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Abstract

Acquiring a hyperspectral image (HSI) involves capturing multiple spectral bands
within a specific wavelength range. However, processing HSIs is computationally
demanding due to the immense amount of data. Band selection (BS) methods
are crucial in mitigating the challenge of high dimensionality and redundancy of
HSI data. While several unsupervised BS techniques are available, such as those
based on clustering, there is a need for further exploration into leveraging spa-
tial information. To address this gap, an improved hybrid of the particle swarm
optimization (PSO) algorithm with fuzzy clustering (FCM) is proposed, incorpo-
rating spatial information. This unsupervised BS technique aims to enhance HSI
classification by addressing the challenges of high dimensionality and redundancy
in hyperspectral data.

The novelty of this approach, referred to as Superpixel PSO-FCM (SPPF), lies
in the extension of PSO-FCM by leveraging both spectral and spatial information.
Different distance measures incorporating spatial information are presented, and
their effect on classification accuracy and efficiency is explored through experi-
ments. To better select a subset of bands that effectively represents the entire
HSI, while minimizing redundancy, the thesis proposes combining the distance
measures with different cluster-representative selection techniques. Performance
evaluation on three HSIs showcases the promising results of the proposed method.
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Sammendrag

Anskaffelsen av et hyperspektralt bilde (HSI) innebærer å fange flere spektrale
b̊and innenfor et bestemt bølgelengdeomr̊ade. Behandling av HSIer er imidlertid
krevende p̊a grunn av den enorme mengden data. B̊andseleksjons (BS) metoder
er avgjørende for å h̊andtere utfordringen med høy dimensjonalitet og redundans
av HSI data. Selv om det finnes flere unsupervised BS metoder, er det behov for
ytterlige forskning knyttet til utnyttelse av romlig informasjon. For å adressere
dette foresl̊as en forbedret hybrid av partikkelsvermoptimalisering (PSO) med
fuzzy clustering (FCM), som inkorporerer romlig informasjon. Denne unsuper-
vised BS-teknikken tar sikte p̊a å forbedre HSI-klassifisering ved å h̊andtere ut-
fordringene med høy dimensjonalitet og redundans i hyperspektral data.

Nyvinningen med denne tilnærmingen, referert til som Superpixel PSO-FCM
(SPPF), ligger i utvidelsen av PSO-FCM ved å utnytte b̊ade spektral og romlig
informasjon. Forskjellige avstandsm̊alinger som inkorporerer romlig informasjon
blir presentert, og deres effekt p̊a klassifiseringsytelse og effektivitet utforskes
gjennom eksperimenter. For bedre å velge et delsett av b̊and som effektivt rep-
resenterer hele HSIer, samtidig som redundans minimeres, foresl̊ar denne opp-
gaven å kombinere avstandsm̊alingene med forskjellige metoder å velge b̊and fra
en gruppering. Evaluering av ytelsen p̊a tre forskjellige HSIer viser de lovende
resultatene av den foresl̊atte metoden.
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Chapter 1

Introduction

This chapter introduces the motivation for the thesis topic and research goals
(Section 1.1 and 1.2) for a novel bio-inspired algorithm to perform unsupervised
band selection for hyperspectral images. It also presents the research method
(Section 1.3), a structured literature review protocol (Section 1.4), and the thesis
structure (Section 1.5).

1.1 Motivation

Remote sensing using hyperspectral imaging is a powerful tool for collecting and
analyzing data about the Earth’s surface. By capturing and measuring the re-
flectance at different wavelengths, hyperspectral imaging facilitates the identifi-
cation and mapping of various surface features, including vegetation, minerals,
and water bodies. It is also an effective technique for monitoring environmental
changes [Jia et al., 2021] and conducting land cover classification [Patro et al.,
2021]. This makes it a valuable tool for scientists, engineers, and other profes-
sionals who need to monitor and analyze the environment.

However, due to the high dimensionality of hyperspectral images (HSI), ex-
tracting something meaningful from the data can be costly. To address this
challenge, band selection (BS) methods have emerged as an effective approach to
reduce the number of spectral bands in a HSI while retaining essential informa-
tion. These methods identify and select the most relevant bands from the original
image, reducing the computational burden for subsequent image-processing tasks.
Determining the relevance of bands can be accomplished by considering either
spectral or spatial information in the HSI, relying on measures of information
content and redundancy between bands. Despite the numerous hyperspectral BS
methods that have been proposed, the investigation into utilizing spatial infor-

1
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mation still is limited.
The PSO-FCM BS algorithm, proposed in Zhang et al. [2017], uses a hybrid

of particle swarm optimization and Fuzzy C-means clustering to select bands to
be used for classification. This thesis builds on the central ideas of PSO-FCM
and proposes the integration of both spatial and spectral information to improve
performance when applied to HSI classification.

1.2 Goals and Research Questions

The goal and research questions of this work:

Goal To improve classification accuracy and efficiency on HSIs through unsu-
pervised band selection by applying a superpixel-enhanced PSO-FCM hybrid
algorithm.

This thesis aims to investigate ways of potentially improving classification
accuracy and runtime through an improved hybrid of Particle Swarm Optimiza-
tion and Fuzzy C-means clustering. The suggested improvements involve the
incorporation of superpixel data to allow the hybrid algorithm to utilize spatial
information.

Research Question 1 How does pre-removal of noisy bands influence the achieved
classification accuracy of unsupervised BS with the superpixel-enhanced PSO-
FCM algorithm?

Research Question 2 How can PSO-FCM utilize superpixel information and
different divergence measures in order to achieve the best classification ac-
curacy?

Research Question 3 What is the influence of different distance measures in-
corporating superpixel information on computational efficiency?

Research Question 4 How does the performance and efficiency of the superpixel-
enhanced PSO-FCM algorithm compare to the baseline and other state-of-
the-art BS methods?

1.3 Research Method

The research method of this thesis has been a systematic review of related work
(described in Section 1.4), the design of our hybrid algorithm based on the knowl-
edge gained and aspects of existing work, and an analytical evaluation of how
our proposed model has fulfilled the research goal.
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1.4 Structured Literature Review Protocol

Figure 1.1 presents a comprehensive exploration of potential research topics that
ultimately guided the focus of this thesis. Selections that were pursued are indi-
cated in green, while other explored but not further pursued fields of inquiry are
denoted in white. Evidently, as seen in Figure 1.1, initial investigations centered
around the broad field of evolutionary computation and its diverse applications.
Concepts such as leveraging Artificial Immune Systems for fake news discrimi-
nation and employing Ant Colony Optimization for network control and design
were among the initial considerations.

PSO emerged as an area of collective interest, highlighted in green in Figure
1.1. This interest consequently narrowed the investigative scope to two prospec-
tive thesis directions.

One proposition entailed investigating the application of Social PSO for mod-
eling climate change. This approach aimed to understand potential predisposi-
tions in individuals to enhance their contributions and sacrifices for future gen-
erations’ benefit. The second proposition involved exploring how PSO could
enhance classification accuracy in HSIs from the field of remote sensing through
unsupervised BS. Given the compelling nature of the application domain of PSO
within remote sensing and the potential of PSO in BS methods, the latter was
chosen for further exploration, as shown in Figure 1.1.

After choosing the initial topics, a literature review was conducted on particle
swarm optimization (PSO) for unsupervised BS in HSIs. The process began
with the identification of the subject of interest. Subsequently, a comprehensive
search for relevant studies and articles was conducted using various databases
and resources, including:

• Google Scholar

• IEEE Xplore

• Research Gate

• Web of Science

• SpringerLink

In order to ensure the relevance and quality of the studies included in the
review, inclusion and quality criteria were established. The Inclusion criteria
required that studies satisfy at least one of the following:

• The study or article is relevant to band selection.

• The study or article is relevant to particle swarm optimization.
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• The study or article concerns evolutionary computation.

The studies were then evaluated on the following Quality Criteria:

• The study or article must be well-written and clearly present the research
question, methods, results, discussions, and conclusions.

• The study or article must be based on large and representative sample data.

• The study or article must report results that are reliable and statistically
significant.

The first phase of the literature review identified the use of superpixels and fuzzy
c-mean clustering as potentially interesting directions for further research. The
second phase of the literature review focused specifically on BS techniques that
use these methods and applied the inclusion and quality criteria to the studies
identified. Each study underwent reading and evaluation, with key findings and
limitations being noted. The results and limitations of the individual studies were
then compared, highlighting common themes and gaps in the existing research.
This synthesis contributed to a more comprehensive understanding of the current
state of knowledge on the topic and highlighted potential directions for future
research.

The primary keywords utilized in the literature search are listed in Table 1.1,
differentiating between those employed in the first phase and those employed in
the second phase:

Keywords (First Phase) Keywords (Second Phase)

Particle swarm optimization (PSO) Superpixel
Unsupervised Fuzzy c-mean clustering
Band selection PSO-FCM
Hyperspectral Image

Table 1.1: Keywords used for literature search.

1.5 Thesis Structure

The thesis is structured as follows. Chapter 1 gives an introduction to the topic,
providing an overview of the research methodology and its aims. Chapter 2 pro-
vides the background theory necessary to understand the concepts behind this
thesis. Chapter 3 presents the state of the art, discussing existing solutions and
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more recent approaches within the related fields. The chapter is divided into
four sections: Hyperspectral Band Selection, Band Selection Techniques, Particle
Swarm Optimization, and PSO-FCM, with the final section providing design de-
tails necessary for the subsequently proposed BS model. Chapter 4 describes the
proposed model applied for BS, including the novelty of this work. Chapter 5
presents the experiments and results of the research, discussing the methods used
and the findings. Finally, Chapter 6 evaluates the research and draws conclusions,
discussing the implications of the results and any future work.

It should be noted that some of the content from Chapters 1 and 3 is adapted
from older versions delivered as part of the pre-project conducted during the fall
semester of 2022. This content has been redeveloped based on feedback received
from our supervisor.
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Figure 1.1: Initial topic investigation.



Chapter 2

Background Theory

This chapter provides an overview of the background theory required to under-
stand the concepts presented in later chapters. The first section provides the ba-
sics of remote sensing (Section 2.1). The following sections present the relevant
concepts of information theory (Section 2.2) and image segmentation (Section
2.3). The next section briefly describes evolutionary computation before present-
ing the genetic algorithm and particle swarm optimization (Section 2.4). The
final section describes clustering and provides examples of relevant algorithms to
methods presented in later chapters. (Section 2.5)

2.1 Remote Sensing

Remote sensing is the process of obtaining information on objects or phenomena
from a distance. It includes domains such as data collection from planets using
space probes and the use of sonar technology to collect data from the ocean
floor. Most commonly, it refers to the observation and detection of objects on
Earth. By utilizing sensor arrays, usually carried by aircraft or satellites, remote
sensing technology enables the collection and analysis of information from large
land areas.

The information collected through remote sensing can be used to identify and
monitor features of the Earth’s surface, such as changes in land use, vegetation,
and water bodies. As a result, remote sensing can be applied to investigate
and monitor issues such as climate change and natural disasters. Therefore,
advancements in remote sensing technology and research can impact many other
fields of study and address various challenges facing our planet, ranging from
environmental issues to urban planning and resource management.

As mentioned, the data is collected from arrays of sensors. These arrays often

7
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consist of multiple electromagnetic sensors that collect radiation reflected from
the Earth’s surface at different wavelengths. Such remote sensing technology
can either be passive or active. As shown in Figure 2.1, passive sensors rely on
reflected sunlight as the primary source of radiation. Whereas in active remote
sensing, the collector emits energy directed at the target and gathers information
on the reflected radiation. RADAR (Radio Detection and Ranging) technology is
an example of active remote sensing as it emits radio waves to detect and locate
objects.

The light passing through the lenses of both passive and active sensors is
dispersed into distinct bands, covering different wavelengths of light. However,
the number and width of these bands can significantly differ from one sensor to
another.

(a) Passive Remote Sensing (b) Active Remote Sensing

Figure 2.1: Difference between passive and active remote sensing.

2.1.1 Hyperspectral Images

Hyperspectral imaging is a remote sensing technique that captures the spectral
signature of an object or scene. It measures the reflection or emission of light
across a wide range of contiguous, narrow wavelength bands, allowing researchers
to obtain detailed information about the composition and physical properties of
the target. The hyperspectral sensors typically collect data from wavelengths
between ultraviolet and mid-range infrared.

A distinction is made to differentiate between hyperspectral and multispec-
tral sensors. While they both measure radiation across multiple spectral bands,
the number and size of these bands vary. The differences between the two are
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illustrated in Figure 2.2, where the resulting spectral bands are highlighted. Mul-
tispectral sensors typically collect data in fewer but broader bands, which are
often not directly adjacent in terms of wavelengths, as seen in (a). In contrast,
hyperspectral sensors typically use many more and narrower bands, as seen in
(b). The higher number of bands is equivalent to a continuous spectrum, giving
hyperspectral sensors a higher level of detail than multispectral sensors.

Figure 2.2: Comparison of Multispectral and Hyperspectral Imaging [Optics,
2022].

2.1.2 Classification

The process of assigning pixels in a HSI to a particular class or category based on
its spectral properties is referred to as classification. The outcome of this process
is known as the classification map. Classification can be divided into two types
based on the availability of training samples: supervised and unsupervised. In
supervised classification, representative samples, known as training samples, are
used to classify input data for each class. By contrast, unsupervised classification
does not require labeled data and identifies patterns and relationships among data
points.
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HSI classification is an essential step in transforming hyperspectral data into
feature information. The features in HSIs are highly dimensional, which can lead
to a problem known as the Hughes phenomenon [Hughes, 1968]. Since the classi-
fication accuracy decreases as the number of features increases beyond a certain
threshold, it requires more labeled data to estimate the function accurately. To
tackle this problem, reducing the dimensionality of the feature vector is neces-
sary. Feature vector in this context refers to a multidimensional representation
of the spectral information of a pixel or a region of interest in an image, where
each dimension corresponds to a specific spectral band. There are two methods
to achieve this: feature selection and feature extraction. Feature selection aims
to identify a subset of features that retain as much information as possible from
the original features. In contrast, feature extraction maps the feature space to
a new, lower-dimensional space. In this thesis, classification is employed as an
application to verify the performance of a BS model operating on hyperspectral
data. Furthermore, this section offers a concise introduction to the selected clas-
sifier utilized in the experiments and presents a brief overview of incorporating
spatial information within the classifier.

Support Vector Machine (SVM)

Support Vector Machines (SVM) is a widely used supervised method for solving
classification problems in machine learning. In the context of SVM classification,
the goal is to find the hyperplane that separates the data into different classes
with the maximum margin. Figure 2.3 shows the maximum margin hyperplane
(illustrated by the red line) after training an SVM classifier with two classes.
In essence, the SVM algorithm identifies the optimal line or decision boundary,
known as a hyperplane, by locating the closest points between the two classes,
referred to as support vectors. In Figure 2.3, the support vectors are illustrated
by black dotted lines. The SVM aims to maximize the margin, which is the
distance between the support vectors and the hyperplane. The hyperplane with
the largest margin is considered the optimal one.

While the SVM classifier is inherently a linear classifier, adaptions have been
made to support classification problems with data that is not linearly separable.
The kernel trick is a technique to transform the data into a higher-dimensional
space in which it is linearly separable. Different kernel functions, such as poly-
nomial, radial basis function (RBF), and sigmoid, can be used to achieve this
transformation.

The problem of binary classification with SVM involves a set of training vec-
tors, x, which belong to a d-dimensional space. Each training vector x is asso-
ciated with a target value, either −1 or +1. The goal is to find a hyperplane
that separates the two classes linearly and without errors. The hyperplane can
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Figure 2.3: Output of SVM Classifier.

be defined as:

wTx− b = 0, (2.1)

where w is a vector normal to the hyperplane, and b is a bias term. To find the
maximum margin hyperplane, SVM utilizes two other hyperplanes:

wTx− b = 1, (2.2)

and

wTx− b = −1. (2.3)

The goal of SVM is to find the values of w and b that minimize the classification
error and maximize the margin between the two classes.

In addition to the basic binary SVM classifier, other algorithm variations are
available that enable it to deal with problems such as multiple categories. SVM
can be utilized for multi-class classification by training multiple classifiers, each
specialized in different pairs of classes. An example of a common implementa-
tion applied for multi-class classification is developed by [Chang and Lin, 2011].
LIBSVM, a library for SVM, implements the ”one-against-one” method, which
involves training a classifier for every possible pair of classes. When a new data
point needs to be classified, each classifier votes on the class they think it belongs
to, and the class with the most votes is chosen as the final classification.
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Spatial-Spectral Classification

Spatial-spectral classification combines spatial and spectral information to clas-
sify objects or features on the Earth’s surface. This classification method uses the
spatial and spectral characteristics of pixels in HSIs to classify them into different
classes or categories. Spatial information refers to the location and arrangement
of pixels in the image, while spectral information refers to the intensity values of
the different wavelengths of electromagnetic radiation that are captured.

2.1.3 Band Selection

A challenge in hyperspectral imaging involves the typically large number of spec-
tral bands measured. A common strategy to reduce data size and enhance data
analysis performance involves selecting a subset of relevant bands from the total
hyperspectral information. This process is termed band selection (BS). When
data size reduction occurs, maintaining as much significant information from the
original image becomes essential. Therefore, selecting bands carrying information
relevant to the desired image analysis is necessary.

In certain situations, a priori information about the image exists, allowing
for the use of this data to select bands. Employing such a priori information
receives the designation of supervised BS, frequently yielding superior outcomes
compared to situations without its use. At times, a priori data remains unavail-
able, necessitating the deployment of alternative measures for choosing suitable
bands. This scenario is classified as unsupervised BS.

2.2 Information Theory

Information theory, first introduced by Claude Shannon in 1948 [Shannon, 1948],
is the scientific study of the transmission and processing of information. The cen-
tral idea is quantifying information in a given message or information source. In
other words, it provides a measure of information called entropy, which quantifies
the amount of randomness in a given information source. Information-theoretic
measures can be applied to any message if the message’s probability mass function
P can be determined. Therefore a method to assess the probability mass function
of the image needs to be established to apply information theoretic measures to
a HSI.

Regarding BS, information theory is applied to measure the quantity of in-
formation in HSIs and the relative information overlap between bands. The
normalized grayscale histogram of a band is assumed to be a reliable estimator
of the respective band’s probability distribution.
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2.2.1 Entropy

Entropy is an essential concept in Information Theory. It measures the amount
of information in data by quantifying how dispersed the data is over its possible
values. A high entropy indicates a maximum data spread, implying high un-
certainty since each value is equally likely to occur. In contrast, a low entropy
suggests the concentration of the data on a single value, implying less uncertainty
since the next value can be predicted with higher confidence.

Entropy represents a random data source’s average rate of information pro-
duction and can therefore work as a measure of randomness present in a spectral
band. The greater the entropy, the more information the band conveys. Utilizing
the normalized grayscale histogram as an estimator for the probability distribu-
tion, the entropy for a spectral band is defined as follows:

H(X) = −
n∑

i=1

p(xi) log2 p(xi), (2.4)

where X is the random variable representing the spectral band, p(xi) is the
probability (grayscale histogram value) of the i-th bin, and n is the number of
bins. The entropy provides a lower bound on the average number of bits required
to represent the information in the source, which in this case, is the spectral
band.

2.2.2 Kullback–Leibler Divergence

The Kullback–Leibler (KL) divergence, also known as relative entropy, was orig-
inally introduced by Kullback and Leibler [1951]. It quantifies the difference
between two probability distributions. Given two probability distributions P
and Q, the KL divergence between P and Q is defined as:

D(P,Q) =
∑
i

P (i) log
P (i)

Q(i)
, (2.5)

where P (i) and Q(i) are the probabilities of event i under distributions P and
Q. The KL divergence is not symmetric, meaning D(P,Q) ̸= D(Q,P ). The KL
divergence is not a preferred distance metric due to this property. To resolve this
problem, the symmetrization of the KL divergence is a common approach. The
symmetrized KL divergence, denoted as Dsym(P,Q), is defined as:

Dsym(P,Q) = D(P,Q) +D(Q,P ). (2.6)

It is important to note that the symmetrized KL divergence will be zero if and
only if P and Q represent the same distribution, and it is always non-negative.
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For hyperspectral BS, KL divergence is measured in pairs of bands. Therefore
given two bands i and j in a HSI, the KL-divergence between them can be defined
as:

Dsym(i, j) =

N∑
n=1

pn,i log
pn,i
pn,j

+ pn,j log
pn,j
pn,i

(2.7)

where N is the number of bins and pn,i and pn,j are the values in the n-th
bin of the grayscale normalized histograms of the i-th and j-th band.

2.2.3 Mutual Information

Mutual information measures the amount of information shared between two ran-
dom variables. It provides a quantitative measure of the dependence between the
variables. In the case of hyperspectral BS, the variables refer to the normalized
grayscale histograms of two spectral bands. Given two random variables X and
Y , the mutual information MI(X,Y ) between them is defined as:

MI(X,Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(2.8)

where p(x, y) is the joint probability distribution of X and Y , and p(x) and p(y)
are their marginal probability distributions. The mutual information quantifies
the dependence between the two variables, with higher values of mutual informa-
tion indicating a stronger dependence between the spectral bands.

2.2.4 Disjoint Information

Disjoint information refers to independent and non-overlapping information be-
tween two random variables and is calculated by subtracting the mutual informa-
tion from the joint entropy. Similar to mutual information, in the case of band
selection the variables refer to the grayscale histograms of two spectral bands.
The disjoint information between two variables, X and Y , is defined as;

DI(X,Y ) = H(X,Y )−MI(X,Y ), (2.9)

where H(X,Y ) is joint entropy and MI(X,Y ) is mutual information. Disjoint in-
formation is related to the KL divergence, which quantifies the difference between
two distributions instead of their similarity.
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2.3 Image Segmentation

Image segmentation lies in the field of image processing and computer vision, and
has proved to be a valuable technique in a broad area of research. Some of its ap-
plications are medical imaging, object detection, recognition tasks, and content-
based image retrieval. Often, image segmentation is used as a pre-processing step
for further image analysis.

Image Segmentation describes the separation of objects within a digital im-
age. The image is separated into multiple segments, typically regions containing
adjacent pixels representing objects or borders in the image. Each segment is
homogenous, containing pixels with similarities concerning characteristics such
as color, texture, or light intensity. Image segmentation separates the image into
disjunct regions covering the complete image. The number of segments can ei-
ther be pre-defined or found dynamically, and the segmentation can either be
supervised or unsupervised.

To ensure an understanding of image segmentation for this thesis, the subse-
quent subsections will delve into specific methods that are important for grasping
the concepts and techniques related to superpixel segmentation, which will be
discussed in detail later in this section.

2.3.1 Thresholding

Thresholding is often considered a simple but effective method of image seg-
mentation. The method segments pixels in a grayscale image into one of two
segments, depending on whether the pixel intensity is over a certain threshold T .
This threshold can be set manually or found automatically. The segment a pixel
at position (i, j) belongs to can be found using the following equation:

Si,j =

{
1 if Ii,j > T

0 if Ii,j ≤ T ,
(2.10)

where Ii,j represents the intensity of that pixel, and Si,j the segment it belongs
to.

Such partitioning typically transforms the image into a binary grayscale im-
age, where every pixel is either 1 or 0. However, it can also be performed with
multiple thresholds to segment the image into more than just two classes, as
shown in Figure 2.4.

2.3.2 Graph Partitioning Methods

Graph partitioning techniques represent another, more complex, approach to
performing image segmentation. In such methods, the image is represented as
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(a) MRI Scan Image (b) Thresholding using a single
threshold

(c) Thresholding using 3
thresholds

Figure 2.4: Image segmentation using thresholding.

a weighted, undirected graph. Each node represents a pixel in the image, and
the edges connecting each node represent how similar two neighboring pixels are
based on different possible measures. Graph partitioning methods then parti-
tion the graph into multiple smaller graphs, each representing a segment in the
final segmentation. There are numerous ways to perform this partitioning, and
the most significant difference between such algorithms lies in the segmentation
criteria.

