the overarching project. In the papers P1 and P2, two cases from the student interviews are 

given particular focus. Episodes from one student interview are presented in P1, while episodes 

from another student interview is presented in P2. The student in P1 was simply called “the 

student” in the paper, while the student in the case in P2 was given the pseudonym “John”. Both 

students were first-year students following a calculus course at NTNU took part as volunteers 

in the interviews. The student in P1 had already attended one university mathematics course in 

algebra while still being a student in upper secondary, and the conditions for his solving of the 

tasks in the interview was therefore likely different from the conditions and constraints 

governing the five other students’ solving process. 

5.1.1 Discussion and Conclusion From P1 
This paper presents the first analysis of the student interviews. Specifically, the paper presents 

an analysis of one student interview, as part of an examination of the question "Based on a 

series of task-based interviews in early university calculus, and using the instrumental approach, 

what sort of evidence is there for saying that tasks can be used as instruments for developing 

mathematical competence?". 

To conclude that an instrumental genesis is taking place, both elements of both the 

instrumentation and instrumentalisation processes were identified. Specifically, it was 

observed that the student in the case presented was able to change the task t4 (described in 

Section 4.2.1), from a task asking about periodic functions, to a less general task, which he 

called an “extreme example”. The change of the task is interpreted as evidence of an 

instrumentalisation, as the student creates an instrument, the new, more specific example, 

suitable for exploring the original task t4. 

Two consequences were noted which places some constraints on the design of tasks 

with a goal of enabling the development of mathematical competence. First, the tasks and 

examples that are given to students need to be carefully designed in such a way that not only 

the mathematical themes are evident, but also the nature of the underlying mathematical 

questions, and how the tasks can be changed to allow for the investigation of different aspects 

of the mathematical objects. And second, the students need to be given the opportunity to take 
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part in this exploration of how tasks can be changed and designed purposefully to allow for a 

more careful investigation of a mathematical theme. 

5.1.2 Discussion and Conclusion From P2 
This paper presents an examination of a praxeology built up by John working on the four tasks 

t1 to t4 (see Section 4.2.1). In the paper, a praxeological reference model for these tasks is 

presented. The observations made in the analysis of the praxeology built up by John are 

corroborated and substantiated by the analyses of the five other students’ work on t1 to t4. This 

includes the claim that the tasks seem to be new to the students and can be seen both by 

statements that the students give and by the nature of their work with the tasks. The last point 

can easily be seen in the flowcharts used to illustrate the solving process. 

Through the analysis of the interview data, and through a comparison to the textbook 

(Heir et al., 2016) that John had used during Grade 13, a causal relationship between the 

mathematical organisation he had been exposed to and difficulties he later had in the 

praxeological development was revealed. Particularly clear was a lack in the conceptualisation 

of the area in terms of a function, essentially Part I of the FTC. This posed an important 

constraint on the solving of tasks of the same type as t2, which made the task unsolvable. 

 Two other phenomena were identified. Related to the first observation, a difficulty in 

generalising is seen. t3 and t4 could only be solvable by defining a new general function, 0(() 

for which 0$(() = '((), but as John expressed in the second interview, the idea of using this 

as a technique to solve a task had never occurred to him before university calculus. And the 

second observation is a relative evaluation of algebraic and symbolic technique as more useful 

than graphical techniques. This is likely attributed to the algorithmic focus in upper secondary 

teaching, and probably strengthened by the focus on rigor in university mathematics courses. 

This is seen even in the exploratory phase of the praxeological development, where techniques 

of calculation have not yet been established. Using graphs and drawings seems to be an 

underdeveloped technique and is used mainly for illustrative purposes. 

In sum, two important constraints on the solving process were observed, namely the 

missing idea of area in terms of a function, which is the essentially the result of the FTC Part 

I, and the missing idea of generalisation of the function concept. Both these missing ideas were 

common difficulties among all six students, with a partial exception for the student in P1, which 

managed to solve t4. Moreover, John managed to solve t3 in the second interview, referring 

precisely to the idea of defining a general function as the solving idea. Both these two 

observations indicate that the lack of these two ideas are constraints relating to the institutional 
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position as a Grade 13 student, and not only specific to the individual students interviewed. A 

third condition is the nature of the formulation of the tasks themselves. This was particularly 

evident in t2, which was purposefully formulated vaguely. This made the precise interpretation 

of this task difficult, and several students, including John, noted a difficulty in understanding 

what the task was asking the students to do. 

Two suggestions were proposed for further avenues of action. First, a deeper look at 

textbooks and their praxeological organisation of integration and the FTC is warranted. This 

led to the research proposal for P3. And last, it adds to the suggestions of diversifying teaching 

methods, that includes giving students strategies for exploring unfamiliar problems. These 

strategies will need to include both different modes of exploration, not just algebraic and 

symbolic, but also graphic. Combining these two suggestions, the paper raises the question of 

textbook design, and what the role of textbooks could be in the new paradigm. 

5.1.3 Discussion and Conclusion From P3 
In P3, a didactic transposition analysis of Chapter 2 of the textbook, Matematikk R2 (Borge et 

al., 2022). Matematikk R2 is a new textbook written for Grade 13 advanced mathematics, and 

Chapter 2 is the introduction to integral calculus. The textbook was published after a recent 

curriculum reform (Directorate for Education and Training, 2020b) and is therefore an example 

of a written implementation of the content of this new reform. The publisher of Matematikk R2, 

is also the publisher of the textbook that John from P2 had used during Grade 13 mathematics.  

The analysis presented reveals that, although the FTC was presented in a more rigorous 

way after the introduction of the new curriculum, and justified by other previously treated 

theorems and definitions, a new problem was introduced. The presentation of the definitions 

upon which the FTC is based, continuity and the definition of the integral, is missing the notion 

of boundedness. 

Without boundedness, three tasks found in the textbook cannot be connected or justified 

properly and appear more as mathematical curiosities. With the addition of boundedness, the 

three tasks could have functioned as a foundation for both a strengthening of the logos with 

regards to the theme of integration and the theme of continuity of functions in general. The 

tasks could also have functioned as justification for generalising the definite integrals to also 

include partially continuous functions and improper integrals. All the technical components to 

do so are present, but the missing notion of boundedness makes the connection impossible. 

Thus, in the textbook, the conditions for expanding and modifying the praxeology of 

the FTC, beyond the introduction of examples that can be described as mathematical curiosities, 
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are not present. To be able to expand the praxeology systematically, a notion of boundedness 

and of integrability would be necessary. It is not clear, however that the conditions for actually 

including these notions are present. Both boundedness, and criteria for integrability in general, 

are concepts that students have been shown to struggle with (e.g., González-Martín & Camacho, 

2004; González-Martín & Correira de Sá, 2007; Rúbio & Gómez-Chacón, 2011). To give these 

themes a proper treatment, either more time is needed on the study of mathematics in general, 

or these themes would need to replace another theme. Thus, the analyses of the praxeological 

organisation of integration in Matematikk R2 described in P3 illustrates well the effects of the 

constraints that the textbook authors are under. The change in the curriculum introduces a 

requirement to include a more thorough treatment of the FTC, but a similar imperative to treat 

the underlying concepts of integrability and boundedness is not present. 

5.1.4 Discussion and Conclusion From P4 
P4, which was presented at “the 7th Conference of the Anthropological Theory of Didactic”, 

was the second paper to be accepted for publication. The SRP presented in the paper was special 

in three ways. First, it was a small-scale SRP, both in terms of the number of participants and 

in terms of time limitations. Although two students took part in the course which the SRP was 

a part of, each student performed an SRP individually, both answering the same generating 

question Q0. There was, however, a seminar about halfway during the course of the SRP, where 

the two students and the two course supervisors met and discussed the progression so far and 

the preliminary answers to the generating question. The SRP was also performed over the 

course of only five weeks. Since I was both student performing the SRP and the author of the 

paper P4, the insights gained from occupying the student position gives the paper a unique 

perspective. The experiences relayed are therefore first-hand experiences. And third, 

expectations about how Q0 should be answered have been made explicit in a written handout 

before the start of the SRP. Particularly, the handout states that the answer should be 

mathematical, and suggests an investigation of physical and physiological factors that makes 

babies extra vulnerable to heat stroke. They also suggest an approach of modelling the human 

body. 

The direct result from the SRP was a mathematical model, connecting the geometric 

characteristics of a human body, its heat capacity and heat transfer potential, and the effect of 

the ambient temperature. This model was again used to answer Q0. But from the investigation 

of the generated SRP, it became clear that there were many avenues that were not investigated, 

and the sole reason not to investigate them was the expectations of a mathematical-
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physiological answer. Other derived questions could possibly also be answered using 

mathematics, like statistics and probability, but were not necessarily connected to physiological 

factors. 

The explicit expectations in the handout therefore made it possible to discuss the role 

and nature of the generating question Q0. The preconditions and expectations that are 

communicated about the answer quite clearly act as conditions and constraints on the course 

of the SRP, both with regards to what the accepted answer is, and with regards to what derived 

questions are further investigated. Especially due to the constraints put on the formation of the 

finally accepted answer, a question of whether the preconditions should be regarded as a part 

of the generating question itself or as something different and external to the generating 

question emerges from this. 

An argument is made that much of the preconditions are represented in the pre-existing 

answers, A◊i. However, it is noted that pre-existing works do not suffice to fully explain the 

effect the preconditions have, and particularly the expectations about the nature of the answer. 

Nor is it obvious that one could analyse the preconditions as parts of Q0. The argument for this 

view is that expectations about both what Q0 is about, and what would be an acceptable answer 

might differ between different people. The conclusion on this part of the discussion is therefore 

that the locus of the expectations about the nature of an answer to Q0 in an SRP is not easily 

analysable in the current framework. The expectations do have a strong guiding force on how 

Q0 is answered, something which could points towards them being an integral part of the 

question Q0. But that seems to obscure the fact that different persons might have different 

expectations about the answer A♥. Thus, neither saying that the preconditions and expectations 

are all part of the pre-existing answers A◊, nor saying that they are part of the generating 

question Q0 is entirely satisfactory. A strong conclusion to this last question is not reached and 

left as an open question. The main result with regards to conditions and constraints governing 

the formation of an answer to Q0 is in pointing to the importance of the a-priori expectations 

about the nature of the answer, both when analysing an SRP and when designing and 

implementing SRPs. 

5.2 General Discussion  
In the three papers P1, P2 and P3, the mathematical themes of the FTC and integral calculus are 

at stake, either as the theme of tasks designed and implemented in student interviews, or as the 

theme for textbook chapters. In P4, the theme is not directly related to the FTC, but similar to 

P2 and to some extent P1, a special focus on the student position in a study situation can be seen. 
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Common to all papers are a focus on conditions and constraints governing the study of 

mathematical themes, either directly observed in study situations (P1, P2, and P4), or identified 

in textbook analyses (P3 and P2). Conditions governing other positions, like the teacher position, 

can also be seen, but not to the same extent. Importantly, the constraints identified for the 

student position might be conditions for the teacher position, but not necessarily constraints. 

5.2.1 Conditions and Constraints Related to the Student Position 
In both P1 and P2, study situations involving the tasks t1 to t4 are presented, and conditions and 

constraints governing the role these tasks have in the study situations are identified. In P1, for 

tasks to function as instruments for the development of mathematical competence, two 

conditions were suggested, both relating to the forming and posing of mathematical questions. 

The first is the design of the tasks and examples in such a way that the nature of the tasks and 

how tasks can be changed to explore mathematical themes. The second relates to the study 

situation itself, when it is suggested that students themselves need to take part in the posing 

and changing of tasks. Although the conclusion from the research in P1 is a result of applying 

the IA, the conclusion does seem to echo the ATD notion of the PQW and the importance of 

studying questions. This is particularly evident when considering that a task can both be 

formulated as a question, and even when it is not formulated as a question, a mathematical 

question is still the foundation of the task. An ability to consider and formulate mathematical 

questions is therefore necessary for changing and creating tasks. 

In P2 it was demonstrated how the lack of an idea resulting from the FTC Part I, that of 

an area function, the definite integral !(#) = ∫ '(())(!
" , made solving t2 impossible. It was 

also demonstrated how the lack of the idea of defining general functions as a technique 

constrained the development of the techniques necessary to solve t3 and t4. This reflects the 

findings presented in Winsløw (2008), demonstrating students’ struggles with abstraction. The 

fact that all the students showed these difficulties supports the claim that these ideas are 

constraints on the institutional position as Grade 13 students. Moreover, the only exceptions 

also serve to support this conclusion. The first exception is the student in P1, who was the only 

student who was able to solve t4. As noted in Section 5.1, he had already followed a university 

course in algebra, which likely allowed him to overcome the constraints that would otherwise 

have governed the position he was occupying. And the second exception is seen in John’s 

performance in the second interview, where he did manage to solve t3 by defining a general 

function. This also indicates that the constraints belong mainly to the position of Grade 13 

students rather than university calculus students. 
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Important conditions and constraints are introduced by the study material available to 

the students, and particularly by the textbooks that the students have available. After all, the 

textbook is still one of the most important resources for students (Rezat, 2010). In P2, a 

connection is identified between the difficulties the students have when attempting to solve the 

tasks t1 to t4, and missing elements of the praxeological organisation of the textbooks they had 

used. Additionally, although the missing praxeological elements identified in P2 were to a large 

extent remedied in the new edition of Matematikk R2 (Borge et al., 2022), new constraints 

were introduced by the lack of the notion of boundedness and the lack of a proper treatment of 

integrability. This likely introduces strong restrictions on possible expansions on the 

praxeology surrounding the FTC found in the textbook. 

