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Abstract

Programming as a discipline has seen an increase in popularity ever since its in-
ception. More and more students enroll in introductory programming courses,
leading to an increase in resources needed by faculties to ensure effective educa-
tion. Following the increase in student mass, lecturers find themselves spending
more of their available time grading and creating exercises for students. One way
of making introductory CS courses more efficient is to automatically generate vari-
ant tasks for use in both coursework and exams.

The aim of this thesis was to design and create a prototype for programming
variant task generation meant for digital programming coursework. The thesis
also evaluates the effect of this prototype, in regards to perceived usability by
professors and other teaching staff, and students input regarding the generated
variant tasks. The system makes use of large language models from OpenAI’s GPT
line, and seeks to increase efficiency in courses by automating task creation on a
large scale, and provide teaching staff with creativity powered by large language
models.

The thesis is rooted in a pre-master project, in which a prototype not powered
by AI was built to generate programming task variants. After developing said pro-
totype and examining the flaws of such a system, the project pivoted to make use
of recent language model improvements in the hopes of providing better results.
The thesis considers several task types, and several ways of generating meaningful
tasks. Through iterative development and end user testing, an assessment of the
system deemed it to have some advantages over manually creating programming
tasks, and to be an effective aid in creating programming tasks to further expand
upon. There are several shortcomings of the system, but as a prototype it shows
promise and outlines a future where large language models can be used to reliably
generate creative variant tasks that fosters learning.
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Sammendrag

Programmering har utelukkende økt i populartitet siden det oppstod. Flere og
flere studenter melder seg på introduksjonskurs i programmering, noe som fører
til en dramatisk økning i ressursbehovet fra fakulter for å sikre god utdanning.
Den økte studentmassen drar med seg økte krav til forelesere, som må bruke mer
av sin tilgjengelige tid på å evaluere innleveringer og lage øvinger, istedenfor å
hjelpe studenter. En løsning på dette problemet er å automatisk generere varian-
toppgaver til bruk både i øvinger og eksamener.

Målet med denne avhandlingen var å designe og lage en prototype for gener-
ering av variantoppgaver beregnet på digitale programmeringseksamener og øv-
ingsoppgaver. Masteroppgaven evaluerer også hvordan prototypen oppleves, både
med hensyn til oppfattet brukervennlighet hos professorer og andre i fagstab, og et
utvalg studenters oppfattelse av de genererte variantoppgavene. Systemet benyt-
ter seg av store språkmodeller utviklet av OpenAI som tilhører deres GPT-rekke av
modeller. Systemet har som mål å øke effektiviteten i emner ved å automatisere
oppgaveskapning i stor skala, samt å tilgjengeliggjøre kreativiteten som er å finne
i store språkmodeller for fagstaben.

Avhandlingen har sitt utspring i en prosjektoppgave, der det en prototype for
å generere varianter av programmeringsoppgaven be utviklet. Etter å ha utvik-
let den nevnte prototypen og undersøkt svakhetene ved et slikt system, endret
prosjektet retning til å benytte seg av nye og moderne språkmodeller i håp om å
gi bedre resultater. Gjennom iterativ utvikling og sluttbrukertesting ble systemet
vurdert til å ha noen fordeler i forhold til å lage programmeringsoppgaver manuelt,
og til å være et effektivt hjelpemiddel for å lage programmeringsoppgaver som
en kan bygge videre på. Systemet har flere mangler, men som prototype er det
lovende og skisserer en fremtid der store språkmodeller kan brukes til å pålitelig
generere kreative variantoppgaver som oppfordrer til læring.

v





Preface

This thesis marks the end of our five years at the Norwegian University of Sci-
ence and Technology. We would like to extend our gratitude towards our thesis
supervisor Guttorm Sindre, and both students and professors that participated in
the testing of our prototype. We would also like to thank our family and fellow
students for supporting us through the years, and B.B. for encouragement.

vii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Code Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Report structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 State of pre-master project prototype . . . . . . . . . . . . . . . . . . . 5
2.2 Programming task formats . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Selected programming task formats . . . . . . . . . . . . . . . 7
2.2.2 Other relevant programming tasks formats . . . . . . . . . . . 9

2.3 The link between code complexity and perceived code difficulty . . 10
2.3.1 Estimating task complexity . . . . . . . . . . . . . . . . . . . . . 11

2.4 Neural network architecture, language models, and the history of
GPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Popular language model architectures . . . . . . . . . . . . . . 13
2.4.2 GPT-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 GPT-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 GPT-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.5 GPT-3.5 and onwards . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.6 GPT-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Research method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Development methodology . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Design science . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Agile development . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Approaches to implementing large language models . . . . . . . . . 29
3.2.1 Approach 1: Introduce LLMs in the existing system . . . . . . 30
3.2.2 Approach 2: Building entire variants using LLMs . . . . . . . 31

3.3 Creating a system for metrics/rating of tasks . . . . . . . . . . . . . . 32

ix



x J. Mæland and J. Sæther: Auto-generating programming tasks using LLMs

3.4 Evaluation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 Student demonstration . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Teaching staff demonstration . . . . . . . . . . . . . . . . . . . 37

4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1 Automatic Generation of Programming Exercises and Code Explan-

ations using Large Language Models . . . . . . . . . . . . . . . . . . . 39
4.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 The impact of OpenAI Codex on Introductory Programming . . . . . 42
5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Variant task generation system implementation . . . . . . . . . . . . . 48
5.1.1 Defining important keywords in the system . . . . . . . . . . 48
5.1.2 Sprint 1: Variant task generation system . . . . . . . . . . . . 49
5.1.3 Sprint 2: Rating system and exercise builder . . . . . . . . . . 53
5.1.4 Sprint 3: REST API and frontend . . . . . . . . . . . . . . . . . 57
5.1.5 Summarizing TaskMaster . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Operating the system from a user-perspective . . . . . . . . . . . . . . 60
5.2.1 Front page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Variant templates list . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.3 Variant template editor . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.4 Exercise-set builder for combining the variants . . . . . . . . 62

5.3 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.1 Student demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Research assistant interview . . . . . . . . . . . . . . . . . . . . 74
5.3.3 Professor interviews . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1 Summary of the variant task generation system . . . . . . . . . . . . 83
6.2 Comparisons to prior work . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Query technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.2 Task quality and readiness of use . . . . . . . . . . . . . . . . . 84

6.3 Limitations and threats to validity . . . . . . . . . . . . . . . . . . . . . 85
6.3.1 LLMs and large amounts of context . . . . . . . . . . . . . . . 85
6.3.2 Is the system redundant? . . . . . . . . . . . . . . . . . . . . . . 85
6.3.3 The use of both agile and waterfall method . . . . . . . . . . 85
6.3.4 Lack of direction . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.5 Subjectivity of complexity . . . . . . . . . . . . . . . . . . . . . 86
6.3.6 Multiple equivalent solutions in relation to complexity rating 87
6.3.7 Weighted complexity measure . . . . . . . . . . . . . . . . . . . 87
6.3.8 Biased measurements due to code base size . . . . . . . . . . 88
6.3.9 A new landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.10 Small sample size and realism of testing . . . . . . . . . . . . 88

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.1 Summary of main findings . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.1 Universal Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Contents xi

7.2.2 Query Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.3 Expanding system to other programming languages . . . . . 94
7.2.4 Improved solutions using LLMs . . . . . . . . . . . . . . . . . . 94
7.2.5 Utilizing other complexity measures . . . . . . . . . . . . . . . 94
7.2.6 System expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2.7 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A Additional Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103





Figures

2.4 Quoted from Radford et al.[27] p. 6: "Experimental results on nat-
ural language inference tasks, comparing our model with current
state-of-the-art methods. 5x indicates an ensemble of 5 models.
All datasets use accuracy as the evaluation metric." Full figure and
more tables are found on p6. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Quoted from Radford(2018) et al.[27] p.7: " Plot showing the evol-
ution of zero-shot performance on different tasks as a function
of LM pre-training updates. Performance per task is normalized
between a random guess baseline and the current state-of-the-art
with a single model." Full figure and context is found on p6. . . . . 20

2.6 Quoted from Brown et al.[29] p. 20: "A value of K=32 means that
our model was shown 32 examples per task, for 256 examples total
divided across the 8 tasks in SuperGLUE. We report GPT-3 values
on the dev set, so our numbers are not directly comparable to the
dotted reference lines. The BERT-Large reference model was fine-
tuned on the SuperGLUE training set (125K examples), whereas
BERT++ was first fine-tuned on MultiNLI (392K examples) and
SWAG (113K examples) before further fine-tuning on the Super-
GLUE training set (for a total of 630K fine-tuning examples). We
find the difference in performance between the BERT-Large and
BERT++ to be roughly equivalent to the difference between GPT-3
with one example per context versus eight examples per context..." 21

3.1 Example of steps necessary in generating a variant by implementing
LLMs in the pre-project system . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Performance of GPT-4 in different written languages. Taken from
OpenAI[43] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Structure of TaskMaster . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xiii





Tables

2.1 Figure derived from Kasto et al.[12](p. 63). The table shows only
correlations with p < 0,05 between software metrics and question
difficulty. The results are interesting in the context of exploring how
to measure the complexity of a programming task. . . . . . . . . . . 13

4.1 Table taken from Finnie-Ansley et al.[53](p. 15). The column "Vari-
ants" contain the authors of the different versions of the rainfall
problem. The full wording variations can be found on page 14 of
the paper by Finnie-Ansley et al.[53].Apples is the authors own ver-
sion of the rainfall problem which uses harvested apples instead of
rainfall as the contextual setting, hence the name. Each response
was graded against the test case, with each test case contributing
0.1 to the overall score. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 The table shows the intrinsic software metrics used to evaluate
complexity of tasks, and the weights given to normalize the scores. 54

5.2 Distribution of demo exercise-sets and participants. . . . . . . . . . . 71
5.3 Q3: Assessed difficulty of each task in each exercise set. . . . . . . . 71
5.4 TaskMaster automated rating of task difficulties in each exercise set. 72
5.5 Q2: Participants succeeding at each task in each exercise set. . . . . 72
5.6 Whether the group was confident at cheating on each task. . . . . . 74

xv





Code Listings

2.1 Usage of the pre-master project system: Building a target function
using "skeletons" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.1 Example of a variant template . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Example of response from GPT-request . . . . . . . . . . . . . . . . . . 50
5.3 The code and task-description of a generated variant . . . . . . . . . 51
5.4 The code and example of execution of a generated variant . . . . . . 52
5.5 The code of a variant with explicit typing . . . . . . . . . . . . . . . . 53
5.6 The code and rating of a simpler variant . . . . . . . . . . . . . . . . . 54
5.7 The code and rating of a moderate variant . . . . . . . . . . . . . . . . 54
5.8 A variant formatted as a multiple-choice task, with the correct al-

ternative labelled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.9 Simple example from exercise-set . . . . . . . . . . . . . . . . . . . . . 68
5.10 Contextual example from exercise-set . . . . . . . . . . . . . . . . . . . 68
5.11 Task 6 from "Demo ITGK" . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.12 Task 6 from "Demo 1" . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.13 Task 7 from "Demo ITGK" . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.14 Task 7 from "Demo 1" . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.15 Task 16 from "Demo ITGK" . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.16 Task 16 from "Demo 1" . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.17 Task 22 from "Demo 1", showcasing a concept-specific variant . . . 73
5.18 Task 7 from "Demo ITGK" . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.19 Task 7 from "Demo 2" . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.20 Task 7 from "Demo 3" . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xvii





Chapter 1

Introduction

1.1 Motivation

With the ever-growing prominence of programming in our digital age, the de-
mand for quality education in the field of programming has witnessed a significant
surge. This increase in popularity inevitably leads to an increased pressure put on
faculty staff to create programming coursework. Among the main challenges of
teaching programming to students is creating relevant, stimulating and engaging
programming tasks for students to complete. Traditionally, programming tasks are
crafted manually by an instructor, something that requires deep knowledge and a
robust tenure of experience within the field. When creating such tasks, instruct-
ors must take into account a myriad of factors such as the students initial skill
levels, student skill level as the course progresses, and the need to encapsulate
programming principles vital for succeeding in subsequent courses. This task is
very complex, and demands a substantial investment of time.

In the traditional academic setting, the substantial effort required to develop
high quality programming tasks often leads course faculty to create a single vari-
ant of an assessment, distributing the same tasks to all students in a course. The
practice of handing all the students copies the same coursework brings with it
some challenges. Namely, some students tend to "avoid" understanding program-
ming concepts by utilizing shortcuts such as memorizing solutions without proper
understanding, or directly copying work from their peers[1]. While the preval-
ence of cheating varies greatly depending on a large number of factors, instances
of cheating have been reported to be alarmingly high, reaching rates up to 83%
in certain contexts[2]. Students resorting to copying the work of others instead of
getting valuable practice will suffer serious consequences regarding their learn-
ing, something that has been previously emphasized by students as being one of
the biggest causes of failure when learning programming languages[3].

Recent advances in the field of Natural Language Processing (NLP) have fa-
cilitated the development of software based on Large Language Models (LLMs),

1
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such as ChatGPT[4]. These advanced technologies are capable of generating high-
quality, contextually relevant natural language text and code, based on natural
language input. The demonstrable success of such language models in generating
text has led to increased interest in using them for a wide range of applications,
including generating programming tasks. Utilizing LLMs for the creation of both
coursework and exams presents a compelling prospect, as it has the potential to
offer an unprecedented level of variability and creativity in the tasks, while sim-
ultaneously exhibiting time-efficiency and scalability.

Based on this, the automatic generation of programming tasks that contain
similar concepts, but with individual variations, could offer pedagogical benefits
while simultaneously deterring academic dishonesty. By providing all students
with unique assignments, the opportunity for word-by-word copying ceases to ex-
ist as a whole. This approach would not merely address the symptom of academic
dishonesty, but rather targets its root cause by making the act of copying non-
viable and encourage actual learning.

Baist et al.[5] conducted research aiming to identify which difficulties are
faced by novice students when creating computer programs. Their findings reveal
a significant struggle among beginner students in grasping even the foundational
concepts of programming structure. Upon inquiring about the perceived effective
methods of learning programming, "Working alone on programming coursework"
achieved a mean score of 3, 06 with � = 1,00 on a scale from 1�5. This implies a
portion of students believe that individual work on programming coursework en-
hances their learning experience. Furthermore, it intuitively aligns with the notion
that consistent practice makes one better at programming. Similar research show
the same conclusions, emphasizing the need for students to do programming by
themselves[6] in order to improve their skill. Using a system for automatically
generating varied programming tasks could present students with an almost in-
exhaustible array of programming challenges, enabling expansive practice oppor-
tunities with minimal demand on the course staff.

The use of LLMs in automated generation of programming variant tasks stems
from a pre-project related to this thesis, a literature study related to generating
variant tasks and developing a simple prototype capable of generating very ba-
sic code snippets. During the testing phase of the prototype, it became clear that
the simultaneous creation of meaningful programming tasks, minimal required
user input, and significant task variation presented a considerable challenge. More
sophisticated technologies and strategies were needed for automated task gener-
ation. As we were working on the project, the popularity of LLMs kept increasing
and really took off as ChatGPT[4] was released in November 2022. The choice
to use a language model for the generation of programming tasks was primar-
ily driven by the objective to enhance the variability and perceived creativity of
tasks generated by our task generator, which was developed during the pre-thesis
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project.

1.2 Research Questions

The main focus of the project is to look at ways of utilizing large language models
for generating programming exercises with minimal user input. We further seek
to identify the best approach for evaluating the complexity of tasks created, and
examine different approaches for AI-driven task creation. The project focuses on
CS1 courses in general, but we specifically utilize data from the main CS1 course
at NTNU. As a result of this, three research questions that examine our primary
objective have been outlined:

Research Question 1 (RQ1): How can a software system be structured in or-
der to allow effortless generation of programming tasks using OpenAI GPT-based
language models to be readily applicable?

Research Question 2 (RQ2): What are the main challenges of developing a
system meant to generate and assess the complexity of programming tasks?

Research Question 3 (RQ3): What different use-cases does automated gener-
ation of variant tasks have, and in which settings does it perform best?

1.3 Report structure

This paper describes our approach to creating a framework for automatically gen-
erating programming tasks using large language models. We explore how using
a language model affects the variation and perceived creativity of programming
tasks, while examining the challenges associated with using language models for
this purpose.

Our report is organized into several sections, each dedicated to a different
aspect of our research. Introduction sets the stage by detailing the motivation
behind the project, providing a summary of the pre-master project and explaining
the pivot made to the master project.

Section 2 explains the conceptual foundations of our thesis, presenting the
state of our pre-master prototype, and theory relevant for the development of our
system. It also contains an in-depth exploration of language models and neural
network architectures, with a main focus on OpenAI’s GPT-series.

Section 3 details the process of developing the solution, our implementation
strategy and evaluation of the system.

Section 4 section sheds light on relevant work that influenced our work both
before and during development, with the main focus being on the use of language
models to automatically generate programming tasks.
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Section 5 presents our results, featuring our variant-task generation and rating
system. The section also contains a breakdown of the system from the perspective
of a user, followed by an assessment of the system based on different evaluation
criteria.

Section 6 contains reflections and interpretations we have made regarding our
system, and how our results can be interpreted in light of related work.

Section 7 section contains the conclusion we draw from our thesis. It also
discusses the implications of our research, and provides suggestions for future
work.



Chapter 2

Background

2.1 State of pre-master project prototype

In the pre-master project[7] related to this thesis, two initial iterations of the ar-
tifact prototype were constructed, both without the use of NLP. In short, these
versions of the program utilized predefined templates to generate code snippets
called variants through a step-by-step generator. The output from the predefined
templates served as a basis for programming tasks, from which either task descrip-
tions or task solutions could be created. The purpose of each generated variant
was to represent a programming task, either as part of the task description or as
a solution to the task.

Each variant was represented as a set of skeletons, through an underlying
skeleton framework designed to organize code blocks in a dynamic and scalable
way. The skeletons of each variant were nested in a tree structure such that the root
was able to build the complete python code. An example of using the skeletons to
represent a specific python function is seen in Listing 2.1.

Code listing 2.1: Usage of the pre-master project system: Building a target func-
tion using "skeletons"

target = f’’’def someIterations():
n = 1
while n < 5:

print("Next iteration..")
n = n + 1

return n
’’’

root = RootSkeleton()

func = Function(parent=root, name=’someIterations’)
var = VariableDeclaration(parent=func, key=’n’, value=1)
func.add_to_returns(var)

loop = WhileLoop(parent=func, left=var.get_key(), comparator="<", right=5)
FunctionCall(parent=loop, function=’print’, arguments=["Next iteration.."])
Assignment(parent=loop, left=var, right=f’{var.get_key()} + 1’)

5
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The templates used were defined by end users of the system, and stored in
a database. They contained a set of elements such as functions, loops and if-
conditions, all corresponding to a skeleton in the mentioned skeleton-framework.
The generator made assumptions on which order to generate each element, thus
resulting in the tree-structure. This approach is mainly deterministic, with output
almost one-to-one with the template used. The most significant varieties intro-
duced were randomized variable names and values, and the ordering of loops
and if-conditions within functions. A "VariableGenerator" class kept track of the
variables used.

The template-format posed challenges for the task author in terms of setup.
Each element within the template necessitated the inclusion of corresponding
parameters. As shown in Listing 2.1, the loop is instanced with a condition on
when to break, and the assignment is provided with the variable and new value.
These parameters came from the specifications on each element in the template,
and required the author to consider the logic line-by-line, much like writing or-
dinary code. Moreover, the resulting variants generated through this approach
exhibited limited diversity. Consequently, there arose a need for an alternative ap-
proach that minimized the author’s input while increasing the entropy for each
step in the generation process.

The concluding section of the pre-master project outlines three main areas
of development for the task generating system. Firstly, the system required more
variation and randomization in task generation, the most obvious approach being
incorporating NLP. Secondly, the task metrics identified in the study needed to be
implemented in the system as evaluators so that authors can be provided with
ratings on perceived difficulty and complexity of each task. Finally, the system
should support automatically formatting task according to desired formats, spe-
cified through a frontend GUI. The generation of textual task descriptions should
be automated, adapting the structure and wording to task formats.

2.2 Programming task formats

The assessment of programming task difficulty and complexity is heavily influ-
enced by the format or type of task. Various formats exist, including code-writing
tasks, multiple-choice questions, and tracing problems. The format chosen for a
task impacts both the cognitive load required for its completion and the result-
ing learning outcome, although a clear correlation between the two is not always
apparent. Tasks that provide students with initial code to work with, as opposed
to requiring them to write a program from scratch, may yield similar learning
outcomes while being considered "easier." In support of this, Iyer and Zilles[8]
refer to Van Merriënboer’s suggestion of completing partially written programs
as a lower cognitive load activity. Some task formats allow for multiple correct
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answers, while others have only one definitive solution, and both scenarios can
potentially increase or decrease task difficulty.

While the effectiveness of each task format will vary depending on the specific
case, it is important for students learning programming to be exposed to various
coding scenarios and formats. This principle is reflected in typical CS1 exams,
where a combination of task formats are often employed. Restricting students to
a single format may lead to the recognition of patterns specific to that format, po-
tentially hindering their development of creative problem-solving skills. During
the pre-master project[7], suitable task formats were carefully selected by ana-
lyzing their strengths and considering the time required for their creation and
assessment. Proceeding with these formats is deemed sensible when pivoting to
an NLP-approach.

2.2.1 Selected programming task formats

The advantages of incorporating multiple task formats in assessment highlight
the need for a task generation system that can accommodate diverse formats.
Supporting different formats is a way of exploring multiple use-cases of automated
variant-tasks generation, as described in RQ3[1.2]. To define a scope, six primary
task formats were selected:

Code-writing according to a description: This is a common task format when
testing overall understanding and multiple concepts at once. Tasks often have a
specific method in mind, and could provide example of execution with output.

Example: Write a method fibonacci() that calculates the fibonacci number of an
input number.

print(fibonacci(8))
>>> 21

Find the code lines containing errors This format requires the student to un-
derstand the code, and critically analyze each line. Distractors are used to replace
one or several correct code-lines.

Example: Find the two errors in the method find-max().

find_max(list):
max = 10

for num in list:
if num < max:

max = num
return max
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Fill in the blank line of code: This format provides the student with basis, and
requires understanding the provided code to solve the missing pieces.

Example: Finish the method calculate-mean(list).
calculate_mean(list):

sum = 0

for num in list:
sum += num

return [..]

State the output (program tracing): This format requires the student to fol-
low the logic of the code, however it is not necessary to completely understand
all underlying concepts.

Example: What would the function call myst([12, 4, 13]) output?
myst(list):

result = 2

for n in range(len(list)):
result = (result + list[0]) % list[1]

return result

Select and organize code-lines (Parsons problem): This format requires the
student understand what the program should do, but not necessarily all details of
each line.

Example: Build the method find-max() using six of the provided code-lines.
#1 find_max(list):
#2 if num < max:
#3 for num in list:
#4 if num > max:
#5 for num in range(list):
#6 max = num
#7 max = 10
#8 max = 0
#9 return max

Multiple-choice: The multiple-choice format provides the student with several
alternative solutions, of which only one is correct. The goal is to identify the cor-
rect solution. The format requires a method of generating plausible distractors.

Example: Which function solves the following problem: Taking a list of numbers
as input and returning the sum of all odd numbers.
# a)
def sum_odd_numbers(numbers):

sum_odd = 0
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i = 0
while i < len(numbers):

if numbers[i] % 2 == 0:
sum_odd += numbers[i]

i += 1
return sum_odd

# b)
def sum_odd_numbers(numbers):

sum_odd = 0
i = 0
while i < len(numbers):

if numbers[i] % 2 == 1:
sum_odd += numbers[i]

i += 1
return sum_odd

# c)
def sum_odd_numbers(numbers):

sum_odd = 0
i = 0
while i < len(numbers):

if numbers[i] % 2 != 0:
sum_odd += numbers[i]

i += 1
return sum_odd

# d)
def sum_odd_numbers(numbers):

sum_odd = 0
i = 0
while i < len(numbers):

if numbers[i] % 2 > 0:
sum_odd += numbers[i]

i += 1
return sum_odd

2.2.2 Other relevant programming tasks formats

An innumerable amount of other programming tasks exists, but were disregarded
in the pre-master project. A few of these formats are still interesting when consid-
ering an NLP-driven approach to task generation:

Extend or modify code according to a description: This format is often em-
ployed when teaching larger and more comprehensive concepts. The student needs
to understand the provided code and the ideas behind it, and expand on them to
solve the problem.

Example: Modify the method sum_numbers() so that it only sums positive num-
bers.
sum_numbers(list):

sum = 0

for num in list:
sum += num

return sum
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Case tasks: This format has a more complex task description than those previ-
ously mentioned, and requires concise textual description and context. Because of
its complexity and implications, the format requires a lot from a task generation
system.

Explain a program with words: This format is well suited to test code compre-
hension, but not as relevant to automatic assessment in this context.

2.3 The link between code complexity and perceived code
difficulty

This section is based on the pre-master project section regarding the link between
code complexity and code difficulty. It explored the viable ways of estimating per-
ceived coding task difficulty, with the relevant concepts included below.

People are different, and this diversity extends to students, professors, and
other people’s perception of what constitutes difficulty. In the context of an intro-
ductory university course, the level of expertise among students can range from
those who are absolute novices with no prior experience to students which have
already started their programming education by watching videos online or learn-
ing programming language syntax.

Whatever their starting points are, as students go through an introductory
course in programming, they experience an enhancement in their conceptual un-
derstanding skillset and knowledge. This enhancement is usually met with in-
creasingly difficult coursework supplied by the course staff[9]. However, as the
possibilities of individually customized coursework becomes more available due
to automatization, finding accurate measures of task difficulty is important.

The definition of difficulty and the definition of complexity varies depend-
ing on the author, but the middle-road is that task complexity is a combination
of intrinsic properties while task difficulty is individual, and is dependant on the
user interacting with the task. Task difficulty estimation is therefore dependant on
gathering data from users solving a task, while a representation of task complexity
can be calculated from the task itself.

Pelánek et al.[10] explore the closely related but distinct concepts of complex-
ity and difficulty, with a focus on intelligent learning systems. They used the code
made by over 800 students in two Python-based programming courses to exam-
ine the most effective heuristic for student development and progress throughout
courses. They found that traditional task metrics does not correlate well with time
passed in a course, and instead measure that metrics based on syntactic complex-
ity and solution size correlate strongly with time spent in a course.
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As courses progress, students are able to solve problems they previously thought
too difficult. As current programming courses are taught, exercises are design to
explain and teach new concepts. As the course progresses, new concepts are intro-
duced to exercises, while the old concepts are still used in the exercises. Therefore,
as the course progresses, exercises contain more and more concepts, which also
requires more and more lines of code, which both appears to correlate with task
difficulty.

Pelánek et al.[10] define item complexity as "... an intrinsic item characteristic,
which aggregates item aspects that influence how students solve the item. Com-
plexity is concerned with the structure of the item itself." - Pelánek et al.[10](p.
202). They define item difficulty as "... how hard it is to solve the item for stu-
dents." - Pelánek et al.[10](p. 202). These definitions are well established and
much used within the professional environment.

One of the primary challenges in identifying task difficulty lies in the inher-
ently subjective nature of such measurements. The degree of difficulty attributed
to a task is dependant to the individual being assessed, thus limiting its applicabil-
ity across different people performing the same task. Therefore, a single difficulty
measurement derived from the interaction of one person with a task lacks univer-
sal relevance. For such measurements to be useful in the context of measuring the
"average" (or other key metric) perceived difficulty level of a task, the correlation
between multiple people’s course performance, their success in solving a task, and
the properties of the solved task must be measured. This approach would provide
a substantial data foundation, which when properly analyzed could offer mean-
ingful insights regarding task difficulty. It is however considerably more complex
to gather the dataset needed than measuring task complexity, and using this as a
basis instead.

Liu et al.[11]’s task complexity framework "complexity dimensions", where
three of them are size, variety and relationship. Exactly these three complexity
dimensions are pointed to by Pelánek et al.[10] as being directly relevant to edu-
cational items. When analyzing the complexity of a code snippet, especially the
complexity dimensions of size and variety are relevant as it can be argued that
they are distinctly more measurable than the other dimensions.

2.3.1 Estimating task complexity

Estimating complexity in programming tasks can be achieved without user interac-
tion by considering various identifiers such as the number of code lines required,
the cyclomatic complexity of the resulting code, and the inclusion of multiple
concepts. Kasto et al.[12]measured the difficulty of code comprehension tasks by
using some the software metrics they deemed most appropriate from figure 2.1.
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The tasks investigated were specifically code tracing tasks, and "Explain in Plain
English"-tasks (EiPE tasks), where they chose to utilize the following metrics:

• Number of statements
• Number of operands (including all identifiers that are not key words)
• Cyclomatic complexity
• Average nested block depth
• Average number of parameters

Figure 2.1: Figure taken from Kasto et al.[12](p. 60). The table shows a diverse
selection of static metrics, and their applicability across programming paradigms.
The correlations are between tracing tasks, and the metrics.

Note that the metric "Number of statements" was changed to the metric "Num-
ber of lines". This was due to the verbose nature of the Java language, which was
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the language used in the paper. Many lines simply consisted of opening and clos-
ing brackets, which were deemed not contributory to the complexity of the tasks.
The metrics were calculated using Rationale Software Analyzer[13], and com-
pared to student performance on the given tasks using 2-tailed Kendall’s T-b with
p < 0,05. None of the metrics they used correlated significantly with EiPE tasks,
but table 2.1 shows the metrics from code tracing questions that were significantly
correlated to the student performance, and therefore to the observed difficulty of
the question.

Software metric Kendall’s T-b (2-tailed)
Cyclomatic complexity 0,775

Average nested block depth 0,775
Sum of all operands in the executed statements 0,732

Number of commands in the executed statements 0,732

Table 2.1: Figure derived from Kasto et al.[12](p. 63). The table shows only
correlations with p < 0, 05 between software metrics and question difficulty. The
results are interesting in the context of exploring how to measure the complexity
of a programming task.

However, they do point out the fact that the paper does not take into account
the context of tasks, which significantly impacts perceived difficulty.

2.4 Neural network architecture, language models, and
the history of GPT

This section discusses the history of language models and neural network archi-
tectures, OpenAIs GPT models, their capabilities at the time and how it evolved
to its current state.

Generative Pre-trained Transformer (GPT) is a series of autoregressive lan-
guage models made by OpenAI that uses deep learning to produce human-like
text[14]. It has many variants, from GPT-2 and GPT-3 which are models that can
understand and generate natural language, to Dall-E, which can generate and
transform images based on natural language input[15]. GPT-3.5 and GPT-4 (still
in beta as of June 2023) are interesting in the context of task generation, as they’re
able to understand and generate both natural language and code.

2.4.1 Popular language model architectures

The transformer model

This section briefly explains the workings of the transformer model, which is the
base of some of the groundbreaking modern large language models.
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The Transformer model is a neural network architecture introduced by Vaswani
et al. [16] in 2017. The key innovation of the architecture is the use of self-
attention mechanisms, allowing the model to focus on different parts of the input
sequence at each step of the computation, enabling the capture of long-range
dependencies and vague context. It also allows the model to account for the im-
portance of different words in a sequence. The architecture uses many of these
self-attention layers, that each focus on a different subspace of the input sequence.
This allows the model to capture different aspects of relationships between words.
Figure 2.2, taken from Vaswani et al. [16] shows the detailed architecture of the
Transformer architecture.

