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A B S T R A C T   

To be competitive in dynamic and global markets, manufacturing companies are continuously seeking to apply 
innovative production strategies and methods combined with advanced digital technologies to improve their 
flexibility, productivity, quality, environmental impact, and cost performance. Zero Defect Manufacturing is a 
disruptive concept providing production strategies and methods with underlying advanced digital technologies 
to fill the gap. While scientific knowledge within this area has increased exponentially, the current practices and 
impact of Zero Defect Manufacturing on companies over time are still unknown. Therefore, this survey aims to 
map the current state of practice in Zero Defect Manufacturing and identify its impact on production perfor-
mance. The results show that although Zero Defect Manufacturing strategies and methods are widely applied and 
can have a strong positive impact on production performance, this has not always been the case. The findings 
also indicate that digital technologies are increasingly used, however, the potential of artificial intelligence and 
extended reality is still less exploited. We contribute to theory by detailing the research needs of Zero Defect 
Manufacturing from the practitioner’s perspective and suggesting actions to enhance Zero Defect Manufacturing 
strategies and methods. Further, we provide practical and managerial suggestions to improve production per-
formances and move towards sustainable development and zero waste.   

1. Introduction 

In order to remain competitive in today’s dynamic and global mar-
kets, manufacturing companies must continuously explore innovative 
production strategies and methods, and leverage advanced digital 
technologies to improve their flexibility, productivity, quality, envi-
ronmental impact, and cost performance. The emergence of Industry 4.0 
has greatly facilitated the rapid development of digital technologies to 
handle production complexity and improve data management for 
decision-making (Dalenogare et al., 2018; Fragapane et al., 2022). 
However, while the maturity of digital technologies increases, providing 
the basis for better decision-making, such technologies are often 
developed and introduced in isolation from other advanced production 
strategies and methods. Modern production concepts must cultivate 
production strategies and methods that integrate complementary 
advanced technologies and cover the manufacturing decision-making 
areas (Caccamo et al., 2021; Powell et al., 2022). 

Zero Defect Manufacturing (ZDM) is a disruptive concept that 

focuses on advancing production strategies and methods with advanced 
digital technologies in quality management, production management, 
and maintenance management (Psarommatis et al., 2020a). The stra-
tegies of detection, prevention, prediction, and repair (including defect 
mitigation and compensation) are the cornerstones of the ZDM concept. 
They include data-driven decision-making methods to improve product 
quality, increase process flexibility, and boost productivity, while also 
reducing costs and resource usage within entire industrial ecosystems. 

The idea of zero defects is not new, with the initial concept first 
introduced in 1965 with the US Army Pershing Missile System at the 
Martin Company, which implemented it as a quality and reliability 
program (Eleftheriadis and Myklebust, 2016). From the beginning, it 
aimed for the complete elimination of defects, errors, and waste in single 
manufacturing processes up to multi-stage manufacturing systems and 
so increase the production performance throughout the supply chain. 
ZDM builds on the same quality management philosophy that underpins 
both Lean Production, Six Sigma, Theory of Constraints and Total 
Quality Management, but it differentiates in systematically applying 
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strategies, methods and technologies to move from reactive to predictive 
and preventive quality management - achieving a "first-time-right" level 
of quality (Powell et al., 2022). Moreover, the strong focus on reliability 
supports the development of strategies and methods to predict mainte-
nance and prevent errors and failures (Psarommatis et al., 2020a). 

Looking back at the last two decades, practical interest in companies 
and the number of published articles on ZDM have increased signifi-
cantly. Driven by companies’ needs, ZDM strategies, approaches, 
methods, technologies, and tools have been developed and introduced. 
As the ZDM literature has matured, the ZDM knowledge has been 
mapped and frameworks introduced. While “much of the extant ZDM 
literature is based on applied research and presents practical examples 
of ZDM concepts” (such as single or multiple case studies, etc.) (Powell 
et al., 2022; p5), these studies only represent a small part of the overall 
ZDM picture. Despite the exponential growth in scientific knowledge in 
this field, the current practices of ZDM and their impact on companies 
remain largely unknown. 

We believe, therefore, that the time is right to conduct a global ZDM 
survey and compare the current state of the art of research knowledge 
with ZDM practice in companies. The latest literature reviews provide a 
solid basis to design the survey instrument for conducting a global 
survey – the aim of which is to bring new insights of status and needs of 
ZDM in practice to light. Furthermore, the results and analysis will be 
distributed to respondents to increase their awareness of ZDM, advance 
their current level of maturity in ZDM, and identify potential improve-
ment areas. 

In this paper, we aim to answer the following research questions:  

1) What is the current state of practice of ZDM in manufacturing 
companies?  

2) What are the limitations and barriers in implementing and applying 
ZDM?  

3) How does ZDM impact the production performance of 
manufacturing companies? 

The rest of the paper is organized as follows: Section 2 presents the 
current ZDM literature and research gaps. In Section 3, we describe the 
research method and detail the important parts of the survey. Section 3 
presents the survey results and compares them with the current aca-
demic ZDM landscape. In Section 4, we indicate the practical and 
managerial implications. Section 5 presents further ZDM research needs 
based on the survey findings. We conclude in Section 7. 

2. Theoretical background 

The following section provides a synthesis and summary of recent 
literature reviews that structure ZDM research areas and map the aca-
demic developments. The section defines and explains ZDM strategies, 
approaches, methods, technologies and tools, and limitations and pro-
vides the basis for the survey questionnaire and for the survey result 
analysis. 

2.1. ZDM strategies 

A ZDM strategy is a set of methods, tools, resources, and rules with 
the aim of avoiding defects and increasing the sustainable performance 
of complex manufacturing systems (Powell et al., 2022). Five distinctive 
strategies have been identified (Caiazzo et al., 2022; Powell et al., 2022; 
Psarommatis et al., 2020a): (I) Detection, (II) Prediction, (III) Preven-
tion, (IV) Repair, and (V) Defect mitigation or compensation. Con-
ducting a meta-analysis of recent literature reviews on ZDM (Caiazzo 
et al., 2022; Powell et al., 2022; Psarommatis et al., 2020a) shows that 
the detection of defects is the most popular research interest (as shown 
in Table 1). 

