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1 Abstract

1.1 English/Engelsk

Vibration-damped tool holders have become popular in the machining industry due to their cap-
ability to avoid vibrations, enabling longer tool life, making higher length/diameter ratios possible,
and increasing the metal removal rate. A vibration-damped tool holder and simulations of it are
put in the spotlight of this thesis.

Elements of a vibration-damped tool holder shall be modeled and simulated in Comsol Multiphys-
ics. Special emphasis is put on simulating rubber and tuning the rubber material model parameters
based on lab data to improve the simulation. The simulation results will be validated against real-
world lab measurements.

Throughout the thesis, a high degree of independent development has been put into the simulations
and an effort to gain knowledge in the field of vibrations and damping. Attending lab experiments
at Sandvik Teeness gave me crucial insight, providing me with impulse response data that enabled
parameter tuning and validation of the simulations.

The lab experiments and simulations were compared against each other in the frequency response
curve. The simulation results are plotted by monitoring the response at a selected point of the
structure when a harmonic perturbation load is acting on the system, sweeping the load over a
predefined range of frequencies at discrete steps. The Lab results are monitored by a force sensor
at the impact hammer and an accelerometer, processed by Sandvik and presented as frequency
response with real and imaginary parts, finally computed to give the magnitude in the frequency
response curve, making a relevant comparison of the simulation and lab results possible.

After tuning the rubber material parameters used in the simulations based on appropriate data
from lab experiments, the results gave surprisingly good results both in terms of frequency and
magnitude accuracy. The simulation’s ability to predict correctly when it comes to the frequencies
of the magnitude peaks from the lab data is very good, with less than 4% error. The magnitude
accuracy in the frequency response was set as a secondary priority, but still performs quite well,
with an average peak value error of 73%. Scaling the simulation magnitude based on the first peak
value of the lab and simulation frequency response curves, reduced the average error to 60%

In light of the project goals and objectives, the thesis is seen as a personal success, creating a solid
foundation for further work and development. In order to provide companies like Sandvik with
useful results, there is still a lot of work to do. different roots of error must be investigated as well as
running simulations with a more sophisticated simulation solver that require more computational
power than what was in my reach through the thesis.
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1.2 Norwegian/Norsk

Dempede dreiebomer har blitt populær i maskinerings industrien grunnet deres evne til å unng̊a 
vibrasjoner under bearbeiding. Deres egenskaper gir økt levetid p̊a vendeskjær(kuttende del 
av verktøyet), muliggjør høyere lengde/diameter-forhold, og økt metallfjerningsrate. En vibras-
jonsdempet dreiebom og simulering av den blir tatt under lupen i denne rapporten.

En vibrasjonsdempet dreiebom og dens komponenter skal simuleres i Comsol Multiphysics. Et 
økt fokus skal legges p̊a simulering av gummi og justering av sentrale parametre i gummiens 
materialmodell basert p̊a lab data for å forbedre simuleringene. Simuleringsresultatene vil bli m̊alt 
opp mot data fra lab forsøk.

Gjennom rapport arbeidet har en stor grad av simuleringsutviklingen foreg̊att selvstendig. I tillegg 
har et stort fokus blitt lagt p̊a å tilegne meg kunnskap innen vibrasjoner og demping, noe som 
var et nytt emne for meg. Personlig deltakelse i impulsrespons forsøk utført hos Sandvik Teeness i 
Trondheim, ga meg viktig innsikt i dataene som parameterjustering og validering av simuleringene 
har blitt basert p̊a.

Laboratorie og simuleringsresultat ble sammenlignet i deres frekvensrespons. Simuleringsres-
ultatenes magnitude plottes basert p̊a amplituden systemet svinger med n̊ar en harmonisk for-
styrrelseslast virker p̊a systemet, lastes p̊aføres over et forh̊andsdefinert frekvensomr̊ade i diskrete 
trinn. Laboratorie resultatene ble prosessert av Sandvik utifra m̊aliger etter impulstester, og sendt 
over som frekvens respons med reel og imaginær part, hvor jeg s̊a har plottet den respektive 
tilhørende magnitude. P̊a denne måten har jeg kunnet sammenligne resultater fra laboratorie og 
simulering.

Etter justering av gummimaterialets parametere basert p̊a passende data fra laboratorieforsøkene, 
ga simuleringene overraskende gode resultater, b̊ade n̊ar det gjelder nøyaktigheten til frekvens og 
magnitude. Simuleringenes evne til å estimere frekvensverdi p̊a magnitudetopper funnet i 
labforsøkene er veldig god, med mindre enn 4% feilmargin. Magnitudenøyaktighet med tanke p̊a 
amplituden ble satt som en sekundær prioritet, men simuleringen treffer ganske bra ogs̊a her, med en 
gjennomsnittlig feilmargin p̊a 73% i forhold til de m̊alte magnitudetoppene. Skalering av 
simuleringsmagnituden basert p̊a den første toppverdien i lab- og simuleringsresultatene, reduserte 
den gjennomsnittlige feilmarginen til 60%.

I lys av m̊al for oppgaven, sees rapporten og arbeidet som en personlig suksess, og skaper et solid 
grunnlag for videre arbeid og utvikling. For å gi selskaper som Sandvik nytte av Comsol som et 
simuleringsprogram, er det fortsatt mye arbeid å gjøre. forskjellige årsaker til feil m̊a undersøkes, 
samt å kjøre simuleringer med en mer sofistikert matematisk modell som krever mer datakraft enn 
det som var innen min rekkevidde gjennom rapport arbeidet.
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3 Introduction

3.1 Background and Motivation

As an analytical and detail-oriented individual with a strong inner drive to understand how sys-
tems work, mechanical engineering was a natural pathway for me. My experience as a CNC
Operator, a mechanical engineering student, and an engineering intern constitutes my foundation
for completing my thesis.

Vibration-dampened tool holders have always interested me. Since I started working with them as
an apprentice, they have proved to be an efficient tool, increasing metal removal rates and removing
vibrations in high L/D ratio operations. The difference when changing from an undampened tool
holder to a dampened holder trying to eliminate vibrations truly lets the technology shine.

