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Abstract

The ever-increasing exploration of ocean resources has led to more frequent and inten-
sive marine operations. However, marine operations are vulnerable to accidents due to
unpredictable environmental factors and human decisions. Therefore, providing onboard
support for operators’ decision-making is crucial to ensuring safe and sustainable marine
operations. To achieve this, advanced sensors have been deployed on various offshore
platforms to collect real-time data. As time goes on, this marine data accumulates and
forms marine big data, characterized by five high Vs - volume, velocity, variety, veracity,
and value. Marine big data speeds up the transition towards digitalization and automa-
tion, enabling onboard support for marine operations, such as ship motion prediction,
path planning, and structural health monitoring.

The utilization of massive marine data to drive digitalization has become a signifi-
cant topic in both research and industry. Data analysis and modelling offer a promising
solution to address this issue. Data analysis is mainly divided into four categories: de-
scriptive analytics, diagnostic analytics, predictive analytics, and prescriptive analytics.
From a macro perspective, predictive analytics or modelling is a component of data
analysis. Descriptive analytics answers the question:‘What happened’ while diagnostic
analytics addresses the problem of ‘why it happened’. Both these categories focus on
discovering historical information in marine data. In contrast, predictive analytics and
prescriptive analytics tend to analyze the future behaviours and events of a system by
answering the questions: what will happen and how to make it happen. These four cat-
egories of data analysis involve a large variety of approaches, theories, and tools. Hence,
they have been widely used to mine valuable knowledge and critical insights for onboard
support of demanding marine operations.

Complex data types and different applications pose challenges to marine data analy-
sis for onboard decision support. How to combine different analysis approaches to figure
out these issues is the main concern in this dissertation. To show the importance of data
analysis for onboard support of marine operations, three case studies are highlighted:
ship dynamic positioning (DP) capability analysis, structural health monitoring, and
Automatic Identification System (AIS) data analysis and modelling.

Ship DP capability is subject to the impact of environmental factors and the thruster’s
failure. Understanding the interaction between thrusters and environmental factors can
provide support for DP capability improvement to prevent the occurrence of a loss of
position. The objective of this study is to analyze the thrusters’ significance under the
influence of the thruster’s failure and environmental disturbance via descriptive analyt-
ics, predictive analytics, and prescriptive analytics such as statistical analysis, Machine
Learning (ML), and sensitivity analysis (SA). The experiment results show the feasibility
of the proposed method.

Structural health monitoring aims to identify the modal parameters of offshore
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structures imposed by drifting ice. The covariance-driven stochastic subspace algorithm
(SSI-cov) was proposed to identify physical modes (natural frequency, damping ratio,
and mode shape). Many uncertain parameters of SSI-cov bring uncertainties to the
identified modal parameters. To address this issue, diagnostic analytics, such as cluster-
ing, and prescriptive analytics such as uncertainty analysis (UA) and SA, are combined
to quantify the uncertainty of the identified modal parameters. The results present
the proposed method can achieve an efficient and accurate uncertainty quantification
of the identified modal parameters. Additionally, it outperforms the traditional slack
values-based SSI-cov.

AIS data contains rich information about ship status, which has been widely used for
ship behaviour analysis. To take full advantage of information-rich AIS data, this study
gives three applications: COVID-19 impact analysis, probabilistic ship route prediction,
and short-term ship trajectory prediction. First, descriptive analytics and diagnostic
analytics are used to extract important features and analyze the statistics of these fea-
tures in the case of the Coronavirus disease 2019 (COVID-19) raging. This study mainly
analyzes the interaction between ship behaviours and COVID-19 impacts for the support
of marine traffic management. Based on this work, the extracted features are further
applied to the next application such as ship route prediction. Diagnostic analytics, in-
cluding clustering and dynamic time warping (DTW), is chosen to make probabilistic
ship route prediction. It is carried out in two steps. The first step is to cluster ship
trajectories using clustering to render routes and the next step is to classify ship tra-
jectories into different routes based on trajectory similarity estimated by DTW. Finally,
the obtained route information is then used as prior knowledge for the ship trajectory
prediction. A hybrid model is constructed based on historical trajectory information and
online predicted ship positions obtained by Gaussian Process. The results demonstrate
the proposed model outperforms the data-driven model and can obtain more accurate
ship trajectory prediction.
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1
Introduction

Recent years have seen an ever-increasing interest in the exploration, development, and
utilization of ocean resources, which has made marine operations more frequent and
intensive. To ensure safe marine operations, various advanced sensors are deployed
on vessels, offshore platforms, etc., to collect real-time data. As time goes on, this
data is piled up and forms marine big data characterized by five high Vs (volume,
Value, Velocity, Variety, and Veracity) [1]. This data can provide stakeholders with
valuable and well-informed insights into different aspects of decision making, health
monitoring, traffic monitoring, etc. This dissertation mainly focuses on how to apply
data mining technologies to discover potential patterns and knowledge, hence enabling
onboard support of marine operations carried out in a safer and more efficient manner.

1.1 Background and motivation

Marine operations are subject to uncertain factors from the environment and human de-
cisions. According to the annual overview 2022 of European Maritime Safety Agency1,
human elements account for 81.1% of maritime accidents based on the analysis of both
human action events and human behaviours jointly. Therefore, offering onboard support
for operators’ decision-making is crucial to safe and sustainable marine operations. With
the availability of data acquisition technologies, a huge volume of marine data has been
collected over decades, forming marine big data. Marine big data speeds up the tran-
sition towards digitalization and automation to increase competitiveness and enhance
operational efficiency [2, 3]. Digitalization involves building a digital model through
data analysis and modelling, which is used for monitoring, diagnostics and prognostics,
and maintenance of physical assets, systems, and manufacturing processes [4]. In this
context, data analysis and modelling present a promising prospect for onboard support
of marine operations, such as ship motion prediction [5, 6], path planning [7, 8], fault
detection [9, 10], sea state estimation [11, 12].

Marine big data has the significant characteristics of high dimensionality, large vol-
ume, and noise pollution, which brings exceptional challenges to data mining [13]. To
better manage marine big data and uncover its great values, the marine data value chain
is abstracted and illustrated in Figure 1.1. It includes four parts: data acquisition and
transition, data management, data analysis, and onboard support system development.
Data acquisition and transition are carried out by means of satellites, aerial remote sen-
sors, stations, ships, buoys, and sensors serving marine-related fields. A large volume
of in-situ data is collected in real time, which contains abundant temporal and spatial

1Annual Overview of Marine Casualties and Incidents, https://www.emsa.europa.eu/newsroom/
latest-news/item/4867-annual-overview-of-marine-casualties-and-incidents-2021.html, published on
30.11.2022

1

https://www.emsa.europa.eu/newsroom/latest-news/item/4867-annual-overview-of-marine-casualties-and-incidents-2021.html
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Figure 1.1: Marine data value chain.

information and enormous potential value [14]. However, it is intractable to directly
observe informative and valuable insights from marine data due to complex data struc-
ture and types, high dimensionality, high volume, etc. Therefore, it is important to
perform data processing in the phase of data management, such as data cleaning, data
transformation, and integration. The processed data is then stored in the local database
or cloud database. In order to serve marine operations, data analysis is used to extract
valuable knowledge from complex and vast data via statistical analysis, Machine Learn-
ing (ML), Deep Learning (DL), etc. The extracted knowledge can be used to develop
digital models and decision support systems for a wide range of marine applications such
as ship collision avoidance, structural health monitoring, and behaviour prediction.

As shown in Figure 1.1, data analysis plays a key role in bridging the gap between
marine data and onboard support systems. Data analysis tends to fall into four distinct
categories: descriptive analytics, diagnostic analytics, predictive analytics, and prescrip-
tive analytics [15]. Descriptive analytics answers the question: ‘What happened’ by
the description of statistics in marine data. Diagnostic analytics addresses the problem
of ‘why it happened’ through correlation analysis and regression analysis. They focus
mainly on the summarization and interpretation of past facts. Consequently, they can
provide limited support for marine operations since marine data features high volume,
high dimensionality, and complex relationships.

To address this issue, predictive analytics is used to build some advanced predictive
models using various modelling technologies. In recent years ML and DL are introduced
in marine data mining due to their excellent modelling capability. ML and DL can build
a data-driven model automatically using instance data or past experience to predict the
future behaviour of a system without explicit knowledge of the physical behaviour of
this system [16]. Therefore, predictive analytics has been widely used for the support
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of marine operations such as trajectory prediction [17], ocean wave estimation [18], and
power consumption estimation [19].

Despite the popularity of data-driven models, many new problems have also followed.
One of these challenges is the black-box nature of data-driven models, which makes it
difficult to interpret the results [20]. In addition, the outputs of data-driven models are
subject to imprecision because 1) models are imperfect abstractions of real systems and
full of various assumptions; 2) input data is biased in ways of noises, incomplete, obtained
from inaccurate sampling; 3) models are used for situations very different from those
in the historical knowledge base [21]. To address these issues in predictive analytics of
marine data, prescriptive analytics is applied to explain uncertainty sources and quantify
model uncertainty since it is good at answering the question of how to make it happen.
The well-known approaches are sensitivity analysis (SA) and uncertainty analysis (UA).
SA is to investigate how the variation of the output is apportioned to each input. UA
is instead to quantify how uncertain is the output. The combination of SA and UA
can assist in model optimization, model reliability improvement, risk assessment, etc.,
furthermore, guiding decision-makers toward a specific action to take for safe marine
operations.

1.2 Research questions

The focus of this dissertation is concerned with data analysis and modelling for decision
support of marine operations. This prompts the first question of this dissertation:

A significant portion of maritime accidents occurs due to human errors resulting
from inadequate situational awareness and understanding of risk factors. Such accidents
could be preventable if an onboard support tool provided decision-makers with a better
understanding of potential risks in marine operations. The availability and accessibility
of marine big data open up the opportunity to drive the development of onboard support
tools. However, it is intractable to obtain knowledge directly from marine data as it is full
of various noises, faults, outliers, and complex relationships among data features [22].
Therefore, data analysis is proposed to discover the valuable knowledge and critical
insights hidden in the marine data, in order to support stakeholders to make better-
informed decisions and take timely actions to ensure safe and efficient operations.

• Why is modelling indispensable for marine data mining and how to
perform it?

Traditional data analytics, such as descriptive analysis and diagnostic analysis, are lim-
ited to simple tasks such as statistical analysis of a small amount of data and correlation
analysis. It will lose effectiveness to analyse marine big data characterized by five V’s
[1]. To address this problem, predictive analytics, such as ML and DL, are introduced
to construct advanced models driven by marine data to predict what is likely to happen.
They can perform faster, more accurately, and more precisely for massive volumes of
marine data [23]. Despite their advantages, data-driven models are susceptible to un-
certainties from environmental factors, out-of-distribution data, etc. As a consequence,
models’ performance can not be guaranteed in real applications. This leads to the next
research question.

• How does uncertainty analysis benefit the predictive analytics of marine
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data?

In order to answer this question, it is necessary to comprehend what types of uncertain-
ties arise during data analysis and modelling. Uncertainty can be broadly classified into
two categories: aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty
arises due to the inherent randomness or noise in data, while epistemic uncertainty is
due to the lack of knowledge or understanding of the model’s behaviour in certain regions
of the sample space. [24]. Aleatory uncertainty is intrinsic and not reducible but can be
estimated by analyzing the noise in the data [25]. The more random the data, the larger
the aleatory uncertainty. Epistemic uncertainty, on the other hand, can be neutralized
by collecting more data or knowledge. However, it cannot be completely eliminated
in marine data analysis. For marine data analysis, it is difficult to remove epistemic
uncertainty completely. Therefore, it is necessary to conduct uncertainty quantification
(UQ) of total uncertainty (aleatory uncertainty and epistemic uncertainty), to ensure
the reliability and trustworthiness of data analysis results.

• What are the limitations of UA in marine data analysis?

UA is carried out via Monte Carlo sampling from the data distribution. However, the
real data distribution exhibits coupling or dependence between variables and is hard
to be estimated. To mitigate this problem, data distribution is often assumed to be
independent and identically distributed. Such simplification might introduce additional
uncertainty for UQ. Another challenge lies in the high dimension of marine data brings
more computational cost. Of these data features’ variation, some do not change the
value of variables of interest. Removing these uninfluential factors can speed up UA to
provide onboard support for marine operations. This leads to the next research question.

• What are the advantages and limitations of SA for decision support of
marine operations?

SA, in the most general sense, is to investigate how the outputs of a system or model
are affected by its inputs [26]. SA is particularly useful in identifying which factors may
be redundant and can be fixed or removed in subsequent analysis [27]. In recent years,
research and practice in SA have gained significant momentum as many researchers
contribute to designing various theoretical frameworks based on different applications
in their domains. It has been widely used for dimensionality reduction in UA, model-
based policy-making, decision support, etc. In the context of marine operations, SA can
also provide decision-makers with a deep understanding of the processes, hypotheses,
parameters, scales, and their interactions that affect their operations to ensure safe and
successful outcomes.

However, one limitation of SA is its reliance on a function or model which is often
not available in marine data mining due to the complexity and high dimensionality of
marine data. It is extremely hard to use a mathematical model to represent the non-
linear relationship among observations. Thus, researchers often rely on constructing a
surrogate model to approximate complex patterns and relationships in marine data. The
use of surrogate models can help improve the accuracy and efficiency of SA.
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1.3 Scope of work

1.3.1 Research objectives

In seeking to answer the above research questions, this dissertation seeks to obtain the
following research objectives (ROs):
√

RO1: Apply descriptive and diagnostic analytics to analyze marine data
for decision support of marine operations.

Descriptive and diagnostic analytics are two essential categories of marine data min-
ing that provide decision-makers with valuable insights into what happened in the past 
and why it happened. Descriptive analytics allows stakeholders to examine marine data 
statistically and understand the patterns and trends. On the other hand, diagnostic an-
alytics goes a step further and identifies the root causes o f certain events or behaviors. 
For example, data generated from Automatic Identification System (AIS) contains abun-
dant ship behaviour information concerning Maritime Mobile Service Identity (MMSI), 
types, deadweight (DWT), the time of arrival and departure, as well as other ship’s 
states. Through AIS data analysis, stakeholders can have a better understanding of 
the interactions among ship’s behaviour, regional economy, port operations, and other 
factors. Thus, they can take timely actions to fit f uture d evelopment a nd challenges. 
The descriptive and diagnostics of AIS data are described in paper II.
√

RO2: Create surrogate models with ML and DL to find the map among
observations.

Marine data is characterized by high dimensionality and nonlinearity. As a result, input-
output patterns are complicated and are hard to be represented with simple functions
or mathematical models. For example, the unknown relationship between thrusters and
ship DP capability poses challenges to thrusters’ importance analysis. Hence, it is nec-
essary to construct a surrogate model between thrusters’ thrust and ship DP capability,
which can be used further for ship DP capability improvement. ML and DL have the
powerful ability to fit nonlinearity among variables in marine data. The corresponding
exploration is shown in Papers I and VI.
√

RO3: Develop an SA-based method to identify the most influential fac-
tors to expected outcomes in marine operations.

Marine operations are influenced by a variety of factors. Some might lead to destruc-
tive and detrimental impacts on the environment, personnel, and physical assets. For
example, offshore vessel operations are affected by the interaction of the environment
and the vessel’s dynamic positioning (DP) system performance. Specifically, when an
emergency occurs during DP operations, the requirement of rapid response poses chal-
lenges to decision-makers. Understanding the sensitivity of the vessel’s DP operations
to different options or factors could assist operators in making a well-informed decision
so as to avoid risks. The corresponding exploration is discussed in Paper I.
√

RO4: Quantify the uncertainty of observations of interest by a proba-
bilistic model in marine operations.
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Decision-making heavily relies on the confidence level of the model outputs. Due to the
complexity and uncertainty of marine operations, the precision of models is prone to the
impacts of uncertain factors such as data errors, and out-of-distribution data. Inaccurate
predictions may result in wrong judgments of the current conditions, putting the safety
of personnel and assets at risk. For example, when AIS data-based model is used to make
ship trajectory predictions, uncertainties arising from the pilot’s decision, environmental
impacts, and data quality can affect the accuracy of the developed probabilistic model
with DL. How to quantify model uncertainties to provide trustworthy predictions is the
main concern of papers VI and VII.

√
RO5: Propose a UA and SA framework to improve the efficiency of
uncertainty quantification for online support of marine operations.

As mentioned previously, UA incurs huge computational costs in evaluating the re-
sampled data variables or model parameters, making it unsuitable for real-time support
in marine operations. However, some uncertain inputs do not have an impact on the
model outputs and are therefore redundant, and can be fixed or removed for UA. For
instance, in the case of the covariance-driven stochastic subspace identification (SSI-cov)
algorithm used to identify modal parameters of structures, some parameters bring large
uncertainty to the result while the remaining parameters can be fixed to implement more
efficient UA. This issue will be discussed and addressed in papers IV and V.

The interconnection between research objectives and research questions is clarified
as follows. RO1 is to apply descriptive and diagnostic analytics for marine data mining,
which answers the first research question. RO2 focuses on data modelling, which aims to
address the second and fifth research questions. RO3 investigates the application of SA
for decision support, which is related to the fifth research question. RO4 corresponds to
the third research question for UQ. RO5 proposes an analysis framework based on UA
and SA for UQ, which is related to the fourth research question.

1.3.2 Interconnection between the research objectives and publications

The interconnection between the research objectives and the published papers is shown
in Figure 1.2. In order to satisfy RO1, two case studies are given, one of which uses AIS
data to analyse ship behaviours and the other takes structure response data to conduct
modal parameters identification. Paper I regards the problem of how the coronavirus
disease 2019 (COVID-19) causes an impact on ship behaviours through the descriptive
analytics and diagnostic analytics of AIS data and uses clustering technology combined
with statistical approaches to discover abnormal ship behaviours. For structural response
data, clustering technology is proposed to identify modal parameters automatically in
paper III.

For RO2, modelling is carried out with ML or DL. For thrusters’ significance analy-
sis, A support vector machine (SVM) is chosen to construct a surrogate model between
thrusters and ship DP capability in the paper I. For ship trajectory prediction, a Gaus-
sian Process model (GP) is used to build the model for ship position prediction in paper
VI.

A SA method is combined with ML to analyze thrusters’ importance under the cases
of different thrusters’ failures and sea states during ship DP operations in the paper I,
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which is related to RO3. The same SA approach is also used to pick up important
parameters to accommodate the issues of UA as suggested by RO5. In paper IV, a UA
and SA framework is proposed to quantify the uncertainty of identified modal parameters
to support online structural health monitoring (SHM).

For UA, probabilistic ship trajectory prediction is given to present uncertainties of
model predictions in marine operations. This case contains two parts: one is to estimate
the probability of which route a ship will track in paper V and another applies a GP
model to predict the ship’s uncertain movement in the short term in paper VI. These
two papers are related to RO4. All of the above forms part of the module that provides
decision support for marine operations.

Research objectives Publications Topics

RO1:  Apply 
descriptive 

and diagnostic 
analytics to 

analyze 
marine data.

RO5:  Propose 
an UA and SA 
framework for 

UQ.

RO3:  
Develop a SA 
based method.

RO4:  
Quantify the 
uncertainty 
by a data-

driven model.

Paper II

Paper III

Paper IV 

Paper V

Paper VI

Paper I

Clustering,  
Statistical 
analysis

UA and DL

SA and ML

COVID-19 
impact analysis

Probabilistic 
ship trajectory 

prediction

Modal 
parameters UA

Thrusters’ 
importance 

analysis

Data analysis 
and 

modelling for 
onboard 

support of 
marine 

operations 

Modal parameters 
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RO2: 
Create 

surrogate 
models 

with ML 
and DL.

Figure 1.2: Interconnection of published paper in the thesis.

1.4 Contributions of the dissertation

The major contributions of this dissertation are as follows, which are related to the
research objective above:

• Descriptive analytics and diagnostic analytics are utilized in marine data analy-
sis to uncover potential patterns and support decision-making. Two case studies
demonstrate the effectiveness of these methods, which are closely related to RO1.

• ML technologies are employed to construct a surrogate model from marine data,
which enables SA to analyze the importance of each factor to a specific operation.
It is connected to RO2 and RO3.

• A hybrid model is proposed to enhance the confidence level of predicted results
through UQ for online decision support. It is corresponding to RO4.

• A framework based on UA and SA-based framework is proposed to implement
rapid UQ of observations of interest for onboard support of SHM. It pertains to
RO5.
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1.5 Structure of the dissertation

This introductory chapter presented the background for the dissertation research, estab-
lishing its main goals and defining the scope of work. The rest of this dissertation unfolds
as follows. Chapter 2 introduces the foundation of data analysis methods to support
marine operations and the experimental platforms that are used to develop and test the
model. Chapter 3 presents the first case study, which focuses on thrusters’ importance
analysis when the vessel is in dynamical positioning operation. This chapter is based
on the paper I. Chapter 4 relates to papers III and IV, and uses clustering technology
for automated modal parameters identification, and proposes a UA and SA framework
for UQ of identified modal parameters. Chapter 5 presents AIS data mining and its
application for probabilistic ship trajectory prediction. This chapter is based on papers
II, V, and VI. Chapter 6 concludes the dissertation, summarizes the contributions, and
indicates the directions for future works.
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2
Data analysis and modelling methods to support marine

operations

This chapter introduces data analysis as a fundamental technology to support marine
operations online. Fig. 2.1 presents a schematic illustration of applying data analysis
for decision support of marine operations. As shown in the blue picture 1, a variety of
marine operations are carried out at sea to generate different marine data such as struc-
tural response data from offshore structure, sea states, ship status data from dynamic
positioning vessel, AIS data from the sailing vessels. These data are, in return, used
for onboard support of marine operations by data analysis. Data analysis involves a
combination of various technologies that are grouped into different categories [28].

Structural 
response 

data

Sea states

Ship status 
data

AIS data

Offshore 
structure

Sensors & 
buoys

Dynamic 
positioning 

Ship 
navigation

Structural health 
monitoring

Environmental 
impact 

evaluation

Dynamic 
positioning 
capability 
analysis

Ship behaviour 
analysis

Data
 analysis

Onboard
 support

Data 
analytics

What did it happen?

What will it happen?

Why did it happen?

How can we make it happen?

DiagnosticPrescriptive

Descriptive

Predictive

Figure 2.1: Schematic illustration of data analysis to support marine operations.

1Centre for Autonomous Marine Operations and Systems,https://www.ntnu.edu/amos/research
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CHAPTER 2. DATA ANALYSIS AND MODELLING METHODS TO SUPPORT MARINE
OPERATIONS

Section 2.1 introduces the related marine applications to data analysis. Section
2.2.1 presents the data analysis methods that are used in this dissertation. Section 2.3
explains the experimental platforms and data sources that are used to build and validate
the models.

2.1 Applications of data analysis for marine operations

As shown in Fig. 2.1, data analysis involves four categories: descriptive analytics, diag-
nostic analytics, predictive analytics, and prescriptive analytics. Descriptive analytics
focuses on summarizing and presenting historical marine data to gain insights into past
events and trends. It uses statistical analysis to organize data into meaningful and
understandable formats such as tables, charts, and graphs.

Diagnostic analytics often involves a deep dive into data, including examining trends,
patterns, and relationships between different variables using regression analysis or clus-
tering technologies. Predictive analytics aims to create advanced models with ML and
DL to predict future behaviours or events. Prescriptive analytics takes a step further by
recommending the best course of action to achieve the desired outcome. This analysis
can provide insights and knowledge into the factors that affect the outcome via SA,
which can help identify potential solutions to drive decision-making. These four types
of data analysis are widely used in, but not limited to, the following applications:

• Ship behaviour analysis: With the acquisition of large amounts of AIS data, ship
behaviour analysis has elicited considerable attention in the literature. Clustering
was employed to find normal patterns and ship behaviour is monitored using real-
time AIS [29]. Sheng et al. created a logic regression model to identify illegal,
unreported, and unregulated ships [30]. Zhang et al. estimated the marine traffic
volumes by analyzing the historical trajectories of ships in Singapore port [31].

• Navigation safety: Better situation awareness of ship surroundings can help
operators manipulate the ship in a safe manner. Therefore, Tang et al. train
a Long short-term memory (LSTM) model to predict ship trajectory 10 minutes
ahead [32]. Considering uncertain ship movement, Rong et al. proposed a Gaussian
process model to make a probabilistic ship trajectory prediction [33].

• Structure health monitoring: Understanding the dynamic interaction between
ice and structure is critical for the operational safety of offshore structures. Hence,
the SSI-cov algorithm was proposed to estimate the frequencies, damping ratios,
and their uncertainties [34]. Nord et al. applied SSI-cov to identify modal parame-
ters on the Norströmsgrund lighthouse under a variety of ice-structure interaction
modes [35].

• Ship DP capability evaluation: The evaluation of DP capability can reduce
the risk of ship offshore operation. Wang et al. proposed a DP capability polar
plot program to determine the maximum environmental loads of DP vessels [36].
Mauro et al. assessed the operability of a ship DP system by Quasi-Monte Carlo
sampling from the joint distribution of wind and waves [37].

Generally, the above applications require a combination of different analysis approaches,
including descriptive analytics, diagnostic analytics, predictive analytics, and prescrip-
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tive analytics. The following section will introduce the core analysis methods used in
this dissertation.

2.2 Data analysis methods

Diagnostic analytics mainly uses two clustering technologies (hierarchical clustering and
density-based spatial clustering of applications with noise (DBSCAN)), dynamic time
warping (DTW), and SSI-cov algorithm to analyze marine data in different applications.
Predictive analytics is to construct data-driven data using a support vector machine and
multi-task Gaussian process. Prescriptive analytics mainly analyzes the uncertainty of
model outputs and the sensitivity of input parameters by means of UA and SA.

2.2.1 Clustering analysis

Hierarchical clustering

Hierarchical clustering is represented by a rooted tree where each leaf represents a data
point and each internal node represents a cluster containing its descendant leaves. The
tree is constructed based on the distance information between different data points [38].
This tree is constructed by iteratively merging the two closest data points or clusters
until all the data points have been merged into a single cluster. Since it is not sensitive to
initialization conditions and less sensitive to outliers, it has a wide range of applications
in data mining.

Let Q = q1, q2, ..., qn be a set of objects. The clustering process is divided by the
following steps [39]:

• Calculate the proximity matrix: calculate the distance between each pair of objects
(qi, qj).

• Initialize the clusters: assign each data point to its own cluster.

• Merge clusters: merge the two similar clusters iteratively until all the data points
have been merged into a single cluster. At each step, the proximity matrix is
updated correspondingly.

• Create a dendrogram: create a dendrogram to show the hierarchy of clusters and
to help identify the appropriate number of clusters to use.

• Determine the number of clusters: use the cut-off value to partition the hierarchical
tree into clusters.

Hierarchical clustering is relatively slow as a result of pairwise distance computation.
As a consequence, it is not suitable for large dataset analysis. In addition, it needs a
user-specified number of clusters and a cut-off value. That could affect the accuracy of
clustering results.

Density-based spatial clustering of applications with noise

The DBSCAN identifies distinctive clusters in the data based on their density [40, 41].
It divides the dataset into three categories: core points, boundary points, and noise
points. Core points are those that have a sufficient number of other points within a
certain radius, boundary points are those that do not satisfy the core point condition
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but have a core point in their neighborhood, and noise points are those that do not
have any points within their neighborhood. The algorithm starts with core points and
expands clusters until all core points have been visited, resulting in a series of clusters.

These three points are distinguished by two parameters: minPts and eps. ‘minPts’
refers to the minimum number of points clustered together. if a point is considered as a
core point if it has at lear minPts points in its surrounding area. Otherwise, it is taken
as boundary points or noise points. ‘eps’ represents the maximum distance between two
points for them to be considered neighbors. Points that are within the eps distance of a
core point are assigned to the same cluster. The algorithm steps are shown as follows:

• Choose an arbitrary point from the dataset that has not been visited.

• Determine if the point is a core point. A core point has at least minPts points
(including itself) within its eps radius.

• If the point is a core point, create a new cluster and add the point and all its
neighbors to the cluster. The neighbors are found by recursively repeating the
same process starting from each neighbor point.

• If the point is not a core point, mark it as a noise point.

• Repeat the above steps for all unvisited points in the dataset until all points have
been visited.

DBSCAN has several advantages over traditional clustering algorithms, including the
ability to identify clusters of arbitrary shape, the ability to automatically detect out-
liers without requiring prior knowledge of their number or location, and the ability to
adaptively determine the number of clusters. The pseudocode of DBSCAN is shown in
Algorithm 2.