The transformer model consists of an equal number of encoders and decoders
(6 of each in the original paper). Both the encoder and decoder are composed of
stacked layers of self-attention and feed-forward neural networks. The encoder
takes an input sequence, and processes it to produce a sequence of hidden repres-
entations. The decoder interprets these representations and generates the output
sequence. During self-attention, the model computes the attention scores for each
pair of words in the input sequence. These scores determine the importance or
relevance of one word to another. Jay Alammar[17] illustrates this well with a
figure, seen in figure 2.3. He uses the translation of the sentence "The animal
didn’t cross the street because it was too tired" from English to French as the task.
The word "it" is used in the translation, but what is "it" referring to? Self-attention
allows the model to look at other words (positions) in the input sequence to bet-
ter represent what "it" refers to. Figure 2.3 illustrates this, and shows that "it" is
most strongly associated with "animal" in this sentence. Understanding what "it"
refers to in this sentence is trivial for human beings, but is anything but that to a
computer. Further readings on the transformer model can be found here[17][18].

The transformer architecture revolutionized the Natural Language Processing
field and has since been widely adopted in various NLP applications. It currently
serves as the basis for several state-of-the-art large language models, as explained
below.

Autoregressive language models

The following section aim to provide a surface level explanation of the workings
of an autoregressive model, and provide examples of successful language models
based on autoregressive technology.

As previously mentioned, GPT is an autoregressive language model. This kind
of model is a probabilistic model that generates sequences of words by estimat-
ing the conditional probability of each word appearing next, given the previous
words in the sequence. This is in line with the concept of conditional independ-
ence, which assumes that the probability of a word in a sentence only depends
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Figure 2.2: Taken from Vaswani et al.[16]. The leftmost part of the figure is an
encoder, and the rightmost part is a decoder. Embeddings are the first layer of the
Transformer model, which convert words from the input sentence into vectors
that represent each word in a high-dimensional space. For the model to be able
to consider the position of words in the sentence, positional encodings are added
to the embeddings. Multi-head attention is a module for attention mechanisms
running in parallel. This allows each word to understand the context in which it
appears, and is given a score indicating its "importance". The box labeled "Feed
forward" represents feed-forward neural networks, where each input position is
connected to each output position by the neural networks. The networks consist
of two linear transformations with a ReLU activation inbetween. Add & norm
represent normalization and residual connections, used to help train the model
effectively and to mitigate the common problem of vanishing gradients. These
components are stacked together multiple times (6 in the original paper) to form
the Encoder part of the transformer. Models like OpenAIs GPT family use a variant
of this architecture, as does Googles BERT.
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Figure 2.3: Taken from Alammar[17]. The figure shows the concept of self-
attention, and models how strongly each word in the sentence is associated with
every other word in the sentence at layer 5/5. Full Collab sheet found here[19].
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on the preceding words in the word sequence. In other words, an autoregressive
model will process an input, and extrapolate what it believes is the most probable
response to a natural language query.

For an autoregressive language model to process queries this way, the models
are typically trained using "maximum likelihood estimation"[20]. Large datasets
consisting of sequences of words (sentences) are handed to the model. The train-
ing involves predicting the next word in a sequence given the previous words,
where the likelihood of a sentence appearing is calculated as the product of the
probabilities assigned to each word in the sequence. The training objective is to
maximize the average log-likelihood of the training sequences, which again is
equivalent to minimizing the negative log-likelihood. The reasoning behind us-
ing log-likelihoods instead of the actual likelihoods, is simply due to the scale
of numbers. Multiplying many small probabilities together usually result in very
small numbers. If one instead takes the logarithm of the likelihoods and add them
together, it both simplifies the computations and leads to higher numerical stabil-
ity.

By maximizing the log-likelihood, the autoregressive language model is en-
couraged to assign higher probabilities to words that are likely to occur in the
training data, hopefully improving its ability to generate relevant and coherent
text.

Other autoregressive language models

OpenAI are not the only ones capable of creating successful autoregressive large
language models. Touvron et al.[21] from Meta published a paper the 27th of
February 2023 regarding LLaMA (Large Language Model Meta AI), a collection
of base language models ranging from 7B to 65B parameters. The models are
trained on trillions of tokens, and differ from other language models due to the
fact that they are trained on publicly available datasets exclusively, not making use
of proprietary or otherwise inaccessible datasets. LLaMA is based on a modified
transformer architecture, with the 13B parameter version outperforming the 175B
parameter version of GPT-3 on most benchmarks, and is even competitive with
some of the current best models such as DeepMinds 70B parameter Chinchilla[22]
and Google AI’s 540B parameter PaLM[23] LLM, of which both are autoregressive
language models. If the current trends are to continue, the mentioned language
models will be considered small in a few years.

Bidirectional language models

As the name suggests, bidirectional language models do not only look at the pre-
ceding words in a sequence when finding the max probability word. Instead, it
tries to capture dependencies in both directions of a sequence by considering the
context of a word from both the preceding and succeeding words. This is done by
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processing the input sequence both forwards and backwards. This way, the model
considers the context from both directions, which in turn allows it to capture a
broader range of dependencies. It naturally follows that bidirectional language
models are considered more useful for tasks where the meaning of words is more
diffuse, and depend more on the words surrounding context.

BERT (Bidirectional Encoder Representaions from Transformers) is a bidirec-
tional language model that was developed by researchers at Google AI Language,
first introduced by Devlin et al.[24] in the paper "BERT: Pre-training of Deep Bi-
directional Transformers for Language Understanding" first published in 2018.
BERT was trained using a two-step process of pre-training and fine-tuning. Its
training is similar to GPTs training, as the primary goal of pre-training is to teach
the model to predict missing words in sentences. Just as GPT, BERT is self-attentive
which allows it to capture relationships between different words in the input se-
quence.

BERT++ was introduced by Tenney et al.[25] in 2019, and is an extension of
the original BERT model. BERT++ aimed to improve upon the limitations of BERT
by incorporating linguistic information and fine-grained modeling of the classic
NLP pipeline. The improved model also contains additional components such as
dependency parsing embeddings, and semantic role labeling embeddings. These
improvements help the model capture syntactic and semantic information more
effectively.

Current language model use-cases

ChatGPT[4][26] is a web application exposing different versions of OpenAI’s lan-
guage models to end users. The language models are variants of the GPT series
which is a class of deep learning model developed by OpenAI. The autoregressive
language models used in ChatGPT are specifically focused on generating human-
like responses in a conversational context. After ChatGPT gained massive popular-
ity online, Google announced they were working on a chatbot similar to ChatGPT
driven by a powerful language model, called Bard. However, it has not yet been
released to the general european public.

2.4.2 GPT-1

Before transformer models, text generation was usually performed with other
deep learning models such as RNNs (Recurrent Neural Networks) and LSTMs
(Long Short-Term Memory networks). Radford et al. from OpenAI published the
paper Improving Language Understanding by Generative Pretraining[27] in 2018,
which describes the development of a Generative pre-training method for lan-
guage understanding tasks using transformer-based neural network architecture.
As the pre-training unsupervised, this method is dramatically cheaper than hav-
ing to purchase or make labeled datasets. The pre-trained model in question was
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fine-tuned to handle question answering and text classification, with comparis-
ons towards the current state-of-the-art methods showing drastic improvements
as seen in Figure 2.4.

Figure 2.4: Quoted from Radford et al.[27]: "Experimental results on natural lan-
guage inference tasks, comparing our model with current state-of-the-art meth-
ods. 5x indicates an ensemble of 5 models. All datasets use accuracy as the eval-
uation metric." Full figure and more tables are found on Radford et al.[27](p6.)

GPT-1’s zero shot performance is also important to note. A zero-shot setting
refers to the ability of a language model to perform a task it has not been expli-
citly trained on. If a model has a high zero-shot task performance, it could solve
a variety of tasks it has not been explicitly trained to solve. Such a model would
be extremely useful in all aspects of modern life, from education, politics to medi-
cine. Figure 2.5 below shows GPT-1’s evolution of relative task performance as a
function of LM pre-training updates.

2.4.3 GPT-2

A year later in 2019, Radford et al. from OpenAI published the paper "Language
Models are Unsupervised Multitask Learners[28], wherein they discuss GPT-2,
their (then) largest language model now boasting 1.5 billion parameters. The
authors argue that the large dataset used in its unsupervised pre-training enables
it to outperform supervised pre-training models simply due to its exposure to rich
natural language. GPT-2 was made available to the machine learning community,
and found some use for text generation tasks.
Especially zero-shot settings showed great promise, with GPT-2 zero-shotting to
state of the art performance on 7 out of the 8 tested language modeling datasets.

2.4.4 GPT-3

Brown et al.[29] from OpenAI published yet another paper in 2020 introducing
the next generation model, GPT-3. Their now largest autoregressive language
model has 175 billion parameters (more than 100x compared to GPT-2), and can
perform a variety of tasks such as translation, classification and now reliable lan-
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Figure 2.5: "Quoted from Radford(2018) et al.[27] p.7: " Plot showing the evolu-
tion of [GPT-1’s] zero-shot performance on different tasks as a function of LM pre-
training updates. Performance per task is normalized between a random guess
baseline and the current state-of-the-art with a single model." Full figure and
context is found on p6.

guage generation.

The paper details how scaling up the language model greatly improves task-
agnostic few-shot performance, something humans find natural, but NLP sys-
tems historically has struggled to succeed in. Even though the model used for
benchmarking in the paper has undertaken no gradient updates or fine tuning,
the model reached sporadic competitiveness with state-of-the-art fine-tuning ap-
proaches at the time, as can be seen in figure 2.6, taken from Brown et al.[29],
p.20. The paper also demonstrates the effectiveness of GPT-3 on several bench-
mark tasks. Figure 2.6 shows model performance on SuperGLUE[30]. SuperGLUE
stands for Super General Language Understanding Evaluation, and is a bench-
mark for evaluating the performance of natural language understanding models.
Its language understanding tasks include question answering, natural language
inference, and coreference resolution. Note the GPT-3 performance compared to
the previously discussed BERT++ model.

As for zero-shot capabilities, GPT-3 significantly outperforms its earlier itera-
tions. However, it is clear that few-shot and even one-shot scenarios significantly
boost performance compared to zero shot scenarios, emphasizing the need for
adaptation to the task, or that at the very least recognition of the task is vital in
order to achieve high performance. Figure 2.7 and 2.8 shows how GPT-3 perform
at two different tasks in varying scenarios.
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Figure 2.6: Quoted from Brown et al.[29] p. 20: "A value of K=32 means that our
model was shown 32 examples per task, for 256 examples total divided across the
8 tasks in SuperGLUE. We report GPT-3 values on the dev set, so our numbers are
not directly copmarable to the dotted reference lines. The BERT-Large reference
model was fine-tuned on the SuperGLUE training set (125K examples), whereas
BERT++ was first fine-tuned on MultiNLI (392K examples) and SWAG (113K
examples) before further fine-tuning on the SuperGLUE training set (for a total
of 630K fine-tuning examples). We find the difference in performance between
the BERT-Large and BERT++ to be roughly equivalent to the difference between
GPT-3 with one example per context versus eight examples per context...".

Figure 2.7: Taken from Table 3.9 in Brown et al.[29] p. 23. nD+/nD- is n Digit
subtraction or addition. 2Dx is two digit multiplication, and 1DC is 1 digit com-
posite operations. Performance increases significantly from zero-shot to one-shot
to two-shot scenarios, but zero-shot performance is generally very good.



22 J. Mæland and J. Sæther: Auto-generating programming tasks using LLMs

Figure 2.8: Table 3.10 in Brown et al.[29], p. 23. The figure shows GPT-3’s 175
billion parameter performance on word unscrambling and word manipulation
tasks in zero-, one- and few-shot settings. CL = "Cycle letters in word", A1 =
"Anagrams of words except the first and last letters", A2 = "anagrams of words
except the first and last two letters", RI = "Random instertion in word", RW =
"reversed words". The study emphasizes that adaptation (or at least recognition)
to the task is important to performing the computations correctly, as can be seen
in the discrepancy between zero-shot and one-shot performance.

2.4.5 GPT-3.5 and onwards

This section offers an overview of the cutting-edge models currently released
by OpenAI. Even though the models are quite similar, some are specialized and
tailored towards specific use cases. The models and technologies discussed are
GPT-3.5, InstructGPT, ChatGPT, Codex and GPT-4.

GPT-3.5

As mentioned above, GPT-3’s measured performance was based on a non-tuned
version of the model. New versions of GPT-3 were released throughout 2022, both
code and natural language focused models, and are described as more capable
than the previous versions. Over time, OpenAI began referring to these models
as the GPT-3.5 series. Around the same time, ChatGPT[26] was released. This is
the software which made natural language AI models accessible to a much wider
audience. It was initially based on a GPT-3 model, fine-tuned on a large dataset of
conversational data to generate human-like responses to human-like text inputs.
In short, GPT-3.5 models are models based on GPT-3, trained on a blend of text and
code in 2021 and before. These models include code-davinci-002, text-davinci-
002, text-davinci-003, and gpt-3.5-turbo-0301[31].

InstructGPT

Many problems arose as the first iterations of GPT were tested. To understand the
problems the researchers faced, it is important to understand the fact that lan-
guage models such as GPT-3 simply calculate which word is most likely to follow
based on the context (previous words). Which words are deemed the most likely
are direct results from the training set. A language model may therefore adopt the
political viewpoints of training data, or be taught that the pronoun for doctors is
"he", and for nurses is "she". These harmful stereotypes will then be echoed by
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the model. In short, biases in the training data will be reflected in the models’
responses. Similar harmful biases has been shown to exist in earlier AI technolo-
gies[32][33].

Another problem often encountered when dealing with language models, is
mistakes in generated text that is semantically and/or syntactically plausible but is
incorrect, disputed or nonsensical. These mistakes in language models are called
"hallucinations", and can cause great harm when end users of technologies such
as ChatGPT are not aware of its workings. Imagine someone urgently querying
ChatGPT for medical advice due to acute health problems, only to be provided
with seemingly legit but ultimately bad advice.

As seen in figure 2.9, InstructGPT performs significantly better than GPT-3
when evaluating truthfulness in statements. The same figure also shows how In-
structGPT has significantly fewer hallucinations than GPT-3.

Figure 2.9: Figure taken from OpenAI InstructGPT[34] webpage, and consists
of information taken from the following cited sources. Bigger is better for Truth-
fulQA and Customer Assistant Appropriate, while smaller is better for Hallucin-
ations and RealToxicity. GPT refers to GPT-3. Testing on the TruthfulQA dataset
done by Lin et al.[35] shows that InstructGPT performs considerably better when
testing truthfulness and level of informativity. According to Gehman et al.[36],
InstructGPT is significantly less toxic than GPT-3.

Understanding a user’s intent is difficult, especially when intent must be in-
ferred through natural language. Ouyang et al.[37] from OpenAI published a pa-
per in 2022 regarding fine-tuning GPT-3 using supervised learning and fine-tuning
the model with human feedback. The paper focuses on language models specific-
ally trained to be better at following user intentions than GPT-3. What follows
are more truthful and less toxic models with the ability to follow instructions in
a prompt more precisely than previous versions. The model, named InstructGPT,
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showed significant improvements in toxic output generation. Human evaluations
show that outputs from 175B parameter InstructGPT were preferred over outputs
from 175B parameter GPT-3 85 ± 3% of the time, and preferred 71 ± 4% of the
time to few-shot GPT-3[37]. The model did make simple mistakes(mostly due to
the relatively low number of parameters), but showed that including humans in
the loop is a good idea to avoid behavioral problems from language models.

As of May 2023 the InstructGPT models, trained with humans in the loop, are
deployed as the default language models on OpenAI’s API’s[34]. Knowing much
of their audience lack experience with large language models and knowledge re-
garding their inner workings, this is a way to reduce possible harm caused by
ChatGPT.

ChatGPT

ChatGPT[4][26] is a web application made by OpenAI which provides end users
with the ability to prompt some of OpenAIs models using natural language. The
term "ChatGPT" can be seen used as a collective term for OpenAIs models in daily
speech, or may even be used to refer to modern language models in general.
The free version allows interaction with GPT-3.5 based models, while a paid sub-
scription allows access to GPT-4. The current language model used by ChatGPT is
fine-tuned from a model in the GPT-3.5 series, and finished training early 2022.
The specific language models ChatGPT users interact with is changing constantly,
but the common denominator between them is that they’re based on the best
OpenAI language models, further fine-tuned for conversational interactions. Fig-
ure 2.10 shows the method used by OpenAI to train the model, which overall was
very similar to how they trained InstructGPT. There were only small differences
in the data collection setup. ChatGPT has a wide array of use for end-users, which
include everything from code and text generation based on a query, writing as-
sistance, translations and much more. According to Reuters[38], ChatGPT as a
service reached 100 million monthly users just two months after launch, and is as
of May 2023 the fastest growing consumer application in history.

In June 2020, OpenAI started providing direct access to many of its language
models through their API[39]. This allowed developers to make use of OpenAIs
language models in their own applications. All language models currently avail-
able through their API are built on the same transformer architecture as its pre-
decessors, and utilizes the transformers ability to infer meaning and context from
a sentence and provide meaningful replies to natural language text prompts.

Codex

OpenAI’s Codex[40] is a large language model specifically tailored towards in-
terpreting and generating code. It’s based on GPT-3, but its training data consists
of both natural language and billions of lines of source code taken from both
GitHub[41] and other sources. This makes the model proficient in over a dozen
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Figure 2.10: Figure taken from ChatGPT website[4], and outlines the method
OpenAI used to train the model used in ChatGPT.

languages, but is stated to be the most capable in Python. It is also the model that
powers GitHub Copilot[42], an IDE and code editor plugin marketed as an "AI
pair programmer" helping users write code faster by utilizing the context of your
code to make smart suggestions and recommendations.

2.4.6 GPT-4

GPT-4[43][44], a large multimodal model initially released in March 2023 for
closed beta testing, is the most advanced system from OpenAI yet. Performing in
the 90th percentile when completing a simulated Bar Examination(the final test a
US lawyer must pass in order to be admitted into the bar of a specific jurisdiction),
or in the 99th percentile when completing the biology olympiad using computer
vision, it significantly outperforms all earlier models. It is capable of accepting
both text and image inputs, returning text back to the end user. Due to its recent
release, GPT-4’s capabilities were not know nor taken into account during most
of the development and writing of this project. A wide array of benchmarks for
GPT-4 can be found here[45].

Limitations and shortcomings

Even state-of-the-art language models like the ones discussed above suffer from
limitations, of which some of them are outlined here.

LLMs such as the GPT models are prone to hallucinations, where the severity
and potential harm can vary significantly. For instance, if one queried ChatGPT
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regarding the total area of a non-existent country, the model might still produce a
response despite the country’s non-existence. While such instances are misleading,
their implications are relatively harmless given the clear fictional premise of the
query.

More concerning however, are circumstances where users, expecting factual
responses, unknowingly receive hallucinated information. In these scenarios, the
user has no immediate way to discover that the model has not provided a factual
answer, but instead has filled in gaps based on its training data and pattern com-
pletion tendency. Examples such as this emphasize the challenges of using LLMs
in contexts where the accuracy of information is crucial.

As LLMs simply function as very large pattern recognizers, their responses can
reflect potential harmful ideas or viewpoints that exist within its training data. The
models are oblivious towards the content they generate, and have no concepts of
right and wrong or understanding of ethical considerations. Their sole aim is to
produce responses that are statistically similar to patterns they’ve learned during
training. Given that these models, particularly ChatGPT, are frequently employed
as learning aids by audiences including high school students and even younger
individuals, the potential impact of such outputs is considerable. Even though
OpenAI has made significant progress in largely eliminating harmful information,
sheer complexity and volume of potential outputs imply that some undesired re-
sponses may still slip through.

It’s important to note that LLMs do not "understand" in the same way humans
do. Their comprehension of language is purely statistical, based on patterns they
have seen in their training data, devoid of the kind of contextual understanding
that humans possess. They also lack the ability to understand context in a mean-
ingful manner. They don’t possess an awareness of the world or its events, and
they can’t access or comprehend information beyond what is explicitly provided
in the input or the knowledge embedded in their training data. The concept of
’memory’ for these models also diverges significantly from human memory. LLMs
do not maintain a sustained memory of past interactions or incorporate this into
future responses unless explicitly provided. Even then, they tend to struggle when
the provided context is too large. For all these reasons a good rule of thumb is to at
least be familiar, and preferably have some understanding of LLMs before making
use of them.
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Research method

This chapter provides an overview of the methodological considerations underly-
ing our research. Our project presents unique challenges that require a thoughtful
process where multiple approaches are relevant.

3.1 Development methodology

3.1.1 Design science

The research paradigm of design science, as described by Hevner et al.[46], provides
a systematic approach to the development and evaluation of artifacts within in-
formation systems research, such as this study. This methodology, known as Design
Science Research (DSR), is designed to create knowledge by constructing and
evaluating purposeful designs for solving practical problems.

DSR aims to contribute to the body of knowledge in a domain by producing
practical and innovative artifacts that address specific problems. It fosters a close
collaboration between researchers and practitioners, bridging the gap between
theory and practice in the field of information systems. The methodology is there-
fore especially relevant when applying knowledge about large language models
to automate programming coursework creation.

The DSR framework consists of six main activities that guide the design science
research process. To guide the study in this project and acquire an overview of the
research process, we consider each activity in relation to key sections of this thesis.

Problem Identification and Motivation: The first step involves identifying and
understanding the practical problem that needs to be addressed. This includes a
clear definition of the problem and its significance in the context of the domain.
The motivation section[1.1] states the benefits of automatically generating pro-
gramming tasks. RQ1[1.2] narrows the problem down to a framework system that
allows effortlessly creating programming exercises using large language models.
The results from the pre-master project, as presented in Section 2.1, highlight the
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incentive to develop an artifact with these properties, in order to decrease time-
cost of producing programming exercises while increasing variations.

Define Objectives for a Solution: With the specific problem of task generation
identified, it is necessary to define the objectives for the solution. This includes
specifying what the artifact should achieve, the desired properties it should pos-
sess, and the constraints that need to be considered. Section [3.2] elaborates on
this point by discussing different approaches to implementing language models in
such a system.

Design and Development: At the design and development stage, the artifact
itself is implemented. The design process, detailing the artifact, its components,
and its functionalities is scrutinized in Chapter 5. It is beneficial in this stage to
draw upon existing theories, models, and best practices to inform the design. In
the development of this artifact, both established models such as object-oriented
programming and the "Builder"-pattern[47] are adopted, in addition to recently
launched state-of-the-art technologies such as OpenAI’s GPT-models. To organize
the development process, the agile framework described in Section 3.1.2 is used.

Demonstration: After developing the artifact, it needs to be demonstrated and
tested on both students and teaching staff, to gain insight into its effectiveness.
The demonstration should present the prototype after most of the features are
implemented, simulating the intended real world use-cases. The specific demon-
strations devised for the project artifact is described in Section 3.4.

Evaluation: The evaluation stage assesses the artifact’s utility, quality, and ef-
ficacy in solving the identified problem. The evaluation stage is closely related
to the demonstration, assessing the findings from both student and teaching staff
demonstrations. The evaluation process provides insights into the artifact’s strengths,
weaknesses, and potential improvements. It is also relevant to compare the de-
veloped artifact to existing systems and means of creating coursework, especially
comparing generated programming tasks to existing sets of tasks used in CS1
courses. Evaluation of the demonstration is detailed in Section 5.3.

Communication: Finally, the findings and knowledge generated through the
design science research need to be structured and communicated. This is done
throughout this thesis, documenting the research process, presenting the artifact,
and scrutinizing the results.

3.1.2 Agile development

Agile development represents a software development approach that places sig-
nificant emphasis on collaboration, adaptability, and the capacity to respond to
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changes. Its primary objective is to deliver software of superior quality swiftly
and efficiently by breaking down the development process into smaller, iterative
cycles. Our chosen framework for implementing agile development is Scrum[48].

By adopting the Scrum framework, we were able to ensure the progress of our
system in an iterative and effective manner. Our sprint length of 4 weeks combined
with the principles of collective ownership helped motivate and push the develop-
ment of the solution forwards, while simultaneously providing the flexibility we
needed when it turned out we had made a wrong decision and needed to back-
track.

Throughout the project, we utilized the Scrum board integrated into GitLab
[49] as a tool to persistently prioritize tasks during the developmental phase.

Throughout the project, we made use of the Scrum board built into GitLab[49]
as a tool to continuously prioritize tasks during the developmentak phase. which
helped us keep track of our progress. This tool also provided a visual represent-
ation of our progress and served as a monitor of our development velocity, en-
abling us to learn the realistic times frame required for task completion. In our
two-member team, the distribution of traditional Scrum roles was deemed im-
practical. Instead, we served as compementasry product owners of each other’s
work, each assuming the role of developer for the other’s tasks.

Each sprint was initiated with a planning meeting in which we delineated the
goals and tasks to be achieved by the sprint’s conclusion.

Every sprint started with a sprint planning meeting, where we established
the goals and tasks to be accomplished within the end of the sprint. Upon the
completion of each sprint, a review meeting was convened to demonstrate the
completed work, and to identify potential areas for improvement.

While this adaptation of Scrum may not align perfectly with the standard in-
terpretation of the framework, our collective experiences within the Scrum frame-
work and our familiarity with each other’s work styles enabled us to indentify what
strategies would be effective for our small team. This understanding allowed us to
incorporate select elements of Scrum into our tailored Agile development frame-
work, thus creating a custom system that addressed our specific needs without
unnecessary overhead.

3.2 Approaches to implementing large language models

The initial step of incorporating large language models (LLMs) into task-generation
is identifying and comparing possible approaches. In light of the pre-master pro-
ject, one inherent approach is adapting the existing task-generation system to
utilize LLMs at each step in the variant-task generation process. This approach
necessitates the development of a method to construct skeletons from the tex-
tual output generated by an LLM. This entails simplifying the templates, allowing
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LLMs to provide the details. Textual task descriptions could be provided along
with the code snippet of the variants. Another approach is discarding the exist-
ing templates and skeletons, instead requesting entire variants based on a textual
code description. This requires a system for handling the response from the LLMs
and formatting tasks accordingly.

By examining more than one approach, it is possible to experiment with ad-
vantages and weaknesses of each method, enabling testing their respective qualit-
ies in different use-cases. It was deemed likely that each of the approaches would
fare differently for each of the task formats listed in Section 2.2.1. For example,
tracing exercises could benefit from obscure and random code built increment-
ally, whereas case-like exercises require the context and coherency provided by
requesting an entire variant from an LLM.

3.2.1 Approach 1: Introduce LLMs in the existing system

Starting out with the artifact from the pre-master project, the generation is ad-
apted to use LLM while still following the same logic of generating skeleton by
skeleton to make up a variant. The difference is each step utilizing LLMs, making
a request for the attributes used in building the skeletons. For instance defining a
loop previously required explicitly specifying the variable to iterate over, the type
of loop and number of iterations. With the LLM-approach, these decisions are left
up to a LLM, introducing more randomness.

Incorporating the LLMs from OpenAPI, spesifically the GPT-models, requires
building an "OpenAIClient" class. This class is added to the existing project as a
singleton, and makes requests using OpenAPI’s python-package. Prompts are built
by querying for the element required, drastically reducing the need for users of the
system to specify details in the templates. Each step in the LLM generation process
has limited access to the broader context of the variant. However, the "Variable-
Factory" class built during the pre-master project keeps track of the variables in
use. For example, one step may request a list variable and receives the following
code: numbers = [1, 3, 4, 5]. The new variable "numbers" will then be captured
by the VariableFactory, stored with the name, value and type. A subsequent step
that requests a loop is thus able to check that a variable of the preferred type ex-
ists, and iterate over the same list. This system ensures consistency through the
variant code, avoiding instancing variables twice. If a required variable does not
exist, however, the VariableFactory will create a new one based on either a spe-
cified name, value or type.

Despite the structural consistency, and the mechanisms ensuring LLM-built
variants are syntactically correct, no structures consider the context or purpose
of the logic in the variant. Technically this approach combines many small code-
snippets provided by the LLM. The result is more obscure variants where the code



Chapter 3: Research method 31

Figure 3.1: Example of steps necessary in generating a variant by implementing
LLMs in the pre-project system

solves no specific problem. This generates variants where the focus lies on under-
standing the specific concepts, such as variable-declarations, loops or conditions,
and not on the effects of combining them for problem-solving on a higher level.

3.2.2 Approach 2: Building entire variants using LLMs

The second approach is based on requesting the code snippets for an entire vari-
ant, or even several variants, in a single prompt to the LLMs. This method cap-
italizes on the high quality of output produced by modern LLMs when provided
with sufficient context. Instead of requesting smaller elements such as a loop or
a variable-declaration, entire functions are requested. This design choice entails
building a framework around the mentioned OpenAIClient class, capable of build-
ing queries, interpreting responses, and formatting tasks correctly.

Query techniques

To effectively use large language models, formulating high quality queries is im-
portant. Queries should provide all necessary context, while staying short and
concise. The pre-defined templates were revised to remove most of the list of ele-
ments used for specifying skeletons in the pre-master project. It was decided to
restrict all templates, and thus all generated variants to functions. Therefore the
new template-format only requires a function description. This design choice re-
moves support for classes and variants of multiple functions, but simplifies the
queries used when prompting the LLMs. The queries developed for use in the ar-
tifact are defined below. Note that the queries are written in English, as OpenAI’s
GPT-models are shown to perform to better in that particular language, as seen in
Figure 3.2. The query for task descriptions, however, is written in Norwegian to
ensure responses in Norwegian.

Requesting a single function Build this python-code with docstring: A function
that: [Function-description]

Requesting a single function from a function-signature Provide the python-
code of a function with docstring from this signature: [Function-signature]
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Requesting multiple functions Build this python-code with docstrings: [Amount]
different functions that all solve the same problem. They [Function-description]

Requesting multiple functions from a function-signature Provide the python-
code of [Amount] different python-functions with docstrings from this signature:
[Function-signature]

Requesting a task description for a function Lag en kort oppgavebeskrivelse
for en kodeoppgave hvor følgende kode er en mulig løsning, uten å referere til koden
spesifikt: [Function code]

Requesting distractors for a function Using the following python-code as a base,
select one of the lines and create three incorrect alternatives for a programming-
exercise: [Function code]. Output the alternative lines, starting with the original line
and followed by the three different incorrect alternatives. Format the output as only
the code-lines, separated by newlines

Figure 3.2: Performance of GPT-4 in different written languages. Taken from
OpenAI[43]

3.3 Creating a system for metrics/rating of tasks

Our pre-master project investigated the relationship between the complexity of
code snippets and the perceived difficulty of that code. Knowing there is relat-
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ively strong correlation between code complexity and perceived task difficulty,
measuring the code complexity of tasks generated by our system could provide
valuable data which can be used to :

• estimate the perceived difficulty of a programming task.
• Fine-tune weights of the rating system to more accurately analyze variants

created by the generation system.
• Provide metrics which can be used to provide beginner students with begin-

ner tasks, intermediate students with intermediate tasks etc.
• Gain a deeper understanding of what makes a programming task difficult.