Detection strategies refer to the recognition of defects, anomalies and 
faults by analyzing, classifying and identifying them on the basis of the 

parameters that resulted in the undesirable effect (Caiazzo et al., 2022). 
The detection actions focus both on the generation of the detected defect 
and its propagation to the next production levels and supply chain steps 
(May and Kiritsis, 2019). The major research streams still focus on 
physical detection. However, virtual detection is increasingly receiving 
more attention due to greater data availability and lower operational 
costs (Kang and Kang, 2017; Kurz et al., 2014; Susto et al., 2015). Here, 
the most relevant and most cited work focuses on introducing digital 
twins and artificial intelligence (AI) for detection. For example, Park 
et al. (2019) proposes an approach combining an autoencoder to detect 
a rare fault event and a long short-term memory network for fault 
detection in chemical processes. Tabernik et al. (2020) present a 
segmentation-based deep-learning architecture that is designed for the 
detection and segmentation of surface anomalies in the electric com-
mutators production. Yuan et al. (2019) introduce stacked 
quality-driven autoencoder to exploit the quality data in industrial 
debutanizer column processes. Xu et al. (2019) present a two-phase 
digital-twin-assisted fault diagnosis method using deep transfer 
learning for fault diagnosis in the development and maintenance phases 
of car body production. Zhou et al. (2019) propose the design and 
implementation of a novel automatic inspection system for automobile 
surface defects and apply forward multi-scale defect binarization based 
on a Hessian matrix algorithm for fault detection. Wang et al. (2020) 
introduce an extended deep belief network model for fault diagnosis in 
chemical processes. 

Prediction strategies consider defect-, anomaly-, and fault prediction, 
which aims at forecasting the quality of each part of the product before 
its production, e.g., via specific models and historical data analyses 
(Caiazzo et al., 2022). The main exploited methodologies are applying 
mathematical modelling and AI techniques. Bhowmik and Ray (2019) 
present a Fuzzy Logic-based framework to predict roughness in an 
abrasive water jet machining process in green manufacturing. García 
et al. (2019) introduce regression models to predict both those physical 
quality indices in a tube extrusion process. Li et al. (2019) introduce a 
mathematical model and a framework involving anomalous data 
retrieval sensors for the improvement of RUL prediction. Liu et al. 
(2019a), (2019b) present a joint-loss convolutional neural network for 
bearing fault recognition and Remaining Useful Life (RUL) prediction. 
Wang et al. (2019) introduce a generative neural network model that 
combines an unsupervised feature-extraction step with a supervised 
learning method for automatically predicting work-in-progress product 
quality. Wang et al. (2020) propose an extended deep belief network to 
fully exploit useful information and capable of extracting 
quality-relevant features in batch processes. However, this strategy is 
one of the most underutilised because defining accurate prediction 
models is a very difficult and complex task and requires a vast amount of 
data in order to be accurate (Psarommatis et al., 2020a). The strategy 
support foremost the optimization of production planning and machine 
scheduling by integrating optimal maintenance actions. The timely 
performing preventive replacements allow both to reduce unexpected 
failures and minimize total maintenance costs (Petrillo et al., 2020; Tian, 
2012; Xu et al., 2019). In this context, future health condition and thus 
the RUL of both equipment and products are the main objectives in the 
investigations. 

Table 1 
ZDM strategies published articles distribution.  

ZDM strategies Published articles distribution* 

Detection 60% 
Prediction 24% 
Prevention 9% 
Repair 4% 
Defect mitigation or compensation 3%  

* Note: average distribution result of the ZDM literature reviews (Caiazzo 
et al., 2022; Powell et al., 2022; Psarommatis et al., 2020a) 
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Prevention strategies focus on providing quality control and inspec-
tion tools for monitoring machinery and corresponding produced qual-
ity (Caiazzo et al., 2022). The processes are known in depth and machine 
state analysis are done so that process conditions leading to defects or 
possible deviations of the product from expected outcome are proac-
tively identified and countermeasures introduced (Powell et al., 2022). 
Further, ZDM prediction strategies are often the predecessor of ZDM 
prevention strategies. Predicted defect and affected parameters are 
identified and flagged, prevention actions are planned and scheduled to 
avoid production line downtime and interruptions (May and Kiritsis, 
2019). The main exploited methodologies in prevention are applying 
Failure Mode and Effect Analysis (FMEA), digital twin and AI 
techniques. 

Huang et al. (2018) proposes deep decoupling convolutional neural 
network intelligent compound fault diagnosis and capable of consid-
ering the machinery relationships between composite components. Cao 
and Deng (2019) introduce a geometric mean FMEA method enabling a 
more flexible expert judgment. Chen et al. (2019) present a novel fault 
diagnosis approach integrating Convolutional Neural Networks and 
Extreme Learning Machine to enhance the fault classification perfor-
mance and learning speed. Liu et al. (2019a), (2019b) to introduce 
data-driven framework to address the problem of noisy environmental 
conditions in data acquisition. Principi et al. (2019) proposes an unsu-
pervised method for diagnosing faults of electric motors and compare 
the results with several Deep Autoencoder models for overcoming the 
frequent limitation of anomalous data availability. Soualhi et al. (2019) 
introduce an Adaptive Neuro-Fuzzy Inference System allowing an early 
fault detection, diagnostic and prevention actions for critical compo-
nents of the gear reducer, in particular gear and bearing defects. 

Repair strategies focus on the reworking/re-manufacturing of prod-
ucts throughout circular supply chains (Caiazzo et al., 2022). Once a 
repairable defect is detected, online or offline repair is carried out 
focusing to minimize time and effort and maximize production perfor-
mance and flow. For many companies, the linked actions are usually 
time-consuming and expensive, and it so is preferable to discard 
defective items (Psarommatis et al., 2020). However, with increased 
focus on sustainability, repair strategies can have a significant impact on 
zero-defect and zero-waste (Powell et al., 2022). Therefore, improved 
repair methods focus mostly on accelerated repair times without dis-
turbing the overall production flow. For example, Gautam et al. (2019) 
propose a model for defect management that also considers factors such 
as carbon emission. Nadimpalli et al. (2020) introduces Friction Stir 
Processing to maintain the micro-structural advantages of Ultrasonic 
Additive Manufacturing. Li et al. (2019) presents an approach for the 
repair of metal defects based on the usage of groove monitoring, Wire 
and Arc Additive Manufacturing, and finishing machining. 