2.2.2 Dynamic time warping

The objective of DTW is to compare time-dependent sequences X = (x1, x2, ..., xn) and
Y = (y1, y2, ..., ym). Warping path information is contained in a n×m distance matrix:

D =




d (x1, y1) d (x1, y2) · · · d (x1, ym)
d (x2, y1) d (x2, y2) · · · d (x2, ym)

...
... · · · ...

d (xn, y1) d (xn, y2) · · · d (xn, ym)


 (2.1)

where d is a distance measure function. DTW aims to find out the warping path W =
{w1, w2, ..., wk, ...wK} by minimizing the following function:




DTW (X, Y ) = min(

√√√√
K∑

k=1

d(wk))

d(wk) = d(i, j) = d(xi, yj)

(2.2)

Given wk = (i, j) and wk−1 = (i′, j′). The optimal warping path is subject to the
following three conditions: (i) Boundary condition: w1 = (1, 1) and wK = (n,m); (ii)

12



CHAPTER 2. DATA ANALYSIS AND MODELLING METHODS TO SUPPORT MARINE
OPERATIONS

Algorithm 1: DBSCAN algorithm
Input: D: Data, ϵ, minPts, Euclidean_distance
Input: label

1 for point p in D do
2 if label(p) is undefined then
3 neighbours N ← RangeQuery(D,Euclidean_distance,p,ϵ)
4 end
5 if |N | < minPts then
6 label(p)=Noise
7 end
8 l ← next cluster label
9 label(p) ← l

10 Seed set S ← N ∪ {p}
11 for q in S do
12 if label(q) is Noise then
13 label(q) ← l
14 end
15 end
16 if label(q) is undefined then
17 neighbours N ← RangeQuery(D,Euclidean_distance,q,ϵ)
18 label(q) ← l
19 end
20 if |N | ≥ minPts then
21 S ← S ∪ N
22 end
23 end
24 Function RangeQuery(D, dist,Q, ϵ):
25 neighbours = empty list if point p in D then
26 if dist(Q,p) ≤ ϵ then
27 neighbours = neighbours ∪ {p}
28 end
29 end
30 return neighbours
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Monotonicity condition: i− i′ ≤ 1 and j− j′ ≤ 1; (iii) Step size condition: wk−wk−1 ∈
{(1, 0), (0, 1), (1, 1)} for k ∈ [1, K − 1]. The smaller DTW (X, Y ) represents the larger
similarity of X and Y.

In order to solve (2.2), dynamic programming is introduced with a computational
complexity of O(nm). By this method, a cumulative distance matrix γ of the same
dimension as the D, is created using (2.3). A more detailed introduction can be referred
to [42].

γ(i, j) = min{γ(i− 1, j − 1), γ(i− 1, j),

γ(i, j − 1)}+ d(xi, yj)
(2.3)

2.2.3 Covariance-driven stochastic subspace identification algorithm

To obtain the structural properties, an SSI-cov algorithm was proposed to estimate
the frequencies, damping ratios, and uncertainties. The linear time-invariant system is
described by a discrete-time stat-space model

{
xk+1 = Axk + wk

yk = Cxk + vk
(2.4)

where wk and vk are the process and output noise, respectively. In order to identify
matrices A and C from which the modal frequencies, damping, and mode shapes can
be obtained, the eigenvalues and eigenvectors of the system in Eqn.2.4 are calculated by
the following equations {

(A− λiI)ϕi = 0
φi = Cϕi

(2.5)

from which the µi, fi, and ξi can be obtained:

µi =
lnλi

T
, fi =

|µi|
2π

, ξi = −100
R(µi)

|µi|
(2.6)

where T is the sampling period. The stochastic subspace algorithm is a prevalent method
to estimate the matrices A and C. The algorithm uses the output data to build a
subspace matrix Hp+1,q ∈ R(p+1)r×qr0 . Therein, r is the number of sensors, r0 is the
number of reference sensors, and p and q are the parameters chosen such that pr ≥
qr0 ≥ n, where n is the model order. The subspace matrix Hp+1,q can be truncated at
a user-defined model order n via singular value decomposition

Hp+1,q =
[
U1 U0

] [Σ1 0
0 Σ0

] [
V T
1

V T
0

]
(2.7)

and
Op+1 = U1Σ

1/2
1 (2.8)

The C matrix can be directly extracted from the first block of r rows of the observability
matrix Op+1, while the A matrix can be obtained from a least-squares solution of

O↑
p+1A = O↓

p+1 (2.9)
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where O↑
p+1 =




C
CA
...

CAp−1


,O↓

p+1 =




C
CA
...

CAp




The principle of SSI-cov is to propagate the covariance of the subspace matrix, ΣH ,
to the modal parameters through first-order perturbations. The covariance of the modal
parameters is obtained as

cov(

[
fi
ξi

]
,

[
fj
ξj

]
) =

[
Jfi,A 01,rn
Jξi,A 01,rn

]
ΣAC

[
Jfi,A 01,rn
Jξi,A 01,rn

]T

cov(

[
R(ϕi)
I(ϕi)

]
,

[
R(ϕj)
I(ϕj)

]
) =

[
R(Jϕi,A,C)
I(Jϕi,A,C)

]
ΣAC

[
R(Jϕi,A,C)
I(Jϕi,A,C)

]T (2.10)

2.2.4 Support vector machine

For m training samples (xi, yi) where xi ∈ ℜk and yi ∈ ℜ The basic form of SVM is as
follows:

min
ω,b

1

2
||ω||2

s.t. yi(ω
Tϕ(xi) + b) ≥ 1, i = 1, 2, . . . ,m

(2.11)

Note that ϕ(x) is the eigenvector by which x is mapped into high dimensional space,
ϕ(x)T is the transpose of ϕ(x), ω is the normal vector of a plane, b is an offset. Lagrange
multiplier method is used for transforming (2.11) to its dual problem

max
α

m∑

i=1

αi −
1

2

m∑

i=1

m∑

j=1

αiαjyiyjϕ(xi)
Tϕ(xj)

s.t.





m∑

i=1

αiyi = 0

αi ≥ 0, i = 1, 2, . . . ,m

(2.12)

With the help of kernel function K(xi, xj) = ϕ(xi)
Tϕ(xj), it makes a great reduction

of computational cost owing to avoidance of gaining the concrete feature vector and
mapping function. After α is calculated from solving (2.12) , the model can be obtained
as follows:

f(x) = ωTϕ(x) + b

=
m∑

i=1

αiyiK(x, xi) + b
(2.13)

In addition to regression and time series prediction applications, excellent performances
were introduced by [43, 44].

2.2.5 Multi-task Gaussian process regression

The GP is a probability distribution over functions and inference taking place directly in
the space of functions. GP regression originated in geostatistics in 1967 and is known as
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kriging [45]. It was introduced to the machine learning community from the inspiration to
construct GP from neural networks [46]. Since GP is a nonparametric and interpretable
Bayesian model, it was soon applied to learn the forward or inverse dynamics of robotic
systems. Later modifications were mainly to improve its scalability and handle sparse
data [47]. The advantage of GP is that it provides a well-calibrated uncertainty of
the prediction. However, ordinary GP can only model output separately and ignore the
correlation in outputs [48]. To benefit related tasks and not hurt performance when these
tasks are unrelated, a multi-output GP (MOGP) was proposed to improve prediction
accuracy[49, 50]. Here is a brief description of MOGP.

Given inputs x ∈ ℜn×P and D outputs y = {y1,y2, ...yD}, its relationship is defined
as follows:

yd = ft(x) + ϵd, d = [1, D] (2.14)

where yd ∈ ℜn×1, ϵd ∼ N (0, σ2
d) is the iid Gaussian noise of the dth output. The

likelihood function of the D outputs is defined as follows:

p(y|f ,x,Σs) = N (f(x),Σs) (2.15)

where Σs represents a diagonal matrix with elements σ2
d.

Given D inputs X = {X1, X2, ..., XD}, XD ∈ ℜn×P , and M outputs y, the posterior
distribution of f(x∗) = {f1(x∗), ..., fM(x∗)} at a new test point x∗ is derived analytically
as

f(x∗)|X,y,x∗ ∼ N (f̂(x∗),Σ∗) (2.16)

where f̂(x∗) is a mean value and Σ∗ is a covariance matrix. They are computed by Eq.
(2.17) and Eq. (2.18)

f̂(x∗) = KT
f∗(Kff + ΣM)−1y (2.17)

Σ∗ = K∗∗ −KT
f∗(Kff + ΣM)−1Kf∗ (2.18)

where Kf∗ = K(Xd,x∗) ∈ ℜnD×D for d = [1,D], it has blocks Kdd′ = [kdd′(xi,x∗)] for
i = [1,n] and d,d′=[1,D]; K∗∗ ∈ ℜD×D has elements kdd′(x∗,x∗) for d,d′=[1,D]; k is a
specifying kernel function; ΣM = Σs⊗In ∈ ℜnD×nD is a diagonal noise matrix; the block
partitioned matrix Kff ∈ ℜnD×nD is shown by

Kff =




K11 (X,X) · · · K1D (X,X)
K21 (X,X) · · · K2D (X,X)

... · · · ...
dKD1 (X,X) · · · KDD (X,X)


 (2.19)

In order to estimate parameters θ and σ in kernel function k and ϵ separately, the
negative log marginal likelihood (NLML) is minimized as

θopt = argmin
θ

(− log p(y|X, θ)) (2.20)
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Figure 2.2: Schematic illustration of UA and SA.

where − log p(y|X, θ) is defined as

− log p(y|X, θ) =
1

2
yT (Kff + σ2

dI)
−1y

+
1

2
log |Kff + σ2

dI|+
n

2
log 2π

(2.21)

NLML has a well-known drawback of huge computational cost (O(n3)). As MOGPs need
to consider the covariances between D outputs, leading to O(n3D3) scaling. Therefore,
the sparse variational inference was developed to approximate the posterior distribution[51].
It learn a set of M ≪ n inducing variables u ∈ ℜM , defined at inducing locations
Z = {zm}Mm=1, zm ∈ ℜP [52]. We then collect function values f(Z) in variables u, and
specify a free mean and variance:

q(u) = N (u,m, S) (2.22)

where m ∈ ℜM and S ∈ ℜM×M . Next, the evidence lower bound (ELBO) is maximized
to learn inducing locations and variational parameters:

L = Eq(f)[log p(y|f)]−KL(q(u)||p(u)) (2.23)

where q(f) = N (f , µf ,Σf ) is the approximated posterior over the function values at
the data points implied by conditioning on u,

µf = kT
ZK

−1
Z m (2.24)

Σf = Kff + kT
ZK

−1
Z (S −KZ)K

−1
Z kZ (2.25)

where kZ and KZ is analogous to Kf∗ and Kff respectively. Sparse variance inference
can implement an efficient GP modelling with O(M3D)
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2.2.6 Uncertainty analysis

UA aims to analyze how much the uncertainty of model output is caused by the vari-
ation of input parameters. In contrast, SA is to investigate how much the variation of
model output is influenced by each input parameter. UA is a forward analysis by the
propagation of uncertainty in input parameters to the output while SA is a backward
analysis by apportioning output uncertainty to input parameters. First of all, UA is to
sample data points from the assumed data distributions, such as Gaussian distribution
and uniform distribution. Next, the sampled data is fed into a system or model to ob-
tain the output values. After that, probability distribution and statistics are used to
represent the uncertainty of output values.

2.2.7 Sensitivity analysis

SA, in general, is made up of variance-based and density-based methods. Variance-
based methods include Sobol [53], the Fourier Amplitude Sensitivity Test (FAST) [54],
and the Extend-FAST (EFAST) [55] and so on. A well-known advantage of variance-
based methods is their ability to quantify the individual parameter contribution and
the contribution resulting from parameter interactions [56]. However, variance-based
methods do not completely represent the output uncertainty when the model output is
highly skewed [57]. Francesca et al. came up with a novel SA method called ‘PAWN’
that characterizes the output distribution by its cumulative distribution function (CDF)
instead of probability distribution function (PDF) [58]. One advantage of PAWN is that
it hugely reduces computational cost because there is no need to compute unknown pa-
rameters for the approximation of empirical CDF. Another advantage is that sensitivity
indices can be easily obtained, by considering the entire range of variation of the model
output or a sub-range. This dissertation mainly introduces Sobol and PAWN used in
the research papers.

A generic model is described as follows.

Y = f(X1, X2, ..., XM) (2.26)

where Y is the model output of interest; X=(X1, X2, ..., XM) ∈ RM×1 is the model input
which contains M factors; f(X) can represent abstract models (data-driven models,
mathematical model, or defined function) and mechanical models (robots). In this study,
f(X) corresponds to SSI-cov and Hierarchical clustering methods.

Sobol’s method is based on the total variance decomposition.

V (Y ) =
M∑

i=1

Vi +
M−1∑

i=1

M∑

j=i+1

Vij + · · ·+ V1,··· ,M (2.27)

where V (Y ) is the variance of model output Y ; Vi is the variance contribution of
Xi to the model output; Vij is the variance from the interaction between Xi and Xj;
V1,··· ,M represents the variance induced by the interaction between M parameters. The
Vi is addressed as the first-order or main effect of Xi on Y . Therefore the first-order
sensitivity index (Si) of Xi is computed by Equ. 2.28. The total sensitivity index (ST i)
is obtained by Equ.2.29.
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Figure 2.3: Illustration of DP simulator.

Si =
Vi

V (Y )
(2.28)

ST i =
Vi + Vij + · · ·+ V1,··· ,M

V (Y )
= 1− V∼i

V (Y )
(2.29)

where V∼i represents the total variance contribution of remaining parameters to Y
given Xi. The detailed description can be referred to [59].

‘PAWN’ is a CDF-based GSA method [57]. The main principle is to estimate the
difference between unconditional CDF and conditional CDF using Kolmogorov–Smirnov
(KS) test. 




Ŝi = max
k=1,...,M

KS(Ik)

KS(Ik) = max
y
|Fy(y)− Fy|x̃i

(y|x̃i ∈ Ik)|
(2.30)

where KS is Kolmogorov-Smirnov statistic; Fy(y) is unconditional CDF where y ⊆
Y and Fy|x̃i

(y|x̃i ∈ Ik) is conditional CDF where x̃i is fixed. The detailed information
can be found in [60].

2.3 Experimental platforms and data collection

This dissertation focuses on three aspects of decision support of marine operations: ship
DP capability analysis, structural health monitoring, and ship behaviour analysis. For
DP capability analysis, a simulator is used to generate simulation data to verify the
feasibility of the proposed method. For structural health monitoring, both model-scale
data and full-scale data are used to analyze modal parameters. For ship behaviour
analysis, real AIS data is used for analysis and modelling. This section introduces the
experimental platform and data collection procedure.
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Table 2.1: Sea states

Beaufort description Wind velocity (m/s) Wave height (m) Wave period (s) Current speed(m/s)
Fresh breeze 7.90 1.30 6.50 0.75
Strong breeze 13.80 3.10 8.50 0.75

2.3.1 Ship dynamic positioning data

the DP data are generated from a professional simulator in the Offshore Simulator Centre
— the world’s most advanced provider of simulators for demanding marine operations2.
Figure 2.3a illustrates the simulator conducting DP operation under the impact of en-
vironmental disturbances. Its position is limited within a red circle whose diameter is
set as R = 3m. The limit of the heading is restricted by the red sector whose angle is
represented as θ = 6◦. Figure 2.3b shows the environmental effects on the ship. Wind
with an attack angle of α can be changed and set as [45◦, 90◦, 135◦] for different scenarios.
Current and waves coming from other directions are fixed in the study. In Figure 2.3b,
the Earth-fixed reference frame is denoted as (XE, YE). The body-fixed reference frame
(X,Y) is fixed on the body of the vessel. Its origin is the vessel’s center of gravity. The
DP vessel is equipped with six thrusters including four tunnel thrusters (Thruster 1-4)
and two main thrusters (Thruster 5 and 6). In the simulator, the sea state, the thruster
state, and the desired position are all adjustable.

Two different sea states are investigated as shown in Table 2.1. The desired position
is set to (0,0). Thruster states involve various thruster failure modes. The combination
of sea states and thruster failures is shown in Table 2.2. They are ‘strong breeze 45◦’,
‘strong breeze 90◦’, ‘strong breeze 135◦’, and ‘fresh breeze 45◦’. For ‘strong breeze 45◦’,
there are seven different thruster failure modes represented by binary string: ‘011111’,
‘101111’, ‘110111’, ‘111011’, ‘111101’, ‘111110’, ‘110110’. Here, ‘0’ denotes the thruster
is malfunctioning; ‘1’ denotes the thruster is working normally. For example, ‘101111’
indicates the second thruster is malfunctioning while the others are working normally.
The sampling frequency is set as 20HZ.

2.3.2 Structural response data

Ice-structure interaction data are collected from model-scale experiments and full-scale
experiments.

Data collection from model-scale experiment

All model-scale tests are carried out in the Hamburg Ship Model Basin’s (HSVA) large
ice model basin 3. The experiment setup was designed with a flexible foundation with
adjustable mass and stiffness to mimic certain dynamic characteristics of the structure
and a rigid model. Three Triax accelerometers are used to monitor the ice-induced
vibrations of the structures in x- and y-direction (loading direction and perpendicular
in-plane motion). The setup is shown in Figure 2.4a ([62]). The data were collected
under different structural and ice-related properties. The main tests and corresponding
properties are shown in Table 2.3.

2https://osc.no/
3https://www.hsva.de/
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Table 2.2: Environment and thruster failures setting for significance analysis.

Sea states Attack angle [deg] Thruster failure

Strong breeze 45

011111

101111

110111

111011

111101

111110

110110

Strong breeze 90
101111

110110

Strong breeze 135
101111

110110

Fresh breeze 45
101111

110110

Table 2.3: The main test runs and the corresponding parameters settings.

Run Model Ice type Ice drift velocity Ice thickness Flexural strength
25010 9200 MDOF ICMI 4-150 mm/s 23mm 86kPa
32010 9500 MDOF Model ice 4-150 mm/s 41mm 56kPa

Different runs are designed with different global stiffness of the setup. Hydrody-
namic added masses for models ‘9200’ and ‘9500’ are 16kg and 19kg separately. ‘MDOF’
represents the structure as multi-degree-freedom vibration which has two dominant fre-
quencies (f1 = 2.81HZ and f2 = 3.77HZ). Ice types are HSVA’s standard model ice
and an improved crushing model ice [61]. Model ice is generated by exposing the water
surface to cooled air. The current model ice was not always ideal for crushing failure
type of dynamic ice-structure interaction tests. Therefore, an alternative wave ice was
proposed by simulating sea wave effects during water freezing. The first three test runs
contain ice drift velocity from 4-150 mm/s whilst the ice velocity of ‘460101’ starts from
14 to 150mm/s. Based on different ice velocities, the measurements are grouped into
different corresponding ice failure types (intermittent crushing (IC), frequency lock-in
(FLI), and continuous crushing (CC). The full data set is described by Stange et al. [62].

Data collection from full-scale data

The full-scale experiments are conducted on the Norströmsgrund lighthouse which is
located in the Gulf of Bothnia. As shown in Figure 4.9, It is a gravity-based concrete
structure with a wall thickness varying between 0.2m at the top and 1.4m at the mean
water level ([35]). The diameter of the structure at the mean water level was 7.5 m at
an elevation of +14.2 m. Nine panels were installed across the outer surface at the mean
water level to measure the ice forces. Four accelerometers were equipped at different
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(a) Model-scale experiment ([61]) (b) Full-scale experiment ([35])

Figure 2.4: The experiment setup for model-scale and full-scale test

positions of the lighthouse. The detailed description can be found in [35, 63]

2.3.3 AIS data

Ship behaviour analysis uses the three-year historical AIS data in the Olso area from
2017-2019. AIS data is open source and can be downloaded from marine traffic 4, marine
cadastre 5. AIS data contains abundant information, including the time-stamp for each
recorded data point and the ship’s MMSI, DWT, speed over ground (SOG), course over
ground (COG), and ship length. Because it offers rich information in real time, AIS
data is widely applied for navigation safety, collision avoidance, and trajectory analysis
[64].

For the sake of ship behaviour analysis for port management, some important fea-
tures need to be extracted such as ship type, deadweight, ship destination, arrival time,
and berthing time. Sea-web 6, marine traffic 1, and myshiptracking7 is accessed to match
ship type and deadweight information based on MMSI. In the next step, ship types need
to be changed into numerical values for the sake of the convenience of data analy-
sis. Numbers from ‘1’ to ‘6’ were assigned to ‘Cargo’, ‘Carrier’, ‘Container’, ‘Tanker’,
‘Cruise’, and ‘Ferry’, respectively. Other ship types, such as yacht and fishing vessels,
are excluded from this study.

To obtain the ship’s arrival time and its berthing time, it is necessary to pinpoint
the ship’s destination, i.e. berth. To this end, position points (Latitude (Lat), Longitude
(Lon)) with ‘SOG = 0’ are selected. ‘SOG = 0’ means the ship is mooring. However,
ships may moor at a position outside of a berth. In order to address this problem, a
clustering approach (DBSCAN) is introduced to identify real berths.

1https://www.marinetraffic.com/
2https://marinecadastre.gov/ais/
6https://maritime.ihs.com/
7https://www.myshiptracking.com/vessels
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For ship trajectory prediction, features like the ship’s position, COG, and SOG are
used as model inputs. Considering missing data, non-identical time steps, and anomaly
data, the ship trajectories need processing further. Therefore, an interpolation method
(UnivariateSpline) is introduced to unify the time step of AIS data to 5 seconds. Such
unification facilitates determining the future position of a sip and provides a foundation
for model training. In order to improve the accuracy of interpolation, Geographical
coordinates (Lat and Lon) are transformed to meters by Pythagoras formula:





dist =
√
(∆lat)2 + (∆long)2

∆lat = R× (lat2− lat1)
∆long = R× cos(central_long × 2π

360
)

(2.31)

where R is the maximum circumference of the Earth (40075000 m); (lat1, long1) and
(lat2, long2) are the geographical coordinates of two data points. dist is the distance
(m). central_long denotes the longitude at which Olso locates.

2.4 Chapter summary

Table. 2.4 shows how models and data sources are contained in different chapters. Chap-
ter 3 presents the investigation of thrusters’ importance to the vessel’s DP capability,
which uses data in Section 2.3.1. Chapter 4 describes the modal parameters identifica-
tion of offshore structures, covering the data in Sections 2.3.2. Chapter 5 demonstrates
case studies on ship behaviour analysis, the data in Section 2.3.3 are used. These three
case studies form the main part of this dissertation, with the main goal to implement
data analysis and modelling for onboard support of marine operations.

Table 2.4: Interconnection of the data analysis methods and data source contained in different
Chapters.

Data
Method SVM SA UA SSI-cov clustering DTW GP

Section 2.3.1 Chapter 3
Section 2.3.2 Chapter 4
Section 2.3.3 Chapter 5

This chapter introduces the fundamentals of data analysis methods. The statisti-
cal analysis methods (hierarchical clustering, DBSCAN, DTW, and SSI-cov), machine
learning models (SVM and MOGP), UA, and SA that are used in this dissertation are
also briefly introduced. It is worth noting that different data types have different errors
and hence need different data pre-processing approaches. This chapter does not give a
detailed description of data pre-processing but it can be found in research papers.
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3
Case study: Thrusters’ significance analysis in ship dynamic

positioning operations

This chapter presents research results from paper I. Vessels with DP systems can au-
tomatically maintain the desired position under the influence of environments, which is
critical to ensure safe offshore operations. In order to prevent the occurrence of a loss of
position, DP 2 and DP 3 are designed with redundant power systems to guarantee the
vessel’s DP capability [65]. Once a thruster failure occurs, the power allocation system
could reallocate the desired thrust to the remaining thrusters so as to make a vessel still
keep its position.

Environmental factors cause an impact on the thrust allocation of thrusters. In other
words, thrusters’ importance varies over different environmental forces. Understanding
the interaction between thrusters and environments is crucial to a vessel’s DP capability
improvement, especially in the case of thruster failures.

In this chapter, a novel methodology is proposed to analyze the significance of each
thruster on DP capability under the influence of environments and thruster failures.
It could not only provide onboard support for improving DP capability but also give
guidance for power system design as well as thrusters’ maintenance with the help of
statistical analysis and SA.

3.1 Workflow of thrusters’ significance analysis

Figure 4.5 outlines the procedure of thrusters’ significance analysis in DP operations.
DP data is generated by a DP simulator that is considered a digital model of a real
vessel. The inputs to the simulator are adjustable, such as sea states, desired position,
and thrusters’ states. The details have been elaborated in 2.3.1. The second part is
data analysis composed of data pre-processing and significance analysis. The final part
is onboard support of the real vessel’s DP operations as well as system optimization.

Significance analysis is to identify the importance of thrusters to the vessel’s DP
capability. It includes statistical analysis and sensitivity analysis that analyzes the
significance of thrusters from different aspects. Statistical analysis, as a supplementary
instruction for SA, focuses on statistics of DP data such as mean value, variance, and
PDF [66]. SA is responsible for estimating the sensitivity of each thruster to the DP
capability. It comprises three steps: 1) proposing a synthesized criterion to quantify
DP capability; 2) applying an optimal ML method to create a surrogate model between
thrusters and DP capability; 3) using the SA method (PAWN) to analyze sensitivity
indices of thrusters [58].
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Figure 3.1: The system structure of significance analysis of thrusters in DP operations.

3.1.1 Synthesized criterion of DP capability

According to the DP capability level in ‘DNVGL-ST-0111’ standard, the assessment
of station-keeping capability is mainly based on statistics of the position deviation and
heading deviation. Therefore, position and heading should be integrated into the synthe-
sized criterion. In addition, for ensuring the safety and accuracy of DP operations, the
DP vessel has a higher power requirement than other conventional vessels [67]. There-
fore, power consumption is also taken into consideration in this criterion. As a result, we
create a synthesized criterion by Eq. (3.1) to lump the above-mentioned ship parameters
together, with extra modification to make it adapt to the SA method.





V = ω1 ×D + ω2 × A+ ω3 × P
ω1 + ω2 + ω3 = 1
Cri = −ln(V ) V > 0.

(3.1)

where ω1, ω2, and ω3 are weighting factors within [0,1]; D is position deviation computed
by the distance between current and original position; A denotes the heading angle vari-
ation; P represents total power consumed by thrusters; Cri is the synthesized criterion
computed by the inverse of the monotone increasing function ‘ln’. The larger V is, the
worse the positioning capability (Cri). Compared to the exponential function in the
interval [0,1], the minus of ‘ln’ function can amplify the value of V to better reflect the
distinction of positioning capability [68]. Cri will be used as the model output when
ML trains a surrogate model between thrusters’ parameters and DP capability.

3.1.2 Sensitivity analysis

The process of SA executed by PAWN combined with SVM is shown in Algorithm 2.
Note, This algorithm can be applied for other ML methods as well, but some adjustments
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to the training parameters may be necessary. In this algorithm, ‘LIBSVM’ is used as
an SVM tool to train the surrogate model [69]. The model training parameters like ‘s’,
‘t’, ‘bestc’, ‘bestg’, ‘p’, ‘v’, and the introduction of functions like ‘SVMcgForRegress’,
‘libsvmtrain’, and ‘libsvmpredict’ can be found in [69]. This algorithm mainly includes
three parts. The first part is modelling (lines 9-13). The thrust of all thrusters is
the model input, and the positioning capability as defined by Cri above is the model
output. SVM is employed to construct a surrogate model between the model input
and output. The second part is resampling (lines 14-15). ‘Unconditional_sampling’ is
used to generate unconditional samples; ‘PAWN_sampling’ is used to gain conditional
samples. The last part is sensitivity index computation (line 16). The ‘PAWN’ indices of
all thrusters are computed by ‘PAWN_index’. Its function is shown in lines 1-7. Lines
2-3 represent the model evaluation of the unconditional and conditional samples. Lines
14-16 are to compute the ‘PAWN’ index.

Algorithm 2: SA algorithm
Input: Thrust ,Cri s, t, p, v
Output: SA_index

1 Function PAWN_index(Xu, XX, model):
2 Y u← libsvmpredict(Xu,model)
3 Y Y ← libsvmpredict(XX,model)
4 [Y F, Fu, Fc]← PAWN_cdf(Y u, Y Y )
5 KS ← PAWN_ks(Y F, Fu, Fc)
6 index← max(KS)
7 return index
8 for i = 1 : num do
9 X ← Thrust

10 Y ← Cri
11 [bestc, bestg]← SVMcgForRegress(X,Y )
12 cmd← [s, t, bestc, bestg, p, v]
13 model← libsvmtrain(X,Y, cmd)
14 U ← Unconditional_sampling
15 C ← PAWN_sampling
16 index(i)← PAWN_index(U,C,model)

17 end
18 SA_index← index/num

3.2 Experimental results

3.2.1 An optimal ML selection based on Ishigami function

This experiment compares three common ML methods Backpropagation (BP) neural
network, regularized extreme learning machine (RELM), and SVM. In order to select
the optimal ML model, the Ishigami function is used as a ground truth. It is shown in
Eq. (3.2).
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y = sin(χ1) + asin(χ2)
2 + bχ4

3sin(χ1) (3.2)

where a and b are random constants that can influence the sensitivity index of χi,
i ∈ {1, 2, 3}. χi follows a uniform distribution over [−π, π]. Here, we set a = 2 and
b = 1.

