
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Kjerand Evje

Automatic question generation for
JavaScript programming courses

Master’s thesis in Computer Science
Supervisor: Guttorm Sindre
June 2023

Kjerand Evje

Automatic question generation for
JavaScript programming courses

Master’s thesis in Computer Science
Supervisor: Guttorm Sindre
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

With the education system becoming increasingly digital and automated, the process

of creating and grading assignments or practice questions has largely remained the

same. Teachers are required to use valuable time and resources creating and grading

assignments, exercises, quizzes and other forms of evaluations. This increasingly

becomes an issue as the number of students in a course becomes larger, which further

increases the workload. In order to reach their learning outcome goals, students

might also wish for a larger quantity and variation of practice questions than are

made available in the course. The development of automatic question generation

technology makes it possible to easily generate a large number of relevant questions,

allowing teachers to save resources and for students to have access to a continuous

supply of questions.

This thesis explores the development of a question generation tool made for gener-

ating programming questions specifically for JavaScript programming courses. The

goal of developing this tool is to create an artifact that might be used at universities

and to evaluate how effective question generation tools are at improving learning

outcomes in programming courses. Through an experiment evaluating the tool, it

was found that the participants achieved a significant improvement in learning out-

comes after using the tool for a short session. The results also showed that the

question generation tool was just as effective in improving learning outcomes for

both beginner and intermediate programmers.

Sammendrag

Ettersom utdanningssystemet har blitt stadig mer digitalisert og automatisert, har

prosessen med å lage og vurdere oppgaver stort sett forblitt den samme. Lærere

bruker verdifull tid og ressurser p̊a å lage og vurdere oppgaver, quizer, innleveringer

og andre former for evalueringer. Dette blir spesielt et problem etterhvert som antall

studenter i et emne øker, som ytterligere øker arbeidsmengden for lærerne. For å

oppn̊a sine læringsutbytte-mål kan studenter ogs̊a ha ønske om å ha tilgang til en

større mengde og variasjon av oppgaver enn det som er tilgjengelig. Utviklingen

av teknologi for automatisk generering av variantoppgaver gjør det mulig å enkelt

generere et stort antall relevante oppgaver, som tillater lærere å spare ressurser og

for studenter å f̊a kontinuerlig tilgang til nye oppgaver.

Dette prosjektet beskriver utviklingen av et verktøy for generering av variantopp-

gaver laget for å generere programmeringsoppgaver spesielt rettet mot JavaScript

emner. Målet med å utvikle dette verktøyet er å lage et produkt som kan bli

brukt ved universiteter og for å evaluere hvor effektivt et slikt verktøy er for å for-

bedre læringsutbytter i programmeringskurs. Gjennom et eksperiment for å evaluere

verktøyet ble det funnet at deltakerne oppn̊adde en betydelig forbedring i læringsut-

bytter etter å ha brukt verktøyet en kort økt. Resultatene viste ogs̊a at verktøyet var

like effektivt for å forbedre læringsutbytter for b̊ade nybegynnere og videreg̊aende

programmerere.

Acknowledgements

Thank you to Prof. Guttorm Sindre from the Department of Computer Science at

NTNU for being my supervisor for this project. His insights and feedback relating

to the development of the prototype, execution of the experiment and writing of the

thesis have been extremely valuable, and have played an important role in how the

project turned out. The weekly project meetings were really helpful in making sure

I stayed on the right track throughout the project.

Additionally, I would like to thank all the students who took time out of their sched-

ules to participate in the experiment and helping evaluating the project prototype.

I would also like to thank Associate Prof. Ole Christian Eidheim for helping recruit

students to participate in the experiment and for giving helpful feedback.

Lastly, I would like to thank my parents and my classmates for their support and

help to make the process of carrying out this project easier and more enjoyable.

Table of Contents

List of Figures 4

List of Tables 6

1 Introduction 7

2 Background 10

2.1 Specialization project . 10

2.2 Previous research . 11

2.2.1 Question generation using templates and variables 11

2.2.2 Semantic-based question generation 14

2.2.3 Question generation for formative assessments 15

2.2.4 Assessing question difficulty 16

2.2.5 Automated assessment . 17

3 Method 20

3.1 Question generation tool . 20

3.1.1 Design science . 21

3.1.2 Development process . 25

3.1.3 Technologies . 26

3.2 Experiment . 29

1

3.2.1 Pretest-posttest design . 29

3.2.2 Participants . 30

3.2.3 Technology Acceptance Model 30

3.2.4 General information . 31

3.2.5 Participant experience data 32

3.2.6 Learning outcomes . 32

3.2.7 Answering generated questions 34

3.2.8 Evaluation . 35

4 Results 36

4.1 Question generation tool results . 36

4.1.1 System architecture . 36

4.1.2 Question generation . 37

4.1.3 Answering questions . 44

4.1.4 Navigating the tool . 48

4.2 Experiment results . 50

4.2.1 Participant experience data results 51

4.2.2 Learning outcomes results . 52

4.2.3 Answering generated questions results 56

4.2.4 Evaluation results . 57

5 Discussion 63

5.1 Question generation tool discussion 63

5.1.1 Question generation . 63

5.1.2 Automated assessment . 64

5.1.3 Use cases . 65

5.1.4 Limitations . 66

2

5.2 Experiment discussion . 68

5.2.1 Methodology . 68

5.2.2 Results . 71

5.2.3 Research questions . 76

5.2.4 Limitations . 77

6 Conclusion and further work 79

6.1 Conclusion . 79

6.2 Further work . 80

References 81

3

List of Figures

2.1 Exam generation pipeline, copied from Rusak et al. [6, p. 2]. 11

2.2 Example problem, copied from Rusak et al. [6, p. 3]. 12

2.3 Example solution, copied from Rusak et al. [6, p. 3]. 13

2.4 Question generation model, copied from Yao et al. [9, p. 12] 14

2.5 Test case, copied from Bruzual et al. [12, p. 43]. 18

2.6 Feedback output, copied from Bruzual et al. [12, p. 43]. 18

3.1 Design science guidelines, copied from Hevner et al. [13, p. 83]. 21

3.2 Design science evaluation methods, copied from Hevner et al. [13,

p. 86]. 23

3.3 Pretest-posttest experiment timeline. 31

3.4 Example of two of the questions in the learning outcomes questionnaire. 33

4.1 Overview of the system architecture. 37

4.2 Generation of question variants. 38

4.3 Example of using the four different variable types. 39

4.4 Two example variants generated from the template in Figure 4.3 . . . 40

4.5 Editor for adding a code solution to a question. 41

4.6 Example of a coding question template. 42

4.7 Example of a code understanding question template. 43

4.8 Example of a produce output question template. 44

4

4.9 User interface for solving coding questions. 45

4.10 User interface for solving produce output questions. 46

4.11 User interface for solving code understanding questions. 47

4.12 Main menu user interface. 48

4.13 Admin login screen. 49

4.14 Admin menu user interface. 49

4.15 Question bank interface. 50

4.16 Participant study programmes and year of study. 51

4.17 Participant’s previous programming experience. 53

4.18 Perceived usefulness. 58

4.19 Perceived ease of use. 60

4.20 User acceptance. 61

5

List of Tables

4.1 Results before and after using the tool. 54

4.2 Measurements of learning outcomes questionnaire scores. 54

4.3 Correct learning outcomes answers and programming experience table. 55

4.4 Correlation between learning outcomes answers and previous experi-

ence. 56

4.5 Usage data from using the tool. 57

4.6 Correlation between actions and learning outcomes performance. . . . 57

4.7 Perceived usefulness average scores. 59

4.8 Perceived ease of use average scores. 59

4.9 User acceptance average scores. 60

6

Chapter 1

Introduction

At universities, programming is taught to students through a variety of methods.

The students increase their programming skills by solving assignments, answering

quizzes, working on group projects, reading the course book and attending lectures

[1]. A fundamental part of learning a new skill is repeated practice and repetition

over a long period of time, which is also true for learning programming [2], [3].

In programming courses, this is usually achieved by the lecturer manually creating

programming assignments that are given to and solved by students throughout the

course. The assignments are then usually manually graded by either the lecturer or

the teaching assistants in the course. While this achieves the desired goal of creating

assignments that the students can use to increase their competence, the process of

manually creating and grading assignments can be time-consuming and prone to

errors.

This has led to the development of question generation technology [4], which has the

aim to automatically generate a large number of question variants that can be used as

part of the teaching process. Question generation technology has the potential to be

helpful to educators in many ways, including automatically generating assignments

and assessments, reducing expenses due to saving time on creating and grading

questions, and ensuring students a continuous supply of new questions. Another

use-case for question generation technology is to use it for mitigating cheating at

exams or assessments. Question generation can be used to generate unique exam

questions which can make student cooperation during home exams more difficult.

This has become increasingly relevant due to the increased number of cheating cases

during the COVID-19 pandemic [5].

While previous question generation research has mainly focused on generating short

7

answer questions and quizzes, this project is focused on the generation of more com-

plex programming questions, specifically aimed at JavaScript programming courses

taught at universities. While there are multiple different uses for question generation

technology, the main focus of this project is the use of question generation as a tool

for self-study and improving learning outcomes. The project is split into two main

parts. The first is the process and methodology used to develop the new question

generation tool, including an overview of previous research. The paper will also give

an overview of all the functionality present in the final prototype. The second part

of the project is an experiment conducted using the final question generation proto-

type, with the goal of evaluating the effectiveness of the prototype. The experiment

was conducted on a group of university students with varying programming experi-

ence in JavaScript, with the goal of evaluating whether the question generation was

effective in improving their learning outcomes in a chosen JavaScript topic. The aim

of this project is to answer the following research questions:

RQ1. How effective is question generation in improving learning out-

comes for JavaScript programming courses?

RQ2. Is question generation more effective in improving learning out-

comes for beginner programmers than intermediate?

The first research question is aimed at finding out whether the question generation

tool is actually an effective tool for learning. Learning is measured using learning

outcomes, and the effect is limited to JavaScript programming courses. This limit-

ation was added because finding that question generation is effective in increasing

learning outcomes for programming in JavaScript does not necessarily carry over to

other subjects or fields. The second research question builds on the previous ques-

tion and is aimed at finding out if there is any difference in learning effectiveness

between beginner and intermediate programmers. This can be used to determine the

potential use cases of question generation, whether it is best suited for introductory

programming courses or if it is better suited for more advanced courses.

The project report is split into six different chapters. Chapter 1, the current chapter,

contains a short overview of the project. Next, Chapter 2 consists of the background

for the project, including relevant research and a summary of the specialization pro-

ject leading up to this project. Chapter 3 describes the methodology used to develop

the question generation tool prototype and the methodology used in the experiment.

Afterward, Chapter 4 contains the results from the project, both a presentation of

the final prototype with a description of all the functionality and the results from the

experiment. Chapter 5 is a discussion of the results, including discussing limitations

8

of the tool and the experiment, potential use cases and interpreting the results from

the experiment. Chapter 6 contains the conclusion of the project, summarizing the

report and answering the research questions, and it contains further work, both with

regard to the development of the tool and with regard to further experiments.

9

Chapter 2

Background

This chapter contains an overview of the background of the project and is split into

two sections. The first section is a description of the specialization project that

this project is a continuation of and the second section contains previous research

relating to the topic of question generation.

2.1 Specialization project

The question generation tool developed for this project was a continuation of a

prototype that was started in a specialization project the previous semester. The

specialization project laid the groundwork for much of the functionality and research

behind the question generation tool for this current project.

The specialization project consisted of a literature review of the current research on

question generation methods, estimating the difficulty of questions and measuring

question effectiveness. An initial prototype of the question generation tool was also

developed, in addition to the literature search. The prototype consisted of some basic

functionality with regard to being able to generate questions. It allowed for basic

variable substitution to generate questions with unique numeric and text variables,

which made it possible to some degree to generate questions. The prototype had

no functionality for adding code to questions, for the user to write their own code

solution to problems and there was no user interface for students to actually solve

the generated questions.

The focus of the specialization project was broader than this project, in that it

focused on question generation as a tool for self-study, in addition to how ques-

10

tion generation can be used to reduce cheating at home exams. After completing

the specialization project and having discussions with multiple educators teaching

relevant programming courses, it became clear that using question generation as

a self-study educational tool was more relevant than using it for exam generation.

This was in part because of the shift from home exams during COVID-19 back to

regular on-site exams, which largely eliminated the need for generating unique home

exams. A decision was therefore made for this current project to narrow the focus

on the educational self-study purposes of question generation instead of the parts

relating to generating fair exam questions.

2.2 Previous research

This section is focused on the previous research that formed the base for large parts

of the project. The main topics covered are different methods used for question

generation, automated assessment of questions, evaluating the effect of question

generation on learning outcomes and estimating question difficulty.

2.2.1 Question generation using templates and variables

Figure 2.1: Exam generation pipeline, copied from Rusak et al. [6, p. 2].