This is contrasted with the conditions and constraints governing the student position in 

a study situation focused on an SRP. In particular, the conditions imposed by a textbook will 

naturally not be as important, as the students here are encouraged to do the information search 

themselves. Other conditions and constraints are, however, more important, and in particular 

conditions and constraints related to the formulation and context of the generating question. 

This is seen clearly in P4. Students in a situation centred on an SRP are now given the conditions 

for both changing and posing questions, and for searching for literature themselves, rather than 

relying purely on the tasks and literature provided by the teacher. Communication about 

preconditions and expectations about the nature of the finally accepted answer is, however, 

more important, as these have a strong guiding force on what course the SRP takes. This adds 

to the literature showing the importance of the nature, and even the formulation of the question 

itself (e.g., Bourgade, 2016) and of the effects of the expectations and preconceptions that 

students have about a theme (e.g., Strømskag, 2022). 

5.2.2 Conditions and Constraints Related to the Teacher and Textbook Author Positions 
The constraints described for the student position is, however, not necessarily clearly identified 

as constraints for the teacher position and for the textbook author position. The teacher is, after 

all, in the position to change the conditions by introducing new teaching materials and select 

tasks and examples that the teaching is focused on, while the textbook authors are in position 

to produce these materials. 

The conditions imposed by the textbook are still significant for the teacher position. 

The importance of the textbook for students (Rezat, 2010) is also true for teachers (Lepik et al., 

2015), something which stresses the importance of the quality of the textbooks. Although the 

praxeological organisation of a textbook does not constrain the teachers’ organisation and 
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presentation of the subject matter, it does strongly condition it. It does so in concert with the 

constraints imposed by the available time for instruction (Leong & Chick, 2011; Teig et al., 

2019) and pressure from high-stakes testing regime (Chichekian & Shole, 2016). 

The evidence presented in P3 does also illuminate some conditions for textbook 

authorship. Both the time constraint that affects the teachers, and the constraints put on the 

school system by the curriculum have a strong effect on the design of textbooks. Together with 

the other papers, the findings in P3 illustrate well the causal links between the change in 

curriculum and the design of textbooks. And importantly, it does also indicate that the changes 

made in the curriculum do not suffice to move away from the PWV. For that to occur, it likely 

requires a more overall reorganisation of the school system in general, which addresses the 

time constraints (Leong & Chick, 2011; Teig et al., 2019) and high-stakes testing (Chichekian 

& Shole, 2016) that still govern teaching and learning. 

5.3 Conclusions and Open Questions 

5.3.1 General Conclusions 
The general observations about the conditions and constraints affecting both students, teachers 

and textbook authors do highlight the interconnectivity between the conditions and constraints 

that govern the different institutional positions in the school system, and especially the 

conditions and constraints imposed by curriculum contents and curricular materials. A causal 

link was established in P2 between textbooks and the praxeologies students develop in 

mathematics, and a similar causal link between the curriculum reform and the praxeological 

organisation of textbooks is established in P3. Although the intension behind the curriculum 

reform is to encourage deep learning (Directorate for Education and Training, 2019) and 

increasing autonomy in inquiries about mathematical themes (Directorate for Education and 

Training, 2020a), there are conditions and constraints that work against these principles, like 

the time constraints and the high-stakes testing regimes that students and teachers are under. 

Even under the new curriculum, the textbook analysed seems to still be affected by the PVW, 

despite efforts to introduce new types of tasks aimed at inquiry. P1 also suggests that if the goal 

is for students to become autonomous in their study of mathematics, they need to be given the 

opportunity to create and modify tasks, and therefore also ask mathematical questions 

themselves, an essential element of the PQW. A shift from focusing on established works to a 

focus on questions entails a different set of conditions and constraints, in particular conditions 
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and constraints surrounding the posing and answering of a generating question and the 

preconditions and expectations about the finally accepted answer. 

5.3.2 Open Questions 
As a result of the multifaceted nature of the dissertation, many different avenues for further 

questions and investigations can be derived. These relate to themes ranging from the role of 

textbooks and other curricular resources for teaching, the nature and context of mathematical 

questions and their relation to the inquiry processes, and the changing roles and responsibilities 

of students and teachers in the PQW. Stemming from the conditions and constraints identified, 

three major avenues seem particularly fruitful. 

In the research presented in the dissertation, all the study situations analysed in P1, P2, 

and P4 have been “small-scale” study situations, meaning all the didactical systems have been 

of the type S(x, y, o) and S(x, Ø, o), with a single student. Moreover, the mathematical questions 

investigated by the students in P1 and P2, when solving the tasks that they were given, have 

also been “small-scale questions”, meaning questions that are closed-ended, asking for a 

specific answer, within a single mathematical context. This then raises the question of the place 

of these types of study situations in the PQW. How could the principle of focusing on questions 

as it appears in the PQW be applied to smaller scale study situations? After all, questions with 

different scope do exist also outside of the classroom, and the study of these “small-scale 

questions” in “small-scale study situations” might also benefit from the focus promoted by the 

PQW. 

A second avenue is the question of textbooks and their potential role. What role could 

mathematics textbooks play under the PQW? Are they obsolete relics of the past educational 

systems, or can they still play a significant role? One thing seems to be clear. In the new 

paradigm, they cannot play the only role. If exploration and study processes of different scales, 

different modalities, and with different purposes are to become the core of education, teaching 

would have to expand its scope to include all sorts of sources of knowledge, and textbooks 

would need to find a new place in this landscape. If textbooks still do play a role in the PQW, 

how should they be designed? What design principles should be implemented to accommodate 

for an expansion of the knowledge base? 

And third, the roles and responsibilities of students and teachers still need to be 

investigated in relation to the PQW. The study in P4 demonstrates the significance of the 

preconditions and expectations about a finally accepted answer to a generating question in 

shaping the course and outcome of an SRP. Two questions arise from this. First, the question 
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of the burden of responsibilities, and how these preconditions and expectations are to be 

handled in a classroom setting. How do one decide the criteria for accepting an answer, who 

gets to decide, and what role should the explicit preconditions and expectations take in this? 

And the second question is about predictability. To what extent, and in which way can the 

course and outcome of an SRP be predicted by the preconditions and expectations? 
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In this paper I explore a new approach to analysing tasks in mathematics education. By seeing tasks 
as an instrument in the activity of learning mathematics, I propose to use the instrumental approach 
and the notion of instrumental genesis to describe how a student could be able to internalise 
mathematical knowledge and methods through working with tasks. 

Keywords: student practices at university level, tasks, competencies, the instrumental approach. 

Introduction 

In the Nordic countries, a focus on the nature of mathematical tasks and their use in education has 
been a central theme (e.g. Bergqvist, 2007; Lithner, 2017), together with the notion of competence 
(Haavold, 2011; Lithner, 2017). This has in Norway over the last decades informed both policy-
making and the discussion of students’ mathematical achievements (Botten-Verboven et al., 2010). 

The focus in this paper will be on tasks. I will present a, to my knowledge, new way of applying the 
instrumental approach (Rabardel, 2000) by describing mathematical tasks as instruments for 
developing mathematical competence. This is part of a PhD project focusing on first year university 
calculus and the secondary-tertiary transition. The link between tasks and transition can be seen in, 
for example (Bergqvist, 2007), where she examines tasks in early calculus courses. Roh and Lee also 
talk about tasks designed to “bridge a gap between students’ intuition and mathematical rigor” (Roh 
& Lee, 2016, p. 34), pointing towards a connection between how tasks are formulated and presented 
in upper secondary and in university, and the issue of transition. One of the main research questions 
in my PhD project, is “How can tasks be used as instruments in developing competences?” I will 
however, not be able to answer this question fully in this paper. Instead, I will focus on the narrower 
question “Based on a series of task-based interviews in early university calculus, and using the 
instrumental approach, what sort of evidence is there for saying that tasks can be used as instruments 
for developing mathematical competence?” 

I will divide the argument into two parts. First, I present my theoretical framework. Then I make my 
case for why tasks can be seen as instruments according to the instrumental approach. The use of the 
theory will be exemplified through a short case study, selected from one of the interviews. 

Theoretical framework 

There have been several ways of describing tasks and describing ways of implementing and working 
with tasks (Watson & Ohtani, 2015). Tasks have been described as mediating artefacts in teaching 
and learning mathematics by Clarke, Strømskag, Johnson, Bikner-Ahsbahs and Gardner (2014) and 
by Johnson, Coles and Clarke (2017). The idea of tasks as artefacts can also be identified in an article 
by Watson and Mason where they talk about “seeing an exercise as a single mathematical object” 
(Watson & Mason, 2006, p.91). Tasks and their role in mathematics education is a matter, not only 
of being the things that one does in class to practice doing mathematics, but they may also act as an 
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aid in developing deeper mathematical insight. It is not only the content of the task that matters for 
what is being learned, but also how the task is designed and embedded in the teaching context, and 
what sort of guidance is given before, during and after solving the task. The last point can be 
evidenced by the findings of Haavold (2011), where he shows that even high achieving students tend 
to rely on imitative reasoning rather than creative reasoning, when proper guidance is not given. 

In this article I use Activity Theory (AT) (Leont’ev, 1978) to describe the context in which tasks are 
solved. Through activity, humans try to achieve some objective, and this activity is made possible by 
and mediated through artefacts. Such an activity is said to be object-oriented. The artefact plays an 
important role, as the activity that is conditioned by the artefact could not even be possible without 
the artefact. In Leont’ev’s description, human activity is divided into processes of three different 
levels, where the activity itself is at the top most level, and is driven by some motive, meaning there 
is a need that must be fulfilled, which motivates the activity. The difference between objective and 
motive is a subtle one. I use the word objective when talking about the concrete end towards which 
the activity is directed, and motive when talking about the drive towards this objective. Further, each 
activity consists of actions, which have different goals. A goal is the concrete end towards which an 
action is directed. An important distinction between motives and goals is that the subject needs not 
be conscious about the motive at all times during the activity, whereas the goal is always consciously 
present during the action. At the bottom level, an individual action is performed through a number of 
operations. The operations are determined by the conditions, that is, the material and immaterial 
resources available to and constraints imposed on the acting subject, both by the environment, but 
also by the prior knowledge and abilities of the subject itself. 

For describing what it means to become competent, one idea that has been guiding me is the 
competence framework of Niss and Højgaard (2011). In particular, the description of a competency 
as “a readiness to act” (Niss & Højgaard, 2011, p. 49), stresses that a person is not only able to carry 
out a mathematical procedure, but is also ready in the sense of knowing why, when and how the 
procedure works, as well as having the confidence to be able to perform the procedure.  

Definition of tasks 

I will now use the theoretical approach described above to define what I understand by the word task. 
First, I describe a task in general, and then I will describe what I define as a formal mathematics task. 
The description by Watson and Ohtani as the “things to do” (2015, p. 3) highlights the active nature 
of working with a task. In addition, there should be some sort of obligation connected to a task. At 
least the person performing the task should have the belief that this is something that he or she should 
do. And thus, the task should be given by someone, possibly the same person that performs it. Five 
roles can then be identified in how a person can relate to the task: The roles of designing the task; 
presenting the task; performing the task; presenting the solution; and evaluating a given solution. In 
order to distinguish between these roles, I use the words designer, task presenter, performer, solution 
presenter and evaluator. I distinguish between these as roles, but it may well be that the same person 
could play more than one role, or that one role is played by more than one person. The designer could 
also be the task presenter, and in some cases also the performer, solution presenter and evaluator. I 
will mainly focus on the three first roles in this text, but for learning, the two last are also important. 
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Drawing on ideas from AT and the general description of tasks and of competence, I define a formal 
task as a task that fulfils four criteria, to be presented below. A task that fails to fulfil at least one of 
these criteria will be called an informal task. 

First, since the motive of the activity is to become more competent, the task should have a purpose 
in achieving this. It is however not necessary that the performer of the task has been informed about 
this purpose. There might be good reasons for not disclosing the full reasoning behind a particular 
choice of tasks. For example, if the purpose of a task is to check whether the performer recognises a 
particular mathematical pattern, informing the performer beforehand about this might void the task 
of its purpose. The purpose is neither equal to the motive of the activity nor the goal of the action, but 
is related to answering the question of why this task in particular is chosen. In fact, if the purpose of 
the task is changed, the task itself changes, as I see the purpose being an integral part of the task itself. 

The second criterion is that the purpose should be known to the designer of the task securing that the 
designer can state the reasons for, and therefore also argue for why someone should solve such a task. 
A task fulfilling this criterion is called formulated. This criterion is similar to the first one, but by 
securing that the designer knows the purpose of the task, it is possible for someone else to find this 
purpose without having to solve the task themselves. Thus, a way of selecting tasks is possible 
informed only by the objective of the activity and the intended purpose of the tasks. 