Figure 3.2 displays SA results as well as a benchmark value. The x-axis is the size
of the sample and the y-axis represents the estimated PAWN index. The dotted line is
the benchmark value of sensitivity indices of the three parameters χi in Eq. (3.2). The
corresponding sensitivity indices are S1=0.53, S2=0.19, and S3=0.35, respectively. It is
evident that both BP and RELM cannot figure sensitivity index out correctly; whereas
PAWN combined with SVM has a better approximation to the benchmark. Therefore,
SVM is selected as modelling method in the follow-up sensitivity analysis of thrusters
in different scenarios.
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Figure 3.2: SA results computed by PAWN based on different ML methods.

3.2.2 Significance analysis in different thruster failure modes at two sea states

This section mainly analyzes and compares SA results in different environmental factors
and thruster conditions. Table 3.1 lists the SA results of thruster failures at the strong
breeze and fresh breeze sea states. It is found that thruster 5 is more significant than
the rest of the thrusters in most cases. Its contribution accounts for around 30% ∼
40%. Especially, when thruster 6 fails to work, the significance of thruster 5 exceeds
35% because thruster 5 as the only main propeller must generate much more thrust
to counteract the influence of environmental disturbances. When one thruster failure
occurs, the significance of thrusters that play a complementary role will have a significant
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Table 3.1: SA results of thruster failures in the strong breeze and fresh breeze.

Sea states Direction (deg) Thruster
failure

PAWN index
Thr1 Thr2 Thr3 Thr4 Thr5 Thr6

Strong
breeze

45

111111 0.1342 0.1040 0.1576 0.2246 0.2976 0.0817
011111 0 0.3701 0.1448 0.1480 0.2284 0.1087
101111 0.2642 0 0.0604 0.1069 0.3222 0.2459
110111 0.1992 0.2080 0 0.0850 0.3058 0.2019
111011 0.1415 0.2483 0.0853 0 0.3472 0.1775
111101 0.2629 0.1839 0.1433 0.1098 0 0.3000
111110 0.1674 0.1225 0.1435 0.1456 0.4209 0
110110 0.2106 0.2026 0 0.2050 0.3818 0

90 111111 0.2877 0.1211 0.0829 0.1485 0.1313 0.2283
101111 0.2723 0 0.1103 0.1100 0.2985 0.2089
110110 0.0737 0.3337 0 0.2392 0.3534 0

135 111111 0.1832 0.1638 0.1224 0.1888 0.2544 0.0873
101111 0.0987 0 0.3491 0.3273 0.1268 0.0980
110110 0.2285 0.4016 0 0.0997 0.2702 0

Fresh
breeze 45

111111 0.1373 0.0729 0.1317 0.0771 0.3460 0.2350
101111 0.2591 0 0.1007 0.0901 0.3401 0.2099
110110 0.1826 0.2113 0 0.2282 0.3780 0

increase as shown in Table 3.1. For example, the PAWN index of thruster 6 increases
from 8% to 30% when thruster 5 fails in ‘strong breeze 45◦’. The same happens to
thrusters 1 and 2. For the case of ‘101111’ in ‘strong breeze 45◦’, for instance, the
significance of thruster 1 rises by 13% up to 26.42%. For dual thruster failure ‘110110’
in all sea states, at least two of tunnel thrusters’ significance go up to over 20% compared
with one thruster failure. That possibly results from the drastic variation of the ship
heading. It is reflected from the above analysis that the significance of thrusters depends
on the conjunction of sea states, wind direction as well as thruster failures.

From the perspective of statistics, thruster 6 has as much thrust as thruster 5 as
shown in Figure 3.4. The mean and variance of thrust generated by thruster 5 are
the same as those generated by thruster 6. The two thrusters also consume the same
amount of power and have similar statistical features. But observing results obtained by
the proposed SA method in Figure 3.3, in which all SA indices are drawn as blue bars,
shows that thruster 6 is far less significant than thruster 5. It is even less than thruster
2. Such a finding does make sense because thruster 5 generated the maximum moment
to resist the wind forces when the wind attack angle is 45◦. In other words, thruster 5
plays a more important role than thruster 6 in terms of DP capability improvement. The
comparison reveals that SA did discover valuable information that statistical analysis
can not give.

3.2.3 Real-time computation of thrusters’ sensitivity

Figure 3.5 shows the variation of sensitivity indices of thrusters over time. The horizontal
axis denotes sensitivity index is computed at a window time of 25s that comprises 500
sample points. Evidently, the proposed method is able to gain the contribution of each
thruster to the DP capability in the process of vessel counteracting against environmental
forces. Especially, when thruster 1 shuts down at 650s depicted by a red circle, the
importance of thruster 1 becomes 0 thereafter. On the other hand, thruster 2 plays a
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Figure 3.3: The SA result and average thrust of 6 thrusters for ‘111111’ in ‘strong breeze 45◦’.

more and more important role since this point. This is because thruster 1 and 2 are
bow thrusters, as shown in Figure 2.3b, the malfunction of thruster 1 leads to the rise
of thruster 2 importance in the long term. To sum up, the proposed method is capable
of finding the contribution of all thrusters in a real-time manner.

3.3 Chapter summary

This chapter investigates the significance of thrusters to a vessel’s DP capability under
the impacts of thruster failures and environmental factors. Due to DP capability being
an abstract conception, it is, hence, quantified by a synthesized criterion. Next, the
Ishigami function is used to select an optimal ML method to build a surrogate model
between thrust and DP capability. Through the comparison with other ML methods,
SVM is selected for the subsequent SA. Based on the significance analysis of thrusters, it
can be found that thrusters’ importance varies over different environments and thruster
failures. It is verified that the proposed method can identify the importance of thrusters
during DP operations. Through an online case study, the proposed SA combined with
SVM did offer onboard support of DP operations.
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with strong breeze and α = 45◦.

Figure 3.5: Real-time computation of the significance of thrusters.
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4
Case study: Modal parameters identification for structural

health monitoring

This chapter presents research results from papers III and IV.Offshore structures are
prone to damage caused by ice-induced vibrations. It is presently unknown to what
extent different ice conditions change the properties of the structure, such as natural
frequency, damping ratio, and mode shape. Understanding the dynamic interaction
between ice and structures are important for the operational ability of offshore structures
[70, 71]. To address this problem, the covariance-driven stochastic subspace identification
algorithm (SSI-cov) is introduced to identify modal parameters of a scale-model structure
during ice-structure interactions. However, many user-defined parameters in SSI-cov
could lead to inherent bias to the identified modal parameters[72]. Therefore, clustering
technology is proposed to replace the slack value criterion for automatic parameters
identification. Nevertheless, there are other parameters that may affect the identified
parameters. On this basis, uncertainty analysis is, furthermore, applied to quantify the
total uncertainty caused by other parameters selection, algorithm uncertainty.

4.1 Clustering for automated modal parameters identification

After SSI-cov analysis, poles at different system orders are obtained. A pole is considered
stable if the deviances in frequency, damping, and normalized standard deviation of the
frequency fulfill the predefined stability criterion. After that, a stabilization diagram is
constructed by stable poles via taking frequency as abscissa and system order as ordinate
[73]. Physical modes should then show up as vertical lines in the diagram.

To date, there are many suggested methods to automatically determine the modal
parameters. Magalhaes et al. applied hierarchical clustering to identify the modes
successfully based on the data from concrete arch bridge [74]. Reynders et al. introduced
how to use hierarchical clustering to identify the physical modes based on single-mode
validation criteria [75]. It does not require any user-specified parameter values. The
validation example shows that hierarchical clustering has better robustness to identify
modal parameters than the traditional identification approach. Inspired by this research,
hierarchical clustering is used to identify the parameters of the ice-structure interaction
model.

4.1.1 Modal parameters identification procedure

As shown in Figure 4.1, The procedure includes three parts: data preprocessing, SSI-cov
analysis, and physical mode identification. Structural response data is collected from
the model-scale test as described in 2.3.2. After data preprocessing, the SSI-cov is used
to identify modes in the data. Physical modes are clustered by hierarchical clustering.
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Figure 4.1: The procedure of automated modal parameters identification.

After the SSI-cov analysis, many poles can be obtained including stable/unsta-
ble poles. We need group poles with similar modal characteristics. This is commonly
performed in a stabilization diagram, which shows the frequency of the poles on the hor-
izontal axis and the order of the system on the vertical axis. A physical mode appears
as a straight vertical line of poles, and the line with the corresponding lowest frequency
is the first eigenfrequency, the column with the corresponding second lowest frequency
is the second natural frequency, and so on. Poles that are not stacked on a vertical line
are usually what is referred to as spurious poles/modes, i.e. modes without physical
interpretation.

The major challenge lies in the process of choosing the poles that should be counted
as part of the column of poles (mode), due to the fact that some lie at a slightly different
frequency, have different damping values or mode shapes, and have different correspond-
ing uncertainties. Therefore different techniques have emerged to handle the physical
mode selection, where clustering algorithms have been suggested as an efficient technique
to determine the physical modes. One of the popular methods is Hierarchical clustering
[75, 39].

Hierarchical clustering depends on the proximity metric as described in 2.2.1. There-
fore, in this study, eigenfrequency difference and modal assurance criteria (MAC) are
used as distance measures in [76]. Its form is shown in Eq. (4.1)

d(k, l) = |fk − fl|+ (1−MAC(ϕk, ϕl)) (4.1)
where fk is the eigenfrequency of mode k; MAC is computed by Eq. (4.2)

MAC(ϕk, ϕl) =
|ϕT

k ϕl|2
||ϕk||22||ϕl||22

, ||ϕk||22, ||ϕl||22 ̸= 0 (4.2)

where ϕk is the mode shape of mode k. The schematic diagram of physical modes
identification using hierarchical clustering is shown in Fig. 4.2.
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Figure 4.2: The procedure of automated modal parameters identification.

4.1.2 Experiment results

This experiment compares the hierarchical clustering method and slack value-based iden-
tification method with model-scale test 32010 as described in Table. 2.3. First,

The data whose ice velocities are from 4 mm/s and 150mm/s in datafile ’32010’ is
chosen as two cases to compare these two methods. The benchmark values of the first
two eigenfrequencies are 21.352 and 29.516 rad/s separately, which are estimated when
the structure was moving in the open water [62]. Considering the uncertain factors,
the benchmark values are expanded by 10% deviation to an interval: [19.22, 23.49] for
the first frequency, [26.56, 32.47] for the second frequency. The cutoff and depth of
the Hierarchical clustering algorithm are chosen as 0.1 and 5 separately based on data
characteristics.

The focus of this study falls on the first three natural frequencies that represent
the most concerning modes. The ice velocities range from 4-150 mm/s. The identified
frequencies are shown in Table. 4.1. The bold numbers represent the successful identifi-
cations of natural frequencies by two methods. For IC, the identified first frequencies by
slack value and Hierarchical clustering are 70.8, and 14.86, separately for different ice
speeds. Results show that both methods fail to identify the first frequency. For FLI and
CC, the first two natural frequencies identified by Hierarchical clustering are around 21
rad/s and 29 rad/s among different ice speeds. From this table, Hierarchical clustering
renders bold numbers than the slack value-based approach. Table. 4.2 shows the iden-
tified damping of the first two modes. ‘NULL’ means the corresponding damping can
not be obtained due to the failure of parameters identification. It can be seen that both
methods achieve similar results. For ‘FLI’, the damping of the first mode is quite lower
than that of the second mode, whereas it is the opposite for other cases. This trend
probably results from the increase in ice velocity. Figure. 4.3a and Figure. 4.3b show
the identified frequencies by these two methods in the case of ice velocity being 8 mm/s.
Based on the referenced values of the first two natural frequencies, it is easily found
that hierarchical clustering can identify these two frequencies correctly while the slack
value-based method can not. As shown in Fig. 4.3a, some missing modes are supposed
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(a) Slack value

(b) Hierarchical clustering

Figure 4.3: The comparison of slack value and hierarchical clustering when ice velocity is 8
mm/s.

to be identified in the stabilization diagram. For example, at the position of frequency
30 rad/s, there is supposed to be a mode that appears at the peak of the power spec-
trum. Based on the aforementioned analyses, it is concluded that hierarchical clustering
outperforms the slack value-based approach as a whole.
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4.2 Uncertainty and sensitivity analysis for modal parameters identifica-
tion.

Although SSI-cov can effectively remove modes with large variances to obtain physical
modes, its accuracy of modal parameter identification can not be guaranteed due to
various assumptions and uncertain input parameters. For example, ice forces usually can
not be represented as Gaussian white noise, and therefore the input violates the random
white noise assumption of SSI-cov. In addition, the structure is described as a linear
time-invariant system. Such assumptions could result in errors in the modal parameters
identification. Besides that, SSI-cov contains many uncertain input parameters such
as slack values, stability criterion, system orders, etc. The parameters’ uncertainty is
propagated to the identified parameters and results in the poor estimation of their values.

To reduce the uncertainty of slack values, clustering technologies were introduced
for automated operational modal analysis (OMA) ([75]). Clustering approaches can
implement parameter identification in an automatic way and avoid the artificial selection
of slack values. Nevertheless, clustering algorithms will bring additional uncertainties as
they contain several uncertain parameters and algorithm structure uncertainty (known
as model uncertainty). As a consequence, a robust outlier detection was proposed to
reduce statistical uncertainty caused by the clustering algorithm ([72]). However, it can
not remove the algorithm uncertainty completely. In addition, clustering technologies did
not consider the uncertainty from other input parameters of SSI-cov. Therefore, a modal
parameters analysis framework based on UA and SA is proposed in this section. SA aims
to pick up those factors that account for the most contributions to the model output.
That is beneficial to lower the burden of UA caused by large amounts of variables.

4.2.1 Uncertainty and sensitivity analysis framework

This section is to introduce the proposed UA framework that is applied to identify modal
parameters. Compared with traditional OMA, it can estimate the uncertainty bound of
parameters induced by uncertain input variables. As shown in Fig. 4.4, the framework
is mainly divided into three parts. The first part is to do a model evaluation based
on the input parameters sampled from a hypothetical distribution. The second one is
automatic parameter identification using the clustering method. The identified modal
parameters are used for the following sensitivity analysis and uncertainty analysis. The
workflow is first conducting SA to select the most important input variables, second
doing UA based on the selected uncertain variables.

Modal parameters identification

In order to eliminate uncertainties in the Hierarchical clustering algorithm, two strategies
are employed to improve the robustness of the algorithm. The first method is to use the
Silhouette value to evaluate the clustering results. It measures how similar a point is to
points in its own cluster when compared to points in other clusters. The higher it is,
the better the samples are clustered. The principle is shown in Eq. 4.3.

s(i) =
b(i)− a(i)

max(b(i), a(i))
(4.3)

where b(i) denotes the average distance of point ‘i’ with all points in the closest
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Figure 4.4: The framework of uncertainty analysis and sensitivity analysis on modal parameters
identification.

cluster to its cluster; a(i) is the average distance of point i with other points in the same
clusters; s(i) is the silhouette coefficient that ranges from [-1,1].

Due to the variability of modal estimates, outlier detection is used for penalizing
undesirable modes in the final clusters to reduce identification uncertainties [72]. Equ.
4.4 defines the robust distance (RD).

RD(x) = d(x, µ̂MCD, Σ̂MCD) (4.4)

where MCD is the minimum covariance determinant that is used for outlying values
detection. x represents frequency in this study; µ̂MCD denotes the MCD estimates of
location; µ̂MCD is the covariance of MCD.

After that, a hierarchical tree could be created as shown in Fig. 4.2. The color
of the leaves in the tree represents different clusters. If a cluster contains a pre-defined
number of poles, the poles in this cluster render a physical mode as shown by the straight
line in the stability diagram. After clustering, the stability diagram could show physical
modes.

Uncertainty and sensitivity analysis

This study compares two SA approaches: Sobol and PAWN. Through the comparison
of the parameters’ importance computed by Sobol and PAWN, the optimal results are
used for the subsequent UA. The flowchart of the two SA methods is shown in Fig.
4.5. First of all, some variables are defined manually. ‘N’ is the size of Sobol’s sample.
‘M’ is the number of parameters in modal parameters identification. ‘Unif’ assumes the
distribution function is uniform. ‘LHS’ is a Latin hypercube sampling strategy. ‘NU’ is
the size of unconditional samples while ‘NC’ is the size of conditional samples. ‘n’ is the
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conditional point from which conditional samples are sampled. Next, different sampling
methods are applied to generate different data samples. ‘XA’ is the sampled data that
is used to estimate ‘YA’ through model evaluation while ‘XB’ is used to compute ‘YB’.
Likewise, ‘XU’ is to estimate ‘YU’, and ‘XX’ is to obtain ‘YC’. After that, ‘YA’ is used
to estimate Vi by the Sobol method while ‘YB’ is employed to estimate V∼i. ‘YU’ is
to obtain Fy(y) while is to get Fy|x̃i

. Followed by Sobol and PAWN analysis, two sets
of SA results can be obtained. They are compared to obtain convincing sensitivities
of all parameters. After important parameters are picked, LHS sampling is used to
generate a sample, and Model evaluation is conducted to carry out UQ of identified
modal parameters. The two approaches are integrated into a MATLAB toolbox in [77].

N NU,NC,nM,‘Unif’ 
‘LHS’

Sobol
sampling

PAWN 
sampling

Model 
evaluation

XA,XB XU,XC

YA,YB YU,YC

Sobol
indices

PAWN 
indices

Parameters 
ranking

LHS
sampling

Uncertainty 
analysis

Figure 4.5: The flowchart of Sobol and PAWN methods for sensitivity analysis.

4.2.2 Experiment results

For sensitivity analysis, first of all, the sampling strategy and distribution function is
selected as ‘LHS’ and uniform distribution. σ = 40% × µ, where µ represents the
predefined values of seven input parameters [78]. Next, due to the time-consuming SSI-
cov computation, it is not practical to set up a larger ‘N’. Therefore, the Sobol index
needs evaluation when ‘N’ is chosen as 1000 and 2000. ‘M’ means 7 parameters, including
the number of blocks (NB), block rows (BR), sampling frequency (SF), system order
(SO), and stability criteria (the deviance in frequency (SC-I), the deviance in damping
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ratio (SC-II), and normalized standard deviation of the frequency (SC-III)). ‘NU = 150’,
‘NC=100’, and ‘n=10’ are referred to [60]. In Equ. 4.3, s is 0.5. As the first two modes
(fM , ξM , φM) are the modes in the model-scaled experiment that were designed to be
easily excited by the ice force. Hence they are used for the output of interest in SA.

For UA, the sample size of uncertain parameters is 400. The benchmark values of
the first and second natural frequencies are 21.35 and 29.52 (rad/s). SA is carried out
using MATLAB toolbox ([77]). All MATLAB programs are run on the high-performance
computer at the Norwegian University of Science and Technology ([79]).
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Figure 4.6: The statistics of PAWN indices of seven parameters for different ice velocities in
data file 32010.

Sensitivity analysis

Due to the desperately high time cost of model evaluations, several random cases are
chosen for SA. For data file 32010, SA is applied for four different cases in which ice
velocities are 14, 16, 18, and 20 (mm/s) separately. For data file 25010, ice velocities
are from 18 to 26 (mm/s) with the step of 2 (mm/s). For full-scale measurements, ice
velocities vary from 30 to 200 (mm/s).

Figure 4.6 presents statistics of parameters’ PAWN indices among different velocities
14, 16, 18, 20 mm/s while parameters’ Sobol indices are shown in Figure 4.7. In both
figures, the box represents the quantiles of parameters’ sensitivity on the first and second
natural frequencies. The PAWN indices of BR and SF are larger than the remaining
overall. Therefore, BR and SF are chosen as uncertain factors for UA on data file
32010. In addition, for different cases, PAWN indices of different parameters have small
variations. Nevertheless, in Figure 4.7, Sobol indices of parameters vary drastically and
are hard to rank. Therefore, the PAWN method has better performance regarding SA
of parameters for ice-structure interaction analysis.

Figure 4.8 shows the PAWN indices of BR and SF are the largest, varying from 0.25
to 0.55. The PAWN indices of the remaining parameters are below 0.2. Hence, BR and
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Figure 4.7: The statistics of Sobol indices of seven parameters for different ice velocities in data
file 32010.
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Figure 4.8: The statistics of PAWN indices of seven parameters for different ice velocities in
data file 25010.
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Figure 4.9: The statistics of PAWN indices of seven parameters for different ice velocities in
the full-scale test.

SF are chosen as uncertain factors for UA on data file 25010.
Figure 4.9 shows the top two sensitive parameters are BR and SF whose PAWN

indices are around 0.4 and 0.35 separately. Their indices are a bit smaller than the
result in data files 32010 and 25010. This is possibly caused by the larger noise from the
full-scale experiment in the real world.

To sum up, the most influential parameters are chosen as BR and SF for the following
UA on data files 32010, 25010, and the full-scale experiment.

Uncertainty analysis

Table 4.3 lists the statistics of the identified first two natural frequencies. The statistics
include mean value (Mean), standard deviation (Std), upper bound of 95% confidence
interval (Upper), and lower bound of 95% confidence interval (Lower). The bold number
means the correct identification. For the identified first natural frequency, the proposed
method fails to identify it when ice failure is IC. Hence, it is not discussed in the following
analysis. After the ice failure mode changes to FLI, the first natural frequencies are 19.84,
29.76, and 23.53 rad/s when ice velocities are 8, 10, and 20 mm/s, respectively. The
frequencies in the remaining cases are around 21.5 which is close to the benchmark value.
In contrast to the first natural frequency, the second frequency identification becomes
more intractable. 5 out of 15 identified second frequencies are over 30. One is less than
29, around 26.66 rad/s. Other frequencies can be identified correctly.

Next, prior knowledge is used to pick up anomalies in the results. The benchmark
values of the first two natural frequencies are 21.352 and 29.516 rad/s separately, which
are estimated when the structure was moving in the open water [62]. Considering the
difference between open water and ice, the benchmark values are expanded by 10%
deviation to an interval: [19.22, 23.49] for the first frequency, [26.56, 32.47] for the
second frequency. The processed UA results are shown in Figure 4.10 for data file
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Table 4.3: The uncertainty analysis results of identified frequencies based on the data in ’32010’
under the ice failures of IC, FLI, and CC.

Frequency Statistics

ice velocity (mm/s)

4 6 8 10 12 14 16 18 20 28 45 65 80 95 150

IC IC FLI FLI FLI FLI FLI FLI FLI FLI FLI CC CC CC CC

First

Mean 45.59 17.57 19.84 29.76 21.69 21.02 21.92 21.06 23.53 21.28 21.59 21.50 21.25 21.96 21.81

Std 28.04 5.68 1.64 2.41 0.01 1.57 4.55 0.01 3.39 0.42 0.02 0.25 1.22 2.10 1.23

Upper 102.56 28.71 23.05 26.41 21.04 24.42 30.85 21.08 30.18 22.11 21.63 21.98 23.64 26.08 24.21

Lower -7.38 6.44 16.63 16.97 21.00 18.28 13.00 21.05 16.88 20.47 21.55 21.02 18.85 17.84 19.40

Second

Mean 88.00 29.73 26.66 32.00 32.49 29.68 32.43 29.01 30.38 29.71 29.32 29.93 29.42 29.76 29.57

Std 28.84 14.48 3.44 10.59 3.88 3.62 9.07 1.60 5.12 0.66 1.82 1.92 2.43 12.02 4.47

Upper 144.53 58.10 33.40 52.76 40.10 36.77 50.20 32.16 40.41 31.01 32.89 33.71 34.19 53.32 38.33

Lower 31.47 1.35 19.91 11.24 24.88 22.58 14.65 25.87 20.35 28.42 25.74 26.16 24.65 6.19 20.80

32010, Figure 4.11 for data file 25010, and Figure 4.12 for the full-scale measurements.
Figure 4.10a shows the filtered first natural frequency and corresponding damping

ratio. The left Y axis is the value of the identified natural frequency. The right Y axis
is the corresponding damping ratio. The green dotted line represents the identified first
natural frequency in [78]. Black points are the mean value of identified frequencies. The
length of the vertical line at each point means the estimated 95% confidence interval.
Based on the varying trend of the mean value, UA has a more sensible estimation than
the method without UA, especially when ice velocities are larger than 45 mm/s. The
superiority can also be verified in Figure 4.10b. Overall, the first natural frequency goes
up with the increase in ice velocity. This trend is the same as the damping ratio as
shown by the blue line. However, this trend does not appear on the identified second
natural frequency as shown in Figure 4.10b. With the increase of ice velocity, the second
natural frequency goes up until velocity reaches 16 mm/s. Next, it plummets when ice
velocity changes to 18 mm/s. After that, it keeps an increasing trend from 20 mm/s.
The damping ratio shows an overall decreasing trend when ice moves toward higher
velocity. In addition, the uncertainty of the identified second frequency and damping
ratio is significantly larger than that of the first frequency and corresponding damping
ratio.

Figure 4.11a shows the significant increasing trend of the first natural frequency in
data file 25010. The value rises from 19.3 to 21. For the second natural frequency, its
values fluctuate vary drastically as shown in Figure 4.11b. The same trend can be found
in Figure 4.12a and Figure 4.12b. In Figure 4.12a, the value of the first natural frequency
starts from 18 to 22 as the increase of ice velocity. However, there is no obvious trend
of the second natural frequency in Figure 4.12b. In addition, the value of the second
natural frequency is far larger than that in the data files 32010 and 25010.

The mined knowledge is summarized as follows.

1. Compared with traditional SSI-cov, UA based on prior knowledge does have supe-
riority regarding the accuracy of modal parameter identification. In addition, the

44



CHAPTER 4. CASE STUDY: MODAL PARAMETERS IDENTIFICATION FOR
STRUCTURAL HEALTH MONITORING

8 10 12 14 16 18 20 28 45 65 80 95 15
0

Ice velocity (mm/s)

19

19.5

20

20.5

21

21.5

22

22.5

23

Fi
rs

t f
re

qu
en

cy
 (r

ad
/s

)

0

5

10

15

D
am

pi
ng

 ra
tio

 (%
)

FLI CC

(a) The identified first frequencies and corresponding damping
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(b) The identified second frequencies and corresponding damp-
ing ratios.

Figure 4.10: The identified first frequencies and corresponding damping ratios over different
ice velocities in data file 32010 (Green dotted line: identified frequencies without UA; Black
points: the mean value of identified frequencies; Vertical lines: 95% confidence interval).

confidence interval could provide more valuable support for the SHM.

2. The identified first natural frequency and corresponding damping ratio present a
stable upward trend with the increase of ice velocity for three different experiments.
No difference between model ice and wave ice was observed in relation to that trend.
A small uncertainty interval demonstrates SSI-cov and Hierarchical clustering have
very good robustness for the first frequency identification.
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(a) The identified first frequencies and corresponding damping
ratios.
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(b) The identified second frequencies and corresponding damp-
ing ratios.

Figure 4.11: The identified frequencies and corresponding damping ratios over different ice
velocities in data file 25010.

3. For the second frequency, its trend is not significant for all three experiments. Large
uncertainty means that SSI-cov and Hierarchical clustering work worse in terms of
the second frequency identification.

4. For data files 32010 and 25010, the damping ratio of the first mode is quite small,
varying within [0% 3%]. However, it becomes larger in the full-scale experiment,
varying within [5% 10%].
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(b) The identified second frequencies and corresponding damp-
ing ratios.

Figure 4.12: The identified second frequencies and corresponding damping ratios over different
ice velocities in the full-scale test.

4.3 Chapter summary

This chapter uses diesel engines on ships as an example. Two application scenarios are
considered:

• Clustering is introduced to improve the efficiency of SSI-cov algorithm. Human
interactions for the selection of slack values may cause a bias to the modal parame-
ters’ values. Therefore, the slack value-based method is replaced with Hierarchical
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clustering to identify physical modes. The case study shows that Hierarchical clus-
tering did achieve a better performance on modal parameters identification than
slack values.