A major challenge faced by educators during the COVID-19 pandemic was the rapid

change from physical lectures and assessments to digital ones. A shift to digital home

exams entails some problems, one of them being that the exams are unsupervised and

therefore more susceptible to cheating. This was demonstrated by a large increase

11

in cheating cases at exams [5]. There are different strategies that can be used to

mitigate cheating for home-exams [7], one of which is changing the exam design to

make student cooperation more difficult. Other strategies includes using plagiarism

checks, analyzing delivery times or using video conferencing. Changing exam designs

could be done by having more essay-type questions instead of short-form, changing

the order of questions or by giving unique questions. The unique exam framework

is a framework developed by Rusak et al. [6] created to remedy this problem. The

goal of this framework is to change the exam design thorough producing different

exam questions for each student, and thereby mitigate cheating.

The framework is based around a pipeline depicted in Figure 2.1. The questions

are designed using a LaTeX template. The pipeline is divided into three separate

stages. The first stage consists of creating a question skeleton, which is manually

done by the teacher. A question skeleton is a template for an exam question, with

the question consisting of plain text that is constant throughout all the questions,

in addition to variables that will vary between questions. An example of a question

skeleton is provided in Figure 2.2. In this example, there is some plain text with

the values v1, v2, v3, v4 and v5 being variables. This process is repeated k times

to produce the desired number of unique question skeletons. The next stage in the

pipeline is for the teacher to define the different possible values for each variable in

the question skeleton. These variables can either be independent or dependent, as

seen in Figure 2.3.

Figure 2.2: Example problem, copied from Rusak et al. [6, p. 3].

The variables v1, v2, v3 and v4 have a list of possible values which are completely

independent, while the variable v5 is calculated based on the previous variables.

After the possible variable values have been defined, the teacher needs to define

the question solution. The solution needs to be defined as a function that for a

set of variables provides the correct question solution for the given combination

12

of variables. This process needs to be completed for each unique question skeleton.

After the solution is defined, the last stage of the pipeline is to generate the question

variants. This is accomplished by randomly choosing a combination of the valid

variable options and calculating the solution for the question. It is then possible to

create n unique exams, each consisting of k unique question variants.

Figure 2.3: Example solution, copied from Rusak et al. [6, p. 3].

While this framework is focused on automatic question generation for exams, the

same framework could be utilized when the goal is to increase student learning

outcomes. Instead of generating questions with the goal of creating unique exams,

a similar pipeline can be used to generate a large quantity of quite similar, but still

unique questions. This can be useful for students to get repeated practice on a given

topic by solving a large number of relevant questions. This is also useful to ensure

that students can get a continuous supply of new questions and not be limited by

only having access to the manually created course questions.

A substantial difference when generating questions for formative assessments instead

of summative assessments [8] is the need for questions of similar difficulty. When

generating questions for a summative assessment it is very important that students

get equally challenging questions to ensure that the students are all evaluated fairly.

This can be a limitation when generating questions in that it reduces the variance

possibilities, because of the need for equally difficult questions. As the variety

between questions increases, the ability to judge the difficulty accurately increases.

On the other hand, when generating questions for formative assessments, there

are no such limitations on difficulty variance between questions. Creating question

variants with large variance in difficulty may actually be a benefit, in that it allows

the students to practice both fundamental and more advanced questions related to a

topic. Because of this, the potential for question variation for formative assessments

is higher.

13

2.2.2 Semantic-based question generation

While the question generation method described by Rusak et al. is focused on an

educator providing a skeleton template for questions, there are also other strategies

that can be used. Yao et al. [9] describe an implementation of semantic-based

question generation. This process works by mapping natural language sentences

into a representation of the meaning behind the sentence using Minimal Recursion

Semantics (MRS). Using the sentence meaning, the system can generate relevant

questions.

Figure 2.4: Question generation model, copied from Yao et al. [9, p. 12]

.

A model of the process of generating semantic-based questions is shown in Figure

2.4. There are two pain parts of the system, focused on Natural Language Un-

derstanding (NLU) and Natural Language Generation (NLG). The part concerning

NLU is concerned with understanding and processing the meaning behind the text,

and the NLG part is concerned with generating questions based on the understand-

ing. The process starts by defining some natural language text that the generated

questions will be focused on. The natural language text will then be converted into a

symbolic representation that tries to capture the meaning of the text using MRS. A

transformation function is then applied to the symbolic representation of the initial

text, converting it to a symbolic representation of a question. This representation

can then be converted back into natural language, now as a question.

The question generation implementation by Yao et al. is quite different from the

question skeleton method utilized by Rusak et al., but there are some similarities

in the general process. Both implementations generate a symbolic representation

14

of the given question, Yao et al. does this by using MRS while Rusak et al. does

this by creating a skeleton with relevant variables representing the question. In

both methods some transformation is then applied to the representation, converting

it into a question. A limitation of semantic-based question generation is that it

is mainly focused on processing natural language text and is therefore not suited

to generating complex number-based questions, which are often used in math and

programming courses. Rather it works best with generating understanding-based

questions for a text.

2.2.3 Question generation for formative assessments

Using automatic question generation as an educational tool can have many benefits.

It can reduce the amount of time teachers need to spend on creating questions, save

resources and make sure that students have a large number of questions to solve. A

relevant issue when creating a question generation tool is whether the tool is actually

effective as a learning tool. Tsai et al. [10] attempts to evaluate the effectiveness of

their question generation tool by evaluating the learning outcomes of students using

the tool in a Python programming course.

The question generation model used is based on semantic-based generation, similar

to Yao et al. in combination with syntax-based generation. Syntax-based generation

differs from semantic-based generation in that it uses a syntactic tree to represent

and transform the natural language text, instead of using a meaning-based symbolic

representation. The quality of the generated questions is then evaluated using the

Bilingual Evaluation Understudy (BLEU). This metric is based on the accuracy of

the generated question, with accuracy being measured as the similarity between the

question and the reference sentence, using N-gram matching rules.

BLEU = BP · exp(
N∑

n=1

wn · log(Pn))

The goal of the study was to find out if engagement with the question generation

tool correlated with improved learning outcomes across a range of learning outcomes.

The tool was evaluated by calculating an engagement score SRT (i) for each student

Si. This score is a measure of how much each student utilized the tool. The score

is calculated by dividing the number of correctly answered questions cik by the total

number of questions Nk for each learning outcome k, then summing this value for

each learning outcome.

15

SRT (i) =
n∑

k=1

cik
Nk

This engagement score gives an indicator of how many questions each student

answered and the ratio of correct answers. Four measures were then collected to

measure the learning performance of each student. These measures were: students

answering a short questionnaire for the learning outcomes, solving coding problems,

their exam score and their final semester score. Comparing the learning performance

scores with the engagement scores, it was found that a higher engagement score cor-

related positively with all four measures of learning performance. This finding can

therefore give an indication that automatic question generation can be an effective

tool in improving learning outcomes.

A potential limitation of this study is that even though it finds a correlation between

engagement score and learning performance, this does not mean causation. It might

be the case that high-performing students were more likely to utilize the tool than

underperforming students, and they would have scored higher on learning outcomes

performance anyway. It would therefore be relevant to do a controlled experiment

where the learning outcomes are directly linked to the usage of the question gener-

ation tool.

2.2.4 Assessing question difficulty

When utilizing a question generation tool it might be useful to have an estimate of

the difficulty of each question compared with other questions. This can be beneficial

in many situations. If the tool is used to generate questions for an assessment it is

paramount that the questions given to the students are of similar or equal difficulty

to ensure that all get a fair assessment. It can also be useful to know the question

difficulty when using a question generation tool as an educational tool, as it can

allow students to more easily find questions that match their current abilities for

the given topic.

In 2013 a research group proposed a method for estimating question difficulty using

a self-study tool [11]. The researchers made available a studying tool that students

could voluntarily use as part of a course to practice certain topics. The tool consisted

of a pool of Multiple Choise Questions (MCQ) that the students could answer. By

collecting data on how many students answered each question right or wrong, they

could estimate a difficulty rating for each question.

16

w(x) =

∑n
i=0 c(i, x)

n(x)

The difficulty rating w(x) for each question x is defined as the sum of all the times

a question was answered correctly divided by the total number of answers for that

question. c(i, x) in the formula returns the value 0 if the answer is wrong and 1 if it

is correct. This rating will therefore give an estimate of difficulty based on the ratio

of correct and wrong answers to a given question. The rating is a value between 0

and 1, where 0 means all students got the question right and 1 means all students

got the question right. This rating can then be used to group together questions of

similar scores.

A limitation of this method is that requires quite a lot of data before an accurate

estimate can be extracted. After new questions have been generated, they need to

be answered by a large number of users before the questions will have an accurate

score.

2.2.5 Automated assessment

An important aspect to consider when creating a question tool for self-studying is

how the students get feedback on their work. Feedback is necessary for the stu-

dents to know whether their work is correct or not. Without getting good feedback,

students can risk learning things the wrong way or misunderstanding the material.

Usually in university programming courses, students get feedback on their assign-

ments from teachers or student assistants manually grading their work. This is not

feasible when utilizing question generation tools, as the number of questions can

be very large and one of the major advantages of using such tools is for the teach-

ers to save time. These factors make it necessary to have some sort of automated

assessment method to accompany the question generation tool.

In 2020 Bruzual et al. [12] developed a system for automated assessment of exercises

in a mobile application development course. The goal of creating the system was to

make mobile application coding exercises scale more easily to large classrooms, as

previously the exercises needed to be manually graded by teaching assistants.

The system works by the teacher or teaching assistant designing a test case for each

exercise. An example test case is provided in Figure 2.5. The test cases work by

creating a set of actions that will be performed on the mobile application, then

checking if the application produces the correct output in response. The students

17

Figure 2.5: Test case, copied from Bruzual et al. [12, p. 43].

will produce their mobile application solution, then upload it to the system. The

system will then run the test cases and assess whether the submission passes all the

cases. If some test cases do not pass or there is an error when compiling the code,

the students will get feedback in the system user interface. This is demonstrated in

Figure 2.6. The students are then able to make changes to their code based on the

feedback, then resubmit their solution.

Figure 2.6: Feedback output, copied from Bruzual et al. [12, p. 43].

A potential limitation of this system is that the test cases are only able to look at

the application output produced by the students. This means that it can evaluate

18

the end result, but not the process of how the result was obtained. This opens

up the possibility for students to take shortcuts in their solutions by producing

the correct output for the assignment, but not using the correct approach. This is

not a problem when assignments are manually graded, as the teacher or teaching

assistants can evaluate both the output and the process of producing the output.

While this might be a problem when automatically assessing exercises that count as

part of the grade in a course, it is not necessarily a problem if the system is used

as a tool for self-study. If the goal for the students is to learn as much as possible,

there is no motivation for students to take shortcuts to produce the correct output.

19

Chapter 3

Method

This chapter describes the methodology used in this project, consisting of two main

sections. The first section is focused on the methodology used to develop the ques-

tion generation tool prototype and the second section is focused on the methodology

used in the experiment. The methodologies for this project were chosen based on

the research questions ”How effective is question generation in improving learning

outcomes for JavaScript programming courses?” and ”Is question generation more

effective in improving learning outcomes for beginner programmers than intermedi-

ate?”. There have been multiple previous implementations of question generation

tools, but none were found that are specifically focused on more complex program-

ming questions that could answer these research questions. The research questions

are based on the evaluation of an artifact, being a question generation tool. This

made using design science as a research paradigm a natural choice. The research

questions also require an evaluation of learning outcomes to be able to determine

the effectiveness of the artifact. A pretest-posttest design experiment was chosen

as this would make it possible to evaluate the learning outcomes of the participants

before and after exposure to the artifact, thereby directly seeing if the artifact was

effective or not.

3.1 Question generation tool

This section will describe the methodology used to develop the tool, including the

chosen research paradigm, the technologies used and the development process.

20

3.1.1 Design science

The research paradigm chosen for developing the question generation tool was design

science, due to the main focus of the research being the development of a new artifact.

This is one of the two main research paradigms in information system research, with

the other being behavioral science. While behavioral science focuses on verifying

and predicting human and organizational behavior, the goal of design science is

to extend human and organizational capabilities by creating new and innovative

artifacts. Hevner et al. [13] defines seven guidelines for performing design science,

as seen in Figure 3.1.

Figure 3.1: Design science guidelines, copied from Hevner et al. [13, p. 83].

Design as an Artifact

An integral part of the design science methodology is to produce an actual artifact

that can be utilized in a specific domain. This artifact can come in different forms,

whether it is the design of a new model, method, construct or instantiation. Artifacts

developed through the design science process are very rarely fully completed systems

that can be used in practice. It is most often an innovation that defines an idea

21

or a new product that can later be efficiently implemented into a full information

system.

The artifact developed for this project is the question generation tool method and

instantiation. The artifact represents a new method for question generation, combin-

ing aspects from different tools described in the literature. The artifact instantiation

is represented by the deployed website, in which the new question generation method

can be utilized in practice. While the instantiation of the question generation tool

is an initial implementation, it is close to being ready for use in a classroom setting.

This was demonstrated in the experiment, in which the instantiation was used in

practice by students. The goal of the instantiation is to demonstrate that the tool

is feasible and that it achieves the object that it was created for.