As mentioned in section 2.3.1, Kasto et al.[12] chose the following intrinsic
software metrics to measure the difficulty of novice code tracing and "Explain in
plain English" tasks.

• Number of statements (originally number of lines)
• Number of operands
• Cyclomatic Complexity
• Average nested block depth
• Average number of parameters
• Number of function calls
• Deepest nesting

Taking inspiration, we chose to use many of these metrics in our own evalu-
ation system. Reviewing earlier CS1 programming tasks in the light of the metrics
above, we believed many of them would correlate to the inherent difficulty level
of the tasks as perceived by us. The following paragraphs outline our reasoning
for making use of the specific metrics.

Tasks where the resulting code contains a larger number of lines, intuitively
correlates to more complex requirements in the programming task. This is mainly
because the number of lines is indicative of the scope and scale of the problem
to be addressed. More lines in a solution imply a large problem space or intricate
solutions.

Tasks where the number of operands is larger generally indicates more com-
plex data manipulations and operations from input to output. This may be due to
a higher number of variables, complex logical or arithmetic operations, or the use
of advanced data structures.

A deeper average nested block depth in a task is typically a sign of more
intricate control flow. This could include more nested loops, conditionals and/or
other control structures, which necessitate a higher level of programming skill to
implement correctly and efficiently.

Similarly, tasks with a higher number of parameters often denote a more
complex program structure. This could involve more function definitions, more
complex function calls, or a higher degree of interaction between different parts of
the code. Each of these scenarios adds a layer of complexity to the task, requiring
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the programmer to manage and coordinate more variables and data flows.
When a task encompasses a higher number of function calls, it is likely that

the task involves more elaborate functionality and algorithmic complexity. The
calling of built-in functions will also be registered by this metric. The understand-
ing and application of function calls generally imply a more advanced level of
programming, and in turn a more complex task.

The following paragraphs contains point-by-point descriptions of the software
metrics, and how we tweaked them to better fit our use case.

Number of lines

Initially, the measure "number of statements" was the total number of lines. How-
ever, as the report dealt with the Java coding language and its peculiar coding
conventions, single opening or closing braces and brackets tend to take up whole
lines. Therefore, they used the "number of statements" as an approximation of the
number of effective lines.

We chose to use the metric "number of lines" due to Python’s concise syntax.
The way to measure this is simply to count the number of lines of code in a solu-
tion. In general, for the solution to a coding task to be more complex, the amount
of code increases, and in turn the number of lines in a solution increases.

Number of operands

A variable or a value involved in an operation is called an operand. An operand
is any object capable of being manipulated. The number of operands serves as
an approximate measure of how many "moving parts" are in a solution. A higher
number of operands suggests that the solution is more complex than a solution
with a small number of operands. A higher number of operands also points to-
wards the solution needing more mathematical calculations in order to provide
the correct answer, which in turn makes it more comprehensive.

Initially, two methods were considered for measuring the number of operands
in a code snippet. The first method involves parsing all words in a code snippet and
filtering out the words not associated with built-in functions. The main problem
with this method is the sheer number of built-in methods python provides. If using
string matching, there is also a risk of incorrectly identifying i.e. a string method
as an operand. This becomes even more apparent if you consider the number of
string methods, list methods, dict methods, etc.

The second method was deemed better, which involves counting the number
of operators instead of operands. Knowing the number of unary/binary/ternary
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operators and multiplying by the respective number, we get a good approximation
of the number of operands with a fraction of the complexity.

Cyclomatic complexity

McCabe’s cyclomatic complexity is a software metric used to indicate the complex-
ity of a program by measuring the number of linearly independent paths through
the source code of a program. Having a large amount of branching in a code
snippet increases the skill required to avoid logic errors and bugs. The increased
branching also makes the code harder to trace and understand in the context of
tracing assignments.

There are existing tools such as RADON[50] made to calculate cyclomatic
complexity in Python code, but in order to reduce dependencies we implemen-
ted our own measure. Our measure calculates the number of independent paths
and decision points that exist in a code snippet by counting the number of branch-
ing statements.

Before implementing the cyclomatic complexity measure, we used "deepest
indent" as a dumbed down cyclomatic complexity measure. This worked well as
Python uses indentation to define blocks of code, rather than using braces or sim-
ilar syntax found in other popular programming languages.

Average nested block depth

Average nested block depth measures the average depth of nested control flow
blocks within a code snippet, a control flow block being a section of code enclosed
by conditional statements or loops. The depth of a block is the number of enclosing
blocks in which it is nested. This measure correlates with cyclomatic complexity, as
a higher level of nested control flow structures indicates a higher average nested
block depth. However, a high average nested block depth indicates that much of
the code is executed within branching statements, increasing complexity.

Our measure calculates the average number of indents of all lines in a code
snippet, ignoring comments and newlines.

Number of parameters

Parameters are the variables or inputs that a function or method requires to ex-
ecute. The "Number of parameters" metric tracks the number of (non-unique)
parameters in both custom functions and built-in functions.

When combined, these metrics should provide an accurate reflection of a task’s
complexity. Furthermore, by developing a complexity analysis program, evaluat-
ing the complexity of already existing introductory CS programming tasks and
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using those as a basis to evaluate the complexity of our own generated tasks be-
comes feasible.

Dataset gathering and making ratings comparable

When comparing absolute values returned from the metrics, two tasks can have
a significant gap between their values, and the instructor cannot easily draw any
information from this difference. For this reason, we implemented a normalized
score ranging from 1 to 10. The normalized scores work the same for all metrics.
A task returns a deterministic number when testing a metric, which is then mul-
tiplied by a weight to normalize its value, with the final score maxing out at 10.
Using the "number of lines" as an example, with a weight of 0, 33 a task with 16
lines of code in its solution will be given a score of 0,33 · 16 = 5, 0. A task with
100 lines of code will "max out" and give a weighted "number of lines" score of
10.

In the testing phase of the rating system, we required a dataset of program-
ming tasks. Our preliminary dataset consisted of 20 tasks derived from w3resource[51],
and were categorized into the buckets "easy", "medium" or "hard". One our rat-
ing system was fully implemented, a larger dataset was necessary for fine-tuning
the weights within the system. Consequently, we leveraged solutions from the
entirety of the TDT4110 Information Technology - Introduction course at NTNU
from 2019. For consistency and simplicity, we chose "easy", "medium" and "hard"
as the buckets for these tasks as well. The resulting data set consisted of over 130
task solutions.

The calibration of the rating system consisted of adjusting weights in order to
map the different complexity metrics to a predefined value scale. The value scale
we chose was to fit the "easy" tasks within the value interval 0-3, "medium" into 4-
6 and "hard" fit into 7-10. The calibration process was semi-automated, utilizing a
custom-built analysis tool to assess key data derived from each category of tasks.
This data provided insights allowing us to manually modify the weights of the
metrics in the system to achieve what we believed to be an accurate and fair
representation of task complexity.

3.4 Evaluation method

In this section, the selected method of evaluating the artefact is discussed. De-
velopment of software aimed at a specific group of users benefits from proto-
type testing and assessment by the target end users. For this project, the targeted
users are teaching staff, professors and student assistants responsible for building
programming exercise sets. We define the mentioned group of users as exercise-
authors. Equally important is the group of people whom the exercises are assigned
to, namely students in the relevant programming course. The generation software



Chapter 3: Research method 37

needs both evaluation in terms of efficiency in use, but also in regards to the ex-
ercise sets it produces. Thus, the evaluation is divided into two sections: teaching
staff evaluation, and student evaluation. The selected format for both evaluations
is real-world scenario user testing with a following interview for registering feed-
back.

3.4.1 Student demonstration

To evaluate exercises generated by the artifact, testing on the target group is vital.
To organize a demonstration and testing on students, generated exercises should
be provided in a realistic setting. A sufficient number of diverse students need
to be selected. The student demonstration will also allow us to gain insight into
the perceived quality of the exercises generated. In order to achieve an unbiased
comparison of the automatically generated exercises and the manually created
exercises, the students should be unaware how their respective exercise sets are
produced.

3.4.2 Teaching staff demonstration

User testing is a crucial step in assessing the effectiveness and viability of soft-
ware systems, particularly when tailored to specific user groups. In the context of
automated programming task generation software, conducting user testing with
task authors, including teaching staff and professors, holds immense significance.
This subsection explores the rationale behind user testing on task authors and
elucidates the benefits it brings to assessing the software’s efficiency and utility.
Additionally, it outlines the recommended approach for conducting user testing
with task authors.

Software Validation in Real-World Scenarios

By involving task authors, such as teaching staff and professors, in the user test-
ing process, the software is subjected to real world scenarios and authentic use
cases. Task authors possess extensive experience in creating programming tasks,
coupled with a deep understanding of the nuances and complexities involved.
Their expertise allows them to provide valuable insights and comprehensive feed-
back, ensuring the software’s validation under authentic conditions. User testing
with task authors enables the evaluation of how well the software aligns with their
existing workflows and requirements.

Assessment of Time-Saving Potential

One of the primary objectives of the automated programming task generation
software is to save significant time for the task authors. User testing provides a
unique opportunity to measure the software’s time-saving potential in a controlled
environment. Through direct observation and feedback, task authors can gauge
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the efficiency of the software in generating a variety of programming tasks. By
comparing the time required to create tasks manually with the time taken using
the software, the extent of time savings can be quantified.

Identification of Usability Issues and Improvements

User testing with task authors allows for the identification of usability issues and
potential improvements within the software. Task authors can assess the user in-
terface, interaction design, and overall user experience to provide constructive
feedback. By analyzing their observations and suggestions, developers can identify
pain points, streamline the user interface, and enhance the software’s usability.
Task authors’ feedback also helps in identifying any limitations or shortcomings
of the software, enabling targeted improvements to further optimize its utility and
identify further use-cases for task authors.

Approach for User Testing with Task Authors

To ensure a comprehensive and effective user testing process with task authors,
a structured approach should be followed. The recommended approach includes
the following steps:

Participant selection: Identify a diverse group of task authors, including teach-
ing staff and professors, who have experience in creating programming tasks.

User testing sessions: Conduct individual or group user testing sessions where
task authors interact with the software and perform tasks. Encourage participants
to think aloud, articulating their thoughts, impressions, and any difficulties en-
countered during the process.



Chapter 4

Related Work

This chapter consists of a review of literature related to our thesis, seeking to
contextualize our study within the field. The section seeks to review related work
which has served as a foundation to build from and upon. and highlights previous
work our thesis builds upon, and where our study fits within the existing body
of knowledge. The section focuses on the automatic generation of programming
tasks, the impact of LLMs on introductory programming, and its results.

4.1 Automatic Generation of Programming Exercises and
Code Explanations using Large Language Models

Sarsa et al. wrote the paper "Automatic Generation of Programming Exercises
and Code Explanations using Large Language Models"[52], focusing on the util-
ization of the large language model OpenAI Codex[40] to create two key learn-
ing resources meant for programming courses: Programming exercises, and code
explanations. The paper evaluates the quality and novelty of the exercises and
explanations created by the AI model, both qualitatively and quantitatively.

The paper discusses theory regarding the value of practice and feedback in
introductory programming courses, and explains how code explanation abilities
are closely related to code understanding. They proceed to examine how machine
learning models fare in the realm of code generation, highlighting the success of
recent similar papers.

To generate programming exercises and code explanations, they provided Co-
dex with docstrings containing a manually created problem description, sample
solution, and test cases. A "second" exercise was started, but was not completed.
Codex is meant to understand the first task as a form of blueprint, and complete
the second exercise mirroring the structure of the provided exercise. An example
of input and output can be seen in figure 4.1.

They also experimented with adding programming concepts("conditionals",

39
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Figure 4.1: Taken from Sarsa et al.[52], Appendix C. The figure shows an example
priming used on OpenAI Codex to generate a programming task. The priming con-
tains a detailed description of an exercise named "Exercise 1", including keywords,
the problem statement, a sample solution, and a test set. The prompt then asks
for an "Exercise 2", in where Codex generates the exercise seen at the bottom
of the figure. The goal is for Codex to analyze and gather inspiration from the
exercise example provided, and generate an exersize with identical structure but
different contents. Note also that the only prompt given to Codex, is the Keyword
"ice hockey". Based on only this one keyword, Codex is able to generate a sound
exercise with the overarching theme of ice hockey, with a sample solution and a
series of tests. Note that this is one of the instances in which everything worked as
intended, which was not the case most of the time(See "Threats to validity"[52]
(p. 37-38)).
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"loops", etc) and contextual concepts("hiking", "fishing", etc.) to the priming, but
found that the prompts not containing explicit concepts were also meaningful.
Using different configurations of their contextual concepts, programming-related
concept sets and exercise primings, the two different temperatures of 0 and 0,75,
and generating two exercises, they made a total of 240 programming exercises
used to evaluate the performance of Codex. Temperature is a parameter that con-
trols the randomness in the model’s output on a scale from 0 to 1, with a higher
score meaning more "randomness", and in turn more variance.

They proceeded to manually assess the a randomly selected set consisting of
half of the generated exercises, using the assessment table shown in figure 4.2,
with the results shown in figure 4.3.

Figure 4.2: Table taken from Sarsa et al.[52], page 8. The table is the manual
assessment rubric used to evaluate the performance of Codex, and the usability
and utility provided by the generated tasks.

Figure 4.3: Table taken from Sarsa et al.[52], page 9. The table shows a summary
of the manualyl evaluated programming exercises.

The results showed that 75.0% of the tasks were deemed "sensible", meaning
that the requirements given in the tasks were described clearly within a logical
context. 81.8% of the tasks were deemed "novel", meaning that when using the
exercise description as a query to search Google or GitHub, the search returned
no valid results. "Matches sample solution" indicates that the generated solution
matches the textual description.

In addition to these results, they found that 84, 6% of the generated exercises
had a sample solution, and that 89,7% of the exercises that had a sample solution,
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had solutions that ran without errors. Only 70, 8% of tasks had tests, and of these
only 30,9% of tasks had tests that all passed.

4.1.1 Summary

Even though the results are promising, the success rates presented above makes
the unsupervised generations of programming tasks quite unreliable. The fact that
only 70% of tasks had accompanying tests, of which only worked 30% of the
times, emphasize the important point that language models doesn’t always do
what they’re told. If one were to implement automatic test generation in a sys-
tem, larger and more reliable language models are a requirement.

The model they used for task generation is already considered deprecated. The
article uses code�davinci�001, but as of June 2023, several better models such
as GPT�4, code�davinci�003, tex t�davinci�003 exist. These newer models
are considerably better at interpreting the natural language prompts given than
the earlier iteration models. Some of the newer models may also fit the given use-
case better. The article also points to many sensible precautions one must make
before utilizing a similar system.

To summarize the paper, the results suggest that OpenAI Codex can generate
both sensible and sometimes even ready-to-use programming exercises and ex-
planations. They found that providing the model with a combination of keywords
related to programming concepts and themes, resulted in the generation of sample
solutions, test cases and detailed code explanations.

Especially the introductory line in the "Future Work" section is interesting,
which is quoted here: "We see great potential for future work utilizing Codex and
other similar models in the context of programming education. Given the positive
results we have observed in terms of programming exercise generation, we are
interested in developing an automated exercise generator powered by Codex that
could be used by instructors. ..." [52](p. 11-12).

4.2 The impact of OpenAI Codex on Introductory Pro-
gramming

Finnie-Ansley et al.[53] wrote the paper "The impact of OpenAI Codex on Intro-
ductory Programming" in 2022, where they systematically measure Codex’s per-
formance on introductory programming tasks and compare it to CS1 students.
They also explore the variety that exists in the solutions generated.

The paper starts by asserting the fact that "a comprehensive review of intro-
ductory programming literature from 2018 makes no mention of tools that use AI
to produce code, ..."[53](p. 11). In the same way as Sarsa et al.[52]’s paper, they
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go through the capabilities of the newest large language models and the solutions
that are derivatives of them, such as OpenAI’s GPT-3 and Codex[40].

They use two separate evaluations to assess the accuracy of Codex. The first
assessment consists of prompting Codex with 23 programming questions previ-
ously utilized towards students at the authors institutions in 2020. The problem
statements was used in assessments throughout a programming course, with Test
1 taking place in the middle of the course and consisting of 11 questions, and Test
2 taking place towards the end of the course and consisting of 12 questions. The
results from Codex can be seen in figure 4.4.

Figure 4.4: Taken from Finnie-Ansley et al.[53](p. 13). The figure shows the
scores achieved by Codex in each of the 23 course problems. The lack of points
seen in Test 1 Q10 and Q11, and Test 2 Q12 was a direct result of a trivial format-
ting error. Such errors in the generated code could easily be spotted and fixed by
an instructor, which the authors point out would result in Codex recieving full
marks in the mentioned tasks.

The tasks were fed to Codex in the same way they were provided to students.
Using the same marking scheme as for the students, Codex’s responses scored a
total of 15.7/20(78.5%) in Test 1 and 19.5/25(78%) in Test 2. The study viewed
Codex as a student, in which it came in at 17th place when compared to the 71
students. Student scores can be seen in figure 4.5.

The second Codex assessment, was completed by providing Codex with seven
variations of the classic Rainfall Problem[54], and having it solve them. No ex-
ample test cases were provided as part of the problem. Each problem description
was provided to Codex 50 times, resulting in 350 responses. Each of the responses
were ran through 10 test cases, which resulted in a total of 3500 evaluations. Table
4.1 illustrates the marked results of Codex, from 0(minimum score) to 1(max
score).

The results were varying, with Codex outperforming the 149 students in Si-
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Figure 4.5: Figure taken from Finnie-Ansley et al.[53]. The axes shows test scores
1-100, where Codex’s scores are market with a red asterisk.
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Variant Mean Median Max Score Stddev
Soloway[54] 0.63 0.90 1.00 0.40
Simon[55] 0.48 0.50 1.00 0.28
Fisler[56] 0.61 0.70 1.00 0.26

Ebrahimi[57] 0.19 0.05 1.00 0.26
Guzdial et al. [58] 0.47 0.30 1.00 0.22
Lakanen et al. [59] 0.44 0.70 0.90 0.32

apples 0.54 0.60 1.00 0.34

Table 4.1: Table taken from Finnie-Ansley et al.[53](p. 15). The column "Vari-
ants" contain the authors of the different versions of the rainfall problem. The
full wording variations can be found on page 14 of the paper by Finnie-Ansley et
al.[53].Apples is the authors own version of the rainfall problem which uses har-
vested apples instead of rainfall as the contextual setting, hence the name. Each
response was graded against the test case, with each test case contributing 0.1 to
the overall score.

mon[55], where the average partial score was 29%. Codex performed similar to
the 120 students in Guzdial[58] that had the average partial score of 46%, and
performed worse than the 139 students in Lakanen et al. [59], which boasts an
average partial score of 69%. To summarize, it is clear that OpenAIs Codex is
able to solve programming tasks with impressive accuracy. As seen in figure 4.4,
its performance is sometimes hindered due to trivial formatting errors or similar,
resulting in the need for human interaction to solve the problem.





Chapter 5

Result

The development and assessment of the software in this project was guided by
agile development, and separated into three sprints with durations of four weeks.
It became natural to divide the artifact into three main parts, corresponding to
the following sprints:

• Sprint 1: Variant task generation system
• Sprint 2: Rating system and exercise builder
• Sprint 3: REST API and frontend

The two main segments of the backend are the variant task generation and
the rating system, making up the structure that automatically generates and rates
variant tasks using GPT-based models. The REST API and frontend, on the other
hand, are built on top of the mentioned systems, to facilitate effective use of the
system by teaching staff. Instead of a strictly iterative process, where all the men-
tioned parts are improved during sprints, it was decided to divide the develop-
ment into the three chunks. This decision was taken due to the limited developer
workforce of two people, where the ability to delegate is limited. A negative ef-
fect of this approach was that assessment of the prototype would not be conducted
before Sprint 3, as it required the complete system to implement a demonstration.

This chapter is structured according to the process of implementing and assess-
ing the artifact, leading to the results being presented chronologically. Firstly, the
software developed is described and the resulting system is explained, sprint by
sprint. Some details not deemed relevant are left out, while others are considered
more carefully. This prioritization is done to highlight the most crucial concepts
applied to achieve efficient variant task generation and rating. Further down, the
user-experience and design of the system is presented as utilized by teaching staff.
This serves as a review of using the artifact before attending to the demonstration
and assessment on real users. The chapter is concluded by examining the results
from the assessments, both the student demo and teaching staff interviews.

47
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5.1 Variant task generation system implementation

This section focuses on the implementation of the project artifact, which serves as
an extension of the prototype developed during the pre-project phase. The aim of
the section is addressing Research Question 1[1.2], by showcasing one implement-
ation of a system that allows creating programming exercises using GPT-models. It
is important to note that the software is still in its prototype stage. It has been given
the working title "TaskMaster" and encompasses task-generation python methods,
a REST API server, and a frontend interface for task authors.

The primary functionality of TaskMaster revolves around the generation of
numerous variant tasks based on concise textual descriptions. These variant tasks
can then be combined to form exercise sets. The backend of TaskMaster consists
of the Python classes and methods responsible for exercise generation, along with
the REST API server. The backend follows a module-based approach and is con-
structed using the object-oriented paradigm. The JavaScript-code implemented as
a React-app[60] is referred to as the frontend, and makes up the graphical user
interface.

5.1.1 Defining important keywords in the system

• Variant template: The variant templates are database entities describing
the content of the desired variants to be generated, dictating the GPT queries
used. The templates make up the common recipe for the unique variant
tasks generated by the system. One example of a variant template is seen in
Figure 5.1.
• Variant task: A variant or variant task is one of many related tasks generated

by the same template. They are called variants because the underlying con-
cepts are the same, but small differences make sure they are not identical.
The variant type is represented with the following properties:

� Code: The main element of the variant. Needs to be a python function.
� Description: Describes the code from a task perspective. This means

provididing hints, but not disclosing too much information.
� Callable: Name of the function that can be called, with randomized

parameters.
� Output: The output of executing the code, used both to verify that the

function is running, and as examples in the task description.
� Distractors: A list containing one key line in the code, alongside three

incorrect alternatives to the line.
� Rating: Normalized ratings of the code complexity, including nesting,

parameters, operands, numbers of lines and cyclomatic complexity.
� Meta-data: The GPT-model used, timestamp, etc.

• Batch of variant tasks: Variants are built in batches of more than one. The
number is decided by the task author.
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• Task: The term is often used interchangeably with variant tasks, and refers
to either a composition of the key elements in a variant, or a complete vari-
ant task formatted on one of the supported task formats.
• Task author: The intended user of the system with the goal of producing

variant tasks and possibly combining these into exercise sets.
• Exercise set: A combination of formatted tasks. Exercise sets are generated

in the plural, with unique variants of each corresponding task.
• GPT query: Queries are sentences containing instructions to guide the out-

put of a GPT-prompt.
• GPT prompt/request: Prompts or requests to a GPT-model contains a query,

and generates a response. Prompts typically take 10-20 seconds to complete
through the OpenAI API.

Code listing 5.1: Example of a variant template
{

"_id" : ObjectId("64149b427af25824d3224814"),
"Name" : "Sum odd numbers",
"Description" : "sums all odd numbers in a list",
"IncludeLoops" : true

}

5.1.2 Sprint 1: Variant task generation system

The first sprint included setting up all the core elements of the task generation.
Implementing a ‘OpenAIClient‘ class and make use of GPT-prompts to build variant
tasks according to the type defined in 5.1.1 was prioritized. The most substantial
part of this sprint was therefore developing a ‘VariantGenerator‘ class.

OpenAI API communication - ‘OpenAIClient‘ class

The handling requests to OpenAI is done using a class named “OpenAIClient”.
This approach abstracts and simplifies the process of making API calls, and is more
structured than making requests directly from all methods dependant on the API.
The OpenAIClient imports the “openai” python package. As the class is instanced
as a singleton in the backend, it is first instantiated with a specific GPT model.
The GPT model can then be changed later, using a getter-method. A list of avail-
able models is fetched in a method named “get_models()”. The main method is
“gpt_request(prompt: string, history: list, temperature: float)”, handling requests
to the OpenAI API. Depending on the chosen GPT model, various methods from
the OpenAI package are employed. Recognizing that requests to the OpenAI API
may occasionally time out or fail, a persistent solution has been implemented to
automatically retry requests up to three times. The OpenAIClient also maintains
a record of the number of requests per batch of generated variants.

Caching prompts and responses
The decision was made to incorporate a caching system within the OpenAIClient
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for several reasons. Firstly, each request made to the OpenAI API incurs a small
monetary cost that accumulates over time. Additionally, the time required for each
request is significant, ranging from 10 to 30 seconds. Extensive testing revealed
that responses often remained identical when provided with the same prompt and
temperature settings. While the option of storing each response in a database was
considered, it was ultimately deemed unnecessary for other system functionalities.
Instead, the decision was made to implement caching using a local file. When
the constructor is called, the OpenAIClient reads the caching file into memory,
and after completing requests, it writes the updated cache back to the file. This
approach has proven to be highly effective during user testing.

Interpret the response from the GPT - ‘CodeDeserializer‘ class

Responses from the OpenAI API are a combination of code and text, formatted as
a string. One example can be seen in Listing 5.2. The structure of the response
varies between prompts. It is therefore necessary to include a deserializer that
identifies the relevant code and separates functions if more than one is provided.
A class “CodeDeserializer” was built for this purpose. It functions as a singleton,
and contains the method “deserialize(response_string: string)” which returns a
list of python functions.

Code listing 5.2: Example of response from GPT-request
Prompt: Build this python-code: A function that reverses a list using a l o o p
Response:
Here’s a Python function that reverses a list using a loop:

‘‘‘python
def reverse_list(lst):

new_lst = []
for i in range(len(lst)-1, -1, -1):

new_lst.append(lst[i])
return new_lst

‘‘‘

This function takes a list as an input and creates a new list that contains the
elements in reverse order. It does this by iterating over the indices of the
original list backwards (from the last index to the first), and adding each
element to the new list in reverse order. Finally, it returns the new list.

Here’s an example of how to use the function:

‘‘‘python
my_lst = [1, 2, 3, 4, 5]
reversed_lst = reverse_list(my_lst)
print(reversed_lst) # Output: [5, 4, 3, 2, 1]
‘‘‘
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Generation using variant templates - ‘VariantGenerator‘ class

The core of the backend is the “VariantGenerator” class, responsible for generat-
ing any requested number of variants based on a variant template. These vari-
ants include the code, example of execution, evaluation of code complexity, and
a task description. The VariantGenerator is instantiated with a variant template
that outlines the specifications for producing the variant tasks. To start the pro-
cess, the method “generate_code(amount: int)” determines the desired number
of variants to request at different temperature settings, which dictates the levels
of randomness. Queries are then constructed accordingly and used to call the
“gpt_request”-method within the OpenAIClient for each query. The resulting re-
sponses are aggregated into a list, with any identical functions being filtered out.

After obtaining the code, which serves as the foundation for each variant, the
VariantGenerator proceeds by requesting an appropriate task description for each
function. This is achieved by utilizing the "gpt_request" method once again. Pre-
vious requests and responses are stored and provided as context for subsequent
requests. Requested task descriptions are not intended as complete explanations
of the code but rather as descriptions of what the function should do, occasion-
ally including hints. One example of the generated code and task description in a
variant is seen in Listing 5.3.

Code listing 5.3: The code and task-description of a generated variant
def reverse_list(lst):

reversed_list = []
index = len(lst) - 1
while index >= 0:

reversed_list.append(lst[index])
index -= 1

return reversed_list

Skriv en funksjon som tar inn en liste som argument og returnerer en ny liste
der elementene er i motsatt rekkefølge av den opprinnelige listen. Du skal
bruke en while-løkke for å iterere gjennom elementene i den opprinnelige listen
ved å starte fra slutten av listen og legge dem til i den nye listen. Du kan
ikke bruke innebygde funksjoner som ‘reversed()‘ eller liste-slicing for å løse
denne oppgaven.

Executing code in variants
The third step in generating a complete batch of variant task is identifying the
function definition and creating randomized arguments to execute the code for
each variant. The “get_callables” method in the VariantGenerator class considers
the generated function of a variant, which is still represented as a string at this
stage. It extracts the function name and a list of required arguments from the
function’s docstring. For each argument, methods in the “VariableFactory” class
are used to provide values of the correct data type. Subsequently, the "run_code"
method spawns a new process and attempts to execute the function using the
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built-in "exec()" function. Multiprocessing is employed to handle potential issues
arising from functions with endless loops or similar complications. These issues
arose during the development phase, as the code is solely provided by a GPT
model and thus its reliability is not absolute. Therefore, if the execution exceeds
five seconds, the process is terminated. This approach has proven to successfully
mitigate the issue.

Code listing 5.4: The code and example of execution of a generated variant
def reverse_list(lst):

"""
Reverses a list using a while loop.
Parameters:
lst (list): The list to be reversed.
Returns:
list: The reversed list.
"""
reversed_lst = []
i = len(lst) - 1
while i >= 0:

reversed_lst.append(lst[i])
i -= 1

return reversed_lst

print(reverse_list([86, 99, 32, 79, 38]))
>>> [38, 79, 32, 99, 86]

One example of a function and the generated function call is seen in Listing
5.4. The execution of code serves two primary purposes. Firstly, it facilitates the
detection of erroneous and void functions. Variants containing functions that do
not run are excluded from further consideration. Secondly, code execution and
its corresponding output provide valuable contributions to the task description
by serving as an illustrative example. In order to capture the output generated
by print statements within the functions, the standard output stream is redirec-
ted to a variable during code execution. It is worth noting that certain functions
may produce an extensive number of output lines, for example printing every in-
teger between 0 and 100. To prevent task descriptions from becoming excessively
lengthy in these cases, only the first five and last five output lines are retained.

Determining the type of arguments to call functions - ‘VariableFactory‘ class

Examples of function execution are often included directly in the responses to
GPT requests, alongside the corresponding code. This is seen in Listing 5.2. How-
ever, due to this not always being the case, in addition to the inconsistent format
of these examples, it was decided to instead use the proprietary code execution
approach. As previously mentioned, the implementation relies on a VariableFact-
ory class, which is responsible for providing suitable argument values for function
calls. While argument names are identified straightforwardly, determining their
types can be more challenging. Consider the two examples of function definitions:
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“def find_max(lst):” and “def foo_foo(bar):”. In the first case, the argument type
is intuitively clear, whereas in the second case, it is more ambiguous.

Two techniques are used in order to build randomized argument values. Firstly,
the code is examined for explicit typing hints or type annotations within the func-
tion’s docstring. A docstring in a generated function is seen in Listing 5.4, while
the same function typed is shown in Listing 5.5. The VariableFactory is equipped to
identify these specifications and extract the argument types accordingly. In cases
where the docstring and typing information are absent, the VariableFactory resorts
to predefined lists of argument names. For instance, arguments named “list”, “lst”,
“array”, “numbers” are identified as lists, while names such as “i”, “j”, “n”, “m”
and “number” implies integers. It is important to note that this implementation is
not flawless, and testing has revealed instances where the code execution within
variants encounters arguments with unsuitable types. When generating argument
values, the VariableFactory utilizes the Python "random" module to generate ran-
dom values according to the identified type, in the “build_variable" method.