• Considering the uncertainties from parameters of SSI-cov and clustering technology,
UA and SA -based framework is proposed to quantify the uncertainty of identified
modal parameters. From Figure 4.6-4.9, PAWN can find out that ‘BR’ and ‘SF’
are the top two influential factors. Through the analysis on modal-scale tests and
full-scale tests, results show that the proposed framework can identify the varying
trend clearly in terms of the first natural frequency and its corresponding damping
ratios as shown in Figure 4.10a.

Modal parameters identification is important to the SHM. The model presented in
this chapter can be used to implement online modal parameters identification with high
accuracy for onboard support of SHM.
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5
Case study: AIS data analysis and modelling

AIS data contains abundant information, including the time-stamp for each recorded
data point and the ship’s MMSI, DWT, SOG, ship length. This information gives
decision-makers extensive knowledge about a ship’s behaviour and its surroundings.
Furthermore, It can benefit for navigational safety of ships.

This chapter mainly introduces AIS data-related applications. They are COVID-
19 impacts analysis, probabilistic ship route prediction, and short-term ship trajectory
prediction as shown in Figure 5.1. COVID-19 impact analysis mainly focuses on the
statistics of ship types, the number of ships, etc. The extract features are used as inputs
to the next application. Probabilistic ship route prediction is to infer the possible route
that a ship could track. It is followed by short-term ship trajectory prediction after
route prediction.

AIS data

COVID-19 
impacts analysis

Probabilistic ship 
route prediction

Short-term ship 
trajectory prediction

Figure 5.1: The relationship of AIS data-related applications.

5.1 COVID-19 impacts analysis

The advent of the COVID-19 pandemic disrupted global commercial activities and
the tourism industry heavily [80]. Impacts on maritime transportation were huge, as
seaborne trade represents over 80% of global merchandise trade [81]. Investigating how
COVID-19 has affected ship behaviours is significant for economic condition evaluation,
and port management. This section introduces how descriptive and diagnostic analytics
are used for AIS data analysis to investigate how COVID-19 impacts the behaviour of
different ships.

5.1.1 System structure of AIS data analysis

This subsection outlines the impact analysis of COVID-19 on ship behaviours and port
operations. The whole analysis procedure is mainly divided into three parts, as shown
in Figure 5.9. The first part is data preprocessing, including ship information matching.
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Figure 5.2: The workflow of impacts analysis of COVID-19 on ship behaviours based on AIS
data.

The second one introduces how several useful features are extracted from raw AIS data.
The knowledge discovery process is described in the last part. The analysis results could
be used for the decision support of port management and preplanning in the next health
emergency crisis.

Data preprocessing aims to match ship types and deadweight information based on
MMSI. After that, clustering and statistical approaches are applied to obtain impor-
tant features such as the berths and quays in Olso port and the dwelling time of each
ship. Based on the extracted features, a similarity measuring method (DTW) is selected
to carry out abnormal pattern recognition. It is combined with statistical analysis to
analyze behaviour patterns of ships under COVID-19 effects.

The impact analysis is mainly composed of long-term analysis and short-term analy-
sis. The long-term impact analysis aims to investigate the year-on-year difference caused
by COVID-19 and derive an impact threshold for the following short-term analysis. The
short-term impact analysis estimates the variation of month-on-month impact and ex-
plores the trend based on historical knowledge.

5.1.2 Experiment results

This experiment gives two case studies. One is long-term impact analysis, i.e. year-
on-year analysis, in terms of ship flow, daily throughout, and average dwelling time of
quays. Another is short-term impact analysis, i.e. month-on-month analysis, on the
variation trend of the ship’s flow.
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Figure 5.3: The distribution of berths in the Oslo port.

Table 5.1: DTW distance of ship flow, quay’s daily throughout, and quay’s average berthing
time in different years.

Feature Category Y’17 VS Y’18 Y’17 VS Y’19 Y’18 VS Y’19 Average variation
□ VS Y’20

Y’17 (%) Y’18 (%) Y’19 (%)

Ship

flow

General cargo 171.0 185.0 192.0 182.7 187.0 (2.4) 194.0 (6.2) 193.0 (5.7)

Carrier 8.0 17.0 13.0 12.7 18.0 (42.7) 14.0 (10.0) 23.0 (81.6)

Container 147.0 151.0 157.0 151.7 137.0 (-9.7) 149.0 (-1.8) 151.0 (-0.4)

Tanker 54.0 53.0 54.0 53.7 49.0 (-8.7) 49.0 (-8.7) 44.0 (-18.0)

Cruise 25.0 32.0 27.0 28.0 69.0 (146.4) 56.0 (100.0) 74.0 (164.3)

Ferry 123.0 131.0 123.0 125.7 255.0 (102.9) 247.0 (96.5) 245.0 (95.0)

Throughout

of quays

Quay 1 18.1 101.8 96.5 72.1 74.8 (3.7) 71.6 (-7.3) 46.7 (-35.3)

Quay 3 3.1 4.6 4.8 4.3 10.3 (146.0) 11.7 (179.4) 10.7 (155.4)

Quay 4 65.8 67.3 55.2 62.8 66.8 (6.4) 59.7 (-4.8) 57.8 (-8.0)

Quay 5 220.4 216.8 216.2 217.8 200.6 (-7.9) 205.0 (-5.9) 209.6 (-3.8)

Quay 6 139.7 117.4 135.1 130.7 121.8 (-6.8) 136.7 (4.6) 116.1 (-11.2)

Quay 7 15.9 18.1 19.4 17.8 11.0 (-38.4) 17.9 (0.6) 17.3 (-2.7)

Berthing time

of quays

Quay 1 8.5 11.6 12.4 10.8 11.9 (9.8) 13.3 (25.3) 12.9 (23.7)

Quay 3 5.7 6.5 5.9 6.0 9.7 (60.0) 9.0 (50.0) 9.7 (61.2)

Quay 4 33.0 32.2 29.3 31.5 35.9 (14.1) 33.6 (6.6) 30.5 (-3.1)

Quay 5 27.3 25.8 25.9 26.3 23.1 (-12.1) 26.2 (-0.6) 26.3 (0.0)

Quay 6 16.6 16.2 17.9 16.7 14.1 (-15.9) 15.1 (-9.6) 16.6 (-0.8)

Quay 7 4.9 5.6 5.3 5.3 4.5 (-15.3) 4.7 (-12.0) 5.0 (-5.1)
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Year-on-year impact analysis

DTW analysis results are shown in Table 5.1. The distribution of quays is shown in The
units of DTW distance with respect to the ship’s flow, daily throughout of quays, and
berthing time is the number of times, 10000 tons, and 100 hours separately. ‘Average
variation’ is the average value of the former three-year variations. ‘□ VS Y’20’ denotes
‘2017 vs. 2020’, ‘2018 vs. 2020’, ’2019 vs. 2020’. ‘(%)’ denotes the increasing percentage
of current value against the benchmark. For example, 2.4% represents the variation
between 2017 and 2020 rising by 2.4% against the average variation. That also means
the impact caused by COVID-19 is about 2.4%. On the other hand, -9.7% means
the variation caused by COVID-19 is less than the average variation. In other words,
COVID-19 does not influence its behaviours.

The mined knowledge is shown as follows:

• The drastic variation appears in the flow of cruises and ferries as a result of the
big decrease of ship frequencies.

• Cargo ships are influenced slightly.

• Most of the port operations are not affected heavily.

• Quay 3 has a significant change with respect to daily throughout and berthing time
before and during the pandemic.

The first point indicates that passenger ships are sensitive to the global pandemic. That
brings revelations to policy-makers that service industries are supposed to gain more
financial support. The second point implies port managers should guarantee the suffi-
cient cargo handling capability of quays to speed up logistics. The third point tells us
that few ships were stopping this berth during COVID-19. This is a rational outcome,
possibly because quay 3 is close to ferry berths and at Oslo port center. Therefore cargo
ships are moved to other cargo quays. There are some abnormal patterns that are not
caused by COVID-19. For example, the variation of carrier’s flow is quite large (81.6%)
between 2019 and 2020.

A significance interval test is introduced to estimate the threshold of impacts caused
by COVID-19 based on the analysis results above. Although these three features repre-
sent different physical meanings, throughout and dwelling time, in essence, results from
the variation of ship flow. Hence, it is reasonable to use the average changing rate of
impacts as a threshold that represents the severity of impacts. In this study, α is set as
0.05. As the p-value of the Shapiro test is 5.1×10−8 far less than 0.05, data are normally
distributed. Therefore, the significance interval is set as [10.1, 39.7]. In this study, the
upper significance interval is selected as a threshold. That means, if the impact caused
by COVID-19 is larger than 39.7, it is regarded as a severe impact of which stakeholders
should be cautious.

Month-on-month impact analysis

In order to analyze the short-term trend of ship’s flow variation, first of all, January
2019 is selected as a referenced month. And then, the fluctuation of the ship’s flow
between January and February is counted as a normal vibration. In other words, it
is a benchmark value that equals zero. If the variation is larger than zero, the ship
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flow varies abnormally in the current time period. The window time is 15 days. Some
are 14 or 16 days, depending on the month. The blue bar shows the increasing rate
of change in the remaining months against the benchmark scatters in Figure 5.4. The
boxes represent the percentile value of the ship’s flow variation in the past three months.
At the bottom of Figure 5.4, green bars mean that the current variation is less than the
average variation of the past three months; orange bars indicate that it is a bit larger;
red bars show that its variation is over 39.7, reaching a serious level. For example, due
to COVID-19, the drastic variation takes place from the middle of March 2020. It starts
to recover to the normal level from the middle of June.

Figure 5.4: The short-term impact analysis on ferry’s flow using DTW.

To sum up, the case study exhibits that the proposed method is able to find abnormal
patterns caused by COVID-19 and quantify its impacts. The discovered knowledge could
be used for port management and preplanning in the next emergency crisis. In addition,
it is capable of providing support to stakeholders for short-term decisions through month-
on-month impact analysis.

5.2 Probabilistic ship route prediction

Maritime transportation suffers from uncertainties caused by pilots’ decisions and en-
vironmental factors. The changing environment and surroundings of ships would pose
high risks to safe ship navigation. Due to rich information on ship behaviours in AIS
data, it can be applied to estimate the possibility of a ship tracking certain routes, which
can be further used to support decision-makers for collision avoidance.

5.2.1 System structure of route prediction

The system of online ship trajectory probabilistic prediction includes two parts as shown
in Fig. 5.5. The first part is to cluster ship trajectories in a regional waterway. Three
steps are demanded to cluster historical ship trajectories. The first step is to collect
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Figure 5.5: The system structure of online probabilistic route prediction of ships.

AIS data in this area and match ship types based on MMSI using the database in
my previous paper [82]. The second step is to cut off ship trajectories based on ship
behaviours such as port call and port departure. The last step is trajectory clustering to
group ship trajectories according to the trajectory shape. The second part is real-time
trajectory probabilistic prediction. AIS data of a ship is obtained with a specific window
time. After that, this ship’s trajectory is classified to the corresponding route based on
the trajectory similarities. When a new ship is navigating in this area, its trajectories
could be classified into one of the clustered trajectories. This is done by computing
the DTW distance between the ship trajectory and clustered trajectories at the same
time interval. Then, the probability distribution of DTW distance to each cluster can
be obtained. Generally, the smaller the DTW distance, the larger probability this ship
follows this route. Therefore, the minimum value in the distribution of DTW distance is
used as the metric of trajectory similarity. Given the minimum DTW distance (DTWi)
of this ship’s trajectory to route i, Eq. 5.1 is used to estimate the probability (Pi) of the
ship following the route i separately.

{
Sum =

∑n
i

1
DTWi

Pi =
1

DTWi×Sum

(5.1)

where n is the number of identified routes. Due to the varying ship behaviours, such
trajectory prediction is carried out with a specific window time. At the same time, the
probability is updated synchronously.

5.2.2 Experiment results

This section mainly introduces how to use historical AIS data to cluster ship routes and
how to predict ship routes probabilistically.
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Figure 5.6: The identified ship routes by HDBSCAN.

Identified ship routes

Figure 5.6 shows the clustered trajectories by HDBSCAN. In this figure, the orange circle
refers to the direction of Olso which is labelled as 4; the orange triangle is located at the
north sea which is labelled 1. The city Svelcik and Moss are labelled 2 and 3 separately.
In these figures, 12 routes are found from different directions. The correspondingly
identified trajectories are shown in Figure 5.6a - Figure 5.6l. In each subfigure, for
example in Figure 5.6a, ‘1 to 2’ means the ship is calling the port of Svelvik from the
North sea. Therein, an abnormal route is found in Figure 5.6l. This possibly results
from the process of trajectory extraction. When some ships are stopping for avoiding
collisions, the trajectories of these ships are cut off into two segments. We can remove
this route manually or not consider this route for the ship route classification in the next
section.

Probabilistic route prediction

In the case study of ship route prediction, there are four ships sailing in this area as
shown in Figure 5.7. These trajectories are extracted from the AIS data on June 7th,
2020. In the legend of this figure, Ship1(1 − > 3) represents ship1 moved from the
direction of 1 to 3.

These six figures show the four ships’ trajectories at different time moments. The
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Figure 5.7: The four ships’ trajectories at different time moments.

time T1-T9 is a relative time. The 10-minute timestamp is defined as 0. Every 10
minutes is regarded as a window time. That means the time interval between T1 and
T2 is 10 minutes. At time T6, ship1 and ship2 arrive at their destination whereas the
remaining two ships are still sailing toward their destination.

For ship1, at six time moments, the DTW distance between its trajectory and routes
is shown in Table 5.2. Note that all values were multiplied by 103 in Table 5.2. The
probability of ship1 tracking Route1, route7, and route11 is shown in Figure 5.8a. The
estimated probability of different routes has a very large variation over different time
moments. Ship1 follows route11 with a relatively large probability of 47.34% at the
beginning. Route1 ranks second and route7 has the smallest probability. As time goes
on, the probability of route7 becomes greater than the others from T4 and keeps arsing
up to 96.49% at T6. On the contrary, the probability of route11 and route1 decreases all
the way to 1.70% and 1.81%, separately. The predicted probability of routes is identical
to our observation of ship1 movement in Figure 5.7a - Figure 5.7f.

For ship3, the DTW distance between its trajectory and routes is shown in Table
5.2. The corresponding probability estimation is shown in Figure 5.8b. At T1 and T2,
Ship4 tracks Route9 with the largest possibility over 40%. On the contrary, route3 has
the smallest possibility, which means Ship4 is unlikely to track route3 at the beginning.
From T3, route8’s possibility goes up quickly and starts to be larger than route9’s. As
time goes on, route8 accounts for the dominant possibility which is over 80% from T4.
As shown in Figure 5.7d, we can observe that Ship4 is moving toward the direction of
the North Sea. In other words, it is tracking route8 from now on.
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Table 5.2: The DTW distance between ship’s trajectory and identified routes.

Ship Course T1 T2 T3 T4 T5 T6

Ship1

Course1 2.78 2.89 3.28 14.59 49.67 78.03

Course7 5.27 3.05 4.93 5.74 8.03 1.37

Course11 2.03 2.27 2.72 11.80 34.28 73.10

Ship2
Course2 3.06 7.28 2.66 2.37 5.01 1.71

Course10 23.55 60.51 126.63 195.16 219.57 275.56

Ship3

Course3 2.82 19.55 49.4 111.97 210.36 283.13

Course8 1.73 2.83 3.58 3.74 3.66 2.93

Course9 1.66 1.93 4.99 16.71 45.43 95.56

Ship4
Course2 29.77 68.05 84.05 128.70 233.42 345.34

Course10 1.83 2.09 1.07 1.00 1.93 1.84
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Figure 5.8: The probabilistic route prediction of four ships at six time moments.

For ship2 and ship4, the DTW distance between them and their routes presents an
inverse varying trend in Table.5.2. Figure 5.8b and Figure 5.8d show that ship2 tracks
route2 whereas ship4 tracks Route10 from beginning to end.

57



CHAPTER 5. CASE STUDY: AIS DATA ANALYSIS AND MODELLING

DTW distance

P

Route i
Route k

Route 
prediction

Time

Lat
Lon
SOG
COG

Real-time AIS data

Data 
preprocessing

Lat
Lon
SOG
COG

Short-term position

P

Prediction
History 

Historical knowledge

Knowledge fusion

Historical 
position

Predicted 
position

Onboard support

Short-term trajectory

Predictor

Ship type

Olso area

Figure 5.9: The knowledge fusion framework for the uncertain ship motion prediction.

Through real-time ship trajectory prediction, it can give decision-makers support
in terms of the inference of the future trajectory. It can benefit for them to make ship
path planning for collision avoidance.

5.3 Short-term ship trajectory prediction

AIS data have been widely used for ship trajectory prediction. The prediction accuracy is
prone to the impact of AIS data quality. On the hand, noises and data missing problems
exist in the AIS data. On the other hand, many uncertainties could be introduced during
data pre-processing, such as interpolation. Therefore, this paper proposes a hybrid model
to quantify the ship position uncertainty by integrating historical trajectory information
and online prediction of the GP model.

5.3.1 System structure of ship trajectory prediction

This section outlines how to quantify uncertainties of ship motion-based knowledge fu-
sion of online position prediction and historical information. The whole analysis pro-
cedure is mainly composed of three parts, as shown in Figure 5.9. The first part is to
identify the route that this ship is tracking, which can be used to extract position behav-
ior from the identified route as prior knowledge. The second one constructs a data-driven
model which is used to predict future positions online based on current ship states. The
last part is to make predictions by knowledge fusion from historical information and
real-time position prediction.

After route identification, the historical trajectory information could be extracted
based on the current ship position. It is represented by a Gaussian distribution. Mean-
while, the constructed GP model can predict the future position based on the current ship
states. The predicted position is also denoted by a Gaussian distribution. Next, Gaus-
sian fusion is to fuse these two Gaussian distributions. Assuming Lathist ∼ N (µ1, σ

2
1)
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Figure 5.10: The number of trajectories in different routes.
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Via Gaussian fusion, the new mean value (µ′) and standard variance (σ′) of Lat can
be obtained. Likewise, the new mean value and standard variance of Lon can also be
derived.

5.3.2 Experiment results

As shown in Figure 5.10, route11 contains 486 trajectories, accounting for 37.30. It
is followed by route8 around 378 trajectories. The number of other remaining 5 routes
amounts to 127. Therein, route11 has a similar behavior, apart from trajectory direction
to route8. Therefore, only route11 is chosen for the following experiment. Likewise,
route9, route10, and route5 are selected while others are not considered due to the
limited number of trajectories. The training set accounts for 80% while the test set is
20%. For GP modelling, the variational distribution is the Cholesky distribution and the
inducing points of variational inference are (3,16,36). The epochs of Pytorch training
are 50 at which the training loss converges to the smallest value. LSTM has 6 layers
network with 128 hidden neurons. The code was implemented based on Pytorch and
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Table 5.3: The RMSE of the whole trajectory prediction on four routes

Route Methods 1min (m) 2min (m) 3min (m) 6min (m)

11

GP 73 84 100 158

LSTM 89 104 121 173

Kinermatic 469 915 4310 6815

Hybrid 61 75 93 148

5

GP 137 137 154 227

LSTM 82 91 116 208

Kinermatic 492 950 4270 6728

Hybrid 60 78 99 162

9

GP 49 65 105 196

LSTM 47 55 73 150

Kinermatic 216 419 1746 2691

Hybrid 47 52 74 112

10

GP 94 146 188 297

LSTM 84 99 132 225

Kinermatic 483 944 4313 6837

Hybrid 57 85 115 195

Gpytorch [83]. Ship trajectory contains different ship behaviors such as turning and
straight sailing. For straight movement, the model has relatively higher accuracy than
the turning maneuvers. Hence, two types of error metrics are chosen in this study. One
uses the root mean square error (RMSE) of distance for a whole trajectory.

Quantitative analysis

Table 5.3 displays the RMSE values between the reference and the predicted positions
at the time horizon of 1 min, 2 min, 3 min, and 6 min using the entire trajectory for
evaluation. The trajectory includes both turning and straight sections, where ’turning’
denotes a ship-turning segment. We compare the RMSE of different models including
GP, LSTM, Kinermatic model, and the proposed hybrid model.

The results in Table 5.3 show that the hybrid model achieves consistently low RMSE
values for 1-minute position prediction, with values less than 65 m. As the time horizon
increases to 2 and 3 minutes, the RMSE values of the hybrid model increase, but remain
smaller than those of other models, peaking at 115 m. These values are approximately
20 m smaller than those of LSTM. For a 6-minute prediction, the hybrid model’s RMSEs
range from 112 m to 195 m. The difference in RMSE between the hybrid model and
LSTM grows larger at around 40 m. Overall, the hybrid model outperforms other
models.

Table 5.4 shows the RMSE of models for the turning trajectories prediction in dif-
ferent routes. Compared with the whole trajectory prediction, the RMSE values of GP,
LSTM, and hybrid model increase overall for turning trajectory prediction, especially
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Table 5.4: The RMSE of the turning trajectory prediction on four routes

Route Methods 1min (m) 2min (m) 3min (m) 6min (m)

11

GP 80 98 119 183

LSTM 106 123 138 208

Hybrid 47 70 95 163

5

GP 133 149 180 279

LSTM 107 136 170 283

Hybrid 66 93 125 207

9

GP 83 136 212 432

LSTM 82 128 201 503

Hybrid 54 108 173 328

10

GP 122 183 237 325

LSTM 171 200 236 394

Hybrid 105 124 169 274

for 6-min position prediction. When the predictor makes a turning trajectory predic-
tion for route9, the RMSE of the hybrid model is 200m larger than that of the whole
trajectory prediction. For other routes prediction, the difference is not obvious due to
the small turning angle. From this table, it can be seen that the hybrid model shows an
obvious advantage and its RMSE is over 100m smaller than the LSTM for route9 and
route10. Therefore, the hybrid model did have a better performance on ship trajectory
prediction, particularly for the ship-turning trajectory prediction.

Qualitative analysis

Figure 5.11 shows the predicted trajectory in route9 at different time moments, in which
the green point means the current ship position, the black points are the reference
positions at 1 min, 2 min, 3 min, and 6 min; the blue dashed line represents the predicted
trajectory by GP; the yellow line is the history information; the red line is the predicted
trajectory by the hybrid model; the blue shaded area is the uncertainty area within 95%
confidence interval of the GP prediction while the red area is the uncertainty area of the
hybrid model prediction.

In Figure 5.11a, the red line coincides with the referenced trajectory. In addition, its
uncertainty area is smaller than the blue area. As the predicted time horizon becomes
longer, the offset between the predicted trajectory and the reference goes larger and its
uncertainty area turns to bigger as well. From this figure, the uncertainty area obtained
by the hybrid model is smaller than GP’s. Even in the worst case, its uncertainty is
equivalent to the GP’s.

Based on the above analysis, the pure data-driven GP model can not predict ship-
turning manoeuvers perfectly. This does make sense because the turning data only
account for a small part of the training dataset. Therefore, historical trajectory in-
formation plays a key role to calibrate the GP’s prediction to render a more accurate
prediction.
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Figure 5.11: The turning trajectory prediction for route9.

5.3.3 Online ship trajectory prediction

A ship is sailing from Olso to the north sea. The real-time ship trajectory prediction
is shown in Figure 5.12 and Figure 5.12. The left subfigures are the probabilistic route
prediction at six time moments. The dotted lines are the possible routes of this ship
will track in the following time. The pie chart at the left bottom of the subfigure shows
the probability of each route this ship is following. This probability changes over time.
For example, in Figure 5.12a, a ship tracking route8 has the largest probability around
51.9% at T1. In Figure 5.12c, the probability of route9 goes up from 30.2% to 64.0%.
As time goes on, its probability keeps increasing up to 100% in Figure 5.12k.

The right subfigures are the ship trajectory prediction at different time moments.
Route prediction aims to identify which predictor is supposed to be used for ship position
prediction. For example, a ship following route8 has a large probability at T1 and
consequently, a predictor trained by trajectories in route8 is used to make trajectory
prediction. The corresponding predicted trajectory is shown in Figure 5.12b. Therein,
the solid black line is the past trajectory of this ship and the dotted line represents the
future trajectory that is taken as the ground truth. The red dotted line is the predicted
trajectory by the proposed hybrid model and the red-shaded areas are the estimated
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Figure 5.12: The real-time ship trajectory prediction.

63



CHAPTER 5. CASE STUDY: AIS DATA ANALYSIS AND MODELLING

Moss(3)

Svelvik(2)

Horten

Olso(4)

North sea(1)

59.3°N

59.5°N

10.1°E 10.4°E 10.7°E

N

Current position

35.9%

64.1%

Route8
Route9

(g) Route prediction at T4.

Moss(3)

Svelvik(2)

North sea(1)

59.4°N

59.43°N

10.52°E 10.55°E 10.58°E 10.61°E

N

Current position

Past trajectory
Predicted trajectory
Future trajectory

(h) Trajectory prediction at T4.

Moss(3)

Svelvik(2)

Horten

Olso(4)

North sea(1)

59.3°N

59.5°N

10.1°E 10.4°E 10.7°E

N

Current position

100.0%

Route9

(i) Route prediction at T5.

Moss(3)

Svelvik(2)

North sea(1)

59.4°N

59.43°N

10.54°E 10.57°E 10.6°E 10.63°E

N

Current position

Past trajectory
Predicted trajectory
Future trajectory

(j) Trajectory prediction at T5.

Moss(3)

Svelvik(2)

Horten

Olso(4)

North sea(1)

59.3°N

59.5°N

10.1°E 10.4°E 10.7°E

N

Current position

100.0%

Route9

(k) Route prediction at T6.

Moss(3)

Svelvik(2)

North sea(1)

59.4°N

59.43°N

10.58°E 10.61°E 10.64°E 10.67°E

N

Current position

Past trajectory
Predicted trajectory
Future trajectory

(l) Trajectory prediction at T6.

Figure 5.12: The real-time ship trajectory prediction.
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uncertainty at different time horizons. The blue point is the current position of this ship.
When the largest probability changes to route9 in the following time, the trajectory is
predicted by the predictor trained by trajectories in route9. From this figure, it can be
observed that the predicted trajectory is identical to the ground truth, which means the
proposed hybrid model did have a better performance on the short-term ship trajectory
prediction.

5.4 Chapter summary

This chapter mainly introduces AIS data analysis and modelling. Three cases studies
are given as follows:

• Descriptive and diagnostic analytics are applied to analyze the interaction between
COVID-19 and ship behaviours by AIS data analysis. The important features are
extracted by statistical analysis methods and then used for short-term and long-
term impact analysis via DTW. The results show that the proposed method can
identify the abnormal ship behaviour influenced by COVID-19. They can also be
used for the support of economic policy-making and port management if extreme
quarantine measures are required in the next health crisis.

• To ensure safe ship navigation, descriptive and diagnostic analytics are applied to
cluster ship trajectories using one-year AIS data of container ships navigating in a
regional area. The result shows that the proposed method can identify routes cor-
rectly. Based on the clustered trajectories, DTW is used to estimate the possibility
of a ship tracking certain routes. The analysis result could be used to support
decision-makers for collision avoidance.

• Ship motion is prone to the impacts of various uncertain factors. A hybrid model
is proposed for UQ of the predicted ship positions via the knowledge fusion of
historical trajectory information and online prediction of the Gaussian Process
model. Through experiment comparison, the proposed method achieves a better
performance on trajectory prediction. In addition, an uncertainty area is given to
describe the probabilistic ship movement.

AIS data contains information-rich ship static and dynamic states. Mining valuable
knowledge from AIS data benefits onboard support of various marine operations.
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6
Conclusion and future work

This dissertation explores the application of data analysis in providing onboard support
for demanding marine operations. It presents research findings based on three case
studies of marine data mining for situation awareness and decision support. The main
objective of this work is to provide support for various marine operations through data
analysis and modeling. To achieve this, various analysis technologies were employed
to analyze marine data. A major contribution of this study is the use of prescriptive
analytics, SA and UA, to improve the reliability of predictive models and reduce decision-
making risks. In summary, this dissertation highlights the potential of data analysis
for improving marine operations, and its findings can serve as a valuable resource for
researchers and practitioners in the field.

6.1 Summary of contributions

The rich historical information contained in marine data can aid decision-makers in
taking timely actions to fit future development and challenges, as stated in RO1. De-
scriptive and diagnostic analytics are effective tools for extracting potential patterns and
knowledge from large marine datasets. For example, statistical analysis and clustering
methods can be used to discover potential patterns in the AIS data and structural re-
sponse data. However, they can not answer the question of what is likely to happen in
the future, leading to the need for RO2. ML and DL are used to create a surrogate model
between system inputs and outputs to carry out, for example, ship position prediction.
However, data-driven models are susceptible to uncertainties and are black-box and not
explainable, leading to RO3, RO4, and RO5. To identify the most influential factors to
expected outcomes, SA is introduced to improve the model’s reliability and aid operators
in making well-informed decisions in RO3 through a case study of thrusters’ significance
analysis. For the problem of UQ, RO4 developed a probabilistic model to quantify the
uncertainty of observations of interest such as ship positions. RO5 aims to use SA to
reduce the computational cost of modal parameters UQ, which can implement online
support for structural health monitoring.