Among other courses, the introductory course TMM4135- in the element method enabled me with
the fundamental tools needed to simulate Tuned Mass Dampers (TMD’s) by the use of Finite
Element Method (FEM) simulations and this way gain insight into key performance parameters
and to furthermore, validate the simulations by lab experiments. The thesis has given me the
possibility to enhance my theoretical knowledge in vibration and damping theory, as well as the
opportunity to perform a highly appreciated practical lab part.

3.2 Problem Statement

Elements of a vibration-damped tool holder shall be modeled and simulated in COMSOL. Special
emphasis is put on the simulation model for rubber and tuning of the rubber material model
parameters to fit simulation results to lab experiments. The simulation results will be measured
against real-world lab measurements.

3.3 Goals and Objectives

The goals and objectives for the thesis serve distinct purposes and have been set to function as a
pathway throughout the project. Goals are high-level statements, broad, long-term, and generally
qualitative. They shall provide a clear sense of direction and illustrate the overall aim of what the
thesis is set to achieve. Objectives are specific and clear in terms of the exact intention/outcome,
short-term, and generally quantitative(measurable) steps that help to attain the goals. Each
goal has connected objectives with the sole purpose of ensuring progress and enabling project
management with a systematic approach to reaching the goals (Asana 2023).

In order to develop the goals and objectives, the SMART principle has been applied (Objectives
and goals: SMART 2023). Each letter S, M, A, R, and T stands for a parameter that should be
included and evaluated during development. Although goals are more qualitative than objectives,
the SMART principle is seen as a powerful tool as it ensures quality in key parameters, and it is,
for instance, important to be specific for both broad goals concerning a larger part of the project
as well as narrow objectives focused on smaller parts.

Figure 1: Smart Goals

Source: https://cultivateadvisors.com/blog/5-steps-to-writing-smart-business-goals/
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• Specific

– What shall be accomplished?

– Point out a straight line to the final goal

– Make sure that the goal is clear and concise

• Measurable

– Define the metrics of your goal

– Set your goal in terms of the defined metrics enabling evaluation of success

• Achievable

– Make the Goal realistic

– How will the available resources be managed to reach the goal?

• Relevant

– Make sure that the goals are connected with the vision and have solid backing in ob-
jectives

– Ensure that the goal fits in with the problem statement

• Time-Bond

– Set a precise deadline for your goals. In order to reach the goals, objectives with due
dates can be used as a tool on the way

Goals and Objectives:

• Set up a full simulation of a boring bar assembly with a TMD and have it run a frequency
domain study before the end of the thesis

– Max eigenfrequency deviation 5%

– Using a material model adequately describing rubber and finding the correct parameters
and values to meet the eigenfrequency deviation

– Uncertainties connected to rubber material parameters and contact modeling can make
it difficult to perform well on both frequency and amplitude accuracy. Due to peak
frequency accuracy being of high priority, tuning for amplitude correlation should be
done with visual control, reducing the time needed for tuning. Tuning for amplitude
should give a curve following the same shape as the lab results.

• Perform real-life lab experiments to get data for validation and tuning of rubber material
model.

– Complete the experiments two months before the submission deadline of the thesis
work in order to have the data ready when the simulations are ready to start parameter
tuning.

2



3.4 Scope and Limitations

In this chapter, the scope and limitations of the thesis are presented. The scope defines the
boundaries of the research, explaining what will be covered, while the limitations address the
constraints and potential weaknesses of the study. Identifying the scope and limitations helps to
set realistic expectations for the research and sheds light on areas for future investigation that
won’t be covered or taken into consideration in this thesis.

Scope The scope of this thesis is centered around the following aspects:

1. Focus on vibration-damped tool holders for internal turning operations: The research will
concentrate on the development and simulation of vibration-damped tool holders specifically
designed for internal turning operations.

2. Material properties and constitutive models for rubber: The study will emphasize the accur-
ate representation of rubber materials in the finite element model, considering their specific
properties and constitutive models.

3. COMSOL Multiphysics for finite element simulations: The research will utilize the COMSOL
Multiphysics software for developing, simulating, and analyzing the finite element models of
the vibration-damped tool holders without viscous damping.

4. Validation through experimental testing: The constitutive rubber model will be tuned using
experimental data collected from laboratory tests performed on a tuned mass damper without
viscous damping and on a full assembly with the TMD installed in a boring bar, still without
viscous damping. The lab experiments will be used for simulation validation.

5. Parameter identification: The study will put special emphasis on finding key performance
parameters in the rubber constitutive model and detecting how changes in the key perform-
ance parameters affect the simulation results of vibration-damped tools.

Limitations Due to the complexity of the scope, limitations exist that may impact the research
outcomes. These limitations are important to acknowledge as they may influence the interpretation
of the results and provide areas for future investigation:

1. Software limitations: The use of COMSOL Multiphysics for modeling and simulation inher-
ently comes with some limitations and assumptions in the software’s built-in material models
and numerical methods, along with specific simulation decisions used in the modeling. These
limitations might affect the accuracy of the results.

2. Experimental constraints: The laboratory experiments conducted to provide real-world res-
ults and to validate the simulation results are subject to measurement errors, due to notice,
accuracy, and repeatability.

3. Material property simplifications: Constitutive models used for steel and rubber involve
simplifications and assumptions that do not entirely capture the real-world behavior of the
materials, potentially affecting the accuracy of the simulation results.

4. Time and knowledge constraints: Due to the limited time available for completing the thesis,
certain aspects of the research may not be explored in-depth, which could impact the com-
prehensiveness of the study, along with the lack of knowledge on specific subjects and aspects
of the thesis.

By acknowledging these limitations, the research can be better understood within its specific
context, and potential areas for further investigation can be identified. The results and conclusions
drawn from this thesis should be interpreted with the limitations in mind. Future research can
build upon this work by addressing these limitations, exploring new materials, expanding the scope
to different tool holders, or including more physical aspects such as viscous damping effects. As
such, this thesis serves as a foundation for further investigations and advancements in the field of
vibration-damped tool holders for internal turning operations, and simulation of TMDs.

3



3.5 Research Questions

This chapter presents the research questions that guide the focus and direction of the thesis. These
questions help frame the investigation, ensuring that the research remains relevant and addresses
the problem statement. By answering these research questions, the thesis aims to contribute
valuable knowledge and insights to the scope of the thesis.