Problem Relevance

The ultimate goal of using design science to produce an artifact is to solve a relevant

business or organizational problem. The Technology Acceptance Model is a method

often used in design science to evaluate the problem relevance of an artifact. This

model can be used to evaluate to what degree an artifact is relevant for a given

group by evaluating the perceived usefulness, the perceived ease of use, and the user

acceptance of an artifact.

The problem relevance for the artifact produced in this project was ensured in a

couple of ways. Firstly, extensive feedback on the artifact was received from univer-

sity teachers in both this project and the specialization project. This is important

because teachers are the main group for utilizing the tool to generate questions, and

they have the relevant classroom experience to know what problems are important

and which are not. Feedback was also received from students. Students are the main

target group for utilizing the tool to answer the generated questions, so their exper-

ience is also important for the problem relevance. Secondly, the problem relevance

was ensured by evaluating the artifact using the Technology Acceptance Model and

thereby ensuring that the artifact actually is useful at solving the problem.

Design Evaluation

A crucial part of the design science process is evaluating the artifact to make sure

it satisfies the criteria for quality, utility and effiacy. The environment the artifact

will be used in defines what metrics are relevant when evaluating the artifact. Some

qualities that artifacts might be evaluated for could be completeness, functional-

22

ity, usability, reliability, performance, etc. There are five different methodologies

typically used to evaluate artifacts, as seen in Figure 3.2. These are observational,

analytical, experiment, testing and descriptive methodologies. Which methodology

to use will depend on the art of the artifact and which evaluation metrics are rel-

evant. As design science is an iterative process, evaluation is important in that it

gives feedback relating to what parts of the system should be further developed and

which should be discarded.

Figure 3.2: Design science evaluation methods, copied from Hevner et al. [13, p. 86].

The evaluation methodology used to evaluate the artifact in this project is the

experiment methodology, specifically a controlled experiment. This method was

chosen, as it is the most relevant method to how the artifact would be used in

a real-world setting. A controlled experiment makes it possible to evaluate the

question generation tool on a variety of relevant evaluation metrics. Usability is one

of these, as the participants in the experiment need to learn how to use the artifact.

Reliability, as the artifact needs to be able to handle many concurrent users without

any errors. Usefulness, in that it produces the desired improvement in learning

outcomes. These metrics are evaluated using the Technology Acceptance Model,

collecting usage data from the tool and learning outcomes questionnaires. Another

possibility for choice of methodology would be an observational methodology, but

23

a controlled experiment was chosen as this allowed for being able to collect more

detailed data relating to the usability and effiacy of the system.

Research Contributions

For design science to be effective it must contribute something new to the research.

There are three main types of research contributions, the design artifact, founda-

tions or methodologies. The design artifact itself is often the contribution in itself.

The contribution is a new artifact that solves a previously unresolved problem.

Foundations refer to a research contribution that involves creating new or improv-

ing current methods, models or instantiations in the field. Finally, methodologies

refer to a research contribution that creatively develops and uses evaluation methods

and metrics in a new manner.

The research contribution for this project can be classified into both the design

artifact and the foundation category. The project contributes a new design artifact

in the question generation tool itself, and it also provides new methods for question

generation by combining previous methods in a new manner.

Research Rigor

When conducting research using design science it is important to do it rigorously.

This includes both rigor when developing the artifact and when evaluating it. In

design science rigor is derived from using the knowledge base effectively, meaning the

theoretical foundations and methodologies. Performance metrics are usually used

to make claims about an artifact, and it is therefore important to make sure that

the measurements are appropriate to ensure rigor in the metrics.

The development of the artifact was conducted rigorously by carefully reviewing the

results from the relevant research papers when implementing the functionality. The

experiment was conducted rigorously by making sure that participants all had access

to the same information, and that the questionnaires were designed consistently with

the use of standardized questions, such as questions usually found when using the

Technology Acceptance Model. The consistency of the technology acceptance model

ensures that the performance metric of the artifact is appropriate.

24

Design as a Search Process

An important part of design science is to use an iterative search process to discover

an effective solution. This means iteratively generating potential solutions, then

testing these solutions against the relevant constraints or requirements of the project

and then making changes based on the evaluation. This is a necessary process, as

the design problem is only a starting point that can change or expand throughout

the design process. This process makes it possible to rapidly make changes based

on feedback to make the artifact more relevant, instead of implementing a hard-set

design created at the start.

An iterative design search process was employed in this project by creating mul-

tiple different iterations of the tool and evaluating it by getting user feedback from

different sources, including the project supervisor, teachers, and students. Many of

the feedback suggestions were then implemented in the tool, before being evaluated

again in the next iteration. This was an important process, as the initial problem

and functionality ideas were greatly expanded throughout this process, which led to

a much more relevant final artifact. This part of the project is expanded on in the

development process section below.

Communication of Research

The design science research should be able to be presented to either management-

oriented or technology-oriented audiences. Presenting the research for technology-

oriented audiences should be such that it is possible to implement the artifact. For

the management-oriented audience, the presentation should focus on the artifact,

but also the knowledge required to apply the artifact for organizational gain.

The artifact for this project is presented in this report. The report includes enough

detail about the artifact so that technology-oriented audiences should be able to

implement the artifact themselves. The report should also contain enough informa-

tion for management-oriented audiences to demonstrate the potential organizational

benefits of the artifact.

3.1.2 Development process

As mentioned previously, the question generation tool in this project is a continu-

ation of a tool that was started in the previous semester as part of a specialization

25

project. This project produced an initial prototype with some basic functionality

but with the majority of the functionality not yet implemented. This was mainly due

to the specialization project being focused on reviewing the literature, with the goal

of only producing an initial prototype. During the specialization project, multiple

meetings with programming teachers at the university were held to find out what

functionality they wished to see implemented in a question generation self-studying

tool. This feedback laid the groundwork for much of the functionality implemented

in the final prototype. A wish from the interviewed teachers was the ability to have

programming questions where students could submit their coding solution, and then

have the code compile and run in the cloud and output a solution. In combination

with this, they also requested to have the coding submission automatically assessed

in the cloud.

The development of the tool for the master project started by implementing the

major functionality requested by the university teachers from the last semester.

This included mainly the implementation of the code submitting and compiling,

automatic assessment, and designing an interface for the system. Weekly meetings

were held with the master supervisor, in which feedback on the implementation

was received. The implementation of the functionality was an iterative process,

in that parts of the functionality were implemented, then feedback was received,

then changes were based on the feedback. Feedback was received either from the

project supervisor, from the programming teachers, or from having a user test the

system. A new meeting was arranged with one of the programming teachers from

the specialization project, where feedback was received on the current functionality

implemented, in addition to some more wishes for new functionality.

The list of functionality for the question generation tool changed throughout the

semester as previous ideas were discarded and new and improved ideas were ad-

ded. All the major functionality defined at the start of the project ended up being

implemented in some form in the final product, in combination with multiple new

additions. In the experiment evaluation, the participants had many good sugges-

tions for functionality that could be implemented. As this was towards the end of

the semester, there was not enough time to implement these suggestions.

3.1.3 Technologies

This section will describe the main technologies utilized to develop the question

generation tool and the motivation for choosing the different technologies. This

includes the programming languages used, frameworks and cloud technology.

26

TypeScript

TypeScript was the programming language used to write the question generation

tool code. A decision was made early to make the question generation tool available

as a website instead of an application, as this would make it more easily accessible

for the user. The language was chosen because JavaScript/TypeScript is one of the

most popular languages used for developing web applications, and is well suited for

this purpose. This popularity also means that there is a large number of frameworks

and libraries available that made the development of the tool easier. TypeScript was

also a natural choice due to the main focus of the tool being JavaScript programming

courses, and it would therefore make it easier for JavaScript educators to potentially

further develop the tool.

JavaScript was also an option, but TypeScript was chosen as the ability to define

types was really helpful when defining the generated question data. TypeScript also

makes the code more robust, as it helps to avoid type-errors. In addition, it makes

the code more readable, which is useful if other programmers are to further develop

the project.

React

React was the chosen framework for developing the web-application. React is a web-

framework for developing web user interfaces for JavaScript and TypeScript, and is

based around creating interfaces using components. React is one of the most popular

frameworks in the industry, and is utilized in many of the most used websites in the

world. It is therefore a very robust language, with a very large range of available

libraries.

A major reason for using React was the availability of libraries, as this allowed for

saving a lot of time on developing components that are already available in React.

Another reason is the simplicity of use, and how easy it is to create a simple working

website. The main objective of this project is the functionality relating to question

generation, and not necessarily the user interface of the application. Using lots of

time on developing the user interface was therefore not prioritized. React also works

very well in combination with the other technologies used in the project, including

Azure, Judge0 and GitHub Pages.

27

Judge0

Judge0 is an open-source online code execution system [14] and it supports a wide

range of programming languages, including JavaScript and TypeScript. The system

allows users to compile and execute code in the cloud. It works by the user writing a

piece of code, which can then be submitted via their API. When the code has been

executed, the user receives the output of the code, whether it be a text or an error

message.

Judge0 plays an important role in the functionality of question generation tool in

multiple ways. It allows for the teacher to write code that defines the solution for

generated questions and it is used to compile and run the code that submits answers

to the questions. Originally the plan for this project was to develop an independent

code execution system that could execute code in the cloud to achieve these same

tasks. After discovering that Judge0 already implemented all the functionality that

was necessary for the question generation tool, a decision was made to utilize Judge0

instead of creating a new framework with the exact same functionality. This made

it possible to use more time on coding the parts relating to question generation.

Azure Cosmos DB

Cosmos DB is a globally distributed database service provided by the cloud com-

puting platform Azure. It allows users to create and use databases in the cloud,

supporting many different database models. Cosmos DB is used as the database

solution for this project and is used to store the generated question data in addition

to usage data.

Cosmos DB was chosen as the database solution for a couple of reasons. Firstly

is that it supports NoSQL, which is convenient for storing objects. Secondly, that

it integrates very well with React with the Cosmos DB React library. Thirdly is

that it supports auto-scaling. This means that the database can expand and shrink

depending on how much it is used. While this was not an issue during this project

due to the relatively low activity, it would be useful if the tool were to be used in

practice. While Azure was chosen for this project, the same functionality could also

have been provided by Amazon Web Services or Google Cloud Services.

28

GitHub Pages

GitHub Pages is a tool developed by GitHub to deploy GitHub projects as web-

sites. This tool was used in this project to deploy the question generation tool web

application. This made the tool easily accessible without having to run the code

locally, and it was used as the deployed site during the experiment. GitHub Pages

was chosen because the project was already stored on GitHub, and it made it easy

to quickly push new changes to the deployed version when developing.

3.2 Experiment

This section will describe the methodology used to conduct the controlled experi-

ment that was carried out as part of this project. The goal of the experiment was to

evaluate the effectiveness of the question generation tool across a range of evaluation

metrics.

3.2.1 Pretest-posttest design

The experiment for this project was designed based on a pretest-posttest design,

as described by Dimitrov et al. [15]. Pretest-postest designs are widely utilized in

behavioral research and are used to measure a change in results based on a treatment

or exposure. The main idea is to have participants take a test to measure some

results, then expose the participants to some treatment, then test to participants

again to see if the treatment led to a change in results.

The pretest-posttest design was utilized in the experiment by having the participants

take a test measuring their learning outcomes, then exposing them to the question

generation tool for a period of time, then measuring their test results again after the

exposure. Ideally, the participants would be divided into a control group, similar to

the randomized control-group pretest-posttest design described in Dimitrov et al.

[15]. With this design, there would be a group exposed to the question generation

tool and a control group not exposed to the tool. Due to the low sample size of this

experiment, this was not feasible, and there was therefore no control group.

29

3.2.2 Participants

The participants in the experiment (n=10) consisted of a group of students from the

Norwegian University of Science and Technology. The group consisted of students

from different study programs, some first-year students (n=2), some second-year

students (n=4), and some fifth-year students (n=4). All the participants had pro-

gramming experience from university, including JavaScript experience. The parti-

cipants were recruited through different methods. Through contacting a teacher at

the university teaching JavaScript, it was agreed that the author could give a short

presentation and try to recruit students from the JavaScript classes. In addition to

this, an email with information about the experiment was sent to all the students

partaking in both courses. Students were also recruited from the fifth-year Com-

puter Science class at the university. All participants received a gift card of 250

NOK to participate in the experiment.

3.2.3 Technology Acceptance Model

The Technology Acceptance Model was developed by Davis et al. [16] in 1989. The

goal of this model was to create a valid measurement for predicting whether a new

technology would be accepted by users. Two specific variables were found to be

fundamental determinants of users accepting new technologies. These two variables

are the perceived usefulness of the technology and the perceived ease of use. These

attributes were found to be highly correlated with current usage and self-predicted

future usage.

Perceived usefulness

An important factor when users are evaluating whether to use a technology or not

is to what extent the user believes it will help them perform their job better. In the

Technology Acceptance Model, this is defined as perceived usefulness. This refers

to the degree to which a user believes that using a technology would enhance his or

her job performance.