Defect mitigation or compensation strategies reduce rework and repair 
activities through defect compensation using preventive, proactive, and 
reactive methods (Chen, 2016). For instance, defects are matched and 
integrated into the multi-stage machining or assembly systems without 
off-line rework (Powell et al., 2022). In traditional quality management 
strategies, feedback control loops are usually implemented at 
single-process levels to detect and repair defects, but lead to production 
performance inefficiencies. Modern defect mitigation or compensation 
strategies aim at proactively identifying defects or potential defects and 
attempt to find methods that avoid rework. Defects and deviations are 
compensated downstream in the process chain by means of feedforward 
control. The ZDM paradigm grounds on the integration of product and 
process data coming from multi-source process chains. Methodologies 
such as stream-of-variation can be applied to adapt the downstream 
process to avoid the propagation of dimensional and geometrical de-
viations of the measured part (Magnanini et al., 2019). If a model-based 
solution is not available, because of line complexity, specific 

downstream compensation actions can be generated, without the need 
of off-line rework (Eger et al., 2018; Eldessouky et al., 2019). Further in 
assembly systems, components vary within the predefined tolerance and 
may result in a defective assembled product due to the intrinsic parts 
variability. Selected assembly methods focus on matchmaking compo-
nents to minimize the expected assembled product deviation (Colledani 
et al., 2014a, 2014b). Such compensation strategies can reduce rework 
or even end-of-line inspection resulting in scrap products. 

2.2. ZDM approaches 

ZDM approaches can be grouped in (I) single-stage, multi-stage, or 
supply chain, (II) process and product-centric, or (III) people-centric 
(Powell et al., 2022). 

Single-stage, multi-stage, or supply chain approaches can support the 
quality control and production improvement on different stages. Single- 
stage optimizations support individual and discrete production pro-
cesses and have received more than 70% of research attention in pre-
vious years (Powell et al., 2022). The optimization of a single process 
can still lead to defect generation in the form of deviations that propa-
gate in subsequent process steps (Magnanini et al., 2019). More recent 
research has focused on multi-stage manufacturing systems that include 
entire production lines and consist of many discrete processes (Eger 
et al., 2018). For instance, these studies apply cyber-physical systems 
(Colledani et al., 2018; Kang et al., 2019) and smart, collaborative 
production systems (Lindström et al., 2019; Shiokawa and Ishii, 2019) to 
reduce defects in multi-stage manufacturing systems. Beyond 
multi-stage manufacturing systems, supply chains or digital supply 
networks share information and collaborate to reduce defects and in-
crease production performance. Bosi et al. (2020) propose an Industrial 
Internet of Things (IIoT) platform for Agile Manufacturing in Plastic and 
Rubber Domain to make the processes in production networks more 
automated, interconnected and moreover to support ZDM strategies. 

Process and product-centric approaches have different starting points 
for investigating the reduction of defects in manufacturing systems 
(Psarommatis et al., 2020a). Process-centric approaches study defective 
manufacturing equipment and move the investigation from shopfloor to 
product level. Based on the different levels, it is evaluated whether the 
manufactured products are defective or not. The research in this context 
focuses strongly on manufacturing processes (e.g., process monitoring 
and process control) and it his has been a common theme in ZDM. Many 
studies build on statistical process control concepts, where the process is 
central with respect to other system components and resources (Powell 
et al., 2022). Additionally, product-centric approaches study the defects 
on actual parts and try to find a solution to reduce defects on healthy 
machines (Psarommatis et al., 2020a). Latest research trends lean more 
towards product-centricity (Powell et al., 2022). 

People-centric approaches has recently received a strong focus due to 
the recognition of human’s expertise in manufacturing systems and In-
dustry 5.0 research trends. The roles of humans (e.g., both white- and 
blue collar) in manufacturing systems are, despite strong efforts in 
automating manufacturing processes, still unreplaceable. 
Manufacturing systems rely strongly on human workers due to cognitive 
and motor skills. Human factors must be integrated in manufacturing 
systems to reduce defects and increase production performance (Romero 
et al., 2016; Romero and Stahre, 2021). However, the role of humans in 
ZDM has until now been vastly overlooked and most of the examples 
seem to be rather coincidental, often coming secondary to a focus on the 
process dimension (Powell et al., 2022). 

2.3. ZDM methods, technologies, and tools 

Industry 4.0 has pushed the development of technologies supporting 
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ZDM strategies (Powell et al., 2022; Zheng et al., 2021). Conducting a 
meta-survey among recent literature reviews (Caiazzo et al., 2022; 
Powell et al., 2022; Psarommatis et al., 2020a) the main ZDM methods, 
technologies, and tools are presented and described in Table 2. 

2.4. ZDM barriers and limitations 

Across the empirical studies of ZDM, the most mentioned and rele-
vant barriers are shown in Table 3. 

Furthermore, recent ZDM literature reviews summarized the current 
research and practice limitations. The ZDM research and practice limi-
tations can be found in Table 4. 

2.5. Research gap for this study 

In the last two decades, the interest and the number of published 
articles introducing ZDM strategies, approaches, methods, and tools has 
increased significantly. As the ZDM literature has matured, its scientific 
landscape has been mapped, structured and quantified. This allows 
comparing the current state of practice in companies with the scientific 
findings and research streams. Further, most studies based on empirical 
data are only single- or few multiple-case studies, making the impact of 
ZDM on production performance difficult to generalize. Therefore, the 
current state of practice of ZDM and its impact on a large scale of 
companies are still unknown. This study aims to close the gap by iden-
tifying the current state of practice of ZDM in manufacturing companies, 
its limitations, and barriers, and the impact of ZDM on the production 
performance of manufacturing companies. Furthermore, we compare 
this to extant literature to identify further ZDM research needs. 

3. Method 

This section explains the survey design, administration, analysis, and 
validity. The present empirical study adopted a questionnaire-based 
survey approach to answer the three research questions. The survey 
method is especially suited and applicable for a mature research area 
such as ZDM (Karlsson, 2016). It allows to create reliable questionnaires 

Table 2 
ZDM methods, technologies and tools.  