Main Research Question

The main research question addresses the core issue of the thesis and serves as the foundation for
the subsequent sub-questions:

How can a finite element model of a vibration-damped tool holder for internal turning operations
be developed and validated using COMSOL Multiphysics, focusing on accurately representing and
tuning the behavior of rubber to return simulation results close to real-world behavior?

Sub-Research Questions

Several sub-research questions have been formulated to explore specific aspects of the problem in
greater detail:

What are the key material properties and constitutive models of rubber that need to be considered
for accurately modeling their behavior in a vibration-damped tool holder?

How can the finite element model of the vibration-damped tool holder be optimized to improve its
accuracy and computational efficiency, considering the complexities of the materials involved?

What experimental methodologies and techniques can be employed to validate the simulation
results obtained from the COMSOL Multiphysics model, ensuring the reliability and accuracy of
the findings?

How do the results of the finite element simulations and experimental validation conform, and
which parameters are best used to tune the rubber constitutive model?

By addressing these sub-research questions, the thesis aims to provide a comprehensive understand-
ing of the modeling, simulation, parameter tuning, and validation process for vibration-damped
tool holders. This information can contribute to a better understanding of tool holders for internal
turning operations and key parameters, with the ultimate purpose of enhancing the performance
of these tools in various industrial applications.

4



3.6 Thesis Structure

The thesis structure chapter provides an overview of the organization and layout of the thesis
document. It serves as a roadmap for the reader, outlining the main sections and sub-sections, and
briefly describing the content of each chapter. This overview is made to guide the reader through
the research process, clarifying the logical flow of the thesis and the development of ideas.

Overview of Thesis Structure

The thesis is organized into the following parts and chapters:

1. Introduction: Presents the background and motivation for the research, the problem state-
ment, and the goals and objectives of the study. It also introduces the research questions
that guide the focus and direction of the thesis.

2. Theoretical background and Literature Review: Reviews relevant theoretical background
and literature in the field of vibration-damped tool holders, finite element modeling, and
material modeling. It discusses key concepts, theories, and previous research, providing a
comprehensive context for the study.

3. Methodology: Details the research methods employed in the thesis, including the develop-
ment of the finite element model, the simulation process using COMSOL Multiphysics, sim-
ulation tuning, and experimental validation techniques. It also discusses the data collection
and analysis procedures, ensuring the research is conducted systematically and rigorously.

4. Simulation and Lab Results: Presents the findings from the finite element simulations and
experimental validation. It provides a detailed analysis of the results, including the effects
of various parameters on the performance of the vibration-damped tool holders.

5. Discussion: This chapter interprets the results and draws connections between the findings
and the existing literature. It addresses the research questions, discusses the implications of
the results, and identifies any limitations or potential sources of error in the study.

6. Conclusion: Summarizes the main findings of the thesis, highlighting the contributions to
the field of vibration-damped tool holders for internal turning operations. It also discusses
the practical applications of the research and suggests areas for future investigation.

7. References: Lists all the sources cited throughout the thesis.

8. Appendices: Includes any supplementary materials.

5



4 Theoretical Background and Literature Review

This chapter contains the theoretical foundations of the research gathered from relevant literature.
It includes the finite element method, mechanical vibrations, tuned mass dampers, and constitutive
models for rubber.

4.1 Previous Work

Throughout my autumn semester thesis and this master’s thesis, I have done simulations in Comsol
Multiphysics of increasing complexity by taking the following steps in simulations. The workload
and problem-solving behind each and every step have been an essential and dominating part of
the thesis work, represented by the final simulations presented in the result section of the thesis.
Number 1-10 was conducted in the autumn semester thesis and 11-13 during this master’s thesis.

1. Beam Physics: Stationary deflection and stress analysis (2D)

2. Solid Mechanics: Stationary deflection and stress analysis (3D)

3. Beam Physics: Eigenfrequency study (2D)

4. Solid Mechanics: Eigenfrequency study (3D)

5. Beam Physics: Harmonic forced vibrations, Frequency domain, Modal (2D)

6. Solid Mechanics: Harmonic forced vibrations, Frequency domain, Modal (3D)

7. Solid Mechanics: Periodic forced vibrations, Frequency domain, Modal (3D)

8. Beam-Physics-Lumped-Mechanics: Various static and dynamic analysis (0D-2D)

9. Solid Mechanics: Periodic forced vibrations, Frequency domain, Modal (0D-3D)

10. Solid Mechanics: Assembly of steel-rubber-steel, Static, and dynamic analysis (3D)

11. Laminar Flow: Static analysis (2D)

12. Solid Mechanics: Rubber-steel-rubber assembly (to be described further in methodology,
results, and discussion)

13. Solid Mechanics: Final assembly analysis (to be described further in methodology, results,
and discussion)

6



4.2 Finite Element Analysis (FEA)

The Finite Element Method (FEM) is a numerical method used to solve complex mathematical
problems in engineering and physics. The method involves dividing a complex system into smaller,
simpler parts called elements. These elements are then analyzed using numerical methods. FEM
analysis involves a great number of possibilities in attacking different problems and requires a solid
understanding of different approaches in order to gain valid results and interpret the simulation
results.

Figure 2: FEA Work Flow

Each of the element variations is assumed to behave in a specific way, determined by its shape,
material properties, and boundary conditions. The behavior of each element is then modeled using
mathematical equations that describe its response to external loads and boundary conditions.

The FEM involves discretizing the system into a finite number of elements, each defined by a set
of nodes. Nodes are points within the element where the equations describing the behavior of the
element are evaluated. The elements can be of one(beam), two(shell), or three(solid) dimensional
form giving the nodes, respectively, two, four, and six degrees of freedom. The elements can further
be of higher orders giving elements a greater number of nodes (the bottom row in Fig.3) (Ph.D
2019).
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Figure 3: Element shapes and dimensions

The equations calculated at the individual nodes are further combined, forming a global system of
equations describing the behavior of the entire system. Depending on the scope of the calculations,
the equations can be set up to solve a widespread area of physics such as Solid Mechanics, Fluid
Mechanics, Heat Transfer, Electromagnetic analysis, and more. In this chapter, the focus will be
on Solid Mechanics, particularly Static, dynamic, and modal analysis.