Normalized Cuts

Normalized cuts (NCut), first introduced by Shi and Malik [2000], is a commonly
used graph partitioning method based on minimizing the normalized cut criterion.
The algorithm partitions the graph in such a way that the cut between the
segments is minimized while maximizing intra-segment similarity.

The method assumes a graph G = (V,E) that can be partitioned into two
disjoint sets A and B, so that A∪B = V . The optimization criterion in NCut is
called the normalized cut and is defined as:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
, (2.11)

where assoc(A, V ) and assoc(B, V ) denote the total connection from nodes in A
and B to all nodes in the graph. Furthermore, cut(A,B) represents the degree
of dissimilarity between two subgraphs A and B, and is defined as:
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cut(A,B) =
∑

uϵA,vϵB

w(u, v), (2.12)

where w(u, v) represents the weight of the edge between nodes u and v.
The total connection from nodes in a subgraph A to all nodes in the graph is

defined as:

assoc(A, V ) =
∑

uϵA,tϵV

w(u, t), (2.13)

where w(u, t) represents the weight of the edge between nodes u and t. assoc(B, V )
is similarly defined.

2.3.3 Superpixel Segmentation

Superpixel segmentation is a type of image segmentation that uses an over-
segmentation to separate the image into regions (termed superpixels) smaller
than traditional image segmentation regions. Unlike traditional image segmenta-
tion, as seen in Figure 2.5 (b), superpixels are not intended to cover entire objects
within the original image in (a). Instead, superpixel segmentation aims to group
pixels exhibiting similar characteristics within an object, allowing for variations
in superpixel sizes, as shown in Figure 2.5 (c).

(a) Original Image (b) Image segmentation (c) Superpixel segmentation

Figure 2.5: Difference between image segmentation and superpixel image seg-
mentation.

Entropy Rate Superpixel Segmentation

Entropy Rate Superpixel Segmentation (ERS), first introduced in Liu et al. [2011],
is a graph-based superpixel segmentation algorithm. Similarly to NCut, the algo-
rithm assumes a weighted undirected graph G = (V,E), that can be partitioned
into disjoint subsets S = {S1, S2, ..., SK} such that Si ∩ Sj = ∅ if i ̸= j and



18 CHAPTER 2. BACKGROUND THEORY

⋃
i Si = V . Vertices and edges are denoted by vi and ei,j respectively, with the

similarity between them given by the non-negative weight wi,j . The method also
assumes that every vertex in the graph has a self-loop, with weight defined as
wi,i.

ERS works by selecting a subset of edges A ⊆ E such that the resulting
graph, G = (V,A), contains exactly K connected subgraphs. The algorithm then
uses the entropy rate of a random walk on the constructed graph as the criterion
to obtain compact and homogeneous clusters and uses a balancing function to
encourage clusters of similar size.

The entropy rate of a random walk on the graph G = (V, A) is defined as:

H(A) = −
∑
i

µi

∑
j

pi,j(A) log(pi,j(A)), (2.14)

where the transition probability pi,j(A) is given by:

pi,j(A) =


wi,j

wi
if i ̸= j and ei,j ∈ A

0 if i ̸= j and ei,j /∈ A

1−
∑

j:ei,j∈A wi,j

wi
if i = j.

(2.15)

The sum of incident weights of the vertex wi is given by:

wi =
∑

k:ei,k∈E

wi,k (2.16)

and the asymptotic distribution µi defined as:

µi =
wi∑|V |
j=1 wj

. (2.17)

The balancing function B(A), which helps maintain similar cluster sizes, is
defined as:

B (A) = −
∑
i

|Si|
|V |

log

(
|Si|
|V |

)
−NA, i = {1, · · · NA} , (2.18)

where NA is the number of connected components in the graph, and |Si|, |V | is
the cardinality of Si and V , respectively.

Combining the entropy rate with the balancing function leads to the objective
function that needs to be maximized:

max
A

H(A) + λB(A), (2.19)

where λ ≥ 0 is the weight of the balancing term. The objective function is then
greedily optimized to construct the final segmentation.



2.4. EVOLUTIONARY COMPUTATION 19

Simple Linear Iterative Clustering

Simple Linear Iterative Clustering (SLIC), first introduced in Achanta et al.
[2012], is a clustering-based superpixel segmentation algorithm that generates su-
perpixels by applying the k-means clustering algorithm based on the relationship
between color similarity and spatial distance. The initialization involves convert-
ing an image into a feature vector in CIELAB color space (a three-dimensional
entity containing the entire range of human color perception) and spatial coordi-
nates. Then pixels are clustered to obtain regular superpixels by constructing a
distance measure for the feature vector. The initialization of N superpixel clus-
tering centers of the same size is followed by the computation of the distance D
within a 2Q × 2Q block region around the superpixel centers, where Q is com-
puted as the square root of the number of pixels in the image divided by N . The
distance measure between the clustering center i and the pixel j within the block
is given by:

Di,j =

√√√√(D
(S)
i,j

Q

)2

+

(
D

(C)
i,j

ω

)2

, (2.20)

where D(S) represents the spatial distance, D(C) represents the color distance,
and ω is the maximum color distance within a given cluster. The spatial position
and CIELAB color values of two pixels, denoted by x, y, a, b, and c, can be used
to calculate D(S) and D(C) as follows:

D
(S)
i,j =

√
(xi − xj)2 + (yi − yj)2 (2.21)

D
(C)
i,j =

√
(ai − aj)2 + (bi − bj)2 + (ci − cj)2. (2.22)

Following the initial clustering, the clustering centers undergo iterative up-
dates. These updates are based on the mean values of the distance measures
within the corresponding clustering blocks. This process continues until the clus-
tering centers for each pixel reach a stable state and stop changing.

2.4 Evolutionary Computation

Evolutionary computation denotes a group of algorithms for global optimiza-
tion that is inspired by biological processes such as genetic evolution or swarm
behavior. The algorithms typically rely on a population of candidate solutions
and iteratively improve through multiple generations. The algorithms are highly
adaptable and can produce good solutions for a wide range of optimization prob-
lems.
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2.4.1 Genetic Algorithm

The genetic algorithm (GA), introduced by Holland [1975], is an optimization
algorithm that iteratively optimizes a population of candidate solutions. As the
name implies, the algorithm is inspired by the biological processes of evolution,
combining operators such as parent selection, gene crossover, and mutation to
converge to good solutions. The genetic algorithm is classified as an Evolution-
ary Algorithm, which usually performs well at approximating solutions to vari-
ous problems. One of the main advantages of using a GA is that it can handle
problems with complex fitness-landscape. Fitness-landscape describes multidi-
mensional spaces where each point represents a possible solution and its corre-
sponding fitness value to a problem.

The genetic algorithm works on a population of candidate solutions and itera-
tively improves its solutions throughout multiple generations. In each generation,
the entire population is evaluated using a fitness function, and a subset of the
population is then selected for reproduction. Reproduction typically happens by
mixing the chromosomes of two parent individuals to create two new individu-
als (offsprings), which are then subjected to a mutation operator. This process
is repeated for multiple generations until a stopping criterion is met. Stopping
criteria often include: reaching a maximum number of generations, having no
improvement in solutions for a set number of generations, or having found a
sufficiently good solution. The entire process is illustrated in Figure 2.6.

Representation

The genetic representation describes how individuals in the population should
be represented in the form of a chromosome or genotype. Such a representation
must have a predefined mapping to the phenotype/solution. Selecting which
genetic representation to use, largely depends on the problem at hand, but the
optimal solution must be included in the set of possible genomes. One of the most
straightforward genetic representations is a single sequence of binary numbers,
such as G = 01110101. Such a representation is often used when solving problems
related to whether to include or not include certain features. For permutation-
or sequence-related problems such as TSP or VRP, an alternative representation
could be a string of characters representing the chosen sequence, such as G =
ADBCE.

Evaluation of Individuals

For a genetic algorithm to perform optimization, it needs to know what it should
optimize. This is typically referred to as the fitness function. The fitness function
evaluates every individual in the population for every generation. It can return
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Calculate intitial fitness of
individuals

Selection

Crossover

Mutation

Calculate fitness of individuals

Check stopping criteria

Criteria
not met

Finished

Criteria
met

Generate initial population

Figure 2.6: Flowchart of Genetic Algorithm.

either positive or negative fitnesses and can be chosen to either be maximized or
minimized throughout the generations. If the optimization problem has multiple
objectives to be optimized, these can be combined into a single fitness function, in
the form of f = aX+bY , where X and Y are separate objectives, with balancing
coefficients a, b. Alternatively, multi-objective optimization can be performed by
considering Pareto dominance in the selection process.

Selection

The selection mechanism in the Genetic algorithm is an integral part of guid-
ing the population toward the optimal solutions. After the evaluation of every
individual has been performed, the selection mechanism can utilize the fitness
scores to select individuals that are well suited as ”parent” individuals to create
the next generation. Many selection methods exist, typically designed to favor
the selection of individuals with good fitness while simultaneously maintaining
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diversity in the population, often through some form of weighted randomness.
This procedure is then repeated until the desired number of individuals has been
selected for reproduction.

Crossover

The crossover operator decides how the offspring of two parent individuals should
be created. Choosing the best crossover operator often depends on the chosen
genetic representation and the problem that is being solved.

For binary sequence representations, one-point crossover and k-point crossover
are common operators. These select one or k crossover points respectively, and
fill each subsequence between those points with the same subsequence from one of
their parents randomly. In some cases, like the mentioned TSP or VRP, slightly
more complex crossover operations may be needed to retain the good parts of the
parent chromosomes and generate feasible solutions. Partially mapped crossover
(PMX) and Order crossover (OX1) are examples of typical crossover operations
for permutation representations.

Mutation

The mutation operator is typically designed to make minor changes to a solution,
often done to encourage exploration and preserve diversity in the population. The
mutation usually occurs after crossover, with a low probability pm of it happen-
ing to each gene/character in the chromosome. For binary representations, this
typically means flipping a bit from 0 to 1, or the other way around. In sequence
representation, like in the case of TSP, a mutation typically involves swapping the
positions of two characters in the sequence. When choosing mutation operators,
it is essential to consider how the mutation affects the phenotype, as flipping
a single bit can in some cases lead to very significant changes in the resulting
solution.

2.4.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO), first introduced by Kennedy and Eberhart
[1995], is a computational method for finding the optimal solution to a given
problem by using a population, or ”swarm”, of candidate solutions, referred to as
particles. It is a population-based optimization algorithm inspired by the social
behavior of birds, which exhibit a type of collective intelligence in their search
for food or other resources.

In PSO, each particle represents a candidate solution to the optimization
problem, and the position and velocity of each particle are updated iteratively
based on the best solution found so far by the particle itself, as well as the
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best solution found by the rest of the swarm. The movement of each particle is
influenced by its own experience and the experience of the other particles in the
swarm, with the goal of eventually converging on the optimal global solution.

Particle Swarm Optimization is performed by initializing a swarm of parti-
cles with random velocities and positions (represented as n-dimensional vectors)
within the search space. Then, at each iteration, every particle position (repre-
senting a solution to the optimization problem) is updated using a pre-defined
fitness function. This evaluation is then used as follows:

• If the fitness observed is superior to the fitness of the particle’s previously
best-known position, it is updated as the particle’s new personal best posi-
tion (pbest).

• If the observed fitness is superior to the previous global best fitness, through-
out all particles and iterations, it is updated as the swarm’s new global best
position (gbest).

In every iteration, after the evaluation of all particles, the velocity and position
of each particle are updated using the following equations:

v(t+ 1) = wv(t) + c1r1(pbest− x(t)) + c2r2(gbest− x(t)) (2.23)

x(t+ 1) = x(t) + v(t+ 1), (2.24)

where x(t) and v(t) are the position and velocity of the particle at iteration t,
respectively. w is the inertia weight, c1 and c2 are constants that control the
influence of the personal best position pbest and the global best position gbest.
r1 and r2 are random numbers in the range [0, 1] to introduce stochasticity to the
process and avoid getting stuck in local optima. The entire process is illustrated
in Figure 2.7.

The key feature of PSO is that it uses the knowledge gained from previous
iterations to guide the search for solutions in subsequent iterations. This allows
the algorithm to converge quickly to high-quality solutions, even for complex
problems with many variables, and in discontinuous problem spaces.

The described algorithm is very similar to the original algorithm proposed
by Kennedy and Eberhart [1995], but many variations and hybrids also exist,
aiming to improve or adjust the algorithm to solve different types of optimization
problems. One such variant is Binary PSO, which can be applied to discrete
search spaces.
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Evalutate intitial fitness, set initial
pbest and gbest

Update every particle's velocity based
on pbest and gbest

Update every particle's position based
on velocity

Evaluate particles using fitness
function, update pbest and gbest

Check stopping criteria

Criteria
not met

Finished

Criteria
met

Initialize particles randomly in the
search space

Figure 2.7: Flowchart of Particle Swarm Optimization.

Binary PSO

Binary Particle Swarm Optimization (BPSO), a variation of PSO developed by
Kennedy and Eberhart [1997], is specifically designed to solve discrete search
spaces, such as those encountered in combinatorial optimization problems. In
BPSO, each particle represents a candidate solution as a vector of binary values,
in contrast to the continuous-valued vectors employed in traditional PSO.

To function with binary position vectors, the concept of velocity is changed
from a physical velocity to a probabilistic one. While the velocity update function
remains largely the same, it is applied to the position through a transfer function,
which maps the velocity to a probability of each binary position being 0 or 1.
Different transfer functions may be utilized, such as sigmoid, S-Shaped, and V-
shaped.

In the originally proposed BPSO, the position xid of particle i in dimension
d is updated by comparing a random number in the range [0, 1] to a sigmoid
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transformation of its velocity vid, according to the following transfer function:

xid =

{
1 if rand(0, 1) < S(vid)

0 otherwise,
(2.25)

where S is the sigmoid function defined as:

S(vid) =
1

1 + e−vid
. (2.26)

2.5 Clustering

Clustering is an unsupervised learning task that aims to identify patterns in
unlabeled data. In simple terms, clustering analysis divides data into groups
with common features to keep similar objects together and separate different
objects into different clusters.

(a) Hard Clustering (b) Soft Clustering

Figure 2.8: Difference between hard and soft clustering. Inspired by Kumar
[2022].

There are two distinct approaches to clustering analysis: Hard clustering and
soft clustering. In hard clustering, each data point is assigned exclusively to a
single cluster based on the similarity of its features, meaning that each object
belongs to one, and only one, group. As shown in Figure 2.8, soft clustering,
instead of assigning each object to a single group (blue or green), assigns a degree
of membership to each data point (shade of blue or shade of green), indicating
how well it fits into each cluster.

The following section will introduce a hard clustering approach (k-means clus-
tering) and a soft clustering approach (Fuzzy C-means clustering).
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2.5.1 K-means Clustering

The k-means algorithm, introduced by MacQueen [1967], is a simple and straight-
forward approach to unsupervised learning for solving the clustering problem. It
divides a given data set into a predetermined number of clusters (k clusters). The
algorithm starts by selecting k cluster centroids, one for each cluster, and strate-
gically positioning them to maximize their distance from one another. Next, each
point in the data set is assigned to the nearest centroid. Once all points have
been assigned, the centroids are recalculated as the mean of points in that cluster.
This process is repeated until the centroids stop moving or no further changes
occur. The ultimate goal of the k-means algorithm is to minimize the objective
function defined as:

J =

k∑
i=1

∑
x∈Si

||x− µi||2, (2.27)

where k is the number of cluster, Si the i-th cluster, and ||x− µi|| the Euclidean
distance between data point x and cluster centroid µi.

2.5.2 Fuzzy C-Means Clustering

Fuzzy C-means clustering (FCM), first introduced by Dunn in 1973 [Dunn, 1973],
later generalized by Bezdek in 1981 [Bezdek et al., 1984], is a clustering technique
that can resemble k-means in a lot of ways. However, as opposed to hard cluster-
ing algorithms like k-means, it allows each sample to have a membership degree
to multiple clusters. This property of FCM makes it more suitable for dealing
with data where the boundaries between clusters may not be well-defined.

The FCM algorithm minimizes the objective function, defined as:

J =

C∑
i=1

N∑
j=1

um
ij ∥ci − xj∥2 , (2.28)

where xj represents the jth data point, ci represents the ith cluster center, and
uij represents the membership degree of data point xj to cluster ci. N and C
are the numbers of data points and clusters. The objective function measures
the sum of squared distances between samples and their corresponding cluster
centers, weighted by the membership degree. The constraint to ensure the sum of
membership degrees for each data point across all clusters is equal to 1 is denoted
as:

C∑
i=1

uij = 1, ∀j = 1, 2, . . . , n (2.29)
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and the membership degree of the j-th data point in the i-th cluster is defined
as:

uij =

(
C∑

k=1

(
∥ci − xj∥
∥ci − xk∥

) 2
m−1

)−1

, (2.30)

where m is the fuzziness parameter that controls the degree of fuzziness in the
clustering solution. A higher value of m results in a higher degree of overlap
between clusters, and a lower value of m results in a lower degree of overlap.

The FCM algorithm alternates between updating the cluster centers and up-
dating the membership degrees until convergence or a maximum number of iter-
ations is reached. The update rule for cluster centers is defined as:

ci =

∑N
j=1 u

m
ijxj∑C

j=1 u
m
ij

. (2.31)

To minimize Equation 2.28, the Lagrange multiplier can be added to the
sequence [Zhang et al., 2017]. The method of Lagrange multipliers is an approach
used in mathematical optimization to identify a function’s local maximum and
minimum points while considering equation constraints. For multiple constraints,
it can be defined as:

L(x,λ) = f(x) +

m∑
i=1

λigi(x), (2.32)

where f(x) is the objective function to be optimized, gi(x) are the constraint
functions, and λi are the Lagrange multipliers.

With the incorporation of Lagrange multipliers, the objective function for the
FCM algorithm is revised as follows:

J =

N∑
i=1

C∑
j=1

um
ij ||ci − xj | |2 +

n∑
j=1

λj

(
C∑
i=1

uij − 1

)
, (2.33)

where λj are the Lagrange multipliers introduced to account for the constraint
specified in Equation 2.29. This allows the minimization of the objective function
while considering this constraint.
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Chapter 3

State of the Art

In the following chapter, research relevant to this project is presented. The
chapter is split into four sections, beginning with an introduction to hyperspectral
band selection (BS) in Section 3.1, before discussing relevant BS techniques in
Section 3.2. Next, research on different Particle Swarm Optimization approaches
relevant to BS is reviewed in Section 3.3. Finally, Section 3.4 covers the essential
concepts of PSO-FCM [Zhang et al., 2017] in more detail, for the purpose of
extensions presented in subsequent chapters.

3.1 Hyperspectral Band Selection

Technological advancements in imaging spectrometers now allow hyperspectral
sensors to capture the spectral reflectance of ground objects on Earth’s surface
using several narrow bands [Goetz, 2009; Sun and Du, 2019]. The finer spec-
tral resolution of hyperspectral imaging has improved the ability to differentiate
ground objects. As a result, the technique has been applied in various practi-
cal areas, such as geological mapping [Tan et al., 2020] and ocean monitoring
[Muller-Karger et al., 2013], allowing for the analysis and classification of large
portions of the Earth’s surface.

Although the availability of a large number of spectral bands provides an op-
portunity for more accurate land cover classification [Patro et al., 2021], HSI pro-
cessing faces the challenge of the well-known ”curse of dimensionality” [Hughes,
1968]. Due to the high dimensionality, the computational burden is huge. To
address this, reducing dimensionality and choosing bands that exhibit the high-
est separability is necessary when working with HSIs [Duan et al., 2021]. Hence,
new dimensionality reduction methods and protocols required for HIS processing
have become necessary to develop.

29
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Dimensionality reduction methods can be divided into two categories: those
based on feature extraction and those based on BS. Early research focused mainly
on component analysis for feature extraction. Typical examples include the prin-
cipal component analysis (PCA) [Harsanyi and Chang, 1994] and independent
component analysis [Wang and Chang, 2006], applied to extract a small set of
uncorrelated features. However, many criticized feature extraction methods for
not preserving the information or physical meaning of the original band values
[Petrie et al., 1998; Zhang et al., 1999]. To address this problem, Zhang et al.
[1999] proposed a method to separate the hyperspectral bands into similar sub-
spaces and run PCA on each subspace, measuring the similarity of bands using
the correlation coefficient metric. Despite this effort, feature extraction methods
still reduce the data’s usefulness for physical modeling due to the lack of spectral
characteristic analysis of the ground objects [Zheng et al., 2017].

Contrastingly, BS, unlike feature extraction, maintains the informational and
physical meaning of the original band [Patro et al., 2021]. Due to this advantage,
numerous BS methods have been proposed in the academic research of the past
decade. However, various challenges remain to be solved in hyperspectral BS.

3.2 Band Selection Techniques

Based on whether labeled training samples are used, BS approaches are classified
as supervised or unsupervised. Supervised approaches, such as those discussed in
Baisantry et al. [2022] and Su et al. [2014], determine a subset of bands through
model training with labeled samples. Even though supervised approaches can
deliver high classification accuracy, they rely on prior ground information. In
contrast, unsupervised techniques, such as those presented in Zhang et al. [2017]
and Zhao et al. [2021], select features without the need for a training set or prior
information, relying instead on various statistical metrics and cluster quality
assessments. Unsupervised techniques often become preferable for BS due to the
scarcity or absence of labeled information [Patro et al., 2021]. This section will
primarily focus on unsupervised BS techniques.

3.2.1 Band Quality Measures

Unsupervised quality measures for hyperspectral data are typically based on
information-theoretic concepts such as entropy [Zhang et al., 2017], mutual in-
formation [Tschannerl et al., 2019], and Kullback-Leibler divergence [Jia et al.,
2022]. These techniques do not necessitate manual data labeling. Information-
theoretic measures have been explored for selecting bands in HSIs over the past
few decades [Conese and Maselli, 1993; Jia et al., 2022], and are often used in
conjunction with different search algorithms, such as PSO [Zhang et al., 2017;
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Paul and Chaki, 2022], gravitational search [Tschannerl et al., 2019] and NSGA-II
[Grimstad, 2019].

There are two main approaches to applying information theory in this con-
text: some research focuses on the entropy of selected bands [Zhang et al., 2017],
while others consider redundancy and mutual information between bands [Hos-
sain et al., 2012; Tschannerl et al., 2019]. The entropy approach ensures that
only the most representative bands are selected but does not guarantee that the
selected bands contain different information. The mutual information approach,
on the other hand, does not guarantee high entropy in the selected bands.

Applying the standard mutual information measure for BS in hyperspectral
data can lead to suboptimal results, given its incapacity to function effectively
as a distance metric. [Hossain et al., 2012; Yang et al., 2017]. To address this
issue, Hossain et al. [2012] proposed the use of a measure termed normalized
mutual information, which divides the mutual information by the product of the
marginal entropies of the two variables to remove the dependency on the entropies
of individual variables.

Yang et al. [2017] introduced the use of Disjoint information as a distance
measure for comparing spectral bands. This metric computes the joint entropy
of two variables and subtracts the mutual information from it. It ensures that
variables with substantial individual entropies are prioritized, a vital considera-
tion in BS [Grimstad, 2019].

Further development in the utilization of disjoint information and other diver-
gence measures was explored in a subspace decomposition process by Grimstad
[2019]. In this work, the divergence measures were employed to evaluate the
differences between adjacent bands, which involved clustering bands in highly
correlated subspaces. However, this approach seemed to excessively depend on
divergence measures between adjacent bands, potentially leading to the selection
of noisy bands due to inevitable discrepancies between adjacent bands. Despite
the utilization of disjoint information to help counteract this issue by giving pref-
erence to high entropy bands, it did not entirely solve the problem [Grimstad,
2019].