Perceived ease of use

After considering whether a technology would help improve job performance, the

user may consider how hard the technology is to use. If the technology is too

30

hard to use this might outweigh the potential benefits the user may have from

the technology. This is referred to as the perceived ease of use in the Technology

Acceptance Model. The ease of use is defined as the degree to which the user believes

using the technology would be free of effort.

The Technology Acceptance Model was utilized in this project when evaluating

the question generation tool in the experiment. Here the participants answered

standardized questions based on the Technology Acceptance Model evaluating the

perceived usefulness and the perceived ease of use of the tool. While perceived

usefulness and perceived ease of use are highly correlated with user acceptance, user

acceptance was also measured directly by asking the participants how likely it is

they would use or recommend the tool to others.

3.2.4 General information

Figure 3.3: Pretest-posttest experiment timeline.

The experiment was split into four distinct parts and lasted about 1 hour. The

first part was a questionnaire regarding the previous programming experience of the

participant, with the students having 5 minutes to answer. The second part was

a questionnaire testing their learning outcomes for a chosen programming subject.

This questionnaire was answered twice, once before and once after using the question

generation tool. The students had 7.5 minutes to answer each time. The third part

was using the question generation tool, lasting 35 minutes. The fourth part and last

part of the experiment was answering a questionnaire evaluating the tool, having

5 minutes. All the questionnaires were created and answered using Google Forms.

The students received no information about the outline of the experiment before

starting. The timeline for the experiment can be seen in Figure 3.3.

The topic of the experiment was functional array methods in JavaScript. This topic

was chosen because it can be well suited both for participants with no previous ex-

perience and participants with more experience. If you have no previous experience

it is possible to learn the basics quite fast, and if you have some experience there are

more advanced methods to learn. The topic is also highly focused on JavaScript,

which is the main target language for the question generation tool. The experiment

31

was conducted over Google Meets. All participants were required to have their

cameras on, to make sure that everyone used the allotted time.

The anonymity of the participants was ensured by generating a unique ID for each

participant. The participants then provided this ID in each separate part of the

experiment, to make it possible to group the answers by the participant afterward.

The only data personal to the participants collected was their study program and

year of study, but this data was only attached to their unique ID and not by name.

Because of the fact that the experiment was conducted over Google Meets, all the

participants could see who the other participants in the experiment were, but there

was no way of seeing what the other participants responded in the questionnaire.

3.2.5 Participant experience data

The first part of the experiment was collecting data about each participant’s previous

programming experience. The participant stated the name of their study program,

approximately how many programming course credits they had taken in university

and how many JavaScript course credits they had taken. Participants were also

asked to rate their overall programming abilities, how much experience they had with

JavaScript outside of their studies and state how much experience they have had

with functional array methods in JavaScript previously. These were all rated on a

7-point Likert scale. All these questions have the aim of evaluating the participant’s

programming abilities, JavaScript abilities and array functional methods knowledge.

3.2.6 Learning outcomes

The second part of the experiment is focused on evaluating the participant’s learning

outcomes for a given topic. As mentioned, the topic chosen for this topic was array

functional methods. This part consisted of a questionnaire of 12 questions relating

to array functional methods. The questions were multiple choice questions with

four different options, in addition to an ”I don’t know” option. Participants were

informed to choose the ”I don’t know” option if they did not know the answer,

as guessing the correct answer would not give a real indication of the participant

learning outcome. The questions were designed such that all the options could

be a plausible answer, and the participant needed a good understanding of the

topic to get it correct. Figure 3.4 shows two examples of the questions used in

the questionnaire. The questions covered three main topics related to the array

methods: an understanding of what each method does, an understanding of when

32

Figure 3.4: Example of two of the questions in the learning outcomes questionnaire.

33

to use each method and knowing the correct syntax for each method. The first ten

questions were of medium difficulty, with the two last ones being harder. These last

questions were for the participants who already had quite a lot of knowledge of the

topic so that they would not get everything correct in the first round. After the

participants answered questions from the question generation tool, they were asked

to answer the same questionnaire again, to evaluate the learning outcomes after using

the tool. They were not informed of this beforehand, to avoid them deliberately

focusing on only answering questions on the topics covered in the questionnaire.

The participants were also told to not use any external assistance when answering

the learning outcomes questions.

3.2.7 Answering generated questions

The third part of the experiment is the participants answering questions generated

by the question generation tool. The participants were given 35 minutes to utilize

the tool. No instructions were given on how to use the tool, and the application

contained no tutorial explaining how to use it. This was a deliberate decision, to

evaluate how intuitive the user interface of the tool is. The participants were asked

to not use any assistance during the 35 minutes, with the exception of link to a site

containing documentation for all the array functional methods [17]. This was done

to ensure that all the participants had the same information available to solve the

questions. All the questions were designed to be able to be answered using only the

documentation link. It was necessary to have some sort of documentation available,

as some participants might not be familiar with a given array method.

When using the tool during the experiment, the participants would use the tool to

answer programming questions relating to array functional methods in JavaScript.

There were 55 unique questions generated in total by the author, divided into two

categories: standard and intermediate, with 40 of the questions being standard and

15 intermediate. Before starting using the tool the participants were informed they

could choose which difficulty they wanted, but it was recommended to start on the

standard questions and then potentially move towards the intermediate questions

later. The generated questions covered a range of topics within the subject of array

functional methods, with all of the questions being generated using the question

generation tool. Examples of the type of questions the participants answered are

shown in Figure 4.9, Figure 4.10 and Figure 4.11.

34

3.2.8 Evaluation

The fourth and last part of the experiment was for the participants to answer a

questionnaire evaluating the question generation tool. This evaluation was based

on the Technology Acceptance Model, as described previously in this chapter. The

evaluation questions were split into three categories, perceived usefulness, perceived

ease of use and user acceptance. The questions were answered on a 7-point Likert

scale, with there being 10 questions in total. Perceived usefulness evaluates the

usefulness of the tool in achieving the goal of the tool, and consisted of the first

four questions in the form. These questions referred to how effective the tool was

in learning new programming concepts and how useful the tool would be as a part

of their studying routine. The next category was perceived ease of use, referring to

how understandable and easy to use the tool was, consisting of three questions. The

last category was user acceptance, meaning how likely it is the user would actually

utilize or recommend the tool in a real-world setting, consisting of three questions.

Lastly, there were two open-text questions were the participants could give more

in-depth answers. The first question was about the learning experience of using the

tool and the second asked for any suggestions for improvements to the tool.

35

Chapter 4

Results

This chapter is split into two sections and contains the results from the question

generation tool and the results from the experiment. The question generation tool

results section is a presentation of the final prototype with all the functionality and

the experiment results section contains the results from the evaluation of the tool.

4.1 Question generation tool results

This section will be a presentation of the final question generation tool prototype,

including a description of all the functionality included in the tool. The question

generation tool developed for this project is split into two major components. The

first component consists of functionality for generating question variants, to be used

by teachers. The second component is an intuitive interface for students to answer

the question variants generated by the teacher.

4.1.1 System architecture

An overview of the system architecture is provided in Figure 4.1. The architec-

ture is relatively simple, with there being four main technologies used as a part of

the system. The majority of the system consists of the React-application, which

includes all the code for the user interface, generation of questions, answering ques-

tions and communication with the other parts of the system. The React application

communicates with the Azure Cosmos Database by fetching and uploading docu-

ments, which is used to store generated question documents and user metrics. The

React application also communicates with the Judge0 API, which is the API used

36

Figure 4.1: Overview of the system architecture.

to compile and execute code in the cloud. The React application will send code

submitted by the users to the Judge0 API, which will then execute and return the

output of the submitted code. Lastly, GitHub Pages is used to actually deploy the

React application to a hosted website.

4.1.2 Question generation

The core of the tool developed for this project is the functionality related to question

generation. The user interface for the question generation capabilities of the applic-

ation is presented in Figure 4.2. The goal of this part of the application is to be

able to create a question template, which then can be used for generating variants

based on some variables provided by the user. There are three main question types,

all of which will be described in detail later.

As seen at the top of the figure, the user can provide some information about the

given question. Firstly it is possible to give the question a descriptive title. This

is mainly for being able to identify the unique questions and to give the students

answering the question an idea of the question topic. Next, the user can provide the

number of unique variants they wish to generate. There is no upper limit for how

many unique variants can be generated, so the user can generate as many variants as

needed. Next, it is possible to categorize the subject for the question. This makes it

possible to group together questions that belong to the same subject or class. Here

it is also possible to categorize the question on difficulty.

37

Figure 4.2: Generation of question variants.

Below there is a field for the user to provide a question description. This is a

text description that will be constant for all the unique variants, so here the user

could potentially give some background information for the question or some gen-

eral information about the question. Because this description is constant across all

variants, it is important that the information applies to all the variants. This part

is optional, so if there is no general description for the question it can be left empty.

After the general question description, there is a field for attaching some code that

is relevant to the question. This part is also optional and can be added or removed

by checking the ”attach question code” checkbox. This field might be used to attach

code that is relevant, for example, a class or method that might be used as a basis

for the question. This code will be set as the initial code in the code editor when

answering questions.

The next field is the variable question solution field, which is the field responsible for

creating the variants of the question. This field contains the parts of the generated

questions that vary. This field allows for adding normal plain text, in addition to

being able to add question variables. Variables can be added through the ”Add

variable” drop-down, with four different types of variables available:

38

• Text: a list of possible string values

• Integer: a number interval defined as a minimum and maximum value

• Decimal: a decimal number interval defined as a minimum and maximum

value

• List of integers: a number interval defined as a minimum and maximum

value, with the length of the array

For text variables, the user can provide a list of the different possible values the

variable can contain. For integer and decimal values, the user must define a minimum

and maximum value. For a list of integer variables, the user must define a minimum

and maximum value and the desired length of the list. The user must also define a

unique variable name for each variable added.

Figure 4.3: Example of using the four different variable types.

When a question is generated all the instances of a variable in the variable question

solution field will be replaced with an actual value based on the parameters provided

for the given variable. The variables are contained in double curly brackets, so the

tool will search the text for any valid instance of double curly brackets and replace

it with a valid value. For a text variable, a random value in the provided list of

strings will replace the variable. For an integer variable, a random integer in the

39

Figure 4.4: Two example variants generated from the template in Figure 4.3

.

provided interval will be generated and substituted for the variable. For a decimal

variable, a random decimal value in the interval will be generated. For the list of

integer variable, a list with the provided length will be created, with each value in

the list containing a randomly generated integer in the interval.

An example of how the variables are defined is provided in Figure 4.3. Here a

template is created containing some text, including an example of each variable

type. Figure 4.4 is an example of two variants generated from the template, where

each variable is replaced by a value based on the parameters.

Below the variable question solution field there are three different check-boxes.

These can be toggled to add different functionality which can be used to create

different question types. As mentioned, there are three main question types that

can be generated:

Coding questions

The first type of question is simply called coding questions and is the main method

for creating questions using the tool. It is the question type that allows for the

most amount of variation, and the most creativity. To create a coding question, the

user needs to check the ”add code solution” checkbox, which will make a code editor

window appear, as seen in Figure 4.5. Below are two buttons, ”see example solution”

and ”refresh variables”. What defines the coding question type is the ability of the

teacher to write a question solution that depends on the added variable questions.

The code editor has a function called solution(), which defines the solution to the

question. When pressing the ”refresh variables” button, all the question variables

will be added as parameters in the function. The teacher can then write their

desired code, using the question variables. By pressing the ”see example solution”

button, the tool will randomly generate a set of valid variable values and display

the solution for those variable values. This is useful for checking that the solution

function provides the correct answer for many different combinations of variables.

An example of how a coding question might be designed is provided in Figure 4.6,

which was one of the question templates used in the experiment. An example of a

40

Figure 4.5: Editor for adding a code solution to a question.

question generated by this template can be seen in Figure 4.9.

Code understanding questions

The second type of question is code understanding questions. Unlike the coding

questions, where the students are asked to write code that provides the correct

answer, the coding understanding questions are based on being able to understand

and debug existing code. This type of question is generated by checking the ”add

code solution” and the ”answer with text” checkboxes. The teacher can then write a

coding solution using the question variables. The difference here is that the student

will be given the code solution as part of the question, and then asked questions

about what the code outputs. An example of a code understanding question is

provided in Figure 4.7, with an example of a generated question in Figure 4.11.

Produce output questions

The third type of question is the produce output questions. This is the question type

that allows for the least amount of variance, but it can be useful in some situations.

The idea behind this question type is that the student will be asked to write some

code that produces a given output, where the output varies between questions. This

question type is created by un-checking both ”add code solution” and ”answer with

41

Figure 4.6: Example of a coding question template.

42

Figure 4.7: Example of a code understanding question template.

43

text”. Attaching question code is optional. The teacher will write the desired code

output in the ”variable question solution” field, which can contain both text and

variables. An example of a produce output question template is provided in Figure

4.8 with a generated question in Figure 4.10.

Figure 4.8: Example of a produce output question template.