In solid mechanics, also known as structural mechanics, you compute deformations, stresses, and
strains. It is a field of applied mechanics where the objective often is to determine a structure’s
strength, such as a bike frame. Identifying dynamic properties such as eigenfrequencies, and time-
dependent load responses, as well as flexibilities of a structure are also normal objectives.

Material science plays an important role in the computation of solid mechanics, as it is necessary to
mathematically model the material behavior correctly. The models describing different materials
vary greatly between different materials, for instance, metals, fluid, and rubber.

Concerning mechanics structures can be statically determined or statically indeterminate.
In the first case, all forces in the system can be calculated purely in terms of equilibrium. Static
uncertainties are common in practice, at least when it comes to calculating the distribution of
residual stresses in components. In statically uncertain systems, deformation must be considered
in order to calculate forces.

Figure 4: Statically Determinate VS Statically Indeterminate

The force of the two bars can be determined from the horizontal and vertical force balance of the
force at the common joint in the determinate structure.
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In the indeterminate structure the forces on the three rods cannot be determined solely by the
balance of the two forces at the joint. Force distribution is affected by the stiffness of each bar.

Static Indeterminacy causes almost all solid mechanics analyses to rely on the same set of equation
types: equilibrium, compatibility, and constitutive relations but they may appear in different forms,
dependent on the analysis being at a continuum level or at a large-scale structural level (Comsol
2017).

Stress and Equilibrium Newton’s second law forms the basis of the equilibrium equations. It
states that all forces acting on a body including inertial forces, sum to a total of zero, meaning
that all parts of a given structure must be in an equilibrium state. Virtually cutting a part, the
internal stresses in the cut must balance out the external forces.

Sett inn egen fig her!

In three-dimensional space, the stress within a material is described by the stress tensor, which
can be expressed as:

σ =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (1)

The individual elements in the stress tensor represent a force component per unit area in the
material. One index signifies the force component’s direction, while the other index indicates
the orientation of the normal to the surface where the force is applied. Moment equilibrium
considerations makes the stress tensor symmetric, containing six independent values.

Newton’s second law can be expressed in terms of stress:

ρ
d2u

dt2
= ∇ · σ + f (2)

Where:

• f is force per unit volume

• ρ is the mass density, and

• u is the displacement vector.

Strain and Compatibility

Compatibility relations impose constraints on deformations. In the case of a structural framework,
the endpoints of all members connected at a single point must undergo identical displacements in
both magnitude and direction.

Within the material, local deformations are described by the strain, which represents the relative
deformation. For the straightforward elongation of a bar, strain, denoted as ε, is determined by
the ratio of the displacement, ∆, to the initial length, L0.

For a general 3D case, Strain is also modeled by a symmetric tensor,

ε =

εxx εxy εxz
εyx εyy εyz
εzx εyz εzz

 (3)

The discrete elements are defined as derivatives of the displacements,
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εxx =
∂u

∂x
, εyy =

∂v

∂y
, εzz =

∂w

∂z
,

εxy = εyx =
1

2

(
∂u

∂y
+

∂v

∂x

)
,

εxz = εzx =
1

2

(
∂u

∂z
+

∂w

∂x

)
,

εyz = εzy =
1

2

(
∂v

∂z
+

∂w

∂y

)
.

(4)

Due to their origin in a displacement field, the strain tensor’s components are unable to have
random spatial distributions. The compatibility requirements for a continuum are generated as a
result. These compatibility requirements are fundamentally geometric relations, whether they be
applied at the structural or continuum levels. These requirements are fundamental, much like the
equilibrium relations, and do not require any assumptions (Comsol 2023g).

Constitutive Relations A material model acting as a connection between force and deformation
or stress and strain is known as a constitutive relation. Unlike the previous two sets of equations,
constitutive relations are not based on first principles and are entirely empirical. At most, laws
of thermodynamics, symmetry conditions, and similar arguments can provide constraints on the
possible mathematical structures of material models.

Material models establish a relationship between stresses and strains mathematically. For some
elastic materials, this relationship is unique. In certain cases, the relation also includes time
derivatives, as seen in viscoelasticity, or a record of previous strains, as observed in plasticity.

For each specific material, it is essential to conduct experiments and subsequently fit the obtained
data to an appropriate mathematical model to replicate their true behaviour for the study to be
conducted.

Linearly elastic materials The most basic material model is linear elasticity, where stresses are
directly proportional to strains. Meaning that the deflection of for instance a beam, is proportional
to the load applied. In many cases, this material model is adequate.

Isotropic linear elastic materials can be described by two independent material constants, normally
the modulus of elasticity (Young’s modulus), E, and Poisson’s ratio, v.

Hooke’s law in relation to deformations of a solid linear elastic material includes stress and strain
to remove the stiffness geometric dependency.

Taking a bar with a cross-section area: A and length: L, subjected to an axial force F:

Stress:

σ =
F

A
(5)

Strain:

ε =
∆L

L0
(6)

Where:

• σ is the stress (in Pascal, Pa)

• F is the applied force (in Newtons, N])

• A is the cross-sectional area (in square meters, m2)

• ε is a strain (the ratio of change in length to the original length, a scalar)

• ∆L is the change in length (in meters, m)

10



• L0 is the original length (in meters, m)

Hooke’s Law, in terms of stress and strain, is given by the equation:

σ = Eε (7)

This relationship states that the stress acting on a material is proportional to the strain experienced
by the material, and this proportionality is Young’s modulus (What is Hooke’s Law? 2023).

Expressing the axial force by ε, E, A, and L:

F = εEA (8)

The shear modulus also known as the modulus of rigidity, (G) is a measure of a material’s rigidity
given by the ratio of shear stress to shear strain, sometimes also referred to as the 2nd Lamé
parameter µ.