The main contributions of this dissertation are as follows:

• Descriptive analytics and diagnostic analytics are utilized in marine data analy-
sis to uncover potential patterns and support decision-making. Two case studies
demonstrate the effectiveness of these methods.

• ML technologies are employed to construct a surrogate model from marine data,
which enables SA to analyze the importance of each factor to a specific operation.

• A hybrid model is proposed to enhance the confidence level of predicted results
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through UQ for online decision support.

• A framework based on UA and SA-based framework is proposed to implement
rapid UQ of observations of interest for onboard support of SHM.

6.2 Summary of publications

The summary of publications is as follows:
Paper I combines SA with SVM to analyze thrusters’ importance to the ship’s DP ca-

pability, taking into account the influence of thruster failures and environmental factors.
SVM is used to construct a surrogate model between thrusters and ship DP capability
while SA is used to analyze the sensitivity of thrusters. The results of the analysis can be
used to support decision-making for improving the ship’s DP capability on board. The
proposed method is validated through simulations, and the results demonstrate that it
can accurately identify the sensitivity of thrusters.

Paper II uses a clustering method and DTW to analyze the impact of COVID-19
on ship behaviours in the port areas using AIS data. Clustering is to identify quays in
Oslo port and DTW is to quantify the impact of COVID-19. Through long-term impact
analysis, the mined knowledge can be applied to port management if extreme measures
are required in the next health crisis.

Paper III applies the clustering method to identify the physical modes of offshore
structures. After SSI-cov, stable poles can be obtained by a stable criterion. A clustering
method is then used to cluster poles to render physical modes. The proposed method
is able to reduce the many user intervenes and enables efficient automatic parameter
identification. The results show that clustering can render more successful identifications
than the slack value-based method among different ice speeds.

Paper IV presents a UA framework based on SA to implement online UQ of modal
parameters. SA is applied to pick up the input variables that contribute the most to
the identified modal parameters. Next, the important variables are left free to vary over
their range of existence to obtain the modal parameters’ uncertainties. The framework
is applied to full-scale tests from Norströmsgrund lighthouse and model tests carried out
in HSVA. The comparison with traditional automated modal parameter identification
shows its superiority in terms of the accuracy of modal parameters.

Paper V combines clustering with DTW to make a probabilistic ship route predic-
tion. Clustering is utilized to group ship trajectories to different routes. Next, DTW
is used to compare the similarity between trajectories and the identified routes to esti-
mate the possible route that a ship is following. The proposed method is demonstrated
through several case studies, showcasing its effectiveness for online probabilistic route
prediction. The analysis results can support decision-makers in making collision avoid-
ance decisions.

Paper VI extends the work presented in Paper V by using AIS data to construct a
GP model for ship trajectory prediction. A hybrid model is then developed by combining
historical trajectory information with the GP model to improve prediction accuracy. The
proposed hybrid model outperforms the GP model alone, achieving more accurate and
less uncertain ship trajectory predictions.
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6.3 Future work

This thesis has mainly focused on three aspects of onboard support of marine operations:
thrusters’ importance analysis, structural health monitoring, and AIS data analysis and
modelling. Different kinds of analysis approaches are combined to meet the requirement
of different data types and applications. The main focus revolved around UA and SA.
The below bullet points provide suggestions for how the presented research may be
extended.

• To analyze the importance of thrusters under various influences, DP operations
were simulated on the Zeus simulator with different scenarios of thruster failures
and environmental factors. The simulation provided the flexibility to change input
parameters conveniently with human interventions, such as modifying the wind’s
direction and speed to predefined values. However, the simulation data has limi-
tations in replicating real-world scenarios. Therefore, in future work, the proposed
method will be applied to real DP operations to validate the results obtained from
the simulations.

• A hybrid model has been proposed to quantify the uncertainty of ship movements
by integrating historical knowledge with the predicted position obtained from a GP
model. The training dataset was obtained from one year of AIS data for container
ships. However, for some routes, the dataset only contained a few trajectories,
which is not sufficient to train a GP model accurately. Therefore, additional tra-
jectories need to be extracted to construct a more precise model for ship trajectory
prediction. Furthermore, a marine traffic monitoring system will be developed by
integrating the knowledge discovered from AIS data and the constructed predic-
tors. This system is expected to provide online predictions of ship positions and
early warnings for collision avoidance.

• The black-box nature of data-driven models may increase the risk of overconfidence
in their predictions and limit their application in certain engineering fields. SA is an
efficient tool for understanding the learned input-output relationship and can help
open up this black box by investigating the impacts of parameters on outputs. SA
has been widely used for improving various neural networks, such as the proposed
bilateral SA method that measures the relationship between neurons and layers
to improve deep neural networks [84], and the use of SA to optimize the internal
structure of convolutional neural networks by reducing inputs in its first layer [85].
In future work, SA will be applied to improve data-driven models for onboard
support of marine operations.

• Causality analysis involves determining the cause-and-effect relationships between
different factors and understanding how changes in one variable can lead to changes
in another. The combination of SA and causality analysis can tell decision-makers
what causes it to happen and how much the influential factors contribute to marine
operations. Future research might explore it.
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A B S T R A C T

The safety of offshore operations is highly dependent on the dynamic positioning (DP) capability of a vessel. 
Meanwhile, DP capability comes down to the ability of the thrust generated by thrusters to counteract envi-
ronmental forces. Therefore, it is significant to investigate which thrusters are important to the position-keeping 
ability of vessels. However, complex environmental factors make the investigation of thrusters’ importance more 
complicated. Hence, this paper proposes a new method to identify the influence of each thruster on vessel’s 
station-keeping capability in different sea states. The station-keeping capability is quantified by a defined syn-
thesized positioning ability criterion comprised by vessel position, heading angle, and consumed power. Through 
the comparison of different machine learning approaches, support vector machine (SVM) is used for building a 
surrogate model between DP capability and thrusters. In order to determine the most sensitive thruster in the 
whole process of vessel operation, an improved sensitivity analysis (SA) called ‘PAWN’ is employed along with 
statistical analysis to evaluate the significance of thrusters from different perspectives. Seventeen cases are 
investigated with respect to different thruster failures in various sea states. The results show the proposed 
method is able to identify the significance of each thruster in different scenarios.   

1. Introduction 

As the exploration and exploitation of marine resources such as oil 
and gas, renewable energy and other minerals, marine operations are 
becoming more and more frequent in recent years. Due to the influence 
of environmental disturbances, it represents significant safety and 
integrity challenges that shall threaten the offshore operations. For the 
sake of safe offshore operations, vessels with dynamic positioning (DP) 
system are playing a critical role. They can automatically maintain the 
desired position. In order to ensure that a loss of position shall not occur 
even after a worst-case failure in all components, DP 2 and DP 3 are 
designed with redundant power systems in which 20% of electrically 
generated power shall be reserved (AS, 2016). The high 
position-keeping ability of DP 2 and DP 3 enables them to work in 
various offshore operations. Their wide applications have drawn great 
attention from stakeholders. Many researchers devoted to optimizing 
control parameters, improving controller performance, and detecting 
thruster failure (Lee et al., 2020; Brodtkorb et al., 2018; Han et al., 
2020). However, few of them investigated the interior relation between 

thrusters and the vessel’s DP capability. Hence, it is of great potential to 
analyze the interaction among thrusters and environmental factors for 
on-board support of the vessel’s DP capabilities improvement. 

In order to test the operational safety of DP vessels, a digital twin is 
introduced and widely used in the service of designing and evaluating 
system performance, safety, and structural integrity. It is a digital model 
that integrates data from varying sources, and can simulate all opera-
tions in the real asset while saving time and money. The digital twin has 
been successfully applied in a simulation of DP operations as well as the 
assessment of DP capability (Skulstad et al., 2019). As all DP vessels 
carry a risk of loss of position, which has detrimental effects on 
personnel, the environment and equipment (Chen Nygärdet al., 2016), 
they have a high requirement of DP capability. For the assessment of DP 
capability of a vessel, thruster’s failures are also seen as the first concern 
in most of assessing guidelines (Karlsen et al., 2016). It makes sense to 
use digital simulation platform for investigating whether vessels can 
provide sufficient forces using the rest of thrusters to counteract against 
environmental loads when a certain thruster failure occurs such as a 
tunnel thruster failure or a main thruster failure. 
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To date, there have been many attempts to analyze thruster failure in 
marine operations. Xu et al. developed a novel synthesized criterion to 
analyze the positioning performance of DP vessels. Various thruster 
failures were considered in the research (Xu et al., 2017). Benetazzo 
et al. utilized a parity space approach and a Luenberger observer to gain 
the residuals. Next, the cumulative sum algorithm was applied on these 
residuals to detect and isolate thruster failures (Benetazzo et al., 2015). 
Sheng et al. developed a program to investigate the DP capability of 
semi-submersible vessels under the case of thruster failure (Sheng wen 
et al., 2016). This research contributed to demonstrating the safety of 
the DP system and provided adequate guidance to the thrust system’s 
design. Han et al. used a deep Convolutional Neural Network method to 
detect the potential thruster failure (Han et al., 2020). This data-driven 
method had a good performance to detect and isolate thruster failure 
without any vessel-dependent models. However, the relation between 
DP capability and thruster failures is not investigated further for papers 
as mentioned above. Xu et al. proposed a method using sensitivity 
analysis (SA) to investigate the influence of thrusters on positioning 
capability (Xu et al., 2015). However, the paper adopted local SA which 
can not reflect the characteristics of vessel sea-keeping ability in whole 
input space. Cheng et al. used global SA method to analyze thrusters’ 
importance to ship heading (Cheng et al., 2019). Nevertheless different 
thruster failure cases were not considered in their study. In a word, there 
are few researches to carry out a comprehensive analysis of how much 
contribution thrusters make to DP capability in the case of various 
thruster failures and different sea states. 

This paper proposes a novel methodology to analyze the significance 
of each thruster on DP capability. It could not only provide onboard 
support for improving DP capability, but also give guidance for power 
system design as well as thrusters’ maintenance with the help of sta-
tistical analysis and SA. The predominant contributions are as follows: 
1) positioning capability is quantified by a designed synthesized crite-
rion made up of ship position, heading angle, and consumed power; 2) 
machine learning (ML) and a modified PAWN are combined to quantify 
the significance of each thruster; 3) this method is applied to analyze the 
importance of each thruster during DP operation in different failure 
conditions and environmental load scenarios. 

The rest of this paper is structured as follows: the next section de-
scribes related works on DP capability assessment and SA. Section 3 
details the procedure of obtaining significance of thrusters from data 
generation, data preprocessing, an optimal ML selection to significance 
analysis. Section 4 compares the performance of ML based on the 
benchmark function, and tests the ability of the proposed method to 
analyze the importance of thrusters using professional simulator in a 
variety of scenarios. Section 5 is conclusion. 

2. Related work 

2.1. 1Dynamic positioning capability assessment 

Some offshore operations, like oil production, pipe laying, and dril-
ling, deeply rely on DP capability to maintain vessel position or heading 
within an accepted criterion. Traditionally, dynamic positioning capa-
bility (DPCap) analysis is performed based on industrial standards, such 
as ‘IMCA M140’, ‘DNV GL ERN’, and ‘ABS skp’ (Pivano et al., 2017). 
DPCap studies test whether the vessel has favorable actuator capacity to 
counteract environmental loads while keeping a constant position 
(Wang et al., 2018a). However, they have limited ability to provide 
other relevant and desired information. A significant shortcoming of the 
quasi-static DPCap analysis is the inability to consider the transient 
conditions during a failure and recovery after the failure (Pivano et al., 
2014). 

These deficiencies call for the development of next-level DP capa-
bility analysis. Dynamic capability (DynCap) was proposed to determine 
the station-keeping capability of a vessel using systematic time-domain 
simulations. It employs a complete six-degree of freedom (DOF) vessel 

model. This model includes dynamic environmental loads, a complete 
propulsion system with thrust losses and so on (Pivano et al., 2014). One 
of the advantages of the DynCap analysis, compared to traditional 
DPCap, is that the limiting environment can be computed by applying a 
set of user-defined acceptance criteria. The position and heading 
excursion are set to allow a wide or narrow footprint. The 
‘DNVGL-ST-0111’ standard introduced detailed requirements, princi-
ples and acceptance criteria (AS, 2016). It also provides complete 
analysis methods for the three DP capability levels. 

Many researchers have been working on DP capability analysis for 
decades. Pivano et al. performed full-scale trials using the DynCap 
method to validate a vessel’s station-keeping capability (Pivano et al., 
2017). Different comparisons were made by statistics of time-domain 
data with various environmental loads. Xu et al. investigated posi-
tioning performances for DP vessels considering thruster failure modes 
by a synthesized criterion (Xu et al., 2017). The criterion is used to 
quantify the positioning ability by integrating positioning accuracy and 
consumed power. However, these criteria cannot fully represent the DP 
capability from the perspective of statistics. 

In this study, positioning capability refers to how well the DP vessel 
is positioned, instead of the extremity of the environmental conditions 
the vessel can counteract, as underlined by (Xu et al., 2015). Based on 
prior studies and our SA method (Wang et al., 2018b), positioning 
capability is quantified by time-series ship parameters such as ship po-
sition, heading, and consumed power. Some aforementioned statistics of 
time-domain data to analyze the DP capability of offshore vessels were 
accepted and adopted. 

2.2. Sensitivity analysis 

SA is a powerful tool to identify how much the variation of model 
output can be apportioned to inputs (Pianosi and Wagener, 2015). SA, in 
general, is made up of variance-based and density-based methods. 

Variance-based methods includes Sobol (Todorov et al., 2020), the 
Fourier Amplitude Sensitivity Test (FAST) (Tarantola, Mara), and the 
Extend-FAST (EFAST) (Kovacs et al., 2019) and so on. A well-known 
advantage of variance-based methods is their ability to quantify the 
individual parameter contribution and the contribution resulting from 
parameter interactions (Zadeh et al., 2017). However, variance-based 
methods do not completely represent the output uncertainty when the 
model output is highly skewed (Pianosi et al., 2015). 

To overcome this drawback, a new method called moment- 
independent global SA method—also known as density-based method, 
was proposed, which includes an Entropy-based sensitivity measure 
(Yun et al., 2019) and the δ- sensitivity method (Plischkeabc, 2013). 
However, optimal bandwidth selection has a high computational cost. 
Hence, the development of these methods has been limited. Francesca 
et al. came up with a novel SA method called ‘PAWN’ that characterizes 
the output distribution by its cumulative distribution function (CDF) 
instead of probability distribution function (PDF) (Pianosi and Wagener, 
2015). One advantage of PAWN is that it hugely reduces computational 
cost because there is no need to compute unknown parameters for the 
approximation of empirical CDF. Another advantage is that sensitivity 
indices can be easily obtained, by considering either entire range of 
variation of the model output or a sub-range. 

SA is widely applied for maritime applications with different pur-
poses. Li et al. applied a derivative-based SA method to simplify a neural 
network (NN) model so as to predict ship motion (Li et al., 2017). Zhang 
et al. adopted a sum of square derivatives to choose inputs for the 
nonlinear auto aggressive model in order to create a compact ship mo-
tion model (Zhang and Liu, 2014). Mizythras et al. proposed an SA to 
determine parameters that have impacts on vessel propulsion and 
maneuverability (Mizythras et al., 2016). 

In this study, based on our previous experience (Wang et al., 2018b), 
the PAWN method is adopted to conduct an SA of thrusters. In addition, 
we make some modifications and improvements according to features of 
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DP data. 

3. System structure 

This section outlines the procedure of significance analysis of 
thrusters in DP operations. The workflow consists of three parts as 
shown in Fig. 1. The first part generates raw simulated DP data by DP 
simulator which is considered as a digital twin of a real vessel. Users are 
able to change inputs to the simulator, such as sea states, desired posi-
tion, and thruster states, to simulate different scenarios to obtain several 
data sets. After the behavior of vessel changes over time, new raw sensor 
data are generated and come into the digital platform for further 
modeling and simulation. The second part is data analysis that is made 
of data preprocessing and significance analysis. Outcomes of analysis are 
used to offer on-board support of real vessel’s operations as well as 
system optimization. 

3.1. DP data generation 

In the study, the DP data are generated from a professional simulator 
in the Offshore Simulator Centre — the world’s most advanced provider 
of simulators for demanding marine operations1. Fig. 2 illustrates the 
simulator conducting DP operation under the impact of environmental 
disturbances. Its position is limited within a red circle whose diameter is 

denoted as R. The limit of heading is restricted by red sector whose angle 
is represented as θ. Fig. 3 shows the environmental effects on the ship. 
Wind with an attack angle of α can be changed in the simulation. Current 
and wave coming from other directions are fixed in the study. In Fig. 3, 
the Earth-fixed reference frame is denoted as (XE,YE). The body-fixed 
reference frame (X,Y) is fixed on the body of the vessel. Its origin is 
the vessel’s center of gravity. The DP vessel is equipped with six 

Fig. 1. The system structure of significance analysis of thrusters in DP operations.  

Fig. 2. DP operations of a vessel at sea.  

Fig. 3. The thruster configuration of DP vessel.  

Table 1 
Sea states.  

Beaufort Wind velocity Wave height Wave period Current speed 

Description [m/s] [m] [s] [m/s] 

Fresh 7.90 1.30 6.50 0.75 
Breeze     
Strong 13.80 3.10 8.50 0.75 
breeze      
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thrusters including four tunnel thrusters (Thruster 1–4) and two main 
thrusters (Thruster 5 and 6). In the simulator, sea state, thruster state, 
and the desired position are all adjustable. 

In this paper, two different sea states are investigated as shown in 
Table 1. The desired position is set to (0, 0). Thruster states involve 
various thruster failure modes. Based on our experiment design, after 
the corresponding thrusters are shut off, the rest of thrusters are used for 
actuating vessel to generate several groups of time-domain DP data. For 
each sea state, experiments are performed on different thruster failure 
modes. Then ship position and heading are obtained after each experi-
ment, and the other ship state parameters such as thruster arguments are 
obtained as shown in Table 3. These time series data are raw DP data. 
They will be processed in the following step. 

3.2. Data preprocessing 

Data preprocessing makes it possible to ensure efficiency and accu-
racy for computation of the computed PAWN sensitivity indices. It re-
quires three substeps that are splitting data, denoising, and 
normalization. This experiment was set as a ship that was intact at the 
beginning but in failure mode by the end. The whole experiment pro-
duced a lot of time-series DP data related to various combinations of 
thruster failure modes and sea states. These data are full of anomalies 
resulting from noise, which would threaten the accuracy of SA. In this 
paper, Isolation Forest (iForest) was applied for data cleaning. The 
iForest is an algorithm that uses a tree structure to isolate instances 
(Schneider et al., 2016). It can (i) achieve a low linear time-complexity 
and a small memory-requirement, and (ii) deal with the effects of 
swamping and masking effectively. iForest detection is a two-stage 
process. The first stage uses the given training data to build an isola-
tion tree. The second one computes an average path length of each 
instance through isolation trees. 

Let X = [x1, x2, …, xm]⊆Rm×d be a sample set of m instances with d- 
variate distribution. Firstly, iForest is constructed by the proposed al-
gorithm in (Liu et al., 2012). Secondly, path length h(x) of each instance 
is computed by counting the number of edges from the root node to a 
leaf node in an iTree. Next, Eq. (1) is used to gain c(ψ) that is the average 
of h(x) given ψ. 

c(ψ) =

⎧
⎨

⎩

2H(ψ − 1) − 2(ψ − 1)/m ψ > 2,

1 ψ = 2,

0 otherwise.

(1)  

where ψ is the subsampling size during the stage of building an iForest; 
H(I) is the harmonic number which can be estimated by Euler’s constant 
(ln(i)+0.57721). Finally, Eq. (2) is used to calculate the score of every 
instance: 

s(x, ψ) = 2
E(h(x))

c(ψ) (2)  

where E(h(x))is the expectation of h(x) from the collection of iTrees. If s 
is close to 1, then the instance is seen as an anomaly and removed from 
the data set. 

After data cleaning, these data need to be normalized in the range of 
[0, 1] by Eq. (3) for the purpose of formulating a synthesized criterion. 

x̃i =
x̂i − min

(
X̂

)

max
(

X̂
)

− min
(

X̂
) i = 1…l (3)  

WhereX̂ = [x̂1 , x̂2 ,…, x̂l ]⊆ℝl×d. Therein, l is smaller than m because some 
abnormal instances are removed. After the procedure of data pre- 
processing, the processed data will be used to create a synthesized cri-
terion to construct a surrogate model. 

3.3. Significance analysis 

Significance analysis is the last step to identify the significance of 
thrusters. It is comprised of statistical analysis and SA. These two 
methods can analyze the significance of thrusters from different re-
spects. Meanwhile, the integration of both methods can provide guid-
ance for power allocation, DP system optimization. Statistical analysis 
focuses on statistical features of DP data by virtue of mean, maximum 
value, variance and PDF (Pivano et al., 2017). As a supplementary in-
struction for SA, it is able to show the variation of each of data attributes 
intuitively. SA is capable of quantifying the contribution of each thruster 
to DP capability. It is comprised of three portions: 1) proposing a syn-
thesized criteria to quantify DP capability; 2) selecting an optimal ML 
method to build a surrogate model; 3) using PAWN to compute sensi-
tivity indices. 

3.3.1. Synthesized criterion 
To investigate the significance of every thruster on positioning 

capability in different sea states and failure modes, a synthesized crite-
rion that quantifies the positioning performance needs to be defined. 
This criterion is used to evaluate how well the ship is positioned. Ac-
cording to the DP capability level in ‘DNVGL-ST-0111’ standard, 
assessment of station-keeping capability is mainly based on statistics of 
the position deviation and heading deviation. Therefore, position and 
heading should be integrated into the synthesized criterion. In addition, 
for ensuring the safety and accuracy of DP operations, the DP vessel has 
a higher power requirement than other conventional vessels (Xu et al., 
2017). Therefore, power consumption is also taken into consideration in 
this criterion. As a result, we create a synthesized criterion by Eq. (4) to 
lump the above-mentioned ship parameters together, with extra modi-
fication to make it adapt to the SA method. 
⎧
⎨

⎩

V = ω1 × D + ω2 × A + ω3 × P
ω1 + ω2 + ω3 = 1
 Cri = −ln(V)  V  >  0

(4)  

where ω1, ω2, and ω3are weighting factors within [0, 1]; D is position 
deviation computed by the distance between current and original posi-
tion; Adenotes the heading angle variation; Prepresents total power 
consumed by thrusters; Cri is the synthesized criterion computed by the 
inverse of the monotone increasing function ’ln’. The larger V is, the 
worse the positioning capability (Cri). Compared to the exponential 
function in the interval [0, 1], the minus of ’ln’ function can amplify the 
value of V to better reflect the distinction of positioning capability 
(Kuhlmann and Tressl, 2012). Cri will be used as the model output when 
ML trains a surrogate model between thrusters’ parameters and DP 
capability. 

3.3.2. Sensitivity analysis 
A modified PAWN is adopted as an SA method to quantify the in-

fluence of thrusters to positioning capability. Compared with traditional 
method, it is able to overcome the issue of being hard to define three 
parameters, i.e., the number of unconditional input samples (Nu), the 
number of conditional input samples (Nc), and the number of condi-
tional points (n) (Pianosi and Wagener, 2018). 

Let < X̃, Y >be a generic sample where X̃is the processed input 
samples; Y denotes the value of quantifying DP capability. It is handled 
by splitting the range of input factor x̃iinto n equal subintervals {Ik}. The 
PAWN indices approximation is shown as follows: 

⎧
⎨

⎩

Ŝi = max
k=1,...,l

KS
(

Ik

)

KS
(

Ik

)

= max
y

⃒
⃒
⃒
⃒Fy

(

y
)

− Fy|̃xi

(

y
⃒
⃒
⃒
⃒x̃i ∈ Ik

)⃒
⃒
⃒
⃒

(5)  

where Ŝi is sensitivity index; KS is Kolmogorov-Smirnov statistic; Fy(y)is 
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unconditional CDF where y⊆Yand Fy|x̃i
(y

⃒
⃒x̃i ∈ Ik)is conditional CDF 

where x̃iis fixed. Using Eq. (5) to compute the sensitivity index ensures 
there is no need to specifyNc. It coincides with the number of points in 
Ikas approximatelyN/n, where N is the size of the generic sample. As for 
the unconditional sampleNu, a better option is to use subsample of Y as 
the conditional ones i.e.,Nu = Nc. 

The process of SA executed by PAWN combined with ML is shown in 
Algorithm 1. In this algorithm, ’LIBSVM’ is used as an SVM tool to train 
the surrogate model (Chang and Lin, 2011). The model training pa-
rameters like ‘s’, ‘t’, ‘bestc’, ‘bestg’, ‘p’, ‘v’, and the introduction of 
functions like ‘SVMcgForRegress’, ‘libsvmtrain’, and ‘libsvmpredict’ can 
be found in (Chang and Lin, 2011). This algorithm mainly includes three 
parts. The first part is modelling (line 2–6). The thrust of all thrusters is 
the model input, and the positioning capability as defined by Cri above is 
the model output. ML is employed to construct a surrogate model be-
tween the model input and output. The second part is resampling (line 
6–7). ‘Unconditional_sampling’ is used to generate unconditional sam-
ples; ‘PAWN_sampling’ is used to gain conditional samples. The last part 
is sensitivity index computation (line 9–10). The ‘PAWN’ indices of all 
thrusters are computed by ‘PAWN_index’. Its function is shown in line 
11–17. Line 12–13 is to calculate the unconditional output and condi-
tional output. Line 14–16 is to compute the ‘PAWN’ index using Eq. (5). 
Detailed computing process could be found in (Pianosi and Wagener, 
2018). The introduction of parameters and functions regarding PAWN 
method can be found in (Pianosi et al., 2015). 

4. Case study 

4.1. An optimal ML selection based on Ishigami function 

In order to find an optimal modeling method, first of all, three 
prevalent ML methods, such as back propagation (BP), regularized 
extreme learning machine (RELM), and SVM, are introduced into 
training models (Wang et al., 2018b; Cui and Jing, 2019; Shao and Er, 
2016). Next, PAWN combined with these three models is used to 
compute sensitivity indices of three parameters of Ishigami function. 
Finally, SA results are compared with a benchmark to identify the 

Fig. 4. SA results computed by PAWN based on different ML methods.  
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optimal ML method for analyzing the significance of thrusters. 
In the course of determining an optimal ML method, Ishigami func-

tion is selected as a mathematical model, because Ishigami is a widely- 
used benchmark model that is applied to test the validity of sensitivity 
analysis method (Pianosi and Wagener, 2015). It is shown in Eq. (6). 

y = sin(χ1) + asin(χ2)
2

+ bχ4
3sin(χ1) (6)  

where a and b are random constants that can influence the sensitivity 
index of χi, i ∈ {1, 2, 3}.χifollows a uniform distribution over [ − π, π]. 
Here, we set a = 2 and b = 1. Fig. 4 displays SA results as well as 
benchmark value. The dotted line is the benchmark value of sensitivity 
indices of the three parameters χiin Eq. (6). The corresponding sensi-
tivity indices are S1 = 0.53, S2 = 0.19, and S3 = 0.35, respectively. It is 
evident that both BP and RELM cannot figure sensitivity index out 
correctly; whereas PAWN combined with SVM has a better approxima-
tion to the benchmark. Therefore, SVM is selected as modelling method 
in the follow-up sensitivity analysis of thrusters in different scenarios. 

4.2. Experimental design 

This significance analysis of thrusters is conducted to determine the 
variation of positioning capability apportioned to each thruster. The 
specifications of the vessel are listed in Table 2. This vessel is actuated by 
six thrusters shown in Fig. 3. The actuator forces relate to the control 
forces and moments by τ = T(ξ)f,whereξ = [ξ1, ...,ξp] ∈ ℝpis a vector of 
azimuth angles and T(ξ)is the thrust configuration matrix (Fossen, 
2011). In this paper, ξis fixed. In order to obtain the demanded thrust for 
each thruster, an unconstrained least-squares (LS) optimization problem 
is constructed. Through using Lagrange Multipliers to solve LS optimi-
zation problem, we can obtain f = T†τ , where T† =

W−1T⊤(TW−1T⊤)
−1is recognized as the generalized inverse (GI) matrix. 