4.1.3 Answering questions

The next major component of the tool is the functionality relating to answering the

generated questions. While the generation of questions is the main research topic of

the project, it is also important to have a user interface for solving the questions. The

formatting of the questions is quite specialized, so it was necessary to create a system

that supported the question formats and provided all the necessary functionality.

As described in the previous section, there are three main question types. As the

nature of the question types requires different solutions from the student, there are

44

two different interfaces for viewing and answering questions.

Coding questions

Figure 4.9: User interface for solving coding questions.

The first interface is created for the questions that require the student to write

and submit code, as depicted in Figure 4.9 and Figure 4.10. This interface is used

for answering the coding question type or the produce output question type, as

both these require the student to submit code. At the top of the screen is the

title of question, including the ability to return to the home menu on the left or to

skip the current question to the right. Below is the question description and the

variable question solution. After the question description is the code editor, where

the student can choose between writing JavaScript or TypeScript. If the question

contains some attached question code, the code will appear in the code editor when

loading the question. If not the editor will be empty. To the right of the code editor

is a code output window, where the output of the code is presented, or an error

if something goes wrong. Below are the options for either compiling and running

45

the code, or for submitting. Compiling and running the code can be used by the

student to test their code to see if it works as they intended. When submitting the

code, the code will be executed and the output of the submission will be compared

to the question solution defined by the question template. If the answer is correct,

the student can proceed to the next question.

Figure 4.10: User interface for solving produce output questions.

Code understanding questions

The second interface is for the code understanding questions. For these questions,

the user does not need to write code, and there is therefore no need for a code

editor. This interface is seen in Figure 4.11. The top contains the same parts as the

previous interface: title, return and skip button and question description. Below

this is a read-only code window containing the code question solution defined by the

teacher. The student will be asked to read the code and answer what the output of

the code is, given some information provided in the question. The student provides

their answer in a text field beneath the code window. When submitted, the answer

will be compared with the correct output and evaluate whether it is correct or wrong.

46

Figure 4.11: User interface for solving code understanding questions.

47

4.1.4 Navigating the tool

The tool has a simple menu system for navigating the different parts of the system.

There is a main menu to be used by students for navigating the questions, and there

is a separate admin menu for navigating the admin functionalities.

Menu system

Figure 4.12: Main menu user interface.

The main menu can be seen in Figure 4.12. The menu is simply an overview of all

the different question subjects, with each subject having a list of under-categories.

When navigating to a topic from the main menu, the student will be presented with

questions tagged with that category and can start solving the questions right away.

It is also possible to access ”all questions” within a subject, meaning all questions

from the under-categories for that subject. When students have navigated to a

subject, all the questions they receive when either skipping or moving to the next

question will be from that subject. If a student wishes to solve questions relating

to another subject, they can navigate back to the main menu and choose another

subject. The under-categories for a subject can be used for categorizing into more

specific subjects within the main subject, or they can be used to categorize questions

based on the difficulty, which is the case in Figure 4.12.

Admin

The admin menu is accessible by clicking the admin button on the top right of the

screen and logging in with a specific username and password, as seen in Figure 4.13.

After logging in, the admin has access to the admin menu, seen in Figure 4.14.

48

Figure 4.13: Admin login screen.

Figure 4.14: Admin menu user interface.

49

This menu contains the page for generating questions, as described in depth in the

previous section, and for viewing the question bank. The question bank contains the

information about all the question instances generated, including title, description,

category, attached code and question solution. The question bank is depicted in

Figure 4.15.

Figure 4.15: Question bank interface.

4.2 Experiment results

In this section, the results from the evaluation of the question generation tool will

be presented. This includes the results from the four different parts of the exper-

iment, the first being the data collected about the programming experience of the

participants, the second being their results of the learning outcomes questionnaires,

the third being the results from answering questions using the tool and lastly, the

evaluation results using the Technology Acceptance Model.

50

(a) Study programme. (b) Year of study.

Figure 4.16: Participant study programmes and year of study.

4.2.1 Participant experience data results

The part first part of the experiment consisted of collecting some data about the

participant’s previous programming experience, to get some idea of their current

programming knowledge. The first two questions asked about the name of their

study programme and what year of their studies they were on. The participants

came from a range of different study programmes, with some being more focused

on programming than others. The uniting factor of all the participants is that

they had taken credits in a JavaScript programming course. Figure 4.16 shows how

many students were from each study programme. BIDATA refers to a bachelor

in Computer Science, ITBAINFO refers to a bachelor in Information Technology,

MIDT refers to a master in Computer Science, MIT refers to a master in Informatics

and BDIGSEC refers to a bachelor in Digital Infrastructure and Cyber Security. The

next graph in the figure shows what year of their studies the participants, with the

participants all being either first, second or fifth year students. This was expected,

as the classes that the students were recruited from were either first, second or fifth

year. Some of the fifth year students had answered that they were on their second

year, as they were on the second year of their 2-year master degree, but this was

changed to fifth year in the data to make the answers consistent.

After asking about the participant’s study programme and study year, they were

asked a range of questions relating to their programming experience. They were

asked to estimate how many programming credits they had taken in university, and

how many JavaScript programming credits. They were asked to choose between

five categories, under 10 credits, between 10 and 20 credits, between 20 and 30

credits, between 30 and 40 credits or over 40 credits. They were also asked to rate

51

their overall programming abilities on a 7-point scale from poor to excellent, to rate

their experience with JavaScript outside of their studies and their experience with

functional array methods in JavaScript on a 7-point scale from no experience to very

experienced.

The data showed that over half of the participants had over 40 programming credits

while under half had between 10-20 credits, as seen in Figure 4.17. None of the

other options were chosen, as seen in graph (a). The participants all also rated their

own programming abilities as average or above average, as seen in graph (c). This

means that all the participants were somewhat familiar with programming in general,

with no participants being very inexperienced with programming. When it came

to JavaScript programming credits, the majority had between 10-20 credits with

some outliers, as seen in graph (b). When asked about experience with JavaScript

outside of their studies in graph (d), the answers were quite varied, with most having

some experience, some having no experience and some having a lot. When it came

to experience with the array functional method almost half answered they were

very experienced, with the rest having varying experience. All participants had at

least some experience with functional array methods beforehand, seen in graph (e).

Overall all the participants had some experience with JavaScript, with some very

experienced participants.

4.2.2 Learning outcomes results

The next part of the experiment focused on evaluating the learning outcomes of

the participants relating to array functional methods. The participants were asked

12 multiple choice questions testing their understanding of what each functional

array method does, when to use them and the correct syntax for using them. The

number of correct answers for each participant is presented in Table 4.1. The table

shows the number of correct answers on the learning outcomes questionnaire before

utilizing the tool, the number of correct answers after using the tool, and the delta

between these values. These values demonstrate how much improvement in learning

outcomes each participant had from answering questions from the tool, as having

used the tool was the only differentiating factor from the results before and after.

Measurements of the performance of the participants on the learning outcomes ques-

tionnaire are presented in Table 4.2. Before using the tool the participants had an

average and median score both of 8 out of 12 questions. After using the tool the

average score was 10.4 and the median score was 11, with an average improvement

of 2.4 and a median improvement of 2. This translates to an average 30% and

52

(a) Total programming credits. (b) JavaScript programming credits.

(c) Overall programming abilities. (d) JavaScript experience outside studies.

(e) Experience with array functional methods.

Figure 4.17: Participant’s previous programming experience.

53

ID Correct before Correct after ∆

A 4 7 3

B 9 12 3

C 10 12 2

D 4 11 7

E 11 12 1

F 8 9 1

G 12 12 0

H 7 8 1

I 8 10 2

J 7 11 4

Table 4.1: Results before and after using the tool.

37.5% median performance improvement after using the tool. Only one participant

answered all the questions correctly before using the tool, while four participants

managed a full score afterward.

Measure Value

Average score before 8

Median score before 8

Average score after 10.4

Median score after 11

Average improvement 2.4

Median improvement 2

Average percentage improvement 30%

Median percentage improvement 37.5%

Full score before 1

Full score after 4

Table 4.2: Measurements of learning outcomes questionnaire scores.

In the previous questionnaire, the participants were asked about their experience

level. While this might give an indicator of their knowledge of the topic, it is

possible that the participants might overestimate or underestimate their capabilities.

It is therefore relevant to look at the correlation between the number of correct

answers and the participant’s stated experience. Table 4.3 shows a table with the

number of correct answers on the learning outcomes questionnaire, together with

54

the information about the participant programming experience from the previous

part of the experiment. The data regarding programming credits and JavaScript

credits are translated into a 5-point scale, translating under 10 credits to 1 and

translating over 40 credits to 5, with the rest of the options in between. The rest of

the experience values are expressed as the 7-point score shown in Figure 4.17, (c),

(d) and (e). The ID anonymously signifies the different participants in the study.

ID Correct LO Total credits JS credits Coding exp. JS exp. AFM exp.

A 4 5 1 5 4 2

B 9 2 2 4 3 5

C 10 5 2 6 5 7

D 4 5 2 5 6 7

E 11 2 2 6 7 7

F 8 5 2 5 4 4

G 12 5 3 5 5 7

H 7 2 2 5 1 6

I 8 2 2 4 2 4

J 7 5 2 6 3 3

Table 4.3: Correct learning outcomes answers and programming experience table.

The correlations between previous experience and correct answers on the learning

outcomes questions are shown in Table 4.4. The correlations are calculated using the

Pearson correlation coefficient, with the R-values being presented in the table. The

number of correct answers before using the tool has a moderate correlation with the

number of JavaScript credits the participant had achieved and the stated previous

experience using array functional methods in JavaScript. Total number of program-

ming credits, overall programming abilities and experience with JavaScript outside

of their studies had a weak or no correlation with the learning outcomes before using

the tool. The same can be seen with the performance after using the tool, with the

number of JavaScript credits, experience with array functional methods, and also

experience with JavaScript outside of their studies had a moderate correlation with

the number of correct answers after using the tool. The amount of improvement in

the learning outcomes from before to after had weak or no correlation with any of

the previous programming experience measurements of the participants.

55

Correlation Before After ∆

Total programming credits -0.2421 -0.0468 0.2782

JavaScript credits 0.7071 0.6412 -0.3516

Overall programming experience 0.1694 0.213 -0.03

JavaScript experience 0.2282 0.4967 0.1513

Array functional methods experience 0.5114 0.6195 -0.112

Table 4.4: Correlation between learning outcomes answers and previous experience.

4.2.3 Answering generated questions results

After the participants had answered the first questionnaire testing their current

knowledge of the learning outcomes regarding array functional methods in JavaS-

cript, they were asked to answer questions generated by the question generation

tool for a 35-minute session. During this session, the participants used the tool to

practice questions relating to the topic of array functional methods. Meanwhile,

data was collected from the participants based on their usage of the tool. Data

was collected based on four different actions: each time the participant submitted

and answered a question correctly, each time a participant submitted and answered

a question wrong, each time the participant skipped a question, and each time a

participant loaded a new question. There were no limits on submitting solutions

for a question, so the participants could submit an answer wrong multiple times for

a single question. There was neither any limit on how many times a participant

might skip a question. A new question was viewed each time a participant answered

a question correctly and went to the next question when the participant skipped a

question or if the participant changed the question category from standard to inter-

mediate. Table 4.5 shows how many times each participant performed each of these

actions.

Table 4.6 shows a table with the R-values from the Pearson correlation coefficient

between the usage data for each participant with the performance on the learning

outcomes questionnaire before and after using the tool, and the improvement from

before to after. There are no strong correlations between the usage metric data

and the performance on the learning outcomes questionnaire. This seems to be

the case because of the participants used multiple different strategies when using

the tool. Some participants view and submit as many solutions as possible, with

some focusing on a few questions and using longer times on each question. The only

moderate correlation with learning outcomes performance is the number of questions

56

ID LO before LO after Correct Wrong Skip Views

A 4 7 9 8 4 14

B 9 12 13 8 0 15

C 10 12 14 9 15 35

D 4 11 3 4 1 5

E 11 12 3 7 3 9

F 8 9 1 16 1 5

G 12 12 15 4 3 21

H 7 8 4 1 0 5

I 8 10 7 10 6 16

J 7 11 10 6 3 16

Table 4.5: Usage data from using the tool.

answered correctly and the number of questions viewed.

Correlation Before After ∆

Correct 0.3949 0.4225 -0.1374

Wrong 0.0816 -0.077 -0.1786

Views 0.4469 0.4427 -0.1879

Skip 0.2635 0.254 -0.1173

Table 4.6: Correlation between actions and learning outcomes performance.

4.2.4 Evaluation results

The last part of the experiment was an overall evaluation of the tool using the Tech-

nology Acceptance Model. This part consisted of a questionnaire with 10 questions

based on the three categories in the model, the perceived usefulness of the tool,

the perceived ease of use of the model and the user acceptance. At the end of the

evaluation, there were also two open-ended questions asking about the learning ex-

perience of the tool and any suggestions for improvements. AQGT is used as an

abbreviation in the questions, meaning Automatic Question Generation Tool.