For isotropic materials, which exhibit the same mechanical properties in all directions, the relation-
ship between Young’s modulus and the shear modulus can be expressed using Poisson’s ratio (ν).
Typically, a bar under tension not only elongates but also contracts in the transverse direction.
Poisson’s ratio is a dimensionless quantity that gives the relationship between the strain in the
transverse directions and the strain in the axial direction:

ν =
εtransverse
εaxial

(9)

The following formula gives the relationship between these material properties:

G =
E

2(1 + ν)
(10)

Where:

• G is the shear modulus (in Pascals, Pa)

• E is the modulus of elasticity or Young’s modulus (in Pascals, Pa)

• ν is Poisson’s ratio (dimensionless)

Bulk modulus (K), which measures a material’s incompressibility or resistance to uniform com-
pression, is another essential material characteristic. It is described as the ratio of the relative
volume drop caused by the infinitesimal pressure increase:

K = −V
dP

dV
(11)

where:

• V is the volume [M3]

• P is the pressure [Pa],

and the negative sign ensures that K is always a positive number (since an increase in pressure
should result in a decrease in volume). In terms of Young’s modulus (E) and Poisson’s ratio (ν),
the bulk modulus can be expressed as:
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K =
E

3(1 − 2ν)
(12)

The equations show the interdependence between the modulus of elasticity, the shear modulus,
and the bulk modulus in isotropic materials. By knowing any two of these material properties
(E, G, K, or ν), it is possible to calculate the other properties. This relationship is crucial for
understanding the mechanical behavior of isotropic materials and can be used in the analysis and
design of vibration-damped tool holders for internal turning operations. These properties directly
influence how materials respond to various types of stress and strain which can alter the material’s
vibrational behaviour. In vibration applications with rubber elements such as vibration-damped
tool holders.

Vibration control: During internal turning operations, vibrations can be generated due to vari-
ous factors such as cutting forces, tool geometry, and material properties. These vibrations can
negatively impact the surface finish, tool life, and dimensional accuracy of the workpiece. By
understanding the relationship between E, G, and ν and their impact on parameters like stiffness
and strength, engineers can take qualified material choices with optimized damping properties that
ensure a good fit between all materials in the vibration-damped tool holder assembly, ultimately
improving the overall machining performance.

Stiffness and Strength affecting eigenvalues Eigenvalues are associated with the vibration
behavior of a structure or material, and they are related to the natural frequencies of the system
also referred to as eigenfrequencies. Eigenfrequencies are frequencies that a structure will vibrate at
after excitation and then be left to vibrate freely. Stiffness and strength are mechanical properties
that influence the overall behavior of a material, they do not directly affect eigenvalues. However,
they do play a role in the frequency response of a system.

In the context of structural dynamics or mechanical vibrations, the eigenvalue problem is typically
formulated in terms of a structure’s mass (M) and stiffness (K) matrices. The eigenvalues and
eigenvectors of this problem determine the natural frequencies and mode shapes.

The stiffness (K) and mass (M) matrices are influenced by the material’s properties, such as its
modulus of elasticity (stiffness) and density (mass). As the stiffness of a material increases, the
overall stiffness of the structure tends to increase as well. This can result in higher eigenfrequencies.
A structure’s eigenfrequencies can be important for avoiding resonance or meeting specific design
requirements related to vibration performance and are a big concern in the construction of large
buildings and bridges.

Strength, on the other hand, is essential for ensuring that a structure or material can withstand
the stresses induced by vibrations without yielding or failing. While it doesn’t directly influence
the eigenvalues, it plays a vital role in the overall durability and integrity of a structure subjected
to dynamic loads.

Understanding the relationship between material properties like stiffness and strength and their
impact on the vibration behavior of structures is crucial for the design and analysis of systems
subjected to dynamic loads, to ensure structural integrity and functionality.

The 3D generalization of Hooke’s law can be expressed as:


σxx

σyy

σzz

σxy

σyz

σxz

 = D ·


εxx
εyy
εzz
εxy
εyz
εxz

 (13)

D is a symmetric 6×6 matrix containing 21 independent constants, Presented in a most general
anisotropic case. For the isotropic case, it is only a function of E and ν:
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D =
E

(1 + ν)(1 − 2ν)


1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

 (14)

The stiffness matrix, K, is a key component of the FEM. The stiffness matrix relates the forces
applied to the system to the displacements of the nodes. The stiffness matrix is calculated by
integrating the element stiffness matrices for each element in the system. The element stiffness
matrix, Ke, is calculated using the following formula:

Ke =

∫
Ωe

BT
e DeBedΩ (15)

where Ωe is the domain of the element, Be is the strain-displacement matrix for the element, and
De is the constitutive matrix for the material.

The force vector, f , is also a key component of the FEM. The force vector represents the external
loads applied to the system. The force vector is calculated by summing the forces applied to each
node in the system.

The displacement vector, u, represents the displacement of each node in the system. The displace-
ment vector is calculated by solving the global system of equations:

Ku = f (16)

where u is the displacement vector, K is the stiffness matrix, and f is the force vector.

In conclusion, the Finite Element Method is a powerful tool for solving complex mathematical
problems in engineering and physics. The method involves dividing a complex system into smaller,
simpler parts called elements, and then modeling the behavior of each element using mathemat-
ical equations. The FEM has many practical applications, including structural analysis(including
vibration), heat transfer analysis, and fluid flow analysis.

FEA can be used to determine the natural frequencies, mode shapes, and response of a structure
to external loads, making it a powerful tool in vibration analysis.

The natural frequencies of a structure can be calculated using the following formula:

fn =
1

2π

√
k

m
(17)

where fn is the natural frequency, k is the stiffness of the structure, and m is the mass of the
structure. The mode shapes of the structure can also be determined using FEA. Mode shapes
describe the shape of the structure as it vibrates at different natural frequencies. The mode shapes
are represented as vectors and can be expressed as:

ϕ = [ϕ1,ϕ2, ...,ϕn] (18)

where ϕi is the mode shape vector for the ith natural frequency.

FEA can also be used to determine the response of a structure to external loads. The response of
a structure can be calculated using the following equation:

u = K−1f (19)
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where u is the displacement vector, K is the stiffness matrix, and f is the force vector. The
stiffness matrix and force vector are determined using FEA.

Material Models

There are various families of material models for structural mechanics applications, and each family
contains several possible models. Below is a table listing a few examples1.

Material Model Fam-
ily

Examples Common Material
Models

Linear elastic Many materials at small
strains, e.g., metals

• Hooke’s law
• Isotropic and anisotropic

Elastoplastic, volume-
preserving

Metals at larger strains • Tresca
• von Mises

Elastoplastic, mean
stress-dependent

Soils • Mohr-Coulomb
• Drucker-Prager

Creep Metals at elevated tem-
peratures

• Norton
• Garofalo

Hyperelastic Rubbers, biological tissues • Neo-Hookean
• Mooney-Rivlin

Viscoelastic Plastics, Rubbers • Maxwell
• Kelvin
• Standard linear solid

Table 1: Material Model Families and Examples

This table provides an overview of several material model families and examples of materials and
common models within each family.