3.2.2 Clustering-based Techniques

Many recent BS approaches incorporate ranking or clustering. Ranking-based
techniques [Zhang et al., 2018; Wang et al., 2015] evaluate the quality of each
band independently and rank them according to a predetermined metric, such as
informativeness or separability. Because the ranking-based techniques mainly fo-
cus on scoring criteria for each individual band, the selected bands tend to display
a high degree of stability. However, they disregard any correlation information
between them. In contrast, clustering-based techniques [Paul and Chaki, 2022;
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Yang et al., 2017; Zhang et al., 2017] tend to select bands with lower correlation
and less redundant information.

One widely used clustering approach for BS is the k-means clustering al-
gorithm, as employed in Yang et al. [2017] and Paul and Chaki [2022]. Yang
et al. [2017] proposes using the k-means algorithm to group bands into clusters
based on the disjoint information measure, and shows that k-means clustering
can be a simple and efficient approach compared to incremental BS methods.
However, due to the intrinsic complexity of spectral bands, the bands can often
exhibit overlapping characteristics [Zhang et al., 2017]. Hard clustering, such as
k-means, has trouble handling cases that cannot be exactly clustered into a single
cluster (see Section 2.5). Soft clustering approaches, such as fuzzy C-means clus-
tering, can therefore be more advantageous for BS as it offers a natural way to
handle uncertainty and partial membership. This fuzzy approach to clustering
allows for greater flexibility in data classification, as points do not have to be
strictly assigned to a single cluster.

Zhang et al. [2017] finds that fuzzy C-means clustering is sensitive to initial
conditions and noisy bands, and attempts to solve this challenge by introducing a
new unsupervised BS method, PSO-FCM, which employs a PSO-based optimiza-
tion. Although the PSO hybrid alleviates two limitations of FCM, its sensitivity
to initialization and poor computational efficiency, the noise issue is only partially
mitigated [Zhang et al., 2017]. Zhang et al. addresses the issue of sensitivity to
noisy bands by employing a selection mechanism that selects bands from each
cluster with the max entropy criterion. However, the method does not manage
to remove noisy bands well enough when the number of clusters is too small.

The selection mechanism in Zhang et al. [2017] can be linked to a more general
challenge of clustering techniques: choosing cluster representatives. One of the
first clustering-based techniques proposed for BS, Martinez-Uso et al. [2007],
solves this by selecting based on the highest average similarity to the other bands
in the cluster. In contrast, Yang et al. [2017] selects the representative band
for each cluster in a more complex matter using an iterative procedure that
maximizes similarity with other bands in the cluster and minimizes similarity with
selected bands from other clusters. However, since the selection of representative
bands is based only on similarity and not on the bands’ information content,
noisy bands can affect the algorithms.

Overall, the research suggests there is a risk of producing suboptimal clusters
that include noisy bands when using cluster techniques [Patro et al., 2021]. To
address this issue, integrating ranking with a clustering-based technique can be
beneficial, as shown in Jia et al. [2022]. This research proposes a unified scheme
that considers both frequency of occurrence and information entropy as a ranking-
based voting strategy for selecting the final band subset after clustering.
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3.2.3 Pre-removal of Noisy Bands

The BS process seeks to identify the most informative and distinctive bands while
discarding uninformative ones. Notably, bands known to be uninformative can be
removed a priori, including bands within the water absorption range [Patro et al.,
2021]. One approach for removing noisy bands outside the water absorption range
is employing a histogram-based method [Kar et al., 2019]. This technique not only
identifies uninformative bands but also reduces noise prior to the classification
process, which has been shown to improve performance when done prior to target
detection [Ji et al., 2019]. Despite the demonstrated effectiveness of this method,
the research on automatic pre-removal techniques for noisy bands is limited to
the classification problem and target detection. Much of the existing research,
including Jia et al. [2022] and Zhao et al. [2021], depends primarily on the manual
removal of noisy bands prior to the BS process, often without examining the
subsequent impact this has on the effectiveness of the proposed BS techniques.

3.2.4 Superpixel-based Techniques

Superpixel segmentation has been utilized effectively in a broad range of applica-
tions, even before they were named in Ren and Malik [2003] [Stutz et al., 2018].
With the increasing quality and interest in remote sensing and HSI data, super-
pixels have recently gained popularity in the field of HSI analysis [Subudhi et al.,
2021]. Their ability to adapt to the spatial structure of objects in the scene makes
them a valuable tool for incorporating spatial features in HSI data analysis [Sub-
udhi et al., 2021]. Superpixels can also be used to reduce the number of image
primitives for analysis, resulting in a significant decrease in computational com-
plexity [Di et al., 2021]. As a result of these advantages, superpixels have been
widely utilized in various areas of HSI processing, such as classification [Wang
et al., 2020], spectral unmixing [Wang et al., 2017], anomaly detection [Ren et al.,
2019], image restoration [Fan and Huang, 2021], and denoising [Sun et al., 2018].
However, most research has focused on utilizing superpixels directly in the clas-
sification of HSIs rather than in BS. Only a limited number of recent research
have explored the integration of superpixels in BS [Zhao et al., 2021; Yang et al.,
2018; Jia et al., 2022].

Various superpixel algorithms have been successfully utilized in the HSI con-
text, mainly divided into two categories: graph-based methods such as ERS [Yang
et al., 2018; Zhao et al., 2021], and gradient-based methods such as SLIC [Jia
et al., 2022]. ERS provides segmented superpixels with shape adaptability re-
sulting in good boundary adhesion, whereas SLIC enforces connectivity from the
start, resulting in good compactness and regularity [Jia et al., 2022]. Hence, Jia
et al. [2022] implements multiple superpixel segmentation approaches to generate
maps at various scales, allowing for the complementarity of multiple superpixels.
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However, this comes with a trade-off in terms of computational efficiency. It is
also worth noting that these algorithms were not initially developed for HSIs,
and require adjustments to function properly for BS [Subudhi et al., 2021].

Generally, when superpixel information is utilized in BS, the variability be-
tween superpixels and within a single superpixel is considered. Zhao et al. [2021]
proposed an unsupervised BS approach termed Spectral-Spatial GA (SSGA),
which employs a GA with a fitness function that measures the performance of
the candidate subset of bands using a superpixel-based unsupervised trace ratio
criterion with spectral-spatial capabilities. In contrast, Yang et al. [2018] utilizes
spatial information from superpixels defining two new band criteria, one based
on Metric Learning and one based on Representation Learning. Recently, Jia
et al. [2022] proposed a superpixel-level Kullback-Leibler distance of bordering
bands to divide bands into clusters, encouraging within-cluster correlation and
lower correlation across clusters. The proposed method subsequently employs
a second superpixel-level distance measure, to select representative bands from
each cluster. On the one hand, these fitness functions/distance measures offer the
advantage of being able to more effectively evaluate the variability both within
and between superpixels and exploit both spectral and spatial information. On
the other hand, it also presents the challenge of an increase in computational
complexity.

Although the integration of spatial information in band selection through
superpixels presents promising potential, it remains a research area in need of
further investigation.

3.3 Particle Swarm Optimization

Particle swarm optimization (PSO), introduced in 1995 by Kennedy and Eberhart
[Kennedy and Eberhart, 1995], has gained significant attention from researchers
within the HSI field. The following subsections discuss some influential contribu-
tions that apply PSO for BS.

3.3.1 Discrete PSO

In PSO, particles must typically navigate a continuous search space to find the
optimal solution. However, in feature selection problems like BS, the use of
continuous values is often not advantageous. This problem is inherently a discrete
optimization problem, and the PSO algorithm often needs modifications or direct
manipulation to solve discrete problems effectively.

One approach applied to BS is Binary PSO (BPSO) [Zhang et al., 2017].
The performance of BPSO, first introduced in Kennedy and Eberhart [1997],
highly depends on transfer function selection [Mirjalili and Lewis, 2013]. As such,
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various transfer functions, including sigmoid, S-shaped, and V-shaped, have been
proposed, as discussed in Shami et al. [2022].

V-shaped transfer functions have demonstrated superior performance in terms
of the convergence rate and escaping from local minima, compared to S-shaped
transfer functions [Mirjalili and Lewis, 2013]. However, V-shaped functions have
the potential to get stuck in local optima due to their reliance on the velocity of
the PSO method. With the V-shaped transfer functions, if the current position
is a local optimum and the velocity approaches zero, the new position will remain
the same as the current position [Beheshti, 2019]. To mitigate this problem, Be-
heshti [2019] introduced a mirrored transfer function that varies over time. Its
effectiveness has been tested on high dimensional 0–1 knapsack problems, and
the results indicate that the proposed transfer function performs better than the
S-Shaped and V-shaped transfer functions. However, this mirrored transfer func-
tion’s performance has not been examined on feature selection problems [Shami
et al., 2022].

Another approach to PSO in a discrete space involves direct modification of
the search space, as exemplified by the Multi-Objective Discrete Particle Swarm
Optimization (MODPSO) [Gong et al., 2014]. In MODPSO, particle position
and velocity are discrete, achieved by modifying the velocity and position update
function. This approach simplifies the transition from a continuous to a discrete
search space. However, the MODPSO algorithm incorporates a predefined prob-
ability, p, for selecting random particles to update velocity. This can impact
exploration and exploitation, potentially resulting in the loss of promising solu-
tions when particles are chosen randomly from the nondominated relationship
during the update process [Shami et al., 2022].

3.3.2 PSO for Band Selection

Many BS techniques in hyperspectral imaging pose challenges regarding compu-
tational complexity and time requirements due to exhaustive feature searches.
Therefore, PSO has gained recognition in hyperspectral BS, owing to its ability
to navigate large solution spaces effectively and converge on optimal solutions
[Sun and Du, 2019].

One of the earlier efforts in using PSO for BS was presented by Su et al.
[2014]. They developed a two-level PSO algorithm (2PSO) that determines the
optimal combination of bands and the number of bands to be selected in a super-
vised manner. However, the results revealed the method to be computationally
inefficient.

For unsupervised BS, a hybrid approach combining PSO with a genetic al-
gorithm (GA) has been proposed [Ghamisi and Benediktsson, 2015]. The ge-
netic algorithm generates initial particle positions and velocities, and the PSO
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algorithm then searches for the optimal solution. This hybridization leverages
the global search capabilities of GA and the fine-tuning abilities of PSO. Later,
Zhang et al. presented an unsupervised BS approach (PSO-FCM) that combines
fuzzy clustering with PSO [Zhang et al., 2017]. The PSO-FCM model is further
explained in the following section.

Prior research suggests that the characteristics of PSO, such as its efficiency
and insensitivity to initialization, make it a well-suited choice for BS. However,
most prior research considers only the HSI’s spectral properties, ignoring spa-
tial properties [Paul and Chaki, 2022]. To address this, Paul and Chaki [2022]
recently proposed incorporating spatial (gradient) information within the objec-
tive function of PSO. The proposed method requires an initial step applying
the k-means algorithm to mitigate spatial redundancy before applying the PSO
algorithm for BS, introducing computational inefficiency to the overall process.

3.3.3 Fuzzy Clustering with PSO

FCM clustering is commonly used to divide a dataset into a collection of fuzzy
groups and has become a popular technique because of its simplicity and unsuper-
vised approach [Dhanachandra and Chanu, 2020]. However, the FCM algorithm
is highly influenced by its initial conditions and can be disrupted by noisy data,
making it prone to getting stuck in locally optimal solutions [Zhang et al., 2017].
Therefore several hybrid methods have been proposed to address the limitations
inherent in FCM, and to leverage the superior clustering outcomes offered by
PSO.

In Zhang et al. [2017], PSO helped overcome FCM sensitivity to initialization
and the tendency to get stuck in local optima when applied to BS. The PSO
algorithm proposed is applied to optimize FCM, replacing the Lagrange multiplier
method, often employed with FCM (as explained in Section 2.5). On the other
hand, the hybrid showed to be highly affected by noise when the number of the
selected bands was small.

In order to address the issue of noise, Dhanachandra and Chanu [2020] pro-
posed an image segmentation technique that integrates Dynamic Particle Swarm
Optimization (DPSO), FCM, and a noise reduction method leveraging spatial
neighborhood information. Recently, Verma et al. [2021] proposed another hy-
brid algorithm (FCM-PSO) that mitigates local minima trapping issues. This
is achieved by utilizing PSO to compute the centroid of its cluster through a
candidate solution.

Overall, research has shown that PSO’s global optimization searching capa-
bilities can address the limitations of FCM, leading to improved clustering results
[Dhanachandra and Chanu, 2020; Verma et al., 2021; Zhang et al., 2017]. While
recent research has explored the application of FCM combined with PSO in im-
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age processing [Dhanachandra and Chanu, 2020; Verma et al., 2021], further
investigations are warranted to explore its potential in the domain of BS.

3.4 PSO-FCM

The unsupervised BS model, PSO-FCM, which combines a binary PSO with fuzzy
C-means clustering, is proposed in Zhang et al. [2017]. Since this research intends
to extend this hybrid approach, the present section aims to explain the essential
concepts of PSO-FCM, specifically focusing on the formulation of the objective
function and the process of cluster representative selection, which remain the
same for the model proposed in this work.

3.4.1 Objective Function

The objective function employed in PSO-FCM is a slightly modified version of
the standard FCM objective function as presented in Section 2.5.2. For each
particle in PSO-FCM, representing a candidate solution of cluster centers, the
objective function J is calculated as follows:

min J =

C∑
i=1

Ji =

C∑
i=1

N∑
j=1

um
ijd

2
ij , (3.1)

with C being the number of cluster centers, N the total number of bands, m the
fuzzy exponent, dij the Euclidean distance between band i and j. Finally, uij is
the fuzzy membership of band j in cluster i, calculated as:

uij =

∑C
k=1 d

2
m−1

kj

d
2

m−1

ij

. (3.2)

3.4.2 Cluster Representative Selection

The cluster representative selection method proposed in PSO-FCM is one based
on entropy. For each cluster, the band with the max entropy is selected. The
entropy of band Y is defined as follows:

H(Y ) = −
∑
yϵΩ

p(y) log2 p(y), (3.3)

where p(y) denotes the grayscale histogram probability distribution of band Y .
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Chapter 4

Model Architecture

This section outlines the architecture of the proposed BS model, Superpixel-
enhanced PSO-FCM (SPPF). The SPPF model operates in three distinct steps,
each contributing to the overall objective of identifying and selecting the most
relevant bands for classification. Figure 4.1 provides a visual representation of
the SPPF model architecture. In the first step, the image is segmented into su-
perpixels that share similar characteristics. The second step of the SPPF model
involves clustering bands with similar attributes. The clustering process is per-
formed by a PSO-FCM [Zhang et al., 2017] hybrid that is modified to incorporate
the superpixel map generated in Step 1. Finally, in the third step, a single band is
selected from each cluster to serve as a representative for that particular cluster.
The bands produced through this step form the output of the SPPF BS model.

4.1 Superpixel Segmentation

In the initial step of the SPPF model, the HSI is segmented into superpixels, to
be utilized in the subsequent BS process. A modified version of the Simple Linear
Iterative Clustering (SLIC) method is chosen for this task due to its excellent per-
formance and efficiency. This efficiency is crucial because integrating superpixels
is intended to increase the efficiency of the BS process. Moreover, improving
efficiency in subsequent image-processing tasks is a primary motivation for BS,
making efficiency a vital factor in design choices. In addition, SLIC offers flexibil-
ity in terms of controlling the number of superpixels and the compactness of the
generated superpixels, allowing us to adapt the segmentation process according
to the specific dataset.
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Figure 4.1: SPPF Model Architecture.
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4.1.1 Preprocessing: Gaussian Blur

Before segmenting the HSI using the modified SLIC algorithm, a slight Gaus-
sian blur is applied to every band. This preprocessing step is done to reduce
high-frequency noise present in the image, which can cause the superpixel seg-
mentation to produce irregular and fragmented regions. By smoothing the image
with a Gaussian blur, the segmentation process can better capture the underlying
structures and more accurately outline homogeneous regions within the image.

The Gaussian blur is applied by convolving each band with a Gaussian filter.
The Gaussian filter, denoted by Gσ(x, y), is defined as:

Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (4.1)

where σ is the standard deviation of the Gaussian distribution, which controls the
amount of blur, and (x, y) are the pixel coordinates. The filtered band, denoted
by Bblur, is obtained by convolving the original band B with the Gaussian filter:

Bblur(x, y) = B(x, y) ∗Gσ(x, y), (4.2)

where ∗ denotes the convolution operation. Figure 4.2 shows an example of a
resulting band after applying Gaussian blur, illustrated as a grayscale image.

(a) Original grayscale image (b) After applying Gaussian blur

Figure 4.2: Grayscale image of band 30 of the Indian Pines dataset after nor-
malizing spectral intensity values to [0, 255] and the same band after applying
Gaussian blur.
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4.1.2 Modified Distance Measure for SLIC

The original SLIC algorithm compares pixels in the CIELAB color space, and
does not support HSIs. Because of this constraint , the superpixel segmentation
in SPPF instead operates on the intensity value in each spectral band to calculate
the spectral distance as an alternative to the color distance metric employed in
the original SLIC algorithm. The distance in spectral intensity between pixels i
and j in a particular band image is defined as:

dsi(i, j) =

b∑
(x(i)− x(j))2, (4.3)

where b is the total number of bands in the HSI, and x(i) is the intensity value of
pixel i in that particular band. With this adjustment, the distance metric used
in the superpixel segmentation of SPPF is subsequently defined as:

d(i, j) = dsi(i, j) + wspdsp(i, j), (4.4)

where wsp is the spatial weight, and dsp(i, j) is the euclidean distance in the spa-
tial dimensions. This modified distance metric allows the segmentation process
to consider all spectral bands to compute a good clustering.

4.1.3 Parameter Selection

Due to the modifications in the distance measure of the SLIC algorithm, the stan-
dard recommended values for hyperparameters no longer yield optimal results.
Consequently, preliminary tests were conducted to identify new recommended
values for the superpixel segmentation step. The recommended hyperparameters
for the superpixel segmentation phase of SPPF are presented in Table 4.1. These
values have been found to provide good segmentation quality and computational
efficiency in general. Instead of specifying a recommended number of superpix-
els, a recommended average size of superpixel is specified, since the number of
required superpixels largely depends on the spatial dimension of the image. Fig-
ure 4.3 shows the importance of choosing a high enough number of superpixels.
It can be seen that when only 100 superpixels are constructed, entire features
such as the fields in the center of the site, are covered in a single, or just a few,
superpixels.

4.2 Band Clustering

The second step in the SPPF model’s architecture is to cluster the image’s bands
into the same number of clusters as the desired number of bands to select. By
grouping bands with similar hyperspectral characteristics, a single band can later



4.2. BAND CLUSTERING 43

Hyperparameters Superpixel Segmentation

σ 0.5
Superpixel size 8x8 - 12x12
wsp 1,000 - 10,000

Table 4.1: Recommended hyperparameters for the superpixel segmentation step
of SPPF.

(a) 100 superpixels (b) 200 superpixels (c) 300 superpixels

Figure 4.3: Indian Pines image segmented into different number of superpixels.

be selected from each cluster to represent it. This aims to select bands with high
informational value, with little redundancy between them. In theory, bands that
are clustered together should have a significant overlap of information.

SPPF employs a superpixel-enhanced PSO-FCM algorithm for the clustering
process. This hybrid approach leverages the strengths of both PSO and FCM
to produce high-quality clustering results, while also benefiting from the spatial
information gathered from the segmentation step.

4.2.1 Particle Swarm Optimization

In the context of SPPF, PSO is used to search for the optimal clustering of
bands. PSO is chosen for its ability to explore the search space efficiently and ef-
fectively. This exploration enables the identification of optimal cluster centroids,
allowing for a better selection of representative bands with distinct hyperspectral
characteristics. Furthermore, PSO’s flexibility and adaptability allow it to be
easily combined with other algorithms, such as FCM, and to incorporate super-
pixel information. The proposed PSO variant, similarly to the one proposed in
PSO-FCM [Zhang et al., 2017], is specifically designed to address the problem
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of selecting n spectral bands from a HSI to be used as cluster centroids in the
FCM objective function. However, unlike PSO-FCM, the SPPF model employs a
continuous search space. Its primary advantage over a typical combination-based
PSO variant comes from its ability to exploit the neighboring band’s spectral sim-
ilarities, allowing for more directed exploitation and potentially providing faster
convergence.

Particle Representation

Similar to PSO-FCM [Zhang et al., 2017], each particle in SPPF represents a can-
didate solution for selecting cluster centroids. For every iteration, each particle
is decoded using a mapping function and evaluated using the objective func-
tion from FCM. The i-th particle’s position is represented as a continuous c-
dimensional vector Xi = {xi1, xi2, ..., xic}, where c is the number of clusters .
The value of the particle in each dimension represents a chosen cluster centroid.

Since each dimension represents the index of a chosen cluster centroid, all
dimensions of the search space have a lower bound of 0 and an upper bound
equal to the number of total bands available minus one. This is illustrated in
Figure 4.4, where the dimensionality of two indicates that two bands are to be
selected, and the upper bounds for each dimension indicate that there are 11
possible bands to select from. At initialization, bands are selected randomly and
set as initial cluster centroids to generate initial particles. This ensures a diverse
set of initial solutions which allows the swarm to explore various regions of the
search space and increase the likelihood of finding an optimal selection of bands.

Decoding of Solutions

The particles reside in a continuous space and must be decoded by the mapping
function to determine which bands will be selected as cluster centroids for evalu-
ation. Contrary to PSO-FCM’s strategy of adopting a probability transition (as
mentioned in Section 3.4), SPPF employs a rounding-off method. This choice is
driven by its simplicity and computational efficiency. The mapping function con-
verts the continuous values from the search space into discrete band indexes to be
evaluated as cluster centroids (CC) using the objective function from FCM. This
mapping bridges the gap between the continuous nature of the PSO algorithm
and the discrete nature of the problem. The mapping function is defined as:

CCi = round(Xi), (4.5)

where round(Xi) is the resulting vector from rounding every dimension of Xi

separately to its closest integer value.
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(1,7)

(3,4)

1 and 7 are selected as cluster centers

3 and 4 are selected as cluster centers

11 bands to
select from

2 bands are to be selected as
cluster centers

Figure 4.4: PSO Representation showing a case where two of eleven possible
bands are to be selected with a PSO population size of two.

Particle Movement

The particles move through the search space by adjusting their positions and
velocities according to their personal best and global best solutions. Additionally,
a maximum velocity vmax is introduced as a fraction of the range between the
upper and lower limits of the search space. This parameter plays a crucial role
in controlling the algorithm’s convergence and maintaining stability during the
optimization process. The value of the fraction is decided during preliminary
testing.

Repair Mechanism

The FCM objective function inherently discourages selecting duplicate bands as
cluster centroids. However, this problem might still occur when the number of
selected bands is high. This violates the problem constraint of selecting exactly
n unique bands. To prevent this, SPPF employs a repair mechanism that detects
and corrects these violations by replacing duplicate selected bands with randomly
selected new band indices.

Termination

The PSO algorithm terminates once it reaches the pre-defined maximum number
of generations. This condition acts as an upper limit on the number of iterations
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the algorithm performs. The model also checks if there has been no improvement
in the global best solution for a specified number of iterations, denoted as t. If the
global best position remains unchanged for t consecutive iterations, the algorithm
assumes that it has reached a point where further exploration is unlikely to yield
significant improvements and terminates the optimization process. The value for
t should be chosen in consideration with all other parameters that control the
speed of convergence, such as the inertia weight w and the cognitive and social
coefficients c1 and c2.