The third criterion is connected to whether the task has an endpoint attainable within a predictable 
time limit. Such a task is called solvable. The stricter case, where the task has a clear and single 
answer, as for instance calculating a sum, will be called answerable. The criterion of solvability will 
exclude many tasks that are in some sense open ended. For example, one can imagine the task of 
finding an exhaustive answer to a why question, where one can continually probe deeper into the 
explanations, without being able to know whether a solution exists. Nevertheless, such a task can still 
often be divided into solvable subtasks. Still, many tasks considered open can possess the criterion of 
being solvable, as long as there is a possibility for the performer to be satisfied that the task has 
reached a solution. If for example the task is not to continually probe deeper into a why question, but 
rather to arrive at an explanation, based on some finite number of assumptions and preconditions, it 
can be possible to find a solution to the task. It is not, however, necessary for the task itself to provide 
a systematic way of validating the solution. The solution can still be invalid, but it must be clearly 
distinguishable as a plausible solution. A trivial example might be the solving of a simple equation, 
where the answer is a number. Any number could be plausible, depending on the knowledge of the 
performer, but something which is not a number, will not be a solution. 

The fourth criterion is inspired by Niss and Højgaard’s statement that an answer “must be produced 
by calculations, that is by a mathematical procedure and not by measurement” (2011, p. 94). A 
procedure is a way of arriving at a solution through logical inference, possibly as simple as counting 
on fingers for adding numbers. A task where there exists a way of arriving at the solution in this way, 
will be called proceduriseable. This does not mean, however, that guessing or recollecting has no 
place, but there should at least be some way of “sifting” the solutions by means of inference. 

In addition to these criteria, tasks can also be composed. A highly composed task will have many 
subtasks that are more or less necessary for the whole task to be solved. 
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The instrumental approach 

I will here present a short description of the instrumental approach. 

The instrumental approach (Rabardel, 2000) has, from the introduction to mathematics education, 
been connected to digital tools (Trouche, 2004). A tool is seen as “something which is available for 
sustaining human activity” (Trouche, 2004, p. 282). The main idea of the theory is that an instrument 
is an object consisting of the tool, together with usage patterns and mental schemes connected to the 
tool. Without the usage patterns and mental schemes, the tool will not yet be useful to the tool user, 
and will need to go through a process, called an instrumental genesis to become an instrument 
(Rabardel, 2000). This process consists of two parts: instrumentalisation and instrumentation. 

Through the process of instrumentalisation, the artefact becomes an instrument. That is, the subject 
personalises the artefact, and creates an instrument by appropriating it into the subject’s activity. This 
might happen through three phases: discovery and selection of relevant functions of the artefact; 
personalisation, where the user finds the preferred way to apply the functions; and transformation of 
the artefact, where modifications are made to the artefact to fit the user’s usage patterns (Trouche, 
2004). Through instrumentation, the subject also changes, to become a tool user. The usage patterns 
are internalised and the activity of using the tool is conditioned by the artefact. This instrumental 
genesis is dependent upon the properties of the artefact, or its constraints and potentialities, and it is 
also dependent upon the subject, its activity, prior knowledge and working methods (Trouche, 2004). 

The instrumental approach is also applicable to tools other than digital. A non-physical tool can 
become an instrument when the tool changes from being a mere artefact into something that in the 
mind of the tool-user has a purpose and can help in achieving some goal or objective. Indeed, 
according to Lagrange et al. (2001, p. 6), “While the artefact refers to the objective tool, the instrument 
refers to a mental construction of the tool by the user”. Moreover, a tool “can be material or cultural” 
(Trouche, 2004, p. 282). Tools need not be understood as physical entities, but can also be abstract, 
such as formulas, algorithms, and as I will argue, tasks. 

Tasks as instruments 

For many students, the most immediate goal while working on a task is to get the task done. This, 
however might not be the most effective way of achieving competence in mathematics. In my view, 
using Leont’ev’s three levels of activity, it makes more sense to see the task itself as a tool in the 
activity, with the objective of becoming competent in mathematics. Solving tasks are then actions in 
this activity, and the different operations done to solve the task corresponds to usage patterns. 

Since I cannot provide an exhaustive account of the different ways a task can be used as an instrument 
within the confines of this paper, I will in the rest of the text argue that the idea of tasks as instruments 
is viable and observable. The core of the argument will be the short case study, but a note about the 
process of instrumental genesis is needed to argue observability. 

In order for a task to become an instrument, it needs to go through an instrumental genesis. As the 
performer solves a task, I assume that the task “acts upon” the person solving it, when learning 
happens. The subject is changed by the artefact, through instrumentation. Whether this has taken 
place can be seen for instance through tests or exams, as the observation that a student becomes more 
secure and their success rate increases in solving a particular type of task is a sign of this. But in 
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addition, an instrumentalisation process is also necessary. The task needs to be appropriated by the 
task performer in order for it to become an instrument. A key to the observation of this is in the three 
different stages of instrumentalisation, found in (Trouche, 2004). In order to demonstrate how one 
could observe these different stages, I present an example from an interview. This is selected from a 
series of video recorded interviews conducted over the course of one semester, in their first university 
level calculus course. The purpose was to track the development of how six different students would 
reason during solution of tasks and how they might use tasks for learning. 

Example tasks 

In the first interviews, the students were given tasks on integration, and then told to freely describe 
their reasoning while solving the tasks. They were themselves responsible for stating when they 
considered the task solved, and the interviewer would only intervene when the students were silent, 
by asking them to continue talking. Two of the tasks given are shown in Figures 1 and 2. They will 
be analysed below using the four criteria of a formal task, and then a case study of one interview 
where these tasks were used, will be presented, together with observations from the other interviews. 

 
Figure 1: Task 1 

 
Figure 2: Task 2 

The criteria for formal tasks can be applied to these two tasks individually. The tasks have a potential 
to demonstrate properties of the definite integral, and in the second task, also of periodic functions. 
This leads me to say they are both purpose oriented, as the purpose of giving such tasks to a student 
could be to highlight these properties. In addition, taken together as two parts of a composed task, 
they could serve as a way of highlighting for the student some possible false perceptions about the 
fundamental theorem of calculus (FTC). 

They are both solvable. In Task 1, a possible solution could be to find the algebraic expression  
!!(#) = &(# + 1) − &(# − 1), and be satisfied with this as a solution, but because of the vagueness 
of the question, it is not strictly answerable. Another plausible solution could be to state that !′(#) 
represents a change in area. In contrast, these solutions would probably not be considered a 
satisfactory solution to task 2, since it does not take the periodicity of the function into account. Here 
the intended conclusion would be the observation that !!(#) = 0. They are both proceduriseable as 
well, since applying the FTC could be one such procedure. 
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For the students, these tasks were difficult, and not all managed to give answers that they themselves 
were satisfied with. It is worth noticing that although the question of saying something about !′(#) 
was identical in both of the tasks, the answers the students gave to each of the two tasks varied 
considerably between the tasks, which correspond well with the pre-analysis of the tasks. 

Case study 

One student had a particularly interesting approach to solving in particular Task 2, using what he 
himself calls “an extreme example”. Moreover, he was the only one who solved Task 2 correctly, 
although not entirely rigorously. This student had already followed an algebra course at another 
university while he was still in secondary school, after having finished the highest level of secondary 
school mathematics a year early. Task 1, he solved relatively quickly, stating that !′(#)  relates to the 
area of the graph between # − 1 and # + 1. On Task 2 he spent more time. The excerpt below shows 
his description of his own thinking at the moment when he arrived at his conclusion: 

Student:  I want to say that !′(#)  is zero … but that is for the most part a gut feeling … 
[partially inaudible] … Okay. Then I’ll go for an extreme example. That usually 
works. [draws a graph]. 2 in the centre … that area [points to the graph] is equal to 
that area. Yeah, I just want to … I’m going to think about this when I get home … 

Interviewer: Just say what you are thinking. 

Student: I think !′(#)  is … zero … that there is no change in area. Since the period is 2, that 
is it repeats itself, so we know at least that &(,) on both ends are of equal height. 
That is given. And then we know also that it will be relatively symmetric. We can 
always do a translation... or a reflection. For example, I could take that part, move 
it over there [draws an arrow from the centre of the graph over to the right]. If we 
had moved that one a little bit to the left, then we would have gotten more of that 
one and less of that one [pointing at the two maxima on the graph], then we could 
move that one over there. Yes! !!(#) = 0. That is my final answer [drops the pen]. 

 
Figure 3: Graph of the “extreme example” drawn by the student. 

Several parts of the instrumental genesis process can be observed here. From the triumphant drop of 
the pen, and declaration that he had found the answer, it seems reasonable to suggest that he has 
discovered something new by solving the task, and that he has learned something. It is worth noticing 
that the solution he arrived at is not a rigorous description of the general principle, but it is strong 
enough to convince him of the truth of his conclusion, and thus induce learning. Steps towards an 
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internalisation of the usage pattern are taken, as the student might have discovered some relation 
between a periodic function, and the change of area under its graph. 

Different stages of the instrumentalisation can also be observed. The discovery phase can be seen, as 
he tries different operations on the task. In this excerpt, he tests two operations. He constructs an 
“extreme example”, as he refers to it, in the form of the graph of a function, and he operates on this 
graph by performing an imagined moving of one part of the graph to another part. Personalisation 
can also be seen in the statement that an extreme example “usually works”. This shows a personal 
preference to certain operations, and the fact that the example made it possible to convince himself 
of the solution likely strengthens this preference. Transformation can also be seen in two ways. First, 
as the two tasks are similar, this constitutes an example of such a change, from the most general case 
to the periodic, albeit not performed by the student. But the student makes a similar change by further 
limiting the scope of the task, from finding the solution of the periodic case, into solving the extreme 
example, and thereby using the now changed task as a tool for exploring the more general case. 

Other students also tried similar strategies. Especially the selection of an example function, and then 
exploring the implications that the question would have to this case. The difference would be that the 
other students would rather choose a typical periodic function, like a trigonometric function, and often 
explicitly defined, rather than an unspecified periodic function that lies at a perceived extreme. They 
also in many cases did not make the connection between !′(#) and the change of area. Nevertheless, 
attempts at exploring and changing of the scope of the task can still be observed also in these cases. 

Final remarks 

Some consequences for how we use task seems to emerge from this. Since task are central to learning 
mathematic, and since tasks can be seen as instruments, as I have argued, this suggests that we need 
to take the different phases of the instrumental genesis into account when designing and using tasks. 
One such way may be to give students the opportunity to explore and discover the different ways a 
task can be used, and what sort of changes can be done to the task. This might be done simply by 
providing the time and opportunity for such discovery, but also by providing good examples that 
show how tasks can be used for different purposes, and how to change tasks in order to achieve this. 

There are however still more questions to be answered. First, in this paper I have only demonstrated 
that tasks can be seen as instruments, but there is the need to examine different ways tasks can be 
used as instruments. The question of transition seems also likely to be connected to this point, as 
diversification of the way tasks are used would constitute one way in which the complexity increases. 
Finally, these observations might also have consequences on the design of tasks, and possibly give 
rise to some design principles. Different types of tasks might very well lend themselves to use as 
instruments in different way, possibly also dependent upon and conditioned by the sort of guidance 
provided by the presenter of the task. 
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Didactic Transposition of the 
Fundamental Theorem of Calculus 
 
Abstract 
 
Using the tools of praxeological analysis and didactical transposition analysis, 
the treatments of the Fundamental Theorem of Calculus in one Norwegian, 
Grade 13 textbook is analysed, with a particular focus on the development of 
the logos block of the FTC. The terms structure, functioning and utility, first 
introduced by Chevallard in 2022, is further to describe different dimensions 
of the mathematical object at stake. Through the analysis, a lack in the logos 
relating to the concept of integrability is identified in the textbook, and 
consequences of this is explored in relation to a set of tasks found in the book. 
 