Code listing 5.5: The code of a variant with explicit typing
def reverse_list(lst: List) -> List:

reversed_lst = []
i = len(lst) - 1
while i >= 0:

reversed_lst.append(lst[i])
i -= 1

return reversed_lst

5.1.3 Sprint 2: Rating system and exercise builder

In the second sprint, implementing the rating system devised in Section 3.3 was
the primary goal. This entailed building a ‘VariantEvaluator‘ class along with helper-
functions for each metric used. In addition, higher-order classes such as a ‘Variant-
Factory‘ and ‘ExerciseFactory‘ class were outlined in order to facilitate generating
batches of variant tasks organized in exercise sets.

Evaluating complexity in generated variants - ‘VariantEvaluator‘ class

With the three main parts of a variant in place, the python function, code de-
scription and example of execution, the complexity of variants are evaluated ac-
cording to the complexity metrics described in Section 2.3.1. Evaluation of code
complexity is implemented in the “VariantEvaluator” class in the method “evalu-
ate(variants)”. The evaluation is performed on each variant in a batch, and util-
izes a helper function for each rating feature. These pure functions are external to
the VariantEvaluator, and accept a string representation of code as their sole argu-
ment. The rating functions are “number_of_lines”, “number_of_operands”, “num-
ber_of_function_calls”, “deepest_nesting”, “cylomatic_complexity”, “average_nested_block_depth”,
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and “number_of_parameters”, corresponding to the ratings shown in Figure 2.1.

Intrinsic software metric Weight
Number of lines 0, 33

Number of operands 0, 35
Cyclomatic complexity 1,5

Average nested block depth 3
Average number of parameters 0, 95

Number of function calls 0, 3
Deepest nesting 1, 9

Table 5.1: The table shows the intrinsic software metrics used to evaluate com-
plexity of tasks, and the weights given to normalize the scores.

The results from the process of calibrating the rating system as described in
section 3.3 are shown in table 5.1.

In addition to all the individual ratings, an average rating is computed, serving
as an indicator of the overall complexity of each variant. To get an idea of the dif-
ferences in complexity within a batch of variants, the standard deviation in regards
to each respective rating is also calculated and displayed. Two examples of gen-
erated functions with resulting ratings are seen in Listings 5.6 and 5.7.

Code listing 5.6: The code and rating of a simpler variant
def reverse_list(lst):

reversed_lst = []
for i in range(len(lst) - 1, -1, -1):

reversed_lst.append(lst[i])
return reversed_lst

Average: 2.74
Block-depth: 3
Cyclomatic: 3
Function-calls: 1.2
Lines: 2
Nesting: 3.8
Operands: 2.4
Parameters: 3.8

Code listing 5.7: The code and rating of a moderate variant
def bubble_sort_optimized(lst):

n = len(lst)
while n > 1:

swapped = False
for i in range(n-1):

if lst[i] > lst[i+1]:
lst[i], lst[i+1] = lst[i+1], lst[i]
swapped = True

if not swapped:
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return lst
n -= 1

return lst

Average: 5.06
Block-depth: 6
Cyclomatic: 7.5
Function-calls: 0.9
Lines: 4.3
Nesting: 7.6
Operands: 6.3
Parameters: 2.8

Controlling the process of generating variant batches - ‘VariantFactory‘ class

The classes from the first sprint fulfill distinct roles within the variant generation
process, aligning with the principles of modularization in software development.
This design choice was made to facilitate future expansions of the variant sys-
tem. However, as a consequence, these classes rely on a unifying class that gov-
erns the flow of data. This role is fulfilled by the "VariantFactory" class, which
serves as the orchestrator for constructing batches of variant tasks through its
"build_variants(amount)" method. In this context, the VariantFactory can be seen
as a "director" following the object-oriented "builder" design pattern[47]. In addi-
tion to the variants themselves, a meta-object is returned, providing information
about erroneous variants, duplicates, and timestamps.

Prior to the construction of variants, the desired variant template is set using
the "initialize_template(template)" method, which in turn affects the other classes
used by the VariantFactory. Upon completing the construction of a batch, the Vari-
antFactory calls the "format_variant" method on each variant, ensuring that each
variant is constructed according to the defined variant task type5.1.1.

Using variants to construct tasks on specific formats - ‘TaskFormatter‘ class

The variants built by the VariantFactory contain all the necessary components to
construct exercises and programming tasks. However, these components need to
be assembled according to the task formats as outlined in Section 2.2.1. To fa-
cilitate this process, the “TaskFormatter” class has been developed. The primary
method “format_tasks(variants, format)” takes in a list of variants and returns
tasks in the specified format, together with the solution to each task. The suppor-
ted task formats are “code-writing”, “find-errors”, “fill-in-blanks”, “find-output”,
“parson-problem” and “multiple-choice”. Each format is associated with a dedic-
ated formatting method that takes a variant as input and generates a formatted
task. One example of multiple-choice task formatted from a variant is seen in List-
ing 5.8.
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Code listing 5.8: A variant formatted as a multiple-choice task, with the correct
alternative labelled

# Alternative A (Correct, from variant code):
def sum_odd_numbers(numbers):

sum_odd = 0
for number in numbers:

if number % 2 != 0:
sum_odd += number

return sum_odd

# Alternative B (Incorrect):
def sum_odd_numbers(numbers):

sum_odd = 0
for number in numbers:

if number % 2 == 0:
sum_odd += number

return sum_odd

# Alternative C (Incorrect):
def sum_odd_numbers(numbers):

sum_odd = 0
for number in numbers:

if number % 2 > 0:
sum_odd += number

return sum_odd

# Alternative D (Incorrect):
def sum_odd_numbers(numbers):

sum_odd = 0
for number in numbers:

if number % 2 == 1:
sum_odd += number

return sum_odd

Using distractors in task formats
Although the task formatter could certainly be more versatile in terms of dy-
namically defining formats, it was deemed sufficient to support the six current
predefined formats. Among these formats, three of them distinguish themselves
in terms of implementation. While for instance the “code-writing”-format only
provides the task description and example of execution directly from the variant,
and “find-output”-tasks provide the code itself, other formats require more con-
text. Specifically the “find-errors”, “fill-in-blanks”, and “multiple-choice”-formats
all require distractors relating to the function of the variant. Distractors are provided
by prompting a GPT model, because they require identifying crucial parts of the
code. For instance, consider the following function:

def reverse_list(lst):
reversed_lst = []

for i in range(len(lst) - 1, -1, -1):
reversed_lst.append(lst[i])

return reversed_lst

Deciding which line to change and what distractor to use is intricate. Therefore
GPT prompts are utilized, providing the code and querying for incorrect alternat-
ives on one key code line. For the example above, the following list of code lines
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were returned, ideal when assembling the distractor formats:

Correct line: for i in range(len(lst) - 1, -1, -1):
Distractor #1 for i in range(0, len(lst), 1):
Distractor #2 for i in range(-1, len(lst) - 1, -1):
Distractor #3 for i in range(len(lst), 0, -1):

Controlling the process of generating exercise-sets - ‘ExerciseFactory‘ class

Similarly to how the VariantFactory directs the building batches of variants, the
“ExerciseFactory” class is implemented to arrange the complete process of building
variant tasks and formatting them into exercise sets. An exercise set is a compos-
ition of variant tasks. By building batches of N variants for M variant templates,
the TaskFactory is able to assemble N unique exercise sets of M tasks. Along with
each exercise set, a set of corresponding solutions is generated.

Randomized distribution of concepts
A crucial aspect of the exercise building is randomly shuffling the order variant
tasks before sequentially assigning them to the requested exercise sets. This mech-
anism was implemented due to the tendency of the GPT model to consistently
apply different programming concepts in the same order for each batch of vari-
ants. Specifically, the consequence could be that exercise set #1 contained an
overweight of variant tasks with “for-loops”, exercise-set #2 focused heavily on
“while-loops”, and so on. Although a more deliberate distribution of programming
concepts would be desirable, the current implementation utilizes a randomized
order to address this issue effectively.

5.1.4 Sprint 3: REST API and frontend

The final sprint covered the finalization of the system. Functions to export the
generated tasks and exercises to different file-formats were implemented. The
system was converted to a web application, by adding both an API and a frontend
to the existing set of python-classes. The underlying concepts of generating variant
tasks were therefore completed ahead of this sprint.

Exporting generated exercise sets to PDF and QTI

After formatting the tasks in terms of structure, the more technical aspect of file
formatting is required to make the exercise sets available to the users. Two func-
tions are developed for this purpose: “generate_pdf(exercises, name)” and “gen-
erate_qti(exercises, name)”. The former is the simpler of the two, utilizing HTML
templates to present the variant tasks within each exercise set, exported as PDF
files. Additionally, a solution set is generated on a separate PDF alongside each
exercise set. This approach has proven effective, and has effortlessly provided
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physical copies of generated exercise sets for the student demo.

Potential for QTI-formatting
On the other hand, exporting to QTI requires a more complex and specific format-
ting of the exercise sets, which has not been completed during this project. How-
ever, the potential for future implementation of the QTI format would enable the
use of the generated exercise sets in online assessment platforms, such as Inspera
Assessment[61]. This would also facilitate task authors in manipulating, adding
and removing variant tasks in each exercise set through other platforms.

Make generating variants and exercises available through a REST API

On top of the python-classes and functions that make up the backend, a REST API
is implemented using the Flask[62] web-framework. The implementation of this
API is contained within the "Server.py" file, where specific endpoints are defined
to allow users to modify and add variant templates, generate variants, and create
complete exercise sets. The server itself plays a minimal role in terms of logic and
instead relies on abstraction by calling on the methods exposed by the “Variant-
Factory” and “TaskFactory”-classes. As these methods often take a while to finish,
and run asynchronously, the server keeps track of ongoing requests. For instance
when generating a batch of variants, the details of this process is added to a list.
A specific endpoint is responsible for providing the list of ongoing requests to the
frontend.

To communicate with other services, the server instantiates the OpenAIClient-
singleton, as well as the “MongoDBClient” class that enables managing the variant
templates stored in a cloud-based MongoDB[63] database. The methods imple-
mented in the MongoDBClient are “get_template”, “get_templates”, “add_template”,
“update_template” and “delete_template”.

5.1.5 Summarizing TaskMaster

In this section, we have delved into the comprehensive implementation of Task-
Master. TaskMaster comprises variant task and exercise set generation, a REST
API server, and a frontend interface for task authors. Throughout the section, we
have discussed the key components, design principles, and functionalities that
constitute the backend and frontend of TaskMaster. The system demonstrates an
implementation of programming exercise generation using GPT-models, which
was the main goal of Research Question 1(1.2). Research Question 2(1.2) relates
to the challenges of building such a system, some of which have been presented
in this section.

The backend of TaskMaster has been constructed using a module-based ap-
proach, implemented through object-oriented programming. The complete class-
diagram is seen in Figure 5.1. The backend architecture incorporates a range
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Figure 5.1: Structure of TaskMaster
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of classes such as "OpenAIClient" for handling requests to OpenAI, "VariantGen-
erator" for generating variants, "VariantEvaluator" for evaluating code complex-
ity, and "TaskFormatter" for formatting tasks according to different task formats.
These classes work in tandem to ensure the smooth execution of task generation.
The result is an experience more tailored towards task creation from start to finish
than using the GPT-model interfaces such as ChatGPT[4] directly.

Complementing the backend, the frontend interface of TaskMaster is imple-
mented as a React app. It serves as the graphical user interface, enabling task au-
thors to interact with the system intuitively. The frontend provides a user-friendly
environment for managing variant templates, and generating variants and exer-
cise sets. A REST API server has been implemented to function as an intermediary
between the frontend and the backend, providing endpoints that enable users to
modify and add variant templates, generate variants, and generate complete ex-
ercise sets.

The source code is available on the GitLab repository[64]. In the README
of the project, a link to the hosted version of the TaskMaster prototype is also
accessible.

5.2 Operating the system from a user-perspective

The experience of using the artifact of the project is just as important as the under-
lying concepts. Users need to be able to effectively utilize the system. This section
describes TaskMaster from the perspective of a user, and touches on Research
Question 3[1.2] by discussing the use-cases and scenarios it is applied to.

5.2.1 Front page

The front page of TaskMaster contains a simple README-like section of text ex-
plaining the purpose of the two sub-pages, seen in Figure 5.2. This explanatory
front page provides new users with a guide, and enables using the system effect-
ively without a comprehensive demonstration. The "TaskMaster" logo on the top
right always leads to the front page when clicked. The two buttons to the right
are labeled "Variant templates" and "Exerise-set builder", corresponding to the two
sub-pages. The development of the visual parts of the prototype were undertaken
with a focus on inclusivity, specifically catering to individuals with visual impair-
ments such as poor eyesight and colorblindness. It was also tested by one of the
developers involved in this project, as they have deuteranopia (a form of color
blindness) and reduced eyesight.
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Figure 5.2: Front page of TaskMaster, including a README

5.2.2 Variant templates list

The first of the two sub-pages is the "Variant template"-list, illustrated in Figure
5.3. Here, all variant templates stored in the database are listed, so that variants
defined by one user can be accessed by others. Variant templates can be filtered
using a search field. Adding a new template is done using the "Add" button. By
clicking the button of one of the variant templates, that specific variant template
will open.

5.2.3 Variant template editor

Upon selecting a variant template the menu on top will display the name of the
selected template, along with a "Back"-button back to the list of templates. Two
additional buttons enable copying and deleting the current template. In the cen-
ter of the view, seen in Figure 5.4 the attributes of the template are displayed
using editable fields. This is where users, or task authors, can edit the specifica-
tions of variant templates, influencing the variant tasks produced. Because of the
stochasticity of generating variants, the user is provided with a "Testing ground"
directly below the template editor. This facilitates testing the effect of adjusting
existing templates or creating new templates straight away. When using the "Test-
ing ground" to generate variants, the GPT-model to be used is selected using a
dropdown menu, seen in Figure 5.5. The available models correspond to those
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Figure 5.3: The page listing all variant templates

described in Section 2.4.
Depending on the requested number of variants, generating a batch of variants

may take from 20 seconds to a few minutes. In cases where an unchanged variant
template has been used to generate variants previously, caching makes the process
instant. To give the user an indication of ongoing generation processes, a "loading
box" is displayed for each, as seen in Figure 5.6.

Variant testing ground

As soon as a batch of requested variants is done generating, the resulting variants
are listed in the "Testing ground", as shown in Figures 5.7 and 5.8. On the top of
the view is a list of meta-properties from the generation process, alongside the
standard deviation of each rating metric on the variants. Then follows a vertical
list of all the variants, each including the task description, the code, the ratings
and an example of execution.

5.2.4 Exercise-set builder for combining the variants

The second sub-page of TaskMaster is the "Exercise set builder", where the user
is able to combine any of the variant templates to produce an exercise set. This
view is seen in Figure 5.9. At this stage, the relevant variant templates should
all be completed and tested in the "Variant templates" view, ready for use in an
exercise. For each desired task in an exercise set, the user selects one variant tem-
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Figure 5.4: Variant template editor with a testing-ground for building variants

plate and one task format. The list of task formats contains the formats defined
in Section 2.2.1. Selected task specifications are added to the list of tasks, seen in
Figure 5.10. For each task added to the list, the user is able to specify the order
and how many points are awarded for successfully completing it. The user se-
lects the desired amount of exercise sets, and upon clicking the "Generate" button,
the backend starts generating variants from each variant template and assembles
them into exercise sets. Usually GPT-prompts in the variant generation are already
cached from the "Testing ground" earlier in the process, reducing the time-cost of
generating exercise sets.

List of generated exercise-sets

As soon as the exercise sets are completed, they are listed together with the cor-
responding solution sets, as links to PDF files. This can be seen in Figure 5.11.
The PDF files are accessed in the browser by the user, and can be downloaded
and stored. From here, the user can click "Back", and modify the list of tasks to
make smaller changes and generate again.

5.3 Assessment

This section includes all aspects of user assessment of the system - both in terms
of the ability of teaching staff to effectively produce exercise sets, and in turn by
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Figure 5.5: Dropdown menu with available GPT-models for generating variants

Figure 5.6: Indication that generation is in progress
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Figure 5.7: Results from generating a batch of variants in the testing-ground

Figure 5.8: More results from generating a batch of variants in the testing-ground
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Figure 5.9: The exercise-set builder, where variant templates are combined with
task formats

Figure 5.10: The list of selected exercises to be generated in the exercise-set
builder
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Figure 5.11: A list of complete exercise-sets on PDF, accessible to the user

evaluating the generated exercise sets on students. The assessment tackles the
inquiry in Research Question 3[1.2], namely in which settings the generated ex-
ercises perform the best.

5.3.1 Student demo

The first assessment in the project is not directly related to using the artefact, but
instead assessing the output that it produces. The rationale being that it is ne-
cessary to establish the quality and usability of the exercise sets generated before
assessing the system itself. For the demo, the participants were therefore not intro-
duced to the artefact at all, only given physical printed exercise sets, simulating
a conventional exercise class. The goal was to assess three main points. Firstly,
whether the generated tasks are coherent and solvable. This point requires the
participants to understand the logic of the problem, the wording of the textual
description, and the format in which the tasks are presented. Secondly, assessing
whether the exercise sets are of similar difficulty and aligned with the automated
ratings. Lastly, we looked at the perceived opportunity for each participant to cheat
by looking at another.

To ensure the simulation was realistic, it was decided to include an exercise
set from the pool of previously used sets in the introductory course ITGK at NTNU.
The selected exercise set was exercise number three out of ten from that year, and
contained the segments "Introduction to loops", "More on loops", "Intro to nested
loops", "Code understanding", "Guess the number", "Geometric series", "Fibonacci",
and "Hangman". The exercise set was selected mainly because of its level of dif-
ficulty. It resides on the less difficult part of the ITGK-course material, but is not
amongst the most introductory and trivial of exercise sets. It contains a lower de-
gree of contextual case tasks than later exercise sets, yet some references to widely
known concepts such as Fibonacci numbers and also more specific ideas such as
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referencing the course ITGK. Examples of both are seen in Listings 5.9 and 5.10.

Code listing 5.9: Simple example from exercise-set
for x in range(5):

print("Jeg elsker ITGK! Jeg elsker ITGK! Jeg elsker ITGK!")

Code listing 5.10: Contextual example from exercise-set
The fibonacci-numbers are defined as follows:

f(0)=0
f(1)=1
f(k)=f(k-1)+f(k-2)

That means the first two numbers in the series are 0 and 1, thereafter the next
number is the sum of the two previous numbers. The start of the series therefore
looks like this: 0 1 1 2 3 5 8 13 ...

Create a program that calculates and returns the k-th fibonacci-number f(k) by
using iteration. If successful, the 10th Fibonacci-number should be 34.

From the 30 tasks in the exercise set, 24 of them were selected. The remaining
few tasks were removed because they were very similar, intended for volume-
training, or they were deemed too time-consuming in this specific assessment
scenario. We named the selected set of tasks "Demo ITGK". This enabled mod-
elling the demo exercise sets generated by the artefact after the selected existing
tasks. Thus variant templates were built for each task in "Demo ITGK". The de-
scription in each respective variant template were derived from looking at the
tasks, attempting to capture the important elements in a single sentence. The fol-
lowing list contains the description of the 24 tasks selected from the exercise set,
created as templates in TaskMaster.

1. "prompt the user for an adjective and range and prints a sentence claiming
to be more of the adjective"

2. "prompt the user for an adjective and prints a sentence claiming to be more
of the adjective, until the adjective is an empty string"

3. "prompt the user for an adjective and prints a sentence claiming to be more
of the adjective, until the total adjective character count is 42"

4. "print all numbers in the 5-multiplication table between 20 and 81, prints
numbers from 48 to 80 incrementing by 8, and prints numbers backwards
from 100 to 80 incrementing by -3"

5. "print the numbers 1 to 5"
6. "print the numbers 15 to 1 backwards"
7. "prompt the user 7 times for numbers, and prints the sum"
8. "multiply all numbers from 1, ending when the sum is larger than 1000"
9. "prompt the user by asking for the capital of Niue until the correct answer

is given, printing the number of tries"
10. "prompt the user for amounts of students and amount of subjects, and prints

all combinations of ’Student x loves subject n’"
11. "print all timestamps for one day, on the format HH:MM"
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12. "print all multiplication tables between 1 to 10"
13. "floor-divide a variable with the value 345 by 2 until it reaches 0, and adds

each value to a string"
14. "print each even number from 0 to 10, and prints "divisible by 4" if that is

the case"
15. "multiply a variable with initial value 1 with 2 ten times and prints the res-

ulting value"
16. "multiply a variable with initial value 1 with 2 three times and prints the

resulting value"
17. "print a star i + 1 times one one line for x in range i with initial value 5"
18. "prompt the user for a lower and upper limit, and then prompts for a number

by telling to go lower or higher until the correct random value is guessed"
19. "sum a geometric series from 0 to n"
20. "find the fibonacci value of a number"
21. "find the sum of fibonacci-numbers up to a provided number"
22. "return a list of all fibonacci-numbers up to the provided number"
23. "find the sum of the series of all numbers squared up to the provided number.

Every other number should be subtracted instead of added"
24. "run the game hangman. It starts by prompting the user for a word and

number of tries"

Three examples of tasks from the original "Demo ITGK" coupled with a result-
ing generated variant are shown in Listings 5.11 and 5.12, 5.18 and 5.14, through
5.15 and 5.16.

Code listing 5.11: Task 6 from
"Demo ITGK"

Lag et program som teller nedover fra 15
til 1 ved hjelp av en for-løkke.

Skriv ut alle tallene.

Code listing 5.12: Task 6 from
"Demo 1"

Skriv en funksjon som tar inn et heltall
som argument (standardverdi 15) og
skriver ut alle heltall fra dette tallet
og ned til 1 i synkende rekkefølge.
Implementer funksjonen ved hjelp av
rekursjon.

Eksempel på kjøring:
print_numbers_recursion(15)
>>> 15
14
13
12
11
10
..
4
3
2
1
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Code listing 5.13: Task 7 from
"Demo ITGK"

Lag et program som ved hjelp av en løkke
ber brukeren om å taste inn 7 heltall,
som vist i eksemplet på kjøring under.
Til slutt skal programmet skrive ut hva
summen av tallene ble.

‘‘‘
Skriv inn et heltall: 6
Skriv inn et heltall: 4
Skriv inn et heltall: 7
Skriv inn et heltall: 3
Skriv inn et heltall: 2
Skriv inn et heltall: 456
Skriv inn et heltall: 99
Summen av tallene ble 577
‘‘‘

Code listing 5.14: Task 7 from
"Demo 1"

Skriv et program som tar inn 7 heltall
fra brukeren, legger sammen alle tallene
og skriver ut summen. Bruk liste-forståelse
for å samle inn tallene fra brukeren.

Code listing 5.15: Task 16 from
"Demo ITGK"

Hva skrives ut i koden under?

i=1
j=3
while j>0:

i = i*2
j=j-1

print(i)

Code listing 5.16: Task 16 from
"Demo 1"

Hva er output av følgende kjøring?

def multiply_with_while_loop():
value = 1
count = 0
while count < 3:

value *= 2
count += 1

print(value)

multiply_with_while_loop()

To run the demo, 7 participants were selected. These were all current students
at NTNU, attending different fields of study. The most frequent study programs
were "Cybernetics and Robotics" and "Physics and Mathematics". These programs
were relevant because the syllabi includes ITGK, although most of the courses
concerns vastly different topics. The goal was to pick participants who are known
with the concepts of introductory subjects such as those in ITGK, but not exper-
ienced enough to solve all exercises immediately. "Cybernetics and Robotics" is
more hardware-specific than for instance the "Computer Science"-study program,
while "Physics and Mathematics" is more focused on applying the programming
on calculations and numerics.

The participants were selected to cover all 5 years of their respective master
programs. Participants on the first year had therefore recently attended the ITGK
course, while one participant attended the course 4 years ago. We refer to the
7 participants as "Participant # (Number)". In stead of generating unique exer-
cise sets for each participant, 4 different exercise sets were built. The purpose of
this approach was to have more than one participant assess each exercise set, to
mitigate subjective feedback and outliers. The four generated exercise sets are re-
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ferred to as "Demo # (Number)", and distributed amongst 6 of the participants.
Participant 7 was given the original "Demo ITGK".

Participant Exercise-set
Participant 1 Demo 1
Participant 2 Demo 2
Participant 3 Demo 2
Participant 4 Demo 3
Participant 5 Demo 3
Participant 6 Demo 4
Participant 7 Demo ITGK

Table 5.2: Distribution of demo exercise-sets and participants.

The assessment process was structured corresponding to the tasks. In order
to conform with the time slot allocated for the demo, 8 of the 24 tasks in each
exercise set were selected, namely Task 1, Task 4, Task 6, Task 7, Task 10, Task 14,
Task 16 and Task 22. For each task in the exercise sets, the participants answered
four questions:

1. Does the task make sense? Was there something unusual about the task or
the task description?

2. Did you manage to complete the task?
3. On a scale from 1-10, where 1 is trivial and 10 represents the most difficult

one can expect in ITGK, how difficult was the task?
4. Do you miss any information in the task?

Task ITGK 1 2 2 3 3 4 Average STD
1 3 3 3 3 3 5 1 3 1,15
4 3 4 4 4 10 4 4 4,71 2,36
6 2 7 2 5 2 2 1 3 2,16
7 4,5 4 3 1 3 3 2 2,93 1,25
10 5 5,5 6 6 7 2 3 4,93 1,64
14 4 5 6 4 4 3 5 4,43 0,98
16 5 5 9 4 6 4 8 5,86 1,95
22 8 7 10 7 9 5 10 8 1,83

Average 4,31 5,06 5,38 4,25 5,5 3,5 4,25

Table 5.3: Q3: Assessed difficulty of each task in each exercise set.

The key question in the task assessment was Question 3. Responses to the
question enables analyzing fairness and equality in difficulty between variants
from each exercise set. While the data set is too small to draw any conclusions,
Table 5.3 shows that the different variants of each task in many cases show a sim-
ilar perceived difficulty. There are some outliers in the data set, and as seen in
5.5. A common trait for these outliers are that the participant were not able to
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Task ITGK 1 2 3 4 Average
1 x 3,19 2,71 4 3,16 3,27
4 x 4,51 4,31 5,01 5,06 4,72
6 x 2,49 2,49 2,34 2,61 2,48
7 x 2,57 3,27 3,61 3,31 3,19
10 x 4,26 4,33 4,29 3,69 4,14
14 x 3,59 4,2 3,54 4,53 3,97
16 x 2,7 2,66 2,64 2,03 2,51
22 x 2,49 4,09 2,49 3,51 3,15

Average x 3,23 3,51 3,49 3,49

Table 5.4: TaskMaster automated rating of task difficulties in each exercise set.

Task ITGK 1 2 2 3 3 4
1 Yes Yes Yes Yes Yes No Yes
4 Partially Yes Yes Yes No Yes Yes
6 Yes No Yes Yes Yes Yes Yes
7 Yes Yes Yes Yes Yes Yes Yes

10 Partially Yes Yes Yes No Yes Yes
14 Yes Yes Yes Yes Yes Yes Yes
16 Yes Yes Yes Yes No Yes Yes
22 Yes Yes No Yes No Yes No

Table 5.5: Q2: Participants succeeding at each task in each exercise set.

complete the task, and therefore understandably gave it a high difficulty rating.
The results from this question also enables comparing perceived difficulty with
the automated rating of each variant by the artefact, consequently assessing the
rating system itself. After generating the exercise sets, the ratings produced by
TaskMaster were recorded, listed in Table 5.4. While these distinguish between
different metrics such as cyclomatic complexity and nesting, the average rating
for each task is used when comparing with perceived difficulty by the participants.

Reviewing the "Average" column from both Table 5.3 and Table 5.4, we ob-
serve that the first 6 tasks are closely aligned. However, the two most difficult
tasks, Task 16 and Task 22, are not correlated with the average ratings produced
by the artefact, clearly showing that the automated rating is not accurate for cer-
tain tasks. However, the results indicate that there is some correlation between
the estimated and observed difficulty. Also, the weights to each rating function,
defined in Table 5.1, appears to be quite accurate except for the outliers.

The tasks where the perceived difficulty deviates largely from the average rat-
ing produced by TaskMaster often fits into one of two categories: Abstract and
obscure code with no context, or very specific concepts that requires knowledge
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outside of the programming itself. These are both elements that adds to the com-
plexity of the task, but are not considered by the rating methods. An example of
obscure code is Task 16 [5.16] from the student demo. Tracing exercises similar to
Task 16 are often obscure by design, to increase the difficulty. Task 22 [5.17] from
the student demo, on the other hand, is very specific by requesting a list of Fibon-
acci numbers. This requires knowledge of the Fibonacci series and successfully
implementing it in code. For a better automatic rating of difficulty, a measure-
ment of the semantic meaning of the code related to a task needs to be developed.

Code listing 5.17: Task 22 from "Demo 1", showcasing a concept-specific variant
Skriv en funksjon som tar inn et heltall ’n’ og returnerer en liste med alle
Fibonacci-tallene som er mindre eller lik ’n’. Fibonacci-tallene er en sekvens
av tall der hvert tall er summen av de to foregående tallene, med de to første
tallene i sekvensen som 0 og 1.

Eksempel på kjøring:
print(fibonacci_loop(33))
>>> [0, 1, 1, 2, 3, 5, 8, 13, 21]

After all participants had filled out their individual assessment forms, the vari-
ants were assessed in plenary by the group. For each task, the group answered the
following questions:

1. The participants read the task descriptions from the other exercise sets.
Which task does the group prefer?

2. Which task is the least preferred by the group?
3. By looking at the tasks and solutions of other participants, would the parti-

cipants be able to cheat on their own task?

It is important to note that "Demo ITGK", the original exercise set that the
demo was based upon, was intended to solve using an IDE. Some of the tasks
therefore contains code snippets as a basis for the task, where students are sup-
posed to continue and finish the code. This task format is described in Section
2.2.2, and not supported by TaskMaster. Handing out physical copies of "Demo
ITGK" therefore breaches with the intentions of the authors. Nevertheless, it en-
ables comparing the task descriptions and formats to the generated exercise sets.

The group preferred tasks from all the different exercise sets, with "Demo
2" being the most desirable. It is worth noting that the preference of a task was
interpreted as identifying the "easiest" task according to several of the participant.
One clear observation was that students preferred tasks where clear instructions
were given, as long as they instructions did not impose the use of difficult concepts.
An example of this is Task 7 from the exercise sets, illustrated in Listings 5.18, 5.19
and 5.20, where the task description of the two different variants states different
requirements. The group preferred "Demo 2" in this case, and the least desirable
was "Demo 3".

Code listing 5.18: Task 7 from "Demo ITGK"
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Lag et program som ved hjelp av en løkke ber brukeren om å taste inn 7 heltall, som
vist i eksemplet på kjøring under. Til slutt skal programmet skrive ut hva summen av
tallene ble.

‘‘‘
Skriv inn et heltall: 6
Skriv inn et heltall: 4
Skriv inn et heltall: 7
Skriv inn et heltall: 3
Skriv inn et heltall: 2
Skriv inn et heltall: 456
Skriv inn et heltall: 99
Summen av tallene ble 577
‘‘‘

Code listing 5.19: Task 7 from "Demo 2"
Skriv en funksjon som tar inn 7 heltall fra brukeren ved hjelp av en for-løkke, og
deretter beregner og skriver ut summen av disse tallene.