4.2.2 Objective Function

Similar to PSO-FCM [Zhang et al., 2017], SPPF employs the FCM-based objec-
tive function J as the objective function for the PSO algorithm (as detailed in
Section 3.4). FCM offers a natural way to handle uncertainty and partial mem-
bership, which is particularly relevant for the BS model, where spectral bands
can often exhibit overlapping characteristics (see Section 3.2.2). FCM is less sen-
sitive to noise and outliers compared to hard clustering algorithms like k-means.
This is because FCM can assign partial memberships to noisy data points, re-
ducing their impact on the overall clustering. HSIs often suffer from noise and
inconsistencies in the data, and FCM’s inherent ability to handle noise makes it
a suitable choice.

SPPF calculates the fuzzy membership and value of the objective function J
for each candidate solution evaluated during clustering with PSO. The objective
function J is to be minimized. Fuzzy membership uij and value of the objective
function J is defined as:

uij =

∑C
k=1 d

2
m−1

kj

d
2

m−1

ij

(4.6)

J =

C∑
i=1

Ji =

C∑
i=1

N∑
j=1

um
ijd

2
ij , (4.7)

where N is the number of total bands. C is the number of clusters. uij denotes
the fuzzy membership of the j-th band corresponding to the i-th cluster, and the
parameter m is the fuzzy exponent which decides how hard the clustering should
be. dij is defined as the distance between the i-th cluster centroid and the j-th
band. Section 4.2.3 delves deeper into the different distance metrics employed in
SPPF.
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4.2.3 Distance Metrics

To better capture both spectral and spatial information in the band clustering
process, the distance metric used in the FCM objective function is modified to
incorporate superpixel information derived from the segmentation step. This al-
lows the SPPF algorithm to consider the local spatial context provided by the
superpixel map when clustering the bands. The goal of this is to increase the
quality of the resulting clusterings, and increase the efficiency of the search pro-
cess by reducing the size of data used for distance calculations in FCM.

The following distance metrics are proposed:

Superpixel Euclidean Distance

The first proposed metric, labeled the Superpixel euclidean distance, adapts the
distance metric used in the original PSO-FCM BS algorithm [Zhang et al., 2017],
modified to take advantage of the superpixel information. The Superpixel Eu-
clidean distance considers the Euclidean distance between the aggregated values
(mean) of the superpixels, rather than individual pixels. Using aggregated values
from each superpixel aims to encourage the clustering of bands that have similar-
ities in both spatial and spectral attributes. In addition to incorporating spatial
and spectral information, the Superpixel Euclidean distance reduces the required
distance calculations, as it operates on aggregated superpixel values rather than
individual pixels. This reduction in computational complexity aims for faster
clustering at the cost of higher overhead complexity, as the superpixels have to
be computed and aggregated prior to BS.

The superpixel Euclidean distance between band i and j is defined as:

di,j =

√√√√ sp∑
k=0

(xi(k)− xj(k))2, (4.8)

where sp is the number of superpixels and xi(k) is the mean value of superpixel
k in band number i. The difference between the superpixel Euclidean distance
and the normal Euclidean distance is highlighted in Figure 4.5. It shows how the
Superpixel Euclidean distance operates on aggregated values instead of individual
pixels.

Superpixel KL-distance

The second proposed metric is a KL-Divergence-based measure, the Superpixel
KL distance. Similar to the Superpixel Euclidean distance, this metric is de-
signed to take advantage of the superpixel information using the superpixel’s
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Figure 4.5: Euclidean distance and Superpixel Euclidean distance. The colored
regions in (b) signify different superpixels; the number within them is their ag-
gregated values in that band.

mean values. As an information-based distance measure, it possesses an inherent
advantage over direct distance measures such as Euclidean distance, owing to its
ability to capture the information content of the data being compared. Given
that the KL-Divergence quantifies the difference in entropies between spectral
bands, this approach is expected to promote the segregation of bands with dis-
tinct entropy profiles into separate clusters.

As described in Section 2.2, for KL-Divergence to be applied as a distance
metric, it is symmetrized. Furthermore, normalized grayscale histograms are
calculated to obtain the probability distributions of each band. The grayscale
histogram for a band, i, is calculated by binning all k superpixels, represented by
its mean value xi(k), to N bins. The resulting probability distributions are then
used to calculate the Superpixel KL distance between band i and band j as:

dKL
i,j =

N∑
n=1

pn,i log
pn,i
pn,j

+ pn,j log
pn,j
pn,i

, (4.9)

where N is the number of bins and pn,i and pn,j are the values in the n-th bin of
the grayscale normalized histograms of the i-th and j-th band.

Using the aggregated value of each superpixel instead of each pixel reduces the
number of values used to compute the histogram. However, this leads to a more
concentrated distribution over fewer bins, as shown in Figure 4.6. The figure
demonstrates the notable dissimilarity between the distributions of gray levels,
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with a higher degree of disparity observed for fewer superpixels (b). The reason
for this can be the segmentation of superpixels in varying sizes and numbers of
pixels, leading to situations where a mean superpixel value representing a larger
pixel count has a similar impact as a superpixel-mean value corresponding to a
smaller pixel count, thereby resulting in divergent distributions.
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Figure 4.6: Grayscale normalized histograms of band 111 from Indian Pines
dataset, using all pixels (a), mean-values from 100 superpixels (b), and mean-
values from 200 superpixels (c).

Superpixel Disjoint Information

Disjoint information is the third distance metric proposed using the superpixel’s
mean values. The Superpixel Disjoint Information adapts the disjoint information
distance proposed in Yang et al. [2017], modified to take advantage of the super-
pixel information similar to the Superpixel KL distance. Disjoint information is
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a value derived from the joint entropy and mutual information, as described in
Section 2.2, which characterizes the information in band i and band j that is not
shared between them. Therefore, it is comparable to the KL divergence in that it
describes a disparity rather than a resemblance. However, unlike KL divergence
and mutual information, disjoint information is already symmetric and satisfies
all criteria required to be considered a metric.

The disjoint information between two bands i, and j, is determined by the
following calculation:

dDI
i,j =

∑
xn
i

∑
ym
j

p(xn
i , y

m
j )log

p(xn
i )p(y

m
j )

p(xn
i , y

m
j )

, (4.10)

where p(xn
i ) is the n-th bin of the grayscale normalized histograms of the i-th

band, while p(ymj ) is the m-th bin of the histograms of the j-th band. The
grayscale normalized histograms are calculated similarly to the ones described
in Section 4.2.3. Finally, p(xn

i , y
m
j ) denotes the corresponding joint probability

distribution.
Applying disjoint information instead can help to address the issue of a con-

centrated distribution over fewer bins because it is less sensitive to differences
between small probabilities, which dominate the KL-Divergence calculation. Nev-
ertheless, this will be at the cost of higher overhead complexity, since the joint
probability distributions also need to be calculated prior to BS.

Superpixel-level KL Divergence-L1Norm

The final metric proposed is labeled Superpixel-level KL Divergence-L1Norm,
and is adopted from Jia et al. [2022], with slight modifications to fit SPPF.

The proposed distance metric computes KL divergences between bands at
the superpixel level. L1-norm is applied to generate the KL-L1 distance matrix,
enabling the incorporation of spatial information within the homogeneous regions
of the superpixels.

The computing process is shown in Figure 4.7. The approach involves first
considering each homogeneous region of the superpixel map as a single entity
and then calculating the KL divergence distance between all bands within each
superpixel. This operation produces a distance matrix (B×B) for each superpixel
where B represents the number of bands, as shown in Figure 4.7 where two
superpixels are highlighted in green and yellow color, as well as their resulting
distance matrix. Note that number of bands B turns 90 degrees between the first
and the second part. The individual distance matrices for each superpixel are
then stacked together to form a 3D distance tensor of size B ×B ×N , where N
represents the number of superpixels in the image. Finally, the L1 norm of the
3D distance cube (highlighted in red) is computed to obtain the distance matrix
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(B × B) between the entire image bands. This KL-L1 distance matrix can be
computed with the following formula:

dKL−l1
i,j =

N∑
n=1

Wn∑
w=1

|pn,w,i log
pn,w,i

pn,w,j
|, (4.11)

where dKL−l1
i,j represents the KL-L1 norm distance measures between the i-th

and j-th bands of the n-th superpixel. The variables pn,w,i and pn,w,j refer to
the histogram statistics of the w-th pixel in the n-th superpixel for the i-th and
j-th bands.

Notably, the proposed distance metric entails a certain degree of overhead
complexity, since it involves calculating the distance within and between each
superpixel. Nonetheless, the benefits of incorporating inner and outer variability
in the metric can outweigh this disadvantage. It enables a more comprehen-
sive characterization of the superpixel structure, which can be important when
classifying.
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Figure 4.7: Computation process of superpixel-level KL-L1 Norm distances. In-
spired by Jia et al. [2022].

4.3 Choosing Cluster Representatives

Once clustering is performed using the SPPF algorithm, a single band is selected
from each cluster as the representative. This step is crucial for creating a subset
of bands that effectively represents the entire HSI, while minimizing redundancy.



52 CHAPTER 4. MODEL ARCHITECTURE

The following ways of selecting cluster representatives are proposed:

Highest Entropy

One approach for the selection of representative bands is through the utilization of
entropy as a selection criterion, as demonstrated in the PSO-FCM model [Zhang
et al., 2017]. Entropy serves as a measure of randomness or uncertainty present
in the spectral band. By selecting the band with the highest entropy within
each cluster, the intention is to maximize the information content of the chosen
bands. High entropy indicates increased variability and decreased predictability
in the data, rendering it more informative. Consequently, this method reduces
the likelihood of selecting inherently noisy bands.

A limitation of the entropy-based method is the disregard of the similarity
between the representative band and the remaining bands within the same cluster.
This may result in the selection of redundant bands, containing overlapping or
highly correlated information.

Central Tendency

The second method for selecting representative bands from clusters involves iden-
tifying the band closest to the mean of the cluster. In this approach, the objective
is to find a band that best represents the central tendency of the spectral bands
within the cluster, providing a higher likelihood of being representative of a ma-
jority of the bands in the cluster.

However, a potential disadvantage of this approach is that the band closest to
the mean may not necessarily contain as much information as other bands in the
cluster. Consequently, the selected band may only partially capture the range of
information present within the cluster, leading to a suboptimal representation.

To identify the band closest to the mean of a cluster, the arithmetic mean of
all bands within that cluster is calculated for each pixel value. Then each pixel’s
spectral intensity is compared with the computed mean for every band, and the
band with the lowest overall difference from the mean is selected.

Hybrid Weighted-sum Criterion

A hybrid approach that combines the highest entropy and central tendency meth-
ods is designed to balance the benefits of both methods while addressing their
individual limitations. This approach aims to select a representative band that
both maximizes information content and closely resembles other bands in the
cluster.

To compute the weighted sum, it is necessary to first compute and standardize
the entropy and central tendency criterion to the same range. The selection
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criterion is then defined as follows:

HWS(B) = weSE(B)− wctSCT (B), (4.12)

where we and wct are the weights of the entropy criterion and central tendency cri-
terion respectively. SE(B) is the standardized entropy of band B, and SCT (B)
is the standardized distance to the mean band. The second term is subtracted
instead of added due to the central tendency criterion being a minimization crite-
rion. The weights should be adjusted depending on the desired balance between
maximizing information content and ensuring representation of the cluster’s cen-
tral tendency.

Hybrid Ranking Criterion

The hybrid ranking criterion, proposed in SPPF for selecting a representative
band, combines the entropy and central tendency criteria to achieve a balance
between high information content and close resemblance to the central tendency
of other bands in the cluster. In this approach, each band is ranked based on
its entropy and distance to the mean, which serves as the chosen central ten-
dency measure. The overall rank is computed by summing the entropy-based
rank and the distance-to-the-mean-based rank. The representative band is then
determined as the one with the lowest overall rank, providing a good balance
between information content and representativenes. If there is a tie, the band
with the highest entropy is selected.

4.4 Model Evaluation

To assess the quality of SPPF, an SVM classifier that utilizes only the selected
bands from the algorithm is employed. The performance of the classification
algorithm will be evaluated using two metrics. The first is overall accuracy (OA),
simply the number of correctly labeled test samples divided by the total number
of test samples. The second metric is average accuracy (AA), the average number
of correctly labeled test samples of each class. This metric can provide insight
into how the selected bands perform in classifying different classes. Both the
mean and standard deviation of these values will be recorded across multiple
independent classification runs. Additionally, the runtime of the SPPF model is
considered an important metric for comparison.

The SVM is selected as the classification algorithm because it performs well
with small training sets, has an available high-quality implementation, and has
reasonable computational requirements. More evaluation details are presented in
Chapter 5.
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Chapter 5

Experiments and Results

This chapter introduces the experiments conducted to answer the research ques-
tions of this thesis. Preliminary testing is presented in Section 5.1, and an in-
troduction to the main experiments and what knowledge they seek to find is
presented in Section 5.2. The experimental setup is presented in Section 5.3, and
finally the experiment results in Section 5.4.

5.1 Preliminary Testing

The preliminary tests determine suitable hyperparameters for the different com-
ponents of SPPF. The intent is not to find the optimal parameters for every
variation of different design decisions but rather to identify a singular set of pa-
rameters that perform well and consistently across all datasets and combinations
of design decisions. These parameters are then utilized throughout the subse-
quent experiments of this study.

For the superpixel segmentation algorithm, preliminary experiments first de-
termined the optimal number of superpixels for each hyperspectral dataset, as
shown in Figure 5.1. Subsequently, the spatial weight wsp, and the standard
deviation for the Gaussian blur σ, were determined through a combination of
quantitative and qualitative analysis. The resulting hyperparameters for the su-
perpixel segmentation step of SPPF can be seen in Table 5.1.
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Figure 5.1: Preliminary experiment. Overall accuracies for the different datasets
with 20 bands selected.

Dataset σ # Superpixels wsp

Indian Pines 0.5 400 1,000
Salinas 0.5 600 1,000
Pavia Center 0.5 900 10,000

Table 5.1: Hyperparameters for superpixel segmentation of the different datasets.

For the band clustering process of SPPF, a combination of grid search with
trial and error was leveraged to identify suitable hyperparameters. Essential
parameters for controlling the speed of convergence, such as the population size
and inertia weight, were chosen with both performance and efficiency in mind,
striking a good balance between the two. Particular emphasis was placed on
tuning parameters we and wct, as those are critical parameters directly affecting
output from the BS model. The hyperparameters identified during preliminary
testing are presented in Table 5.2.

For comparison with the PSO-FCM model, hyperparameters were selected
based on the recommendations from the original paper. The selected hyperpa-
rameters are presented in Table 5.3.

5.2 Experimental Plan

The experiments are organized into two phases. The first phase explores impor-
tant design decisions of SPPF, while the second phase focuses on how the refined
algorithm compares with other relevant methods. In addition, hypotheses are
developed for each experiment to clarify its objectives and enhance the interpre-
tation of the results. With the exception of Experiment 1, each experiment will



5.2. EXPERIMENTAL PLAN 57

Parameter Description Value

pop size Population size 100
max iter Maximum iterations 100
w Inertia weight 0.7
c1 Cognitive component 1.0
c2 Social component 1.0
vmax Max. velocity fraction 0.1
m Fuzzy exponent 2.0
we Entropy weight 0.35
wct Central Tendency weight 1.0

Table 5.2: Resulting hyperparameters from preliminary testing. All parameters
remain the same for every run of SPPF.

Parameter Description Value

pop size Population size 100
m Fuzzy exponent 2.0
w Inertia weight 0.6
c Cognitive and Social weight 1.75

Table 5.3: Hyperparameters employed by the PSO-FCM model [Zhang et al.,
2017].
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be evaluated on three separate datasets (Indian Pines, Salinas, and Pavia Center
- detailed in Section 5.3).

5.2.1 Phase 1: Explore design decisions of SPPF

The first phase aims to analyze how different design choices of SPPF affect clas-
sification performance and efficiency. The goal is to learn how the algorithm
can best leverage the spatial information from superpixels. The experiments
are conducted sequentially, as the implementation decisions for each subsequent
experiment depend on the results of the preceding experiment. Note that for
Experiment 1, SPPF will be utilizing SP Euclidean as the distance metric and
Highest Entropy as the criterion for cluster representative selection (as detailed
in Section 4.2.3 and Section 4.3). This aspect of SPPF will be further explored
in the following experiments.

Experiment 1 Investigate how manual pre-removal of noisy bands influences
the performance of SPPF. The experiment compares the classification ac-
curacy of SPPF using both corrected (with pre-removal of noisy bands) and
not corrected (without pre-removal) versions of two datasets (Indian Pines,
Salinas).

Hypothesis 1: The removal of noisy bands is anticipated to enhance the pre-
cision of the superpixel segmentation, resulting in improved classification.
Although the highest-entropy selection criteria will likely reduce the chance
of any noisy bands being selected, the absence of noisy bands is expected to
generally improve the band clustering process, as there are fewer destructive
outliers, resulting in potentially higher classification accuracy. The Indian
Pines Dataset is expected to show the most significant improvement from
removing noisy bands, as it is a more challenging dataset overall due to its
low spatial resolution and few labeled samples.

Experiment 2 This experiment aims to find the optimal cluster representa-
tive selection method for each distance metric applied to SPPF, based on
classification performance. Four different cluster selection methods in con-
junction with four different distance measures (as described in Section 4.3
and Section 4.2.3) will be tested with SPPF.

Hypothesis 2: The entropy-based and hybrid selection techniques (SP KL-
Divergence, SP Disjoint Information, and SP KL-Divergence-L1Norm) are
expected to perform well with distance metrics that organize a clustering
based on relative entropy, as the highest entropy bands from each cluster
should have little redundancy. In general, the weighted-sum hybrid cri-
terion is expected to perform well for all distance metrics, as its weights
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have been tuned to strike a good balance between the entropy and central
tendency criteria.

Experiment 3 Investigate how different distance measures can utilize the spa-
tial information from the superpixel segmentation, and how these distance
measures affect classification performance and efficiency. Four different dis-
tance measures (explained in Section 4.2.3) with resulting optimal cluster
selection from Experiment 2 will be applied to SPPF to select a preferred
distance metric for the SPPF model.

Hypothesis 3: The SP KL-Divergence-L1Norm distance metric is expected to
achieve the best performance with the SPPF model due to its more nu-
anced representation of the spectral and spatial information. However, the
high computational costs of the SP KL-Divergence-L1Norm distance metric
are expected to make it significantly less efficient than the other proposed
distance metrics.

5.2.2 Phase 2: Comparison with baseline and state-of-the-
art algorithm

The second phase aims to determine whether the refined SPPF is advantageous
compared to the method it is built upon and see if its performance can compete
with the baseline of classifying using all available spectral bands.

Experiment 4 Determine how the performance of SPPF compares to the PSO-
FCM model. Investigate whether utilizing superpixel information can im-
prove classification performance and how it affects efficiency.

Hypothesis 4: The hypothesis suggests that the SPPF model could surpass PSO-
FCM in performance by employing both spatial and spectral attributes in
band clustering. The efficiency of SPPF is expected to depend on de-
sign decisions based on results from Phase 1: If employing SP-mean-based
metrics, incorporating superpixel data in SPPF is expected to reduce pro-
cessing time compared to PSO-FCM due to fewer necessary computations.
Alternatively, if SPPF employs SP KL-Divergence-L1Norm distance, the
complex overhead computations are expected to lower the computational
efficiency compared to PSO-FCM.

Experiment 5 Determine how SPPF’s classification performance compare to
the baseline (the results obtained by using all of the original spectral bands).
The aim is to identify whether SPPF can enhance classification performance
while reducing the dimensionality of the HSI.
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Hypothesis 5: The performance of SPPF is expected to be comparable or su-
perior to the baseline while significantly reducing the number of required
bands for classification.

5.3 Experimental Setup

This section introduces the datasets employed in this study, along with the evalua-
tion criteria considered. Additionally, the section introduces any non-experiment-
specific implementation details that are required for reproduction.

The experiments conducted in this work are run on a 6-core 3.2GHz CPU
with 32GB of RAM, using the hyperparameters presented in Table 5.2, along
with any additional parameters defined within each experiment.

5.3.1 Datasets

The SPPF model’s ability to perform well under different spatial, spectral, and
geographical conditions will be examined through experiments conducted on three
well-known hyperspectral datasets that have established benchmarks for classifi-
cation tasks. These datasets, which are listed in Table 5.4, were recorded by two
separate sensors in three distinct locations, and were retrieved from Grãna et al.
[2014]. Two artifacts, namely the HSI and the ground truth, are included in each
dataset. The HSI is a tensor representing the irradiance values (spectral inten-
sity) detected at the sensor’s focal point. Each image pixel represents a vector of
irradiance values at a specific spatial coordinate across the available bands. The
variation in spatial resolution and the distribution of ground objects across the
three HSI datasets are key characteristics, as one of the main features of SPPF
is the utilization of spatial information.

Dataset Dimensions # bands Sensor # classes

Indian Pines 145 x 145 220 AVIRIS 16
Salinas 512 x 217 220 AVIRIS 16
Pavia Center 715 x 1096 102 ROSIS 9

Table 5.4: The datasets employed in this study.

Indian Pines

The Indian Pines dataset, captured by the AVIRIS sensor, is perhaps the most
commonly applied dataset for hyperspectral BS and classification. It covers a
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scene of 145 x 145 pixels with a spatial resolution of 20 m per pixel. The scene
consists of two-thirds agriculture and one-third forest or other natural perennial
vegetation, and the ground truth available is designated into sixteen classes. The
Indian Pines dataset has a relatively small size and low spatial resolution; thus,
the land-cover regions are difficult to distinguish.

The small number of labeled samples (10,249) is a particular challenge for
this dataset, as the class with the lowest amount of samples is left with only
20 samples available for both training and validation. Another interesting point
about the dataset is its high variation in entropy, as can be seen in Figure 5.3 (a).
Certain bands lying in the spectrum of water absorption (bands [104-108], [150-
163], and 220) are deemed noisy, and are typically removed as a pre-processing
step. These noisy bands are further discussed in Experiment 1 (Section 5.4.1).

Salinas

The Salinas dataset, similarly captured by the AVIRIS sensor, predominantly
consists of agricultural usage. The Salinas dataset differs from Indian Pines by
offering a higher spatial resolution and a bigger image size, covering an area of
512 x 217 pixels with a spatial resolution of 3.7 m per pixel. The Salinas scene
also suffers from the same high variation in entropy between bands, which can be
seen in Figure 5.3 (b). Similarly to Indian Pines, the Salinas dataset also has an
already defined set of noisy bands that are typically removed (Bands [108-112],
[154-167], and 224).

Pavia Center

The third and final dataset employed in this study is the Pavia Center dataset.
The dataset initially had an image size of 1096 x 1096 pixels and a spatial res-
olution of 1.3 meters. However, some samples in the image lack information, as
seen in Figure 5.2, where a portion in the middle of the image is black. These
incomplete samples had to be removed before analysis [Grãna et al., 2014]. As
a result, the image size employed for analysis was reduced to 715 x 1096 pixels,
as stated in Table 5.4. This missing region of the image provides a particular
challenge for BS models that rely on spatial relationships, such as SPPF, but also
provides a valuable insight into how such ”missing” regions affect BS models and
classification.

Unlike the other datasets, the Pavia Center dataset has fewer classes and many
labeled samples, and its ground truth defines nine classes. These classes include
urban land use features such as asphalt, tiles, and bare soil. Additionally, the
ROSIS sensor employed in this dataset distinguishes it from the AVIRIS sensors
in terms of spectral dimension. Since ROSIS only covers a portion of the spectral
range, information-theoretic quantities like entropy exhibit different shapes than
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Figure 5.2: Sample Band Pavia Center Dataset [Grãna et al., 2014].

the AVIRIS datasets. Therefore, band information measures like KL-Divergence
will demonstrate distinct properties from the other datasets, highlighting the
importance of investigating this dataset.
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Figure 5.3: Entropy profiles for the different datasets employed.