Keywords: didactic transposition, Grade 13 textbooks, praxeological 
analysis, the Fundamental Theorem of Calculus 
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Introduction 
 
The movement, transformation, and incorporation of knowledge 

from one institution, where it is created, into the activity of other 
institutions (typically educational institutions) has been studied in 
mathematics and stem education in general (Freudenthal, 1983/2002; 
Bosch & Gascón, 2006) and in calculus specifically (e.g., Petropoulou 
et al., 2016; Strømskag & Chevallard, in press.) In the Anthropological 
Theory of the Didactic (ATD), this process of transposing an object of 
knowledge from one institution of knowledge to another institution is 
modelled by the concept of a didactic transposition (Bosch & Gascón, 
2006). The transposition of the scholarly concept of integral analysis 
to the techniques and concepts of integrals found in upper secondary 
mathematics courses is an example of this. 
In this paper, a study and analysis of a Norwegian textbook, 

Matematikk R2 (Borge et al., 2022), for upper secondary school Grade 
13 (hereafter simply Grade 13) mathematics is presented, focusing on 
the Fundamental Theorem of Calculus (FTC) and the didactic 
transposition of this theme. 
The textbook selected is a part of the resources produced for the 

recent curriculum reform in Norway, Kunnskapsløftet 20 (Directorate 
of Education and Training, 2020). The reform was implemented for 
Grade 13 in 2022, after Grade 12 in 2021 and Grade 11 in 2020, and 
consists of a substantial reorganisation of the curricula and their 
contents. The reform introduced more specific goals for learning 
integral calculus. Students is now expected to be able to “account for 
the fundamental theorem of calculus, and account for consequences of 
the theorem”. The previous reform, Kunnskapsløftet 06, did not 
mention the FTC (Directorate of Education and Training, 2006). 
Much weight is put on integral calculus in higher mathematics 

education, and students has been shown to have numerous difficulties 
in understanding the concept (e.g., Orton, 1983; Thompson & Harel, 
2021; Burgos et al., 2021). A previous study (Topphol & Strømskag, 
2020), identified a difficulty in relating the indefinite integral (which 
will be defined later) and the antiderivative, namely the definite 
integral, ∫ "($)&$

!
"  (essentially the first part of the FTC) and showed 
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that this difficulty could be traced back to the textbooks they had used 
in upper secondary. One textbook (Heir et al., 2016), the previous 
edition of Matematikk R2, written for Kunnskapsløftet 06, was 
examined specifically. Matematikk R2 (Borge et al., 2022), was also 
the first textbook written for Kunnskapsløftet 20 that was available to 
the author of this article. 
With the advent of a new curriculum in mathematics, it is therefore 

of interest to investigate how the theme of integration is treated under 
the new curriculum. More concretely, I investigate the question of how 
integral calculus is presented in Matematikk R2 (Borge et al., 2022), 
and what consequences there might be. Specifically, I seek to answer 
the questions: 
 
1. What sort of changes have been made during the transposition 
of the theme of integration, and particularly the FTC, from 
scholarly knowledge to knowledge to be taught at Grade 13, as 
presented in Matematikk R2? 

2. In case of any unused potential in the presentation of the FTC, 
with regard to strengthening its logos in Matematikk R2, what 
does this potential consist of? 

 
Theoretical tools 

 
This study is conducted with theoretical tools from the 
Anthropological Theory of the Didactic (ATD; Chevallard, 2019). 
Knowledge is within the ATD modelled in terms of a praxeology, 

', consisting of four components: type(s) of tasks, T, a technique, τ (or 
set of techniques), used to solve the tasks, a technology, q, used to 
describe and explain the techniques, and a theory, Q, used to justify 
the technology. The types of tasks and the techniques make up the 
praxis block of the praxeology, and the technology and the theory 
make up the logos block (Chevallard, 2019). Schematically, it is 
commonly written as ' = [T / τ / θ / Θ]. 
Subscripts u (for university) and s (for school or secondary) 

respectively, are used to distinguish the praxeological elements. Thus, 
Tu is the types of tasks found in university mathematics textbooks, 
while Ts are types of tasks in the Grade 13 textbook. 
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The concept of a didactical transposition refers to a process, where 
an object of knowledge is transformed, from scholarly knowledge, 
through its selection by the noosphere to become knowledge to be 
taught, until it is actually taught, and becomes available to the students, 
in the teaching institutions (Chevallard & Bosch, 2014) (Figure 1). 
 

 
Figure 1. The Didactic Transposition Process (Adapted from 

Chevallard & Bosch, 2014, p. 171) 
 
As explained by Strømskag and Chevallard:  
 

A praxeology ! is usually the product of the activity of an institution 
or a collective of institutions I. It is often a result of an institutional 
transposition of a praxeology !* living in a collective of institutions 
I* to a praxeology ! that has to live within I and thus has to satisfy 
a set of conditions and constraints specific to I (Chevallard, 2020). 
This is the case when I is a collective of “didactic” institutions, that 
is, institutions declaring to teach some bodies of knowledge, such as 
secondary school for example. This is referred to as didactic 
transposition of I* into I. (Strømskag & Chevallard, in press) 

 
In the study of a mathematical object, ℴ, here the FTC, one can talk 

about the object’s structure, functioning, and utility (Chevallard, 
2022). Structure refers to what ℴ consists of, or what elements the 
object ties together. Functioning refers to how ℴ works to tie the 
elements together. Utility refers to what ℴ can be used for. I distinguish 
between intra mathematical utility, or utility to mathematics itself, and 
extra mathematical utility, or utility to fields outside of mathematics. 
 

Methodology 
 
The methodological approach is a didactic transposition analysis 

(Chevallard, 1989; Chevallard & Bosc, 2014), where a reference 
praxeological model is constructed, and used to analyse the Grade 13 
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textbook (see e.g., Wijayanti & Winsløw, 2017). A reference 
praxeological model of the theme of integration is first created, a 
model where the researchers expose their own perspectives on the 
body of knowledge at hand. Then, an analysis of the Grade 13 textbook 
is conducted where praxeological elements are identified. At last, the 
reference model and the Grade 13 textbooks are compared. In all three 
steps I will structure the descriptions around the notions of structure, 
functioning, and utility of the mathematical object, adding to the 
method of Wijayanti and Winsløw (2017). I focus mainly on the intra 
mathematical utility, in addition to structure and functioning of the 
mathematical object. 
The reference praxeological model is partially based on Calculus: 

A Complete Course (Adams & Essex, 2018), from here on referenced 
as Calculus. This book was chosen because of its use in many of the 
early mathematics courses in my own home university, and the 
widespread international audience and the authors’ long experience in 
writing calculus textbooks. An article by Botsko (1991), presenting a 
more general form of the FTC than is found in Calculus, and the 
Norwegian calculus book Kalkulus (Lindstrøm, 2016), are used as 
supplementary sources. As a single textbook is itself a result of a 
didactic transposition (Winsløw, 2022), it does not in general suffice 
alone as a description of scholarly knowledge. 
 
A reference praxeological model for the FTC 
 
The FTC connects the concepts of antiderivatives, the indefinite 

integral, and the definite integral, defined as Riemann integrals (see 
e.g., Adams & Essex, 2018, pp. 302–307). By FTC establishing the 
Newton-Leibniz formula, 
 

) "(*)&*
#

"
= ,(-) − ,(/), 

 
and what I will call the derivative-integral formula, 
 

&
&*
) "($)&$
!

"
= "(*). 
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the FTC provides results that allows for calculations of areas that are 
not easily measured through simpler geometric means, and for doing 
calculations on accumulation. These results have numerous 
applications in other fields (for examples, see any university level 
calculus textbook, e.g., Adams & Essex, 2018, pp. 393–458; 
Lindstrøm, 2016, pp. 439–459). Through extensions and 
generalisations, like Fourier analysis and differential equations, based 
on improper integrals, it has proved indispensable in our technology-
driven world. 
 
Conditions for Riemann integrability 
 
Integrability and continuity, are the main conditions for the FTC to 

work. For a function to be Riemann integrable, the integrand function 
must be bounded, and the upper and lower Riemann sums must exist. 
For an integral of a function over a closed interval, continuity is a 
sufficient condition, but not necessary. A detailed discussion of 
Riemann sums, integrability, and boundedness, can be found in 
Calculus’ Appendix Sections III and IV (Adams & Essex, 2018, A-21 
– A-31). 
 
Definitions 

 
An antiderivative of "(*) on an interval I, is defined as a function, 

,(*), such that ,$(*) = "(*) for all * ∈ 3.  
An indefinite integral of f on an interval I, defined as 

 

)"(*)&* = ,(*) + 5				on	3, 

 

where F is an antiderivative of f for all x ∈ 3, and C is a real valued 
constant. The addition of the constant C makes it possible to use the 
indefinite integral to represent all antiderivatives in one expression. 
A definition of the definite integral can now be stated (Adams & 

Essex, 2018, p. 304): 
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Suppose there is exactly one number I such that for every partition 
P of [#, %] we have 
 

'(), *) ≤ - ≤ .(), *). 
 
Then we say that the function ) is integrable on [#, %], and we call 
I the definite integral of f on [#, %]. The definite integral is denoted 
by the symbol 

- = 1 )(2)32.
!

"
 

 
L and U are the lower and upper Riemann sums for a partition of the 
interval [/, -]. Boundedness plays a role in the existence of lower and 
upper Riemann sums. If the function f is not bounded on the interval, 
then either a lower or an upper Riemann sum cannot exist (details can 
be found in Adams & Essex, 2018, A-28–A-29). 
 
Theorems which the FTC builds on 
 
Three theorems will be used in proving the FTC. The derivative of 

a constant function is zero (Theorem 13, Adams & Essex, 2018, p 
142). A zero-width integral has result zero, and integrals have the 
additivity property (Theorem 3, Adams & Essex, 2018, p 308). The 
Mean-Value Theorem for Integrals (Theorem 4, Adams & Essex, 
2018, p 310). Additivity will also prove significant as it provides a 
basis for a common technique used for, for example, area calculations. 
 
The statement of the FTC 

 
A statement of the FTC is seen in Calculus (Adams & Essex, 2018, 

pp. 313–314): 
 
Suppose that the function ) is continuous on an interval - containing 
the point #. 
 
PART I. Let the function 4 be defined on - by 
 

4(2) = 1 )(5)35
#

"
. 
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Then 4 is differentiable on -, and 4$(2) = )(2) there. Thus, 4 is an 
antiderivative of ) on -: 
 

3
32
1 )(5)35
#

"
= )(2). 

 
PART II. If 6(2)  is any antiderivative of )(2)  on - , so that 
6$(2)	 = 	)(2) on -, then for any % in -, we have 
 

1 )(2)32
!

"
= 6(%) − 6(#). 

 
A similar statement can be found in Kalkulus (Lindstrøm, 2016, p. 

416). Part II is there referred to as a corollary.  
In both treatments, continuity of the integrand is assumed both in 

Part I and Part II. This is also a necessary condition for the conclusion 
in Part I of the FTC. However, there is a version of the FTC Part II, 
which is rather based on an integrand bounded on the interval of 
integration, allowing a countable (possibly countably infinite and 
possibly zero) number of discontinuities (i.e. the conditions for 
Riemann integrability). Such a function is called continuous almost 
everywhere. Similarly, a function G which is the derivative of another 
function f everywhere, except for a countable number of points is said 
to be derivative of f almost everywhere.  
In other words, there exists a version of the FTC Part II which can 

be applied to all Riemann integrable functions (Botsko, 1991). The 
FTC Part II can be restated: 
 

PART II. If )(2) is a Riemann integrable function, and if 6(2) is a 
continuous function for which 6$(2) = )(2) almost everywhere on 
I, then for any a and b in I, we have 
 

1 )(2)32
!

"
= 6(%) − 6(#). 
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The condition that <(*) is continuous is important, and the lack of 
this condition would have some consequences (see e.g., Pavlyk, 2008).  
Now, it is not obvious why this is relevant for an upper secondary 

calculus textbook. I do also not expect secondary students to learn this 
version of the FTC. But the existence of this form of the theorem 
illustrates two important points. First, the difference between the two 
formulations of the definite integral, the definition based on Riemann 
sums, and the calculational formulation based on antiderivatives, often 
do have different conditions for their validity, in their forms expressed 
in typical textbooks. This difference is not always clearly 
communicated. And second, it illustrates one effect of the condition of 
boundedness. This, as will be demonstrated, is another crucial point 
that is not communicated in the textbook examined in this article. 
 
Proving the FTC 
 

A proof of Part I can be found in Calculus (Adams & Essex, 2018): 
 

Using the definition of the derivative, we calculate 
 

4$(2) = lim
%→'

4(2 + ℎ) − 4(2)

ℎ
	

= lim
%→'

1
ℎ
?1 )(5)35

#(%

"
−1 )(5)35

#

"
@ 

= lim
%→'

1
ℎ
1 )(5)35
#(%

#
		by	Theorem	3(d)	

= lim
%→'

1
ℎ
ℎ)(J)														

for	some	J = J(ℎ)(depending	on	ℎ)
between	2	and	2 + ℎ	(Theorem	4)			

																											
	

= lim
)→#

)(J) 																			since	J → 2	as	ℎ → 0	

= )(2)																											since	)	is	continuous. 
 
Also, if 6$(2) = )(2) , then  4(2) = 6(2) + X  on -  for some 
constant X (by Theorem 13 of section 2.8). Hence, 
 

1 )(5)35
#

"
= 4(2) = 6(2) + X. 
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A proof of the FTC Part II, applying to all Riemann integrable 
functions, can be found in Botsko (1991). 
 
Types of tasks and techniques from university textbooks 

 
The intra-mathematical utility of the FTC can be seen in the types of 
tasks it provides the foundation for. Based on tasks found in the two 
textbooks Calculus by Adams and Essex (2018) and Kalkulus by 
Lindstrøm (2016), seven types of tasks can be identified, and they 
make up the bulk of Tu: 
 
 
Table 1. 
Types of tasks relating to the FTC 
 
Type of tasks. Technique required (τ) 

t1: Evaluate a definite integral τ1: - Find an antiderivative and apply 
Newton-Leibniz formula. 

t2: Find the area of a bounded 
region 

τ2: - Find all zeros of the integrand on 
the interval of integration. 
- Evaluate the definite integral over 
each subinterval. Negate value if the 
area lies below the abscissa. 
- Add the resulting integrals. 

t3: Derivative of functions defined 
by an integral with variable 
integration limit. 