57

(a) Learning more quickly. (b) Increase productivity.

(c) Make studying easier. (d) Useful part of studying routine.

Figure 4.18: Perceived usefulness.

Quantitative results

The first four questions in the evaluation were based on the perceived usefulness

of the tool, as seen in Figure 4.18. These questions focus on how the participants

evaluate the tool to be useful in achieving a desired outcome. For this tool, this

meant whether it would be useful for learning programming concepts more quickly,

increase studying productivity, make studying easier and whether it would be a

useful part of their studying routine. Table 4.7 shows tool scored quite high on all

these measures with an average score of 5.7 for learning more quickly, a score of 5.5

for increasing productivity, a score of 5.5 for making studying easier and a score of

5.6 for being a useful part of their studying routine.

The next three questions were based on the perceived ease of use of the tool. This

means how easy it was to learn to use the tool, how easy it was to make the tool

do what the participant wanted it to do, and to what degree the interface was clear

58

Perceived usefulness questions Score

Using the AQGT would enable me to learn programming concepts

more quickly.
5.7

Using the AQGT would increase my studying productivity. 5.5

Using the AQGT would make studying easier. 5.7

I would find the AQGT an useful part of my studying routine. 5.6

Table 4.7: Perceived usefulness average scores.

and understandable. When testing the tool, the participants received no tutorial

or no information about how to use the tool, they were simply left with the user

interface. The participants rated the ease of use very highly, with an average score

of 6.1 for how easy the tool was to learn to use, a score of 5.9 for how easy it was

to make the tool do what they wanted it to do and a score of 5.9 for how clear and

understandable the interface was. These values are represented in Figure 4.19 and

Table 4.8.

Perceived ease of use questions Score

Learning to use the AQGT was easy for me. 6.1

I found it easy to make the AQGT do what I wanted it to do. 5.9

The user experience of the AQGT was clear and understandable. 5.9

Table 4.8: Perceived ease of use average scores.

The last three questions in the evaluation focused on the user acceptance of the tool.

These questions were based on how likely it is the participants actually would use

the tool in a real-world setting, how likely it is they would recommend using it to

others and how likely it is they would utilize it for a variety of different purposes.

The evaluation for these questions is presented in Figure 4.20 and Table 4.9. These

average scores were a bit lower than the questions for usefulness and ease of use, but

this is to be accepted as the threshold for actually starting to use a new technology

is higher than finding something useful or easy to use. The average score for how

likely it is the participants would frequently use the tool is 4.9, the average score for

likely it is they would recommend it to other students is 5.6 and the score for the

likelihood for using the tool for a variety of different purposes is 5.9.

59

(a) Ease of learning to use. (b) Ease of achieving desired action.

(c) Understandable user experience.

Figure 4.19: Perceived ease of use.

User acceptance questions Score

I would frequently utilize an AQGT for studying. 4.9

I would recommend using an AQGT to other students. 5.6

I would use an AQGT for a varierity of purposes (preparing for an

exam, learning a new concept, for repetion, etc.)
5.9

Table 4.9: User acceptance average scores.

60

(a) Would frequently use. (b) Would recommend to others.

(c) Would use for a variety of purposes.

Figure 4.20: User acceptance.

61

Qualitative results

At the end of the evaluation, the participants answered two open-ended questions,

”How was the learning experience using the AQGT?” and ”Do you have any sugges-

tions for improvements for the AQGT?”. For the first question, the overall feedback

was very positive, with multiple participants remarking that they were able to learn

very quickly using the tool and that it was surprisingly easy to use. There was

also some constructive feedback, with some participants saying there could have

been more variety in the questions, that the tool would be suitable for specific tasks

but could not replace more complex assignments and that the tool would be better

suited to evaluating current knowledge instead of being used as a learning tool.

The second question relating to suggestions for improvements also received a variety

of answers. The most requested feature was the ability to see hints or view the

solution to the question if the user is not able to solve it. This was due to some of the

participants getting stuck on some of the questions, and without hints, there are no

other way to proceed other than skipping the question. There were some questions

where the participant needed to copy some text from the question into the code

editor, which led to multiple participants suggesting having this code automatically

embedded into the editor. A participant also requested to have a test case with the

expected output.

62

Chapter 5

Discussion

This chapter contains a discussion focused on the methodology and results of both

the question generation tool and the experiment. The first section covers the limita-

tions, use-cases and why certain choices were made regarding the development of the

tool. The second section contains a discussion of the results from the experiment,

including covering the limitations of the experiment and the methodology.

5.1 Question generation tool discussion

This section is a discussion of the question generation functionality, automated as-

sessment functionality, use-cases and the limitations of the question generation tool.

5.1.1 Question generation

An influence on the question generation capabilities for the tool was Rusak et al.

[6] and their system for creating unique exams. A similar technique is used for

generating the questions, but the functionality is greatly expanded on in multiple

ways for this project. The method used by Rusak et al. is based on creating a

question skeleton with a set of numeric variables. The possible numeric values are

a set of numbers provided by the teacher, and are not randomly generated. The

teacher then defines a formula for calculating the question solution based on the set

of variables. The method produces a set of unique questions, but the questions need

to be given to the students separately and there is no automatic assessment. Because

of the limitation to only having numeric variables, the method is mainly limited to

mathematical questions and is not that well suited for programming questions.

63

The first way the question generation tool differs from that of Rusak et al. is the

variety of possible variables. While their tool supports integers, the tool developed

for this project supports strings, integers, decimals, and lists. This greatly increases

the range of variation possible. Especially the introduction of string variables makes

the possibilities much greater, as it is possible to have multiple different paths in the

question solution. Using combinations of strings, numbers, and lists also allows for

greater variety, as opposed to only having numbers. Lists and strings are especially

useful when creating coding questions, as the possible uses for strings and lists when

coding are almost endless, including having many built-in functions.

Another difference is also that for Rusak et al. the teacher needs to manually define

the possible numeric values, while for this project the teacher defines a valid interval

and randomly picks a value from the interval. Using an interval allows for a much

larger range of possible combinations, and requires less work from the teacher. A

potential downside of using an interval is that it is a small possibility that some

combination of unique variables might cause a compiling error and therefore an

invalid solution. For example, if a set of randomly picked values causes the code to

return an empty value or something that causes an error. This can be quite easily

mitigated by checking if the generated questions produce a valid output solution,

and removing the question if it does not.

The next novel contribution is the variation in question types. While Rusak et al.

allows for one type of question skeleton format, the tool in this project allows for

three types of question. This makes it possible to create more unique and specialized

questions, with a special focus on programming questions. The question skeleton

format from Rusak et al. is most similar to the coding question type for this project.

This similarity comes from the fact that both require the user to define some vari-

ables for a question and then a function or formula that provides a solution based

on the variables. This means that this question type also could be used to create

math or statistics-type questions in addition to coding questions. The two other

question types, the understanding code, and the produce output type questions are

specifically created with coding in mind and are therefore not that transferable to

question generation for other subjects.

5.1.2 Automated assessment

Automated assessment when answering questions is an important feature of the

tool, bringing both benefits and some limitations. Because the main use for this

question generation tool is as a self-study aid, automated assessment is almost a

64

necessity. Without automated assessment the submissions would either have to be

manually graded or the questions would have to be open-ended without a defined

answer. Grading the questions manually would be very time-consuming and would

eliminate one of the major benefits of the tool, which is to save resources and time

when creating questions for a class. Having open-ended questions would not be a

good solution either, as getting feedback on assessments is essential for the students

to learn whether their way of understanding a topic is correct or wrong.

These benefits of automated assessment also come with some downsides. A downside

is a limitation in the question variance. Because the system needs to be able to check

the correctness of the submission against a solution, the solution can only be a single

output. This means that the question needs to be designed in such a way that the

solution can be calculated using a formula. It must always be possible to calculate

the solution given a set of variables. This limits the variance of questions to those

that can be evaluated by a single output solution. While this still allows for a

large amount of variance, it makes it hard to create more open-ended questions.

This automated assessment method is similar to that of Bruzual et al. [12]. Their

system is based on compiling and running the submitted code, then checking if the

submission produces the correct output using test cases. The assessment method

for this project works similarly, by compiling and executing the submission cloud,

then checking if the code output is equal to the solution.

5.1.3 Use cases

As mentioned previously, the main use case for the tool creating in this project is as

a self-study learning tool to increase students learning outcomes, specifically aimed

at programming courses. For this use case, the tool can be very helpful in making it

possible for students to solve a much larger quantity of programming questions than

they would normally have the opportunity to. Usually, a teacher will manually create

a set of assignments or quizzes for a course, sometimes with a couple of voluntary

exercises for the students to get some extra practice. The amount of assignments

and exercises that can be created is limited by the time available for the teacher to

create high-quality questions. When interviewing a university programming teacher

for this project, feedback was received that students in his course were asking for

more practice questions for certain topics. In this case, a question generation tool

would be really helpful, as it would allow the teacher to generate a large set of

questions for the students to practice without using too much time.

While the main use case for the question generation tool is a self-study aid, it would

65

also be possible to use it for assessments. This was explored in the specialization

project, but after some discussions with the university teachers, it was decided that a

self-study aid was the more useful use case. This was for a couple of reasons. Firstly,

a major reason for using a question generation tool for an exam or assessment is to

mitigate cheating by giving students unique questions with unique solutions. This

was a big problem during COVID-19 with the use of home exams, but now as most

exams have transitioned back to on-site exams, this is less of an issue. Another

challenge is creating fair questions, meaning that all the generated questions have

a similar difficulty. This is very important for exams and assessments to make sure

that all the students get a fair evaluation, and that some students get a harder

exam than others. Despite these difficulties, the question generation tool could

easily be utilized to generate exam questions as well as be used as a self-study tool.

The teacher responsible would need to be extra precise when creating the questions

to ensure fairness, and preferably use some evaluation metric, such as the method

described by McCoubrie et al. [11] to ensure equal question difficulty. In addition

to exam questions, the tool could also be used to generate graded assignments, with

the same precautions in mind as when generating exam questions.

5.1.4 Limitations

A limitation of the system was briefly described above, which is the limitation in

question variance due to the need of having a single output question solution. This

makes the question generation tool best suited for questions where the solution can

be calculated to a string, list, integer or some sort of code output. It is not well suited

to open-ended questions and more complex applications, as these systems would be

too complicated to evaluate accurately. Even with this limitation, it is possible

to create some very complex questions. The only limitation on the complexity of

the questions is that it must be possible to calculate the correct solution given the

question variables.

Another limitation of the automated assessment system is that the evaluation is

only based on the final output of the submission and not any of the code preceding

the solution. This means that the system only evaluates the final value, but not the

approach the student used to find the solution. This means that the student is able to

get the correct answer even if using the wrong approach. With manual evaluations,

this can be avoided by the teacher or teaching assistant reading the code and giving

feedback to the student that the approach is wrong. This is much harder to achieve

automatically, as the system would need to know what the correct approach is,

66

then read and understand the submission code, then be able to differentiate a bad

approach from a good approach. The current implementation, therefore, is only

focused on evaluating the final solution, and the teacher can rather give hints in the

question description on what approach the student should use. With this system, it

is also possible for students to cheat to get a correct evaluation by simply outputting

the correct solution. The system has some simple protection against this by checking

if the code contains a print line containing only the solution string, but it is quite

simple to bypass this if the student is creative. While this would a big problem if the

intended use for the automated assessment system was to assess exams or graded

assignments, it is not a problem when the intended use of the system is a self-study

tool, and little time was therefore allotted to preventing this. The goal of using a

self-study tool is to improve your own learning outcomes, and there is therefore little

motivation for students to cheat.

There are also some limitations when it comes to getting feedback in the question

generation tool. When the user compiles and submits their code, the user can get

feedback in two different ways. The first way is if their code produces an error when

compiling, the error message will be displayed in the user interface so the student

can fix it. If the submitted code does not produce an error, it will display the code

output. Secondly, if the students submit their code the tool will evaluate whether

the output of the code is correct or wrong. The limitation of this system is that

if the student submits their code and the answer is wrong, it is not possible to get

feedback on what part of the code is wrong. This can make it hard to proceed with

the question, as the student can struggle to find out what is wrong. With manual

evaluation of assignments, the student can get written feedback from the teacher or

teaching assistant on what is wrong with the solution and what they need to work

on, which is not possible with the automated assessment system. This is due to the

same reason that the system can not evaluate the solution code approach, it requires

that the computer has a complex understanding of the submission and the question

and is able to articulate a feedback message. A potential remedy to this, which was

suggested by multiple students in the evaluation feedback in the experiment, is to

be able to view the code solution or to get predefined hints if the student answers

wrong multiple times. This will make it possible to find out what was wrong with

their solution.

67

5.2 Experiment discussion

This section contains a discussion of the experiment, including the methodology

used, the design of the experiment, how the experiment being held digitally had

an effect, a discussion of the evaluation results and finally the limitations of the

experiment.