ZDM methods, 
technologies, and tools 

Description Published articles 
distribution* 

Artificial intelligence Data-driven techniques for 
automated data analysis and 
decision making 

43% 

Big data analytics Elaboration, analysis, and 
visualization of the massive amount 
of industrial data 

6% 

Cyber-Physical Systems 
and digital solutions 

Control strategies combining 
physical and digital resources 

7% 

Digital inspection and 
monitoring 

Solutions for the measurement and 
monitoring of product and process 
resources 

19% 

Architecture and 
Standards 

Integration and communication 
protocols of industrial software 

7% 

Process mining Providing better understanding of 
process variations that can be 
decreased and improved 

3% 

Failure Mode and Effect 
Analysis: 

Approach for identifying possible 
failures in a design, a 
manufacturing or assembly process, 
or a product or service. 

1% 

Digital Twin combined 
with simulation and 
modelling 

Optimization and decision support 
for processes 

13% 

Extended Reality and 
visualization 
technology 

Visualization of information to 
improve decision making processes 

1%  

* Note: average distribution result of the ZDM literature reviews (Caiazzo 
et al., 2022; Powell et al., 2022; Psarommatis et al., 2020a) 

Table 3 
ZDM barriers.  

Barriers Reference 

Low knowledge of ZDM strategies (Magnanini et al., 2020; Psarommatis 
et al., 2020b; Schmidt and Hanitzsch, 
2012; Vafeiadis et al., 2017) 

Low ZDM implementation experience (Psarommatis et al., 2020b) 
Low ZDM method and tool training (Psarommatis et al., 2020b) 
Low digitalization level (Magnanini et al., 2020; Myklebust, 2013; 

Nazarenko et al., 2021; Ngo and Schmitt, 
2016; Pombo et al., 2020; Psarommatis 
et al., 2020b; Schmidt and Hanitzsch, 
2012; Vafeiadis et al., 2017) 

Low IT infrastructure Nazarenko et al. (2021);Ngo and Schmitt 
(2016);Pombo et al. (2020);Psarommatis 
et al. (2020b);Schmidt and Hanitzsch 
(2012);Vafeiadis et al. (2017)) 

Low commitment of top management (Psarommatis et al., 2020b) 
Low commitment of shop-floor level or 

operators 
(Psarommatis et al., 2020b) 

Low capacity of resources to work on or 
apply ZDM 

(Psarommatis et al., 2020b) 

Established quality management system 
and reluctance to apply new or different 
ones 

(Psarommatis et al., 2020b) 

No suitable projects to work on or apply 
ZDM 

(Psarommatis et al., 2020b)  

Table 4 
ZDM research limitations.  

Limitations Reference 

Low focus on automatic collection and connection of 
information between machines to reduce defects. 
Traditional quality control tools regard production 
as a static system, thus neglecting additional 
information on machine states and process variables 
along production stages and among product types, 
especially needed for a more responsive quality 
control system. 

(Powell et al., 2022; 
Psarommatis et al., 2020a) 

Low focus on feed-forward control. Little to no 
proactive parameters regulation and control are 
allowed with traditional quality-oriented approaches 
due to the absence of integrated multi-sensor 
software architecture. 

(Powell et al., 2022) 

Low focus on using AI for defect detection. Little to no 
comprehension about the complex root-cause 
dynamics is provided to the users and, hence, 
deviations and errors are mainly solved by exploiting 
human experience. 

(Caiazzo et al., 2022) 

Low focus on "online" reworking and compensating for 
defects/waste. Only off-line reworking strategies are 
carried out once the defect has been generated, 
having no chance to implement proper online 
corrective actions. 

(Caiazzo et al., 2022; Powell 
et al., 2022) 

Low focus on multistage zero-defect systems, supply 
chains or digital supply networks. As traditional 
quality control tools are mainly adopted to the single- 
stage production process, they are troublesome to 
implement in multistage systems. 

(Powell et al., 2022; 
Psarommatis et al., 2020a) 

Low focus on Zero-waste value-chain strategies. The 
quality improvement and control methods are 
lacking in focusing on environmental (e.g., 
sustainability / circular economy) aspects. 

(Caiazzo et al., 2022; Powell 
et al., 2022) 

Low focus on First-Time-Right and quality ramp-up 
minimization. The quality improvement and control 
methods lack support before production starts. 

(Powell et al., 2022) 

Low focus on Human-in-the-loop. The quality 
improvement and control methods are lacking in 
including and providing support to operators to work 
towards zero defects. 

(Powell et al., 2022; 
Psarommatis et al., 2020a)  
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based on established frameworks and methods and it enables the map-
ping of the current state of practice, compared to existing academic 
knowledge. Furthermore, this research method allows to collect and 
compile a considerably large amount of data in a given timeframe - 
which is especially useful for a global study (Fowler Jr, 2013; Wright 
and Schwager, 2008). Survey questionnaires are widely used within 
social sciences and allow the researcher to effectively collect data from 
broad populations in a practical manner that can easily be adapted to 
administering the study questionnaire online (Saunders et al., 2010). 
Many recent studies in production and quality management have 
adopted a survey methodology for empirical studies to map and identify 
the current state of practice of production strategies and methods, and 
their impact on production performance (Antony et al., 2019, 2021a; 
Buer et al., 2020, 2021; Zhang et al., 2016). 

Our survey was conducted online using Google Forms to collect the 
data. An online survey has advantages over a manual survey in terms of 
cost, speed, reach, ease of use, clarity, and automation (Ball, 2019). The 
respondents’ answers were collected in a timeframe of 6 months. After 
the survey deadline was passed, the data were exported directly from the 
online survey portal into IBM SPSS 29. The software supported the 
statistical analysis and visual representation of the results. The analysis 
of the responses to the questionnaire support responses to our three 
research questions as shown in Fig. 1. 

Regarding missing data in responses, this was handled based on the 
extensiveness of the missing data. If only one item was missing in a 
summated scale, we calculated the average for the scale without sending 
a follow-up e-mail to respondents. 