Here, Wis a positive definite matrix weighting the control forces. The 

detailed reasoning process has been interpreted in (Fossen, 2011). 
The attack angles αis set as [45◦

,90◦

,135◦

]for different scenarios. The 
direction of current and wave is fixed for simplifying the experiment. 
The limits of ship position and heading are set as R = 3m and θ = 6◦, 
respectively. Table 4 lists four different combinations of sea states and 
attack angle. They are ‘strong breeze 45◦’, ‘strong breeze 90◦’, ‘strong 
breeze 135◦’, and ‘fresh breeze 45◦’. For ‘strong breeze 45◦’, there are 
seven different thruster failure modes represented by binary string: 
‘011111’, ‘101111’, ‘110111’, ‘111011’, ‘111101’, ‘111110’, ‘110110’. 
Here, ‘0’ denotes the thruster is malfunctioning; ‘1’ denotes the thruster 
is working normally. For example, ‘101111’ indicates the second 
thruster is malfunctioning while the others are working normally. The 
required parameters of ship states are listed in the Table 3. The sampling 
frequency is set as 20HZ. 

The synthesized criterion involves specifying three weighting factors 
ω1, ω2, and ω3. In this study, we set ω1 = 0.5, ω2 = 0.4, and ω3 =

0.1based on the following reasons. On the one hand, since DP vessels are 
designed with the redundant power system, in general, 20% of power 
will be reserved to avoid loss-of-position occurrence. That indicates the 
power is sufficient to keep a vessel’s position and heading during DP 
operations. Therefore, power utilization was considered the least 
important factor in the criterion. On the other hand, ship position is seen 
as the most significant factor because the loss of position brings a more 
considerable detrimental impact on DP operations than heading. For 
PAWN, n is set to 10 based on the samples of data as well as experience 
as described in other papers (Wang et al., 2018b; Pianosi and Wagener, 
2018). 

In this paper, the experiment investigates the significance of 
thrusters under circumstances of different thruster failures in two sea 
states. Using the proposed method for timely computation of thrusters’ 
sensitivity is studied as well. 

4.3. Significance analysis in different thruster failure modes at two sea 
states 

This section mainly analyzes and compares SA results in different 
environmental factors and thruster conditions. Table 5 lists the SA re-
sults of thruster failures at the strong breeze and fresh breeze sea states. 
It is found that thruster 5 is more significant than the rest of thrusters in 
most cases. Its contribution accounts for around 30% ̃40%. Especially, 
when thruster 6 fails to work, the significance of thruster 5 exceeds 35% 
because thruster 5 as the only main propeller must generate much more 
thrust to counteract the influence of environmental disturbances. When 
one thruster failure occurs, the significance of thrusters that play a 
complementary role will have a significant increase as shown in Table 5. 
For example, the PAWN index of thruster 6 increases from 8% to 30% 
when thruster 5 fails in ‘strong breeze 45◦’. The same happens to 
thruster 1 and 2. For the case of ‘101111’ in ‘strong breeze 45◦’, for 
instance, the significance of thruster 1 rises by 13% up to 26.42%. For 
dual thruster failure ‘110110’ in all sea states, at least two of tunnel 

Table 2 
Parameters of the offshore vessel.  

Items Values 

Length between perpendiculars [m] 82.7 
Breadth [m] 23.0 
Draught [m] 7.5 
Tunnel thruster propulsion [KN] ≤173.0 
Main thruster propulsion [KN] ≤1350.0  

Table 3 
The variables of DP data.   

Inputs Unit 

Ship status east position [m] 
west position [m] 
heading [deg] 

Thruster 1 rpm [RPM] 
thrust [KN] 
consumed power [KW] 

Thruster 2 rpm [RPM] 
thrust [KN] 
consumed power [KW] 

Thruster 3 rpm [RPM] 
thrust [KN] 
consumed power [KW] 

Thruster 4 rpm [RPM] 
thrust [KN] 
consumed power [KW] 

Thruster 5 rpm [RPM] 
thrust [KN] 
consumed power [KW] 

Thruster 6 rpm [RPM] 
thrust [KN] 
consumed power [KW]  

Table 4 
Environment and thruster failures setting for significance analysis.  

Sea states Attack angle [deg] Thruster failure 

Strong breeze 45 011111 
101111 
110111 
111011 
111101 
111110 
110110 

Strong breeze 90 101111 
110110 

Strong breeze 135 101111 
110110 

Fresh breeze 45 101111 
110110  
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thrusters’ significance go up to over 20% compared with one thruster 
failure. That possibly results from the drastic variation of the ship 
heading. It is reflected from the above analysis that the significance of 
thrusters depends on the conjunction of sea states, wind direction as well 
as thruster failures. 

Next, significance analysis of thrusters is carried out in detail from 
the respect of statistics and SA. In order to illustrate how to do analysis 
by SA coupled with statistical analysis, we will use ‘111111’ in the case 
of strong breeze with an attack angle 45◦ as an example. For the case of 
‘111111’ in ‘strong breeze 45◦’, an average of thrust and SA results are 
shown in Fig. 5. The left y-axis represents the PAWN index of each 
thruster while the right one denotes mean value of thrust. These two 
analysis methods are able to show the importance of thrusters from their 
own perspective. In addition, there are interior connections between 
these two methods. The results of SA show that the order of importance 
of thrusters is quite as similar as that of statistical analysis. The PAWN 
index shows that thruster 5 has the most influential effect on positioning 
capability, at 29.76%. The second-largest effect is thruster 4, accounting 
for roughly 22.46%. Thrusters 3, 1, 2, and 6 follow in that order. 
Thruster 6 makes only an 8.17% contribution to the station-keeping 
ability of DP vessel despite its similarities to thruster 5, which makes 
the largest contribution. However these two methods show some dis-
tinctions, such as inconsistency of SA results with statistical analysis for 

Table 5 
SA results of thruster failures in strong breeze and fresh breeze.  

Sea states Direction (deg) Thruster failure PAWN index 

Thr1 Thr2 Thr3 Thr4 Thr5 Thr6 

Strong breeze 45 111111 0.1342 0.1040 0.1576 0.2246 0.2976 0.0817 
011111 0 0.3701 0.1448 0.1480 0.2284 0.1087 
101111 0.2642 0 0.0604 0.1069 0.3222 0.2459 
110111 0.1992 0.2080 0 0.0850 0.3058 0.2019 
111011 0.1415 0.2483 0.0853 0 0.3472 0.1775 
111101 0.2629 0.1839 0.1433 0.1098 0 0.3000 
111110 0.1674 0.1225 0.1435 0.1456 0.4209 0 
110110 0.2106 0.2026 0 0.2050 0.3818 0 

90 111111 0.2877 0.1211 0.0829 0.1485 0.1313 0.2283 
101111 0.2723 0 0.1103 0.1100 0.2985 0.2089 
110110 0.0737 0.3337 0 0.2392 0.3534 0 

135 111111 0.1832 0.1638 0.1224 0.1888 0.2544 0.0873 
101111 0.0987 0 0.3491 0.3273 0.1268 0.0980 
110110 0.2285 0.4016 0 0.0997 0.2702 0 

Fresh breeze 45 111111 0.1373 0.0729 0.1317 0.0771 0.3460 0.2350 
101111 0.2591 0 0.1007 0.0901 0.3401 0.2099 
110110 0.1826 0.2113 0 0.2282 0.3780 0  

Fig. 5. The SA result and average thrust of 6 thrusters for ‘111111’ in ‘strong 
breeze 45◦’. 

Fig. 6. The PDF of consumed power and thrust. generated by thrusters 5 and 6 
for ‘111111’ with strong breeze and α = 45◦. 

Fig. 7. The power consumed by thrusters 4 and 6 in ‘strongbreeze 45◦ 111111’.  
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thruster 6. 
From the perspective of statistics, thruster 6 has as much thrust as 

thruster 5 as shown in Fig. 6. The mean and variance of thrust generated 
by thruster 5 are the same as those generated by thruster 6. The two 
thrusters also consume the same amount of power and have similar 
statistical features. But observing results obtained by the proposed SA 
method in Fig. 5, in which all SA indices are drawn as blue bars, shows 
that thruster 6 is far less significant than thruster 5. It is even less than 
thruster 2. It reveals that SA results do not entirely conform with results 
obtained by statistical analysis. Both methods did give us insights that 
thruster 6 consumed amounts of power but generated too much useless 
force in this case. 

To obtain more insights from Fig. 5, thrusters 4 and 6 are for detailed 
investigation. Fig. 7 displays the PDF of power consumed by thrusters 4 
and 6, respectively. The power consumed mostly appears in the interval 
[100 KW, 600 KW], which is far less than the power consumed by 
thruster 6 as shown in the blue area. Moreover, the mean of thrust 
generated by thruster 4 is far less than that generated by thruster 6. 
Based on Figs. 5 and 7, we can find that thruster 6 consumed more power 
and generated more thrust but less contribution than thruster 4. 

Through SA and statistical analysis, it is definitely found that some 
thrusters have fewer influences on DP capability, although they 
consumed more power. That results in a waste of power. Therefore, 
significance results could be used to provide guidance to improve the 
power allocation algorithm. For example, sensitivity indices as 

weighting factors are added into the algorithm. In this case, thruster 6 
with high power consumption but a little contribution to DP capability 
will be reallocated less power by the power system. Instead, more power 
should be redistributed to thruster 4, which could improve DP capability 
with low power consumption. 

4.4. Real-time computation of thrusters’ sensitivity 

Although the existing method is efficient to analyze the thrusters’ 
significance in (Xu et al., 2015), it is not competent in the real-time 
computation of thrusters’ sensitivity. This section is to verify the feasi-
bility of the proposed method in estimating thrusters’ sensitivity online. 

A simulation experiment is carried out when thruster state changes 
from ‘111111’ to ‘011111’ in ‘strong breeze 45◦’. The thrust generated 
by thrusters is shown in Fig. 8. Red dotted line represents the point at 
which thruster 1 fails to work. In order to visualize each curve clearly, 
multiple shifts of 80 KN along the y-axis direction is performed for 
thruster 2–6. In fact, the value of the thrust of all thrusters starts from 0. 

Fig. 9 shows the variation of sensitivity indices of thrusters over time. 
The horizontal axis denotes sensitivity index is computed at a window 
time of 25s that comprises 500 sample points. Evidently, the proposed 
method is able to gain the contribution of each thruster to the DP 
capability in the process of vessel counteracting against environmental 
forces. Especially, when thruster 1 shuts down at 650s depicted by a red 
circle, the importance of thruster 1 becomes 0 thereafter. On the other 

Fig. 8. Time-domain variation of thrust from ‘111111’ to ‘011111’.  

Fig. 9. Real-time computation of the significance of thrusters.  

Fig. 10. The instant variation of the significance of thrusters before and after 
thruster 1 failure. 
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hand, thruster 2 plays a more and more important role since this point. 
This is because thruster 1 and 2 are bow thrusters, as shown in Fig. 3, the 
malfunction of thruster 1 leads to the rise of thruster 2 importance in the 
long term. In addition, the importance of other thrusters rises to some 
extent as well after thruster 1 fails to work. 

At the point of 650s, the detailed information can be found in the 
Fig. 10. From this figure, the importance of thruster 2 and 4 grow rapidly 
compared with other thrusters. Therefore, the instant change of the 
indices could provide the operator evidence to improve the power- 
consuming of thruster 2 and 4 to promote the DP capability quickly 
after the failure of thruster 1. 

To sum up, the proposed method is capable of finding the contri-
bution of all thrusters in a real-time manner. 

4.5. Discussion 

For the case of ‘111111’ in ‘strong breeze 45◦’ in Fig. 6, the 
discrepancy in terms of power and thrust between thruster 5 and 6 
possibly results from the fact that the rudder angle of main thrusters is 
fixed. As shown in Fig. 3, in order to resist the wind whose attack angle is 
45◦, thruster 5 must bear much more load than thruster 6. Therefore, the 
power and thrust of thruster 5 vary more drastically compared with 
those of thruster 6. It can be shown from the above analysis that 
thruster’s importance is affected by a synthesized factor, including the 
configuration of thrusters, the attack angle of sea states, and the thrust 
allocation algorithm. 

In Fig. 4, the result of BP and ELM is not as ideal as that of SVM. This 
situation mainly results from the limited training sample on account of 
online significance analysis. Considering the requirement of on-board 
support, therefore, SVM is used for the real-time estimation of sensi-
tivity indices. Since the sensitivity index computed by SVM can converge 
to a stable value after 500 training samples, we chose a window time of 
25s corresponding to 500 training samples under the sampling fre-
quency of 20HZ in Section 4.4. 

6. Conclusion 

This paper proposes a method that mainly focuses on studying the 
significance of thrusters based on a synthesized positioning capability 
criterion in different thruster failure conditions. In order to quantify the 
DP capability, a synthesized assessment criterion is proposed by inte-
grating ship position, heading and power. Next, the Ishigami function is 
used as a benchmark to determine an optimal modelling method. 
Through the comparison with ANN and ELM, SVM is selected to 
construct a surrogate model between thrusters and DP capability. 
Finally, different thruster failure cases in two sea states are designed to 
elaborate on how statistical features and SA are combined to quantify 
and analyze the significance of thrusters. 

The purpose of significance analysis results is as follows: 1) they can 
provide onboard support to control power system to allocate more 
power to the most significant thruster when thruster fails to work, which 
contributes to efficiently improving DP capability; 2) they also can be 
used to provide guidance to optimize power allocation. By observing 
statistics of power, and sensitivity results, thrusters that consumed more 
power but made much less contribution to positioning capability should 
be reallocated less power. This is able to be accomplished by, for 
example, adding sensitivity indices as weighting factors into the allo-
cation algorithm. That is helpful to improve vessel’s DP capability with 
less power consumption. 

For future work, efforts will be put on investigating the impact of 
azimuth thrusters and the thrust allocation logic on the significance of 
thrusters in DP operations. 
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ABSTRACT

Offshore structures are prone to damage caused by ice-
induced vibrations. It is presently unknown to what extent dif-
ferent ice conditions change the properties of the structure, such
as natural frequency, damping ratio, and mode shape. Under-
standing the dynamic interaction between ice and structures are
important for the operational ability of offshore structures. In
this study, the covariance-driven stochastic subspace identifica-
tion algorithm (SSI-cov) is introduced to identify modal parame-
ters of a scale-model structure during ice-structure interactions.
In order to reduce the number of user interactions and inherent
bias to the identified modal parameters, we therefore introduce
an automated parameter identification approach. First, SSI-cov
is used to obtain poles that describe the information: damping
ratio, mode shape, etc. After that, a stable criterion is used to
pick up stable poles. Finally, Hierarchical clustering is used
to cluster poles to identify the natural frequency. The proposed
method is able to reduce the many user-intervenes and enables
efficient automatic parameter identification. The results show
that Hierarchical clustering can render more successful identi-
fications than the slack value-based method among different ice
speeds. The results also show changes in the system frequencies
for different ice conditions.

Keywords: Ice-structure interaction, SSI-cov, Automated
parameter identification, Hierarchical clustering.

NOMENCLATURE
µ continuous time eigenvalue.
λ eigenvalue.
φ eigenvector.
f frequency.
ξ damping coefficient.
ϕ mode shape.
ω frequency in radian.
σ normalized standard deviation.
S f variance of frequency.
Sξ variance of damping.
SMAC variance of MAC.

INTRODUCTION
The action of drifting ice may induce vibrations in offshore

structures, posing a threat to the structural integrity. It is impor-
tant to understand the system characteristics during ice-structure
interaction for the operational ability of offshore structures. The
presence of ice surrounding a structure may alter the system
properties, such as natural frequencies, damping ratios, and mode
shapes. Identifying the modal parameters under different ice con-
ditions may therefore give insight into how the ice actions affect
modal properties, and in turn provide uncertainty bounds to each
parameter. Nord et al. further showed that for some ambient
interaction types it was difficult to identify the system proper-
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ties, and showed that there is a need for a controlled environment
assessment of when to expect a successful modal parameter iden-
tification [1].

In order to avoid bias from the analyst to the identified pa-
rameters, the system identification should ideally be performed
without too many user interactions. Unfortunately, traditional
methods involve many user interactions, which results in large
computational cost [2] and bias to the results. Therefore, it is
necessary to develop an analysis method for automatic modal
parameters identification.

In what follows, it is assumed that for a limited time win-
dow of ice-structure interaction, the process can be described by
a linear time-invariant system. To obtain the structural proper-
ties, a covariance-driven stochastic subspace identification (SSI)
algorithm is applied to estimate modal parameters. All identi-
fied modal parameters are afflicted with statistical uncertainty
because of the finite number of data samples, undefined mea-
surement noises, non-stationary excitation, etc. [3]. Hence, a
covariance-driven SSI (SSI-cov) algorithm was proposed to esti-
mate the frequencies, damping ratios and their uncertainties [4].

After SSI-cov analysis, poles at different system orders are
obtained. A pole is considered stable if the deviances in fre-
quency, damping and normalized standard deviation of the fre-
quency fulfill the predefined stability criterion. After that, a sta-
bilization diagram is constructed by stable poles via taking fre-
quency as abscissa and system order as ordinate [5]. Physical
modes should then show up as vertical lines in the diagram.

To date, there are many suggested methods to automatically
determine the modal parameters. Magalhaes et al. applied hierar-
chical clustering to identify the modes successfully based on the
data from concrete arch bridge [6]. Verboven et al. [7] and Van-
landuit et al. [8] employed fuzzy C-means clustering to classify
the modes into two categories (physical and spurious). Reynders
et al. introduced how to use hierarchical clustering to identify the
physical modes based on single-mode validation criteria [2]. It
does not require any user-specified parameter values. The valida-
tion example shows the hierarchical clustering has better robust-
ness to identify modal parameters than the traditional identifica-
tion approach. Inspired by this research, hierarchical clustering
is used to identify the parameters of the ice-structure interaction
model.

This study proposes a workflow of modal parameters iden-
tification which is made up of three parts: data preprocessing,
SSI-cov analysis and physical mode identification. This anal-
ysis procedure could identify modal parameters with few users
intervenes and achieve a better performance of parameters iden-
tification than the slack value-based identification method. The
main contributions are shown as follows: 1) several validation
experiments are carried out to choose proper parameters for the
selection of stable poles in order to improve the accuracy of iden-
tified frequencies; 2) Hierarchical clustering is compared with
slack value-based identification approach to estimate the param-

eters of ice-structure interaction model.
The rest of this paper is structured as follows: the next

section describes the procedure on modal parameters identifica-
tion, including data preprocessing, SSI-cov analysis, and physi-
cal mode identification. Case study compares two cases regard-
ing optimal parameters selection and makes a comparison be-
tween the slack value and hierarchical clustering. Discussion and
Conclusion are given finally.

Modal parameters identification procedure
This section introduces the main procedure of mode anal-

ysis. As shown in Fig. 1, The procedure includes three parts:
data preprocessing, SSI-cov analysis, physical mode identifica-
tion. Data preprocessing is to process the collected sensor data.
Next, the processed data is analyzed by SSI-cov algorithm. Fi-
nally, physical modes could be clustered by the proposed algo-
rithm.

Ice-structure interaction model testing
The ice-structure interaction model tests were carried out in

the Hamburg Ship Model Basin’s (HSVA) large ice model basin
1. The setup consists of a flexible foundation with adjustable
mass and stiffness to mimic certain dynamic characteristics of
the structure and a rigid model. The flexible foundation was de-
signed to have one or two natural frequencies in ice drift direction
(21.36 and 29.53 rad/s). A cylindrical model (red) with a 500
mm diameter was used for the tests considered for the presented
study. This model was equipped with tactile sensors to monitor
local ice loads. Additionally, global loads were recorded by a
6-component load scale connecting the compliant basis and the
model, and lasers and accelerometers monitored the ice-induced
vibrations of the structure in x- and y-direction (loading direc-
tion and perpendicular in-plane motion). The setup is described
in detail in [9]. The setup was instrumented by three Triax ac-
celerometers to measure the structural response over different ice
velocities as shown in Fig. 1. The data was obtained under dif-
ferent structural and ice related properties. These include the
SDOF (one natural frequency) and MDOF (two natural frequen-
cies) setup, both tested in two different ice thicknesses with con-
stant compressive strength, and in two different ice types: stan-
dard model ice, and an alternative model ice type developed for
crushing failure. Hence, eight ice-structure property combina-
tions have been investigated. The full data set is described by
Stange et al. [9]. Run 32010 investigated in the presented anal-
ysis was conducted in 41 mm thick standard model ice. HSVA’s
standard model ice is frozen from a 0.7% sodium chloride so-
lution using a spraying technique which creates a fine grained
fresh water ice top layer. Subsequently, the ice grows in the nat-
ural way with primarily columnar structure. During growth, air

1https://www.hsva.de/
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FIGURE 1: The procedure of automated modal parameters identification.

is embedded into the growing ice sheet to adjust its density, in-
crease its brittleness, and give the ice a white appearance. When
the target thickness has been reached, cooling is switched off,
and heat is released into the ice tank room. Consequently, the ice
is weakened until the target strength is reached. Detailed infor-
mation on HSVA’s standard model ice, as well as the alternative
ice type mentioned above, is given by Ziemer et al. [10].
All eight test runs contain several different ice drift speeds from 4
to 150 mm/s. Therefore, for test data analysis the measurements
are subdivided into segments with constant velocity first. Sec-
ond, segments are grouped for different ice failure types (inter-
mittent crushing (IC), frequency lock-in (FLI), continuous crush-
ing (CC)). The ice failure types strongly affect the dynamic re-
sponse of the structure: In IC, the ice load is sawtooth-shaped
with irregular loading periods which are much longer than the
natural periods of the structure. The model, therefore, follows
the ice load in a quasi-static manner. IC occurs at low ice speed.
When the speed increases, the interaction changes to FLI. This
failure mode is characterized by quasi-synchronized local ice
failures that cause large oscillation amplitudes in a frequency
close to the natural frequency of the structure. As the ice drift
speed increases further, the failure mode changes to CC and cre-
ates an irregular, broadband excitation. After subdividing the
data, it is resampled with 100Hz. Finally, a high pass filter whose
cutoff is 0.2 HZ is used to remove the noise from the data. The

processed data is used as the input of SSI-cov algorithm.

Covariance-driven stochastic subspace identification
algorithm

The linear time-invariant system is described by a discrete
time stat-space model

{
xk+1 = Axk +wk
yk =Cxk + vk

(1)

where wk and vk are the process and output noise, respectively.
In order to identify matrices A and C from which the modal fre-
quencies, damping and mode shapes can be obtained, the eigen-
values and eigenvectors of the system in Eqn.1 is calculated by
the following equations

{
(A−λiI)φi = 0
ϕi =Cφi

(2)

from which the µi, fi, and ξi can be obtained:

µi =
lnλi

T
, fi =

|µi|
2π

,ξi =−100
R(µi)

|µi|
(3)
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where T is the sampling period. SSI is a prevalent method to
estimate the matrices A and C. The algorithm uses the output
data to build a subspace matrix Hp+1,q ∈ R(p+1)r×qr0 . Therein, r
is the number of sensors, r0 is the number of reference sensors,
and p and q are the parameters chosen such that pr ≥ qr0 ≥ n,
where n is the model order. The subspace matrix Hp+1,q can
be truncated at a user-defined model order n via singular value
decomposition (SVD)

Hp+1,q =
[
U1 U0

][Σ1 0
0 Σ0

][
V T

1
V T

0

]
(4)

and

Op+1 =U1Σ1/2
1 (5)

The C matrix can be directly extracted from the first block of r
rows of the observability matrix Op+1, while the A matrix can be
obtained from a least-squares solution of

O↑p+1A = O↓p+1 (6)

where O↑p+1 =




C
CA

...
CAp−1


,O↓p+1 =




C
CA

...
CAp




The principle of SSI-cov is to propagate the covariance of
the subspace matrix, ΣH , to the modal parameters through first-
order perturbations. The covariance of the modal parameters are
obtained as

cov(
[

fi
ξi

]
,

[
f j
ξ j

]
) =

[
J fi,A 01,rn
Jξi,A 01,rn

]
ΣAC

[
J fi,A 01,rn
Jξi,A 01,rn

]T

cov(
[
R(φi)
I(φi)

]
,

[
R(φ j)
I(φ j)

]
) =

[
R(Jφi,A,C)
I(Jφi,A,C)

]
ΣAC

[
R(Jφi,A,C)
I(Jφi,A,C)

]T
(7)

The detailed computational process can be referred to [4] After
SSI-cov analysis, the modal parameters are derived. Next, the
mode stability criterion is employed to pick stable poles. The se-
lected stable poles are further analyzed to obtain physical modes
in the following step.

Physical mode identification Once poles that are sta-
ble/unstable are identified, one must group poles with similar
modal characteristics. This is commonly performed in a stabi-
lization diagram, which shows the frequency of the poles on the
horizontal axis and the order of the system on the vertical axis. A

(a) Two accelerations

(b) Three accelerations

FIGURE 2: Mode frequency under the different number of struc-
tural response signals.

physical mode appears as a straight vertical line of poles, and the
line with the corresponding lowest frequency is the first eigen-
frequency, the column with the corresponding second lowest fre-
quency is the second natural frequency, and so on. Poles that are
not stacked on a vertical line are usually what is referred to as
spurious poles/modes, i.e. modes without physical interpretation.
Once one has determined which poles that should be counted as
part of one column, it is common to compute the average value
of these poles, from which we find the corresponding natural fre-
quency, damping and mode shape. The major challenge lies in
the process of choosing the poles that should be counted as part
of the column of poles (mode), due to the fact that some lie at
a slightly different frequency, have different damping values or
mode shape, and different corresponding uncertainties. There-
fore different techniques have emerged to handle the physical
mode selection, where clustering algorithms have been suggested
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TABLE 1: THE EXPERIMENT SETTINGS FOR ICE-STRUCTURE INTERACTION ANALYSIS.

Test Model Ice type Ice speed Ice thickness Flexural strength

32010 9500MDOF Model ice 4-150mm/s 41mm 56kPa

(a) rb=100 (b) rb=150 (c) rb=200

FIGURE 3: The comparison of identified modes for different choices of blockrows.

(a) nb=10 (b) nb=20 (c) nb=30

FIGURE 4: The comparison of identified modes among different number of blocks.

as an efficient technique to determine the physical modes. One of
the popular methods is Hierarchical clustering [2, 11]. Hierarchi-
cal clustering is a recursive partitioning of a dataset into succes-
sively smaller clusters. The input is a weighted graph whose edge
weights represent pairwise similarities or dissimilarities between
data points. Hierarchical clustering is represented by a rooted
tree where each leaf represents a data point and each internal
node represents a cluster containing its descendant leaves. The
tree is constructed based on the distance information between
different data points [12]. It is suitable for the data set with arbi-
trary shapes and attributes of arbitrary type. And the hierarchical

relationship among clusters is easily detected, and relatively high
scalability in general [13].
Let Q = q1,q2, ...,qn be a set of objects. The dendrogram is con-
structed by the following steps [11]:

1) Compute the proximity matrix containing the distance be-
tween each pair of objects (qi,q j).

2) Group the objects into a hierarchical cluster tree using the
distance information.

3) Choose the cut off value to partition the hierarchical tree into
clusters.
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TABLE 2: The identified frequencies by slack value and hierarchical clustering based on the data in ’32010’ under the ice failures of IC,
FLI, and CC.

Data file Frequency Method

ice velocity (mm/s)

4 6 8 10 12 14 16 18 20 28 45 65 80 95 150

IC IC FLI FLI FLI FLI FLI FLI FLI FLI FLI CC CC CC CC

32010

First
Slack value 70.80 14.86 20.25 29.76 21.02 21.07 30.71 21.06 21.19 21.27 21.57 21.38 21.50 21.38 21.61

Hierarchical 70.80 14.86 20.24 20.99 21.02 21.07 21.03 21.06 21.19 21.27 21.57 21.43 21.51 21.50 21.61

Second
Slack value 119.20 29.80 61.01 41.85 30.80 28.39 31.75 29.05 28.55 29.79 30.29 30.13 30.14 21.41 26.83

Hierarchical 120.38 29.80 24.90 29.76 30.80 28.38 31.32 29.17 28.55 29.79 30.30 30.08 30.14 25.96 26.83

Third
Slack value 122.92 36.88 80.66 70.58 42.01 31.30 31.79 29.22 31.61 42.57 59.68 61.41 59.33 25.94 30.39

Hierarchical 152.26 36.88 29.95 41.86 42.01 31.26 42.02 42.14 31.61 42.57 53.21 61.35 49.06 30.08 30.39

TABLE 3: The identified damping by slack value and hierarchical clustering based on the data in ’32010’ under the ice failures of IC,
FLI, and CC.