Boundary Conditions

To adequately address the solid mechanics problem, it is necessary to apply appropriate boundary
conditions. Assumptions are often made to make models less computationally heavy, and it is
important to have a solid understanding of the impacts on the simulation results in order to
ensure valid simulations. creating solid connections, contact pairs, spring connections, different
combinations of translation and rotation conditions, and other boundary conditions must be done
with caution.

Defined Displacements

In some instances, the displacements are predetermined for certain portions of the body’s bound-
aries, such as a structure resting upon the ground. If these known displacements do not adequately
restrict all potential rigid body motions, determining the displacement field becomes unattainable.
When external loads are recognized, it might still be feasible to compute stresses since absolute dis-
placements may not be crucial. However, numerical solutions usually require a sufficient collection
of defined displacements.

Mathematically, defined displacements correspond to Dirichlet conditions (A. H. .-. Cheng and
D. T. Cheng 2005).

Forces

External forces are commonly included in the formulation of solid mechanics problems.

Forces can take on a volumetric nature, such as gravity or centrifugal forces, which are integrated
into the governing PDE rather than being considered boundary conditions.

On the contrary, there are loads that act on the boundaries, like the internal pressure within a pipe
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or snow weight on a roof. These forces exemplify true Neumann boundary conditions (Venkateshan
and Swaminathan 2014). In some scenarios, the orientation of the load shifts with the deformation
termed a follower load. This results in a nonlinear problem since the load causes deformation,
which then modifies the load.

Springs

Elastic foundations can be regarded as a combination of the previous types, in which the force
exerted on the structure is reliant on the displacement. They are frequently proportional, and
from a mathematical standpoint, this constitutes a Robin boundary condition (Venkateshan and
Swaminathan 2014). As an illustration, the ground beneath a building may not consistently be
assumed to exhibit zero displacement, so its flexibility must be factored in accordingly. Elastic
supports act as an alternative to defined displacements when mitigating rigid body movements.

Steady-state and Dynamic Problems

Inertial forces arising from acceleration are included in the general form of Newton’s second law.
Often, loads exhibit slow variations, permitting the exclusion of dynamic terms. This supposition
is widely employed in real-world engineering situations. A formulation of this nature is known as
steady-state, stationary, or quasi-static.

Natural Frequencies

Every structure possesses mass. When inertia and elasticity are combined through Newton’s second
law, it results in differential equations with second-order time derivatives. Navier’s equations,
mentioned earlier, are an example of this. The solutions to these equations typically resemble
waves. The resulting equation system creates an eigenvalue problem when appropriate boundary
conditions are used and a harmonic solution is assumed. A set of eigenvalues, sometimes referred
to as natural frequencies or eigenfrequencies, are produced by solving this issue (Comsol 2023a=.

Physically, this implies that an elastic structure has a predisposition to oscillate at specific, distinct
frequencies. For each natural frequency, the corresponding deformation pattern of the structure is
known as an eigenmode.

Identifying a structure’s natural frequencies is crucial to nearly all dynamic analyses, as it reveals
the frequencies at which resonances might occur. Understanding the natural frequencies allows
for determining whether a specific load’s time scale can cause dynamic amplification. Throughout
history, the catastrophic results of resonance caused by natural phenomena like the wind have
made its impact by tearing down buildings and bridges like the Tacoma Narrows bridge (Practical
Engineering 2018).

Dynamic Loading

If loads exhibit a time variation with a time scale comparable to the period of some natural
frequencies of a structure, accounting for the dynamic response becomes necessary. Dynamic
loads fall into the categorization as deterministic and random loads. Deterministic loads involve
completely known load histories affecting the structure, which is often seen in machine components.
On the contrary, random loads do not have a predictable time history, except sometimes on the
average value. Examples of random loads include wind loads and earthquake loads (Practical
Engineering 2018).

Time-Varying Loads

The most comprehensive description of a deterministic load involves the full-time history. To
calculate displacements and stresses, the governing differential equations must be solved alongside a
suitable set of initial conditions. This is typically done numerically using a time-stepping algorithm.

Harmonic Loads

It is common for loads to exhibit harmonic variations in practice, particularly in rotating machinery.
If the structure demonstrates linear behavior, the response will also be harmonic once any initial
transients have dissipated. Such problems can be efficiently solved in the frequency domain. When
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the frequency of a harmonic load is near a structure’s natural frequency, the response experiences
significant amplification compared to a steady-state solution. At resonance, when the loading
frequency exactly aligns with a natural frequency, the vibration amplitude can become extremely
large. Displacements are highly dependent on and limited only by the structure’s damping, which
often is found to be low.

For harmonic loading, it is customary to examine the frequency response. This entails analyzing
the response for numerous loading frequencies and presenting the results as a frequency response
function (FRF).

In cases where the problem is nonlinear, such as when mechanical contact is present, the response
will not be harmonic even if the loads are. Generally, these problems must be solved as time-
dependent issues.

Random Loads

An example of a random load is the wind load on a tall building. The average wind speed varies
along the height of the structure, and there are also wind gusts with random intensity and dura-
tion. Moreover, gusts are not always synchronous when observing different areas of the building.
If multiple measurements are available, a time-dependent analysis could be conducted for each
measurement in theory. However, this approach does not account for future events, as they will
not precisely replicate the measured instances.

In situations involving random loads, it is more appropriate to characterize the load through
its statistical attributes. This characterization is typically provided as a power spectral density
(PSD). The response to such loads, in terms of displacements or stresses, is then also expressed
using statistical parameters.

Vibration analysis using FEA has been applied in various engineering fields, including mechanical,
aerospace, and civil engineering. For example, in the field of mechanical engineering, vibration
analysis has been used to analyze the response of machine components to external loads. In
aerospace engineering, vibration analysis has been used to study the dynamic response of aircraft
structures to aerodynamic loads (Branesh et al. 2020). In civil engineering, vibration analysis has
been used to evaluate the response of buildings and bridges to seismic and wind loads.