5.2.1 Methodology

Participants

As shown in the results section, the participants in the experiment came from a

range of different study programmes. This included Computer Science, Informatics,

Cyber Security and Information Technology. The participants were also from dif-

ferent years of study, some first-year students, some second-year students and some

fifth-year students. This mix of study programmes and years of study made it dif-

ficult to design some parts of the experiment, as the participants had such diverse

backgrounds. While all the study programmes are technology related, there is still

a big difference in the amount of programming in each program. There was also

no way of knowing how much, if any, experience the participants had using array

functional methods beforehand.

This made it quite difficult to design the questions evaluating the learning outcomes.

The questions needed to be easy enough for a participant with no prior experience

to be able to learn to learn the concept in the 35-minute session using the tool, and

at the same time not be so easy that an experienced participant might get all the

questions correct before even using the tool. The learning outcomes questionnaire

was therefore designed with 10 standard questions and 2 hard questions. The 10

standard questions related to the use of, the syntax of, and understanding of the

basic array functional methods. They were designed such that a programmer with

some previous experience with the topic would get a decent amount of questions

correctly, but also such that a programmer with no previous experience could learn

most of them in a quite short time. The last 2 questions were focused on some more

niche functional methods that are not commonly used, and some more complex

combinations of multiple functional methods. These questions were designed such

that even a programmer with quite a lot of experience with the topic would struggle

with answering them correctly in the pretest.

68

Digital experiment

Originally the plan was to carry out the experiment at a physical location on the

university campus, but this was later changed to arranging it digitally over Google

Meet. When recruiting the participants they were informed that the plan was to

arrange the experiment physically. As participants started to volunteer, feedback

was received from some students who wished to partake in the experiment, but

were unable to attend physically due to not being in the city at the given time.

The plan was to exclude these participants from the experiment and only keep

the participants who could attend physically, but after a while the participants

who could only attend digitally started making up a substantial portion of the

participant group. To ensure that the experiment would have enough participants

it was decided to also include digital participants. This led there to be two options:

arranging a hybrid experiment with some digital and some physical participants, or

a fully digital experiment. Due to the digital portion of the participant group being

substantial and to ensure continuity across the experiment, the fully digital version

was preferred over the hybrid version.

There were no real problems converting the experiment to being digital, as all the

parts of the experiment were performed on a computer anyway, including answering

the questionnaires and testing the question generation tool via the website. While

performing the experiment was no problem logistically, there would have been some

benefits to performing it at a physical location. Firstly, doing the experiment phys-

ically would allow for greater control that all the participants are actually doing

what they are supposed to do. It is possible to see the screens of the participants

and make sure that they are not checking other websites during the experiment or

using other applications, and that they are fully utilizing the allotted time. This

is not possible when performing the experiment digitally, as it is not possible to

see what the participants are doing on their screens. This requires trusting that

the participants are fully focused on the experiment and not doing other things

simultaneously.

This problem was mitigated in a couple of ways when performing the experiment

digitally. All the participants were required to have their cameras turned on during

the experiment. This made it possible to make sure that all the participants were

present at the computer during the entirety of the experiment. While this does not

guarantee that they are not using the computer for other purposes than partaking

in the experiment, it does guarantee they are present. Another way to control that

the participant was doing the experiment was by collecting usage data when the

69

participants were using the tool. This made it possible to see that each participant

actually viewed questions, submitted and compiled solutions using the tool.

Another potential problem with arranging the experiment digitally is the potential

for cheating on the learning outcomes questions. The participants were told to

not use any external sources when answering the learning outcomes evaluation, but

there was no way of validating this. If the experiment was performed at a physical

location it would be easier to monitor that the participants did not use external

sources. While it is possible to cheat, there would be no real incentives to as there

was nothing to gain by answering more questions correctly.

Experiment design

As described previously, the experiment was designed with four main parts, each

part having a unique goal. The experiment was meant to answer how effective

a question generation tool is as a self-study aid to improve learning outcomes for

JavaScript, and if the programming experience level of the participants affects this.

The goal of the first part of the experiment was therefore to collect some data to

determine the participant experience level. It was decided to collect data about

their overall programming experience, their JavaScript experience, and their array

functional methods experience. This was split into different parts because having

a lot of programming experience does not necessarily mean being experienced with

JavaScript and array functional methods. It is therefore possible for a participant

to be a very experienced programmer, but still perform poorly on the learning out-

comes evaluation. The programming experience was measured using credits taken

at university and self-evaluated experience using a 7-point Likert scale.

The goal of the next part of the experiment was to have some sort of measurement

of learning outcomes before and after using the question generation tool. Because

the main goal of the question generation tool is to improve learning outcomes there

needed to be some way of measuring an improvement. A multiple-choice question-

naire is a standard method of measuring learning outcomes and was a natural choice.

The advantage of using a pretest-postest design experiment to measure improve-

ments in learning outcomes is that there is a direct link between the usage of the

tool and the improvement. The learning outcomes of each participant are measured

right before testing the question generation tool and then right after. This means

using the tool is the only influence on the participant between the two evaluations

and can therefore be directly linked to the potential improvement. An observational

study where the participants would have used the tool over a longer timespan and

70

measured learning outcomes is not as direct, as there are many other factors that

could influence the learning outcomes, which is a limitation of the study by Tsai et

al. [10].

The third part of the experiment was for the participants to actually answer ques-

tions generated by the question generation tool. The participants had a 35-minute

session to use the tool to answer questions. The amount of time for using the tool

was limited by not wanting the experiment to run too long, so it would be relevant

for another experiment to see if using the tool for a longer session would lead to

even better learning outcomes. The goal of this part was for the participants to use

the tool to increase their learning outcomes regarding array functional methods, in

addition to testing how the tool would be used in practice. The participants were

given no information about how to use the tool or how it worked, so the testing was

also a test of the user interface and whether it would be clear and understandable

to someone who had never used it before.

The goal of the last part of the experiment was to get an overall evaluation of the

tool from the participants, in addition to the results from the learning outcomes

improvement. This evaluation is done using questions based on the Technology

Acceptance Mode, looking at perceived usefulness, perceived ease of use and user

acceptance. This data is highly relevant because it says something about if the

participants actually found it useful and whether they would actually use it. This is

crucial because there is no point in creating a tool that improves learning outcomes

if nobody wants to use it, or knows how to use it. The end of the questionnaire also

allowed the participants to give a longer text feedback of their experience of using

the tool or if they had some suggestions for improvements. This was added at the

end in case there were some aspects that were not covered in the previous sections,

or there was something the participants wanted to add. This was very useful as

many of the participants wrote long and detailed feedback on the experience and

suggestions for improvements, and provided valuable feedback that would not have

been captured by the evaluation questions.

5.2.2 Results

Participant experience data discussion

Figure 4.16 shows the distribution of participants across study programmes and

years of study. There is quite a bit of variation within both categories with there

being students from five different study programmes and across three different years

71

of study. This variation in students was desired as it would allow to compare the

results between less and more experienced programmers. Because of the topic of the

experiment and the focus of the question generation tool mainly being JavaScript, it

was required that all the participants had some JavaScript experience from univer-

sity. The first and second-year students were therefore recruited from two different

JavaScript courses and the fifth-year students were Computer Science or Informatics

students who all had obligatory JavaScript courses as part of their study plan.

Figure 4.17 contains the stated previous experience of the participants. The results

from graph (a) and (b) shows the number of programming credits, both in total

and for specifically JavaScript courses. This data was quite expected, with the first-

year students having 10-20 credits in programming and the second and fifth year

having over 40 credits. In hindsight, there could have been more options above 40

credits, as such a large portion of participants fit into this category. There were not

any surprises with the number of JavaScript credits either, with most having 10-20

credits, translating to around two courses. Graph (c) shows how the participants

would rate their own programming abilities, showing all the participants rating

themselves as average or above average. This means that there were no programming

beginners among the participants. Optimally it would have been better to have

even more variation between participants, with more inexperienced programmers.

Experience with JavaScript outside of university is displayed in graph (d) and is a

normal distribution. Most participants had some experience, with some having no

experience and some being very experienced.

The last graph (e) was the most surprising, showing the experience level of the

participants regarding array functional methods in JavaScript. It was not expected

that such a large portion of the participants would describe themselves as very

experienced in using array functional method. Most of the questions evaluating

the learning outcomes were designed for programmers with some, but not a lot of

experience with array functional methods. If this was known before designing the

learning outcomes questionnaire, the questions would have been designed to be a

bit harder. While this is the experience level stated by the participants, this does

not necessarily translate into actual abilities. It is possible the participants either

overestimate or underestimate their own abilities.

Learning outcomes discussion

Table 4.1 shows the scores on the learning outcomes questionnaire before and after

using the tool. Overall there was a significant improvement from the pretest to the

72

posttest results, with an average score of 8 before using the tool and an average

score of 10.4 after using the tool, meaning an average 30% improvement. It was

unexpected that the participants would score so highly on the test before using the

tool, as the participants had more experience with array functional methods than

was expected when creating the learning outcomes questions. The high average score

of the participants before using the tool meant that there was less possible room for

improvement, as there were only 12 points available in total. If the test questions

were designed to be harder, there might have been an even larger improvement from

before to after due to the participants getting fewer questions correct in the pretest.

A point to consider when evaluating the results is that the participants had already

seen the questions once when answering the posttest. This means that the parti-

cipants had the possibility to quickly answer the questions they had already solved

from the pretest. The participants therefore had a time advantage when answering

the posttest questionnaire, even though the allotted time was the same. For this

reason, it would have been useful to have a control group that was not exposed to the

question generation tool. Then it would be possible to see if some of the improve-

ment was due to it being the second time answering the test, or if the improvement

was only due to exposure to the tool.

Table 4.4 shows the correlations between pretest scores, posttest scores and the

delta between them with the various measures of previous programming experience

including the total amount of programming credits, the total amount of JavaScript

credits, overall programming abilities, experience with JavaScript outside of studies

and experience with array functional methods. The score on the pretest has a

moderate correlation with the number of JavaScript credits of the participants and

the stated experience with array functional methods, with a weak or no correlation

with the other attributes. It makes sense that only JavaScript credits and array

functional methods experience correlates with the score on the pretest, as having

overall programming experience does not mean that the participant knows a lot

about array functional methods. While there is a correlation, it is only a moderate

correlation. This shows that the stated experience of the participants is not that

accurate in predicting the actual performance on the test. The results in the posttest

also has a moderate correlation with JavaScript credits and with array functional

method experience. This also makes sense for the posttest, as having more previous

experience with JavaScript and array functional methods would result in a higher

score in the posttest as well.

When looking at the delta improvements, there are no moderate or significant cor-

relations between the delta and the previous experience of the participants. This

73

means that both the experienced and the inexperienced programmers had a sim-

ilar improvement in performance after using the tool. It might be expected that

a programmer with less experience would have larger room for improvements, and

therefore be correlated with a higher delta, but this is not the case. It could also

be argued that a more experienced programmer is able to learn new concepts more

quickly, and would thereby have a larger delta, but this also not the case.

Answering generated questions discussion

The exposure to the question generation tool consisted of the participants freely

answering questions using the tool for 35 minutes. Ideally, the participants would

have had more time to test the tool, but the time was limited by the total length of

the experiment. The participants were given no information about how to use the

tool, which meant the user interface was the only element for the participants to

learn how to use the tool. The participants were told to not use the internet or any

external sources during the testing period, with the exception of website containing

documentation for the array functional methods [17]. This was to ensure that all the

participants had access to the same information to solve the questions and that the

participants would not find a solution online instead of writing it themselves. The

execution of the testing went pretty well, with only a few issues arising. At the start

of the experiment, some of the participants had an issue with loading the questions,

but this was quickly solved by opening the tool in another browser. There was also

a problem with using TypeScript instead of JavaScript on some of the questions,

but this was also resolved. The participants were all able to understand how to use

the tool without instructions.

Table 4.6 shows the correlations between the pretest scores, the posttest scores and

the delta between with the number of correct answers, wrong answers, question

views and questions skips. This shows that there is a weak to moderate correlation

between the number of correct submissions and the number of question views with

participant score before and after. This makes sense, as the participants who scored

highly on the learning outcomes would be likely to have more knowledge of array

functional methods, and thereby answer more questions correctly when using the

tool. The figure also shows that there is no correlation between the number of correct

or wrong questions, skips or views, with the delta improvement from the pretest to

posttest. This means that answering more questions correctly or wrongly did not

correlate with a larger or lesser improvement in performance on the posttest. Table

4.5 shows that the participants used different strategies when using the tool. Some

74

participants answered as many questions as possible and some used their time to

focus on a few questions. There were also some participants who skipped and viewed

a large number of questions, while others skipped very few questions. In addition

to this, there were also a a participant who struggled and managed to answer only

one question.

Evaluation discussion

The participants evaluated the perceived usefulness and the perceived ease of use of

the tool very highly overall. The questions were created based on standard questions

used in Technology Acceptance Model, specifically based on some of the questions

used in Lewis et al. [18] to evaluate perceived usefulness and perceived ease of use.