5.3.2 Classification

After a BS model has selected bands, the resulting selected bands are then uti-
lized to classify the dataset to evaluate the accuracy of the chosen subset. For
classification, each labeled pixel in the dataset is treated as a sample, and the
corresponding ground truth serves as the supervised label. In this study, only the
spectral dimension is considered for classification, partly to guarantee a fair com-
parison to existing BS methods and partly due to spectral-spatial classification
being outside the scope of this work.
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Since the emphasis of this work is on the performance of the BS model rather
than the classifier, the classifier itself will not be optimized for any particular
BS model. This means that the achieved accuracies for a specific BS model may
not be fairly compared to those achieved on a different classifier. To that end,
Support Vector Machine (SVM) is selected as the classification algorithm due to
its ability to perform well with small training sets, its publicly available high-
quality implementation, and its reasonable computational requirements. The
radial basis function will be employed as the kernel, and the kernel parameters
C and γ will be established using grid search and five-fold cross-validation of
the training set, as recommended by Hsu et al. [2003]. This parameter search is
repeated for every band subset classified, to ensure a fair comparison.

For each band subset obtained from the BS algorithm, the classifier will typ-
ically perform multiple evaluation runs specified in the experiment specifications
for each experiment. For each evaluation run, the labeled samples are randomly
split into a training and testing set. Because there is a large discrepancy in avail-
able classes for the different samples, each class is split individually, guaranteeing
that the same percentage of training samples is available for each class. The per-
centage of training samples for each dataset is specified in Table 5.5. The samples
are also normalized per feature to a value between 0 and 1, a recommended pre-
processing step for the SVM algorithm that ensures equal weight for each feature
in the classification process. Importantly, the normalization is performed with
both the training and testing set together.

Dataset Samples Labeled samples Training %

Indian Pines 21,025 10,249 10%
Salinas 111,104 54,129 2%
Pavia Center 783,640 148,152 1%

Table 5.5: Training statistics for the different datasets.

5.3.3 Evaluation Metrics

When comparing BS models, it is critical to adopt robust and reliable metrics to
measure their performance. This subsection presents and discusses the metrics
employed for evaluation in our analysis.

Classification accuracy

The performance of the classification algorithm will be evaluated using two accuracy-
based metrics. The first is overall accuracy (OA), simply the number of correctly
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labeled test samples divided by the total number of test samples. Both the mean
and standard deviation of this value will be recorded. The second metric is aver-
age accuracy (AA), the average fraction of correctly labeled test samples of each
class. This metric can provide insight into how the selected bands perform in
classifying different classes, as the OA can be easily skewed by a single class with
significantly more labeled samples than the other classes.

McNemar’s test

The comparison and evaluation of different BS models’ classification performance
necessitate the employment of a robust statistical test. In this study, McNemar’s
test, a non-parametric method for testing the independence of two variables, is
employed to verify the statistical significance of the results observed. The test is
based on the standardized normal test statistic and is particularly suited when
comparing BS models [Foody, 2004].

For evaluating the significance of difference in classification between two BS
models, it defines the term f12, which is the number of samples correctly classified
by model 1 and misclassified by model 2. Conversely, the term f21 is defined as
the number of samples correctly classified by model 2 and misclassified by model
1. Following this, the McNemar’s test statistic, which measures the difference in
performance between the two models, is calculated as follows:

Z =
f12 − f21√
f12 + f21

, (5.1)

Notably, a |Z| value of 1.96 or higher denotes a statistically significant difference
at a confidence level of 95% or higher (p ≤ 0.05). This measure ensures that any
differences in performance between the models are statistically significant.

5.4 Experimental Results

This section presents a analysis of the experimental results obtained in this study.
Each experiment presents the questions it aims to answer, along with the details
needed to replicate it. Results from each experiment are discussed with a particu-
lar attention to identifying trends and anomalies. Each experiment also completes
with a conclusion describing the most important findings observed. Additional
information for some experiment runs can also be found in Appendix A1.
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5.4.1 Experiment 1 - Noisy Band Influence

This experiment investigates two critical aspects of the SPPF model: the effect
of noisy bands on the BS process, and the impact of manual pre-removal of noisy
bands on the classification accuracy of the selected band subset. To explore these
aspects, the SPPF model was applied to two datasets, Indian Pines and Salinas,
using the bands left after the manual pre-removal of noisy bands, and all available
bands. These datasets were selected because they have an already identified set
of noisy bands, specifically those covering the water absorption region. The noisy
bands for Indian Pines are bands [104-108], [150-163], and 220. For Salinas, the
noisy bands are [108-112], [154-167], and 224.

The experiment was conducted by running the algorithm 180 times with all
bands and 180 times without the noisy bands. These 180 runs were spread across
18 different n values (number of bands to select), with ten runs for each value.
The complete experiment specifications can be seen in Table 5.6. The resulting
performance of the BS algorithm is shown in Figure 5.4, Figure 5.7, and Table
5.7.

Experiment Specifications

Model SPPF

Dataset
Indian Pines, Indian Pines (noisy bands removed),
Salinas, Salinas (noisy bands removed)

Number of bands selected (n) 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
Runs 10
Stopping criterion 100 generations OR 15 generations without improvement

Number of classification runs 10

Distance metric Superpixel Euclidean distance
Cluster selection Highest entropy

Table 5.6: Experiment 1 - Specifications.

For the Indian Pines dataset, the results shown in Figure 5.4 indicate that
the version without noisy bands demonstrates superior overall performance with
respect to both Overall Accuracy and Average Accuracy, especially when the
number of selected bands increases. When selecting fewer bands, specifically less
than 15, both versions exhibited some instability, and no version convincingly
outperformed the other in these cases. This behavior is expected, as the inclusion
or omission of a singular high-entropy band to a cluster has a more significant
impact when the number of chosen bands is low.
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Figure 5.4: Experiment 1. Performance results on the Indian Pines dataset.

Comparing the rows for Indian Pines in Table 5.7, it is noteworthy that the
mean overall standard deviation (SD) is slightly worse (higher) for the version
with the pre-removal of noisy bands. This can be attributed to the most con-
siderable differences in SD occurring when a low number of bands are selected,
specifically when three bands are selected, as seen in Figure 5.5. In these cases,
the version with manual band removal is able to occasionally select a significantly
better subset of bands, while the version using all bands is consistently poor. This
is shown in Figure 5.6, where the two runs at the top achieve significantly better
overall accuracy, as shown by the numerical values on the left. However, as seen
in Table 5.7, when considering runs where at least 15 bands are selected, the
version using manual pre-removal of noisy bands has a slightly better (lower) SD
than the version using all bands. This implies that the dataset with noisy bands
yields more consistent results than the version employing all bands.

All runs Runs with n ≥ 15
Dataset OA OA SD AA AA SD OA OA SD AA AA SD

Indian Pines 0.698 0.013 0.630 0.020 0.744 0.015 0.689 0.021
Indian Pines (NBR) 0.708 0.014 0.646 0.021 0.761 0.014 0.715 0.019

Salinas 0.879 0.006 0.905 0.009 0.907 0.003 0.943 0.003
Salinas (NBR) 0.877 0.005 0.899 0.007 0.908 0.002 0.944 0.002

Table 5.7: Experiment 1 - Aggregated results (mean) for Indian Pines and Salinas
datasets. Datasets with a suffix of (NBR) have had the noisy bands removed prior
to the run.
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Figure 5.5: Experiment 1. Difference in SD of Overall Accuracy on the Indian
Pines dataset. Positive values indicate that the version with pre-removal of bands
has a higher SD than the version using all bands.
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As for the results on the Salinas dataset, displayed in Figure 5.7, the dataset
containing all bands outperformed the version with noisy bands removed when
the number of selected bands was low (n ≤ 5). For higher n-values, both datasets
perform quite similarly with no significant differences in achieved performance.
Table 5.7 shows that the version of the dataset with pre-removal of noisy bands
shows better consistency overall, with always having a lower SD.
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Figure 5.7: Experiment 1. Performance results on the Salinas dataset.

Conclusion

The results of Experiment 1 suggest that the SPPF model may be somewhat
negatively affected by the presence of noisy bands in the datasets. Therefore, it
is recommended to perform manual pre-removal of noisy bands to achieve better
classification accuracy. This is especially true for higher n-values.

Based on the findings, future experiments involving the SPPF model will be
performed using the versions of datasets without the noisy bands. This approach
is expected to yield better and more consistent results overall.
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5.4.2 Experiment 2 - Cluster Representative Selection

The second experiment investigates different ways of choosing cluster represen-
tatives to identify the optimal cluster selection method for each distance metric
applied to the SPPF model. The experiment evaluates the Overall Accuracy
and Average Accuracy of four distance measures, namely SP Euclidean distance,
SP KL-Divergence, SP Disjoint Information, and SP KL Divergence-L1Norm,
on three hyperspectral datasets: Indian Pines, Salinas, and Pavia Center. Four
cluster representative selection techniques are explored to find the optimal clus-
ter selection method: Highest Entropy, Central Tendency, Hybrid Weighted-Sum
Criterion, and Hybrid Ranking Criterion. Each cluster selection method is ap-
plied to each distance measure, and the resulting accuracies for the different
datasets are evaluated. The complete experiment specifications can be seen in
Table 5.8.

Experiment Specifications

Model SPPF
Dataset Indian Pines, Salinas, Pavia Center

Number of bands selected (n) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
Runs 10
Stopping criterion 100 generations OR 15 generations without improvement

Number of classification runs 10

Distance metric SP Euclidean distance, SP KL-Divergence,
SP Disjoint Information, SP KL Divergence-L1Norm

Cluster selection Highest entropy, Central tendency,
Hybrid weighted-sum criterion, Hybrid ranking criterion

Table 5.8: Experiment 2 - Specifications.

SP Euclidean Distance

For the SP Euclidean Distance metric, experimental findings displayed in Table
5.9 show a close competition between the Central Tendency and Weighted-sum
hybrid selection methods. The Central Tendency method displays slightly better
performance on the Indian Pines and Salinas datasets, while the Weighted-sum
hybrid method outperforms it marginally on the Pavia Center dataset. Due to
its superior overall performance, the Central Tendency criterion is chosen as the
preferred selection method for the SP Euclidean Distance metric.

Interestingly, all selection criterions demonstrated similar performance levels
on the Pavia Center dataset, with the Highest Entropy method emerging as the
winner by a slim margin. This outcome is surprising, considering the Highest
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Entropy method performs significantly worse than all other selection methods
for the Indian Pines and Salinas dataset.

Among the hybrid selection methods, the Ranking hybrid consistently per-
formed worse than the Weighted-sum hybrid criterion. This observation suggests
that the Weighted-sum hybrid is a more reliable option when using hybrid meth-
ods in combination with the SP Euclidean Distance metric.

Indian Pines Salinas Pavia Center

OA AA OA AA OA AA

Highest Entropy 0.758 0.706 0.903 0.939 0.976 0.923
Central Tendency 0.779 0.736 0.909 0.944 0.976 0.921
Weighted-sum 0.778 0.734 0.908 0.944 0.976 0.922
Ranking 0.771 0.720 0.907 0.943 0.975 0.921

Table 5.9: Experiment 2. Aggregated results for all datasets using the SP Eu-
clidean Distance metric. The highlighted results are the best for that column.

SP KL-Divergence Distance

Table 5.10 presents the aggregated results for all datasets using the SP KL Diver-
gence distance metric. The Weighted-sum hybrid selection method is found to be
the overall winner, performing on par or better than all other selection methods
for all datasets. The only exception was a slight disadvantage regarding average
accuracy for the Pavia Center dataset. This suggests that the Weighted-sum
hybrid is an effective and consistent criterion for selecting cluster representatives
when using the SP KL Divergence distance metric.

As shown in Table 5.10, the Central Tendency criterion performed on par
with the Weighted-sum hybrid criterion for the Salinas and Pavia Center datasets.
However, it was significantly inferior to the Weighted-sum hybrid criterion for the
Indian Pines dataset. Interestingly, the difference between the best and second-
best criterion for the Indian Pines dataset under the SP KL Divergence distance
metric was larger than any other distance metric. The difference was at least 3x
larger for OA and 1.5x larger for AA compared to other distance metrics. This
observation highlights the unique advantage of combining the SP KL Divergence
distance metric and the Weighted-sum hybrid criterion.

Based on the results presented in Table 5.10, the Weighted-sum hybrid crite-
rion was selected as the best option for the SP KL Divergence distance metric in
SPPF. This combination yields strong performance across various datasets, with
a particularly notable advantage for the Indian Pines dataset.
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Indian Pines Salinas Pavia Center

OA AA OA AA OA AA

Highest Entropy 0.745 0.689 0.899 0.936 0.974 0.918
Central Tendency 0.758 0.710 0.902 0.939 0.975 0.920
Weighted-sum 0.765 0.716 0.902 0.939 0.975 0.920
Ranking 0.754 0.697 0.897 0.934 0.975 0.921

Table 5.10: Experiment 2. Aggregated results for all datasets using the SP KL-
Divergence Distance metric. The highlighted results are the best for that column.

SP Disjoint Information

For the SP Disjoint Information distance metric, the experimental findings shown
in Table 5.11 revealed a close competition between the Central Tendency and
Weighted-sum hybrid selection methods. Both methods demonstrate comparable
performance, with none of the two being the clear preferred choice. In contrast,
the Ranking and Highest Entropy selection methods are found to be significantly
worse overall. However, it is interesting to note that the Ranking criterion ex-
hibited the best performance on the Pavia Center dataset, tied with the Central
Tendency criterion. This observation suggests that the Ranking criterion may
have specific advantages under certain conditions.

Due to its marginally superior overall performance, the Central Tendency se-
lection method was chosen as the preferred option for the SP Disjoint Information
Distance Metric.

Indian Pines Salinas Pavia Center

OA AA OA AA OA AA

Highest Entropy 0.734 0.678 0.896 0.930 0.970 0.905
Central Tendency 0.742 0.679 0.899 0.936 0.975 0.919
Weighted-sum 0.740 0.679 0.900 0.937 0.975 0.918
Ranking 0.733 0.665 0.893 0.929 0.975 0.919

Table 5.11: Experiment 2. Aggregated results for all datasets using the SP
Disjoint Information Distance metric. The highlighted results are the best for
that column.
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SP KL Divergence-L1Norm

For the KL Divergence L1-Norm distance metric, experimental findings displayed
in Table 5.12 show that the Central Tendency method is the best overall choice
for selecting cluster representatives. This method demonstrates superior perfor-
mance for the Indian Pines and Salinas datasets, while being narrowly beaten
by the Weighted-sum method for the Pavia Center dataset. The Weighted Sum
and Ranking methods exhibit relatively even performance, and although they are
not as good as the Central Tendency method, they still deliver competitive re-
sults, particularly for the Pavia Center dataset. In contrast, the Highest Entropy
method is shown to be the least effective option for the KL Divergence L1-Norm
distance metric. It consistently records the lowest overall and average accuracies
across all three datasets.

Based on these findings, the Central Tendency method has been selected as
the best choice for the KL Divergence L1-Norm distance metric in SPPF.

Indian Pines Salinas Pavia Center

OA AA OA AA OA AA

Highest Entropy 0.767 0.717 0.901 0.936 0.975 0.921
Central Tendency 0.782 0.741 0.907 0.942 0.976 0.923
Weighted-sum 0.779 0.735 0.905 0.941 0.976 0.924
Ranking 0.780 0.737 0.903 0.938 0.976 0.923

Table 5.12: Experiment 2. Aggregated results for all datasets using the SP KL
Divergence-L1Norm Distance metric. The highlighted results are the best for
that column.

Conclusion

The analysis of experimental findings for the SPPF BS model using various dis-
tance metrics and representative selection methods has provided valuable insights
into the effectiveness of different combinations. Generally, the Weighted-sum
hybrid and Central Tendency methods both exhibit good and consistent perfor-
mance across all distance metrics, suggesting that the resemblance to other bands
in the cluster might be more important than always selecting the highest entropy
bands.

A summary of the final preferred selection methods for each distance metric
is presented in Table 5.13. These selection methods have been chosen based
on their superior performance in the respective distance metric context. Future
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experiments involving these distance metrics with the SPPF model will employ
the given selection method.

Distance Metric Selection Method

SP Euclidean Distance Central Tendency
SP KL-Divergence Distance Weighted-sum Hybrid
SP Disjoint Information Central Tendency
SP KL Divergence-L1Norm Central Tendency

Table 5.13: Experiment 2. Preferred cluster representative selection method for
each distance metric.
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5.4.3 Experiment 3 - Distance Measures

The following experiment investigates how the different distance measures uti-
lize the superpixel map and their impact on the classification accuracy and effi-
ciency when applied to SPPF. Similarly to Experiment 2, the distance metrics
applied include SP Euclidean distance, SP KL-Divergence, SP Disjoint Informa-
tion, and SP KL Divergence-L1Norm distance (all described in Section 4.2.3).
These distance metrics will employ their evidently preferred selection methods,
as presented in Table 5.13. The performance of the different metrics is evaluated
on the Indian Pines, Salinas, and Pavia Center datasets. Furthermore, differ-
ent numbers of bands, n, ranging from 5 to 50, are selected for analysis. The
complete experiment specifications can be seen in Table 5.14.

Experiment Specifications

Model SPPF
Dataset Indian Pines, Salinas, Pavia Center

Number of bands selected (n) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
Runs 10
Stopping criterion 100 generations OR 15 generations without improvement

Number of classification runs 10

Distance metric SP Euclidean distance, SP KL-Divergence,
SP Disjoint Information, SP KL Divergence-L1Norm

Table 5.14: Experiment 3 - Specifications.

Comparison of Classification Accuracy - Indian Pines

Figure 5.8 presents the results of the overall accuracy (OA) and average overall ac-
curacy (AA) for all distance measures applied to the Indian Pines dataset. The re-
sults show that the information-theoretic distance measures (SP KL-Divergence,
SP Disjoint Information, and SP KL-Divergence-L1Norm) exhibit considerably
lower accuracy than SP Euclidean distance when few bands are selected (n = 5),
with a rapid improvement in the range between five and fifteen bands selected.

This may be because the variability of the entropy can be significant, re-
sulting in distance metrics that rely on relative entropy exhibiting considerable
variability across different bands. This variability may become problematic when
forming clusters based on information-theoretic measures, especially when the
number of clusters is small. Outlier bands, with high differences in entropy, can
disproportionately influence the selection of representative bands for each clus-
ter. These outlier bands may significantly distort the result in determining clus-
ter representatives through criteria such as Central Tendency or Weighted-sum.
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Consequently, the bands chosen as representatives may not accurately reflect the
majority of bands within each cluster; instead, they tend to be those with high
entropy. In essence, these chosen representatives can end up being outlier bands
within their clusters due to their high entropy.

As a result, the final selection may favor redundant bands if the number of
clusters is insufficient, as demonstrated in Figure 5.9 (a). Figure 5.9 illustrates
the bands selected (green) and their respective entropy values (blue) in the SPPF
approach utilizing SP KL Divergence L1Norm on Indian Pines. In Figure 5.9 (a),
when ten bands are selected (n = 10), the selected bands are primarily those with
high entropy and are almost adjacent to each other. In contrast, when fifteen
bands (n = 15) are selected, the bands are more evenly distributed across all
available bands, primarily avoiding dips in entropy, ss shown in Figure 5.9 (b).
This suggests that the impact of outlier bands is diluted across a larger number
of clusters, thereby mitigating its influence. Thus, the increase in classification
accuracy from 10 to 15 bands for the information-based measures could be at-
tributed to this dilution of outlier influence.

Figure 5.8 also reveals that the Superpixel level KL-L1Norm distance metric
demonstrates superiority at n > 15, while the SP KL-Divergence exhibits more
instability. These findings indicate that considering the relative entropy of each
superpixel between bands is advantageous, compared to only utilizing the relative
entropy of the aggregated mean values, such as SP KL-Divergence. Another
interesting observation for the SP KL-Divergence metric is that at n = 30, both
OA and AA display a noticeable decline, followed by a subsequent increase at
n = 35. The same pattern can be observed for SP Disjoint, which is expected since
Disjoint information is related to the KL-Divergence (detailed in Section 2.2) and
both measure the divergence between two bands’ probability distributions based
on the mean values of the superpixels, rather than individual pixels. The results
on the Indian Pines dataset also show that the SP Disjoint Information metric
was significantly outperformed by all other distance metrics. This indicates that
the probability distributions based on the mean values of the superpixels were
too divergent, affecting SP Disjoint Information to a greater extent than SP KL-
Divergence. This is because the joint probability used to calculate SP Disjoint
Information is more severely affected. More specifically, when the superpixel’s
mean values are too divergent, it means the likelihood of these values occurring
together becomes less likely. This results in a greater impact on the SP Disjoint
Information, which relies heavily on these joint probabilities in contrast to SP
KL-Divergence which only measures how one probability distribution diverges
from another.
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Figure 5.8: Experiment 3. Classification performance Indian Pines.
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Figure 5.9: Selected bands of SPPF employing SP KL-Divergence-L1Norm on
the Indian Pines dataset.
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Figure 5.10: Experiment 3. Classification performance Salinas.

Comparison of Classification Accuracy - Salinas

Figure 5.10 displays the results obtained for the Salinas dataset, which shows
comparable patterns when bands selected are less than fifteen (n < 15), as ob-
served for the Indian Pines dataset. Again the performance of measures relying
on information quantities is poor for low n-values. This supports the above ex-
planation (Subsection 5.4.3).

In contrast to the results of the Indian Pines dataset, Figure 5.10 shows the
SP Euclidean Distance metric is able to compete with the SP KL-Divergence-
L1Norm metric for higher n-values, in terms of both OA and AA. The two display
a superior performance to the other distance metrics, with SP Disjoint Informa-
tion again displaying the worst performance overall. It is worth noting that the
overall differences are much more minor than on the Indian Pines dataset, with
only about a single percentage point separating the best and the worst metric
for higher n-values. These observations also suggest that the SP-mean values are
more representative of every pixel within a superpixel in the Salinas dataset, mak-
ing the calculation of divergence between each superpixel less advantageous than
the other distances utilizing SP-mean values. Given that the Salinas dataset has
better spatial resolution than Indian Pines, it can be expected that the superpixel
segmentation could be more accurate.

Comparison of Classification Accuracy - Pavia

The findings for the Pavia Center dataset, as presented in Figure 5.11, reveal that
all distance metrics employing mean values (SP Euclidean, SP KL-Divergence,
SP Disjoint) show only marginal differences in OA-values and AA as the number
of bands selected increases beyond 20. This observation can be attributed to
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the dataset being relatively easy to classify, owing to the smaller number of
classes combined with high spatial resolution. Interestingly, the application of the
SP-KL-Divergence-L1norm leads to a markedly different behavior, with SPPF
exhibiting a significant peak in classification accuracies at 30 bands (n = 30).
Upon examining the selected bands for different measures, it can be observed
from Figure 5.12 that SPPF employing SP KL-Divergence L1norm demonstrates
a tendency to select fewer of the lowest entropy bands, as it favors the selection
of high entropy bands. As shown in Figure 5.12 (a), SP-KL-Divergence-L1norm
(red) consistently has higher average entropy across selected bands compared to
SP Euclidean (blue). It is important to note that when the number of selected
bands increases, the average entropy decreases because it becomes more likely
to select bands with lower entropy. When looking closer into which bands are
selected for n = 30, shown in Figure 5.12 (b), it can be seen that SP Euclidean
is characterized by a more even dispersion of selected bands, so more bands of
lower entropy are selected, as confirmed in (a). The higher entropy combined
with the sufficient spread between the selected centroids explains why SP KL-
Divergence L1norm may have achieved superior classification accuracy at this
point. The SP-KL-Divergence-L1norm distance metric displays a descending
trend in accuracy from 30 to 50 selected bands for the Pavia Center dataset, which
contrasts with the behavior observed for the Indian Pines and Salinas datasets
using the same distance metric. This distinct pattern in the Pavia Center dataset
may be attributed to its significantly fewer bands overall, where the selection of 50
bands at the Pavia Center represents roughly half of all available bands, whereas
50 bands for Indian Pines and Salinas is only about 25%.
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Figure 5.11: Experiment 3. Classification performance Pavia Center.
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Figure 5.12: Comparison of entropy. The point of 30 bands is highlighted in
yellow (a), since (b) provides a closer look at the specific bands selected at this
point.