Data file Damping (%) Method

ice velocity (mm/s)

4 6 8 10 12 14 16 18 20 28 45 65 80 95 150

IC IC FLI FLI FLI FLI FLI FLI FLI FLI FLI CC CC CC CC

32010

First
Slack value NULL NULL 0.11 NULL 0.08 0.01 NULL 0.08 0.03 0.02 0.64 2.44 1.67 1.64 2.47

Hierarchical NULL NULL 0.13 0.05 0.08 0.01 0.08 0.08 0.03 0.02 0.64 2.35 1.73 1.51 2.47

Second
Slack value NULL 0.54 0.65 2.57 3.23 1.82 2.69 3.69 1.89 2.53 0.92 0.79 1.17 1.02 0.37

Hierarchical NULL 0.54 1.02 2.57 3.23 1.57 3.26 3.58 1.89 2.51 0.91 0.82 1.17 1.09 0.38

In this study, eigenfrequency difference and MAC are used
as distance measures in [14]. Its form is shown in Eq. (8)

d(k, l) = | fk− fl |+(1−MAC(φk,φl)) (8)

where fk is the eigenfrequency of mode k; MAC is computed by
Eq. (9)

MAC(φk,φl) =
|φ T

k φl |2
||φk||22||φl ||22

, ||φk||22, ||φl ||22 6= 0 (9)

where φk is the mode shape of mode k.
Through continuous iterations of evaluating the paired dis-

tance, the data points that are smaller than the cutoff value are
partitioned into the same cluster. Finally, hierarchical clustering
yields a set of similar mode sets from the cleared stabilization
diagram. After that, the identified physical modes are evaluated
and analyzed further based on natural frequencies and damping
ratios.

Case study
This section mainly introduces two parts of the experiments.

The first part is to pick up the optimal parameters for SSI-cov
analysis. Next, hierarchical clustering is compared with a slack
value-based approach in [1] to examine the efficiency of the au-
tomated modal analysis.

Parameters selection
The SSI-cov algorithm involves user interaction to choose a

couple of parameters that need to be selected. For example, there
are three accelerometers to measure the acceleration of the struc-
ture. However, not all measured signals contribute to accurate
parameters identification. In addition, the number of blocks (nb)
of output data matrices, as well as the number of blockrows (rb),
have influences to some extent. Other parameters such as sam-
pling frequency, system orders, could affect the identified results,
which are not our main concern in this study. Their settings can
be referred to [1].

In order to select proper parameters for modal parameters
identification, Test 32010 is used as a case and its corresponding
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settings are shown in Table 1. The test had a stepwise increasing
ice speed, and therefore different regimes of ice-structure inter-
action would take place during the total time span. The data was
cut to begin when the ice speed reached 4 mm/s. Thereafter the
data was analyzed in time windows that each consisted of 2000
data points. The choice of data points was selected to have the
sufficient number of data points for the SSI-cov algorithm to ren-
der consistent results, and few enough data points for the inter-
action regime to significantly change. Next, tolerance deviances
to frequency, damping, and MAC-values, as well as the normal-
ized standard deviation of the frequency (σ̂ωi/ωi) are leveraged
to pick up stable poles. Based on [1], a pole at order n was con-
sidered stable if the deviances in frequency, damping ratio, and
normalized standard deviation of the frequency between a pole at
order n and n-1 were less than 0.01, 0.05 and 0.05, respectively,
and corresponding MAC-values exceeded 0.95. After that, S f ,
Sξ and SMAC are chosen to be 0.02, 0.3 and 0.5 respectively to
select eigenmodes. Figure. 2(a) and Figure. 2(b) show the iden-
tified modes under the case of different accelerations. Therein,
the black curve is the power spectrum whose peaks represent the
possible physical modes. The stable poles with variance are plot-
ted following their order. The formed straight lines represent the
identified frequencies by stable poles. In Fig. 2(b), the identi-
fied second and third frequencies are overlapped while Fig. 2(a)
presents a better identification result. Therefore, this study uses
two accelerations as input data for SSI-cov analysis.

Figure. 3(a), Figure. 3(b), and Figure. 3(c) display the iden-
tified eigenfrequencies and their estimated standard deviations in
the cases of ’rb = 100’, ’rb = 150’, ’rb = 200’ separately. When
rb equals to 150 or 200, there are more spurious modes that have
larger standard deviations, as shown in Fig. 3(b) and Fig. 3(c).
Compared with them, ’rb = 100’ could obtain more accurate re-
sults which are in line with the position of the peaks of the power
spectrum, as shown in Fig. 3(a). Hence, the study prefers 100
as blockrows. Figure. 4(a), Figure. 4(b), and Figure. 4(c) dis-
play the identified eigenfrequencies and their estimated standard
deviations in the cases of ’nb = 10’, ’nb = 20’, ’nb = 30’, sepa-
rately. Through the comparison among these three figures, it is
easy to find that ’nb = 20’ could obtain better results as frequency
(20) disappeared in other stability diagrams. For this reason, the
number of blocks is selected as 20 in this study.

Comparison between slack value and hierarchical
clustering

This section compares the slack value-based parameters
identification approach with hierarchical clustering. The data
whose ice velocities are 8 mm/s and 95mm/s in datafile ’32010’
is chosen as two cases to compare these two methods. The
benchmark values of the first two eigenfrequencies are 21.352
and 29.516 rad/s separately, which are estimated when the struc-
ture was moving in the open water [9]. Considering the uncertain

(a) Slack value

(b) Hierarchical clustering

FIGURE 5: The comparison of slack value and hierarchical clus-
tering when ice velocity is 8 mm/s.

factors, the benchmark values are expanded by 10% deviation to
an interval: [19.22, 23.49] for the first frequency, [26.56, 32.47]
for the second frequency. The cutoff and depth of the Hierarchi-
cal clustering algorithm are chosen as 0.1 and 5 separately based
on data characteristics.

The focus of this study falls on the first three natural frequen-
cies that represent the most concerning modes. The ice velocities
range from 4-150 mm/s. The identified frequencies are shown in
Table. 2. The bold numbers represent the successful identifica-
tions of natural frequencies by two methods. For IC, the identi-
fied first frequencies by slack value and Hierarchical clustering
are 70.8, 14.86, separately for different ice speeds. Results show
that both methods fail to identify the first frequency. For FLI
and CC, the first two natural frequencies identified by Hierarchi-
cal clustering are around 21 rad/s and 29 rad/s among different
ice speeds. From this table, Hierarchical clustering renders more
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bold numbers than the slack value-based approach. Table. 3
shows the identified damping of the first two modes. ‘NULL’
means the corresponding damping can not be obtained due to
the failure of parameters identification. It can be seen that both
methods achieve similar results. For ‘FLI’, the damping of the
first mode is quite lower than that of the second mode, whereas it
is opposite for other cases. This trend probably results from the
increase of ice velocity.

Figure. 5(a) and Figure. 5(b) show the identified frequencies
by these two methods in the case of ice velocity being 8 mm/s.
Based on the referenced values of the first two natural frequen-
cies, it is easily found that hierarchical clustering can identify
these two frequencies correctly while slack value can not. As
shown in Fig. 5(a), some missing modes are supposed to be iden-
tified in the stabilization diagram. For example, at the position of
frequency 30 rad/s, there is supposed to be a mode that appears
on the peak of the power spectrum. Based on aforementioned
analyses, it is concluded that hierarchical clustering outperforms
the slack value-based approach as a whole.

Discussion
The section above introduced the Hierarchical clustering ap-

proach to identify the modal parameters of the structure when
encountering ice-structure interaction. As shown in Table. 2, it
often fails to identify the correct modal parameters for certain
cases like IC failure and FLI at low ice velocities. For IC fail-
ure, likely the ice-structure interaction system is too time-variant
and too nonlinear for the current method to identify the structural
parameters inherently hidden in the measured signals. This phe-
nomenon does probably depend on the severity of the ice-actions
compared to the mass and stiffness of the structure. However,
given that for a certain structure ice-actions are rare and opera-
tional parameters are to be extracted automatically as part of a
structural health monitoring system at daily or hourly intervals,
our results show that hierarchical clustering did have a better per-
formance of parameters identification than the traditional slack-
value method.

Another limitation lies in that input parameters impact re-
sults. For example, the change of nb and rb turns out to be differ-
ent identification results. In other words, the uncertainty of input
parameters would affect the accuracy of parameters identifica-
tion. For the convenience of analysis, in this study, the limited
numbers are compared based on previous research to obtain a
relatively accurate result.

Conclusion
This study introduced a Hierarchical clustering method to

automatically identify the parameters of the ice-structure inter-
action model. The proposed analysis workflow is shown in
Fig. 1, including data preprocessing, SSI-cov analysis, modal

parameters identification. In order to verify the superiority of
the proposed method, the slack value-based parameter identifi-
cation method is leveraged to make a comparison based on data
file 32010. First of all, parameters such as rb and nb are selected
based on contrast tests. Next, hierarchical clustering and slack
value are compared under the difference ice velocities from 4 -
150 mm/s. The results show hierarchical clustering outperforms
slack value in terms of the accuracy of parameters identification
for the ice failures of ‘FLI’ and ‘CC’.

Accurate parameter identification is pivotal to the opera-
tional ability of offshore structures. As the second limitation in
the Discussion, however, it is hard to obtain an accurate result
due to parameters uncertainty. Therefore, it is necessary to quan-
tify the uncertainty of input parameters from the perspective of
statistics to implement a more accurate estimation.
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A B S T R A C T

The integrity of offshore structures is prone to the threat of drifting sea ice. By exciting the natural frequencies
of the ice–structure interaction system, severe vibrations may occur. For a better understanding of how
dynamic ice–structure interaction affects the system properties, a stochastic subspace system identification
technique, SSI-cov is introduced to identify modal parameters during dynamic ice–structure interactions. Due
to the uncertain input variables of SSI-cov, the identified modal parameters suffer from the quantitative
judgment of the analyst. To address this problem, this study proposes an uncertainty analysis (UA) framework
to obtain estimates of modal parameters. This framework constitutes both a sensitivity analysis (SA) and
a UA. First, SA is applied to pick up the input variables that contribute the most to the identified modal
parameters. Next, the important variables are left free to vary over their range of existence to obtain the
modal parameters’ uncertainties. The framework is applied to full-scale tests from Norströmsgrund lighthouse
and model tests carried out in Hamburg Ship Model Basin (HSVA). The comparison with traditional automated
modal parameter identification shows its superiority in terms of the accuracy of modal parameters.

1. Introduction

The integrity of a structure located in ice-infested waters is prone
to the threats of ice forces and ice-induced vibrations. Substantial
efforts were made to understand both the physical processes leading
to ice-induced vibrations (IIVs), based on observations, measurement
campaigns on lighthouses, bridge piers, and oil platforms for decades,
but also model scale tests in ice basins (Nord et al., 2019). Drifting ice
may cause various modes of ice–structure interaction, in which some
lead to more severe vibrations than others, such as for instance crush-
ing failure mode leading to frequency lock-in vibrations (FLI). This
mode is particularly violent with respect to ice forces and structural
responses, some examples in full scale with threats of the structural
integrity (Jefferies, 1988; Blenkarn, 1970). IIVs are often associated
with crushing failure, and IIVs are also shown to pose a threat to the
structural integrity as well (Blenkarn, 1970).

While much attention naturally has been made to come up with phe-
nomenological models to predict IIVs, a very limited number of studies
were made to seek fundamental system parameters of the underlying
mechanical system by means of system identification. For structures
exposed to wind and waves, system identification has provided unique
insight into how the system properties change for different properties of
the wind or wave characteristics. For ice–structure interaction systems,

∗ Corresponding author.
E-mail address: chunliw@ntnu.no (C. Wang).

some work on model-scale experiments was conducted by Singh et al.
(1990), while on Full-scale, Nord et al. applied SSI-cov to identify
modal parameters on the Norströmsgrund lighthouse under a variety
of ice–structure interaction modes (Nord et al., 2019). Level ice acting
on a vertically-sided structure may fail to generate different failure
modes depending on indentation velocity, aspect ratio, and ice prop-
erties (Timco, 1991). In Fig. 1, crushing failure Fig. 1(a) represents
the deformation and failure of ice at high indentation speeds and low
aspect ratios. It results from the non-simultaneous occurrence of high-
pressure zones across the ice–structure interface (Nord et al., 2017).
The crushing failure mode is mostly associated with IIVs and the
main ice failure mode in our experiment (Hendrikse and Nord, 2019).
Other failure modes, such as bending failure Fig. 1(b), splitting failure
Fig. 1(c), buckling failure Fig. 1(d), and pushing floes Fig. 1(e) are not
considered in this paper and can be referred to Kärnä and Jochmann
(2003). The understanding of how ice failure modes change the modal
parameters of the structure is beneficial to the structural safe design.
However, it is still challenging in the research field for safe design and
accurate predictions in fatigue assessments.

To this end, Operational Modal Analysis (OMA) was proposed to
estimate the modal parameters from measurements of the vibration
response only (Rainieri and Fabbrocino, 2014). It can be implemented
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Fig. 1. The different types of failure modes in ice–structure interaction (Nord et al., 2017).

efficiently, economically, and safely, and does not interfere with the
normal use of the structure. The identified modal parameters are repre-
sentative of the actual behavior of the structure since it takes advantage
of natural excitation instead of artificial excitation. The most popular
OMA method is the Stochastic Subspace Identification (SSI) method
since it offers high accuracy in the identification of closely-spaced
modes and is especially suited to be automated (He et al., 2021).
SSI is to identify physical modes by picking up stable poles in a
stability diagram. Since the estimated modal parameters are afflicted
with statistical uncertainty, an efficient multi-order uncertainty com-
putation method, called covariance-based SSI (SSI-cov), was proposed
to estimate the variance of the identified modal parameters (Döhler and
Mevel, 2013). Due to its low computational cost and high identification
accuracy, it has been widely applied to analyze the parameters of
structures in recent years.

Although SSI-cov can effectively remove modes with large variances
to obtain physical modes, its accuracy of modal parameter identifica-
tion cannot be guaranteed due to various assumptions and uncertain
input parameters. For example, ice forces usually cannot be repre-
sented as Gaussian white noise and therefore the input violates the
random white noise assumption of SSI-cov. In addition, the structure
is described as a linear time-invariant system. Such assumptions could
result in errors in the modal parameters identification. Besides that,
SSI-cov contains many uncertain input parameters such as slack values,
stability criterion, system orders, etc. The parameters’ uncertainty is
propagated to the identified parameters and results in the poor estima-
tion of their values. To reduce the uncertainty of slack values, clustering
technologies were introduced for automated OMA (Reynders et al.,
2012). Clustering approaches can implement parameter identification
in an automatic way and avoid the artificial selection of slack values.
Nevertheless, clustering algorithms will bring additional uncertainties
as they contain several uncertain parameters and algorithm structure
uncertainty (known as model uncertainty). As a consequence, a robust
outlier detection was proposed to reduce statistical uncertainty caused
by the clustering algorithm (Zeng and Hoon Kim, 2021). However,
it cannot remove the algorithm uncertainty completely. In addition,
clustering technologies did not consider the uncertainty from other
input parameters of SSI-cov. Therefore, it is significant to investigate
how the identified parameters’ values vary under the different sources
of input variables’ uncertainty, which could ensure more convincing
parameter estimation for engineers.

To improve the accuracy of SSI-cov identification, this research
proposed a modal parameters analysis framework based on UA and
sensitivity analysis (SA). SA aims to pick up those factors that account
for the most contributions to the model output. That is beneficial to
lower the burden of UA caused by large amounts of variables. The
main contributions are as follows: (1) SA is introduced to remove unim-
portant input parameters of SSI-cov; (2) Sihouette and robust outlier
detection are used to improve the robustness of clustering algorithm for
automated OMA; (3) UA is applied on several ice–structure interaction
datasets for precise parameters identification. The analysis results could
provide support for structural health monitoring (SHM) of offshore
structures.

The whole paper is structured as follows. Section 2 presents related
work regarding automated OMA approaches and UA in other fields.
Section 3 gives an introduction on the proposed analysis framework
and corresponding algorithms. In the next section, several case studies
are shown to verify the feasibility of the proposed method.

2. Related work

Safe design of the deployed offshore structures requires understand-
ing the ice-induced vibrations as a result of level ice interacting with a
vertically-sided structure (Kärnä et al., 2013). To obtain knowledge of
the dynamic behavior of the structure, OMA is introduced to analyze
structure modes, each one characterized by a set of parameters (natural
frequency, damping ratio, model shape). As uncertainty is intrinsic in
various identification algorithms, it is of importance to evaluate the
uncertainty in the identified parameters. This section mainly introduces
the development of OMA and uncertainty evaluation and explores how
to apply UA for better OMA of offshore structures.

2.1. Operational modal analysis

Before the wide application of OMA, experimental modal analysis
(EMA) played a pivotal role in parameter identification. However,
EMA techniques cannot be applied to analyze massive structures and
a system in operational condition because the power of the device
is insufficient to excite the structure to attain the required magni-
tude (Lauwagie et al., 2006). For this reason, OMA was developed
to estimate modal parameters based on the data collected when the
structure is under the operational conditions (Zahid et al., 2020). The
identified parameters can be representative of the actual behavior of
the structure.

SHM requires real-time parameters analysis to perform fault de-
tection. Unfortunately, much user intervention on modal parameters
analysis is an obstacle in a real application (Zeng and Hoon Kim, 2021).
In recent years, growing attention has been put on automated OMA.
Many system identification algorithms have been developed to identify
system modes. Yang et al. developed an automated OMA based on
an eigensystem realization algorithm and a two-stage clustering strat-
egy. It can estimate modal parameters effectively in real-time (Yang
et al., 2019). Magalhaes et al. applied the poly-Least Squares Complex
Frequency Domain method to perform online parameters identifica-
tion (Magalhaes et al., 2009). Au et al. combined the Bayesian method
with a fast Fourier transform of ambient data (Au, 2011). It can meet
the requirement of real-time parameters analysis as Bayesian modal
identification can be performed in a few seconds. Reynders et al.
introduced uncertainty bounds on the modal parameters estimated with
SSI (Reynders et al., 2008). The proposed method can estimate the
variance of modes from a single measurement record. Due to the time-
consuming variance estimation of parameters, Döhler et al. proposed an
efficient multi-order uncertainty computation approach (SSI-cov) (Döh-
ler and Mevel, 2013). Among these approaches, SSI-cov is the most
popular method since it offers high accuracy in the identification of
closely-spaced modes and is especially suitable to be automated (He
et al., 2021). Therefore, it has been widely used for model parameters
identification of ice–structure interaction in Nord et al. (2019), flexible
spacecraft in Xie et al. (2016), large-scale bridge in Pan et al. (2021),
and so on.

After SSI analysis, poles at different orders are obtained and form
a stabilization diagram. Next, the slack value is used to pick up the
stable poles that are representative of the physical modes. The stable
poles form multiple vertical lines in the diagram that are regarded
as physical modes (Nord et al., 2019). Due to the limitation of many
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parameters selection, several strategies have been proposed for auto-
matic physical mode identification. Hierarchical clustering was pro-
posed based on eigenfrequency difference and the modal assurance
criteria (MAC) value as distance measures (Pappa et al., 1998). After-
wards, Goethals et al. incorporated the eigenfrequency and damping ra-
tio difference into the Hierarchical clustering algorithm. Closely-spaced
modes are grouped into the same cluster, they are then separated by
the MAC value. In addition to Hierarchical clustering, K-means, and
fuzzy C-means are employed to find physical modes as well (Mao
et al., 2019; He et al., 2021). However, clustering results are sensitive
to the user-defined number of clusters. To address this limitation,
Density-based spatial clustering of applications with noise (DBSCAN)
was proposed to cluster physical modes (Ye and Zhao, 2020; Li et al.,
2020). In recent work, Kvaale et al. proposed hierarchical DBSCAN
(HDBSCAN) for automated parameter identification since it requires
fewer parameters (Kvåle and Øiseth, 2021).

Although the aforementioned clustering techniques achieve better
performance on mode identification, they cannot remove estimating
errors caused by parameter uncertainty. Therefore, it is necessary to
make an uncertainty evaluation during automated OMA to obtain more
convincing results.

2.2. Uncertainty analysis

In order to obtain accurate model parameters, SSI-cov uses stabiliza-
tion criteria to remove part of bias of the model and the modes, and
slack values to remove artificial modes with large variances (Reynders
et al., 2008). However, it cannot remove or quantify other uncertainties
such as the number of data samples and parameters’ values. In addition,
stabilization criteria and slack values bring more uncertain parameters.

To reduce the impact of slack values on stable poles selection,
Hierarchical clustering is used to replace slack values-based method for
clustering physical modes (Wang et al., 2022). However, uncertainties
induced by other parameters are not considered. Therefore, this study
introduces UA to quantify uncertainties caused by uncertain input
parameters.

UA aims to provide confidence that model-based decisions are
robust to underlying uncertainties. Uncertainties are mainly divided
into two categories: aleatory uncertainty and epistemic uncertainty.
Aleatory uncertainty arises from physical phenomena that are random
by nature. It is extremely hard to quantify and eliminate aleatory
uncertainty during modeling calibration. In contrast to aleatory uncer-
tainty, epistemic uncertainty concern the model parameters and model
discrepancy, also known as parametric uncertainty and structural un-
certainty. Epistemic uncertainty can be reduced when better knowledge
of the model structure and more accurate data become available (Xiao
and Cinnella, 2019). Therefore, the main concern of this study is to
investigate the epistemic uncertainty of quantities of interest (QoI).

Uncertainty quantification (UQ) aims to quantify the uncertainty of
QoI that is induced by propagating uncertain random variables to the
model output. There are many technologies that are developed for UQ,
for instance, SA, Monte Carlo simulation, response surface approaches,
evaluation of classical statistical confidence bounds, Dempster-Shafer
theory, and Bayesian inference (Zhang et al., 2020). They are widely
applied to various domains such as Deep Learning, medical health, en-
vironmental science, material science, modal parameter identification,
etc. For example, Dusenberry et al. analyzed RNN model uncertainty for
electronic health records (Dusenberry et al., 2020). Various Bayesian
RNNs were introduced to place priors on different subsets of the
parameters to determine the level of the model. Hu et al. presented
the Markov Chain Monte Carlo (MCMC) algorithm to quantify the
parameter uncertainty that arises from the modeling of macro-fiber
composite materials (Hu et al., 2014). The study extended a data-driven
deterministic estimation technique, presented in Hu et al. (2012) that
was used to obtain the unknown model parameters, to investigate the
parameter uncertainty that fits into non-Gaussian distributions. In order

to improve the accuracy of modal parameters identification, SSI-cov
was proposed to estimate the variance of modal parameters (Reynders
et al., 2008). Due to the high computational cost of SSI-cov, Döhler
et al. delivered an efficient multi-order uncertainty computation for
SSI-cov (Döhler and Mevel, 2013). This improved SSI-cov is both com-
putationally and memory efficient. However, parametric uncertainty
still exists as SSI-cov only estimates the structural uncertainties from
SSI algorithm.

It is challenging for UQ since a large number of simulations are
required. Specifically, SSI-cov needs to conduct singular-value decom-
position to obtain system matrices, which is extremely time-consuming.
Therefore, in this study, SA is introduced to reduce the burden of UQ.
SA is to study how the variation of QoI is apportioned to the model
inputs. After SA, those important variables can be picked up for the
following UQ. The detailed description regarding SA can be found in
review papers (Zhang et al., 2020; Saltelli et al., 2019; Razavi et al.,
2021).

3. Method

This section is to introduce the proposed UA framework that is ap-
plied to identify modal parameters. Compared with traditional OMA, it
can estimate the uncertainty bound of parameters induced by uncertain
input variables. As shown in Fig. 2, the framework is mainly divided
into three parts. The first part is to do a model evaluation based on the
input parameters sampled from a hypothetical distribution. The second
one is automatic parameter identification using the clustering method.
The identified modal parameters are used for the following sensitivity
analysis and uncertainty analysis. The workflow is first conducting SA
to select the most important input variables, second doing UA based on
the selected uncertain variables.

3.1. Model evaluation

Model evaluation is to make simulations based on experimental
settings. It is the core and most time-consuming part of UA and SA. UQ
involves determining the probability distributions of each input vari-
able. Generally, the probability distribution function (PDF) is inferred
based on experimental data or thumb rules. The PDF indicates the
whole range of parameters’ uncertainties. An accurate PDF estimation
is extremely hard because of the limited data samples.

In general, all parameters are assumed to be independent and sub-
ject to certain distributions (uniform or normal). In order to represent
the PDF, two hyperparameters (𝜇 𝑎𝑛𝑑 𝜎) are introduced to control the
uncertainty across all parameters (Pathmanathan et al., 2019). The PDF
is defined as shown in Eqs. (1) and (2):

𝑝 ∼ 𝑁(𝜇, 𝜎2) (1)

where ‘N’ denotes normal distribution.

𝑝 ∼ 𝑈 (𝜇 − 𝜎, 𝜇 + 𝜎) (2)

where ‘U’ represents uniform distribution.
The assumption of PDF has a significant influence on the identified

results. If PDF is assumed a normal distribution, some data are sampled
from the tail of the normal distribution. These data might exceed the
reasonable range of the parameter’s value, leading to an error in SSI-cov
analysis. To avoid this problem, the uniform function is chosen as the
distribution function of parameters since it can define the minimum and
maximum value of the parameter’s range. After the PDF is determined,
the random samples are obtained by Latin-hypercube sampling (LHS).
Compared with Monte Carlo sampling, LHS can sample data across
the whole space of parameters, and hence it is effective in SA with
small samples (Helton and Davis, 2003). The random samples and the
measured structural response are fed into the SSI-cov to compute modal
parameters. The simulations will be repeated by as many times as the
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Fig. 2. The framework of uncertainty analysis and sensitivity analysis on modal parameters identification.

Fig. 3. The schematic diagram of mode identification using Hierarchical clustering.

size of the samples. Finally, the sensitivity of inputs on QoI is computed
based on simulated results.

The model evaluation will be carried out two times. The first time
is for SA to pick up the influential input factors and the second time
is for UA when the selected factors are applied for SSI-cov to identify
modal parameters under different ice failures and ice velocities.

3.2. Modal parameters identification

After model evaluation, the obtained parameters (eigenvalues and
eigenvectors) are used to compute modal parameters (𝑓, 𝜉, 𝑎𝑛𝑑 𝜑). Next,
modal parameter identification is carried out to obtain physical modes.
The schematic diagram of modal parameter identification is shown
in Fig. 3.

First of all, stable poles are picked up based on the stability cri-
terion to form a stability diagram. The stability criterion involves
the tolerance deviances to frequency ( 𝛿𝜔𝜔 ), damping (

𝛿𝜉
𝜉 ), and MAC-

values, as well as the normalized standard deviation of the frequency
(�̂�𝜔𝑖

∕𝜔𝑖). The pole is taken as stable if its stability parameters fulfill the
pre-defined criterion.

After stable poles are obtained, a clustering algorithm is introduced
to identify modes from these stable poles. In this study, a Hierar-
chical clustering algorithm is applied to identify modal parameters
automatically. Compared with the slack value-based method, it has
the advantage of higher accuracy and less human intervention (Wang
et al., 2022). In addition, it has fewer parameters to determine, which
can reduce the uncertainties of parameters. The distance metric in the
Hierarchical clustering is selected as 𝑑(𝑘, 𝑙) = |𝑓𝑘 − 𝑓𝑙|+(1−𝑀𝐴𝐶(𝜑𝑘−
𝜑𝑙)). 𝑑(𝑘, 𝑙) represents the distance between mode ‘k’ and mode ‘l’.

In order to eliminate uncertainties in the Hierarchical clustering
algorithm, two strategies are employed to improve the robustness of the
algorithm. The first method is to use the Silhouette value to evaluate
the clustering results. It measures how similar a point is to points in its
own cluster when compared to points in other clusters. The higher it is,
the better the samples are clustered. The principle is shown in Eq. (3).

𝑠(𝑖) = 𝑏(𝑖) − 𝑎(𝑖)
𝑚𝑎𝑥(𝑏(𝑖), 𝑎(𝑖))

(3)

where b(i) denotes the average distance of point ‘i’ with all points in
the closest cluster to its cluster; a(i) is the average distance of point i
with other points in the same clusters; s(i) is the silhouette coefficient
that ranges from [−1,1].