Code listing 5.20: Task 7 from "Demo 3"
Skriv et program som ber brukeren om å taste inn 7 heltall. Programmet skal
deretter beregne og skrive ut summen av disse tallene. Du kan benytte deg av
funksjonene ‘input()‘, ‘int()‘, ‘sum()‘ og ‘map()‘ for å løse oppgaven.

Perceived possibility to cheat on tasks

For 5 of the 8 tasks, the group concluded that they would either not be able to, or
not be confident in cheating by copying solutions from other exercise sets. Table
5.6 lists the results for all tasks in the demo. The answers stem from a majority
vote, which in all cases was decided with at least 6 of the 7 total participants in
agreement. These findings are interesting, as many of the solutions were in fact
equivalent. However, due to small differences in the wording and hints given in
task descriptions, the variant tasks successfully mitigates the perceived ability of
students to copy each other.

1 4 6 7 10 14 16 22
No Yes No Yes Yes No No No

Table 5.6: Whether the group was confident at cheating on each task.

5.3.2 Research assistant interview

This subsection describes an interview done with a research assistant regarding
TaskMaster, showcasing the complete system. The research assistant is referred to
as "they" in the following text.

Interview object A
This section will present an interview done with a research assistant in TDT4110
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Information Technology, Introduction, the most common introductory program-
ming course at NTNU Trondheim. The goal of the interview was to provide insight
into the usability of the system we have made. Before conducting the interview,
we designed a questionnaire to loosely base the conversation on. As opposed to
the student interviews, we wanted this interview to be semi-structured instead of
rigidly based on a questionnaire. Our reasoning for this was to allow the interview
subjects to be more relaxed, and to invite them to propose changes or talk about
their ideas, which could be implemented in our solution.

Interview object A, hereby referred to as "RA1", is currently a 5-th year mas-
ter student at NTNU, and was a Research Assistant and lecturer in the course
TDT4110 Information Technology, Introduction, and a Research Assistant in TDT4100
Object-Oriented Programming in the period 2022-2023. They has been involved in
the creation of course taskwork for both TDT4110 and TDT4100, as well as the
creation of exam sets in TDT4100.

Q1: Is the system intuitive, and is the process of generating variant tasks
easy to understand?
All in all, RA1 had very little problems navigating the solution and generating his
first tasks. Some misunderstandings took place, namely the fact that reloading the
web page results in the interruption of task generation and minor UI-related issues
clarified by reading the documentation. The tasks generated seemed reasonable,
and looked typical for introductory programming courses.

Q2: Generate an exercise set with a couple of variants with different
formats. Is there something missing that stops or limits the creation of tasks?
All in all, no limitations existed for RA1 to not be able to generate variants as they
pleased. The conversation pivoted towards explaining how the same task concept
can be utilized in a variety of ways when generating tasks. The example utilized
the "concept" of asking the user to iterate through a list of numbers, and return a
list containing only the prime numbers. This concept was then conceived in the
form of a parsons problem, a multiple choice problem, a code writing task and a
"find the error" problem. RA1 highlighted the variation of tasks that came from
the same concept as very useful, and could definitely be used in TDT4110.

Q3: What do you think of the quality of the tasks generated? How would
you feel using generated tasks in course exercises?
Using the generated tasks would work very well in RA1s opinion, especially in
the course TDT4110. The reasoning behind this is that TDT4110 is a lower-level
introductory course, with more of a focus on syntax and programming concepts.
For this, the generated tasks were excellent. When discussing TDT4110, RA1 fur-
ther elaborated on the necessity of tasks being thematically consistent within
TDT4110. Discussing how current language models face a significant challenge
in generating thematically consistent tasks due to the issue of context overload,
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they explained how they had experienced the same problem when using ChatGPT
themself when creating exercise sets for TDT4110.

Q4: How would you feel using generated tasks in exams?
RA1 expressed a clear interest in using the generated tasks as a starting point
when creating exams. They did underscore the necessity of manually evaluat-
ing the quality of these generated tasks, but also emphasized the convenience of
not having to create tasks from the ground up, and instead being able to modify
already existing tasks. They also pointed out that there exist significant advant-
ages to not manually creating tasks, as they found that they didn’t possess the
creativity that language models provide.

Q5: How much time do you believe would be saved by using this system
instead of manually creating tasks?
He was certain that the solution would save a significant amount of time. Even
though they did not want to give an exact measurement, it was obvious that the
task generation system would be very useful in his prior work.

Q6: With nothing particular in mind, do you have any comments regard-
ing the system?
He emphasized that they believed the small variations in the tasks would be very
valuable in the context of a home exam, but not as impactful in a traditional school
exam. The reasoning for this is the fact that they deemed it more likely that stu-
dents collaborate at home exams, and that collaboration is much more difficult in
a traditional exam setting.

The potential for introducing variations into the coursework from one year to
the next, was underscored as a substantial influence on reducing the potential for
academic dishonesty among students doing their coursework. In the context of
TDT4110, a set amount of smaller assignments are expected to be completed at
home on a weekly basis, supplemented by two more substantial assignments in
the middle and end of the semester that necessitate in-person completion within a
traditional examination environment, utilizing Inspera as a digital platform. They
especially expressed his conviction that the system would be particularly benefi-
cial in the generation of the larger assignments intended for completion through
Inspera.

They also conceived a unique application for the system, which we had not
previously considered. As a RA in TDT4110, they bore the responsibility of con-
ducting weekly assignment lectures. These lectures aim at providing more context
for that weeks assignment, and provide students with a deeper understanding of
the concepts needed to solve it. This is typically done by the RA solving assign-
ments on a blackboard, explaining their reasoning and the process along the way.
RA1 believed the system would be perfect for generating this kind of task, and
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would almost eliminate preparation time needed for the lectures.

Research assistant interview takeaways

After the discussion, we analyzed how the interview had gone, and the main
takeaways. The conclusion was simple, the task generation system did what we
wanted it to do, and it was intuitive enough to the point that RA1 could use it on
his own. RA1 believed the quality of the tasks generated was high enough to the
point that they could reliably be used in the exercise sets of courses, especially
TDT4110. TDT4100 requires more thematically coherent tasks, which requires
more context than current language models are able to handle. Contrary to what
we thought, they didn’t believe introducing variations would lead to a reduction
in cheating done by students completing weekly assignments. His argument was
that if they really wanted to cheat on the weekly assignments, small variations in
the tasks would not pose a significant problem. After all, they could simply use
the same language model used to generate the assignments, to complete the as-
signments.

As a finishing note, RA1 emphasized that there exists an actual use case for a
system like this. RA1 provided valuable insights into the system, and together we
created the following list of suggestions to improve the solution:

• Implementing a queue-based system in the API would make it so that re-
freshing the webpage does not interrupt the generation of variants. The
generation of variants would instead be added to a queue, and processed as
soon as the API was available.
• Introducing parallelization of task generation would dramatically reduce

time spent to generate tasks.
• Changing the design of the "playground" to avoid being misinterpreted to a

classic website footer.
• When viewing a template, it would be nice to see some sort of log of what

has been generated using that specific template. This would be very nice to
gain a bit more understanding regarding the tasks that would be generated.

5.3.3 Professor interviews

This section details the interviews undertaken with professors at NTNU, who hold
significant roles in instructing students in introductory programming courses. The
interviews were conducted in an informal yet targeted manner, with the central
objective being to comprehend the professors’ perception of the software’s appear-
ance, its potential capacities, and potential future developments. These viewpoints
provide a contrast to those of research assistants or students. Each interview in-
volved presenting the current iteration of the solution to the professors, followed
by discussions elucidating the system’s potential utilization. Each of the professors
are referred to as "they" in the following text.
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Interview object B Interview object B, hereby referred to as "P1", is a distin-
guished professor engaged extensively in both introductory and advanced pro-
gramming education, serving as a lecturer in an array of programming-centric
courses. The interview was conducted as described above, and the subsequent
paragraphs will provide a summary of P1’s perspective on the system.

Context and quality
During the discussion concerning tasks generated by our system, the subject of
task context arose. The tasks we provided to P1, generated by our system, were
devoid of any specific context, and instead posed straightforward programming
questions. In contrast, when crafting coursework for programming courses, the
tasks are often embedded within a context—be it a novel card game, a workplace
challenge, or something similar. This approach supplies students with a practical
framework, facilitating a more comprehensive understanding of the situation and
the queries posed by the task.

The topic of task quality in programming also surfaced during the discussion,
highlighting the differing quality expectations between students and professors.
As P1 elucidated, professors often guide students through task solutions, thus the
imperative of exemplifying high standards becomes apparent. For instance, if P1
suggested a solution utilizing inadequately named variables and functions, it inad-
vertently sets a precedent for students, who may consequently adopt poor naming
conventions in their own proposed solutions. P1 summarized their thoughts in an
elegant sentence: "Code is not written for the machine, it is written for the next
person to read the code". P1 advocated a cautious approach towards the use of
automatically generated content, underscoring the necessity for rigorous quality
assurance.

Expanding on this notion, it can be assumed that the quality of instructional
materials, in this case, the programming tasks, greatly influences the learning
outcomes. Given the influence of professors’ practices on students’ approaches
to problem-solving, the importance of quality assurance in programming tasks
is elevated. It not only ensures that the tasks are effectively challenging for the
students, but also guarantees that they perpetuate best practices and standards in
programming. This attention to detail could serve as a critical factor in shaping the
students’ understanding and competency in programming, which in turn, could
significantly impact their performance and success in their future endeavors. How-
ever, P1 believed the system could definitively be used to not have to create tasks
from the ground up, and instead use them as a starting point and modify them to
have sufficient quality. The creativity provided by the system was also interesting
to see, and was described as useful.

System expandability and adaptability
When discussing how we made the system, the topic of expandability and adapt-
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ability came up. As the system is yet to be fully realized, we expressed our interest
in obtaining P1’s insights concerning potential future trajectories for the software
system. P1, was understandably most interested in the applicability of the system
from the viewpoint of a professor, and therefore questioned the ease of incorpor-
ating new functionality and expanding the system towards becoming a task gen-
eration platform dedicated to assisting professors in the creation of coursework.
We clarified that, given the modular nature of the system, the conception of such
a professor-oriented system is a plausible future direction. P1 further expounded
that more flexible and expandable systems would be more likely for future mas-
ter’s students to enhance and extend, in contrast to more integrated systems that
offer limited scope for modification and expansion. The discussion highlighted the
importance of developing with scalability and adaptability in mind. We agreed
that it could help ensure the systems longevity and relevance in the educational
landscape.

Academic dishonesty
P1 explained how they worked with their peers to deter and counteract academic
dishonesty, specifically cheating in coursework. We explained our research con-
cerning students’ perception of the code tasks generated by our system and presen-
ted the relevant data we had collected. P1 argued, however, that the efforts to
prevent cheating might be to no avail, considering that students will devise ways
to cheat regardless of the structure of the coursework if they really wanted to.
Based on this reasoning, P1 explained the stance of prevention by fostering an
ethical attitude among students instead of relying on detection and punishment
of cheaters.

In the context of examinations, however, P1 endorsed the strategy of having a
variety of exam sets to select tasks from, thus creating unique exam task sets for
each student. P1 agreed that this tactic can serve as a hurdle for cheaters.

P1 interview takeaways To summarize, our discussions with P1 focused on
several critical aspects of our system’s development and application in an aca-
demic setting. The issue of task context in our system’s generated tasks was raised,
highlighting the need to embed such tasks within a relevant context to facilitate
student understanding. The topic of task quality was addressed, where it was ob-
vious that quality assurance is essential if one were to use automatically generated
tasks. However, it was acknowledged that the system’s potential as a starting point
for task creation was useful.

P1’s insights provided valuable guidance for the systems potential applications
in an academic context, and possible future work.

Interview object B and C Interview object B and C, hereby referred to as "P2"
and "P3", are both renowned professors heavily involved in both introductory and
advanced programming education, performing lecturing duties across a spectrum
of programming-related courses. The interview was conducted the same was as
with P1, except the interview were done on both professors simultaneously. This
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allowed us to listen in on their shared reasoning and discussions regarding our
solution and ideation as we demonstrated functionality. The subsequent para-
graphs will provide a summary of P2 and P3’s perspective on our system.

Similar discussions as with P1
Several perspectives shared by P2 and P3 aligned with viewpoints encountered
when interviewing P1. All three professors were very aligned when it came to their
viewpoints regarding academic dishonesty policies, system expandability and ad-
aptability, and the importance of task quality assurance. To avoid redundancy, the
overlapping viewpoints that contained the same arguments are left out and the
discussions regarding future work are emphasized instead.

Compatibility with existing technologies
One thing that was highlighted as we discussed the system, was intercompatibil-
ity with existing technologies. This is an interesting topic, as our system currently
does not provide all the functionality needed from task creation, distribution to
students, and a student-focused development environment, integration with other
solutions is a logical next step. As NTNU uses Inspera, an online assessment plat-
form, P2 and P3 both mentioned their desire for the system to be integrated with
the assessment platform. We mentioned that we had already considered such an
integration but had not yet reached that point. We also mentioned in the same
way as to P1 that the "lecturer" viewpoint, while important, represents just one
among many potential future directions for the system.

Creativity and regularity
When looking at the tasks produced, a discussion regarding the balance between
creativity and regularity arose. The balance between creativity of a task and the
regularity of a task is a fine line. Forcing a language model to focus too much
on the structure of a task seems to understandable impede its "creativity". On
the other hand, allowing for too much creativity could result in tasks that are
unstructured and challenging to utilize within a traditionally structured educa-
tional system. After explaining our approach of temperature adjustment based on
number of tasks requested, P2 and P3 agreed that it was a good way of handling it.

Future work
During the task generation process, the OpenAI API was extremely slow in re-
sponding to prompts made from our system. Understandably, this delay presents
a substantial inconvenience for users, lowering the overall user-friendliness of our
system. Purchasing a paid subscription or similar service, provided it ensures ex-
pedited API response times, would be a worthwhile investment for enhancing the
usability of the system.

During the task generation process, some tasks generated were close to per-
fect, with P2 wishing to simply rename a variable. It then became apparent that
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the capability to directly edit the programming tasks generated within the web
browser was not in the system. Both P2 and P3 agreed that this feature would
be a valuable addition to the system. The discussion progressed to highlight what
they felt was the Inspera platform’s inadequate task editing functionality, where
they agreed that if our system could supply this feature, it would substantially
enhance the overall utility of the program.

To summarize, both P2 and P3 expressed genuine interest in making use of
such a system to generate tasks which can be used as starting points for more
complex and "human" tasks. Both professors already made use of ChatGPT when
creating coursework, and expressed interest in this form of structure added to a
language model.





Chapter 6

Discussion

This chapter discusses the process and results gathered during the design science
process, with respect to the research questions.

6.1 Summary of the variant task generation system

Through an agile development process, a system for automatically generating pro-
gramming tasks using GPT-models has been built. The resulting system exhibit
many useful features in effectively generating programming tasks. While simpler
approaches such as using the large language models directly without a system
would also prove useful, the assessment process has shown the increased effi-
ciency by using the software in many use-cases. The combination of query design,
automatically structuring and rating the variants, as well as the ability to create
exercise sets using a GUI enables a seamless process of task-generation. However,
the system has limitations. The variants generated are not always of high quality,
and the users have limited ability to manipulate the output. Thus a more flexible
structure could prove beneficial in further development.

6.2 Comparisons to prior work

As discussed in chapter 4, there have been related work conducted which studies
different ways of generating programming tasks using large language models.
This chapter compares our work to related work. There are several differentiating
aspects such as language models used, how the language models are queried, and
how the system surrounding the actual task creation is handled.

6.2.1 Query technique

The technique used to query the language models differ considerably between our
work and related work. As described in figure 4.1, Sarsa et al.[52] uses a different
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approach to querying than TaskMaster. They make use of a large and thorough de-
scription of a task to prime the language model into providing them with a novel
second and structurally similar task. The same thorough description can be reused
several times, as the goal is for the language model to gather inspiration from the
structure of the priming example.

There are a few reasons why this approach is not ideal when implementing
a structured system meant to generate tasks on a large scale. When Sarsa et al.
primed OpenAI Codex, they provide a multitude of data created by a human being,
and use two fairly similar human-made exercises. Although the strict structure of
the docstring results in a somewhat standardized output format, the context that
must be attached to each task makes it difficult to create differing tasks in large
quantities. If TaskMaster were to implement the usage of similar priming, large
sets of programming tasks of varying complexity and structure, solutions and tests
would need to be written manually and be implemented in the priming of the sys-
tem. There are many different task formats, and this approach would require at
least one task showing the detailed structure for each of them in order to work.
TaskMaster is also a prototype built upon the wish of effortlessly creating program-
ming tasks, which in its current state is reflected by the fact that an enormous
amount of programming tasks can be generated from a simple description.

There are also clear advantages to using similar priming. As described in
chapter 5.3.3, programming tasks handed out to students are typically set within
a context meant to aid students in understanding the goal of their task. Being
told to write a function describing a familiar action (i.e. purchasing a bus ticket
with a given discount) is preferred when compared to plain, generic functions. For
TaskMaster to support the functionality needed to make similar docstring priming
viable for large amounts of coding tasks would take more time than we had at our
disposal.

6.2.2 Task quality and readiness of use

The tasks generated by TaskMaster face similar challenges and characteristics as
generated programming tasks found in similar work. Although we did not con-
duct a formal analysis, the level of "readiness of use" observed in our generated
tasks aligns with the findings reported by Sarsa et al.[52]. Feedback received from
professors regarding the generated tasks was very clear: tasks must be more re-
fined before being presented to students. However, there was not a lot of work
required before tasks could be used, and there was consensus that the generated
tasks served as excellent starting points when developing coursework.
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6.3 Limitations and threats to validity

The purpose of this chapter is to explore and articulate the limitations of our
framework. The following sections provides discussions on some of the identified
limitations of our work.

6.3.1 LLMs and large amounts of context

While the current generation of LLMs demonstrates remarkable capabilities in
generating code snippets and performing simple programming tasks, their capa-
city to construct complex, context-rich programming tasks are not fully matured.
Embedding a function or task within a broader, more realistic concept requires a
level of contextual understanding and knowledge of the real world that LLMs are
currently limited in. It is important to know that LLMs lack a genuine understand-
ing of real-world entities, concepts and relationships. They don’t possess intrinsic
knowledge about the world, they rely on patterns they’ve learned from the data
they have been trained on.

LLMs and user intent clarification

Current LLMs lack the capability to interactively clarify the requirements or intent
behind a prompt with an end user. As described in section 2, they operate on a
feed-forward mechanism, producing an output based on an input without the
possibility for back-and-forth clarification. Due to this, the intent of an end user
might be "lost in translation" between input and output.

6.3.2 Is the system redundant?

As previously highlighted in section 5.3.3, the professors we interviewed have
previously used ChatGPT to aid their manual process of generating programming
tasks. Even though our system contributes with much more than just asking Chat-
GPT to create tasks, there are some arguments to be made regarding if the system
is redundant or not.

The tasks created by our system often need further refinement before they can
be applied directly in a teaching environment, and definitely needs manual quality
control. This necessity for modification for each task generated makes us wonder
if some faculty would be bette off manually using ChatGPT instead, if what they
seek is the creativeness of the LLM and don’t care for the functionality regarding
exercise set generation or variant generation.

6.3.3 The use of both agile and waterfall method

During the developmental phase of our system, we initially perceived our ap-
proach to be aligned with an agile framework, specifically an adaptation of Scrum.
However, upon reflection, it is apparent that our methodology mirrored a hybrid
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of the Scrum and waterfall methods. We used the key values of scrum, but the
progression and structure of our three development sprints leaned towards the
waterfall method.

Each of these sprints focused on a distinct part of the same system. The first
sprint concerned the integration of the OpenAI API and the establishment of the
variant task generation system, while the second sprint was centered around the
creation of a rating system and an exercise builder. The third sprint was aimed at
the development of a REST API and frontend solution.

This division of work and the completion of each subsystem before moving
onto the next mirrors the linear nature of the waterfall method. We believe this
happened due to not having a fully concrete vision of the final system from the
onset. Given the small size of our team, which comprised only two individuals, we
deemed it more efficient to entirely finish one subsystem before proceeding to the
next. This decision was primarily driven by a desire to avoid extra work that might
come from needing to implement changes in already completed components to
accommodate the later stages, something that was actually mostly avoided.

To summarize, our approach were a balance somewhat making use of the iter-
ative flexibility of Scrum and the sequential progression inherent in the waterfall
method. We still believe the right choice was to work this way, as we believe it has
led the system further than what would have been possible with pure scrum. It is
also an insight into the practical realities of system development.

6.3.4 Lack of direction

Due to the fact that TaskMaster is a project made by exploring the capabilities
of generating programming tasks using large language models, the system is not
angled towards a specific userbase. We received feedback to further confirm this
during the end user interviews conducted. An important drawback stemming from
this approach is the limited visibility into the system’s complete capabilities from
the perspective of, for instance, a professor. On the other hand, the absence of a
specific user focus has resulted in valuable data from multiple end user groups,
and the development of a modular system that can adapt to diverse future require-
ments. The system was also designed with a focus on modifiability, deliberately
avoiding design choices that would hinder certain future development directions.

6.3.5 Subjectivity of complexity

An underlying problem in a system which generates metrics based on a program-
ming task, is the subjectivity of complexity. The perceived complexity of a pro-
gramming task is subjective, and depends fully on a programmers experience,
skill level, and most importantly familiarity with the programming language or
problem domain. Even though the system assigns a complexity score based on
objective metrics, these don’t necessarily align with the perceived difficulty for in-
dividual end users. The fact that the systems displayed values are weighted based
on an introductory programming course, will also enforce a bias into the metrics
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system only making it viable for introductory programming courses. However, the
underlying metric functions can be used to create weighted systems more fitting
for more complex programming courses.

6.3.6 Multiple equivalent solutions in relation to complexity rating

A common occurrence in programming tasks is that there are multiple equivalent
solutions to a programming task. A naive metrics system, in the sense that it is
based on line-by-line processing, will give assign a higher difficulty rating on an
unnecessarily line-heavy solution compared to a sleek solution using list compre-
hension. An example of this can be seen in the code snippets below, where the
functionality is equivalent but the road to get there is different.

numbers = [1, 2, 3, 4, 5]
squared_numbers = []
for number in numbers:

squared = number ** 2
squared_numbers.append(squared)

numbers = [1, 2, 3, 4, 5]
squared_numbers = [number ** 2 for number in numbers]

However, we still chose to not create a more complex metrics system. More
sophisticated metrics would require more advanced algorithms and statistic tech-
niques to implement. This would lead to a significant time investment in both
development and testing, which was better used on the generation system. An-
other argument is the fact that the system is designed for use in introductory CS
courses, which makes it plausible that users of the system are of a similar, rel-
atively low skill level. It was deemed likely that the number of times the system
encountered such discrepancies as in the example above would be relatively small,
and therefore does not need a more complex metrics system.

6.3.7 Weighted complexity measure

As outlined in section 3.3, our metrics are derived from a weighted complexity
analysis of the programming task presented to the user.These weights serve the
purpose of standardizing raw complexity measures, such as ’number of lines,’ into
a more universally understood scale of 1 to 10. While the goal of this standardizing
process was to fit our difficulty spectrum into classic CS1 tasks, biases stemming
from the specific tasks process has made its way into these weights. The weights
therefore not only reflect the complexity of the tasks, but also the specific charac-
teristics of the tasks that were used to calibrate the system. There are also many
different ways of squeezing non-negative into an interval between 0 and 10. We
selected the approach which we found most intuitive, but there might exist better
ways of doing it.
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6.3.8 Biased measurements due to code base size

The size of a solution, as measured by lines of code, is one of the most basic
measurements one can make about a piece of software. A problem with the rat-
ing system as it is now, is the fact that most of the metrics tracked significantly
correlate with the size of the code snippet in question. If a solution has many
lines of code but these lines are mostly repetitive or straightforward, our metrics
system might overvalue its complexity compared to what a human being might
think. Similarly, small solutions which make use of "complex" language function-
ality such as lambda expressions or built-in modules may be unjustly measured to
be less complex than the equivalent code snippet written out using verbose code.

6.3.9 A new landscape

Navigating the landscape of systems akin to our presents certain challenges, as
such technologies have only become feasible in the recent past. As the develop-
ment and utilization of frameworks that incorporate LLMs continue to evolve,
effective strategies to manage AI are still being refined. This emphasizes the po-
tential for this technology to grow significantly more complex in the future, some-
thing that should be kept in mind when reviewing past works within this rapidly
evolving field.

6.3.10 Small sample size and realism of testing

The task generation system underwent testing with a small sample of seven indi-
viduals, who willingly participated in a mock examination without any compens-
ation. These participants, recruited from acquaintances and mutual connections,
completed exercise sets composed of 50 variant templates.

Such a sample, while convenient, may introduce several biases. The selection
bias is a concern as the participants, all students at NTNU, may not represent
the larger relevant population, which would be introductory CS students. Their
relationship to us, even if indirect, may also introduce a familiarity bias. Despite
these potential biases, we are confident in the honesty of the feedback received,
as the participants demonstrated their willingness to provide critical responses.

We also did not get to examine how actual students in an ongoing introductory
computer science course would handle the tasks generated. This omission was
due to a combination of timing, with the project’s completion coinciding with the
end of the semester, and the unavailability of any suitable programming courses
during that period.

It is also important to note the fact that no testing was done in a real-world
learning environment. We did therefore not get to see how actual students in an
actual introductory computer science course would handle the tasks generated.
The reason for this was both that no introductory programming courses were
running that semester, and the solution was completed at the end of the semester.
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However, due to these conditions, especially the limited sample size, no sub-
stantive statistical analysis could be conducted on the examination data, hence the
lack of statistical interpretation in the Results section. This context should be kept
in mind by readers when considering the implications of the findings presented.





Chapter 7

Conclusion and Future Work

This chapter marks the conclusion of our thesis, bringing together the many threads
of our investigation and providing an answer to the research questions. We will
also outline possible future research, drawing from the thesis limitations, un-
answered questions and new questions which have emerged during our research.

Research Question 1 (RQ1): How can a software system be structured in or-
der to allow effortless generation of programming tasks using OpenAI GPT-based
language models to be readily applicable?

Throughout the project, a prototype software system was developed to de-
termine potential ways of designing and structuring a system in order to allow
effortless generation of readily applicable programming tasks. By utilizing the
available python package from OpenAI, and developing a modularized system
based on the principles of object-oriented programming, a logical structure has
been implemented.

The study conducted showed that while promising, language model techno-
logy is not yet ripe for use in the generation of programming tasks without neces-
sitating quality assurance. As outlined in 5.3, manual surveillance is required to
ensure task quality before making use of the tasks generated.

In designing a software system where the goal is to allow effortless genera-
tion of readily applicable programming tasks, it is crucial that the generation of
tasks, textual content, tests and potential additional elements be AI-driven. This
approach is supported by related work, that suggests AI is the most effective mech-
anism for generating tasks that emulate human-like qualities. Consequently, the
integration of AI in this context becomes not only advantageous but imperative to
achieving the system’s goal.

Research Question 2 (RQ2): What are the main challenges of developing a sys-
tem meant to generate and assess the complexity of programming tasks?
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Numerous challenges arose during the development of the system artifact.
One important challenge was designing high quality queries for the large lan-
guage models. The prompts being utilized largely affects the responses from the
LLMs, which serves as a basis for all variant tasks generated. Building the user ex-
perience for task authors also proved a challenge, because of the intricate balance
between flexibility and simplicity. Less input by the user meant a simpler process,
while more input yielded more control of the task generation. Each design de-
cision in the generation system dictated the features available to the end user.

As for the complexity assessment system, the main challenges consists of put-
ting together a sensible collective metric for complexity, and developing a system
capable of measuring said metric. The system implemented is rooted in related
work, and does a good job at estimating the complexity of a programming task.
However, as outlined in Chapter 6, there are still flaws to the system. Especially the
design of complexity measures analyzing task text is interesting, and is outlined
in Section 7.2.

Research Question 3 (RQ3): What different use-cases does automated gener-
ation of variant tasks have, and in which settings does it perform best?

The automated generation of variant tasks has a variety of different use-cases.
Through both literature studies and end user interviews, the use-cases found are
the following:

• Generating coursework to be used by course staff in periodically handed out
assignments.
• Generating tasks and exercise sets to be used by course staff in mid-semester

quizzes.
• Generating tasks and exercise sets to be used by course staff in an exam

setting.
• Generating tasks and exercise sets that could be used by students as volume

training to improve their understanding of basic concepts.
• Generating tasks that can be used by instructors as inspiration when manu-

ally creating coursework.

As for the setting in which the system performs best, further evaluation of the
artifact is necessary. While demonstrations on teaching staff with different roles
and backgrounds were conducted, the student demonstration and evaluation was
more limited. Regrettably only one scenario was examined, namely handing out
assignments in the shape of exercise sets. The evaluation provided valuable data
on the quality of generated tasks, but is lacking in terms of comparing use cases.
Potentially valuable data could have been gathered by focusing on evaluating gen-
erated tasks in mid-semester and exam settings, as well as for volume training dur-
ing courses. However, this was not feasible for us due to our schedule for system
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finalization.
Automated generation of variant tasks could also be of use in other systems,

provided an integration between the systems existed. An integration towards In-
spera Assessment was postulated by interviewees as especially interesting, and
has been detailed further in 7.2.6.

7.1 Summary of main findings

Our work supports the earlier findings demonstrating that large language models
perform well, even in cases where they have not previously encountered sim-
ilar tasks, or have encountered similar tasks only a handful of times. Our work
suggests that current LLMs provide a vast array of opportunities for course staff,
and can provide considerable aid when creating, explaining and solving program-
ming tasks. Although there are still a multitude of challenges as discussed in both
chapter 4 and 6, we have shown that generating multiple novel and human-like
programming tasks is possible by building a system powered by OpenAI language
models. We also expect the capabilities of generative AI to only improve over time,
allowing for more complex systems to be built around them.

7.2 Future work

This section outline the potential directions for further research and development
regarding our study.

7.2.1 Universal Design

Even though the system was developed with a focus on inclusitivity, steps must be
taken to ensure that the system is in line with universal design guidelines before
it is released. This can be carried out by performing a comprehensive review and
usability testing to identify any areas in which the system still falls short of design
standards, and improve them.

7.2.2 Query Injection

Given the nature of our system as an exploratory prototype, the emphasis on soft-
ware security has not been emphasized at all during both the planning and devel-
opment stages. This potentially exposes our system to a form of security threat,
similar to SQL injection, where users could send malicious queries trough our sys-
tem. The resulting code from such queries could potentially be executed within
the system when generating example inputs and outputs for tasks.

Despite OpenAI’s measures to handle and discard queries of malicious intent,
methods to bypass or "jailbreak" their language model’s security mechanisms are
frequently discovered. The implementation of appropriate isolation techniques,
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aimed at safely executing the Python code generated, is both possible and ne-
cessary. It is highly recommended that these security measures are incorporated
before the system is made accessible to end users, thereby ensuring the overall
integrity and reliability of the system.