τ3: - Apply the derivative-integral 
formula. 
 

t4: Find the average value of a 
function 

τ4: - Find the area of a bounded region 
(τ2). 
- Divide by length of integration 
interval. 

t5: Integral equation τ5: - Apply the derivative-integral 
formula (τ3). 
- Solve resulting algebraic equation. 

t6: Approximating a sum using an 
integral 

τ6: - Recognize the sum as a Riemann 
sum. 
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- Find a non-discrete real valued 
function, f, corresponding to the 
expression in the sum. 
- Find an antiderivative of f and apply 
Newton-Leibniz formula. 

t7: Approximating/calculating an 
integral using a Riemann sum 

τ7: - Calculating function values for the 
integrand in each subinterval. 
- Approximate area over each 
subinterval using rectangles. 
- Approximate integral by summation 
of rectangles. 

 
With the possibility of applying the FTC to discontinuous 

integrands, all these types of tasks can be extended. In several cases, 
solving the discontinuous versions do require extra techniques.  
 
Reference Example 1 
 
Calculate the integral ∫ "(*)&*

%
&'  for 

 

"(*) = sign(x) = @
−1	∀	* < 0	
			0	∀	* = 0	
			1	∀	* > 0.

 

 
Two techniques can be used. For the first technique, observe that 
,(*) = |*| , is an antiderivative of "(*) everywhere except * = 0, 
and F is continuous. Using this antiderivative, 
 

) "(*)&*
%

&'
= |*|G&'

%
= 2 − 1 = 1. 

 
Note that this technique is the same as for tasks of type t1. This is, 
however, not general, and only works for certain cases of 
discontinuous, bounded functions. 
The second technique is more general. The interval of integration is 

subdivided, such that f is continuous on each of the subintervals. The 
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integral is calculated over each subinterval separately, and then added, 
which is possible due to the additivity of integrals. This technique 
yields  
 
∫ "(*)&*
%
&' =	∫ −*&* + ∫ *&*

%
(

(
&' = −1 + 2 = 1. 

 
Note the similarity between this technique and τ2. The only 

difference is that the areas are not considered negative when they lie 
below the abscissa. 
 
 

Reference Example 2: Examples of improper integrals 
 
One example and one task from Calculus, provide an interesting 

case. Example 6 (Adams & Essex, 2018, p. 316) starts with the 
function "(*) = '

!, and explains that the integral of "(*) from −1 to 
1 diverges. The book does not present the full argument at this point 
and instead refers to this integral being of a type called and improper 
integral. But the key reason for why ∫ '

! &*
'
&' = 0 is false, is that the 

function is not defined and has no limit in * = 0, and is not integrable 
on neither [−1,0] nor [0,1]. The FTC does therefore not apply. Note 
the significance of the criterion of integrability. 
The consequence of the lack of integrability is clearer in Task 49 

(Adams & Essex, 2018, p. 319), a classical example (see e.g. Orton, 
1983; Rubio & Gómez-Chacón, 2011). Here, the erroneous calculation  
 

)
&*
*%

'

&'
= −

1
*
I
1
		
-1
= −1 +

1
−1

= −2 

 
is to be criticized. 
To see the solution, note first that since the function is strictly 

positive, the integral should also be positive, and the answer -2 is 
clearly wrong. Also, since the function 1/*% is not defined at * = 0, 
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and is in fact unbounded on any interval including * = 0 and therefore 
not integrable, the FTC does not apply to the interval [-1,1]. 
 

Praxeological analysis of the FTC in Matematikk R2 
 
I here describe the treatment of the FTC found in the textbook 

Matematikk R2 (Borge et al., 2022)1, 2. In doing so, I examine the 
mathematical organization of integration and the FTC. This will then 
be used as a foundation for the praxeological analysis. The 
examination therefore has a focus on how the techniques are developed 
and justified and then applied to tasks. 
 

Organisation of integration and the FCT in Matematikk R2 
 
Aschehoug’s Matematikk R2 divides the treatment of the integral 

into six chapters. They deal with the definite integral (Chapter 2A, pp. 
90–103), numerical integration and Riemann sums (Chapter 2B, pp. 
104–112), different uses of the definite integral (Chapter 2C, pp. 113–
127), the FTC (Chapter 2D, pp. 128–142), methods of integration 
(Chapter 2E, pp. 1143–153), and some volume and surface integrals 
(Chapter 2F, pp. 154–169). I will mainly focus on Chapter 2A, 2B and 
2D, but one example is also taken from Chapter 2F. 
One feature of the organisation of the book, are the activities called 

explore
3  and talk 4 . These are activities intended to help students 

explore and talk about these themes collectively and are often placed 
strategically as part of the theoretical treatment of the themes. These 
tasks are not uniquely named, and therefore, I will give them reference 
names here, which do not correspond to any naming found in the 
textbook itself. 
 

The logos elements of Matematikk R2 
 
The notions of limits, continuity and existence of functions are 

discussed in the Grade 12 mathematics textbook Matematikk R1, 
providing a foundation for integral and differential calculus (Borgan et 
al., 2021). I cannot provide any detailed account of this here, but it 
suffices to say that the treatment is based on intuitive notions of what 
it means for a function to tend to a limit, and what it means for a 
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function or a value to tend to infinity. The distinction of bounded and 
unbounded functions is not made, but different sorts of discontinuity 
are discussed and demonstrated. 
 
The definition of the definite integral 
 
Chapter 2A starts with an explore task (Borge et al., 2022, p. 90), 

named Explore-Task 1 henceforth. The students are tasked with 
examining the area under two graphs by making a lower and upper 
approximation of the area under "(*) = *%  and K(*) = 5* , using 
rectangles with equal width. The terms upper and lower staircase 
sums, a simplification of Riemann sums, not to be confused with the 
step function, are then defined. “The collected area of the rectangles 
below and above the graph we call a lower staircase sum, N, and an 
upper staircase sum, Ø, respectively” (Borge et al., 2022, p. 91). The 
true area under the graph lies between these two staircase sums. 
Then, a definition of the integral based on staircase sums is 

presented. Starting with an area, A, between the values * = / and * =
- , and under the graph of a continuous function f, defined on the 
interval [/, -], where "(*) ≥ 0 for all * ∈ [/, -] (see Figure 2). The 
interval is divided in n equal subintervals. Points from *( = / to *) =
-, with distance Δ* = #&"

) , such that ** − **&' = Δ*, are marked on 
the x-axis. The i-th subinterval is [**&', **] (see Figure 3). For one 
subinterval, a pair of rectangles are defined, one with height equal to 
the lowest function value, and one with height equal to the highest 
function value on the interval. This process is repeated for all n 
subintervals. To get the lower staircase sum, Nn, the smallest rectangles 
for each subinterval are selected, and correspondingly, the largest 
rectangles for the upper staircase sum, Øn. 
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Figure 2. Area under the graph of f(x) (taken from Borge et al., 2022, 

p. 95) 
 
 

 
 

Figure 3. Subdivision of the area under the graph of f(x) (taken from 
Borge et al., 2022, p. 95) 
 
Then the book explains the convergence of staircase sum: 
 

We let Y → ∞, so that Δ2 → 0. We say that the sequence of staircase 
sums, {Nn} and {Øn}, converge towards a limit value if Nn and Øn 
gets closer and closer to that value when Y → ∞. When the two 
sequences converge toward the same limit, we call this limit the 
definite integral of f on the interval [a,b], and write ∫ )(2)32

!
" . We 
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read this as “the definite integral of f from a to b”. (Borge et al., 2022, 
p. 95) 
 

After presenting the definition, a note about integrability is given. 
 

If the two limits are equal, the definite integral is equal to the area ]. 
This is always the case for continuous functions, and we say that ) 
is integrable on the interval [#, %]. 
If the limits are different, ) is not integrable. 
All the functions you will meet in R2 are integrable. (Borge et al., 
2022, p. 96) 

 
The note about integrability does not seem to serve much purpose, 

besides reassuring the students that they will not need to deal with this 
topic in depth, since all functions in the following sections are 
promised to be integrable. However, as will be seen, this is not true, 
for at least one case, and can potentially lead to false justifications. 
 
Riemann sums 
 
In Chapter 2B, the concept of staircase sums is expanded upon to 

define Riemann sums. First, the selection of height of the rectangles in 
the interval [**&', **], is changed from the strictly highest and strictly 
lowest in the interval, to an arbitrary value. A value, **∗ ∈ [**&', **], in 
each subinterval is selected, and the function value for each **∗  is 
calculated. The book then notes that both the upper and lower staircase 
sums are on the form 
 

O"(**
∗) ⋅ Δ*

)

*,'
, 

 

called a Riemann sum. 
It is noted that the Riemann sums require that f is defined on a 

closed interval [/, -], and that the n subintervals can have varying 
width, but in Grade 13 mathematics they will consider only cases with 



 17 

constant width. The fact that continuous functions are integrable is 
reiterated, but again without mentioning why. The definite integral is 
then defined as a sequence of Riemann sums: 
 

) "(*)&*
#

"
= lim

)→.
O"(**

∗) ⋅ Δ*,			where		Δ* =
- − /
W

.

)

*,'
 

 
The following pages of Chapter 2B present different types of 
numerical integration, and the following Chapter 2C illustrates 
different uses of the integral, with a focus on techniques for area 
calculations. 
 
Antiderivatives and indefinite integrals 
 
Chapter 2D begins by presenting antiderivatives and indefinite 

integrals. First, an explore-task is presented (Explore-Task 2), where 
the derivative of a function "$(*) = 2*  is given, together with its 
graph (see Figure 4). Two areas under the graph, A1 between * = 0 
and * = 2, and A2 between * = 2 and * = 3, are shown in the graph, 
and five tasks are given (Borge et al., 2022, p 128): 
 

a) How big are the two areas A1 and A2? 
b) Find three possible )(2), and calculate f(0) and f(2) in all three 
cases.  
c) What connection does it appear to be between A1, f(0) and f(2) in 
the three cases? 
d) Can you find a corresponding connection between A2, f(2) and f(3) 
in the three cases?  
e) The figures below (see Figure 4) show the graphs of two 
derivatives ^$(2) and ℎ$(2). Examine whether the connection you 
found in task c) also holds for these two cases. 
Use the same technique to calculate the exact areas under the 
function _$(2) = `# and under the function a$(2) = *

#. 
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Figure 4. Explore task about the indefinite integral (Borge et al., 2022, 

p. 128) 
 
The technique of finding an "(*) when you know "′(*) is named 

to find the antiderivative. The book observes that the only difference 
between the three functions found in Question b) is a constant, 
justifying the introduction of a general constant, C. Antiderivatives are 
then defined: “If Z$(*) = "(*), we say that K is one antiderivative of 
f. All antiderivatives of f are then given as Z(*) + 5, where 5 ∈ ℝ.” 
(Borge et al., 2022, p. 129). This is called an indefinite integral and 
defined as∫"(*)&* = Z(*)+5, where Z$(*) = "(*) and 5 ∈ ℝ. The 
process of finding an indefinite integral is called to integrate. 
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Note that a connection between the antiderivative, the indefinite 
integral, and the area under a graph is communicated, constituting an 
attempt at sharing the burden of the work done by the later proof of the 
FTC. 
 
The Fundamental Theorem of Calculus 
 
Another explore-task immediately precedes the FTC (Explore-Task 

3). The students are given the function "(*) = 2* + 3 and a graph of 
f, and they are asked to use the formula of a trapezoid to explain why 
,(*) = *% + 3* describes the area under the graph, from * = 0 to an 
arbitrary x-value greater than 0. Continuing, the students are asked to 
use the area function to explain why the area under the graph from * =
2  to * = 5 , becomes \ = ,(5) − ,(2) = 40 − 10 = 30 , and why 
this implies  
 

) "(*)&* = ,(5) − ,(2)
/

%
. 

 
The proof, or rather a demonstration, is presented. The book does 

not call it a proof, but claims to be demonstrating the carrying idea of 
what could become a proof: 
 

We shall show the carrying idea in the proof for the Fundamental 
Theorem of Calculus, using the figure below (see Figure 5). 
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Figure 5. Definite integral of f(x) from a to b (taken from Borge et al., 
2022, p. 136) 
 

We call the area of the blue region 4(2). This area corresponds to 
the definite integral that we defined using Riemann sums 
 

4(2) = 1)(5)35.

#

"
 

 
The area of the pink region, Δ], is a small additional area. The sum 
of the two area corresponds to the definite integral 
 

4(2 + Δ2) = 1 )(5)35

#(+#

"
. 

 
 
The area of only the pink region is therefore the difference between 
the two area above. 
 

 
 

Δ] = 4(2 + Δ2) − 4(2). 
 
An approximation for Δ] is a rectangle of width Δ2 and height )(2) 
 

Δ] ≈ Δ2 ⋅ )(2). 
 