3.1. Questionnaire design 

The survey questionnaire consisted of five parts and is based on the 
theoretical background provided in chapter two. In the first part, par-
ticipants’ background information (such as work function, work expe-
rience and functional level) was collected. The second part of the survey 
solicited respondents’ company information (such as size, industry, 
production environment, digitalization level, etc.). The third part 
focused to capture the companies’ involvement and application of ZDM 
strategies, approaches, methods, and tools. The next part focused to 
identify the barriers and limitations of ZDM in practice. Finally, the 
impact of ZDM strategies on production performance was captured. 

The questionnaire contained 38 closed questions in total and the 
average duration to complete was 101 min. Questions 1–9 used nominal 
scales: participants were asked to choose from a number of possible 
answers, e.g., choose which production environment or service provi-
sion reflects best their company from a given list. Questions 10–38 used 
an ordinal scale: participants were asked to rate the applicability of ZDM 
strategies, approaches, methods, and tools in their companies, and the 
corresponding impact on production performance, e.g., indicate to what 
extent the ZDM prediction strategy applied in the company to work 

towards zero defects (very low, low, moderate, high, very high). 
To ensure validity and reliability of the questionnaire, it was 

screened among several critics on web-based questionnaires and sent to 
experts for pilot testing. One of the most common criticisms of ques-
tionnaires is related to various biases. Addressing relevant biases in 
questionnaires is an important task to collect the most accurate data 
from respondents. Therefore, investigators must recognize and be able 
to prevent, or at least minimize, bias during the design of questionnaires. 
Choi and Pak (2005) identified 48 types of common bias in question-
naires. These recommendations were considered during the design and 
administration of the survey presented in this paper. For instance, asking 
sensitive questions such as age or working position may elicit inaccurate 
answers and can also negatively impact the interviewer-interviewee 
relationship, potentially affecting all subsequent responses. To address 
this, this survey was evaluated for ethical considerations and sensitivity 
of personal data by the Norwegian Centre for Research Data (with case 
number 472062) and received positive feedback. Additionally, we 
focused on removing leading questions and forced choice options. Some 
questions may be worded in a way that prompts respondents to choose 
an inaccurate answer or too few categories can force respondents to 
choose imprecisely among limited options. Therefore, the questions are 
based on previous well documented surveys for production manage-
ment, digitalization, and performance (Antony et al., 2019; Buer et al., 
2021, 2020; Forza, 2002). Moreover, a pilot questionnaire was distrib-
uted to an expert panel of five members (a ZDM academic, six sigma 
champion, six sigma master black belt, quality management consultant, 
and operational excellence manager) to test the pilot questionnaire. The 
pilot survey helped articulate the questionnaire more precisely. Also, it 
helped to develop a comprehensive construct relevant to the field of 
study. To test reliability, the Cronbach’s alpha coefficient was calculated 
for each of the summated scales. All the summated scales have values 
above the recommended threshold of 0.6 (Forza, 2002). The reliability 
statistics of this survey has a Cronbach’s Alpha of 0,927 and so, deemed 
reliable for further analysis. 

3.2. Population and sampling 

Once the revised and enhanced online questionnaire was deemed 
suitable for distribution, a link was sent to 381 subject matter experts 
who are practitioners and / or consultants. The respondents were 
selected based on the authors’ networks. Each of the respondents was 
contacted via email. These methodologies were adopted based on 
similar research in the area (Antony et al., 2019, 2021a). In addition, the 
respondents were contacted based on the following criteria.  

(1) Respondents must be working, practising, or involved in the ZDM 
projects.  

(2) Respondents must have been involved in at least one ZDM project 
in their career and at least one in the present organisation. 

Fig. 1. Questionnaire and research questions construct.  
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(3) Respondents must have at least one year of experience in the 
execution of ZDM projects  

(4) Respondents must be working in the manufacturing or service 
sector. 

These selection criteria bring credibility to the findings and assist in 
drawing robust inferences. A total of 120 respondents participated in the 
survey over six months, with a response rate of 31%, which is acceptable 
in the survey research methodology (Antony et al., 2021b; 
Easterby-Smith et al., 2012). The companies in this survey are large 
enterprises mainly operating in Europe (see Figs. 2 and 3). They repre-
sent all production environments and service provisions (see Fig. 4; 
description can be found in appendix A). Most of the respondents work 
in production and quality management, have more than 10 years of 
experience in this field, and identify themselves as top- or middle 
management (as shown in Figs. 5, 6 and 7). 

4. Survey results and findings 

In this section, the survey results are presented and compared to the 
ZDM knowledge landscape (as described in Section 2), paving the way 
for future research in ZDM. 

4.1. Current state of practice of ZDM in manufacturing companies 

The ZDM strategies of detection and prevention are applied strongest 
in the respondents` companies (Fig. 8). The detection strategy has since 
the beginning been a cornerstone – receiving strong interest among 
academics and practitioners. Unsurprisingly, digital inspection and 
monitoring and FMEA are the most applied methods because they are 
mainly used for detection and prevention of defects (Fig. 9). FMEA is still 
strongly applied, but the ZDM research community sees this method as 
quite mature for defect prevention. In contrast, Industry 4.0 has pushed 
both the digitalization of companies and research activities in digital 
technologies. Besides digital inspection and monitoring, architecture 
and standards, and process mining are increasingly applied. An increase 
in company digitalization is seen as an enabler of more effective process- 
analyses and provides more insights. 

However, not the full spectrum of digital technologies is growing and 
applied. Cyber-physical systems and digital twins are research areas 
receiving much attention in ZDM. Together, they are discussed in more 
than a quarter of research articles (as shown in Table 2). Despite this, 
they are still applied relatively infrequently in many companies. 
Empirical ZDM studies in these areas provide insights in specific in-
dustries and describe their benefits on ZDM, though frameworks 
describing their connection and applicability in ZDM are still lacking. 

Fig. 3. Respondents’ company size.  

Fig. 4. Respondent company’s production environment or service provision.  

Fig. 5. Respondents’ company function.  

Fig. 6. Respondents’ years of experience.  

Fig. 7. Respondents’ functional level.  

Fig. 2. Respondents’ continent origin.  

Fig. 8. Strategies applied in companies to achieve zero defects.  
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Moreover, future research should investigate Cyber-physical systems 
and digital twins in different industries. The industry-specific connec-
tions and relation need to be described to increase their implementation 
and usage in companies. 