7.2.3 Expanding system to other programming languages

For the sake of usability in programming courses making use of programming lan-
guages other than Python, expanding TaskMaster to support other programming
languages would drastically increase the user base capable of using the system. As
the system is heavily modularized, not much development is needed to extend the
system to other programming languages. What is needed, is a new code deserial-
izer and a rating system, as they are the only components that are built specifically
with Python syntax in mind.

7.2.4 Improved solutions using LLMs

While the generation of solutions associated with a task is automated, there is still
room for improving the quality of the solutions. In the current state, the artifact
only includes an example of the correct code as solutions to the programming
tasks. However, there is potential to increase the application of LLMs by incorpor-
ating textual explanations of the code. This additional feature could help students
understand the proposed solutions, fostering their comprehension and contribut-
ing to a richer learning experience.

7.2.5 Utilizing other complexity measures

As seen in 3.3, the complexity score given to a task is based on the analyzed
complexity of the proposed solution to a given task. Surveying ways of analyzing
the complexity of textual task text, such as number of concepts included in a task,
could provide a more accurate difficulty assessment than currently available.

7.2.6 System expansion

System expansion is a natural next step in the process. Feedback from end users
indicate that the features providing the most immediate value would be the auto-
mated generation of tests accompanying the programming tasks. Both prior re-
search and our empirical research shows the feasibility of utilizing the same lan-
guage models to generate tests.

Other expansions requested by end users include an integration with Inspera
Assessment using the QTI format, and the possibility for task editing and execution
directly in the browser. Alternatively, a proprietary "editor" where task authors
are able to modify the code or task description of any generated variant would
improve the usability of task generation. In addition, the ability to remove any of
the generated variants, or to supplement with manually created variants further
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increase flexibility. To our knowledge, there are no significant obstacles hindering
the implementation of these features.

7.2.7 Final thoughts

The focus of this report is primarily concentrated on the design and development
of the variant task generation system. However, examining the performance and
perception of automatically generated tasks within a genuine academic environ-
ment would present intriguing insights.

The implications of systems similar to our extend beyond the scope of this
study. The educational landscape is rapidly changing, with AI technology becom-
ing more entrenched in our daily activities. Future systems of a similar nature will
also be capable of utilizing AI on an even larger scale, as AI continues to evolve
and become more sophisticated. We believe systems as the ones described one day
will form a pivotal part of educational infrastructures.

The marriage of AI and education has the potential to foster individualized
learning, ensuring each student can learn at their own pace and level of complex-
ity. In this context, systems similar to TaskMaster could play a significant role in
the years to come.
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Appendix A

Additional Material

The reference exercise set from the course ITGK, along with generated exercise
sets and solutions used in the student demonstrations are attached here.
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Demo	26.05	1

Generert:	26	May,	2023	18:58:10

Poeng:	120

Oppgave	1.	5	poeng

Skriv	en	funksjon	som	tar	inn	to	input	fra	brukeren:	et	adjektiv	og	et	tall.	Funksjonen	skal

deretter	skrive	ut	en	setning	som	inneholder	adjektivet	og	en	multiplikator,	som	øker	med	1

for	hver	iterasjon,	opp	til	og	med	det	gitte	tallet.	Setningen	skal	være	på	formatet	"I	am	X

times	more	Y!",	der	X	er	multiplikatoren	og	Y	er	adjektivet.

Oppgave	2.	5	poeng

Lag	et	program	som	ber	brukeren	om	å	skrive	inn	adjektiver.	For	hvert	adjektiv	brukeren

skriver	inn,	skal	programmet	skrive	ut	en	setning	som	sier	"I	am	more	[adjektiv]!".

Programmet	skal	fortsette	å	be	om	adjektiver	og	skrive	ut	setninger	til	brukeren	ikke

skriver	inn	noe	og	trykker	enter.

Oppgave	3.	5	poeng

Skriv	et	program	som	ber	brukeren	om	å	skrive	inn	adjektiver.	Programmet	skal	fortsette	å

be	om	adjektiver	og	skrive	ut	en	setning	som	inneholder	det	innskrevne	adjektivet,	for

eksempel	"I	am	more	[adjective]!".	Programmet	skal	stoppe	når	det	har	mottatt	minst	42

adjektiver	eller	når	den	totale	lengden	av	alle	adjektivene	som	er	skrevet	inn	overstiger	42

tegn.

Oppgave	4.	5	poeng

Skriv	en	funksjon	som	gjør	følgende:

1.	Skriv	ut	en	melding	som	sier	"5-multiplication	table	between	20	and	81:".

2.	Skriv	ut	alle	tallene	i	5-gangen	mellom	20	og	81	(inkludert)	på	samme	linje,	separert

med	mellomrom.

3.	Skriv	ut	en	melding	som	sier	"Numbers	from	48	to	80	incrementing	by	8:".

4.	Skriv	ut	alle	tallene	fra	48	til	80	(inkludert)	med	en	økning	på	8	mellom	hvert	tall,	på

samme	linje,	separert	med	mellomrom.

5.	Skriv	ut	en	melding	som	sier	"Numbers	backwards	from	100	to	80	incrementing	by	-3:".

6.	Skriv	ut	alle	tallene	fra	100	til	80	(inkludert)	med	en	økning	på	-3	mellom	hvert	tall,	på

samme	linje,	separert	med	mellomrom.



Eksempel	på	kjøring:	

print_numbers()

>>>	5-multiplication	table	between	20	and	81:

20	25	30	35	40	45	50	55	60	65	70	75	80

Numbers	from	48	to	80	incrementing	by	8:

48	56	64	72	80

Numbers	backwards	from	100	to	80	incrementing	by	-3:

100	97	94	91	88	85	82

Oppgave	5.	5	poeng

Skriv	en	funksjon	som	heter	"print_numbers"	som	skriver	ut	alle	heltall	fra	1	til	5

(inkludert)	ved	hjelp	av	en	while-løkke.	Funksjonen	skal	ikke	ta	inn	noen	parametere	og

skal	ikke	returnere	noe.

Eksempel	på	kjøring:	

print_numbers()

>>>	1

2

3

4

5

Oppgave	6.	5	poeng

Skriv	en	funksjon	som	tar	inn	et	heltall	som	argument	(standardverdi	15)	og	skriver	ut	alle

heltall	fra	dette	tallet	og	ned	til	1	i	synkende	rekkefølge.	Implementer	funksjonen	ved	hjelp

av	rekursjon.

Eksempel	på	kjøring:	

print_numbers_recursion(15)

>>>	15

14

13

12

11

10

..

4

3

2

1



Oppgave	7.	5	poeng

Skriv	et	program	som	tar	inn	7	heltall	fra	brukeren,	legger	sammen	alle	tallene	og	skriver

ut	summen.	Bruk	liste-forståelse	for	å	samle	inn	tallene	fra	brukeren.

Oppgave	8.	5	poeng

Skriv	en	rekursiv	funksjon	som	multipliserer	sammen	alle	tallene	fra	1	og	oppover,	og

returnerer	produktet	så	snart	det	overstiger	1000.	Funksjonen	skal	ikke	ta	inn	noen

argumenter.

Eksempel	på	kjøring:	

print(multiply_recursive(1,	1))

>>>	5040

Oppgave	9.	5	poeng

Skriv	et	program	som	spør	brukeren	om	hovedstaden	i	Niue.	Programmet	skal	fortsette	å

spørre	brukeren	inntil	riktig	svar	er	gitt.	Når	brukeren	gir	riktig	svar,	skal	programmet

skrive	ut	en	melding	som	bekrefter	at	svaret	er	korrekt,	samt	antall	forsøk	det	tok	for

brukeren	å	gjette	riktig.	Programmet	skal	ikke	være	case-sensitive,	det	vil	si	at	det	skal

akseptere	svar	uavhengig	av	store	og	små	bokstaver.

Oppgave	10.	5	poeng

Skriv	et	program	som	tar	inn	to	tall:	antall	studenter	og	antall	fag.	Programmet	skal	deretter

generere	og	skrive	ut	alle	mulige	kombinasjoner	av	studenter	og	fag,	der	hver	student

elsker	hvert	fag.	For	eksempel,	hvis	det	er	2	studenter	og	3	fag,	skal	programmet	skrive	ut

følgende:

Student	1	loves	subject	1

Student	1	loves	subject	2

Student	1	loves	subject	3

Student	2	loves	subject	1

Student	2	loves	subject	2

Student	2	loves	subject	3

Oppgave	11.	5	poeng

Skriv	et	program	som	genererer	og	skriver	ut	alle	mulige	tidspunkt	i	et	døgn	med	formatet

"HH:mm",	hvor	HH	representerer	timer	(00-23)	og	mm	representerer	minutter	(00-59).

Eksempel	på	kjøring:	

print_timestamps_v()



>>>	00:00

00:01

00:02

00:03

00:04

00:05

..

23:56

23:57

23:58

23:59

Oppgave	12.	5	poeng

Skriv	en	funksjon	som	genererer	og	skriver	ut	multiplikasjonstabellen	for	tallene	fra	1	til

10.	Funksjonen	skal	skrive	ut	hvert	produkt	på	en	egen	linje	og	ha	en	tom	linje	mellom

hver	tabell.

Eksempel	på	kjøring:	

multiplication_tables()

>>>	1	*	1	=	1

1	*	2	=	2

1	*	3	=	3

1	*	4	=	4

1	*	5	=	5

1	*	6	=	6

..

10	*	9	=	90

10	*	10	=	100

Oppgave	13.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	floor_divide(n=345):

				result	=	""

				for	_	in	range(n):

								n	//=	2

								result	+=	str(n)	+	"	"

								if	n	==	0:

												break

				return	result.strip()

print(floor_divide(345))



Oppgave	14.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	print_even_numbers_v():

				for	i	in	range(0,	11,	2):

								if	i	%	4	==	0:

												print(i,	"divisible	by	4")

								else:

												print(i)

print_even_numbers_v()

Oppgave	15.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	multiply_with_for_loop():

				result	=	1

				for	_	in	range(10):

								result	*=	2

				print(result)

multiply_with_for_loop()

Oppgave	16.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	multiply_with_while_loop():

				value	=	1

				count	=	0

				while	count	<	3:

								value	*=	2

								count	+=	1

				print(value)

multiply_with_while_loop()

Oppgave	17.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	print_stars_list_comprehension(i=5):



				[print('*'	*	(x	+	1))	for	x	in	range(i)]

print_stars_list_comprehension(5)

Oppgave	18.	5	poeng

Skriv	et	program	som	genererer	et	tilfeldig	tall	mellom	to	grenser	gitt	av	brukeren.

Programmet	skal	deretter	be	brukeren	om	å	gjette	tallet.	Hvis	brukerens	gjetning	er	lavere

enn	det	tilfeldige	tallet,	skal	programmet	gi	beskjed	om	å	gjette	høyere.	Hvis	gjetningen	er

høyere,	skal	programmet	gi	beskjed	om	å	gjette	lavere.	Når	brukeren	gjetter	riktig	tall,	skal

programmet	gratulere	brukeren	og	avslutte.	Hvis	brukeren	gir	ugyldig	input	(ikke	et	tall),

skal	programmet	be	om	et	nytt	tall	og	informere	om	at	input	er	ugyldig.

Oppgave	19.	5	poeng

Skriv	en	funksjon	som	beregner	summen	av	en	geometrisk	rekke	ved	hjelp	av	rekursjon.

Funksjonen	skal	ta	inn	to	parametere:	n,	som	er	antall	ledd	i	rekken,	og	r,	som	er	det

konstante	forholdet	mellom	hvert	ledd	i	rekken	(standardverdien	for	r	skal	være	2).

Funksjonen	skal	returnere	summen	av	rekken.

Eksempel	på	kjøring:	

print(geometric_sum_recursive(24,	2))

>>>	33554431

Oppgave	20.	5	poeng

Skriv	en	funksjon	som	tar	inn	et	heltall	n	og	returnerer	det	n-te	tallet	i	Fibonacci-sekvensen

ved	hjelp	av	rekursjon.	Fibonacci-sekvensen	er	en	sekvens	av	tall	der	hvert	tall	er	summen

av	de	to	foregående	tallene,	med	de	to	første	tallene	i	sekvensen	som	0	og	1.

Eksempel	på	kjøring:	

print(fibonacci_recursive(10))

>>>	55

Oppgave	21.	5	poeng

Skriv	en	funksjon	som	genererer	de	første	n	Fibonacci-tallene.	Funksjonen	skal	ta	inn	et

heltall	n	som	argument	og	returnere	en	generator	som	gir	Fibonacci-tallene	i	rekkefølge.

Fibonacci-sekvensen	starter	med	tallene	0	og	1,	og	hvert	påfølgende	tall	er	summen	av	de

to	foregående	tallene	(0,	1,	1,	2,	3,	5,	8,	...).

Eksempel	på	kjøring:	

print(fibonacci_generator(34))

>>>



Oppgave	22.	5	poeng

Skriv	en	funksjon	som	tar	inn	et	heltall	'n'	og	returnerer	en	liste	med	alle	Fibonacci-tallene

som	er	mindre	eller	lik	'n'.	Fibonacci-tallene	er	en	sekvens	av	tall	der	hvert	tall	er	summen

av	de	to	foregående	tallene,	med	de	to	første	tallene	i	sekvensen	som	0	og	1.

Eksempel	på	kjøring:	

print(fibonacci_loop(33))

>>>	[0,	1,	1,	2,	3,	5,	8,	13,	21]

Oppgave	23.	5	poeng

Skriv	en	funksjon	som	beregner	summen	av	en	tallserie,	der	hvert	element	i	serien	er

kvadratet	av	sin	indeks,	og	har	alternerende	fortegn.	Serien	starter	med	indeks	1	og	går	opp

til	og	med	et	gitt	heltall	n.	Funksjonen	skal	ta	inn	et	heltall	n	som	argument	og	returnere

summen	av	serien.

Eksempel	på	kjøring:	

print(sum_of_series(23))

>>>	-276

Oppgave	24.	5	poeng

Lag	et	enkelt	Hangman-spill

Du	skal	lage	et	enkelt	Hangman-spill	i	Python.	Spillet	skal	ta	inn	to	parametere:	et	ord	som

skal	gjettes	og	et	maksimalt	antall	forsøk.	Spillet	skal	fortsette	til	enten	ordet	er	gjettet	eller

antall	forsøk	er	brukt	opp.	For	hvert	forsøk	skal	brukeren	gjette	en	bokstav.	Hvis	bokstaven

er	i	ordet,	skal	den	vises	på	riktig	plass	i	det	gjette	ordet.	Hvis	ikke,	skal	antall	forsøk

reduseres	med	\xe9n.	Etter	hvert	forsøk	skal	det	gjette	ordet	vises	med	riktig	gjette

bokstaver	og	ubrukte	plasser	representert	med	understrek	(_).	Hvis	ordet	blir	gjettet	før

antall	forsøk	er	brukt	opp,	skal	spillet	gratulere	brukeren	med	seier.	Hvis	ikke,	skal	spillet

informere	brukeren	om	at	de	har	tapt	og	vise	det	riktige	ordet.
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Generert:	26	May,	2023	18:58:12

Poeng:	120

Oppgave	1.	5	poeng

Lag	et	program	som	tar	inn	et	adjektiv	og	et	tall	fra	brukeren.	Programmet	skal	deretter

generere	og	skrive	ut	en	liste	med	setninger	som	inneholder	adjektivet	og	en	økende

multiplikator.	For	eksempel,	hvis	brukeren	skriver	inn	adjektivet	"happy"	og	tallet	3,	skal

programmet	skrive	ut	følgende	setninger:

1.	I	am	1	times	more	happy!

2.	I	am	2	times	more	happy!

3.	I	am	3	times	more	happy!

Oppgave	2.	5	poeng

Lag	et	program	som	ber	brukeren	om	å	skrive	inn	adjektiver.	For	hvert	adjektiv	brukeren

skriver	inn,	skal	programmet	skrive	ut	en	setning	som	sier	"I	am	more	[adjektiv]!".

Programmet	skal	fortsette	å	be	om	adjektiver	og	skrive	ut	setninger	til	brukeren	ikke

skriver	inn	noe	og	trykker	enter.

Oppgave	3.	5	poeng

Skriv	et	program	som	ber	brukeren	om	å	skrive	inn	adjektiver.	Programmet	skal	fortsette	å

be	om	adjektiver	og	skrive	ut	en	setning	som	sier	"I	am	more	[adjektiv]!"	for	hvert	adjektiv

brukeren	skriver	inn.	Programmet	skal	stoppe	når	den	totale	lengden	av	alle	adjektivene

som	er	skrevet	inn	overstiger	42	tegn.

Oppgave	4.	5	poeng

Skriv	en	funksjon	som	gjør	følgende:

1.	Skriv	ut	alle	tallene	i	5-gangen	mellom	20	og	81	(inkludert).

2.	Skriv	ut	alle	tallene	fra	48	til	80	(inkludert)	med	en	økning	på	8.

3.	Skriv	ut	alle	tallene	fra	100	til	80	(inkludert)	i	synkende	rekkefølge	med	en	økning	på	-

3.

Eksempel	på	kjøring:	



print_numbers()

>>>	5-multiplication	table	between	20	and	81:

20	25	30	35	40	45	50	55	60	65	70	75	80

Numbers	from	48	to	80	incrementing	by	8:

48	56	64	72	80

Numbers	backwards	from	100	to	80	incrementing	by	-3:

100	97	94	91	88	85	82

Oppgave	5.	5	poeng

Skriv	en	funksjon	som	heter	"print_numbers"	som	skriver	ut	alle	heltall	fra	1	til	5,

inkludert	begge	endepunktene.	Funksjonen	skal	ikke	ta	inn	noen	parametere	og	skal	bruke

en	for-løkke	for	å	iterere	gjennom	tallene.

Eksempel	på	kjøring:	

print_numbers()

>>>	1

2

3

4

5

Oppgave	6.	5	poeng

Skriv	en	funksjon	som	heter	"print_numbers_for_range"	som	ikke	tar	noen	argumenter.

Når	funksjonen	kalles,	skal	den	skrive	ut	tallene	fra	15	til	1	i	synkende	rekkefølge,	hver	på

en	ny	linje.

Eksempel	på	kjøring:	

print_numbers_for_range()

>>>	15

14

13

12

11

10

..

4

3

2

1

Oppgave	7.	5	poeng



Skriv	en	funksjon	som	tar	inn	7	heltall	fra	brukeren	ved	hjelp	av	en	for-løkke,	og	deretter

beregner	og	skriver	ut	summen	av	disse	tallene.

Oppgave	8.	5	poeng

Skriv	en	funksjon	som	multipliserer	sammen	tallene	fra	1	til	1000	ved	hjelp	av	en	iterator.

Funksjonen	skal	stoppe	multiplikasjonen	og	returnere	produktet	så	snart	det	overstiger

1000.

Eksempel	på	kjøring:	

print(multiply_for_iterator())

>>>	5040

Oppgave	9.	5	poeng

Skriv	et	program	som	spør	brukeren	om	hovedstaden	i	Niue.	Programmet	skal	fortsette	å

spørre	brukeren	inntil	riktig	svar	er	gitt.	Når	brukeren	gir	riktig	svar,	skal	programmet

skrive	ut	en	melding	som	bekrefter	at	svaret	er	korrekt,	samt	antall	forsøk	det	tok	for

brukeren	å	gjette	riktig.	Programmet	skal	ikke	være	case-sensitive,	det	vil	si	at	det	skal

akseptere	svar	uavhengig	av	store	og	små	bokstaver.

Oppgave	10.	5	poeng

Skriv	et	program	som	tar	inn	antall	studenter	og	antall	fag	som	input.	Programmet	skal

deretter	generere	og	skrive	ut	alle	mulige	kombinasjoner	av	studenter	og	fag,	og	vise

hvilken	student	som	elsker	hvilket	fag.	For	eksempel,	hvis	det	er	2	studenter	og	3	fag,	skal

programmet	skrive	ut	følgende:

Student	1	loves	subject	1

Student	1	loves	subject	2

Student	1	loves	subject	3

Student	2	loves	subject	1

Student	2	loves	subject	2

Student	2	loves	subject	3

Oppgave	11.	5	poeng

Skriv	en	funksjon	som	genererer	og	skriver	ut	alle	mulige	tidspunkt	i	et	døgn	med	24	timer

og	60	minutter,	i	formatet	"HH:mm".	Tidspunktene	skal	skrives	ut	i	stigende	rekkefølge,

og	hver	time	og	hvert	minutt	skal	ha	to	siffer,	med	eventuelle	ledende	nuller.

Eksempel	på	kjøring:	

print_timestamps_v()

>>>	00:00



00:01

00:02

00:03

00:04

00:05

..

23:56

23:57

23:58

23:59

Oppgave	12.	5	poeng

Skriv	en	funksjon	som	genererer	og	skriver	ut	multiplikasjonstabellen	for	tallene	fra	1	til

10.	Hver	linje	skal	vise	et	multiplikasjonsuttrykk	og	resultatet,	og	det	skal	være	et	linjeskift

mellom	hver	tabell.

Eksempel	på	kjøring:	

multiplication_tables()

>>>	1	*	1	=	1

1	*	2	=	2

1	*	3	=	3

1	*	4	=	4

1	*	5	=	5

1	*	6	=	6

..

10	*	9	=	90

10	*	10	=	100

Oppgave	13.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	floor_divide(n=345):

				result	=	""

				while	n	>	0:

								n	//=	2

								result	+=	str(n)	+	"	"

				return	result.strip()

print(floor_divide(345))

Oppgave	14.	5	poeng



Hva	er	output	av	følgende	kjøring?	

def	print_even_numbers_v():

				even_numbers	=	[i	for	i	in	range(11)	if	i	%	2	==	0]

				for	num	in	even_numbers:

								if	num	%	4	==	0:

												print(num,	"divisible	by	4")

								else:

												print(num)

print_even_numbers_v()

Oppgave	15.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	multiply_with_recursion(result=1,	count=0):

				if	count	==	10:

								print(result)

				else:

								multiply_with_recursion(result	*	2,	count	+	1)

multiply_with_recursion(1,	0)

Oppgave	16.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	multiply_with_recursion(value=1,	count=3):

				if	count	==	0:

								print(value)

				else:

								multiply_with_recursion(value	*	2,	count	-	1)

multiply_with_recursion(1,	3)

Oppgave	17.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	print_stars_while_loop(i=5):

				x	=	0

				while	x	<	i:

								print('*'	*	(x	+	1))



								x	+=	1

print_stars_while_loop(5)

Oppgave	18.	5	poeng

Lag	et	enkelt	tallgjettingsspill	der	brukeren	skal	gjette	et	tilfeldig	tall	mellom	to	grenser.

Programmet	skal	be	brukeren	om	å	angi	en	nedre	og	øvre	grense	for	tallet.	Deretter	skal

programmet	generere	et	tilfeldig	tall	mellom	disse	grensene	og	be	brukeren	om	å	gjette

tallet.	For	hver	gjetning	skal	programmet	gi	tilbakemelding	om	brukeren	skal	gjette	høyere

eller	lavere.	Når	brukeren	gjetter	riktig	tall,	skal	programmet	gratulere	brukeren	og	avslutte

spillet.

Oppgave	19.	5	poeng

Skriv	en	funksjon	som	beregner	summen	av	en	geometrisk	rekke	med	n	ledd	og	en	gitt

felles	ratio	r.	Funksjonen	skal	ta	inn	to	parametere:	n,	som	representerer	antall	ledd	i

rekken,	og	r,	som	representerer	den	felles	ratioen	(standardverdien	for	r	skal	være	2).

Funksjonen	skal	returnere	summen	av	rekken.	Du	skal	bruke	list	comprehension	for	å

generere	rekken	og	beregne	summen.

Eksempel	på	kjøring:	

print(geometric_sum_list_comprehension(33,	2))

>>>	17179869183

Oppgave	20.	5	poeng

Skriv	en	funksjon	som	beregner	det	n-te	Fibonacci-tallet	ved	hjelp	av	en	iterativ	metode.

Funksjonen	skal	ta	inn	et	heltall	n	(0	\u2264	n	\u2264	10^6)	og	returnere	det	n-te

Fibonacci-tallet.	Fibonacci-sekvensen	starter	med	0	og	1,	og	hvert	påfølgende	tall	er

summen	av	de	to	foregående	tallene	(0,	1,	1,	2,	3,	5,	8,	...).

Eksempel	på	kjøring:	

print(fibonacci_iterative(33))

>>>	3524578

Oppgave	21.	5	poeng

Skriv	en	funksjon	som	beregner	summen	av	Fibonacci-tallene	opp	til	og	med	det	n-te

Fibonacci-tallet	ved	hjelp	av	rekursjon.	Funksjonen	skal	ta	inn	et	heltall	n	som	argument

og	returnere	summen	av	Fibonacci-tallene	opp	til	og	med	det	n-te	tallet.	Hvis	n	er	mindre

enn	eller	lik	0,	skal	funksjonen	returnere	0.	Hvis	n	er	lik	1,	skal	funksjonen	returnere	1.

Eksempel	på	kjøring:	



print(fibonacci_sum_recursive(16))

>>>	2583

Oppgave	22.	5	poeng

Skriv	en	funksjon	som	tar	inn	et	heltall	'n'	og	returnerer	en	liste	med	de	første	'n'	Fibonacci-

tallene.	For	å	forbedre	ytelsen,	bruk	memoisering	for	å	lagre	tidligere	beregnede	resultater

og	unngå	unødvendige	gjentakelser.

Eksempel	på	kjøring:	

print(fibonacci_memo(7,	{}))

>>>	[0,	1,	1,	2,	3,	5,	8]

Oppgave	23.	5	poeng

Skriv	en	funksjon	som	tar	inn	et	heltall	n	og	returnerer	summen	av	en	tallserie	der	hvert

oddetall	i	serien	er	kvadrert	og	lagt	til	totalen,	mens	hvert	partall	i	serien	er	kvadrert	og

trukket	fra	totalen.	Serien	skal	starte	fra	1	og	gå	opp	til	og	med	n.

Eksempel	på	kjøring:	

print(sum_of_series(14))

>>>	-105

Oppgave	24.	5	poeng

Lag	et	enkelt	Hangman-spill	i	Python.	Spillet	skal	ta	inn	to	parametere:	et	ord	som	skal

gjettes	og	et	maksimalt	antall	forsøk.	Spillet	skal	be	brukeren	om	å	gjette	en	bokstav	om

gangen	og	vise	gjeldende	status	for	det	gjette	ordet	ved	å	erstatte	ukjente	bokstaver	med

understrek	(_).	Hvis	brukeren	gjetter	riktig	bokstav,	skal	den	vises	på	riktig	plass	i	ordet.

Hvis	brukeren	gjetter	feil,	skal	antall	forsøk	reduseres	med	\xe9n.	Spillet	fortsetter	til	enten

brukeren	har	gjettet	ordet	eller	brukt	opp	alle	forsøkene.	Til	slutt	skal	spillet	vise	en

melding	om	brukeren	vant	eller	tapte,	og	avsløre	det	riktige	ordet.
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Oppgave	1.	5	poeng

Lag	et	rekursivt	program	som	tar	inn	et	adjektiv	og	et	tall	som	input	fra	brukeren.

Programmet	skal	deretter	skrive	ut	en	setning	som	sier	"I	am	X	times	more	[adjective]!",

hvor	X	er	et	tall	fra	1	til	det	gitte	tallet,	og	[adjective]	er	det	innskrevne	adjektivet.

Oppgave	2.	5	poeng

Lag	et	rekursivt	program	som	kontinuerlig	ber	brukeren	om	å	skrive	inn	et	adjektiv.	For

hvert	adjektiv	som	blir	skrevet	inn,	skal	programmet	skrive	ut	en	setning	som	sier	"I	am

more	[adjektiv]!".	Programmet	skal	avsluttes	når	brukeren	ikke	skriver	inn	noe	og	trykker

enter.

Oppgave	3.	5	poeng

Skriv	en	funksjon	som	kontinuerlig	ber	brukeren	om	å	skrive	inn	adjektiver.	For	hvert

adjektiv	som	blir	skrevet	inn,	skal	funksjonen	legge	til	lengden	av	adjektivet	til	en	total

sum	av	tegn.	Funksjonen	skal	fortsette	å	be	om	adjektiver	inntil	summen	av	tegn	er	lik	eller

større	enn	42.	For	hvert	adjektiv	som	blir	skrevet	inn,	skal	funksjonen	også	skrive	ut	en

setning	som	sier	"I	am	more	[adjective]!",	hvor	[adjective]	er	det	innskrevne	adjektivet.

Hvis	det	oppstår	en	feil	underveis,	skal	funksjonen	håndtere	dette	og	fortsette	å	be	om

adjektiver.

Oppgave	4.	5	poeng

Skriv	en	funksjon	som	gjør	følgende:

1.	Skriv	ut	5-gangen	mellom	20	og	81	(inkludert)	på	\xe9n	linje.

2.	Skriv	ut	tallene	fra	48	til	80	(inkludert)	med	en	økning	på	8	mellom	hvert	tall	på	en	ny

linje.

3.	Skriv	ut	tallene	fra	100	til	80	(inkludert)	med	en	reduksjon	på	3	mellom	hvert	tall	på	en

tredje	linje.

Funksjonen	skal	ikke	ta	inn	noen	argumenter	og	skal	ikke	returnere	noe.



Eksempel	på	kjøring:	

print_numbers()

>>>	5-multiplication	table	between	20	and	81:

20	25	30	35	40	45	50	55	60	65	70	75	80	

Numbers	from	48	to	80	incrementing	by	8:

48	56	64	72	80	

Numbers	backwards	from	100	to	80	incrementing	by	-3:

100	97	94	91	88	85	82

Oppgave	5.	5	poeng

Skriv	en	funksjon	som	skriver	ut	tallene	fra	1	til	5	(inkludert)	ved	hjelp	av	list

comprehension.	Fungerende	kode	skal	kunne	kjøres	uten	å	ta	inn	noen	parametere	og	skal

ikke	returnere	noe,	kun	skrive	ut	tallene.

Eksempel	på	kjøring:	

print_numbers_list_comprehension()

>>>	1

2

3

4

5

Oppgave	6.	5	poeng

Skriv	en	funksjon	som	heter	"print_numbers"	som	ikke	tar	noen	argumenter.	Når

funksjonen	kalles,	skal	den	skrive	ut	tallene	fra	15	til	1	i	synkende	rekkefølge,	ett	tall	per

linje.	Bruk	en	while-løkke	for	å	løse	oppgaven.

Eksempel	på	kjøring:	

print_numbers()

>>>	15

14

13

12

11

10

..

4

3

2

1

Oppgave	7.	5	poeng



Skriv	et	program	som	ber	brukeren	om	å	taste	inn	7	heltall.	Programmet	skal	deretter

beregne	og	skrive	ut	summen	av	disse	tallene.	Du	kan	benytte	deg	av	funksjonene

`input()`,	`int()`,	`sum()`	og	`map()`	for	å	løse	oppgaven.

Oppgave	8.	5	poeng

Skriv	en	funksjon	som	finner	det	minste	tallet	som	kan	multipliseres	med	alle	heltall	fra	1

og	oppover,	slik	at	produktet	blir	større	enn	1000.	Funksjonen	skal	returnere	dette

produktet.