Runtime Comparison

Figure 5.13 shows the mean runtime for a single iteration when selecting 20
bands across all distance metrics and datasets. Interestingly, the runtime for the
Pavia Center dataset (in green) is significantly lower than the other datasets, even
though it has a much higher spatial resolution and a higher number of superpixels.
This indicates that, in general, the runtime of the SPPF model depends most
heavily on the number of spectral bands available in the HSI, which is lower in
the Pavia Center dataset than in the other. Figure 5.13 also shows that the
SP Euclidean Distance Measure is able to compete with the runtime of the SP
Disjoint and SP KL-Divergence L1-Norm measures, even though they both are
pre-computed ahead of time, and the SP Euclidean measure is not.

In addition, the pre-computation of SP KL-Divergence and SP Disjoint and
SP KL-Divergence L1-Norm measures causes a larger overhead, as shown in Fig-
ure 5.14, where the mean runtime for overhead calculations of each distance
metric is displayed with 20 bands selected. One particularly noteworthy aspect
is the significantly larger runtime for overhead calculations of SP KL-Divergence
L1-Norm. However, this was expected, as a 3D distance tensor is precomputed,
giving it a significantly larger overhead computational cost (as described in Sec-
tion 4.2.3).

Conclusion

In conclusion, the experiment comparing distance measures showed that SP Eu-
clidean distance is more computationally efficient than the other distance metrics
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Figure 5.13: Mean runtime for a single iteration with 20 bands selected.
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(SP Disjoint, SP KL-Divergence, and SP KL-Divergence L1Norm). However, the
SP KL-Divergence L1Norm distance metric employed by the SPPF algorithm
demonstrated higher accuracy on both Indian Pines and Pavia Center datasets
and achieved comparable accuracies on the Salinas dataset. This is particularly
evident when selecting more than 15 bands, which aligns with the prioritized
objective.

The results suggest there is an advantage to considering the relative entropy
within each superpixel for each band, rather than utilizing the mean value. This
advantage becomes more pronounced when dealing with datasets that exhibit
lower spatial resolution and pose challenges in classification, as observed in the
case of Indian Pines. Considering the differences within each superpixel allows for
a more nuanced representation of the spectral and spatial information, especially
when subtle variations within superpixels may affect the classification outcomes.

In terms of runtime, SP Euclidean appears to provide better efficiency than
other measures. Interestingly, the Pavia Center dataset had lower runtime despite
having a higher resolution and more superpixels, suggesting that spectral bands
impact the SPPF model’s runtime more than spatial resolution or superpixel
count. It has also been observed that the SP Euclidean offers competitive runtime
performance when compared to pre-computed measures. In contrast, the SP
KL-Divergence L1-Norm distance results in significantly higher overheads and
runtime as expected.

Based on these findings, future experiments with SPPF will incorporate the
SP KL-Divergence L1Norm distance measure for BS. This decision is based on
its superior performance across the datasets when a larger number of bands are
selected.
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5.4.4 Experiment 4 - Comparison with PSO-FCM

Experiment 4 examines how the SPPF model compares against the PSO-FCM
model, from which it drew inspiration. Specifically, the objective is to investigate
whether incorporating superpixel information enhances classification accuracy.
Additionally, the two algorithms’ efficiency will be compared. The complete
experiment specifications are outlined in Table 5.15.

Experiment Specifications

Model SPPF, PSO-FCM
Dataset Indian Pines, Salinas, Pavia Center

Number of bands selected (n) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
Runs 20
Stopping criterion 100 generations OR 15 generations without improvement

Number of classification runs 10

Table 5.15: Experiment 4 - Specifications.
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Figure 5.15: Experiment 4. Classification performance, Indian Pines dataset.

Analyzing the results on the Indian Pines datasets from Figure 5.15, it be-
comes apparent that the SPPF model exhibits both strengths and limitations.
The SPPF model outperforms PSO-FCM significantly when the number of se-
lected bands increases (n ≥ 15), both in terms of higher accuracy and a slightly
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lower standard deviation (as shown by the shaded region). In contrast, when
n < 15, the SPPF’s performance is slightly worse and demonstrates a signifi-
cantly higher standard deviation. It is clear that the SPPF model struggles to
be consistent when the number of bands selected is low. This observation aligns
with the anticipated outcome derived from the findings of Experiment 3.
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Figure 5.16: Experiment 4. Classification performance, Salinas dataset.

It is worth noting that the Salinas dataset presents a distinct scenario, as
the SPPF model outperforms PSO-FCM for all selected band numbers. Figure
5.16 clearly shows a consistently lower standard deviation from the start, which
can be explained by the dataset’s finer spatial resolution and simpler classification
attributes. As a result, integrating superpixel data can offer considerable benefits,
even for a limited number of bands, without experiencing the instability seen in
SPPF runs with fewer bands.

Pavia Center comparison

Interestingly, as seen in Figure 5.17, SPPF is generally outperformed by PSO-
FCM for the Pavia Center dataset, except for the ranges of 20-40 bands selected.
SPPF’s poor performance might be due to the missing regions of the image, as
described in Section 5.3.1. Such missing image data will naturally impact BS
models utilizing spatial information more since it reduces the superpixel segmen-
tation’s ability to separate distinct objects into separate segments. Figure 5.18
highlights this issue by showing the superpixel segmentation on this dataset. It
shows, highlighted in green, how the segmentation algorithm sometimes cannot
distinguish between objects from the left and right sides of the missing image
parts. The white vertical line shows the border between the left and right sides
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of the image, where the missing areas of the image would lie between. The image
highlights just one of many such problematic areas in the superpixel segmenta-
tion for the Pavia Center dataset. This problematic segmentation might be the
reason for SPPF’s poor performance for this dataset and suggests that incorpo-
rating spatial information into the BS process is less effective when the image is
missing larger spatial regions of the image.
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Figure 5.17: Experiment 4. Classification performance, Pavia Center dataset.

Figure 5.18: Experiment 4. Pavia Center Segmentation.



5.4. EXPERIMENTAL RESULTS 85

As mentioned in Section 5.4.3, the classification accuracy of SPPF can be
negatively affected when only a few bands are selected, because of the low dis-
persion of information within the selected bands. This differs from the PSO-FCM
algorithm, which employs the Euclidean distance metric. Although PSO-FCM
utilizes distances between individual pixels rather than superpixel mean values,
similar trends with higher degrees of dispersion can be seen in Figure 5.19. The
figure displays the selected bands and their entropy at the point where the PSO-
FCM algorithm demonstrates its highest superiority in terms of classification
accuracy (n = 10).
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Figure 5.19: Experiment 4. Comparison selected bands (n = 10).

Runtime Comparison

Figure 5.20 compares the mean runtime between the SPPF and PSO-FCMmodels
when selecting 20 bands across all datasets. The runtime of PSO-FCM, repre-
sented by the orange bars, exhibits relatively low variations across the datasets
compared to SPPF, represented by the blue bars. The results show that SPPF
displays inferior runtime and efficiency to PSO-FCM, with the difference more
significant for the datasets with a higher number of pixels. Considering the deci-
sion to prioritize classification accuracy over efficiency when selecting the distance
measure of SPPF, it was expected that the runtime of SPPF would not be favor-
able to PSO-FCM due to the significant overhead computations.
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Figure 5.20: Mean total runtime for 100 iterations 20 bands selected.

Statistical Significance

To compare the performance of the SPPF and PSO-FCM models, McNemar’s
test is employed to assess statistical significance, as described in Section 5.3.3.
The resulting Z-values from ten different trials for each combination of dataset
and bands selected are presented in Table 5.16. The values are labeled Z0 through
Z9, each representing the statistical significance of the models for one trial with
the combination of dataset and n-value specified in columns 1 and 2. The corre-
sponding selected bands for each trial can be found in Appendix A1.

Interpreting the Z-values, it is important to note that values greater than 1.96
indicate that the SPPF model significantly outperforms PSO-FCM with over 95%
confidence (p ≤ 0.05). Conversely, values lower than −1.96 suggest that PSO-
FCM outperforms SPPF. Z-values falling between these thresholds indicate that
no definitive conclusion can be drawn with over 95% confidence regarding one
model’s superiority over the other.

Table 5.16 reveals that the Indian Pines dataset exhibits a consistent trend
where the SPPF model significantly outperforms PSO-FCM, particularly for
n = 20 and n = 30. However, for n = 40, the difference between the two
models becomes slightly less pronounced. In the case of the Salinas dataset, the
results show more varied outcomes, with inconclusiveness for several Z-values.
Nonetheless, the overall trend suggests the superiority of the SPPF model over
PSO-FCM, especially for n = 20 and n = 30. For the Pavia Center dataset, the
results from the McNemar’s test demonstrate a high variability between SPPF
and the PSO-FCM algorithm. The findings are not surprising when considering
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the results shown in Figure 5.17, and the overlapping of standard deviations, as
it is evident that SPPF and PSO-FCM alternate in their performance superiority
across different runs. For all 90 trial runs, SPPF significantly outperforms PSO-
FCM in 56 runs, is significantly outperformed in 7 runs, and in 30 runs, there is
no statistically significant difference between the two.

Dataset n Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

Indian
Pines

20 5.08 13.99 6.93 10.75 3.26 10.07 14.96 14.0 6.79 8.59
30 9.01 10.67 7.62 5.27 6.56 6.62 8.73 7.86 10.67 4.94
40 10.12 -0.80 0.98 12.76 3.17 6.23 10.47 7.03 6.38 9.75

Salinas
20 4.68 2.51 4.47 1.04 0.81 1.52 2.18 6.49 0.82 3.91
30 5.67 -1.18 -1.27 2.56 -1.41 7.89 2.01 3.67 3.69 1.85
40 -2.57 0.41 3.74 -5.36 -0.37 2.70 -0.92 4.05 -0.66 2.96

Pavia
Center

20 1.89 0.40 4.59 3.55 0.42 3.47 -0.93 -3.26 -3.09 4.58
30 -0.27 5.59 0.25 0.01 -1.35 3.53 0.67 3.37 12.87 0.72
40 7.22 -2.24 -3.62 8.17 -6.33 -1.58 0.71 3.88 -0.62 2.28

Table 5.16: Experiment 4. Z-values from McNemar’s test when comparing SPPF
with PSO-FCM.

Conclusion

The findings from this experiment show that SPPF generally outperforms the
performance of PSO-FCM for both AVIRIS datasets. The results for the Pavia
Center dataset are more inconclusive, and although SPPF achieved the highest
mean OA and AA, it is beaten by PSO-FCM for n-values less than 20 and over 40.
The overall findings indicate that adding spatial information to the BS process
may have advantages that depend on the dataset attributes and characteristics.
Comparing results from McNemar’s test, SPPF overall shows a slight superiority
to PSO-FCM in terms of classification performance.

Comparing the runtime and efficiency of the two models, it is evident that
PSO-FCM outperforms SPPF. Such findings were partially expected due to the
design choices from the previous experiment (Section 5.4.3), where classification
accuracy was prioritized over efficiency.
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5.4.5 Experiment 5 - Comparison with Baseline

This experiment investigates how the band subsets selected by the SPPF model
compare to the baseline of using all available bands across different hyperspectral
datasets. For a fair comparison, the results of SPPF are mainly compared to the
baseline of all bands after the removal of bands covering the water absorption
region. The complete experiment specifications can be seen in Table 5.17.

Experiment Specifications

Model SPPF, Baseline w. noisy band removed
Dataset Indian Pines, Salinas, Pavia Center

Number of bands selected (n) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
Runs 20
Stopping criterion 100 generations OR 15 generations without improvement

Number of classification runs 10

Table 5.17: Experiment 5 - Specifications.
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Figure 5.21: Experiment 5 - Performance on Indian Pines.

Focusing initially on the performance of SPPF on the Indian Pines dataset,
presented in Figure 5.21, it is observed that SPPF reaches the same overall ac-
curacy as the baseline with around 25 selected bands. However, there is no
significant increase in performance with the selection of more bands, possibly
due to the ”curse of dimensionality.” Looking at the average accuracy in (b), it
can be seen that SPPF can select band subsets that outperform the baseline AA
when the number of selected bands is at least 15. For n ≥ 15, SPPF appears to
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achieve significantly better performance than the baseline with respect to average
accuracy. The reason for this improvement in AA can be inferred from looking at
Table 5.18, which shows the accuracies for each class for a single classification run
with all bands (Baseline) and 30 bands selected by SPPF. Comparing accuracies
for classes ”Alfalfa” and ”Oats” we can see clearly that the bands selected by
SPPF are far superior to using all bands when the number of available samples
is low, increasing the accuracy by 21.9 and 33.3 percentage points, respectively.
This explains why the AA is significantly better for SPPF, yet the OA is about
equal to the baseline.

Class Samples Baseline (%) SPPF (%)

Alfalfa 46 41.5 63.4
Corn-notill 1428 75.7 76.2
Corn-mintill 830 65.7 66.4
Corn 237 68.1 59.6
Grass-pasture 483 92.4 93.6
Grass-trees 730 95.3 99.3
Grass-pasture-mowed 28 80.0 84.0
Hay-windrowed 478 96.1 96.5
Oats 20 55.6 88.9
Soybean-notill 972 73.2 77.6
Soybean-mintill 2455 80.3 77.4
Soybean-clean 593 74.7 69.8
Wheat 205 95.7 96.7
Woods 1265 92.6 92.4
Buildings-Grass-Trees-Drives 386 53.9 57.1
Stone-Steel-Towers 93 80.7 91.2

Table 5.18: Experiment 5. Accuracy for each individual class on the Indian Pines
dataset.

When comparing SPPF with the baseline for the Salinas dataset, displayed
in Figure 5.22, it becomes apparent that the performance trends of SPPF mirror
those observed with the Indian Pines dataset. Both overall and average accuracy
match the baseline performance when 25-30 bands are selected; beyond this,
SPPF does not present significant improvements over the baseline in terms of
performance. Interestingly, the results of SPPF from the Salinas dataset do not
exhibit the same behavior of having a superior AA, as observed on Indian Pines.
This is likely explained by the number of samples available for each class being
much more evenly distributed for the Salinas dataset, as can be confirmed by
looking at Appendix A2.
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The similarity of results from both AVIRIS datasets (Indian Pines & Salinas)
indicates that the SPPF model is able to maintain the same classification perfor-
mance whilst reducing the dimensionality of the HSI data. However, the results
also show that no significant improvement in classification accuracy is achieved.
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Figure 5.22: Experiment 5 - Performance on Salinas.

The results from the Pavia Center dataset, shown in Figure 5.23, paint a
slightly different picture of SPPF’s capabilities. Here, SPPF outperforms the
baseline in terms of overall accuracy with a minimum of 15 selected bands, while
for average accuracy, it takes at least 20 bands. This superiority of SPPF implies
that the model is, in some instances, able to identify a subset of bands that
reduce dimensionality and improve the classification performance. As discussed
in Section 5.4.3, the classification performance decreases when the number of
selected bands exceeds 30. However, Figure 5.23 shows that it remains on par or
exceeds the performance of the baseline also for higher n-values

Figure 5.24 compares the accuracies for each class between a single run of
SPPF with 20 selected bands and the baseline with all bands selected, on the
Pavia Center dataset. It can be observed that SPPF’s most significant improve-
ments are made in the classification of the ”Asphalt” and ”Bricks” classes. The
baseline using all bands struggles with these classes the most, as seen in (a), so
it is no surprise that this is where the most improvements can be made. The ac-
curacies for the other classes are relatively similar between the two classification
runs. The figure also shows that the baseline particularly struggles to separate
the classes ”Trees” and ”Asphalt”, while the SPPF model does a much better
job at this. The reason for this can be observed by looking at Figure 5.25, which
shows the mean spectral signatures of the two classes, along with their standard
deviation (shaded regions). This figure shows how most of the bands chosen by
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Figure 5.23: Experiment 5 - Performance on Pavia Center.

SPPF (dotted vertical lines) lie in the areas where there is a significant difference
in measured spectral intensity between the two classes (illustrated by the diver-
gence of the orange and blue-shaded regions). This is opposed to the baseline,
which uses all bands, including the areas of great overlap between the two classes,
such as from bands 1 to 20.

Conclusion

This experiment’s results highlight the SPPF model’s effectiveness in HSI classi-
fication tasks. The findings reveal that SPPF, using a notably smaller number of
selected bands, can match or even outperform a baseline method that employs all
available bands. For the AVIRIS datasets, the results showed that SPPF achieves
comparable performance to the baseline with approximately 25 bands. An anal-
ysis of per-class accuracy indicated that SPPF has the edge over the baseline
in classifying classes with few labeled samples. Specifically, the ”Alfalfa” and
”Oats” classes in the Indian Pines dataset experienced a significant increase in
accuracy, contributing to the superior average accuracy achieved by SPPF.

Interestingly, SPPF’s performance on the Pavia Center dataset deviated from
the pattern seen in the AVIRIS datasets. Here, SPPF was able to significantly
outperform the baseline, possibly being attributed to being able to separate
ground truth classes with very similar spectral signatures overall. These find-
ings suggest that SPPF can enhance classification performance under certain
conditions while reducing dimensionality.
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Figure 5.24: Experiment 5 - Confusion matrix from the Pavia Center dataset.
(a) shows the classification performance of a run with all bands (Baseline) and
(b) shows the classification performance with 20 bands selected by SPPF.
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Figure 5.25: Experiment 5. Spectral intensities of classes ”Trees” and ”Asphalt”
for the Pavia Center dataset.



Chapter 6

Evaluation and Conclusion

This chapter evaluates and discusses the research goal and research questions in
Section 6.1. The contributions and limitations are summarized in Section 6.2
and Section 6.3. Their potential implications for future research are elaborated
in Section 6.4.

6.1 Evaluation & Discussion

The experiments conducted in Chapter 5 were guided by the research questions
and objectives outlined in Chapter 1. This section will provide an assessment of
each experiment in relation to the research questions and overall objective.

Research Question 1 How does pre-removal of noisy bands influence the achieved
classification accuracy of unsupervised BS with the superpixel-enhanced PSO-
FCM algorithm?

Based on the experiment results (Section 5.4.1), it was suggested that the
SPPF model might be adversely impacted by noisy bands in the datasets, espe-
cially when a higher number of bands was selected. It appears that SPPF may
form clusters that require the selection of a band with noise. In other words,
when a higher number of bands are selected, it potentially leads to the creation
of clusters that only consist of low entropy bands, as the experiment conducted
by SPPF utilized the highest entropy band criterion for selecting cluster repre-
sentatives.

Research Question 2 How can PSO-FCM utilize superpixel information and
different divergence measures in order to achieve the best classification ac-
curacy?
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To answer Research Question 2, the FCM objective function was modified
to include superpixel information obtained from segmentation, with the goal of
enhancing classification accuracy. Four distance metrics incorporating superpixel
information have been designed, implemented, and evaluated to answer the ques-
tion. These distance metrics include SP Euclidean distance, SP KL-Divergence,
SP Disjoint Information, and SP KL Divergence-L1Norm and are described in
Section 4.2.3.

In addition, four methods for selecting cluster representatives, including High-
est entropy, Central tendency, Hybrid weighted-sum criterion, and Hybrid rank-
ing criterion, were proposed and tested to determine the optimal approach for
each distance measure. The highest entropy was employed as it was proposed
in the original PSO-FCM [Zhang et al., 2017], while Central tendency, Hybrid
weighted-sum criterion, and Hybrid ranking criterion were designed for SPPF as
reasoned for in Section 4.3.

Experiments on each dataset revealed that solely prioritizing bands with the
highest entropy did not consistently lead to improved accuracy when only a few
bands were selected. The experimental results of Experiment 2 revealed that se-
lecting the highest entropy band from each cluster was among the worst selection
techniques across all datasets and distance metrics, except for the SP Euclidean
metric on the Pavia Center dataset. This is likely explained by the Pavia Center
dataset’s unique entropy profile, with less overall variation and a steady increase
in entropy as the band index increases. Overall the results revealed that the
Central tendency and the Weighted-sum hybrid selection methods achieved the
best performance and were the most consistent.

Furthermore, the experiments revealed that the SP KL-Divergence L1Norm
distance metric, in conjunction with the Weighted-sum criterion for cluster repre-
sentative selection, demonstrated superior performance across multiple datasets,
especially when a sufficient number of bands were selected. This finding suggests
that considering the relative entropy within each superpixel for each band, rather
than relying solely on mean values, contributes to a more nuanced representation
of spectral and spatial information.

The utilization of mean superpixel values with divergence measures, specifi-
cally SP KL-Divergence and Disjoint Information, yielded less favorable perfor-
mance in the BS process. Despite the potential of these techniques for enhancing
computational efficiency, the classification accuracy was not competitive with the
other distance metrics.

Research Question 3 What is the influence of different distance measures in-
corporating superpixel information on computational efficiency?

Experiment 3 (Subsection 5.4.3) revealed a promising improvement in com-
putational efficiency by employing distance measures that operate on aggregated
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superpixel mean values rather than individual pixel values. Specifically, employ-
ing the SP Euclidean distance metric reduced the number of distance calcula-
tions required for SPPF. The benefits of this reduction were also observed in
information-based distance measures, as the reduced number of values utilized to
compute the histograms contributed to the overall efficiency of the algorithm.

On the other hand, the SP KL-Divergence L1-Norm measure showed a signifi-
cantly worse runtime, as the overhead calculations of SP KL-Divergence L1-Norm
require notably more processing time compared to the other distance metrics.
This behavior was expected due to the inherently complex characteristic of this
distance metric. The precomputed tensor’s size is directly proportional to the
number of superpixels, implicating that more superpixels result in a larger tensor
and increase the computational overhead (Section 4.2.3).

The comparison of runtimes for the different datasets, shown in Figure 5.13
and Figure 5.14, revealed that the optimization time itself was most heavily de-
pendent on the number of total bands available in the HSI. At the same time,
the upfront computational costs most heavily depended on the number of pixels
available in the image and the number of superpixels employed in the segmenta-
tion process. In general, it was concluded that although superpixels do have the
potential to improve the computational efficiency of the BS model, it strongly
depends on how the superpixel information is employed within the model.

Research Question 4 How does the performance and efficiency of the superpixel-
enhanced PSO-FCM algorithm compare to the baseline and other state-of-
the-art BS methods?

Based on the experimental results, it was found that the SPPF model is
capable of achieving superior performance to the PSO-FCM model, particularly
when a sufficient number of bands are chosen. However, experimental results also
indicate that this question has slightly different answers depending on the dataset.
The performance of the models varied depending on the datasets employed, with
SPPF mainly being superior for both the Indian Pines and Salinas datasets. For
the Pavia Center dataset, the PSO-FCM model displayed a slight performance
advantage. For this dataset, the performance of the SPPF model was hindered
by the missing regions of the image due to challenges faced in the superpixel
segmentation.

In terms of runtime comparisons, the PSO-FCM model exhibited low vari-
ations in runtime across datasets, while the SPPF model’s total runtime was
largely affected by factors like the number of superpixels and pixels in the image.
The experimental results revealed that overall, the efficiency of SPPF is inferior
to PSO-FCM, mainly due to the choice of employing a more complex distance
metric which requires a higher upfront computational cost. The difference is most
pronounced for the Pavia Center dataset, which has a larger pixel count. Despite
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the trade-off in efficiency, the SPPF model offers improved classification accuracy
by integrating superpixel information.