The potential of AI and big data analytics are still unexploited. Based 
on the research results, we can assume that generic or simple analyses 
are still the preferred means adopted for anomaly detection. 

Unsurprisingly, the prediction strategy is seldom applied in practice. 
Though more than 20% of the research studies in ZDM have focused on 
this strategy and introduced AI methods such as convolutional neural 
network, deep learning, machine learning, fuzzy logic, etc., the re-
spondents’ companies are still behind in applying this strategy and 
method. It is questionable, therefore, whether the companies’ problems 
are poorly understood or if it is the provided methods that are 

Fig. 9. Methods applied in companies to achieve zero defect.  

Fig. 10. Process, product and people-centric approaches applied in companies to achieve zero defects.  

Fig. 11. Single-stage, multi-stage, supply chain and digital supply network approaches applied in companies to achieve zero defects.  
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inadequate in addressing the companies` problems. 
Compared to the detection, prevention and prediction strategies, the 

defect mitigation and compensation has received relatively low atten-
tion from academia, but more of the survey respondents have applied 
this method in practice. It seems that companies try to mitigate or 
compensate defects instead of repairing them. The repair strategy is the 
second lowest applied strategy. Reworking/re-manufacturing of prod-
ucts throughout circular supply chains is still less integrated in com-
panies’ current business models. The ZDM paradigm needs to support 
companies in developing circular processes. However, frameworks, 
methods and studies moving ZDM towards sustainable development and 
zero waste are still lacking. The sustainability aspect in ZDM must 
therefore explore its environmental and social impact. 

People-centric approaches are still far behind the other approaches 
(Fig. 10). As highlighted in previous studies and confirmed in this one 
(Powell et al., 2022; Wan and Leirmo, 2023), ZDM follows foremost 
process and product-centric approaches. People-centric approaches 
have still to catch up. Human factors need to be incorporated in 
manufacturing systems and their cognitive and motor skills should be 
enhanced to increase production performance. The role of humans in 
ZDM has until now been overlooked. Further, technologies to support 
them (such as extended reality) are some of the least applied in practice. 

ZDM is still quite focused on individual and discrete production 
processes. Single-stage approaches in production systems are mainly 
investigated to improve production performance in both practice and 
academia (Fig. 11). Cyber-physical systems, digital twins and digital 
platforms have been promoted to increase information sharing and 
manufacturing collaboration to reduce defects. ZDM should also 

investigate and provide methods and technologies to support the tran-
sition from single- to multi-stage and/or supply chain and digital supply 
network approaches. 

4.2. Limitation and barriers in implementing and applying ZDM 

The main barriers in ZDM currently concern the low knowledge and 
training in implementing and applying ZDM strategies and methods 
(Fig. 12). The awareness of ZDM needs to be increased on a general level 
and academia must provide more guidelines and lessons learned in 
implementing and applying ZDM strategies and methods. Most re-
spondents confirm that they have identified suitable projects for ZDM, 
and they have both commitment from top management to shop floor 
level to work towards ZDM. While ZDM has strong application potential, 
respondents suggest that it might receive low prioritization. This can 
further be seen with the respondents’ expression on low resource ca-
pacity for ZDM strategies and methods. 

Moreover, the respondents indicate that while their companies have 
a good IT infrastructure in place, they are still concerned about the 
overall level of digitalization in their companies. Additionally, com-
panies need to provide training and education to help employees 
become familiar with and effectively utilize digital technologies. 

Most of the respondents disagree that companies collect too little 
information automatically – otherwise inhibiting the potential to reduce 
defects (Fig. 13). However, the usage of AI methods should be applied 
more frequently to yield more insights and reduce defects on a larger 
scale. Companies collect vast amounts of data that are often not further 
processed, for example to find useful insights and reduce defects. The 

Fig. 12. Barriers of current quality management systems and methods.  

Fig. 13. Limitations of current quality management systems and methods.  
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identification of defects should in a stronger degree lead to feed-forward 
control in cyber-physical systems. This can support the reduction of an 
otherwise limited focus on multi-stage and digital network systems. 
Moreover, most of the respondents agree that there should be more focus 
on “online” rework and compensating defect or waste. 

Respondents are undivided in their response about companies’ 
awareness of sustainability issues, where companies have a strong focus 
on both environmental aspects such as zero-waste value chains and so-
cial aspects such as human-in-the-loop. In contrast, the ZDM literature 
provides few empirical studies on sustainability issues. Furthermore, the 
respondents are clear that companies work mainly towards First-Time- 
Right and quality ramp-up minimization. Academics and ZDM re-
searchers must acquire contemporary knowledge of companies’ current 
sustainability practices, and share this knowledge with the wider 
community. 

4.3. ZDM impact on production performance of manufacturing companies 

The strategies and methods related to detection, prediction and 
prevention have a strong positive impact on throughput time, product 
quality, waste reduction, and production cost per unit performance (as 

shown in Figs. 14, 15, 16, and 17). The respondents identify the pre-
vention strategies and methods as most effective. Defect mitigation or 
compensation results in moderate to positive production performance 
effects. Repair strategies and methods are identified as having not only 
positive effects on production performance, but 16–22% of respondents 
report that repair activities in production also have a negative impact on 
the company’s performance. This perspective on the performance effects 
of repair methods is not well represented in the ZDM literature. 

Overall, the ZDM strategies have the strongest positive impact on 
product quality performance, with the highest total value of 77.5% (as 
seen in Table 5). ZDM aims for the complete elimination of defects and 
errors, and serves as a mean of achieving an organization’s "first-time- 
right" (Raabe et al., 2018). As a result, most studies have quality per-
formance as the main objective (Caiazzo et al., 2022; Powell et al., 
2022). According to respondents, the prediction strategy has the stron-
gest positive impact on production quality performance. Practitioners 
should consider this strategy when focusing on improving product 
quality performance. The study by Caiazzo et al., 2022 provides an 
overview of the most prominent methods for predicting product quality 
performance.  

The detection, prediction, and prevention strategies have similar 

Fig. 14. Throughput time performance effects of applying ZDM strategies.  

Fig. 15. Product quality performance effects of applying ZDM strategies.  
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Fig. 16. Waste performance effects of applying ZDM strategies.  