Eksempel	på	kjøring:	

print(multiply())

>>>	5040

Oppgave	9.	5	poeng

Du	skal	lage	et	enkelt	quiz-spill	som	spør	brukeren	om	hovedstaden	i	Niue.	Brukeren	får

ubegrenset	antall	forsøk,	men	programmet	skal	holde	styr	på	hvor	mange	forsøk	brukeren

har	brukt.	Når	brukeren	svarer	riktig,	skal	programmet	gratulere	brukeren,	oppgi

hovedstaden	i	Niue	og	antall	forsøk	som	ble	brukt.	Programmet	skal	ikke	være	case-

sensitive,	det	vil	si	at	det	skal	akseptere	svar	uavhengig	av	store	og	små	bokstaver.

Oppgave	10.	5	poeng

Skriv	et	program	som	tar	inn	antall	studenter	og	antall	fag	som	input.	Programmet	skal

deretter	generere	og	skrive	ut	alle	mulige	kombinasjoner	av	studenter	og	fag,	hvor	hver

kombinasjon	viser	hvilken	student	som	elsker	hvilket	fag.	Bruk	en	funksjon	for	å

implementere	dette.

Oppgave	11.	5	poeng

Skriv	en	funksjon	som	genererer	og	skriver	ut	alle	mulige	tidspunkt	i	et	døgn	med	formatet

"HH:mm",	der	HH	representerer	timer	(00-23)	og	mm	representerer	minutter	(00-59).

Eksempel	på	kjøring:	

print_timestamps_v()

>>>	00:00

00:01

00:02

00:03

00:04

00:05

..

23:56



23:57

23:58

23:59

Oppgave	12.	5	poeng

Skriv	en	funksjon	som	genererer	og	skriver	ut	multiplikasjonstabellen	for	tallene	fra	1	til

10.	Hver	linje	skal	vise	et	multiplikasjonsuttrykk	og	resultatet,	og	det	skal	være	en	tom

linje	mellom	hver	tabell.

Eksempel	på	kjøring:	

multiplication_tables()

>>>	1	*	1	=	1

1	*	2	=	2

1	*	3	=	3

1	*	4	=	4

1	*	5	=	5

1	*	6	=	6

..

10	*	9	=	90

10	*	10	=	100

Oppgave	13.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	floor_divide(n=345):

				result	=	""

				for	_	in	range(n):

								n	//=	2

								result	+=	str(n)	+	"	"

								if	n	==	0:

												break

				return	result.strip()

print(floor_divide(345))

Oppgave	14.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	print_even_numbers_v():

				i	=	0

				while	i	<=	10:



								if	i	%	4	==	0:

												print(i,	"divisible	by	4")

								else:

												print(i)

								i	+=	2

print_even_numbers_v()

Oppgave	15.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	multiply_with_for_loop():

				result	=	1

				for	_	in	range(10):

								result	*=	2

				print(result)

multiply_with_for_loop()

Oppgave	16.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	multiply_with_for_loop():

				value	=	1

				for	_	in	range(3):

								value	*=	2

				print(value)

multiply_with_for_loop()

Oppgave	17.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	print_stars_for_loop(i=5):

				for	x	in	range(i):

								print('*'	*	(x	+	1))

print_stars_for_loop(5)

Oppgave	18.	5	poeng



Lag	et	enkelt	tallgjettingsspill	der	brukeren	skal	gjette	et	tilfeldig	tall	mellom	to	grenser.

Programmet	skal	be	brukeren	om	å	oppgi	en	nedre	og	en	øvre	grense	for	tallet.	Deretter

skal	programmet	generere	et	tilfeldig	tall	mellom	disse	grensene	og	be	brukeren	om	å	gjette

tallet.	For	hver	gjetning	skal	programmet	gi	tilbakemelding	om	brukeren	skal	gjette	høyere

eller	lavere.	Når	brukeren	gjetter	riktig	tall,	skal	programmet	gratulere	brukeren	og	avslutte

spillet.

Oppgave	19.	5	poeng

Skriv	en	funksjon	som	beregner	summen	av	en	geometrisk	rekke.	Funksjonen	skal	ta	inn	to

parametere:	n	og	r.	n	er	antall	ledd	i	rekken,	og	r	er	det	konstante	forholdet	mellom	hvert

ledd	i	rekken.	Hvis	r	ikke	er	gitt,	skal	det	antas	å	være	2.	Funksjonen	skal	returnere

summen	av	rekken.

Eksempel	på	kjøring:	

print(geometric_sum(25,	2))

>>>	67108863

Oppgave	20.	5	poeng

Skriv	en	funksjon	som	tar	inn	et	heltall	n	og	returnerer	det	n-te	tallet	i	Fibonacci-sekvensen

ved	hjelp	av	rekursjon.	Fibonacci-sekvensen	er	en	sekvens	av	tall	der	hvert	tall	er	summen

av	de	to	foregående	tallene,	med	de	to	første	tallene	i	sekvensen	som	0	og	1.

Eksempel	på	kjøring:	

print(fibonacci_recursive(10))

>>>	55

Oppgave	21.	5	poeng

Skriv	en	funksjon	som	tar	inn	et	heltall	n	og	returnerer	summen	av	de	første	n	Fibonacci-

tallene.	Hvis	n	er	mindre	eller	lik	0,	skal	funksjonen	returnere	0.

Eksempel	på	kjøring:	

print(fibonacci_sum(14))

>>>	609

Oppgave	22.	5	poeng

Skriv	en	funksjon	som	tar	inn	et	heltall	'n'	og	returnerer	en	liste	med	alle	Fibonacci-tallene

som	er	mindre	eller	lik	'n'.	Fibonacci-tallene	er	en	sekvens	av	tall	der	hvert	tall	er	summen

av	de	to	foregående	tallene,	med	de	to	første	tallene	i	sekvensen	som	0	og	1.

Eksempel	på	kjøring:	



print(fibonacci_loop(33))

>>>	[0,	1,	1,	2,	3,	5,	8,	13,	21]

Oppgave	23.	5	poeng

Skriv	en	funksjon	som	beregner	summen	av	en	tallserie,	der	hvert	element	i	serien	er

kvadratet	av	indeksen	multiplisert	med	-1	opphøyd	i	indeksen	modulo	2.	Serien	starter	med

indeks	1	og	går	opp	til	og	med	et	gitt	heltall	n.	Funksjonen	skal	ta	inn	ett	argument,	n,	og

returnere	summen	av	serien.

Eksempel	på	kjøring:	

print(sum_of_series(9))

>>>	-45

Oppgave	24.	5	poeng

Lag	et	enkelt	Hangman-spill

Du	skal	lage	et	enkelt	Hangman-spill	i	Python.	Spillet	skal	ta	inn	to	parametere:	et	ord	som

skal	gjettes	og	et	maksimalt	antall	forsøk.	Spillet	skal	fortsette	til	enten	ordet	er	gjettet	eller

antall	forsøk	er	brukt	opp.	For	hvert	forsøk	skal	brukeren	gjette	en	bokstav.	Hvis	bokstaven

er	i	ordet,	skal	den	vises	på	riktig	plass	i	det	gjette	ordet.	Hvis	ikke,	skal	antall	forsøk

reduseres	med	\xe9n.	Etter	hvert	forsøk	skal	det	gjette	ordet	vises	med	riktig	gjette

bokstaver	og	understreker	for	ikke-gjette	bokstaver.	Hvis	ordet	blir	gjettet	før	antall	forsøk

er	brukt	opp,	skal	spillet	gratulere	brukeren	med	seier.	Hvis	ikke,	skal	spillet	informere

brukeren	om	at	de	har	tapt	og	vise	det	riktige	ordet.



Demo	26.05	4

Generert:	26	May,	2023	18:58:16

Poeng:	120

Oppgave	1.	5	poeng

Skriv	et	program	som	tar	inn	to	input	fra	brukeren:	et	adjektiv	og	et	heltall.	Programmet

skal	deretter	skrive	ut	en	setning	som	inneholder	adjektivet	og	en	multiplikator,	som	øker

med	1	for	hver	iterasjon,	opp	til	og	inkludert	det	gitte	heltallet.	Setningen	skal	være	på

formatet	"I	am	X	times	more	ADJECTIVE!",	der	X	er	multiplikatoren	og	ADJECTIVE	er

det	gitte	adjektivet.

Oppgave	2.	5	poeng

Lag	et	program	som	kontinuerlig	ber	brukeren	om	å	skrive	inn	adjektiver.	For	hvert

adjektiv	som	blir	skrevet	inn,	skal	programmet	skrive	ut	en	setning	som	sier	"I	am	more

[adjektiv]!".	Programmet	skal	avsluttes	når	brukeren	ikke	skriver	inn	noe	og	bare	trykker

på	enter-tasten.

Oppgave	3.	5	poeng

Skriv	et	program	som	kontinuerlig	ber	brukeren	om	å	skrive	inn	adjektiver.	For	hvert

adjektiv	som	blir	skrevet	inn,	skal	programmet	skrive	ut	en	setning	som	sier	"I	am	more

[adjektiv]!".	Programmet	skal	fortsette	å	be	om	adjektiver	og	skrive	ut	setninger	inntil	den

totale	lengden	av	alle	adjektivene	som	er	skrevet	inn	overstiger	42	tegn.	Når	dette	skjer,

skal	programmet	avsluttes.

Oppgave	4.	5	poeng

Skriv	en	funksjon	som	gjør	følgende:

1.	Skriver	ut	5-gangen	mellom	20	og	81	(inkludert)	på	en	linje.

2.	Skriver	ut	tallene	fra	48	til	80	(inkludert)	med	en	økning	på	8	på	en	ny	linje.

3.	Skriver	ut	tallene	fra	100	til	80	(inkludert)	med	en	reduksjon	på	3	på	en	tredje	linje.

Funksjonen	skal	ikke	ta	inn	noen	argumenter	og	skal	ikke	returnere	noe.	Den	skal	kun

skrive	ut	tallene	som	beskrevet	ovenfor.

Eksempel	på	kjøring:	



print_numbers()

>>>	5-multiplication	table	between	20	and	81:

20	25	30	35	40	45	50	55	60	65	70	75	80	

Numbers	from	48	to	80	incrementing	by	8:

48	56	64	72	80	

Numbers	backwards	from	100	to	80	incrementing	by	-3:

100	97	94	91	88	85	82

Oppgave	5.	5	poeng

Skriv	en	funksjon	som	skriver	ut	hvert	element	i	en	liste	med	tall	fra	1	til	5	ved	hjelp	av	en

for-løkke	og	enumerate-funksjonen.	Funksjonen	skal	ikke	ta	inn	noen	parametere	og	skal

ikke	returnere	noe.

Eksempel	på	kjøring:	

print_numbers_enumerate()

>>>	1

2

3

4

5

Oppgave	6.	5	poeng

Skriv	en	funksjon	som	skriver	ut	tallene	fra	1	til	15	i	reversert	rekkefølge	ved	hjelp	av	en

for-løkke	og	innebygde	Python-funksjoner.

Eksempel	på	kjøring:	

print_numbers_for_reversed()

>>>	15

14

13

12

11

10

..

4

3

2

1

Oppgave	7.	5	poeng

Skriv	en	funksjon	som	tar	inn	7	heltall	fra	brukeren	ved	hjelp	av	en	while-løkke,	og



deretter	beregner	og	skriver	ut	summen	av	disse	tallene.

Oppgave	8.	5	poeng

Skriv	en	funksjon	som	multipliserer	sammen	tallene	fra	1	til	1000,	men	stopper

multiplikasjonen	når	produktet	blir	større	enn	1000.	Funksjonen	skal	returnere	det	siste

produktet	som	er	mindre	enn	eller	lik	1000.

Eksempel	på	kjøring:	

print(multiply_for_range())

>>>	5040

Oppgave	9.	5	poeng

Skriv	et	program	som	spør	brukeren	om	hovedstaden	i	Niue.	Programmet	skal	fortsette	å

spørre	brukeren	inntil	riktig	svar	er	gitt.	Når	brukeren	gir	riktig	svar,	skal	programmet

skrive	ut	en	melding	som	bekrefter	at	svaret	er	riktig,	samt	antall	forsøk	brukeren	har	brukt

for	å	komme	frem	til	riktig	svar.	Programmet	skal	ikke	være	case-sensitive,	det	vil	si	at	det

skal	akseptere	svar	uavhengig	av	store	og	små	bokstaver.

Oppgave	10.	5	poeng

Kombinasjoner	av	studenter	og	fag

Du	skal	lage	et	program	som	tar	inn	antall	studenter	og	antall	fag.	Programmet	skal	deretter

generere	og	skrive	ut	alle	mulige	kombinasjoner	av	studenter	og	fag,	der	hver	student

elsker	hvert	fag.	Du	kan	anta	at	antall	studenter	og	fag	er	positive	heltall.

Oppgave	11.	5	poeng

Skriv	en	funksjon	som	genererer	og	skriver	ut	alle	mulige	tidspunkt	i	et	døgn	med	formatet

"HH:mm",	der	HH	representerer	timer	(00-23)	og	mm	representerer	minutter	(00-59).

Eksempel	på	kjøring:	

print_timestamps_v()

>>>	00:00

00:01

00:02

00:03

00:04

00:05

..

23:56

23:57



23:58

23:59

Oppgave	12.	5	poeng

Skriv	en	funksjon	som	genererer	og	skriver	ut	multiplikasjonstabellen	for	tallene	fra	1	til

10.	Hver	linje	skal	vise	et	multiplikasjonsuttrykk	og	resultatet,	og	det	skal	være	en	tom

linje	mellom	hver	tabell.

Eksempel	på	kjøring:	

multiplication_tables()

>>>	1	*	1	=	1

1	*	2	=	2

1	*	3	=	3

1	*	4	=	4

1	*	5	=	5

1	*	6	=	6

..

10	*	9	=	90

10	*	10	=	100

Oppgave	13.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	floor_divide(n=345):

				result	=	""

				while	n	>	0:

								n	//=	2

								result	+=	str(n)	+	"	"

				return	result.strip()

print(floor_divide(345))

Oppgave	14.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	print_even_numbers_v():

				for	i	in	range(11):

								if	i	%	2	==	0:

												if	i	%	4	==	0:

																print(i,	"divisible	by	4")

												else:



																print(i)

print_even_numbers_v()

Oppgave	15.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	multiply_with_while_loop():

				result	=	1

				count	=	0

				while	count	<	10:

								result	*=	2

								count	+=	1

				print(result)

multiply_with_while_loop()

Oppgave	16.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	multiply_with_list_comprehension():

				value	=	1

				value	=	[value	*	2	for	_	in	range(3)][-1]

				print(value)

multiply_with_list_comprehension()

Oppgave	17.	5	poeng

Hva	er	output	av	følgende	kjøring?	

def	print_stars_recursion(i=5,	x=0):

				if	x	<	i:

								print('*'	*	(x	+	1))

								print_stars_recursion(i,	x	+	1)

print_stars_recursion(5,	0)

Oppgave	18.	5	poeng

Lag	et	program	som	lar	brukeren	gjette	et	tilfeldig	tall	mellom	et	gitt	nedre	og	øvre	grense.

Programmet	skal	gi	tilbakemelding	om	brukerens	gjett	er	for	høyt	eller	for	lavt,	og	fortsette



å	be	om	gjett	til	brukeren	gjetter	riktig	tall.	Bruk	en	rekursiv	funksjon	for	å	implementere

dette.	Funksjonen	skal	ta	inn	nedre	og	øvre	grense	som	argumenter	og	generere	et	tilfeldig

tall	mellom	disse	grensene.

Oppgave	19.	5	poeng

Skriv	en	funksjon	som	beregner	summen	av	en	geometrisk	rekke.	Funksjonen	skal	ta	inn	to

parametere:	antall	ledd	'n'	og	felles	forhold	'r'	(med	en	standardverdi	på	2).	Funksjonen	skal

returnere	den	totale	summen	av	rekken.

Eksempel	på	kjøring:	

print(geometric_sum(35,	2))

>>>	68719476735

Oppgave	20.	5	poeng

Skriv	en	funksjon	som	beregner	det	n-te	Fibonacci-tallet	ved	hjelp	av	memoisering.

Funksjonen	skal	ta	inn	et	heltall	n	som	argument	og	returnere	det	n-te	Fibonacci-tallet.

Memoisering	skal	brukes	for	å	forbedre	ytelsen	og	unngå	unødvendige	beregninger.

Eksempel	på	kjøring:	

print(fibonacci_memoization(24,	{}))

>>>	46368

Oppgave	21.	5	poeng

Skriv	en	funksjon	som	tar	inn	et	heltall	'n'	og	returnerer	summen	av	de	første	'n'	Fibonacci-

tallene.	Hvis	'n'	er	mindre	enn	eller	lik	0,	skal	funksjonen	returnere	0.	Fibonacci-sekvensen

starter	med	tallene	0	og	1,	og	hvert	påfølgende	tall	er	summen	av	de	to	foregående	tallene

(0,	1,	1,	2,	3,	5,	8,	...).

Eksempel	på	kjøring:	

print(fibonacci_sum(8))

>>>	33

Oppgave	22.	5	poeng

Skriv	en	funksjon	som	tar	inn	et	heltall	'n'	og	returnerer	en	liste	med	de	første	'n'	Fibonacci-

tallene	ved	hjelp	av	rekursjon.	Hvis	'n'	er	mindre	eller	lik	0,	skal	funksjonen	returnere	en

tom	liste.

Eksempel	på	kjøring:	

print(fibonacci_recursive(20))

>>>	[0,	1,	1,	2,	3,	5,	8,	13,	21,	34,	55,	89,	144,	233,	377,	610,	987,	1597,	2584,	4181]



Oppgave	23.	5	poeng

Skriv	en	funksjon	som	tar	inn	et	heltall	n	og	returnerer	summen	av	en	tallserie	der	hvert

oddetall	i	serien	er	kvadrert	og	lagt	til	totalen,	mens	hvert	partall	i	serien	er	kvadrert	og

trukket	fra	totalen.	Serien	skal	starte	fra	1	og	gå	opp	til	og	med	n.

Eksempel	på	kjøring:	

print(sum_of_series(14))

>>>	-105

Oppgave	24.	5	poeng

Lag	et	enkelt	Hangman-spill	i	Python.	Spillet	skal	ta	inn	to	parametere:	et	ord	som	skal

gjettes	og	et	maksimalt	antall	forsøk.	Spillet	skal	be	brukeren	om	å	gjette	en	bokstav	om

gangen	og	vise	gjeldende	status	for	det	gjette	ordet	med	understreker	for	ikke-gjettede

bokstaver.	Hvis	brukeren	gjetter	riktig	bokstav,	skal	den	vises	på	riktig	plass	i	ordet.	Hvis

brukeren	gjetter	feil,	skal	antall	forsøk	reduseres	med	\xe9n.	Spillet	fortsetter	til	enten

brukeren	har	gjettet	ordet	eller	brukt	opp	alle	forsøkene.	Til	slutt	skal	spillet	vise	en

melding	om	brukeren	vant	eller	tapte,	og	avsløre	det	riktige	ordet.



Demo 26.05 1 

 
 
Poeng: 120 
 
Oppgave 1 5 poeng 
 
Koden under viser en for-løkke som repeterer 3 ganger. For hver runde blir brukeren bedt om å beskrive 

seg selv med et adjektiv, hvorpå maskinen disser brukeren ved å si at den er snillere, smartere etc. 

 

Kjør koden for å se hvordan den virker. Endre så koden slik at programmet først spør brukeren hvor 
mange repetisjoner som ønskes, og deretter utfører programmet med ønsket antall repetisjoner av løkka. 
 

```  

Hvor mange adjektiv vil du gi? 2 

Beskriv deg selv med et adjektiv? snill 

Hah, du snill!? Jeg er mye snillere! 

Beskriv deg selv med et adjektiv? ond 

Hah, du ond!? Jeg er mye ondere! 

Takk for nå! 

``` 

 

#endre koden under 
for i in range(3): 

    adj = input("Beskriv deg selv med et adjektiv? ") 

    print("Hah, du", adj + "!? Jeg er mye", adj + "ere!") 

print("Takk for nå!") 
 
Oppgave 2 5 poeng 
 
Koden under viser en while-løkke som utfører samme type brukerdialog som i (Oppgave 1), med 3 

repetisjoner. Kjør den for å se hvordan det virker. **Endre nå programmet så løkka ikke kjører 
akkurat 3 ganger, men så mange ganger brukeren vil**, hvor brukeren kan bestemme dette underveis 

ved å gi et tomt svar (dvs. bare slå Enter) for å slutte. Da vil input()-setningen resultere i en tom streng, "". 

 

``` 

Slå Enter uten å skrive noe når du vil avslutte. 

Beskriv deg selv med et adjektiv? snill 

Hah, du snill!? Jeg er mye snillere! 

Beskriv deg selv med et adjektiv? smart 

Hah, du smart!? Jeg er mye smartere! 

Beskriv deg selv med et adjektiv? flittig 



Hah, du flittig!? Jeg er mye flittigere! 

Beskriv deg selv med et adjektiv? 

Takk for nå! 

``` 

 

while True: 

    adj = input("Beskriv deg selv med et adjektiv? ") 

    if adj == "": 

        break 

    print("Hah, du", adj + "!? Jeg er mye", adj + "ere!") 

    i += 1  # øker i med 1 

print("Takk for nå!") 
 
Oppgave 3 5 poeng 
 
Ta igjen utgangspunkt i while-løkka med 3 repetisjoner som vist før (Oppgave 2). Vi ønsker nå å endre 

programmet på følgende måte: 

 

Brukeren starter med 42 bokstaver til disposisjon. For hver runde skal programmet trekke fra antall 

bokstaver i det adjektivet som ble brukt. 

 

Løkka skal fortsette så lenge det fortsatt er bokstaver til disposisjon (dvs. dette tallet er større enn 0).  

 

``` 

Du har 42 bokstaver til disposisjon. 

Beskriv deg selv med et adjektiv? snill 

Hah, du snill!? Jeg er mye snillere! 

Du har 37 bokstaver til disposisjon. 

Beskriv deg selv med et adjektiv? desperat 

Hah, du desperat!? Jeg er mye desperatere! 

Du har 29 bokstaver til disposisjon. 

Beskriv deg selv med et adjektiv? kjempetørst 

Hah, du kjempetørst!? Jeg er mye kjempetørstere! 

Du har 18 bokstaver til disposisjon. 

Beskriv deg selv med et adjektiv? megasupereffektiv 

Hah, du megasupereffektiv!? Jeg er mye megasupereffektivere! 

Du har 1 bokstaver til disposisjon. 

Beskriv deg selv med et adjektiv? o 

Hah, du o!? Jeg er mye oere! 

Takk for nå! 

``` 

 

I siste linje, hvor det bare er 1 bokstav til disposisjon, er brukeren lojal her og skrive bare en bokstav - men 

du behøver ikke lage programmet slik at det sikrer dette... det er ok om brukeren skriver et lenger ord den 



siste gangen, så lenge brukeren ikke får lov til å skrive nye ord når antall bokstaver til disposisjon er blitt 

<= 0. 
 
Oppgave 4 5 poeng 
 
Koden under er de to første for-løkkene ferdige og gir riktig utskrift i forhold til den forklarende teksten i 

print-setningene. 

 

De tre neste er ikke ferdige. Bytt ut `range(0)` i disse tre (også merket med ###) slik at for-løkkene gir 

tallsekvenser som passer med det som forklares i print-setningene. 

 

print("Oddetallene fra 1 til 20:") 

for number in range(1, 20, 2): 

    print(number, end = " ") 

print() 

   

print("Tallene i 3-gangen mellom 12 og 25:") 

for number in range(12, 25, 3): 

    print(number, end = " ") 

print() 

   

print("Tallene i 5-gangen mellom 20 og 81:") 

for number in range(0): ### 

    print(number, end = " ") 

print() 

   

print("Tallsekvensen 48, 56, 64, 72, 80") 

for number in range(0): ### 

    print(number, end = " ") 

print() 

   

print("Telle baklengs fra 100 til 80, med intervall på -3, dvs. 100, 97, ...:") 

for number in range(0): ### 

    print(number, end = " ") 

print() 
 
Oppgave 5 5 poeng 
 
Lag et program som skriver ut tallene 1 til 5 ved bruk av en for-løkke. 
 
Oppgave 6 5 poeng 
 
Lag et program som teller nedover fra 15 til 1 ved hjelp av en for-løkke. Skriv ut alle tallene. 
 
Oppgave 7 5 poeng 



 
Lag et program som ved hjelp av en løkke ber brukeren om å taste inn 7 heltall, som vist i eksemplet på 

kjøring under. Til slutt skal programmet skrive ut hva summen av tallene ble. 

 

``` 

Skriv inn et heltall: 6 

Skriv inn et heltall: 4 

Skriv inn et heltall: 7 

Skriv inn et heltall: 3 

Skriv inn et heltall: 2 

Skriv inn et heltall: 456 

Skriv inn et heltall: 99 

Summen av tallene ble 577 

``` 
 
Oppgave 8 5 poeng 
 
Lag et program som multipliserer sammen alle tallene fra 1,2,3,... og avslutter når produktet er større enn 

1000. 
 
Oppgave 9 5 poeng 
 
Lag et program som stiller brukeren det samme spørsmålet, om og om igjen, helt til det korrekte svaret blir 

skrevet. Da skal programmet fortelle hvor mange forsøk som ble brukt. Eksempel på kjøring vist nedenfor, 

men du kan godt bytte ut med et spørsmål med annen tematikk, noe du selv er interessert i. 

 

``` 

Hva heter hovedstaden til Niue? Niue City 

Det var feil, prøv igjen. 

Hva heter hovedstaden til Niue? Niuania 

Det var feil, prøv igjen. 

Hva heter hovedstaden til Niue? Apia 

Det var feil, prøv igjen. 

Hva heter hovedstaden til Niue? Alofi 

Korrekt!! Du brukte 4 forsøk. 

``` 
 
Oppgave 10 5 poeng 
 
Eksempel på nøstet løkke: 
 

for x in range(5): 

    for y in range(3): 

        print("Jeg elsker ITGK! ", end=" ") 

    print() 



 

Koden over vil skrive ut “Jeg elsker ITGK!” tre ganger ved siden av hverandre fem ganger nedover. 

 

Kopier koden i eksemplet "Jeg elsker ITGK!" over og kjør programmet. Denne utskriften trenger man 

strengt tatt ikke dobbel løkke for å få til; selve utskriften gir riktig nok et todimensjonalt inntrykk, men 

siden den underliggende informasjonen ikke er todimensjonal men derimot konstant (samme utskrift "Jeg 

elsker ITGK!" i alle tilfeller), er det også greit mulig å klare dette med enkel løkke, eller helt uten løkker, 

som følger: 

 

# Løsning med enkel løkke: 
for x in range(5): 

    print("Jeg elsker ITGK!  Jeg elsker ITGK!  Jeg elsker ITGK!") 

 

# Løsning uten løkker; "\n" er tegnet for linjeskift (newline på engelsk) 
print((("Jeg elsker ITGK!  " * 3) + "\n") * 5) 

 

``` 

Jeg elsker ITGK!  Jeg elsker ITGK!  Jeg elsker ITGK! 

Jeg elsker ITGK!  Jeg elsker ITGK!  Jeg elsker ITGK! 

Jeg elsker ITGK!  Jeg elsker ITGK!  Jeg elsker ITGK! 

Jeg elsker ITGK!  Jeg elsker ITGK!  Jeg elsker ITGK! 

Jeg elsker ITGK!  Jeg elsker ITGK!  Jeg elsker ITGK! 

``` 

 

Hvis vi derimot endrer litt på kravene til programmet, så det skal handle om flere studenter enn "Jeg" og 

flere emner enn "ITGK", vil vi ha et genuint todimensjonalt problem (én dimensjon er studenter, en annen 

emner) hvor dobbel løkke vil være klart enkleste løsning. **Din oppgave: endre programmet så det gir 
utskrift som vist nedenfor**. Fra forrige oppgave skal altså Jeg byttes ut med Stud &lt;nummer>, og 

ITGK skal byttes ut med Emne &lt;nummer>. Brukeren skal angi ønsket antall for både studenter og 

emner, 4 og 3 er bare eksempler. 

 

``` 

Hvor mange studenter? 4 

Hvor mange emner? 3 

Stud 1 elsker Emne 1 ; Stud 1 elsker Emne 2 ; Stud 1 elsker Emne 3 ; 

Stud 2 elsker Emne 1 ; Stud 2 elsker Emne 2 ; Stud 2 elsker Emne 3 ; 

Stud 3 elsker Emne 1 ; Stud 3 elsker Emne 2 ; Stud 3 elsker Emne 3 ; 

Stud 4 elsker Emne 1 ; Stud 4 elsker Emne 2 ; Stud 4 elsker Emne 3 ; 

``` 
 
Oppgave 11 5 poeng 
 
Bruk en dobbel løkke til å skrive ut en liste over alle klokkeslett i løpet av et døgn på en fin måte. Du 

trenger kun å tenke på timer og minutter. Klokkeslettene skal gå fra 0:0 til 23:59 som vist nedenfor. 



 

Eksempel på kjøring av kode: 

 

``` 

0:0 

0:1 

0:2 

. 

.       # Alle klokkeslett i mellom her skal skrives ut 

. 

23:58 

23:59 

``` 
 
Oppgave 12 5 poeng 
 
Bruk doble løkker til å skrive ut alle tallene i den lille gangetabellen, dvs. lag to for-løkker opp til 11 og 

multipliser variabelen x fra den ene løkken med variabelen y fra den andre løkken og skriv det ut i den 

innerste løkken. Du trenger ikke å tenke på formatet til utskriften. 

 

Eksempel på kjøring: 

 

``` 

1 

2 

3 

4 

5 

. 

. 

. 

60 

70 

80 

90 

100 

``` 
 
Oppgave 13 5 poeng 
 
Hva skrives ut i koden under? 

 

a=345 

b='' 

while a or b=='': 



    b=str(a%2)+b 

    a=a//2 

print(b) 
 
Oppgave 14 5 poeng 
 
Hva skrives ut i koden under? 

 

for x in range(0, 10, 2): 

    print(x, end='') 

    if x%4==0: 

        print( ": Dette tallet går opp i 4-gangern") 

    else: 

        print() 

      

`end=""` gjør at det neste som printes ikke printes en linje under, men at det fortsetter på samme linje. 
 
Oppgave 15 5 poeng 
 
Hva skrives ut i koden under? 

 

i = 1 

while i<10: 

    i = i*2 

print(i) 
 
Oppgave 16 5 poeng 
 
Hva skrives ut i koden under? 

 

i = 1 

j = 3 

while j>0: 

    i = i*2 

    j = j - 1 

print(i) 
 
Oppgave 17 5 poeng 
 
Hva skrives ut i koden under? 

 

i = 5 

for x in range(i): 

    for y in range(x+1): 

        print("*", end="") 



    print() 
 
Oppgave 18 5 poeng 
 
I denne oppgaven skal du lage et program som genererer et tilfeldig heltall i et gitt intervall, og deretter lar 

brukeren gjette på hvilket tall dette er. Dette bør gjøres ved bruk av løkker. 

 

1. Be brukeren om å velge en nedre og en øvre grense for tall han eller hun skal gjette på. Lagre disse to 

opplysningene i to variabler. 