However, it is important to note that the evaluation of SPPF was limited
to comparing it with only one state-of-the-art method, PSO-FCM. Due to time
constraints, the proposed method was not compared to other techniques, which
could have provided a more comprehensive assessment of its performance and
increased confidence in the results.

Goal To improve classification accuracy and efficiency on HSIs through unsu-
pervised band selection by applying a superpixel-enhanced PSO-FCM hybrid
algorithm.

The goal of this research was partly fulfilled by proposing the superpixel-
enhanced PSO-FCM hybrid algorithm, known as SPPF. Across all applied datasets,
SPPF demonstrates an overall competitive performance to the classification base-
line using all bands. Through analysis of experimental results, it was revealed that
SPPF has particular advantages in certain situations, such as classifying classes
with few labeled samples and distinguishing classes with very similar spectral
signatures. Through these advantages, SPPF was in some cases able to select a
band subset that showed a significantly superior classification accuracy compared
to the baseline.

Regarding efficiency, it is important to note that PSO-FCM demonstrated bet-
ter performance compared to SPPF. This outcome aligns with the design choice
made in a previous experiment, which prioritized classification accuracy over ef-
ficiency by selecting the SP-KL-Divergence-L1Norm distance measure instead of
SP Euclidean which showed superior efficiency.

6.2 Contributions

The main contribution of this thesis is the introduction of the SPPF model,
a superpixel-enhanced hybrid algorithm for selecting bands in HSIs. This re-
search builds upon the existing application of particle swarm optimization for BS,
demonstrating its successful integration with superpixel information. The nov-
elty of this approach lies in the extension of PSO-FCM [Zhang et al., 2017], which
incorporates superpixel information into distance measures and divergence mea-
sures to offer a unique BS method. Additionally, the thesis proposes combining
the distance measures with different cluster-representative selection techniques.

A BS framework has been developed, that allows for easy integration of various
superpixel segmentation techniques, distance measures, and representative cluster
techniques. The bands selected in this study are provided in the Appendix (A1)
for the purpose of reproducibility and future comparison.
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6.3 Limitations

The analysis of experimental results for the Pavia Center dataset revealed that
the missing image regions proved a challenge for the superpixel segmentation
process of SPPF. This provided insights into how the SPPF model handles such
situations but could be argued is not ideal for the comparison with PSO-FCM.
As a potential alternative, the Pavia University dataset, which shares the same
sensor and a similar scene, could have been a better option for the experiments
conducted. In the Pavia University dataset, the part of the image that needs
to be discarded before analysis is located on the edge of the image, rather than
in the middle as observed in the Pavia Center dataset. In such a case, the
missing information could be discarded without adversely affecting the superpixel
segmentation.

A notable limitation of the thesis pertains to the comparative analysis of the
SPPF algorithm. While SPPF was compared to its precursor, PSO-FCM, an
in-depth comparison with other state-of-the-art BS methods that incorporate su-
perpixel information was not conducted. For instance, approaches such as SSGA
[Zhao et al., 2021] discussed in Chapter 3, have been applied to integrate spa-
tial information in BS. These methods could have served as valuable benchmarks
to assess the improvements achieved by SPPF, and to evaluate further whether
PSO-FCM was indeed a suitable choice for enhancement with spatial information.

Another limitation in this study comes from understanding the PSO-FCM
algorithm, which is expanded upon in the thesis. The original PSO-FCM paper
[Zhang et al., 2017] left out many implementation details, so there is a risk that
parts of the model might have been misinterpreted. Efforts were made to get
additional information from the original authors, but unfortunately, these were
unsuccessful. This factor could potentially affect the reliability of the comparative
analysis between SPPF and PSO-FCM and should be considered while reviewing
the findings.

6.4 Future Work

There are some limitations that can be opportunities for future work. Without
further comparisons, the findings are not as comprehensive, and it is difficult
to conclusively assess the relative performance of SPPF in the broader context
of BS algorithms that incorporate spatial information. Future research should
therefore include a more expansive array of comparative methods to evaluate the
advantages and limitations of the SPPF model fully.

Furthermore, it would be interesting to investigate the performance of SPPF
using different classifiers, particularly ones that employ spatial information in
the classification process. Initial exploratory experimentation revealed that such
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classifiers have the potential to increase classification accuracy further. Previous
work has demonstrated the benefit of directly integrating superpixel information
into classification tasks [Wang et al., 2020]. Therefore, investigating whether the
simultaneous integration of spatial information in BS and classification grants
further benefits or merely introduces redundancy could yield valuable insights.

Besides addressing prevailing limitations, it is possible to explore new research
avenues. The literature search revealed that no publicly available superpixel seg-
mentation algorithm has been developed specifically for HSIs, but rather existing
algorithms for natural images have been adjusted. Subudhi et al. [2021] also sup-
ports this claim. Given the unique features and rich information content of HSIs,
it would be interesting to develop a dedicated superpixel segmentation algorithm
that considers the spectral information, spatial coherence, and inter-band rela-
tionships specific to HSIs. This is an important research direction for the future,
as such algorithms could improve BS techniques for HSIs and ultimately enhance
the overall analysis and understanding of HSI data.
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n Trial SPPF PSO-FCM

20 Z0 [12, 31, 26, 51, 97, 62, 82, 80, 101, 114, 116,
122, 124, 127, 128, 130, 132, 134, 136, 180]

[33, 30, 29, 36, 41, 46, 39, 45, 53, 59, 74, 84,
96, 107, 114, 126, 112, 106, 111, 157]

20 Z1 [25, 11, 43, 46, 55, 5, 64, 62, 81, 85, 179, 114,
115, 116, 118, 131, 99, 129, 135, 101]

[0, 37, 39, 41, 46, 53, 33, 45, 16, 74, 30, 60, 59,
115, 121, 112, 106, 107, 111, 197]

20 Z2 [9, 24, 36, 63, 47, 71, 84, 96, 81, 80, 79, 114,
115, 117, 120, 124, 126, 128, 132, 109]

[45, 41, 50, 46, 39, 17, 53, 33, 30, 74, 59, 57,
106, 114, 116, 129, 112, 194, 111, 107]

20 Z3 [12, 26, 30, 42, 52, 55, 5, 64, 62, 81, 79, 114,
116, 118, 120, 125, 126, 130, 136, 179]

[39, 41, 46, 53, 33, 45, 69, 74, 83, 30, 96, 59,
114, 124, 112, 107, 106, 111, 108, 191]

20 Z4 [9, 21, 26, 36, 47, 58, 59, 67, 73, 80, 82, 81, 114,
115, 117, 123, 124, 130, 132, 141]

[16, 33, 25, 29, 30, 34, 41, 47, 46, 45, 68, 39,
112, 116, 126, 106, 152, 111, 107, 155]

20 Z5 [7, 11, 24, 27, 35, 46, 55, 79, 82, 81, 80, 106,
133, 114, 116, 117, 118, 124, 128, 167]

[41, 48, 46, 33, 45, 53, 39, 59, 30, 60, 31, 74,
111, 112, 116, 126, 194, 168, 107, 106]

20 Z6 [24, 9, 36, 47, 58, 69, 82, 80, 137, 115, 117, 120,
123, 124, 127, 130, 132, 135, 164, 185]

[33, 41, 46, 47, 39, 45, 53, 56, 59, 74, 30, 87,
29, 113, 124, 112, 106, 107, 111, 151]

20 Z7 [12, 26, 42, 46, 51, 69, 73, 64, 35, 79, 80, 81,
82, 178, 115, 117, 124, 123, 129, 134]

[39, 41, 46, 48, 33, 54, 45, 53, 75, 30, 27, 59,
112, 115, 114, 121, 194, 107, 111, 106]

20 Z8 [20, 26, 38, 40, 52, 73, 63, 69, 2, 81, 78, 112,
116, 122, 125, 130, 132, 133, 134, 109]

[41, 46, 47, 59, 33, 45, 53, 54, 30, 27, 74, 29,
111, 113, 123, 106, 110, 108, 107]

20 Z9 [9, 12, 25, 46, 47, 73, 64, 69, 71, 82, 59, 113,
114, 115, 117, 120, 125, 130, 135, 179]

[41, 46, 48, 56, 68, 53, 70, 33, 75, 87, 59, 30,
107, 115, 121, 112, 106, 155, 111, 157]

30 Z0 [5, 9, 33, 21, 22, 23, 26, 55, 58, 44, 69, 70, 61,
76, 89, 83, 80, 100, 110, 111, 115, 117, 122, 124,
129, 132, 135, 137, 158, 184]

[15, 18, 20, 30, 33, 39, 41, 48, 47, 46, 59, 54, 45,
66, 53, 137, 75, 84, 86, 60, 74, 112, 115, 119,
121, 106, 111, 107, 155, 191]

30 Z1 [12, 26, 46, 43, 52, 69, 73, 58, 59, 63, 35, 89,
81, 84, 95, 80, 174, 113, 114, 116, 122, 123, 126,
129, 78, 100, 135, 101, 139, 191]

[39, 41, 48, 46, 54, 55, 33, 45, 53, 71, 72, 73,
75, 74, 25, 60, 30, 59, 115, 114, 120, 123, 112,
111, 151, 110, 107, 155, 106, 191]

30 Z2 [9, 19, 25, 26, 31, 3, 42, 52, 70, 58, 73, 63, 66,
69, 89, 80, 85, 94, 99, 113, 115, 117, 118, 120,
124, 100, 136, 139, 183, 163]

[0, 37, 41, 47, 46, 53, 39, 59, 15, 45, 67, 69, 33,
75, 74, 30, 20, 97, 96, 107, 115, 114, 112, 146,
151, 111, 108, 155, 106, 190]

30 Z3 [23, 9, 40, 38, 46, 49, 51, 52, 53, 58, 63, 64, 68,
55, 89, 79, 83, 115, 117, 119, 123, 124, 128, 131,
134, 137, 187, 157, 163, 170]

[8, 30, 15, 40, 41, 42, 46, 48, 56, 59, 67, 53, 54,
39, 83, 84, 75, 60, 29, 106, 112, 116, 125, 119,
111, 108, 107, 155, 185, 151]

30 Z4 [11, 26, 42, 52, 53, 58, 63, 66, 69, 71, 61, 82, 75,
94, 80, 112, 114, 116, 120, 121, 123, 125, 127,
129, 100, 136, 188, 110, 165, 174]

[33, 25, 29, 30, 42, 41, 46, 48, 44, 65, 69, 53,
39, 75, 74, 83, 59, 106, 115, 114, 121, 112, 111,
146, 158, 109, 110, 168, 107]

30 Z5 [7, 10, 22, 25, 27, 31, 32, 18, 42, 46, 49, 51, 72,
63, 68, 79, 101, 82, 81, 84, 80, 134, 115, 116,
118, 119, 130, 138, 165, 184]

[33, 37, 41, 42, 48, 46, 45, 66, 67, 53, 70, 39,
74, 60, 57, 59, 30, 106, 114, 115, 124, 113, 111,
158, 110, 157, 107, 152, 151]

30 Z6 [9, 18, 23, 26, 42, 49, 52, 66, 63, 62, 55, 80, 82,
81, 94, 98, 174, 114, 115, 116, 117, 118, 123,
124, 129, 100, 134, 138, 187, 164]

[36, 43, 42, 41, 48, 46, 59, 33, 45, 69, 53, 39,
75, 74, 83, 84, 85, 30, 97, 104, 110, 114, 122,
116, 126, 113, 111, 155, 107, 106]

30 Z7 [9, 14, 21, 26, 36, 42, 52, 55, 61, 35, 63, 66, 68,
69, 70, 72, 73, 81, 89, 84, 96, 94, 98, 80, 139,
114, 128, 136, 185, 165]

[37, 39, 41, 42, 46, 48, 53, 54, 63, 15, 69, 33, 74,
83, 20, 87, 81, 30, 29, 59, 112, 114, 116, 119,
111, 107, 152, 168, 110, 106]

30 Z8 [9, 21, 30, 27, 31, 42, 52, 70, 71, 73, 64, 89, 79,
81, 84, 94, 96, 97, 80, 114, 116, 119, 121, 122,
127, 130, 135, 187, 169, 110]

[0, 20, 24, 30, 29, 33, 41, 46, 48, 59, 56, 45, 69,
53, 54, 39, 87, 74, 75, 83, 113, 115, 119, 111,
107, 110, 169, 109, 106, 185]

30 Z9 [12, 26, 44, 40, 47, 45, 53, 55, 74, 5, 67, 62, 1,
80, 92, 86, 94, 111, 114, 115, 116, 118, 120, 124,
125, 127, 100, 136, 165, 185]

[0, 36, 39, 41, 48, 50, 46, 54, 16, 45, 67, 53, 71,
33, 59, 30, 29, 107, 115, 114, 123, 129, 113, 111,
106, 168, 110, 108, 194, 197]

40 Z0 [9, 19, 24, 26, 35, 37, 42, 47, 48, 49, 52, 58, 63,
67, 55, 79, 82, 84, 81, 95, 97, 98, 80, 101, 136,
114, 115, 117, 118, 120, 126, 130, 132, 134, 148,
154, 174, 163, 171, 187]

[34, 33, 20, 29, 30, 36, 46, 48, 41, 50, 52, 39,
56, 73, 70, 45, 67, 65, 53, 75, 83, 84, 60, 87, 59,
196, 106, 112, 115, 116, 114, 121, 113, 134, 111,
151, 160, 110, 108, 107]

40 Z1 [9, 18, 25, 40, 38, 52, 53, 60, 63, 67, 62, 71, 73,
89, 82, 84, 94, 81, 95, 80, 108, 112, 114, 115,
116, 117, 118, 120, 123, 124, 127, 130, 132, 137,
140, 158, 168, 174, 162, 187]

[6, 8, 16, 17, 29, 30, 33, 37, 41, 42, 48, 46, 53,
45, 67, 69, 54, 39, 75, 74, 59, 84, 83, 57, 107,
108, 110, 113, 115, 114, 121, 126, 112, 111, 152,
106, 168, 157, 155, 191]

40 Z2 [9, 20, 24, 26, 32, 56, 46, 45, 43, 50, 69, 57, 59,
64, 62, 71, 73, 89, 79, 81, 91, 85, 98, 101, 134,
114, 116, 119, 120, 124, 123, 127, 129, 131, 137,
109, 187, 159, 163, 168]

[16, 33, 21, 30, 29, 31, 34, 7, 37, 41, 46, 47,
48, 59, 65, 66, 53, 54, 55, 39, 74, 60, 81, 75, 76,
194, 107, 115, 114, 121, 126, 113, 112, 111, 106,
110, 108, 167, 168, 155]

40 Z3 [4, 13, 23, 26, 33, 42, 36, 49, 52, 54, 58, 59,
61, 62, 64, 55, 80, 82, 93, 85, 90, 81, 97, 98, 77,
110, 112, 116, 118, 120, 126, 127, 100, 132, 134,
136, 138, 165, 176, 151]

[20, 24, 29, 30, 33, 37, 41, 48, 50, 46, 53, 39,
45, 69, 70, 71, 84, 60, 91, 75, 59, 74, 57, 104,
107, 111, 113, 115, 119, 123, 121, 128, 112, 139,
106, 110, 168, 194, 145]

40 Z4 [8, 23, 26, 31, 12, 2, 36, 39, 42, 49, 52, 72, 58,
61, 69, 63, 67, 89, 81, 85, 79, 139, 112, 113, 114,
115, 116, 118, 122, 127, 129, 131, 132, 135, 101,
140, 194, 173, 164, 179]

[8, 16, 17, 30, 28, 33, 34, 41, 44, 46, 48, 50, 56,
63, 67, 53, 54, 39, 77, 57, 74, 87, 91, 75, 59, 96,
58, 106, 111, 112, 114, 116, 126, 133, 137, 153,
109, 110, 107, 151]

40 Z5 [10, 25, 40, 38, 46, 49, 52, 51, 58, 74, 65, 66,
68, 71, 79, 78, 80, 75, 94, 85, 98, 100, 101, 165,
138, 135, 114, 116, 118, 120, 124, 123, 127, 129,
130, 132, 134, 139, 176, 191]

[0, 17, 18, 20, 30, 29, 31, 33, 37, 38, 39, 41,
42, 46, 45, 48, 65, 69, 53, 54, 74, 84, 85, 59, 57,
105, 106, 115, 114, 120, 128, 113, 112, 151, 158,
111, 110, 107, 168, 155]

40 Z6 [7, 33, 10, 25, 2, 37, 40, 41, 42, 46, 50, 53, 55,
58, 67, 63, 70, 73, 78, 81, 82, 93, 85, 90, 91, 97,
187, 113, 114, 115, 117, 120, 123, 125, 127, 130,
133, 137, 148, 165]

[0, 33, 25, 30, 36, 37, 41, 47, 48, 46, 39, 74,
56, 62, 45, 53, 71, 75, 83, 87, 59, 84, 96, 97, 57,
115, 117, 114, 122, 113, 111, 150, 151, 165, 110,
168, 107, 106]

40 Z7 [9, 24, 2, 36, 42, 47, 52, 73, 58, 63, 68, 70, 72,
76, 81, 82, 86, 89, 94, 92, 93, 95, 97, 80, 100,
114, 115, 116, 118, 121, 120, 125, 127, 130, 134,
138, 188, 169, 176, 163]

[0, 8, 16, 15, 30, 34, 35, 36, 41, 44, 46, 43, 48,
56, 65, 67, 68, 39, 57, 75, 83, 84, 60, 92, 59, 103,
151, 113, 115, 117, 119, 121, 112, 195, 152, 107,
109, 111, 168, 106]

40 Z8 [2, 14, 18, 23, 26, 46, 47, 57, 58, 59, 61, 35, 64,
69, 70, 71, 72, 73, 76, 80, 85, 96, 90, 88, 81, 99,
100, 132, 114, 115, 117, 118, 124, 127, 136, 168,
110, 176, 181, 191]

[0, 11, 16, 30, 34, 37, 42, 41, 48, 46, 39, 69,
45, 68, 53, 72, 73, 56, 76, 88, 87, 59, 82, 83, 57,
113, 119, 123, 116, 112, 111, 140, 195, 146, 152,
106, 107, 110, 157, 147]

40 Z9 [5, 7, 9, 21, 26, 16, 36, 40, 38, 45, 46, 50, 49,
52, 58, 61, 67, 71, 55, 76, 78, 80, 81, 85, 89, 98,
112, 114, 116, 130, 120, 127, 124, 132, 137, 139,
188, 165, 170, 176]

[0, 8, 9, 12, 16, 33, 20, 30, 41, 42, 48, 46, 53,
39, 45, 69, 70, 71, 83, 84, 74, 87, 75, 85, 96, 59,
195, 115, 114, 128, 129, 112, 111, 141, 152, 157,
110, 108, 107, 106]

Table A1: Selected bands for each trial of McNemars test between SPPF and
PSO-FCM on the Indian Pines Dataset.
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n Trial SPPF PSO-FCM

20 Z0 [20, 35, 37, 45, 51, 55, 65, 66, 67, 69, 59, 76,
98, 92, 139, 131, 157, 164, 169, 112]

[36, 31, 34, 47, 54, 55, 56, 59, 75, 61, 78, 100,
198, 120, 79, 190, 157, 80, 159, 197]

20 Z1 [21, 35, 36, 37, 38, 47, 53, 49, 58, 66, 69, 71,
73, 76, 90, 84, 119, 132, 115, 112]

[7, 36, 35, 34, 47, 55, 68, 57, 59, 85, 63, 61, 198,
159, 120, 79, 80, 157, 158, 190]

20 Z2 [35, 19, 45, 47, 55, 56, 76, 74, 66, 69, 70, 72,
89, 97, 126, 128, 104, 161, 167, 187]

[12, 15, 35, 34, 46, 51, 55, 57, 59, 85, 63, 61,
201, 190, 81, 79, 197, 157, 80, 159]

20 Z3 [32, 14, 19, 40, 45, 51, 55, 57, 65, 67, 69, 72,
99, 92, 97, 131, 113, 170, 115]

[16, 15, 35, 34, 46, 51, 55, 56, 59, 85, 63, 61,
120, 79, 197, 159, 157, 80, 183, 201]

20 Z4 [27, 14, 19, 46, 52, 49, 56, 58, 61, 66, 74, 64,
90, 100, 101, 119, 132, 167, 169, 113]

[80, 36, 31, 34, 47, 51, 55, 56, 59, 61, 85, 77,
97, 197, 120, 79, 161, 157, 159, 183]

20 Z5 [21, 35, 37, 39, 42, 47, 41, 53, 57, 66, 67, 68,
71, 76, 86, 99, 92, 97, 131, 183]

[36, 27, 31, 34, 46, 51, 59, 61, 85, 58, 96, 190,
120, 79, 80, 198, 152, 157, 161, 159]

20 Z6 [35, 20, 37, 46, 48, 53, 50, 56, 58, 64, 70, 75,
76, 77, 85, 90, 97, 125, 136, 185]

[15, 36, 35, 34, 46, 47, 55, 56, 59, 85, 63, 61,
197, 81, 79, 198, 157, 80, 159, 185]

20 Z7 [25, 34, 16, 40, 44, 41, 47, 53, 56, 59, 69, 74,
65, 64, 89, 86, 97, 135, 131, 183]

[36, 35, 34, 47, 55, 59, 56, 74, 61, 96, 63, 198,
187, 120, 79, 80, 157, 158, 159, 190]

20 Z8 [35, 20, 37, 43, 45, 51, 55, 64, 68, 56, 72, 74,
97, 99, 4, 92, 103, 124, 114]

[80, 37, 26, 31, 34, 51, 55, 59, 70, 56, 63, 61,
96, 198, 190, 120, 79, 158, 157, 159]

20 Z9 [21, 14, 32, 19, 37, 46, 55, 66, 68, 39, 70, 57,
74, 76, 99, 92, 97, 131, 188, 168]

[38, 15, 36, 24, 34, 47, 51, 57, 61, 59, 96, 80,
120, 79, 197, 157, 161, 156, 159, 201]

30 Z0 [11, 21, 28, 34, 37, 47, 44, 41, 46, 48, 52, 78,
66, 69, 56, 74, 79, 97, 90, 91, 92, 94, 100, 102,
139, 117, 131, 157, 187, 165]

[36, 24, 35, 31, 34, 46, 49, 51, 55, 67, 69, 56,
59, 85, 63, 96, 61, 116, 120, 117, 122, 79, 185,
197, 157, 80, 158, 159, 190, 198]

30 Z1 [27, 14, 19, 38, 46, 51, 54, 49, 56, 68, 70, 57,
73, 74, 76, 87, 4, 92, 97, 99, 132, 128, 129, 104,
140, 144, 195, 165, 171, 178]

[5, 12, 36, 30, 31, 34, 40, 44, 47, 52, 55, 70,
57, 59, 75, 96, 63, 61, 85, 118, 120, 125, 79, 80,
201, 185, 157, 171, 159, 197]

30 Z2 [23, 37, 42, 45, 51, 54, 49, 59, 69, 72, 75, 64, 77,
85, 91, 93, 94, 99, 97, 83, 118, 126, 125, 130,
134, 104, 140, 189, 169, 167]

[12, 15, 26, 34, 31, 47, 52, 55, 67, 56, 59, 75,
96, 61, 63, 197, 185, 120, 128, 79, 133, 81, 115,
80, 159, 157, 190, 198, 201]

30 Z3 [20, 28, 31, 13, 48, 47, 39, 57, 58, 38, 67, 69,
71, 72, 76, 97, 85, 94, 89, 100, 7, 92, 115, 116,
119, 128, 126, 104, 171, 188]