Due to the variability of modal estimates, outlier detection is used
for penalizing undesirable modes in the final clusters to reduce identi-
fication uncertainties (Zeng and Hoon Kim, 2021). Eq. (4) defines the
robust distance (RD).

𝑅𝐷(𝑥) = 𝑑(𝑥, �̂�𝑀𝐶𝐷, �̂�𝑀𝐶𝐷) (4)

where MCD is the minimum covariance determinant that is used for
outlying values detection. 𝑥 represents frequency in this study; �̂�𝑀𝐶𝐷
denotes the MCD estimates of location; �̂�𝑀𝐶𝐷 is the covariance of MCD.

After that, a hierarchical tree could be created as shown in Fig. 3.
The color of the leaves in the tree represents different clusters. If a
cluster contains a pre-defined number of poles, the poles in this cluster
render a physical mode as shown by the straight line in the stability
diagram. After clustering, the stability diagram could show physical
modes.

3.3. Uncertainty analysis and sensitivity analysis

Too many uncertain parameters lead to the high cost of UA. There-
fore, SA is used to pick up the most sensitive parameters that contribute
to the variation of the modal parameters. Global sensitivity analysis
(GSA) is a powerful tool to estimate the total sensitivity of all factors. In
this study, two popular GSA approaches are chosen to conduct SA. They
are the variance-based Sobol method (Sobol, 2001) and cumulative dis-
tribution function (CDF)-based PAWN method (Pianosi and Wagener,
2015).

A generic model is described as follows.

𝑌 = 𝑓 (𝑋1, 𝑋2,… , 𝑋𝑀 ) (5)
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Table 1
The main test runs and the corresponding parameters settings.
Run Model Ice type Ice drift

velocity
Ice
thickness

Flexural
strength

32010 9500 MDOF Model ice 4–150 mm/s 41 mm 56 kPa
25010 9200 MDOF ICMI 4–150 mm/s 23 mm 86 kPa

where 𝑌 is the model output of interest; X=(𝑋1, 𝑋2,… , 𝑋𝑀 ) ∈ R𝑀×1 is
the model input which contains 𝑀 factors; 𝑓 (𝑋) can represent abstract
models (data-driven models, mathematical model, or defined function)
and mechanical models (robots). In this study, 𝑓 (𝑋) corresponds to
SSI-cov and Hierarchical clustering methods.

Sobol’s method is based on the total variance decomposition.

𝑉 (𝑌 ) =
𝑀∑
𝑖=1

𝑉𝑖 +
𝑀−1∑
𝑖=1

𝑀∑
𝑗=𝑖+1

𝑉𝑖𝑗 +⋯ + 𝑉1,…,𝑀 (6)

where 𝑉 (𝑌 ) is the variance of model output 𝑌 ; 𝑉𝑖 is the variance
contribution of 𝑋𝑖 to the model output; 𝑉𝑖𝑗 is the variance from the
interaction between 𝑋𝑖 and 𝑋𝑗 ; 𝑉1,…,𝑀 represents the variance induced
by the interaction between 𝑀 parameters. The 𝑉𝑖 is addressed as the
first-order or main effect of 𝑋𝑖 on 𝑌 . Therefore the first-order sensitivity
index (𝑆𝑖) of 𝑋𝑖 is computed by Eq. (7). The total sensitivity index (𝑆𝑇 𝑖)
is obtained by Eq. (8).

𝑆𝑖 =
𝑉𝑖

𝑉 (𝑌 )
(7)

𝑆𝑇 𝑖 =
𝑉𝑖 + 𝑉𝑖𝑗 +⋯ + 𝑉1,…,𝑀

𝑉 (𝑌 )
= 1 −

𝑉∼𝑖
𝑉 (𝑌 )

(8)

where 𝑉∼𝑖 represents the total variance contribution of remaining
parameters to 𝑌 given 𝑋𝑖. The detailed description can be referred
to Saltelli et al. (2008).

‘PAWN’ is a CDF-based GSA method. The main principle is to
estimate the difference between unconditional CDF and conditional
CDF using Kolmogorov–Smirnov (KS) test.

⎧
⎪⎨⎪⎩

�̂�𝑖 = max
𝑘=1,…,𝑀

𝐾𝑆(𝐼𝑘)

𝐾𝑆(𝐼𝑘) = max
𝑦

|𝐹𝑦(𝑦) − 𝐹𝑦|𝑥𝑖 (𝑦|𝑥𝑖 ∈ 𝐼𝑘)| (9)

where 𝐾𝑆 is Kolmogorov–Smirnov statistic; 𝐹𝑦(𝑦) is unconditional CDF
where 𝑦 ⊆ 𝑌 and 𝐹𝑦|𝑥𝑖 (𝑦|𝑥𝑖 ∈ 𝐼𝑘) is conditional CDF where 𝑥𝑖 is fixed.
The detailed information can be found in Pianosi and Wagener (2015).

The flowchart of the two SA methods is shown in Fig. 4. First of all,
some variables are defined manually. ‘N’ is the size of Sobol’s sample.
‘M’ is the number of parameters in modal parameters identification.
‘Unif’ assumes the distribution function is uniform. ‘LHS’ is a sampling
strategy. ‘NU’ is the size of unconditional samples while ‘NC’ is the
size of conditional samples. ‘n’ is the conditional point from which
conditional samples are sampled. Next, different sampling methods are
applied to generate different data samples. ‘XA’ is the sampled data that
is used to estimate ‘YA’ through model evaluation while ‘XB’ is used to
compute ‘YB’. Likewise, ‘XU’ is to estimate ‘YU’ and ‘XX’ is to obtain
‘YC’. After that, ‘YA’ is used to estimate 𝑉𝑖 by the Sobol method while
‘YB’ is employed to estimate 𝑉∼𝑖. ‘YU’ is to obtain 𝐹𝑦(𝑦) while is to get
𝐹𝑦|𝑥𝑖 . Followed by Sobol and PAWN analysis, two sets of SA results can
be obtained. They are compared to obtain convincing sensitivities of
all parameters. After important parameters are picked, LHS sampling
is used to generate a sample, and Model evaluation is conducted to
carry out UQ of identified modal parameters. The two approaches are
integrated into a MATLAB toolbox in Pianosi et al. (2015).

4. Case study

4.1. Data collection

Ice–structure interaction data are collected from model-scale exper-
iments and full-scale experiments. All model-scale tests are carried out

Fig. 4. The flowchart of Sobol and PAWN methods for sensitivity analysis.

Fig. 5. The experiment setup for model-scale and full-scale tests.

in the Hamburg Ship Model Basin’s (HSVA) large ice model basin.1
The experiment setup was designed with a flexible foundation with
adjustable mass and stiffness to mimic certain dynamic characteristics
of the structure and a rigid model. Three Triax accelerometers are used
to monitor the ice-induced vibrations of the structures in x- and 𝑦-
direction (loading direction and perpendicular in-plane motion). The
setup is shown in Fig. 5(a) (Stange et al., 2020). The data were collected
under different structural and ice-related properties. The main tests and
corresponding properties are shown in Table 1.

Different runs are designed with different global stiffness of the
setup. Hydrodynamic added masses for models ‘9200’ and ‘9500’ are
16 kg and 19 kg separately. ‘MDOF’ represents the structure as multi-
degree-freedom vibration which has two dominant frequencies (𝑓1 =
2.81 HZ and 𝑓2 = 3.77 HZ). Ice types are HSVA’s standard model ice and
an improved crushing model ice (ICMI) (Ziemer et al., 2022). Model ice
is generated by exposing the water surface to cooled air. The current
model ice were not always ideal for crushing failure type of dynamic
ice–structure interaction tests. Therefore, an alternative wave ice was
proposed by simulating sea wave effects during water freezing. The first
three test runs contain ice drift velocity from 4–150 mm/s whilst the ice
velocity of ‘460101’ starts from 14 to 150 mm/s. Based on different ice
velocities, the measurements are grouped into different corresponding
ice failure types (intermittent crushing (IC), frequency lock-in (FLI),
and continuous crushing (CC). The full data set is described by Stange
et al. (2020).

1 https://www.hsva.de/.
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The full-scale experiments are conducted on the Norströmsgrund
lighthouse which is located in the Gulf of Bothnia. As shown in Fig. 10,
It is a gravity-based concrete structure with a wall thickness varying
between 0.2 m at the top and 1.4 m at the mean water level (Nord
et al., 2019). The diameter of the structure at the mean water level
were 7.5 m at an elevation of +14.2 m . Nine panels were installed
across the outer surface at the mean water level to measure the ice
forces. Four accelerometers were equipped at different positions of the
lighthouse. The detailed description can be found in Nord (2015), Nord
et al. (2019).

4.2. Experiment setting

For sensitivity analysis, first of all, the sampling strategy and dis-
tribution function are selected as ‘LHS’ and uniform distribution. 𝜎 =
40% × 𝜇, where 𝜇 represents the predefined values of seven input
parameters (Wang et al., 2022). Next, due to the time-consuming SSI-
cov computation, it is not practical to set up a larger ‘N’. Therefore, the
Sobol index needs evaluation when ‘N’ is chosen as 2000. ‘M’ means
7 parameters, including the number of blocks (NB), block rows (BR),
sampling frequency (SF), system order (SO), and stability criteria (the
deviance in frequency (SC-I), the deviance in damping ratio (SC-II), and
normalized standard deviation of the frequency (SC-III)). ‘NU = 150’,
‘NC = 100’, and ‘n = 10’ are referred to Pianosi and Wagener (2015).
In Eq. (3), s is 0.5. As the first two modes (𝑓𝑀 , 𝜉𝑀 , 𝜑𝑀 ) are the modes
in the model-scaled experiment that were designed to be easily excited
by the ice force. Hence they are used for the output of interest in SA.

For UA, the sample size of uncertain parameters is 400. The bench-
mark values of the first and second natural frequencies are 21.35
and 29.52 (rad/s). SA is carried out using MATLAB toolbox (Pianosi
et al., 2015). All MATLAB programs are run on the high-performance
computer at the Norwegian University of Science and Technology (Sjä-
lander et al., 2019).

4.3. Sensitivity analysis

Due to the desperately high time cost of model evaluations, several
random cases are chosen for SA. For data file 32010, SA is applied
for four different cases in which ice velocities are 14, 16, 18, and 20
(mm/s) separately. For data file 25010, ice velocities are from 18 to
26 (mm/s) with the step of 2 (mm/s). For full-scale measurements, ice
velocities vary from 30 to 200 (mm/s).

Fig. 6 shows an example of how to use SA to pick up important
factors. This figure plots the importance of seven factors to the first
natural frequency when ice velocity is 20 mm/s. The blue squares are
assumed indices with equivalent importance around 0.143. The PAWN
index of SF is the largest at around 0.42. It is followed by BR at
around 0.25. These two factors are to determine data size and input
matrix for SSI-cov analysis. Hence, they have a very large influence
on the identified frequencies. PAWN index ranks three around 0.21.
That means the first frequency is impacted by the number of SO.
However, when SO attains a certain value, the first frequency does not
change anymore. Three stability criteria and NB account for a small
contribution (from 0.1 to 0.17) to the variation of the first natural
frequency. This is possibly because NB does not affect the eigenvalues,
but only affects the results through the stabilization criterion. They can
be removed from the set of uncertain input parameters. In other words,
they are fixed at constant values in the following UA.

Fig. 7 presents statistics of parameters’ PAWN indices among dif-
ferent velocities 14, 16, 18, 20 mm/s while parameters’ Sobol indices
are shown in Fig. 8. In both figures, the box represents the quantiles
of parameters’ sensitivity on the first and second natural frequencies.
The PAWN indices of BR and SF are larger than the remaining overall.
Therefore, BR and SF are chosen as uncertain factors for UA on data
file 32010. In addition, for different cases, PAWN indices of different
parameters have small variations. Nevertheless, in Fig. 8, Sobol indices

Fig. 6. The PAWN indices of seven input parameters on the first natural frequency
when ice velocity is 20 mm/s.

Fig. 7. The statistics of PAWN indices of seven parameters for different ice velocities
in data file 32010.

of parameters vary drastically and are hard to rank. Therefore, the
PAWN method has better performance regarding SA of parameters for
ice–structure interaction analysis.

Fig. 9 shows the PAWN indices of BR and SF are the largest, varying
from 0.25 to 0.55. The PAWN indices of the remaining parameters are
below 0.2. Hence, BR and SF are chosen as uncertain factors for UA on
data file 25010.

Fig. 10 shows the top two sensitive parameters are BR and SF whose
PAWN indices are around 0.4 and 0.35 separately. Their indices are
a bit smaller than the result in data files 32010 and 25010. This is
possibly caused by the larger noise from the full-scale experiment in
the real world.

To sum up, the most influential parameters are chosen as BR and
SF for the following UA on data files 32010, 25010, and the full-scale
experiment.

4.4. Uncertainty analysis

Table 2 lists the statistics of the identified first two natural fre-
quencies. The statistics include mean value (Mean), standard deviation
(Std), upper bound of 95% confidence interval (Upper), and lower
bound of 95% confidence interval (Lower). The bold number means
the correct identification. For the identified first natural frequency, the
proposed method fails to identify it when ice failure is IC. Hence, it
is not discussed in the following analysis. After the ice failure mode
changes to FLI, the first natural frequencies are 19.84, 29.76, and 23.53
rad/s when ice velocities are 8, 10, and 20 mm/s, respectively. The
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Fig. 8. The statistics of Sobol indices of seven parameters for different ice velocities
in data file 32010.

Fig. 9. The statistics of PAWN indices of seven parameters for different ice velocities
in data file 25010.

Fig. 10. The statistics of PAWN indices of seven parameters for different ice velocities
in the full-scale test.

frequencies in the remaining cases are around 21.5 which is close to
the benchmark value. In contrast to the first natural frequency, the
second frequency identification becomes more intractable. 5 out of 15
identified second frequencies are over 30. One is less than 29, around
26.66 rad/s. Other frequencies can be identified correctly.

As to uncertainties of the identified frequencies, it is represented
by the 95% confidence interval which is computed by ‘𝑀𝑒𝑎𝑛 ± 1.96 ×
𝑆𝑡𝑑’. The uncertainty explains the possible values of the identified

parameters. In Table 2, the lower bound of the first frequency is −7.38
when ice velocity is 4 (mm/s). This value is obtained by statistical
analysis. However, it cannot be less than zero in practice. When ice
velocities are 12, 18. 28, and 65 (mm/s), the standard deviation of
the identified first frequency is less than 0.5 while the uncertainties
for other cases are quite large. Compared with the standard deviation
of the first natural frequency, the identified second frequencies have
a larger standard deviation. Almost all of them are over 2.00. As a
consequence, it has larger uncertain intervals for different ice velocities.
That means input parameters cause different uncertainties to modal
parameters.

Table 3 shows the corresponding damping ratios of modal parame-
ters. For the damping ratio corresponding to the first natural frequency,
it is quite small (less than 0.01) for ice failure FLI. When ice failure
changes to CC, it becomes larger (more than 0.018). The standard
deviation is very large. It is even larger than the mean value. For
example, when ice velocities are 10, 14, 16, 20, and 28 (mm/s), the
large standard deviations result in unreasonable significance intervals
that exceed the range of zero. This varying trend of the first damping
ratio is totally different from that of the second one. It can be seen that
most FLI failures generate larger damping ratios (more than 0.017) than
CC failures (less than 0.014) apart from ice velocity 150 mm/s.

To sum up, the mined knowledge is listed with the following items:

(1) The poor estimation of modal parameters happens as a result of
the quasi-static response of the structure in IC.

(2) For the first natural frequency, the estimated mean value is quite
close to the benchmark. The standard deviation is relatively
small, which renders reasonable uncertainty intervals. With the
increasing ice velocities, the varying trend is not significant.

(3) For the second frequency, the bold numbers manifest that the
proposed method cannot have accurate estimations for certain
cases. The standard deviation shows the estimating uncertainties
are very large. FLI generates larger frequencies than CC.

(4) The damping ratio of the first mode rises with the increase of ice
velocity while the damping ratio of the second mode decreases
from FLI to CC.

4.5. Knowledge presentation

During UA, the first straight line in the stabilization diagram is
taken as the first natural frequency while the second line represents
the second natural frequency. Such analysis results in a large bias to the
identified parameters. For example, the first natural frequency cannot
be identified by the proposed method. There is not a straight line at the
position where it is supposed to appear. As a consequence, the second
natural frequency is considered the first natural frequency. At the same
time, the third frequency is taken as the second one. Obviously, such an
assumption causes very large uncertainties in the identified parameters
as shown in Tables 2 and 3.

Next, prior knowledge is used to pick up anomalies in the results.
The benchmark values of the first two natural frequencies are 21.352
and 29.516 rad/s separately, which are estimated when the structure
was moving in the open water (Stange et al., 2020). Considering the
difference between open water and ice, the benchmark values are
expanded by 10% deviation to an interval: [19.22, 23.49] for the first
frequency, [26.56, 32.47] for the second frequency. The processed UA
results are shown in Fig. 11 for data file 32010, Fig. 12 for data file
25010, and Fig. 13 for the full-scale measurements.

Fig. 11(a) shows the filtered first natural frequency and corre-
sponding damping ratio. The left Y axis is the value of the identified
natural frequency. The right Y axis is the corresponding damping ratio.
The green dotted line represents the identified first natural frequency
in Wang et al. (2022). Black points are the mean value of identified
frequencies. The length of the vertical line at each point means the
estimated 95% confidence interval. Based on the varying trend of
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Table 2
The uncertainty analysis results of identified frequencies based on the data in ‘32010’ under the ice failures of IC, FLI, and CC.
Frequency Statistics Ice velocity (mm/s)

4 6 8 10 12 14 16 18 20 28 45 65 80 95 150

IC IC FLI FLI FLI FLI FLI FLI FLI FLI FLI CC CC CC CC

First

Mean 45.59 17.57 19.84 29.76 21.69 21.02 21.92 21.06 23.53 21.28 21.59 21.50 21.25 21.96 21.81
Std 28.04 5.68 1.64 2.41 0.01 1.57 4.55 0.01 3.39 0.42 0.02 0.25 1.22 2.10 1.23
Upper 102.56 28.71 23.05 26.41 21.04 24.42 30.85 21.08 30.18 22.11 21.63 21.98 23.64 26.08 24.21
Lower −7.38 6.44 16.63 16.97 21.00 18.28 13.00 21.05 16.88 20.47 21.55 21.02 18.85 17.84 19.40

Second

Mean 88.00 29.73 26.66 32.00 32.49 29.68 32.43 29.01 30.38 29.71 29.32 29.93 29.42 29.76 29.57
Std 28.84 14.48 3.44 10.59 3.88 3.62 9.07 1.60 5.12 0.66 1.82 1.92 2.43 12.02 4.47
Upper 144.53 58.10 33.40 52.76 40.10 36.77 50.20 32.16 40.41 31.01 32.89 33.71 34.19 53.32 38.33
Lower 31.47 1.35 19.91 11.24 24.88 22.58 14.65 25.87 20.35 28.42 25.74 26.16 24.65 6.19 20.80

Table 3
The uncertainty analysis results of identified damping ratios based on the data in ‘32010’ under the ice failures of IC, FLI, and CC.
Damping Statistics Ice velocity (mm/s)

4 6 8 10 12 14 16 18 20 28 45 65 80 95 150

IC IC FLI FLI FLI FLI FLI FLI FLI FLI FLI CC CC CC CC

First

Mean (10−2) 1.41 1.30 0.31 0.24 0.09 0.10 0.29 0.08 0.78 0.04 0.64 1.86 1.24 1.73 2.03
Std (10−2) 0.86 0.61 0.51 0.62 0.03 0.39 0.82 0.03 1.09 0.08 0.03 0.71 0.33 0.37 0.50
Upper(10−2) 3.11 2.50 1.30 1.46 0.14 0.86 1.89 0.41 2.92 0.20 0.69 3.25 1.89 2.45 3.01
Lower (10−2) −0.28 0.10 −0.68 −0.98 0.04 −0.67 −1.31 0.03 −1.36 −0.12 0.58 0.47 0.58 1.01 1.06

Second

Mean (10−2) 0.70 1.70 1.74 2.12 2.84 2.32 2.45 3.00 2.43 2.41 0.86 0.73 1.15 1.31 2.20
Std (10−2) 0.71 1.76 0.85 0.77 1.33 1.15 1.47 1.06 0.79 0.63 0.19 0.29 0.38 0.43 2.13
Upper (10−2) 2.08 5.16 3.29 3.63 5.45 4.58 5.33 5.06 3.97 3.65 1.24 1.30 1.90 2.15 6.37
Lower (10−2) −0.69 −1.75 0.08 0.61 0.24 0.06 −0.43 0.92 0.88 1.65 0.48 0.17 0.41 0.48 −1.97

the mean value, UA has a more sensible estimation than the method
without UA, especially when ice velocities are larger than 45 mm/s.
The superiority can also be verified in Fig. 11(b). Overall, the first
natural frequency goes up with the increase in ice velocity. This trend
is the same as the damping ratio as shown by the blue line. However,
this trend does not appear on the identified second natural frequency
as shown in Fig. 11(b). With the increase of ice velocity, the second
natural frequency goes up until velocity reaches 16 mm/s. Next, it
plummets when ice velocity changes to 18 mm/s. After that, it keeps
an increasing trend from 20 mm/s. The damping ratio shows an overall
decreasing trend when ice moves towards higher velocity. In addition,
the uncertainty of the identified second frequency and damping ratio is
significantly larger than that of the first frequency and corresponding
damping ratio.

Fig. 12(a) shows the significant increasing trend of the first natural
frequency in data file 25010. The value rises from 19.3 to 21. For the
second natural frequency, its values fluctuate vary drastically as shown
in Fig. 12(b). The same trend can be found in Fig. 13. In Fig. 13(a), the
value of the first natural frequency starts from 18 to 22 as the increase
of ice velocity. However, there is no obvious trend of the second natural
frequency in Fig. 13(b). In addition, the value of the second natural
frequency is far larger than that in the data files 32010 and 25010.

The mined knowledge is summarized as follows.

(1) Compared with traditional SSI-cov, UA based on prior knowl-
edge does have superiority regarding the accuracy of modal
parameter identification. In addition, the confidence interval
could provide more valuable support for the SHM.

(2) The identified first natural frequency and corresponding damp-
ing ratio present a stable upward trend with the increase of ice
velocity for three different experiments. No difference between
model ice and wave ice was observed in relation to that trend. A
small uncertainty interval demonstrates SSI-cov and Hierarchical
clustering have very good robustness for the first frequency
identification.

(3) For the second frequency, its trend is not significant for all three
experiments. Large uncertainty means that SSI-cov and Hierar-
chical clustering work worse in terms of the second frequency
identification.

(4) For data files 32010 and 25010, the damping ratio of the first
mode is quite small, varying within [0% 3%]. However, it be-
comes larger in the full-scale experiment, varying within [5%
10%].

5. Discussion

This study includes two parts. The first part is SA and the second one
is UA. Both SA and UA follow the same pipeline from data sampling,
SSI-cov analysis, to automated modal parameters identification. Hierar-
chical clustering is used for automated modal parameter identification.
In this study, robust distance and Silhouette value are used to im-
prove the accuracy of Hierarchical clustering. Meanwhile, it consumes
more time. It inevitably intensifies the time cost of SA. Therefore, all
parameters in the Hierarchical clustering method are fixed. Although
such an assumption could cause the low accuracy of modal parameters
identification, in fact, SA does not require very accurate estimation
because it mainly investigates how much the variation of the model
is proportioned to each input factor. If time cost could be ignored, it
would be better to use robust distance and Silhouette value to obtain a
more accurate estimation.

Sobol and PAWN are used for SA. Through comparison of Figs. 7 and
8, it was found that PAWN outperforms Sobol with respect to sensitivity
estimation of input parameters. To be exact, PAWN is superior to
Sobol under the circumstance of an equivalent sample size. If Sobol’s
sampling size is increased up to, for example, over 10,000, Sobol could
gain a very good estimation but it is desperately time-consuming. That
is because the time complexity of PAWN is 𝑂(𝑀 ×𝑛×𝑁𝑐) while Sobol’s
time complexity is 𝑂(𝑀 ×𝑁). Hence, considering the balance of time
cost and SA accuracy, this study prefers PAWN to Sobol.

PAWN is used for SA on data files 32010, 25010, and full-scale test.
From Figs. 7, 9, and 10, they show the top two influential factors are BR
and SF. It can be concluded that BR and SF are the largest uncertainty
sources of SSI-cov. This conclusion needs verification further using
more cases. In addition, SO accounts for a relatively large sensitivity
to the identified frequencies to a certain extent. This is because the
identified modes are affected by the variation of SO. Nevertheless,
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Fig. 11. The identified frequencies and corresponding damping ratios over different
ice velocities in data file 32010 (Green dotted line: identified frequencies without UA;
Black points: the mean value of identified frequencies; Vertical lines: 95% confidence
interval.).

when it attains a certain value, the modes are not changed with the
increase of SO. Therefore, it is not considered in this study.

The same experiment settings are set for these three experiments.
However, it does not work well for the full-scale test. This possibly
results from less stable poles identified from the data. Therefore, in
this study, we adjust the minimum size of a cluster to 5 for the
full-scale data instead of 8 for the model-scale data. In addition, the
benchmark interval is reset as [0,23.49] for the first natural frequency
and [26.56, 50] for the second natural frequency. Such adjustments
make the parameter identification more accurate for the full-scale test.

This study assumes all input parameters follow a uniform distribu-
tion instead of normal distribution. This is because sampled data from
normal distribution could result in the failure of solving eigenvalues
and eigenvectors. if a data point comes from a normal distribution,
it might be beyond the defined range. For example, given 𝑁(𝜇, 𝜎2),
the sampled data points would vary in [𝜇 − 1.96𝜎, 𝜇 + 1.96𝜎] rather
than in [𝜇 − 𝜎, 𝜇 + 𝜎]. Apparently, the former sampling space is larger
than the later one. As a consequence, the sampled data points would
exceed the rational range required by SSI-cov. In addition, in order
to increase the uncertainty of the identified modal parameters, the 𝜎
is assumed as the 40% deviation of 𝜇. if the deviation was increased,
the sensitivity results would change a little bit. SA takes advantage of
statistical methods to estimate the importance of factors and is subject
to the impacts of many factors easily. The important parameters should
be selected based on the integration of SA, expertise knowledge, and
applications.

Fig. 12. The identified frequencies and corresponding damping ratios over different
ice velocities in data file 25010.

The second mode appeared difficult to identify accurately. One
would expect that the second mode was easier than the first mode to
identify, because it should be less influenced by the ice-failure process
due to its smaller modal amplitude at the ice-action point, and therefore
less nonlinearities for the SSI-cov to handle. However, due to the second
mode’s lower modal contribution of the global response, the signal
to noise ratio for the second mode is also lower, thereby possibly
inhibiting stable identifications.

6. Conclusion

The environmental variability of identified modal parameters of
structures located in ice-infested waters are uncertain and to some
extent unknown, therefore inhibiting efficient structural health mon-
itoring. This study proposed a UA framework for automated modal pa-
rameter identification for structures exposed to drifting ice-conditions
interaction by obtaining convincing parameters estimation with their
uncertainty. The framework were composed by two parts: The first
part applied an SA to picked up the most influential input variables for
modal parameters’ uncertainties, in which we presented a comparison
between two methods for SA, namely PAWN and Sobol. PAWN was
further selected for SA on ice–structure interaction data as it offered the
most accurate estimation of parameters’ importance. It was found that
the most influential inputs to the modal parameters estimation were
the number of block rows and sampling frequency. The input variables
from PAWN were subsequently applied in a UA, which is the second
part in Fig. 2. Here, the inputs were varied to obtain modal parameters
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Fig. 13. The identified frequencies and corresponding damping ratios over different
ice velocities in the full-scale test.

and corresponding uncertainties when applied to a covariance-driven
stochastic subspace identification of modal parameters. The UA re-
vealed significant trends in the modal parameters identified over a
range of ice velocities and types of ice–structure interaction: (1) For
model-scale ice–structure interaction, the first natural frequency and
corresponding damping ratio arose with the increase of ice velocities
(starting from frequency lock-in, and to continuous brittle crushing).
Once the interaction was dominated by continuous brittle crushing, the
natural frequency stabilized with further increase in ice velocity, an
observation found for both model-scale and full-scale; (2) The second
mode does not present a significant trend. In addition, uncertainties of
the second mode (natural frequencies and damping ratios) are quite
larger than those of the first mode.

The second mode appeared difficult to identify for the model-
scale tests, likely due to the combination of second mode’s low modal
contribution of the global response and the signal to noise ratio. Future
studies of environmental variability due to the presence of ice would
benefit from denser sensor networks and higher sampling frequency.
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