As with the Riemann sums, the approximation is more accurate the 
narrower the rectangle is, that is, the smaller Δ2 is. 
We set the two expressions for Δ]  equal to each other, and 
recalculate 
 
 

4(2 + Δ2) − 4(2) ≈ Δ2 ⋅ )(2)	
 
4(2 + Δ2) − 4(2)

Δ2
≈ )(2)	
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lim
+#→'

4(2 + Δ2) − 4(2)

Δ2
= )(2)	

 
4$(2) = )(2). 

 
So 4 is therefore the antiderivative of ). 
The step from the approximation value on line 2 to the limit on line 
3 of the calculation on the previous page demands a formal proof, 
which we will not enter in R2, but this step is the carrying idea in the 
proof. (Borge et al., 2022, p. 136) 
 

After this, the book provides an example and a few tasks where the 
FTC is used to differentiate functions defined by definite integrals. The 
Newton-Leibniz formula is then proved: 
 

Starting with the FTC, we can now develop a useful result. 
∫ )(2)32
"
" = 4(#) = 0 because we do not have a region with area 
when the upper and the lower limits of the integral are equal. 
Now, let d be an arbitrary antiderivative of ). Then 4(2) = d(2) +
X. Thus 
 

1 )(2)32 = 4(%) = 4(%) − 4(#)
!

"
 

																					= (d(%) + X) − (d(#) + X)	
 

= d(%) − d(#) 
= [d(2)]"!  

 
Here 4(%) = 4(%) − 4(#) since 4(#) = 0. 
[d(2)]"!  is a shorthand for d(%) − d(#). (Borge et al., 2022, p 138) 

 
Tasks and techniques in Matematikk R2 
 
The theory is then used as foundation for what types of tasks can be 

given. In the textbook, tasks of all the seven types defined in the 
reference model were found. The significance of this is that the 
technology, qs, seems to be relatively similar to qu. One significant 
difference will, however, be seen in three specific tasks.  
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Two of the tasks are examine tasks and talk tasks. As they have no 
solutions provided, students and teachers are left with the option to 
either argue well enough to be convinced, or to seek answers from 
external sources. In some cases, answers are implied in the following 
text, but not in all. 
Towards the end of the section, two examine-tasks are given. Both 

are motivated simply by stating the mathematical problem, and the 
book does not provide any reason for the utility of the techniques 
demonstrated in these tasks. The second of these tasks demonstrates a 
technique relevant to the discussion. I call this task Explore-Task 4. 
Explore-Task 4 shows a calculation, 
 

! |## − #|%#
$

%&
= ! (## − #)%#

'

%&
+! (# − ##)%#

&

'
+! (## − #)%#

$

&
= 11
4 , 

 
and asks why this calculation holds. Note the similarity between the 
technique used to solve Explore-Task 4, to the second technique used 
in Reference Example 1. Dividing the area of integration, as a 
technique, is well within the scope of the textbook, and not restricted 
to examples with calculations of areas. There are, however, no similar 
tasks later, and the task seems therefore to serve a purpose as a 
mathematical curiosity. The utility of the FTC to this task, and possibly 
similar types of tasks, is not examined. 
The talk task, from now on called Talk-Task 1, that comes after the 

introduction of the Newton-Leibniz formula is also worth some 
attention (Borge et al., 2022, p. 140). Here the students are asked to 
discuss an erroneous result. “Discuss what is wrong with this 
calculation:” 
 

)
1
*%
&*

'

&'
= ^−

1
*
_
&'

'
= −2. 

 
Note the similarity between this task, and Task 49 from Reference 

Example 2. Matematikk R2 does not present any solution. However, 
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the intended solution is likely to be related to the area interpretation, 
given θs. Boundedness as a condition for integrability is not part of θs, 
and only the area analogy is present in detail in the preceding 
theoretical discussion. Since the task does not have a solution 
presented in the textbook, it is therefore unlikely that students would 
discover the significance of the criteria of integrability and 
boundedness. 
Task 2.121 is a third task relevant to the discussion (Borge et al., 

2022, p. 168). This task presents the famous Gabriel’s Horn. The 
function "(*) = 1/* is given, and the students are asked to define the 
integrals of the volume and surface of revolution, `(/)  and \(/) 
respectively, about the abscissa from * = 1 to * = /, where / > 1. 
Then, by letting / → ∞, they are tasked with examining whether the 
limits lim

"→.
`(/) and lim

"→.
\(/) exist. To solve the task, the limits 

 

lim
"→.

`(/) = lim
"→.

c)
&*
*%

"

'
= c, 

and 

lim
"→.

\(/) = lim
"→.

2c)
1
*
d1 + (ln *)%&*

"

'
→ ∞, 

are calculated. 
This task demonstrates a type of improper integral with integration 

limits that tend to infinity, that is, it breaks the criterion of a closed 
interval of integration. It also demonstrates that some integrals of this 
type can be calculated to a concrete value, while others cannot. Task 
2.121 is the only instance of such a task and seems to be another case 
of a mathematical curiosity. The technique used in this task is not used 
for anything else, nor are any later uses for the techniques mentioned. 
A common theme of these three tasks is that of examining the very 

limits of the FTC. More specifically, they illustrate what sort of 
functions are permissible as integrands in a definite integral. And with 
the addition of Task 2.121, it illustrates how one can handle cases 
where the FTC cannot be applied directly, but where it needs to be 
modified in certain ways. The connection between them is, however, 
not explicitly made. 
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Elements of the didactic transposition 
 
In this section I will compare the praxeological organisation found 

in the Grade 13 book Matematikk R2 with the reference model. In this 
way I will be able to describe the didactic transposition from scholarly 
knowledge to the Grade 13 noosphere. I do it element by element first, 
and then, in the following section I discuss implications and answer 
the research questions concretely. 
 
Didactical transposition – Elements of the logos 

 
Comparing the demonstration of the FTC in Matematikk R2 with 

the reference proof for the FTC Part I, we first see some similarities. 
The premises are the same, that of a continuous integrand, and they 
therefore have the same applicability. As the reference proof, it also 
starts by defining the function ,(*) using an integral, and both have 
the goal of proving that ,$(*) = "(*).  
But we do see some major differences. Whereas the reference 

model states the theorem formally first, Matematikk R2 presents the 
proof before the formal statement of the theorem. As a result, it is less 
clear in the beginning of the proof what to expect as the end goal. By 
stating the goal in the beginning, the reference proof start by using the 
definition of the derivative, and directly show that by rewriting ,′(*), 
we will end up with ,$(*) = "(*). 
The reference proof also bases its argument on previously proven 

results, which in turn are based on formal definitions, making the 
proofs rigorous. The argument in Matematikk R2, is instead based on 
graphical representations, and justifies the algebraic expressions it 
later manipulates using this graph. What it does reference, and 
therefore lends its legitimacy to, is the definition of the definite integral 
and Riemann sums. It is therefore crucial that these are defined 
properly for the FTC to be properly justified. 
In Matematikk R2, there is also one major step within the proof that 

is not explained. For the argument to become rigorous, the step from 
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,(* + Δ*) − ,(*)
Δ*

≈ "(*) 
 
to the equality 
 

lim
0!→(

,(* + Δ*) − ,(*)
Δ*

= "(*), 
 
needs to be argued. This is not done in the proof, nor does it reference 
any previously proven theorems. The book does, however, not claim 
to present a formal proof. They instead call this step the carrying idea 
and foreshadows a more complete proof to be found later in the 
students’ journey towards knowledge. 
While a rigorous approach would base the argument on previously 

proven theorems, founded on the formal definition of limits, 
Matematikk R2 bases its argument on intuitions and algebraic 
manipulations. The importance of rigor can, however, be seen. 
Matematikk R2 shows that by referring to the fact that a more rigorous 
proof exists, that the students will possibly encounter somewhere later 
along their trajectory of learning. 
One structural change which is consequential, is the dependence on 

a correct definition of the integral. Matematikk R2 does have a 
definition that is useable in most cases encountered in the textbook, 
but not, as claimed, in all cases. By basing the definition of a definite 
integral on continuous functions, and not contending with what it 
means for a function to be integrable, more than in a passing note, it 
leaves out a crucial piece of information. 
 
Didactic transposition – Tasks 

 
The intra-mathematical utility of the FTC presented in Matematikk 

R2 seems to be quite similar to that of the university textbooks. Much 
of the same types of tasks available in the university textbooks are also 
available using θs. 
The exception is when integrability is at stake. The case of Task 49 

from Calculus and Talk-Task 1 in Matematikk R2 exemplifies this. 
Although Matematikk R2 has a logos that can provide support for 
justifying that the calculation fails, through arguing that the area 
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cannot be negative, it does not have a means of explaining why the 
calculation fails. The fact that boundedness is a criterion for 
integrability, is not discussed, and neither is the fact that it is precisely 
because of boundedness that a function which is continuous on a 
closed interval is also always integrable. A pertinent question relating 
to this, would be “what would the students have made of the task if the 
interval of integration were [0,1] rather than [−1,1]?” Certainly, the 
function would look continuous on the whole interval. 
Furthermore, Examine Task 2, and Task 2.121 show the use of 

techniques and themes that could have been useful in a more thorough 
treatment of integrability. The technique of dividing the area of 
integration into subintervals, seen in Examine Task 2, which can also 
be used for piecewise continuous functions, as seen in Reference 
Example 1, could be instrumental in providing examples of integrable 
non-continuous functions. In that way, the importance of boundedness 
could be illustrated. 
Task 2.121 is an example of an improper integral. The fact that this 

task is included, does show the willingness of the textbook to include 
integrals that are not proper definite integrals, but which are 
nevertheless extensions of the concept of definite integrals. With 
relatively few modifications, a discussion about other types of 
improper integrals, for example of the type where the integrand itself 
tends to infinity rather than the independent variable, could be 
included. 
Thus, in these three examples, one can see a potential for a 

deepening of the understanding of the FTC, and particularly for the 
premises for its application. For that to be possible, a more precise 
notion of integrability is needed, also including the distinction of 
boundedness. The connection is, however, not made clear, and the 
three tasks stand as separate examples of mathematic curiosities rather 
than providing justification for further theoretical developments. The 
lack of this distinction in some form is therefore a major constraint. 
 
Concluding remarks 
 
On this background, the didactic transposition can be summarised. 

It is first important to note the clear similarities between the 
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organisation seen in Matematikk R2 and the one identified in the 
referenced university textbooks. The treatment of the FTC, and not 
only the Newton-Leibniz formula, allows for a broader range of tasks 
and techniques. In particular, the inclusion of and focus on Part I of the 
FTC presents conditions that allow for a closer connection between the 
analogies of accumulation and area, well known to be a difficulty for 
students (Thompson & Harel, 2021; Burgos et al., 2021). 
But the main concern is that the notion of integrability is 

undeveloped. Although the term is used once, it is never defined 
properly, and the condition of boundedness is never mentioned or 
described. Thus, the lack of a structural element, the notion of 
boundedness, has consequences for the utility of the FTC. 
The importance of boundedness is apparent when the integrand is 

either not bounded, or the function is not continuous but still 
integrable. Didactic implications of boundedness, and of closure of the 
interval of integration, in relation to improper integrals has been 
examined in several publications (e.g., Gonzáles-Martín & Camacho, 
2004; Gonzáles-Martín & Correira de Sá, 2007; Rúbio & Gómez-
Chacón, 2011), showing both that first-year university students have 
great difficulty in comprehending the importance and significance of 
these two criteria and even seem to be generally unaware of this 
importance.  
It is therefore, in my opinion, a disservice to the Grade 13 students 

to not discuss what significance boundedness has, while at the same 
time include tasks that could clearly benefit from such a discussion. It 
is also likely that a discussion about boundedness and integrability 
could strengthen the conceptions of continuity of functions in general, 
another area of calculus that has proved difficult conceptually for 
students (Hanke, 2018; Lankeit & Biehler, 2020). Thus, by not 
including boundedness, an important part of the FTC’s utility is left 
out, reducing the scope of both the set of available techniques, τs, and 
types of tasks, Ts. 
The observations in this study and research of the organisation of 

the FTC in Matematikk R2 illustrates well the challenge of including 
new material in a textbook. The praxis block has clearly been 
strengthened by an explicit inclusion of the FTC and not only the 
Newton-Leibniz formula. But with this, new challenges arrive. 
Because of an undeveloped notion of integrability, the students do not 
get the resources to know the conditions for when the FTC can be 
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applied, and why the conditions are as they are. The consequences can 
be seen in three tasks, which without a concept of integrability which 
includes boundedness, cannot be connected, and therefore remain as 
mathematical curiosities, instead of contributing to the FTC’s intra-
mathematical and extra-mathematical utility. 
However, the choices of the textbook authors are, just as the 

activities of students and teachers, formed by their conditions and 
constraints. In this case, through a new curriculum reform, the 
requirement of introducing a more concrete treatment of the FTC, a 
constraint, was introduced, but the underlying concepts of integrability 
and boundedness has not been given the same attention. And with the 
time constraint put on the school system (Leong & Chick, 2011; Teig 
et al., 2019) and pressure added from high-stakes testing (Chichekian 
& Shole, 2016), balancing the size and content of the curriculum, and 
consequently also textbooks’ contents, is not an easy task. If one adds 
something, another thing must often go. In this case, I claim it is 
sensible to include boundedness as a criterion for integrability, since it 
provides both a more solid foundation for the FTC, and because of the 
insight it might provide into details about the concept of continuity. 
Since the analysis here focuses on a textbook, two immediate 

questions remain. How is the concept of the FTC treated in other Grade 
13 textbooks in Norway? What impact does this change in curriculum, 
and the consequent change in the textbooks affect students’ learning 
and readiness for further mathematics studies? The last of these 
questions may only be answered in a few years, when the first-year 
students that have been taught using this textbook, under the new 
curriculum, arrives at the universities. 
 