[36, 25, 31, 34, 35, 47, 51, 55, 59, 77, 69, 56,
74, 76, 63, 62, 96, 61, 197, 120, 126, 133, 81,
185, 199, 157, 80, 156, 190, 201]

30 Z4 [23, 24, 37, 38, 41, 46, 50, 49, 56, 58, 76, 66,
68, 71, 74, 78, 97, 99, 4, 90, 103, 116, 120, 124,
126, 134, 139, 161, 167, 189]

[11, 15, 37, 36, 31, 34, 46, 51, 52, 55, 69, 56,
59, 60, 77, 61, 96, 85, 197, 159, 189, 120, 117,
133, 199, 161, 157, 80, 170, 190]

30 Z5 [192, 11, 20, 23, 27, 31, 34, 36, 39, 45, 53, 47,
48, 66, 68, 69, 70, 71, 59, 76, 84, 4, 92, 121,
129, 104, 139, 156, 165, 179]

[0, 80, 37, 36, 35, 34, 46, 56, 49, 55, 59, 70, 72,
74, 87, 63, 96, 61, 85, 198, 190, 120, 117, 79,
143, 157, 156, 178, 158, 159]

30 Z6 [11, 22, 26, 32, 36, 39, 45, 51, 55, 58, 64, 66,
69, 56, 71, 72, 74, 77, 89, 100, 92, 97, 83, 196,
137, 117, 122, 134, 179, 169]

[11, 15, 36, 31, 34, 42, 44, 45, 47, 55, 69, 56,
57, 59, 85, 96, 63, 61, 201, 183, 118, 127, 79,
81, 80, 197, 159, 157, 179, 190]

30 Z7 [16, 28, 36, 37, 39, 45, 42, 43, 51, 53, 48, 61,
66, 68, 69, 71, 57, 75, 64, 85, 86, 90, 95, 4, 102,
117, 129, 140, 162, 185]

[36, 23, 25, 34, 31, 47, 50, 51, 55, 59, 76, 69,
56, 85, 61, 63, 96, 79, 80, 116, 120, 126, 145,
201, 158, 185, 157, 156, 159, 197]

30 Z8 [16, 25, 29, 31, 36, 40, 46, 53, 56, 58, 61, 38,
68, 72, 75, 64, 94, 99, 90, 92, 101, 83, 134, 122,
151, 160, 168, 142, 114, 196]

[8, 36, 21, 35, 27, 34, 43, 46, 47, 51, 55, 56, 59,
62, 85, 89, 63, 61, 201, 197, 159, 190, 116, 120,
79, 80, 157, 166, 169, 158]

30 Z9 [22, 30, 14, 37, 41, 45, 50, 47, 54, 49, 58, 63,
64, 66, 68, 70, 74, 89, 84, 7, 92, 119, 124, 123,
103, 133, 138, 165, 172, 188]

[9, 15, 36, 34, 31, 44, 46, 51, 52, 55, 68, 56, 57,
59, 85, 61, 63, 84, 79, 199, 120, 126, 198, 183,
159, 157, 161, 156, 190, 197]

40 Z0 [16, 30, 28, 35, 45, 52, 56, 60, 62, 65, 66, 67,
69, 72, 58, 64, 63, 84, 87, 7, 91, 93, 94, 99, 95,
4, 102, 116, 117, 120, 118, 124, 125, 129, 133,
139, 179, 168, 174, 192]

[80, 14, 15, 37, 36, 26, 31, 34, 44, 47, 51, 54,
55, 67, 69, 57, 59, 60, 81, 63, 84, 85, 61, 104,
109, 117, 120, 133, 116, 198, 199, 158, 157, 161,
156, 172, 176, 159, 190, 201]

40 Z1 [16, 26, 32, 37, 38, 39, 40, 46, 48, 50, 54, 55,
56, 57, 58, 64, 70, 79, 97, 100, 89, 92, 94, 115,
118, 124, 128, 130, 133, 136, 140, 0, 194, 151,
181, 161, 165, 157, 171, 173]

[36, 21, 25, 34, 31, 43, 46, 47, 49, 51, 55, 57,
59, 76, 71, 74, 63, 85, 93, 94, 61, 88, 197, 117,
118, 120, 79, 81, 139, 80, 201, 199, 185, 190,
157, 163, 156, 159, 183, 198]

40 Z2 [20, 26, 32, 14, 45, 44, 43, 48, 51, 54, 55, 56,
42, 59, 65, 66, 67, 69, 72, 64, 79, 82, 97, 87, 92,
94, 100, 102, 195, 117, 120, 125, 130, 135, 137,
141, 165, 180, 172, 186]

[80, 36, 27, 32, 31, 34, 38, 44, 47, 49, 51, 52,
55, 59, 68, 71, 74, 60, 61, 85, 63, 97, 94, 201,
116, 120, 117, 127, 183, 189, 199, 159, 157, 161,
178, 176, 190, 197]

40 Z3 [0, 11, 20, 26, 31, 37, 38, 39, 41, 46, 51, 55, 64,
65, 68, 56, 71, 72, 59, 75, 42, 63, 83, 97, 88, 4,
90, 92, 117, 119, 124, 132, 129, 135, 137, 168,
167, 172, 181, 195]

[11, 15, 36, 23, 27, 29, 31, 34, 40, 45, 46, 47,
54, 55, 76, 69, 59, 86, 78, 63, 94, 61, 85, 98,
183, 119, 126, 79, 133, 81, 80, 198, 185, 158,
163, 162, 157, 159, 190, 200]

40 Z4 [18, 22, 24, 27, 32, 14, 45, 42, 44, 48, 51, 53,
52, 55, 66, 69, 56, 71, 57, 74, 76, 77, 63, 94, 91,
90, 148, 116, 121, 123, 125, 129, 133, 104, 140,
164, 162, 175, 114, 190]

[10, 15, 36, 26, 34, 31, 35, 43, 46, 47, 54, 55,
57, 59, 77, 67, 70, 73, 86, 85, 92, 93, 61, 96,
107, 185, 115, 120, 126, 79, 133, 81, 80, 197,
190, 158, 159, 162, 157, 203]

40 Z5 [11, 17, 19, 23, 28, 31, 34, 36, 37, 51, 42, 57,
64, 65, 66, 68, 69, 71, 73, 75, 82, 96, 100, 7,
78, 90, 94, 97, 83, 118, 121, 127, 132, 135, 139,
152, 161, 165, 175, 155]

[12, 15, 21, 24, 31, 34, 35, 36, 44, 46, 51, 55,
54, 67, 56, 57, 59, 61, 78, 63, 96, 85, 201, 197,
183, 117, 118, 120, 125, 79, 116, 81, 80, 152,
161, 157, 169, 176, 159, 190]

40 Z6 [7, 16, 25, 29, 37, 41, 44, 46, 48, 51, 53, 55, 42,
57, 64, 66, 67, 71, 73, 74, 75, 60, 82, 83, 85, 86,
87, 90, 63, 97, 102, 116, 119, 124, 132, 139, 1,
190, 165, 176]

[7, 36, 22, 26, 31, 34, 39, 46, 49, 51, 55, 65, 68,
56, 57, 59, 75, 77, 63, 96, 85, 89, 93, 61, 197,
119, 123, 126, 79, 80, 198, 196, 183, 156, 157,
170, 176, 159, 190, 203]

40 Z7 [10, 23, 34, 28, 31, 19, 38, 40, 46, 48, 53, 52,
56, 58, 63, 64, 65, 68, 71, 73, 74, 76, 78, 89, 86,
97, 83, 140, 116, 118, 120, 122, 127, 134, 137,
192, 180, 165, 171, 173]

[102, 28, 31, 33, 34, 42, 44, 46, 47, 51, 55, 77,
66, 56, 59, 76, 79, 85, 78, 63, 94, 61, 96, 201,
190, 116, 120, 126, 133, 134, 114, 161, 157, 163,
158, 159, 187, 197, 198, 199]

40 Z8 [11, 19, 23, 32, 34, 43, 41, 46, 47, 48, 53, 40,
56, 58, 64, 38, 67, 39, 70, 72, 73, 74, 75, 76, 89,
100, 92, 97, 119, 124, 129, 135, 140, 161, 180,
167, 178, 172, 186, 195]

[15, 36, 24, 35, 34, 31, 38, 47, 45, 46, 55, 77,
69, 56, 57, 59, 76, 79, 85, 94, 87, 63, 96, 61,
198, 190, 115, 120, 125, 83, 116, 201, 197, 157,
158, 163, 162, 178, 159, 183]

40 Z9 [82, 10, 25, 29, 30, 31, 34, 19, 37, 41, 43, 45,
50, 40, 55, 57, 69, 71, 72, 73, 75, 78, 100, 93,
97, 89, 101, 117, 120, 122, 128, 127, 130, 132,
134, 137, 190, 165, 169, 143]

[0, 14, 15, 26, 31, 34, 36, 47, 44, 46, 54, 55, 76,
56, 57, 59, 77, 80, 87, 93, 85, 61, 94, 79, 111,
117, 120, 126, 128, 198, 183, 190, 173, 157, 177,
159, 188, 197, 203]

Table A2: Selected bands for each trial of McNemars test between SPPF and
PSO-FCM on the Salinas Dataset.
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n Trial SPPF PSO-FCM

20 Z0 [20, 34, 35, 36, 38, 40, 44, 47, 50, 52, 53, 59,
69, 80, 77, 89, 95, 97, 99, 100]

[5, 14, 18, 21, 24, 27, 29, 37, 47, 50, 53, 54, 61,
73, 82, 85, 88, 90, 97, 101]

20 Z1 [20, 34, 35, 38, 40, 41, 43, 45, 47, 49, 51, 54,
67, 77, 81, 84, 88, 94, 98, 100]

[5, 11, 15, 22, 26, 29, 31, 37, 44, 47, 51, 53, 58,
61, 73, 85, 87, 89, 90, 96]

20 Z2 [20, 36, 39, 42, 44, 46, 47, 49, 51, 53, 58, 65,
67, 72, 78, 87, 90, 92, 95, 99]

[5, 13, 15, 17, 24, 33, 38, 43, 47, 51, 53, 54, 61,
73, 86, 88, 89, 90, 94, 99]

20 Z3 [14, 30, 32, 34, 38, 44, 47, 48, 50, 53, 58, 65,
70, 81, 77, 84, 87, 92, 96, 99]

[5, 13, 15, 21, 25, 28, 32, 38, 45, 47, 51, 72, 58,
71, 81, 82, 90, 94, 97, 101]

20 Z4 [19, 33, 34, 36, 38, 40, 42, 45, 49, 52, 59, 66,
70, 75, 80, 87, 93, 95, 96, 99]

[14, 16, 18, 22, 25, 29, 35, 42, 44, 46, 52, 53,
60, 73, 85, 86, 89, 90, 94, 99]

20 Z5 [12, 27, 28, 31, 35, 41, 45, 49, 52, 56, 61, 65,
67, 71, 78, 86, 88, 90, 95, 99]

[5, 14, 16, 20, 22, 24, 29, 37, 46, 50, 53, 54, 61,
73, 82, 87, 89, 90, 94, 98]

20 Z6 [16, 30, 32, 33, 36, 39, 42, 45, 49, 51, 52, 56,
67, 75, 80, 82, 100, 85, 88, 95]

[5, 11, 14, 21, 26, 28, 29, 37, 45, 46, 51, 53, 62,
73, 82, 85, 87, 90, 94, 99]

20 Z7 [12, 28, 31, 34, 36, 39, 42, 45, 50, 52, 54, 60,
70, 81, 77, 89, 95, 97, 98, 100]

[13, 15, 17, 22, 26, 29, 31, 36, 43, 46, 48, 52,
53, 61, 73, 82, 88, 90, 94, 98]

20 Z8 [20, 35, 37, 41, 43, 44, 46, 50, 52, 55, 61, 66,
70, 76, 86, 92, 95, 97, 99, 101]

[5, 13, 16, 18, 22, 26, 28, 35, 44, 47, 50, 53, 60,
73, 83, 85, 88, 90, 94, 98]

20 Z9 [17, 31, 32, 33, 37, 42, 45, 46, 47, 49, 54, 63,
67, 71, 80, 77, 89, 95, 99, 101]

[5, 10, 13, 16, 22, 28, 30, 36, 42, 46, 51, 52, 53,
60, 73, 85, 89, 90, 94, 98]

30 Z0 [6, 14, 20, 23, 25, 27, 30, 34, 36, 38, 43, 46, 48,
50, 51, 54, 56, 59, 63, 66, 71, 80, 82, 77, 87, 91,
95, 98, 100, 101]

[12, 14, 15, 18, 21, 23, 25, 29, 31, 33, 34, 35,
40, 46, 47, 51, 53, 54, 58, 61, 64, 73, 82, 86, 89,
90, 91, 94, 96, 98]

30 Z1 [10, 23, 25, 27, 28, 30, 34, 38, 43, 46, 48, 50,
51, 52, 54, 56, 61, 66, 69, 73, 76, 78, 81, 85, 88,
92, 95, 97, 99, 100]

[5, 11, 14, 16, 19, 22, 24, 26, 30, 33, 34, 35, 40,
47, 48, 50, 53, 60, 62, 68, 72, 73, 74, 77, 82, 85,
88, 89, 90, 96]

30 Z2 [8, 20, 23, 25, 27, 29, 32, 35, 37, 39, 42, 46, 48,
50, 52, 53, 55, 61, 66, 68, 71, 76, 81, 84, 87, 90,
92, 95, 99, 101]

[5, 7, 10, 13, 16, 19, 21, 24, 25, 28, 30, 34, 39,
42, 45, 48, 51, 73, 53, 57, 60, 72, 82, 88, 89, 90,
94, 97, 99, 101]

30 Z3 [10, 22, 24, 25, 27, 30, 34, 37, 39, 41, 44, 47,
49, 51, 52, 54, 56, 59, 64, 69, 75, 80, 86, 87, 89,
92, 95, 97, 99, 100]

[5, 10, 14, 18, 20, 22, 24, 28, 29, 31, 38, 44, 46,
48, 50, 52, 53, 62, 64, 72, 77, 78, 82, 83, 86, 87,
89, 90, 94, 98]

30 Z4 [3, 13, 22, 24, 28, 30, 31, 32, 33, 35, 39, 44, 48,
50, 52, 54, 56, 61, 66, 68, 69, 73, 81, 78, 84, 87,
91, 95, 98, 100]

[5, 10, 13, 16, 18, 22, 24, 25, 28, 30, 32, 34, 38,
44, 48, 51, 53, 54, 58, 62, 64, 73, 81, 82, 83, 87,
90, 91, 94, 98]

30 Z5 [7, 17, 21, 23, 25, 26, 28, 32, 38, 42, 44, 47, 49,
51, 52, 53, 55, 57, 63, 70, 81, 77, 85, 87, 90, 92,
93, 95, 98, 100]

[4, 14, 16, 17, 18, 20, 24, 28, 30, 34, 36, 38, 41,
44, 46, 48, 51, 53, 54, 62, 64, 73, 82, 83, 88, 90,
92, 94, 98]

30 Z6 [10, 22, 25, 27, 29, 30, 32, 35, 39, 41, 42, 44,
46, 47, 49, 54, 61, 65, 67, 70, 75, 81, 79, 85, 87,
92, 95, 97, 98, 100]

[5, 14, 16, 18, 21, 24, 28, 29, 32, 35, 38, 41, 46,
48, 50, 53, 54, 57, 60, 64, 73, 82, 86, 89, 90, 92,
94, 96, 97, 101]

30 Z7 [11, 24, 26, 27, 29, 30, 32, 34, 37, 41, 45, 47,
49, 51, 52, 55, 58, 63, 66, 70, 74, 78, 81, 83, 85,
88, 90, 95, 99, 101]

[5, 14, 17, 18, 19, 21, 24, 26, 29, 33, 35, 37, 41,
44, 46, 48, 50, 53, 57, 58, 62, 72, 80, 82, 87, 89,
90, 94, 95, 97]

30 Z8 [11, 26, 28, 29, 30, 31, 35, 40, 44, 47, 49, 50,
51, 52, 54, 55, 60, 66, 68, 70, 72, 75, 79, 82, 84,
89, 92, 94, 97, 100]

[0, 5, 7, 12, 15, 20, 24, 25, 28, 32, 34, 37, 38,
40, 44, 50, 51, 52, 53, 57, 60, 73, 83, 85, 87, 88,
89, 90, 94, 98]

30 Z9 [10, 22, 24, 25, 28, 32, 35, 38, 39, 40, 43, 46,
49, 51, 53, 57, 64, 67, 69, 73, 77, 81, 83, 85, 87,
90, 94, 97, 99, 101]

[5, 12, 17, 18, 23, 26, 28, 29, 33, 37, 41, 42, 44,
46, 48, 50, 51, 53, 58, 62, 73, 86, 90, 91, 92, 94,
95, 97, 99, 101]

40 Z0 [3, 7, 10, 15, 19, 22, 24, 29, 32, 34, 35, 36, 38,
42, 45, 47, 48, 50, 52, 53, 54, 56, 57, 63, 67, 69,
70, 74, 77, 79, 81, 83, 85, 86, 87, 91, 94, 96, 98,
100]

[0, 5, 8, 10, 12, 14, 17, 22, 25, 28, 29, 32, 34,
37, 39, 42, 43, 45, 48, 51, 52, 53, 54, 58, 61, 63,
70, 74, 75, 76, 78, 80, 82, 83, 85, 88, 89, 90, 91,
94]

40 Z1 [1, 4, 7, 10, 15, 23, 26, 29, 34, 36, 38, 40, 42,
44, 46, 47, 49, 50, 52, 53, 55, 57, 61, 65, 67, 68,
72, 75, 79, 82, 84, 86, 88, 89, 90, 93, 95, 97, 98,
100]

[0, 5, 15, 16, 17, 20, 24, 25, 26, 29, 31, 33, 35,
36, 38, 41, 44, 48, 51, 53, 56, 58, 60, 62, 67, 69,
71, 72, 73, 74, 76, 77, 79, 82, 85, 89, 90, 94, 95,
99]

40 Z2 [0, 1, 3, 12, 21, 23, 25, 27, 30, 32, 34, 35, 36,
38, 43, 49, 52, 54, 56, 58, 59, 60, 63, 66, 68,
71, 73, 75, 77, 79, 82, 84, 87, 90, 91, 93, 95, 98,
100, 101]

[0, 5, 10, 13, 15, 16, 18, 20, 22, 24, 28, 29, 32,
34, 35, 37, 40, 41, 42, 46, 50, 52, 53, 55, 58, 61,
63, 64, 71, 77, 79, 81, 82, 85, 86, 89, 90, 94, 96,
101]

40 Z3 [6, 12, 16, 19, 21, 23, 26, 28, 30, 32, 34, 35, 37,
42, 44, 45, 46, 49, 52, 54, 56, 58, 63, 66, 68, 69,
72, 75, 77, 79, 82, 84, 85, 81, 88, 90, 94, 96, 97,
100]

[5, 9, 10, 11, 13, 16, 21, 25, 27, 30, 33, 34, 35,
40, 44, 46, 48, 53, 58, 61, 62, 65, 68, 69, 71, 73,
74, 75, 76, 77, 78, 79, 82, 88, 90, 91, 94, 95, 99]

40 Z4 [0, 1, 2, 3, 11, 18, 22, 24, 26, 27, 29, 30, 33,
35, 37, 41, 44, 47, 48, 50, 54, 57, 60, 62, 64, 65,
68, 72, 74, 76, 77, 79, 82, 84, 89, 94, 96, 97, 99,
100]

[5, 6, 8, 10, 13, 18, 20, 22, 25, 28, 29, 31, 33,
35, 36, 39, 44, 48, 50, 51, 53, 55, 58, 60, 61, 69,
73, 74, 75, 76, 78, 79, 82, 87, 89, 90, 94, 95, 97,
101]

40 Z5 [3, 6, 8, 14, 20, 24, 26, 29, 33, 35, 37, 39, 41,
44, 46, 47, 49, 51, 54, 58, 61, 64, 65, 67, 68, 69,
73, 75, 77, 79, 81, 83, 84, 89, 92, 94, 95, 97, 99,
100]

[5, 15, 17, 18, 19, 20, 23, 24, 25, 26, 29, 32, 34,
35, 38, 41, 44, 46, 47, 50, 53, 54, 57, 58, 61, 63,
69, 73, 74, 76, 80, 82, 85, 87, 90, 91, 94, 96, 99,
101]

40 Z6 [5, 12, 15, 17, 19, 21, 23, 26, 29, 32, 34, 36, 38,
42, 45, 46, 47, 48, 51, 54, 58, 60, 62, 63, 65, 68,
71, 73, 75, 77, 79, 81, 84, 87, 89, 91, 95, 97, 99,
100]

[5, 7, 9, 13, 18, 20, 22, 23, 24, 26, 27, 31, 35,
36, 37, 39, 41, 42, 43, 45, 47, 50, 52, 53, 54, 56,
58, 60, 62, 72, 78, 80, 82, 83, 85, 89, 90, 94, 96,
99]

40 Z7 [1, 4, 6, 12, 16, 19, 23, 25, 28, 30, 33, 36, 38,
39, 42, 46, 50, 54, 56, 57, 59, 62, 64, 66, 67, 68,
69, 72, 74, 76, 78, 81, 84, 87, 89, 90, 91, 95, 99,
101]

[0, 4, 5, 12, 15, 16, 18, 19, 20, 22, 24, 28, 31,
32, 35, 38, 41, 43, 47, 48, 51, 53, 57, 58, 60, 62,
63, 69, 73, 74, 76, 78, 80, 82, 87, 89, 90, 94, 97,
101]

40 Z8 [3, 8, 10, 13, 17, 21, 23, 25, 29, 35, 37, 38, 39,
41, 43, 45, 50, 52, 54, 55, 56, 57, 58, 60, 64, 66,
69, 73, 75, 76, 79, 82, 83, 85, 86, 89, 94, 97, 99,
100]

[4, 5, 11, 14, 15, 18, 19, 20, 22, 24, 26, 28, 29,
31, 34, 37, 40, 43, 45, 46, 50, 53, 55, 57, 58, 61,
64, 69, 73, 74, 76, 78, 80, 82, 84, 86, 90, 91, 94,
98]

40 Z9 [4, 8, 12, 18, 21, 23, 24, 25, 26, 28, 30, 33, 37,
41, 44, 47, 49, 51, 52, 53, 55, 59, 64, 66, 67, 69,
72, 74, 76, 80, 82, 78, 84, 87, 90, 92, 94, 96, 99,
101]

[5, 6, 11, 13, 14, 16, 19, 22, 24, 25, 29, 33, 35,
37, 40, 45, 48, 50, 51, 52, 53, 54, 58, 62, 68, 71,
73, 74, 75, 76, 78, 80, 82, 83, 86, 90, 91, 94, 96,
98]

Table A3: Selected bands for each trial of McNemars test between SPPF and
PSO-FCM on the Pavia Center Dataset.
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A2 Dataset Details

# Class Available Samples

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Table A4: Available samples, Indian Pines
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# Class Available Samples

1 Brocoli green weeds 1 2009
2 Brocoli green weeds 2 3726
3 Fallow 1976
4 Fallow rough plow 1394
5 Fallow smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes untrained 11271
9 Soil vinyard develop 6203
10 Corn senesced green weeds 3278
11 Lettuce romaine 4wk 1068
12 Lettuce romaine 5wk 1927
13 Lettuce romaine 6wk 916
14 Lettuce romaine 7wk 1070
15 Vinyard untrained 7268
16 Vinyard vertical trellis 1807

Table A5: Available samples, Salinas

# Class Available Samples

1 Water 824
2 Trees 820
3 Asphalt 816
4 Self-Blocking Bricks 808
5 Bitumen 808
6 Tiles 1260
7 Shadows 476
8 Meadows 824
9 Bare Soil 820

Table A6: Available samples, Pavia Center