Fig. 17. Production cost per unit performance effects of applying ZDM strategies.  

Table 5 
ZDM strategies filtered on positive impact on production performance (Values show the % sum of “better” and “much better”).  
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effects on throughput time. The prevention strategy is more effective 
(60.9%) and has a stronger yield (19.2%) compared to the others. Ac-
cording to ZDM literature, reducing defects and errors leads to improved 
throughput time. Caiazzo et al. (2022) suggests that combining ZDM 
strategies and methods may result in higher throughput time perfor-
mance yield. 

However, as the focus on sustainable production grows, it is essential 
for ZDM strategies to assist manufacturing companies to continuously 
deliver higher quality products of increasing complexity at lower cost, 
while simultaneously limiting the use (and particularly waste) of re-
sources within entire industrial ecosystems (Colledani et al., 2014a). 
The prevention strategy has been found to have the greatest impact on 
reducing waste in ZDM. The primary method employed in prevention is 
FMEA (as outlined in Section 2) and as confirmed by this study (as 
shown in Fig. 9). As suggested by (Powell et al., 2022), ZDM should 
place a greater emphasis on implementing non-destructive inspection 
methods and quality monitoring solutions to detect defects without 
using or wasting materials, as well as methods for preventing defects and 
waste. The survey shows that companies are increasingly turning to 
digital inspection and monitoring (as seen in Fig. 9) in order to move 
towards a more sustainable approach. 

Furthermore, ZDM strategies that target the reduction of defective 
parts, energy consumption, and scrap materials, among other perfor-
mance indicators, are expected to lead to cost savings (Psarommatis 
et al., 2020a). However, only a limited number of studies have presented 
evidence or cost functions demonstrating the impact of ZDM on pro-
duction costs per unit. The survey findings suggest that ZDM strategies 
have a significant impact on production costs per unit and the preven-
tion strategy is the most suitable choice for attaining the highest per-
formance yield. 

5. Practical and managerial implications 

For rapid improvement of production performance, companies 
should apply detection and prevention strategies for ZDM. Literature 
provides an extensive repertoire of methods and tools and the companies 
applying them achieve high impact over all the different measured 
performance dimensions of throughput time, product quality, waste 
performance and production cost per unit. Companies can of course 
continue to utilize traditional methods such as FMEAs, which can be 
enhanced by modern and innovative technologies such as digital in-
spection and monitoring. 

Many companies experience that the prediction strategy can signif-
icantly improve production performance. The prediction strategy relies 
mainly on AI methods that often require additional resources and 
knowledge for companies to implement and successfully operate (PS). A 
majority of the companies have indicated that they struggle in the 
implementation of ZDM strategies and have low method training. 
Companies need to train and specialize their workforce in implementing 
and applying advanced analytical and predictive methods such as con-
volutional neural networks, deep learning, machine learning, fuzzy 
logic, etc. Companies should focus on closing this knowledge gap. 

Further, companies still lack the application of advanced methods 
such as AI, Big data analytics, CPS, digital twin combined with simula-
tion and modelling and extended reality and visualization technology to 
move towards ZDM. The IT infrastructure is for a great majority of 
companies at a sophisticated level. Companies need to shift their focus 
from simply establishing an IT communication system towards building 
on it and integrating advanced digital tools. Companies indicate that 
they have an abundance of projects to work on ZDM, with which comes 
great opportunity to advance production systems with digital technol-
ogies. Companies also need to establish the required working culture 
and increase the knowledge in applying digital technologies for ZDM. 

Moving towards circular supply chains and focusing to decrease 
waste, companies need also to increase the efficiency of repair and re- 
use activities. Companies will soon become obligated to increase the 

repair of defective parts and products. The inefficiency in the worksta-
tions for “offline” repairing needs to be reduced and more “online” 
repairing should be applied. Repairing methods need to be harmonized 
with production systems instead of having separate inefficient and time- 
consuming repair points close to the production lines. Further, deviation 
and defects need to be detected instantly. Therefore, companies need to 
apply a wider degree of CPS and digital solutions across the production 
systems and connect them to multi-stage systems or networks. This will 
enable companies to detect deviations and increase the feed-forward 
control to compensate and mitigate defects. 

Finally, increasing the digitalization maturity level in companies will 
not necessarily reduce the role of engineers and operators in 
manufacturing companies. Human cognitive and motor skills remain 
advantageous in many areas. However, human errors are inevitable. 
Applying ZDM methods can especially reduce the demand on humans in 
repetitive / tedious tasks to reduce defects. Many technological enablers 
still do not focus on supporting humans by providing the right data, in 
the right quantity / format, at the right place, and at the right time. 
Companies should therefore increase data visualization (e.g., through 
xR and dashboards) for their workforce and so improve decision making 
and production performance. 

6. ZDM research needs 

ZDM has evolved from a zero-defect concept to a zero-defect para-
digm enhancing production management, quality management and 
maintenance management. Mapping the current state of ZDM practices 
in companies and its performance effects supports the forming of future 
research directions of ZDM. Our survey reflects a representative segment 
of today’s global ZDM practice in companies, and highlights the 
following future research needs: 

6.1. ZDM strategies  

• The prediction strategy has a strong positive impact on companies’ 
overall performances. However, this strategy is compared to the 
others, less implemented and applied. More empirical studies are 
needed to provide guidance and best practices in implementing and 
applying this strategy.  

• Both academics and practitioners need to increase their focus on 
repair strategies. In the transition from linear- to circular economy, 
this strategy can strongly support the move towards a zero-defect, 
zero-waste paradigm. Therefore, future research should investigate 
repair and remanufacture methods.  

• While companies increasingly work to mitigate defects, academia 
has not grasped this knowledge and shared crucial insights. More 
empirical studies are needed to strengthen the defect mitigation 
strategy. 

6.2. ZDM approaches  

• Moving towards Industry 5.0, production systems should focus more 
on human-centricity. Human-centric approaches are still lacking in 
ZDM. Future research must provide frameworks, methods and tools 
to support the human-in-the-loop perspective of production systems 
to improve production performance. 

• The increase in digitalization should lead to an increase in commu-
nication between single-stage processes and machines. ZDM has a 
rich knowledge of single-stage and needs to develop it for system 
perspective. More studies and methods in connecting multi-stage 
processes are required.  