Summarised, FEA is a powerful tool for vibration analysis of complex structures. The natural
frequencies, mode shapes, and response of a structure to external loads can be determined using
FEA. The accuracy and efficiency of FEA make it an essential tool for engineers and designers
looking to optimize the performance of their products.
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4.3 Natural/Eigenfrequencies

As mentioned earlier in the Chap.4.2, natural frequencies are a system’s predetermined frequen-
cies at which it will vibrate freely. In this subsection eigenfrequencies in relation to mechanical
structures will be explained, but to a certain degree, some of the models are generic.

When a structure vibrates at a specific eigenfrequency, it adopts a particular shape known as the
eigenmode. Eigenfrequency analysis reveals the mode shape but not the amplitude of the actual
vibration. Determining the true magnitude of the deformation requires knowledge of the actual
excitation and damping properties.

Identifying a structure’s eigenfrequencies is a crucial aspect of structural engineering. including
the goals:

• Ensuring that periodic excitations do not create resonances resulting in excessive stress or
noise emission.

• Verifying the appropriateness of a quasistatic analysis for a structure based on high natural
frequencies compared to the load’s frequency content.

• Determine the best time step or frequency to use for the ensuing dynamic response study.

• Providing eigenmodes and eigenfrequencies for further analysis based on mode superposition.

• Gaining insight into how to design alterations can impact a specific eigenfrequency by ex-
amining its mode shape.

• Design and development of vibration-dampening components and assemblies like damped
internal tool-holders.

Single Degree of Freedom Let’s start by looking at the simplest form, a system containing a
spring, representing elasticity, the ability to deform and return to its original shape after loading
scenario, and a mass: The system can be seen in the figure below.

Figure 5: Single Degree of Freedom system

bodies that can be modeled as a mass and spring have three main scenarios: free vibration, forced
vibration, and self-excited vibrations.

Free Vibrations: Unforced vibration takes place without the presence of a sustained external
force. It arises due to certain initial conditions applied to the system, such as displacing it from
its equilibrium position. Free vibration results in motion at one or more of the system’s natural
frequencies, and since every physical structure experiences some level of damping (energy dissipa-
tion), it appears as a diminishing oscillation with a relatively brief duration. Common examples
include hitting a tuning fork or a springboard after a jump.’

17



Figure 6: Impulse and Free vibration of a Single Degree of Freedom system

Forced vibrations: Induced vibration occurs when a persistent, external periodic force generates
a response with the same frequency as the driving force (once initial transients have diminished).
While free vibration is commonly depicted in the time domain, induced vibration is typically
examined in the frequency domain. This highlights the magnitude and phase dependency on
frequency, allowing for easy identification of natural frequencies. Rotating imbalance is a common
cause of induced vibration in mechanical systems. Significant vibrations can take place when the
excitation frequency, ω, aligns with the system’s natural frequencies, ωn, leading to resonance.
Generally, resonance is to be avoided, in vibration damping, but some exceptions exist.

Self Exited Vibrations In self-excited vibration, a constant input force exists, similar to forced
vibration. However, this input is transformed into vibrations at one of the system’s natural fre-
quencies, as observed in free vibration. Various physical mechanisms facilitate this modulation.
Familiar instances of self-excited vibration: playing a violin, wing flutter in a flute, and chatter
during machining processes.

In summary, all mechanical systems possess mass and are not infinitely rigid. Consequently,
they are either stationary or vibrating. If the source of vibrational energy is only applied at the
initiation of motion (like tapping a tuning fork), the resulting motion is a free vibration. Free
vibrations occur at the natural frequency of the system. A higher natural frequency is achieved
with increased stiffness or decreased mass, whereas a lower natural frequency occurs with reduced
stiffness or increased mass. Using the tuning fork example, higher notes (higher frequencies) are
produced by tight (stiff) and thin (low mass) fork arms, while lower notes (lower frequencies) are
created by loose (less stiff) and thick (high mass) strings. In machine tools, low frequencies are
experienced when the vibrating objects are heavy (like a machine tool’s column) or flexible (like a
long, slender workpiece), or both (Comsol 2023a).
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4.4 Modeling Vibrations

Since modeling vibrations can be challenging, we begin by examining the single-degree-of-freedom
free vibration in more detail using a simple, lumped parameter model. The mass-less spring in this
model acts as the oscillating restoring force, and it is assumed that all the mass is concentrated at
the coordinate location. The model is made up of a mass, m, attached to a linear spring, k, which
produces a force proportional to the mass’s displacement from its static equilibrium position. Since
the rigid mass is constrained to move vertically, a single time-dependent coordinate, x, describes
its motion completely. Understanding the movement of a single coordinate is enough to describe
the motion of a single-degree-of-freedom (SDOF) system completely. Fig.5, includes the Lumped
parameter model and free body diagram. Adding the spring and inertial forces acting in the
vertically gives the equation of motion for the model (Schmitz and Smith 2019).

mẍ + kx = 0 (20)

Assuming a harmonic solution of the form x = Xest, where X is a complex coefficient, s = iω,
and ω is the frequency (in rad/s), we can express the velocity as the first time derivative of the
displacement, ẋ = sXest = iωXest, and the acceleration as the second time derivative, ẍ =
s2Xest = −ω2Xest (note that i =

√
−1 and i2 = −1). Substituting into Eqn.20 yields:

Xest(ms2 − k) = 0 (21)

In this equation, either Xest or (ms2−k) must be zero. The trivial solution is when the first term
is zero, which suggests that no motion has taken place. The scenario when the second term equals
zero is the one that interests us. This is referred to as the system’s characteristic equation:

ms2 − k = 0 (22)

Solving for the complex variable s gives the two roots s = ±
√

− k
m = ±i

√
k
m . The vibrating

frequency
√

k
m = ωn is the natural frequency for the single-degree-of-freedom system. For k and

m, N/m and kg ar normal SI units, which results in units of rad/s for ωn. The natural frequency
can be expressed in units of Hz (cycles/s) as well. In this case described by the notation fn = ωn

2π .