 
Notes 
 
1Figures taken from the textbook by Borge et al. (2022) are reproduced with permission from 
the publisher, Aschehoug. All figures are designed by Eirek Engmark at “Framnes Tekst & 
Bilde AS”. 
2All translations from Norwegian to English are made by the author of this article. 
3 Utforsk in Norwegian. 
4 Snakk in Norwegian. 
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This paper presents a study and research path based on a question about hyperthermia deaths in 
children placed in cars parked in the sun. The text demonstrates the potential of the study and 
research path for generating questions about modelling, and what sort of mathematics and physics 
are involved in modelling the human body. It also suggests a broader interdisciplinary potential, and 
in particular avenues for investigations that include sociological and statistical themes. 

Keywords: Study and research paths, hyperthermia, modelling, allometry. 

Introduction 
Two PhD students (the author and another one), took part in a PhD course about study and research 

paths, and conducted an SRP individually. The generating question Q0 = “Why do babies die of heat 
stroke in cars parked in the sun?” was used as the starting point of the SRP. In a handout describing 

the SRP, Q0 was succeeded by the following guidelines: 

Are the possible causes of these deaths studied in the scientific literature? If so, what are the 

physical and physiological or other factors identified by the researchers? Does the fact that children 

have a greater ratio of the body’s surface area to its volume than adults play a role according to 

these research studies? Which one? More broadly, what mathematics is useful or even 

indispensable to model the relevant factors and their interactions? 

Three references were also provided as starting points for the SRP, a fact sheet about heat death (The 

European Child Safety Alliance, 2013), and two scientific papers (McLaren et al., 2005; Booth et al., 

2010). A mid-way seminar was held, where the work was presented, and tips on further investigations 

were shared. A focus on modelling the human body was suggested at this point. Both the guidelines, 

the provided references, and the suggested focus made up a concrete set of preconditions for the SRP, 

and communicated expectations about how the question Q0 was to be answered. 

In this paper, I take as a starting point the report I wrote from the conducted SRP, and use it to answer 

the following research question: “What sort of mathematical models are used to answer Q0, and how 
are they interconnected?” In answering this, I will also include thoughts about how the preconditions 

and expectations about the nature of an answer to the question Q0 affect the outcome, and how it 
affects the way we might analyse the SRP. 

Theoretical tools 
In this study, tools from the ATD are used. These tools will be explained in the following section. 
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Praxeology 

The ATD proposes a praxeology as a general model of human activity, including activities related to 
producing, diffusing and appropriating knowledge (Chevallard, 2020). A praxeology is described in 

terms of four constituents; type(s) of task(s) (T); a technique or set of techniques (τ) used to solve the 
given types of tasks; a technology (or discourse, θ) used to describe and explain the techniques; and 

a theory (Θ) that justifies the technology. These constituents are grouped in the two blocks, called the 

praxis block, consisting of T and τ, and the logos block, consisting of θ and Θ. A praxeology !, can 
then be described algebraically as ! = [T / τ / θ / Θ]. 
Study and research path and the Herbartian schema 

In this paper the notion of a study and research path (SRP) and the Herbartian schema are also used. 

A good description of both can be found in (Chevallard, 2020). In short, a Herbartian schema 

describes the institutional setting, using the notion of a didactical system S. The didactical system can 
be described algebraically as S(X;Y; ♥), where X is the group of students, Y are the study assistants 
(e.g. teacher, a librarian…), and ♥ the didactic stake, or the something that the X are intended to learn. 

The stake ♥ can be a question Q0, the starting point of an SRP. To describe an SRP, the developed 
Herbartian schema is used, and can be written symbolically as 

[S(X;Y;Q0)➦{A♢i,Wj,Qk}]➥A♥.!
Here the A◊i are the pre-existing answers, found in the literature and other sources of information, 
from which are also extracted the works Wj. These answers and works give rise to derived questions 
Qk, and the final answer A♥ produced by the didactical system. The final answer is seen collectively 
by the participants of the SRP as answering Q0 to a satisfactory level. The final answer, A♥, is an 
aggregate of intermediate answers Ak to the derived questions Qk. 

Description of the SRP 
The SRP, based on the question Q0, about heat stroke, with the extra premise that answers should be 
backed mathematically, and the focus should be on physiological and physical reasons, was 
conducted over approximately one month in 2019. The background for Q0 is in the American statistics 
about heat death and babies left in cars. In 2019, 51 heatstroke deaths among children in parked cars 

were reported in the U.S., a slight reduction from the 2018 record high of 53 deaths (National Safety 

Council, n.d.). This issue has gained regular attention from media (e.g. Paybarah, 2019; Kalaichandra, 

2019), and is therefore of public interest. 

Note here, that the question Q0, does not stand alone in this SRP. Both regarding the preconditions 
for the question, and the expectations of how the question will be answered. The statistical report, 

which is a crucial part of the preconditions, lends legitimacy to the claim that children are more 

vulnerable to hyperthermia, which in turn demonstrates both the relevance and legitimacy of the 

question itself. And the expectations of how the question is to be answered might have implications 

both on how the SRP is conducted, but also on how it is analysed afterwards. This further highlights 

the question about the nature of Q0. In what way could the preconditions and expectations be 
considered an integral part of the question Q0 itself?  
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Methodology 
The methodology can be divided in two phases. First, the SRP is conducted by the author himself, 

occupying the role as a student exploring the generating question. And then, from this, a didactical 

analysis of the resulting data will be done, with the aim of uncovering the didactical potential of this 

SRP, particularly what sort of mathematical models emerge from the SRP. In the following two 

sections, these two phases are described in more detail. Note, however, that these phases are not 

meant to be strictly consecutive. Analysing the SRP is after all part of conducting it. 

Method of analysis 

The resulting questions that emerge through the SRP are first categorized thematically, according to 

what sort of answers that are likely to emerge from a careful study of the questions. This includes 

both partial questions that are directly extracted from the generating question, and questions that are 

either asked by, or answered by the literature initially provided in the handout. These questions are 

then categorized according to the nature of the answers an examination of these questions might 

provide. Most importantly, what sort of questions are likely to give rise to answers with a clear 

mathematical content, and what sort of mathematics? 

Following this a more thorough literature search is conducted, using these initially extracted 

questions. The literature search is conducted in two steps. First, the references in the literature found 

so far are examined, to find out how the answers they provide are argued for. This includes examining 

what theoretical foundations lie behind the answers, which will be an important selection criterion 

when deciding which branches to follow in the SRP. Due to the particular interest in applying 

mathematics to answer the questions, after the first step in the literature search, only the branches that 

seem to harbour a particular potential for mathematically centred analyses will be pursued.  

Initial questions and literature search 
The starting point of the SRP is the question Q0, in addition to a fact sheet from the European Child 
Safety Alliance (The European Child Safety Alliance, 2013), providing the first pre-existing answer 

("!♢) to Q0.  
A reason for starting with this text is that it gives short, easy to understand answers to 5 questions 

related to Q0: 

1. Why are babies left behind in cars? 
2. What is special about cars? 
3. What does it mean to be too hot, and how does this affect babies differently from adults? 
4. How common is this phenomenon? 
5. How can it be prevented? 

Q5, about prevention, is not presented directly as a question, but as tips directed at parents, about how 
to prevent hyperthermia in the first place. A related issue, which the text does not address directly, is 
the question about how death can be prevented when a baby is already experiencing hyperthermia, 

with the possible exception “Dial 112 immediately if you see a child alone in a car”. Therefore, Q5 is 
divided in two related questions: 
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a. How can hyperthermia be prevented? 
b. How can death be prevented for babies experiencing hyperthermia? 

Q5a is directed at parents and society at large, about how we can prevent hyperthermia in the first 
place. Q5b, on the other hand, addresses the medical question of saving someone who is already 
experiencing hyperthermia. 

These questions can be addressed in different ways, according to how we expect them to be answered. 

Q1 is expected to be answered by sociological or psychological reasons. The fact sheet points at both 
intentionally leaving the baby behind, and unintentionally due to forgetting the baby, or not being 

aware of the dangers of overheating in a car. Q2 has to do with the physical properties of a car, and 
how this affects heat absorption and heat transfer. 

In the rest of the paper, I only consider physical and physiological factors. That means, the questions 

Q2 and Q3 mainly. In particular, the differences between children and adults are interesting, since it 
seems to lend itself to a challenge of modelling, and they relate to the core issue of why this is specific 

to small children. 

These questions have also been answered to greater or lesser degree in the literature which the 

European Child Safety Alliance base their fact sheet on. I will here present some of the papers and 

webpages that the fact sheet refers to, what sort of answers they give, and how they arrive at these 

answers. I will also include some papers and texts found by a limited literature search on the keywords 

“heat death”, “babies” and “parked cars”.  

In the papers referenced by the fact sheet, several different physical and physiological factors are 

mentioned, and in the next section, I present one example of a physical variable that is discussed. 

An example of a physical variable: The colour of the interior of the car 
The fact sheet refers to a number of articles and webpages which answers Q2 and Q3 experimentally 
(McLaren et al., 2005; Null 2010) (W1 and W2), and by examining 231 lethal hyperthermia cases 
(Booth et al., 2010) (W3). In these, the question of interior colour of the car (Q6), in addition to whether 
cracking open a window would help in regulating temperature (Q7). Here, only a lighter interior 
colour of the car seemed to have any significant effect. 

Other papers and webpages also deal with the same question, but the overall trend seems to follow 

the above-mentioned texts. An experiment from 1995 on two differently coloured cars (Gibbs et al., 

1995) (W4) had the same conclusion as W1 and W2. The 1995 paper differed only in adding that the 
exterior colour of the car did not matter significantly. They also mention more clothes, cushioned 
seats, and a position below window level as reasons for small children being particularly vulnerable. 

About allometry 
None of the articles and webpages presented so far have dealt directly with modelling the human 

body to determine the heat response of children, although they do mention its results. Both W1 and 
W3 mentions the surface area to volume ratio as having an effect, and W3 refers to another paper 
(Tsuzuki-Hayakawa et al., 1995) (W5), where they showed that small children had a higher and faster 
heat increase than their mothers when exposed to moderate heating. They suggested two possible 
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explaining factors. The difference in surface area to mass ratio would result in the bodies of young 

children being easier to heat, and the thermoregulatory systems, sweating and blood circulation 

among others, might be less developed in children. 

Both these themes, the surface area to volume ratio and the effectiveness of the thermoregulatory 

system, are important factors in the study of scaling in biology, also called allometry. Therefore, 

“allometry” and “biological scaling” are also included as keywords in the literature search, in trying 

to answer the question of what role biological scaling has in answering why children are more 

vulnerable to overheating (Q8). In addition, to explain overheating, the question of how heat transfer 
works also needs to be answered (Q9). 

The first text found by this extension of the search, is the text “Allometry: the study of biological 

scaling” (Shingleton, 2010) (W6). This is an educational article presenting the concept of allometry. 
It introduces the knowledge that different parts of the body scales at different rates in relation to the 

overall size of the body. Examples from the human body are the heart, which grows at approximately 

the same rate as the body itself, and the brain, which grows slower than the rest of the body. Of 

specific mathematical interest, the article also presents the fact that many of the observed scaling 

relationships turned out to be linear, when plotted on a log-log plot, and follow the equation 

log & = ( log ) + log +, 
which can be written as 

& = +)" . 
Here x is body size, y is the organ size, and log b is the y intercept. The factor ( is called the allometric 
coefficient. Each organ has its specific allometric coefficient, and the size of the coefficient describes 

how fast a certain body part grows relative to the growth of the rest of the body. A body part having 

a higher growth rate than the rest of the body, then ( > 1, and conversely, when ( < 1 the growth 
rate of the body part is lower than the rest of the body. Further, the text expands the concept of 

allometry to include other aspects, such as running speed and metabolic rate.  

The last of these two was mentioned in W5 as one of two dimensions providing explanations to why 
children are more vulnerable to overheating. The text W6 does, however, not describe the surface area 
to volume ratio as one of the allometric variables. By expanding the search to also include the word 

“surface area” together with allometry, some new texts were found.  