• Increasing the decentralization of production systems and moving 
towards digital production networks can further yield in the reduc-
tion of defects. More studies are needed which provide methods to 
collaborate in digital production networks. 
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6.3. ZDM methods  

• The increasing digitalization in companies allows application of 
advanced AI techniques and analysis of large amounts of data. Many 
studies introduced AI methods for ZDM, however, these methods are 
still less applied in practice. As described in this study and confirmed 
in a previous study, AI methods for ZDM should not only focusing on 
specific industry processes and industries (Caiazzo et al., 2022). 
Future research needs to introduce AI methods that are more appli-
cable to a wider industrial audience.  

• Shopfloor digitalization enables the development of digital twins and 
CPSs. Simulation modeling based on real-time data can improve the 
decision-making processes, however digital twins and CPSs are still 
less applied to improve production performance. Future research 
needs to provide digital twins for enhanced decision making and 
CPSs that address time-relevant issues (such as energy-efficiency) 
and connect production systems.  

• Human-centric approaches support operators with a high amount of 
useful and useable data in decision-making processes. Extended re-
ality (xR) and visualization technologies can significantly contribute 
to improving these processes. Future research should therefore 
investigate how to further support and augment the operator in 
working towards zero defects. 

6.4. ZDM barriers and limitations  

• Awareness of ZDM needs to be increased on a general level and 
shared in different communication channels. Further, academics and 
policymakers must provide more guidelines and lessons learned in 
implementing and applying ZDM strategies and methods.  

• Manufacturing and service companies produce large amounts of data 
and often use only a small percentage of this data to improve pro-
cesses. Companies need support in increasing the usage of data to 
yield more insights and reduce defects at a higher scale.  

• Companies need not only to reduce physical waste, but also digital 
waste. Future research needs to provide methods to move away from 
inefficient “offline” rework towards efficient “online” defect 
prevention. 

6.5. ZDM impact on production performance  

• Approximately 1 in 5 of the respondents experienced that the repair 
strategy and methods negatively impacted on production perfor-
mance. Future research needs to investigate the companies’ diffi-
culties and provide methods that support their resolution. To 
transition and succeed with circular economy, academics must sup-
port practitioners in eliminating the inefficiencies in linked 
processes.  

• Many of the respondents experienced a neutral impact on production 
performance after applying ZDM strategies and methods. Applying 
ZDM strategies, methods, and tools should in the future significantly 
increase the production performance. This is a significant finding of 
the research.  

• The production cost per unit performance can in some case still be 
reduced. Future research should investigate the cost drivers for ZDM 
implementation and application and so introduce methods and tools 
to reduce the costs. 

7. Conclusion 

ZDM is a disruptive concept that provides traditional production 
strategies and methods with advanced digital / technological enhance-
ment. While scientific knowledge within this area has exponentially 
increased, the actual extent of adopting such ZDM practices, and the 
impact of doing so, otherwise remains unknown. This paper set out to 
map the current state of practice in ZDM, to identify its impact on 

production performance, and to highlight future applied-research needs. 
The survey results show that ZDM strategies and methods are widely 
applied and can have a strong positive impact on production perfor-
mance, though the potential has not yet been achieved. The findings also 
indicate that although digital technologies are increasingly used, the 
potential of both AI and xR is still less exploited. We contribute to the 
theory by detailing the ZDM research needs from the practitioner’s 
perspective and suggesting actions to enhance ZDM strategies and 
methods. Further, we provide practical and managerial suggestions to 
improve production performances and move towards sustainable 
development and zero waste. 

However, some limitations of this research should be noted. When 
using self-administered questionnaires to gather data, there are risks 
associated with the respondents not understanding the question or 
under- or overestimating their actual implementation and application 
level. Although the measurement instrument was developed with this in 
mind, with clear descriptions of all questions, this limitation should be 
noted. 

Next, the respondents were guaranteed anonymity. However, there 
might be a social desirability bias in their responses, in which they assess 
their implementation level and production performance to be higher 
than they actually are. As the respondents were promised anonymity 
and would not gain anything from making their responses seem more 
positive than was really the case, we expect that this is not a major 
concern in this study. 

Finally, the sample size for a global study is slightly smaller than 
some of the prominent studies in this field. However, it is still within the 
recommendation of Forza (2002) and Hair et al. (2010) and so allowing 
to further analyse and interpret the empirical data. Therefore, future 
research should examine if there are correlations between specific ZDM 
methods and tools and production performance. Additionally, it should 
investigate if contextual factors such as company size, production 
environment, or service provision have a significant impact on the 
implementation and applicability of ZDM methods and tools. These in-
vestigations can support the application of ZDM methods and tools in 
diverse production environments (or indeed service providers) and so 
achieve significant improvement in production performance. 
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Appendix A 

Production environment 

Complex customer order production- This type of production implies 
a low volume, low standardization, and high product variety type of 
production. The most characteristic feature of this production environ-
ment is that the products are more or less designed and engineered to 
customer order (i.e. it is an engineer-to-order type of operation). 
Manufacturing batch sizes are typically small and equivalent to the 
customer order quantity. Products are complex with deep and wide bills 
of material. The manufacturing throughput times and the delivery lead 
times are long. 

Configure-to-order production 

The products produced in this environment have less complexity and 
are assembled in small batches, based on what kind of customization the 
customer wants. It can be characterized as an assemble-to-order or 
make-to-order type of operation, where many optional products can be 
configured and manufactured by combining standardized and stocked 
components and semi-finished items. The number of customer orders is 
rather large and the delivery lead times are much shorter than for 
complex customer order production. 

Batch production of standardized products 

This environment can mainly be characterized as make-to-stock of 
standardized products in medium- to large-sized quantity orders. These 
products are typically more complex and have a longer lead time than 
repetitive mass production. 

Repetitive mass production 

In this production environment, products are made in large volumes 
on a repetitive and more or less continuous basis. It involves standard-
ized products made or assembled from standardized components char-
acterized by having flat and simple bills of materials. 

Aftermarket services 

The provision of parts replacement services, repair services, main-
tenance services, and digital services to promote safe, secure, and 
comfort usage of equipment or products in the market (at the end-user). 

Other services. 
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