 

2. Lag en variabel TilfeldigTall som genererer et tilfeldig tall i intervallet mellom den øvre og den nedre 

grensen som brukeren har satt. 

 

3. Skriv en while-løkke som kjører så lenge brukeren ikke har gjettet riktig svar. Brukeren skal få 

tilbakemelding for hvert gjett om han eller hun gjettet for lavt, for høyt eller riktig. 

 

``` 

Gi en nedre grense for det tilfeldige tallet: 1 

Gi en øvre grense for det tilfeldige tallet: 100 

Make a guess 50 

The correct number is lower 

Make a guess 25 

The correct Number is higher 

Make a guess 37 

The correct number is lower 

Make a guess 32 

You guessed correct! 

``` 
 
Oppgave 19 5 poeng 
 
En geometrisk rekke er en sum som kan skrives på formen under:  

 
Lag et program som summerer en geometrisk rekke fra 0 til n ved hjelp av en while løkke. 

 

Sjekk: r = 0.5 og n = 4 skal gi sum = 1.9375 
 
Oppgave 20 5 poeng 
 
Fibonaccitallene er definert som følger:  

 
Det vil si at de to første tallene i rekken er 0 og 1, deretter er det neste tallet summen av de to forrige 

tallene. Starten på rekken ser derfor slik ut: 0 1 1 2 3 5 8 13 ... 



Lag et program som regner ut og returnerer det k-te fibonaccitallet f(k) ved hjelp av iterasjon. Har du gjort 

det rett skal det 10-ende Fibonaccitallet bli 34. Husk at det første tallet i rekken er tall nummer 0 
 
Oppgave 21 5 poeng 
 
Skriv om programmet i (Oppgave 20) slik at det også regner ut summen av alle fibonaccitallene. Har du 

gjort det rett det rett skal summen av Fibonaccitallene opp til 10 bli 88. 
 
Oppgave 22 5 poeng 
 
Modifiser programmet i (Oppgave 20) til å returnere en liste med alle fibonaccitallene opp til og med f(k). 

 

Husk å skrive ut svarene til skjerm. 
 
Oppgave 23 5 poeng 
 
Skriv et program som leser inn et heltall n fra bruker og legger sammen tallserien under. 

 
 
Legg merke til at alle partallene har negativt fortegn og alle oddetallene har positivt fortegn. Husk at navnet 

på variabelen din ikke kan være sum, ettersom dette er navnet på en funksjon i python. Husk også at 

range() bare går til et tall og ikke til og med. 

 

``` 

n = 7 

Summen av tallserien er 28 

``` 
 
Oppgave 24 5 poeng 
 
I denne oppgaven bruker vi en enkel while-løkke for å lage et hangman-spill i Python.  

 

Lag et program som tar inn et ord (tekststreng) og antall liv (heltall) fra en bruker, og lar en annen (eller 

samme) bruker gjette på bokstaver i ordet. 

 

1. Start med å hente inn data fra bruker. Lagre dette i to variabler "hemmelig_ord" og "antall_liv". 

 

2. Under har vi laget en while-løkke som kjører evig. Din oppgave er å fylle inn manglende logikk inne i 

løkken. Ting som må gjøres er: 

 - Hent inn en bokstav fra bruker 

 - Sjekk om denne er i det hemmelige ordet  

 - Trekk fra et liv dersom brukeren tipper feil 

-  Hvis brukeren ikke har flere liv skal løkken avsluttes  

 



PS: Husk å skrive ut resultatet til brukeren. Du kan bruke variablene du laget i oppgave a uten å skrive 
dem på nytt  
 

``` 

Skriv inn det hemmelige ordet: hemmelig 

Hvor mange forsøk får brukeren? 2 

Gjett på én bokstav i ordet: f 

Bokstaven f er ikke i ordet. 

Du har  1 liv igjen, prøv på nytt. 

Gjett på én bokstav i ordet: h 

Stemmer, bokstaven er i ordet 

Gjett på én bokstav i ordet: e 

Stemmer, bokstaven er i ordet 

Gjett på én bokstav i ordet: r 

Bokstaven r er ikke i ordet. 

Du har ingen liv igjen. 

``` 
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Poeng:	120

Oppgave	1.	5	poeng

def	more_adjective():

				adjective	=	input("Enter	an	adjective:	")

				range_num	=	int(input("Enter	a	range:	"))

				i	=	1

				while	i	<=	range_num:

								print(f"I	am	{i}	times	more	{adjective}!")

								i	+=	1

Oppgave	2.	5	poeng

def	more_adjective():

				adjective	=	input("Enter	an	adjective:	")

				while	adjective:

								print(f"I	am	more	{adjective}!")

								adjective	=	input("Enter	another	adjective:	")

Oppgave	3.	5	poeng

def	more_adjective_for_range():

				total_chars	=	0

				for	_	in	range(42):

								if	total_chars	>=	42:

												break

								adjective	=	input("Enter	an	adjective:	")

								total_chars	+=	len(adjective)

								print(f"I	am	more	{adjective}!")

Oppgave	4.	5	poeng

def	print_numbers():

				print("5-multiplication	table	between	20	and	81:")

				print(*(i	for	i	in	range(20,	82,	5)))

				print("Numbers	from	48	to	80	incrementing	by	8:")



				print(*(i	for	i	in	range(48,	81,	8)))

				print("Numbers	backwards	from	100	to	80	incrementing	by	-3:")

				print(*(i	for	i	in	range(100,	79,	-3)))

Oppgave	5.	5	poeng

def	print_numbers():

				i	=	1

				while	i	<=	5:

								print(i)

								i	+=	1

Oppgave	6.	5	poeng

def	print_numbers_recursion(i=15):

				if	i	>	0:

								print(i)

								print_numbers_recursion(i	-	1)

Oppgave	7.	5	poeng

def	sum_numbers_list_comprehension():

				numbers	=	[int(input("Enter	a	number:	"))	for	_	in	range(7)]

				total	=	sum(numbers)

				print("The	sum	is:",	total)

Oppgave	8.	5	poeng

def	multiply_recursive(product=1,	i=1):

				if	product	>	1000:

								return	product

				return	multiply_recursive(product	*	i,	i	+	1)

Oppgave	9.	5	poeng

def	capital_niue():

				capital	=	"Alofi"

				tries	=	0

				while	True:

								user_input	=	input("What	is	the	capital	of	Niue?	")

								tries	+=	1

								if	user_input.lower()	==	capital.lower():

												print(f"Correct!	The	capital	of	Niue	is	{capital}.")



												print(f"It	took	you	{tries}	tries.")

												break

								else:

												print("Incorrect.	Please	try	again.")

Oppgave	10.	5	poeng

def	student_subject_combinations():

				students	=	int(input("Enter	the	number	of	students:	"))

				subjects	=	int(input("Enter	the	number	of	subjects:	"))

				student	=	1

				while	student	<=	students:

								for	subject	in	range(1,	subjects	+	1):

												print(f"Student	{student}	loves	subject	{subject}")

								student	+=	1

Oppgave	11.	5	poeng

def	print_timestamps_v():

				hour	=	0

				while	hour	<	24:

								for	minute	in	range(60):

												print(f"{hour:02d}:{minute:02d}")

								hour	+=	1

Oppgave	12.	5	poeng

def	multiplication_tables():

				i	=	1

				while	i	<=	10:

								for	j	in	range(1,	11):

												print(f"{i}	*	{j}	=	{i	*	j}")

								print("\n")

								i	+=	1

Oppgave	13.	5	poeng

>>>	172	86	43	21	10	5	2	1	0

Oppgave	14.	5	poeng

>>>	0	divisible	by	4

2



4	divisible	by	4

6

8	divisible	by	4

10

Oppgave	15.	5	poeng

>>>	1024

Oppgave	16.	5	poeng

>>>	8

Oppgave	17.	5	poeng

>>>	*

**

***

****

*****

Oppgave	18.	5	poeng

def	guess_number_while_try_except():

				lower_limit	=	int(input("Enter	the	lower	limit:	"))

				upper_limit	=	int(input("Enter	the	upper	limit:	"))

				random_number	=	random.randint(lower_limit,	upper_limit)

				print("Guess	the	number	between",	lower_limit,	"and",	upper_limit)

				while	True:

								try:

												guess	=	int(input("Enter	your	guess:	"))

												if	guess	<	random_number:

																print("Go	higher!")

												elif	guess	>	random_number:

																print("Go	lower!")

												else:

																print("Congratulations!	You	guessed	the	number!")

																break

								except	ValueError:

												print("Invalid	input.	Please	enter	a	number.")

Oppgave	19.	5	poeng



def	geometric_sum_recursive(n,	r=2):

				if	n	==	0:

								return	1

				else:

								return	r	**	n	+	geometric_sum_recursive(n	-	1,	r)

Oppgave	20.	5	poeng

def	fibonacci_recursive(n):

				if	n	<=	1:

								return	n

				else:

								return	fibonacci_recursive(n	-	1)	+	fibonacci_recursive(n	-	2)

Oppgave	21.	5	poeng

def	fibonacci_generator(n):

				a,	b	=	0,	1

				for	_	in	range(n):

								yield	a

								a,	b	=	b,	a	+	b

Oppgave	22.	5	poeng

def	fibonacci_loop(n):

				fib_list	=	[]

				a,	b	=	0,	1

				while	a	<=	n:

								fib_list.append(a)

								a,	b	=	b,	a	+	b

				return	fib_list

Oppgave	23.	5	poeng

def	sum_of_series(n):

				return	sum([(-1)	**	(i	%	2)	*	i	**	2	for	i	in	range(1,	n	+	1)])

Oppgave	24.	5	poeng

def	hangman_v(word,	tries):

				guessed_word	=	['_'	for	_	in	word]

				attempts	=	0

				while	attempts	<	tries:



								guess	=	input("Guess	a	letter:	").lower()

								if	guess	in	word:

												guessed_word	=	[letter	if	letter	==	guess	else	char	for	char,	letter	in

zip(guessed_word,	word)]

								else:

												attempts	+=	1

								print("	".join(guessed_word))

								if	"_"	not	in	guessed_word:

												print("Congratulations!	You	won!")

												break

				else:

								print(f"Sorry,	you	lost.	The	word	was	'{word}'.")



Løsningsforslag	Demo	26.05	2

Generert:	26	May,	2023	18:58:12

Poeng:	120

Oppgave	1.	5	poeng

def	more_adjective_list_comprehension():

				adjective	=	input("Enter	an	adjective:	")

				range_num	=	int(input("Enter	a	range:	"))

				sentences	=	[print(f"I	am	{i	+	1}	times	more	{adjective}!")	for	i	in	range(range_num)]

Oppgave	2.	5	poeng

def	more_adjective():

				adjective	=	input("Enter	an	adjective:	")

				while	adjective:

								print(f"I	am	more	{adjective}!")

								adjective	=	input("Enter	another	adjective:	")

Oppgave	3.	5	poeng

def	more_adjective():

				total_chars	=	0

				while	total_chars	<	42:

								adjective	=	input("Enter	an	adjective:	")

								total_chars	+=	len(adjective)

								print(f"I	am	more	{adjective}!")

Oppgave	4.	5	poeng

def	print_numbers():

				print("5-multiplication	table	between	20	and	81:")

				print(*[i	for	i	in	range(20,	82,	5)])

				print("Numbers	from	48	to	80	incrementing	by	8:")

				print(*[i	for	i	in	range(48,	81,	8)])

				print("Numbers	backwards	from	100	to	80	incrementing	by	-3:")

				print(*[i	for	i	in	range(100,	79,	-3)])



Oppgave	5.	5	poeng

def	print_numbers():

				for	i	in	range(1,	6):

								print(i)

Oppgave	6.	5	poeng

def	print_numbers_for_range():

				for	i	in	range(15,	0,	-1):

								print(i)

Oppgave	7.	5	poeng

def	sum_numbers_for_loop():

				total	=	0

				for	i	in	range(7):

								number	=	int(input("Enter	a	number:	"))

								total	+=	number

				print("The	sum	is:",	total)

Oppgave	8.	5	poeng

def	multiply_for_iterator():

				product	=	1

				iterator	=	iter(range(1,	1000))

				for	i	in	iterator:

								product	*=	i

								if	product	>	1000:

												break

				return	product

Oppgave	9.	5	poeng

def	capital_niue():

				capital	=	"Alofi"

				tries	=	0

				while	True:

								user_input	=	input("What	is	the	capital	of	Niue?	")

								tries	+=	1

								if	user_input.lower()	==	capital.lower():

												print(f"Correct!	The	capital	of	Niue	is	{capital}.")

												print(f"It	took	you	{tries}	tries.")

												break



								else:

												print("Incorrect.	Please	try	again.")

Oppgave	10.	5	poeng

def	student_subject_combinations():

				students	=	int(input("Enter	the	number	of	students:	"))

				subjects	=	int(input("Enter	the	number	of	subjects:	"))

				student	=	1

				while	student	<=	students:

								subject	=	1

								while	subject	<=	subjects:

												print(f"Student	{student}	loves	subject	{subject}")

												subject	+=	1

								student	+=	1

Oppgave	11.	5	poeng

def	print_timestamps_v():

				for	time	in	range(24	*	60):

								hour	=	time	//	60

								minute	=	time	%	60

								print(f"{hour:02d}:{minute:02d}")

Oppgave	12.	5	poeng

def	multiplication_tables():

				for	i	in	range(1,	11):

								table	=	[f"{i}	*	{j}	=	{i	*	j}"	for	j	in	range(1,	11)]

								for	row	in	table:

												print(row)

								print("\n")

Oppgave	13.	5	poeng

>>>	172	86	43	21	10	5	2	1	0

Oppgave	14.	5	poeng

>>>	0	divisible	by	4

2

4	divisible	by	4

6



8	divisible	by	4

10

Oppgave	15.	5	poeng

>>>	1024

Oppgave	16.	5	poeng

>>>	8

Oppgave	17.	5	poeng

>>>	*

**

***

****

*****

Oppgave	18.	5	poeng

def	guess_number():

				lower_limit	=	int(input("Enter	the	lower	limit:	"))

				upper_limit	=	int(input("Enter	the	upper	limit:	"))

				random_number	=	random.randint(lower_limit,	upper_limit)

				print("Guess	the	number	between",	lower_limit,	"and",	upper_limit)

				for	_	in	range(1000000):

								guess	=	int(input("Enter	your	guess:	"))

								if	guess	<	random_number:

												print("Go	higher!")

								elif	guess	>	random_number:

												print("Go	lower!")

								else:

												print("Congratulations!	You	guessed	the	number!")

												break

Oppgave	19.	5	poeng

def	geometric_sum_list_comprehension(n,	r=2):

				return	sum([r	**	i	for	i	in	range(n	+	1)])

Oppgave	20.	5	poeng



def	fibonacci_iterative(n):

				if	n	<=	1:

								return	n

				a,	b	=	0,	1

				for	_	in	range(2,	n	+	1):

								a,	b	=	b,	a	+	b

				return	b

Oppgave	21.	5	poeng

def	fibonacci_sum_recursive(n):

				if	n	<=	0:

								return	0

				if	n	==	1:

								return	1

				return	fibonacci_sum_recursive(n	-	1)	+	fibonacci_sum_recursive(n	-	2)	+	1

Oppgave	22.	5	poeng

def	fibonacci_memo(n,	memo={}):

				if	n	in	memo:

								return	memo[n]

				if	n	<=	0:

								return	[]

				if	n	==	1:

								return	[0]

				if	n	==	2:

								return	[0,	1]

				fib_list	=	fibonacci_memo(n	-	1)

				fib_list.append(fib_list[-1]	+	fib_list[-2])

				memo[n]	=	fib_list

				return	fib_list

Oppgave	23.	5	poeng

def	sum_of_series(n):

				total	=	0

				for	i	in	range(1,	n	+	1):

								if	i	%	2	==	0:

												total	-=	i	**	2

								else:

												total	+=	i	**	2

				return	total



Oppgave	24.	5	poeng

def	hangman_v(word,	tries):

				guessed_word	=	['_'	for	_	in	word]

				attempts	=	0

				while	attempts	<	tries:

								guess	=	input("Guess	a	letter:	").lower()

								if	guess	in	word:

												for	i,	letter	in	enumerate(word):

																if	letter	==	guess:

																				guessed_word[i]	=	guess

								else:

												attempts	+=	1

								print("	".join(guessed_word))

								if	set(guessed_word)	==	set(word):

												print("Congratulations!	You	won!")

												break

				else:

								print(f"Sorry,	you	lost.	The	word	was	'{word}'.")



Løsningsforslag	Demo	26.05	3

Generert:	26	May,	2023	18:58:14

Poeng:	120

Oppgave	1.	5	poeng

def	more_adjective_recursive(adjective=None,	range_num=None,	i=1):

				if	adjective	is	None	and	range_num	is	None:

								adjective	=	input("Enter	an	adjective:	")

								range_num	=	int(input("Enter	a	range:	"))

				if	i	<=	range_num:

								print(f"I	am	{i}	times	more	{adjective}!")

								more_adjective_recursive(adjective,	range_num,	i	+	1)

Oppgave	2.	5	poeng

def	more_adjective_recursive():

				adjective	=	input("Enter	an	adjective:	")

				if	not	adjective:

								return

				print(f"I	am	more	{adjective}!")

				more_adjective_recursive()

Oppgave	3.	5	poeng

def	more_adjective_while_try_except():

				total_chars	=	0

				while	True:

								try:

												if	total_chars	>=	42:

																break

												adjective	=	input("Enter	an	adjective:	")

												total_chars	+=	len(adjective)

												print(f"I	am	more	{adjective}!")

								except:

												continue

Oppgave	4.	5	poeng



def	print_numbers():

				print("5-multiplication	table	between	20	and	81:")

				for	i	in	range(20,	82,	5):

								print(i,	end="	")

				print("\nNumbers	from	48	to	80	incrementing	by	8:")

				for	i	in	range(48,	81,	8):

								print(i,	end="	")

				print("\nNumbers	backwards	from	100	to	80	incrementing	by	-3:")

				for	i	in	range(100,	79,	-3):

								print(i,	end="	")

Oppgave	5.	5	poeng

def	print_numbers_list_comprehension():

				[print(i)	for	i	in	range(1,	6)]

Oppgave	6.	5	poeng

def	print_numbers():

				i	=	15

				while	i	>	0:

								print(i)

								i	-=	1

Oppgave	7.	5	poeng

def	sum_numbers_map():

				numbers	=	[]

				for	_	in	range(7):

								number	=	int(input("Enter	a	number:	"))

								numbers.append(number)

				total	=	sum(map(int,	numbers))

				print("The	sum	is:",	total)

Oppgave	8.	5	poeng

def	multiply():

				product	=	1

				i	=	1

				while	product	<=	1000:

								product	*=	i

								i	+=	1

				return	product



Oppgave	9.	5	poeng

def	capital_niue():

				capital	=	"Alofi"

				tries	=	0

				for	_	in	range(10000):

								user_input	=	input("What	is	the	capital	of	Niue?	")

								tries	+=	1

								if	user_input.lower()	==	capital.lower():

												print(f"Correct!	The	capital	of	Niue	is	{capital}.")

												print(f"It	took	you	{tries}	tries.")

												break

								else:

												print("Incorrect.	Please	try	again.")

Oppgave	10.	5	poeng

def	student_subject_combinations():

				students	=	int(input("Enter	the	number	of	students:	"))

				subjects	=	int(input("Enter	the	number	of	subjects:	"))

				for	student	in	range(1,	students	+	1):

								for	subject	in	range(1,	subjects	+	1):

												print(f"Student	{student}	loves	subject	{subject}")

Oppgave	11.	5	poeng

def	print_timestamps_v():

				for	hour	in	range(24):

								for	minute	in	range(60):

												print(f"{hour:02d}:{minute:02d}")

Oppgave	12.	5	poeng

def	multiplication_tables():

				i	=	1

				while	i	<=	10:

								j	=	1

								while	j	<=	10:

												print(f"{i}	*	{j}	=	{i	*	j}")

												j	+=	1

								print("\n")

								i	+=	1



Oppgave	13.	5	poeng

>>>	172	86	43	21	10	5	2	1	0

Oppgave	14.	5	poeng

>>>	0	divisible	by	4

2

4	divisible	by	4

6

8	divisible	by	4

10

Oppgave	15.	5	poeng

>>>	1024

Oppgave	16.	5	poeng

>>>	8

Oppgave	17.	5	poeng

>>>	*

**

***

****

*****

Oppgave	18.	5	poeng

def	guess_number():

				lower_limit	=	int(input("Enter	the	lower	limit:	"))

				upper_limit	=	int(input("Enter	the	upper	limit:	"))

				random_number	=	random.randint(lower_limit,	upper_limit)

				print("Guess	the	number	between",	lower_limit,	"and",	upper_limit)

				while	True:

								guess	=	int(input("Enter	your	guess:	"))

								if	guess	<	random_number:

												print("Go	higher!")

								elif	guess	>	random_number:

												print("Go	lower!")

								else:



												print("Congratulations!	You	guessed	the	number!")

												break

Oppgave	19.	5	poeng

def	geometric_sum(n,	r=2):

				total	=	0

				i	=	0

				while	i	<=	n:

								total	+=	r	**	i

								i	+=	1

				return	total

Oppgave	20.	5	poeng

def	fibonacci_recursive(n):

				if	n	<=	1:

								return	n

				else:

								return	fibonacci_recursive(n	-	1)	+	fibonacci_recursive(n	-	2)

Oppgave	21.	5	poeng

def	fibonacci_sum(n):

				if	n	<=	0:

								return	0

				a,	b	=	0,	1

				sum_fib	=	0

				count	=	0

				while	count	<	n:

								sum_fib	+=	a

								a,	b	=	b,	a	+	b

								count	+=	1

				return	sum_fib

Oppgave	22.	5	poeng

def	fibonacci_loop(n):

				fib_list	=	[]

				a,	b	=	0,	1

				while	a	<=	n:

								fib_list.append(a)

								a,	b	=	b,	a	+	b

				return	fib_list



Oppgave	23.	5	poeng

def	sum_of_series(n):

				return	sum(((-1)	**	(i	%	2)	*	i	**	2	for	i	in	range(1,	n	+	1)))

Oppgave	24.	5	poeng

def	hangman_v(word,	tries):

				guessed_word	=	['_'	for	_	in	word]

				attempts	=	0

				while	attempts	<	tries:

								guess	=	input("Guess	a	letter:	").lower()

								if	guess	in	word:

												guessed_word	=	[letter	if	letter	==	guess	else	guessed_word[i]	for	i,	letter	in

enumerate(word)]

								else:

												attempts	+=	1

								print("	".join(guessed_word))

								if	"_"	not	in	guessed_word:

												print("Congratulations!	You	won!")

												break

				else:

								print(f"Sorry,	you	lost.	The	word	was	'{word}'.")
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Poeng:	120

Oppgave	1.	5	poeng

def	more_adjective():

				adjective	=	input("Enter	an	adjective:	")

				range_num	=	int(input("Enter	a	range:	"))

				for	i	in	range(range_num):

								print(f"I	am	{i	+	1}	times	more	{adjective}!")

Oppgave	2.	5	poeng

def	more_adjective_for_break():

				while	True:

								adjective	=	input("Enter	an	adjective:	")

								if	not	adjective:

												break

								print(f"I	am	more	{adjective}!")

Oppgave	3.	5	poeng

def	more_adjective_for_count():

				total_chars	=	0

				for	_	in	itertools.count():

								if	total_chars	>=	42:

												break

								adjective	=	input("Enter	an	adjective:	")

								total_chars	+=	len(adjective)

								print(f"I	am	more	{adjective}!")

Oppgave	4.	5	poeng

def	print_numbers():

				print("5-multiplication	table	between	20	and	81:")

				i	=	20

				while	i	<=	81:

								print(i,	end="	")



								i	+=	5

				print("\nNumbers	from	48	to	80	incrementing	by	8:")

				i	=	48

				while	i	<=	80:

								print(i,	end="	")

								i	+=	8

				print("\nNumbers	backwards	from	100	to	80	incrementing	by	-3:")

				i	=	100

				while	i	>=	80:

								print(i,	end="	")

								i	-=	3

Oppgave	5.	5	poeng

def	print_numbers_enumerate():

				numbers	=	[1,	2,	3,	4,	5]

				for	i,	num	in	enumerate(numbers,	start=1):

								print(num)

Oppgave	6.	5	poeng

def	print_numbers_for_reversed():

				for	i	in	reversed(range(1,	16)):

								print(i)

Oppgave	7.	5	poeng

def	sum_numbers_while_loop():

				total	=	0

				count	=	0

				while	count	<	7:

								number	=	int(input("Enter	a	number:	"))

								total	+=	number

								count	+=	1

				print("The	sum	is:",	total)

Oppgave	8.	5	poeng

def	multiply_for_range():

				product	=	1

				for	i	in	range(1,	1000):

								product	*=	i

								if	product	>	1000:

												break



				return	product

Oppgave	9.	5	poeng

def	capital_niue_while_counter():

				capital	=	"Alofi"

				tries	=	0

				correct	=	False

				while	not	correct:

								user_input	=	input("What	is	the	capital	of	Niue?	")

								tries	+=	1

								if	user_input.lower()	==	capital.lower():

												correct	=	True

												print(f"Correct!	The	capital	of	Niue	is	{capital}.")

												print(f"It	took	you	{tries}	tries.")

								else:

												print("Incorrect.	Please	try	again.")

Oppgave	10.	5	poeng

def	student_subject_combinations():

				students	=	int(input("Enter	the	number	of	students:	"))

				subjects	=	int(input("Enter	the	number	of	subjects:	"))

				for	student,	subject	in	itertools.product(range(1,	students	+	1),	range(1,	subjects	+	1)):

								print(f"Student	{student}	loves	subject	{subject}")

Oppgave	11.	5	poeng

def	print_timestamps_v():

				for	hour	in	range(24):

								for	minute	in	range(60):

												print(f"{hour:02d}:{minute:02d}")

Oppgave	12.	5	poeng

def	multiplication_tables():

				for	i	in	range(1,	11):

								for	j	in	range(1,	11):

												print(f"{i}	*	{j}	=	{i	*	j}")

								print("\n")

Oppgave	13.	5	poeng



>>>	172	86	43	21	10	5	2	1	0

Oppgave	14.	5	poeng

>>>	0	divisible	by	4

2

4	divisible	by	4

6

8	divisible	by	4

10

Oppgave	15.	5	poeng

>>>	1024

Oppgave	16.	5	poeng

>>>	2

Oppgave	17.	5	poeng

>>>	*

**

***

****

*****

Oppgave	18.	5	poeng

def	guess_number_recursive(lower_limit,	upper_limit,	random_number=None):

				if	random_number	is	None:

								lower_limit	=	int(input("Enter	the	lower	limit:	"))

								upper_limit	=	int(input("Enter	the	upper	limit:	"))

								random_number	=	random.randint(lower_limit,	upper_limit)

								print("Guess	the	number	between",	lower_limit,	"and",	upper_limit)

				guess	=	int(input("Enter	your	guess:	"))

				if	guess	<	random_number:

								print("Go	higher!")

								guess_number_recursive(lower_limit,	upper_limit,	random_number)

				elif	guess	>	random_number:

								print("Go	lower!")

								guess_number_recursive(lower_limit,	upper_limit,	random_number)

				else:



								print("Congratulations!	You	guessed	the	number!")

Oppgave	19.	5	poeng

def	geometric_sum(n,	r=2):

				total	=	0

				for	i	in	range(n	+	1):

								total	+=	r	**	i

				return	total

Oppgave	20.	5	poeng

def	fibonacci_memoization(n,	memo={}):

				if	n	<=	1:

								return	n

				elif	n	not	in	memo:

								memo[n]	=	fibonacci_memoization(n	-	1)	+	fibonacci_memoization(n	-	2)

				return	memo[n]

Oppgave	21.	5	poeng

def	fibonacci_sum(n):

				if	n	<=	0:

								return	0

				a,	b	=	0,	1

				sum_fib	=	0

				for	_	in	range(n):

								sum_fib	+=	a

								a,	b	=	b,	a	+	b

				return	sum_fib

Oppgave	22.	5	poeng

def	fibonacci_recursive(n):

				if	n	<=	0:

								return	[]

				if	n	==	1:

								return	[0]

				if	n	==	2:

								return	[0,	1]

				fib_list	=	fibonacci_recursive(n	-	1)

				fib_list.append(fib_list[-1]	+	fib_list[-2])

				return	fib_list



Oppgave	23.	5	poeng

def	sum_of_series(n):

				total	=	0

				for	i	in	range(1,	n	+	1):

								if	i	%	2	==	0:

												total	-=	i	**	2

								else:

												total	+=	i	**	2

				return	total

Oppgave	24.	5	poeng

def	hangman_v(word,	tries):

				guessed_word	=	['_'	for	_	in	word]

				attempts	=	0

				while	attempts	<	tries:

								guess	=	input("Guess	a	letter:	").lower()

								if	guess	in	word:

												for	i,	letter	in	enumerate(word):

																if	letter	==	guess:

																				guessed_word[i]	=	guess

								else:

												attempts	+=	1

								print("	".join(guessed_word))

								if	"_"	not	in	guessed_word:

												print("Congratulations!	You	won!")

												break

				else:

								print(f"Sorry,	you	lost.	The	word	was	'{word}'.")




	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Motivation
	Research Questions
	Report structure

	Background
	State of pre-master project prototype
	Programming task formats
	Selected programming task formats
	Other relevant programming tasks formats

	The link between code complexity and perceived code difficulty
	Estimating task complexity

	Neural network architecture, language models, and the history of GPT
	Popular language model architectures
	GPT-1
	GPT-2
	GPT-3
	GPT-3.5 and onwards
	GPT-4


	Research method
	Development methodology
	Design science
	Agile development

	Approaches to implementing large language models
	Approach 1: Introduce LLMs in the existing system
	Approach 2: Building entire variants using LLMs

	Creating a system for metrics/rating of tasks
	Evaluation method
	Student demonstration
	Teaching staff demonstration


	Related Work
	Automatic Generation of Programming Exercises and Code Explanations using Large Language Models
	Summary

	The impact of OpenAI Codex on Introductory Programming

	Result
	Variant task generation system implementation
	Defining important keywords in the system
	Sprint 1: Variant task generation system
	Sprint 2: Rating system and exercise builder
	Sprint 3: REST API and frontend
	Summarizing TaskMaster

	Operating the system from a user-perspective
	Front page
	Variant templates list
	Variant template editor
	Exercise-set builder for combining the variants

	Assessment
	Student demo
	Research assistant interview
	Professor interviews


	Discussion
	Summary of the variant task generation system
	Comparisons to prior work
	Query technique
	Task quality and readiness of use

	Limitations and threats to validity
	LLMs and large amounts of context
	Is the system redundant?
	The use of both agile and waterfall method
	Lack of direction
	Subjectivity of complexity
	Multiple equivalent solutions in relation to complexity rating
	Weighted complexity measure
	Biased measurements due to code base size
	A new landscape
	Small sample size and realism of testing


	Conclusion and Future Work
	Summary of main findings
	Future work
	Universal Design
	Query Injection
	Expanding system to other programming languages
	Improved solutions using LLMs
	Utilizing other complexity measures
	System expansion
	Final thoughts


	Bibliography
	Additional Material