The first article showing up was from Britannica (Glitterman, n.d.) (W7), describing both these 
dimensions as important measures that displays allometric scaling. Area and body mass are related 

by area growing by a 2/3 power of the body mass, and metabolic rate grows by a ¾ power of the body 

mass. And the second was chapter 4 in an online textbook in biology (Sam Houston State University, 

n.d.) (W8), where the relation between surface area and volume is explained through geometrical 
examples. The first scholarly article showing up in this search (W9), was an article on how surface 
area scaling on both microscopic and macroscopic levels are related (Okie, 2013). It explores the 

different strategies organisms have for dealing with the challenges related to how surface area and 

volume scales at different rates, and it develops a theory for modelling the effects of these different 

strategies. The details in this last article go far beyond the scope of this SRP, but the ubiquity of the 
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surface area to volume scaling problem as an explanatory factor in biology which W9 refers to lends 
weight to the importance of this dimension. 

Heat transfer 
The last piece in this puzzle is the question Q9 about how heat transfer works on bodies. Here the 
search term “heat transfer”, in addition to surface area to volume ratio, was used. The first promising 

article that was found using this search term was an article describing interdisciplinary teaching in 

physics and biology, where the heating problem is a major theme (Planinšič & Vollmer, 2008) (W10). 
Here an example teaching unit is described where they experiment with melting cubes of cheese, and 

use Newton’s law of cooling, in addition to the surface area to volume ratio. Then they apply the 

physics learned from this to explain the differing metabolic rates of different sized animals. For a 

more in depth description of Newton’s law of cooling, W10 references another paper (O’Sullivan, 
1990) (W11). Here the law is described in its differential form, which will be used in this SRP. A 
similar description can also be found at a mathematics teaching web resource (math24.ner, n.d.) 

(W12). This site also describes the role of heat capacity on the system. 

Modelling the human body 
From the answers provided by literature, a simple model can be described, based on four assumptions. 

First, the shape of an ordinary person is largely consistent, and thus a “large” person is just a scaled-

up version of a “small” person. Thus, the only dimension important for determining how well a person 

can stand up to heat exposure is the height. Secondly, all tissues of a person have the same heat 

conductivity. Thirdly, transfer of energy between a body and the environment is mainly dependent 

on and proportional to the surface area of the body, while the total temperature is proportional to 

volume. 

In the following calculations, the relations and formulas found in literature are used, particularly W8 
and W11. 

A consequence of assuming the growth of a person as purely geometric scaling is that we can use 

some general geometry true for all bodies in three-dimensional space, following the argumentation 

shown in W8. As the dimensions (length, width, and height), scales linearly, the surface area scales 
quadratically, and volume cubically. Moreover, I will assume that density, heat conductivity and heat 

capacity is relatively similar for all human bodies. From W11, we also get Newton’s law of cooling: 
#$
#% = ℎ ⋅ " ⋅ (4& − 4(6)). 
Here Q is the thermal energy of a body, A is the surface area, Ta and T(t) are the ambient and body 
temperatures respectively, and h is a heat transfer coefficient. The energy transfer and the body 
temperature are both time dependent, meaning that without more information, we are not able to solve 

this equation. But we can suggest another equation, by the observation that the total thermal energy 

contained in a body is proportional to the temperature, and dependent on the total heat capacity of the 

body: 

89
86 = : 8486 . 
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Here C is the total heat capacity, which is the product of the mass (m) and the mass-specific heat 
capacity of the material (s) (Chang, 2008, p. 186). Since the mass is proportional to volume (V), we 
can write this relation as : = ; ⋅ < = = ⋅ >, where c is a constant factor. Combined, these two 
equations give us the equation 

#'
#% +

(⋅*
+⋅, 4 =

(⋅*
+⋅, 4&, 

which has the general solution 

4(6) = 4& + ?@-
(⋅*
+⋅,% . 

Assuming 6 = 0 at the beginning of the heating we can see that  4. = 4(0) = 4& + ? implies ? =
4. − 4&. D is therefore the temperature difference between the body and the surroundings.  

We can interpret the solution as temperature difference decreasing according to @-
!⋅#
$⋅%%. When the 

body temperature is lower than the ambient temperature, this results in the increase in body 

temperature. The speed of the temperature change is then dependent upon the coefficient 
(
+ ⋅

/
,. If both 

k and c are constants, the only variable parameter is the fraction "/= which is proportional to C0/C1 =
1/C, where L is height. This fraction decreases as height increases, and consequently, a shorter 
person, such as a baby, is more prone to heating. 

Modelling 
Constructed models and answers to Q0 

From the above argument and calculations, a potential A♥ can be described. Since the body of a child 
is smaller than the body of an adult, the child has a larger surface area to volume ratio than the adult, 

and the effect of heating is then much greater on the child than the adult (A3). In concert with other 
factors, such as positioning in and thermal characteristics of the car (A2), and a less developed system 
for heat regulation (A8), this makes for a deadly combination. This provides an answer to why children 
that are left in cars on sunny days are prone to die of heat stroke. The path of the study and research 

is modelled by a directed graph in Figure 1. The elements of the milieu and intermediate answers are 

displayed in Table 1. 

Note that Figure 1 is itself a model of the SRP conducted. It does not indicate any ordering of the 

process itself and is only a still image of the result. It does not show which branches were followed 

in which order. And moments already treated at one point during the process were revisited several 

times more during the process. In that regard the figure should be seen more as a model of the 

structuring of the items of knowledge at the time of the writing of this paper, rather than a precise 

map of the process itself. Moreover, from the figure, it seems like the question Q0 is the very start of 
the SRP. This is however more complicated since the question also arises from somewhere. The 

generating question might itself be a response to the established answers, and in particular the ones 

found in the pre-existing answers. It is also not the case that the derived questions stem from the pre-

existing answers alone, but from the conjunction of the question Q0, together with the pre-existing 
answers and preconditions of the SRP. 
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Figure 1: Schematic representation of the SRP 

Table 1: Elements of the SRP 

Questions 

Q0 Why do babies die of heart stroke in cars parked in the sun? 

Q1 Why are babies left behind in cars? 

Q2 What is special about cars? 

Q3 What does it mean to be too hot, and how does it affect babies differently from 

adults? 

Q4 How common is this phenomenon? 

Q5a How can hyperthermia be prevented? 

Q5b How can death be prevented for babies experiencing hyperthermia? 
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Q6 How does the colour (interior/exterior) of the car affect heating? 

Q7 How does opening a window affect heating? 

Q8 Why are children more vulnerable to overheating? 

Q9 How does heat transfer work on a body? 

Existing answers to Q0 

!&♢ European Child Safety Alliance, 2013 

Additional works 

W1 McLaren et al., 2005 

W2 Null, 2010 

W3 Booth et al., 2010 

W4 Gibbs et al., 1995 

W5 Tsuzuki-Hayakawa et al., 1995 

W6 Shingleton, 2010 

W7 Glitterman, n.d. 

W8 Sam Houston State University, n.d. 

W9 Okie, 2013 

W10 Planinšič & Vollmer, 2008 

W11 O’Sullivan, 1990 

W12 math24.ner, n.d. 

Intermediate answers 

A2 Positioning and thermal characteristics of the car 

A3 Effect of the surface area to volume ratio 

A8 Development level of thermo-regulatory system 
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In this SRP, the choice of focusing on physical and physiological factors lead to the development of 

the model described in the last section, where the role of the surface area of different sized bodies is 

used to explain differences in how heating affects the bodies. And models explaining the heating of 

cars have been referenced, but not fully described.  

However, other choices could have been made. Several of the questions proposed in the initial 

exploration can be answered following methods that are different from the ones used to answer Q3 
and Q2. Notably, several of them seem to lend themselves more to investigations of sociological 
factors than to physical or physiological. This highlights the interdisciplinary potential of Q0. 
Although the focus here is on physical and physiological factors, using geometry and differential 

equations to model the heating problem, there is also potential for investigating social and 

sociological factors, in addition to other disciplines within mathematics, such as statistical modelling. 

Handling preconditions to Q0 

In the end, I return to the issue of the preconditions and expectations for the generating question Q0. 
As we see, the question, as it is formulated, is quite an open question, with several available avenues 

of investigation, both physical and mathematical, and others, like sociological and psychological. But 

if we include the specified preconditions and expectations about the answer, it seems clear that this 

has had a strong guiding force on how the SRP was conducted, and on the answer A♥ resulting from 
it. Then the question arises, whether the Q0 is just the formulation presented in the beginning of this 
paper, or should the preconditions be “included” in the question in some way. A part of the answer is 

that the preconditions are represented in the pre-existing answers A◊i. In particular, this is true for the 
handed-out texts that were to be used as a starting point.  

But there are more parts of the preconditions than the pre-existing answers and the handed-out texts. 

The explicit and implicit expectations about permissible answers, are not so easy to position within 

the current framework. The preconditions clearly condition the way in which Q0 is answered, which 
could point towards them being an integral part of the question itself. But I do think by doing this, 

we lose some important distinctions. It might obscure the fact that different people have different 

understandings and expectations about a given question. Will they then not be answering the same 

Q0? 

From the small SRP presented in this paper, it is not however possible to give any clear general 

answer to, nor a fully worked through example demonstrating the question of how we should treat 

the parts of the preconditions not representable as pre-existing answers A◊i, and only hint at the issue. 
I leave it open as a question for further discussions and investigations. 

References 
Booth, J., Davis, G., Waterbor, J., & McGwinJr., G. (2010). Hyperthermia deaths among children in 

parked vehicles: anA analysis of 231 fatalities in the United States, 1999 –2007. Forensic Science, 
Medicine and Pathology, 6, 99–105. 

Chang, R. (2008). General chemistry. The essential concepts (5th ed.). Mc Graw-Hill Higher 
Education. 



 

 

11 

Chevallard, Y. (2020). Some sensitive issues in the use and development of the anthropological 

theory of the didactic. Educação Matemática Pesquisa, 22(4), 13–53. 

Guard, A., Gallagher, S.S. (2005). Heat related deaths to young children in parked cars: analysis of 

171 fatalities in the United States, 1995–2002. Injury Prevention, 11, 33–37. 

Gibbs, L., Lawrence, D., & Kohn, M. (1995). Heat exposure in an enclosed automobile. J La State 
Med Soc. 6, 545-546 

Glitterman, J. L. (n.d). Allometry. Encyclopedia Britannica. 
https://www.britannica.com/science/allometry 

Kalaichandran, A. (2019, August 14). How we can help prevent children from dying in hot cars. The 
Washington Post. https://www.washingtonpost.com/opinions/how-we-can-help-prevent-children-
from-dying-in-hot-cars/2019/08/13/b49a016c-be0d-11e9-a5c6-1e74f7ec4a93_story.html 

Math24 (n.d.). Newton’s law of cooling. Math24. https://math24.net/newtons-law-cooling.html 

McLaren, C., Null, J., & Quinn, J. (2005). Heat stress from enclosed vehicles, moderate ambient 

temperatures cause significant temperature rise in enclosed vehicles. Pediatrics, 116(1), 109–112. 

National Safety Council (n.d.) Hot car deaths. https://injuryfacts.nsc.org/motor-vehicle/motor-
vehicle-safety-issues/hotcars/ 

Null, J. (2010, June 30). Hyperthermia death of children in vehicles. 

https://web.archive.org/web/20100701004956/http://ggweather.com/heat/ 

Okie, J. G. (2012). General models for the spectra of surface area scaling strategies of cells and 

organisms: Fractality, geometric dissimilitude and internalization. The American Naturalist, 
181(3), 421–439. https://doi.org/10.1086/669150 

O’Sullivan, C. T. (1990). Newton’s law of cooling – A critical assessment. American Journal of 
Physics 58(10), 956–960. https://doi.org/10.1119/1.16309 

Paybarah, A. (2019, August 1). Painfully common: 52 children died last year in hot cars. New York 
Times. https://www.nytimes.com/2019/08/01/nyregion/newyorktoday/hot-car-deaths-

nytoday.html 

Planinšič, G., & Vollmer, M. (2008). The surface-to-volume ratio in thermal physics: from cheese 

cube physics to animal metabolism. European Journal of Physics, 29, 369–384. 

Sam Houston State University. (n.d.) Biological design. 
https://www.shsu.edu/~bio_mlt/Chapter4.html 

Shingleton, A. (2010). Allometry: The study of biological scaling. Nature Educational Knowledge, 
3(10). https://www.nature.com/scitable/knowledge/library/allometry-the-study-of-biological-

scaling-13228439/ 

The European Child Safety Alliance. (2013, September 26). Children in Hot Cars: Hyperthermia. 

https://www.safecommunitiesportugal.com/wp-content/uploads/2021/02/Children-in-Hot-Cars-

Hyperthermia.pdf 



 

 

12 

Tsuzuki-Hayakawa, K., Tochihara, Y., & Ohnaka, T. (1995). Thermoregulation during heat exposure 

of young children compared to their mothers. European Journal of Applied Physiology 72, 12-17. 

 

 

 

 



ISBN 978-82-326-7240-0 (printed ver.)
ISBN 978-82-326-7239-4 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:270

Vegard Topphol

Conditions and Constraints
Governing University Students'
Engagement With Integral
Calculus and Mathematical
Modelling

An Exploratory Inquiry

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2023:270
Vegard Topphol

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s


	Blank Page