The participants rated the tool very highly with regards to being helpful for learn-

ing programming concepts, increasing studying productivity and making studying

easier. The scores for the perceived ease of use were also very high, with the par-

ticipants finding the tool very easy to learn to use, easy to make the tool to what

it was supposed to do and rated the experience of using the tool as clear and un-

derstandable. There was one participant who struggled with some parts of the user

interface, as seen in Figure 4.19 (b), but overall the perceived ease of use was very

high. In the Technology Acceptance Model perceived usefulness and perceived ease

of use were found to be highly correlated with user acceptance. Due to the question

generation tool scoring high on these attributes, it would be expected that tool also

would score highly on user acceptance.

The user acceptance was also measured in the evaluation, as seen in Figure 4.20. As

expected, the tool also scored highly on the questions relating to user acceptance.

While the scores were high, they were not quite as high as the scores for perceived

usefulness and perceived ease of use. This was especially the case when asking

whether the participants would frequently utilize the question generation tool for

studying, with an average score of 4.9. It is not surprising that the user acceptance

scores would be a bit lower than the perceived usefulness and perceived ease of use

scores, as the threshold for actually starting to utilize a new tool frequently is quite

high. The score could also have been influenced by the wording of the question,

especially by the term ”frequently”. Participants could want to use the tool, but

not necessarily all the time, and therefore give a lower score.

The open-ended questions resulted in mostly very positive feedback, describing the

learning experience as very effective and easy to use. One of the participants re-

marked that the tool would be better suited to evaluations rather than as a learning

75

tool. This was because the participant argued that it was only possible to answer

the questions in the tool if the participant already had the knowledge to answer the

question. While this is true to some extent, as the participant needs to acquire the

knowledge necessary to answer the question from an external source. The question

generation tool does not have documentation or other learning tools built in, so the

user needs to acquire the relevant information to answer the question from another

source. But this is also true when solving university assignments or any other type

of questions, the student needs to read about the topic in a course book or an online

source before being able to solve the question. The question generation tool would

therefore still be useful as a learning tool when used in combination with external

information sources.

The most requested functionality from the evaluation was the ability to see hints if

the user is stuck on a question, or being able to view the solution if the user is not

able to solve it. This would be a good addition to the tool, as it is possible for users

to get stuck on a question. The user only receives feedback on whether the solution

is correct, wrong, or if there is a compile error. If the submission is wrong, it can

be difficult to know what to change to get the correct answer. This was an issue

for one of the participants during the experiment, where the participant was stuck

on a question for a long time and could not figure out how to proceed, which was

commented by the participant in the evaluation. Another useful suggestion was the

possibility of having test cases with expected outputs. This would achieve some of

the same functionality as having hints, as the user would be able to see what all the

test cases for the given question. These test cases can thereby give some information

about what the user needs to do to get the correct answer.

5.2.3 Research questions

The first research question was ”How effective is question generation in improving

learning outcomes for JavaScript programming courses?”. This was explored in this

project through the development of a question generation tool and evaluation of

the tool through an experiment. The experiment consisted of using the question

generation tool to generate JavaScript programming questions on the topic of array

functional methods, then having participants answer a test measuring their learning

outcomes before and after being exposed to the tool. The exposure to the tool

resulted in an average 30% improvement in learning outcomes after a 35-minute

session using the tool.

The second research question was ”Is question generation more effective in improv-

76

ing learning outcomes for beginner programmers than intermediate?”. In the exper-

iment participants were asked to provide information about their previous program-

ming credits, including the total amount of programming credits taken at university,

JavaScript course credits, overall programming abilities, experience with JavaScript

outside of their studies and their experience with array functional methods. It was

found that the amount of JavaScript credits and the experience with array functional

methods correlated moderately with learning outcomes before and after using the

tool, but there was no correlations between the participant experience and the size

of the improvement on the learning outcomes tests. This means that for this exper-

iment there was no difference found in effectiveness in increasing learning outcomes

for beginner programmers than intermediate.

These findings are based on a very limited sample size of 10 participants, with only

using the tool for a short session of 35 minutes. It would therefore be relevant to

repeat the experiment with a larger sample size and longer time usage and see if the

findings are the same.

5.2.4 Limitations

There are some limitations to this experiment. There was no control group when

performing the experiment, so all the participants performed the same tasks. This

means there is no alternative to compare the question generation tool against. For

further work the experiment could be repeated, but with one group using the ques-

tion generation tool for a given time period and the other group reading document-

ation or a textbook for the same time period, then compare the learning outcome

improvements. This would give a more accurate representation of the utility of the

tool, as it would be contrasted with other comparable studying methods.

Another limitation is the sample size with only 10 participants. Preferably the

question generation tool should have been tested on an entire class of students to

replicate how the tool would be used in practice. The time the participants had to

test the was also a limitation, as they had only 35 minutes to test the tool. This was

limited by not wanting to make the experiment take too much time, which could

dissuade students from wanting to participate. Using the tool for only 35 minutes

is quite a short time to learn a new topic and is not that representative of how the

tool would be used in practice.

A limitation mentioned previously is the fact the experiment was conducted digitally

instead of at a physical location. This made it hard to monitor whether all the

77

participants did what they were supposed to do, used all the allotted time, or used

external sources to cheat on the questionnaires. This also made it more challenging

to ask for assistance or to clarify something during the experiment.

78

Chapter 6

Conclusion and further work

6.1 Conclusion

Automatic question generation has many potential uses, one of which is being used

as a learning tool. A question generation tool can be used to automatically gener-

ate a large number of questions that students can use to learn a topic. This can

save teachers a lot of time and resources by reducing the time needed for creating

and grading questions, and it ensures that students can have access to a continuous

supply of new questions. The goal of this project was to develop a new question gen-

eration tool specifically made for JavaScript programming courses and to evaluate

its effectiveness as a learning tool.

The research questions for this project were ”How effective is question generation in

improving learning outcomes for JavaScript programming courses?” and ”Is question

generation more effective in improving learning outcomes for beginner programmers

than intermediate?”. The findings were based on a limited sample size of 10 univer-

sity students with varying programming experience. The results from the experiment

was that using the question generation tool for a 35-minute session led to an av-

erage 30% improvement in learning outcomes for a JavaScript programming topic.

When looking at the correlations between the previous programming experience of

the participants and their improvement in learning outcomes, there was no correl-

ation found between the size of the improvement and their experience level. This

means the tool had the same effectiveness for both the beginner and intermediate

programmer participants.

79

6.2 Further work

The work done for this project can be expanded on by both expanding and improving

the functionality of the question generation tool and by doing further experiments

evaluating the tool with different methodologies. While the question generation

tool developed for this project is a final prototype and could be used in practice,

there is still much room for improvement. A limitation of the automated assessment

functionality is that it only looks at the final output, and not at the approach used

in the code. This is an aspect of the tool that could be improved by developing a

test case suite, or by implementing some code analysis functionality. There are also

possibilities for expanding the question generation variance using machine learning,

for example by combining the current methods with semantic-based question gener-

ation, such as Yao et al. [9]. Functionality suggestions were also received during the

evaluation. Being able to get hints if the user is stuck on a question was suggested

by multiple participants, in addition to being able to view the solution. Another

suggestion was building documentation into the question answering so that the user

can view documentation relevant to the question without needing to find it on an

external site. These functionality suggestions would be highly useful for the user

experience of the tool if implemented.

As for further work evaluating the effect on improving learning outcomes there are

many ways this could be improved. The first suggestion would be to perform the

same, or a similar, experiment with a control group. Performing the experiment

again with a control group not exposed to the tool would make it possible to dis-

tinguish if the improvement in learning outcomes were due to exposure to the tool

or if some of the effect was due to it being the second time answering the question-

naire. It would also be interesting to have one group of students use the question

generation tool to practice a subject, and another group read a textbook about the

subject and see if one group have better learning outcomes. It would also be relevant

to repeat the experiment with some changes to the methodology, such as a larger

sample size, more time allotted to testing the tool, participants from non-technical

study programmes and arranging the experiment physically instead of digitally. In

addition to these controlled experiments it would be interesting to test the tool in

practice by making it available as a study tool in a programming course at university

and evaluating if it can improve student performance in a real world setting.

80

References

[1] K. A.-M. Sarpong, J. K. Arthur and P. Y. O. Amoako, ‘Causes of failure of

students in computer programming courses: The teacher-learner perspective’,

International Journal of Computer Applications, vol. 77, no. 12, 2013.

[2] S. H. Kang, ‘Spaced repetition promotes efficient and effective learning: Policy

implications for instruction’, Policy Insights from the Behavioral and Brain

Sciences, vol. 3, no. 1, pp. 12–19, 2016.

[3] R. F. Bruner, ‘Repetition is the first principle of all learning’, Available at

SSRN 224340, 2001.

[4] G. Kurdi, J. Leo, B. Parsia, U. Sattler and S. Al-Emari, ‘A systematic re-

view of automatic question generation for educational purposes’, International

Journal of Artificial Intelligence in Education, vol. 30, no. 1, pp. 121–204, 2020.

[5] D. J. Danielsen and S. S. Fallmyr. ‘Rekordmange blir tatt for fusking – savner

informasjon om konsekvensene’. (2022), [Online]. Available: https://www.

nrk.no/nordland/rekordmange-studenter-blir-tatt-for-juksing-pa-

eksamen-1.15886579 (visited on 6th Dec. 2022).

[6] G. Rusak and L. Yan, ‘Unique exams: Designing assessments for integrity and

fairness’, in Proceedings of the 52nd ACM Technical Symposium on Computer

Science Education, 2021, pp. 1170–1176.

[7] G. Sindre, ‘Kan fusk p̊a hjemmeeksamen forhindres?’, Nordic Journal of STEM

Education, vol. 5, no. 1, 2021.

[8] D. D. Dixson and F. C. Worrell, ‘Formative and summative assessment in the

classroom’, Theory into practice, vol. 55, no. 2, pp. 153–159, 2016.

[9] X. Yao, G. Bouma and Y. Zhang, ‘Semantics-based question generation and

implementation’, Dialogue & Discourse, vol. 3, no. 2, pp. 11–42, 2012.

81

https://www.nrk.no/nordland/rekordmange-studenter-blir-tatt-for-juksing-pa-eksamen-1.15886579
https://www.nrk.no/nordland/rekordmange-studenter-blir-tatt-for-juksing-pa-eksamen-1.15886579
https://www.nrk.no/nordland/rekordmange-studenter-blir-tatt-for-juksing-pa-eksamen-1.15886579

[10] D. C. Tsai, A. Y. Huang, O. H. Lu and S. J. Yang, ‘Automatic question

generation for repeated testing to improve student learning outcome’, in 2021

International Conference on Advanced Learning Technologies (ICALT), IEEE,

2021, pp. 339–341.

[11] P. McCoubrie, ‘Improving the fairness of multiple-choice questions: A literat-

ure review’, Medical teacher, vol. 26, no. 8, pp. 709–712, 2004.

[12] D. Bruzual, M. L. Montoya Freire and M. Di Francesco, ‘Automated assess-

ment of android exercises with cloud-native technologies’, in Proceedings of

the 2020 ACM Conference on Innovation and Technology in Computer Sci-

ence Education, 2020, pp. 40–46.

[13] A. R. Hevner, S. T. March, J. Park and S. Ram, ‘Design science in information

systems research’, MIS quarterly, pp. 75–105, 2004.

[14] H. Z. Došilović and I. Mekterović, ‘Robust and scalable online code execution

system’, in 2020 43rd International Convention on Information, Communica-

tion and Electronic Technology (MIPRO), IEEE, 2020, pp. 1627–1632.

[15] D. M. Dimitrov and P. D. Rumrill Jr, ‘Pretest-posttest designs and measure-

ment of change’, Work, vol. 20, no. 2, pp. 159–165, 2003.

[16] F. D. Davis, ‘Perceived usefulness, perceived ease of use, and user acceptance

of information technology’, MIS quarterly, pp. 319–340, 1989.

[17] Javascript array documentation, https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Array, Accessed:

2023-06-11.

[18] J. R. Lewis, ‘Comparison of four tam item formats: Effect of response option

labels and order.’, Journal of Usability Studies, vol. 14, no. 4, 2019.

82

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

	List of Figures
	List of Tables
	Introduction
	Background
	Specialization project
	Previous research
	Question generation using templates and variables
	Semantic-based question generation
	Question generation for formative assessments
	Assessing question difficulty
	Automated assessment

	Method
	Question generation tool
	Design science
	Development process
	Technologies

	Experiment
	Pretest-posttest design
	Participants
	Technology Acceptance Model
	General information
	Participant experience data
	Learning outcomes
	Answering generated questions
	Evaluation

	Results
	Question generation tool results
	System architecture
	Question generation
	Answering questions
	Navigating the tool

	Experiment results
	Participant experience data results
	Learning outcomes results
	Answering generated questions results
	Evaluation results

	Discussion
	Question generation tool discussion
	Question generation
	Automated assessment
	Use cases
	Limitations

	Experiment discussion
	Methodology
	Results
	Research questions
	Limitations

	Conclusion and further work
	Conclusion
	Further work

	References