Eqn.20 total solution is the sum of each of the two roots:

x = X1e
iωnt + X2e

−iωnt (23)

X1 and X2, being the complex coefficients, can be determined from the initial displacement, x0,
and velocity, ẋ0, in the SDOF system. Evaluating Eqn.23 at t = 0 gives:

x0 = X1 + X2 (24)

The first time derivative of 23 is:

ẋ = iωnX1e
iωnt − iωnX2e

−iωnt (25)

At t = 0, Eqn.25 becomes:

ẋ0 = iωn(X1 −X2) (26)

Using the linear combination approach, Eqn.24 and 26 can be combined to determine the complex
conjugate coefficients X1 and X2:
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X1 =
−iẋ0 + ωnx0

2ωn
(27)

and

X2 =
iẋ0 + ωnx0

2ωn
(28)

These coefficients can then be substituted in Eqn.23 to determine the time-dependent displacement
of the mass due to the imposed initial conditions.A different way to express the mass motion is
in exponential form. To use this notation, we must first determine which parts of the complex
coefficients are real (Re) and imaginary (Im):

Re(X1) =
x0

2

Im(X1) =
−ẋ0

2ωn

(29)

Re(X2) =
x0

2

Im(X2) =
ẋ0

2ωn

(30)

Using the real and imaginary part to write the coeffisients exponentially:

X1 = Aeiϕ =

√(x0

2

)2

+

(
−ẋ0

2ωn

)2

· exp

[
i arctan

−ẋ0

2ωnx0

]
(31)

where the magnitude is A =
√

x2
0ω

2
n+ẋ2

0

4ω2
n

and the phase is ϕ = arctan −ẋ0

x0ωn
.

In the same way X2 = Ae−iϕ (same magnitude, but negative phase) due to it being the complex
conjugate of X1. Can then rewrite the total solution from Eqn:23 in the form:

x = Aei(ϕ+ωnt) + Ae−i(ϕ+ωnt) = A
(
ei(ωnt+ϕ) + e−i(ωnt+ϕ)

)
(32)

And than utilising the Euler identity: eiθ + e−iθ = 2 cos(θ), Eqn.32 can be rewritten as:

x = 2A cos(ωnt + ϕ) (33)

The equation 33 illustrates the oscillatory behavior of mass movement, revealing that the amplitude
and phase are dependent on the initial conditions. To realistically represent physical systems, we
must incorporate damping into our analysis. Damping is the process where part of the energy input
into a vibrating system is ”lost” or transformed, rather than contributing to motion. This means
that not all energy input directly influences motion - some is dispersed through other channels,
normally as heat. A detailed representation of damping can be complex and may not be ideally
suited for integration into our simplistic mathematical interpretation of single-degree-of-freedom
free vibration. Hence, typically one or more from three mathematically simplistic yet efficient
damping models are employed.

Viscous damping Viscous damping is recognized as a common model in mechanical systems to
represent the energy dissipation due to the system’s motion. Frequently employed in the ana-
lysis of single-degree-of-freedom (SDOF) systems. Viscous damping is characterized by a linear
relationship between the damping force and the system’s velocity.
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In viscous damping, a damping coefficient, denoted by ’c’, represents the proportionality factor
connecting the damping force (Fd) and the velocity (ẋ) of the system. Mathematically, the damping
force can be expressed as:

Fd = c · ẋ (34)

The negative sign signifies that the damping force counteracts the motion of the system, functioning
to diminish its velocity.

Concerning an SDOF system, the motion equation incorporating viscous damping can be described
as:

m · ẍ + c · ẋ + k · x = 0 (35)

where:

• m is the mass of the system,

• ẍ is the acceleration,

• c is the damping coefficient [N − s/m]

• ẋ is the velocity,

• k is the stiffness of the system, and

• x is the displacement.

The damping ratio (ζ) is a dimensionless quantity that represents the ratio of the actual damping
coefficient (c) to the critical damping coefficient (cc), which is the minimum damping required to
inhibit oscillatory behavior in the system. The damping ratio can be described as:

ζ =
c

cc
(36)

Based on the damping ratio value, the system’s behavior can be divided into three categories:

1. Underdamped (ζ < 1): The system exhibits oscillatory behavior with a diminishing amp-
litude.

2. Critically damped (ζ = 1): The system returning to the equilibrium position in the fastest
possible time period without any oscillation.

3. Overdamped (ζ > 1): The system returns to its equilibrium position without oscillating, but
it takes a longer time compared to a critically damped system.

The three damping scenarios applied to a prescribed displacement that suddenly is removed can
be seen in the plot from my Python script in Fig.7.
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Figure 7: Under, Critically and Over Damped SDOF systems

Viscous damping is crucial in mechanical systems design as it aids in vibration control and reduces
resonant frequencies effects, ensuring more stable and dependable performance. Since viscous
damping is frequency dependent, the velocity can be expressed as:

v =
dx

dt
= ẋ = sXest = iωXest (37)

where:

• s is a complex variable, s = iω, with ω representing the frequency (in rad/s),

• X is a complex coefficient, and

• t is the time.

By examining the relationship between damping force and velocity, engineers can effectively design
systems that minimize undesirable vibrations and increase the overall reliability of the system.

Coulomb Damping: Coulomb damping, also referred to as dry friction or sliding friction damp-
ing, is another essential damping model applied in mechanical systems. Unlike viscous damping,
Coulomb damping is not frequency-dependent and exhibits a constant damping force that opposes
the direction of the relative motion between the system components.

In Coulomb damping, the damping force (Fd) remains constant regardless of the system’s velocity
(v), and its mathematical expression is:

Fd = −µN (38)

where:

• µ is the friction coefficient between the contacting surfaces, and

• N is the normal force acting on the surfaces.

For an SDOF system with Coulomb damping, the motion equation can be written as:
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m · ẍ + µN · ẋ

| ẋ |
+ k · x = 0 (39)

where:

• m is the mass of the system,

• a is the acceleration,

• µ is the friction coefficient,

• N is the normal force,

• v is the velocity,

• k is the stiffness of the system,

• x is the displacement, and

• ẋ
|ẋ| is the sign function, which returns the sign of the velocity.

Coulomb damping is particularly relevant in systems with components in sliding contact, such
as brakes, clutches(dry), or any other application with dry friction between surfaces. Due to its
constant nature, Coulomb damping can cause a system to exhibit stick-slip behavior, resulting in
jerky and uneven motion. This behavior can be beneficial in specific applications, such as friction
dampers for seismic protection sometimes installed in buildings, but may be undesirable in others.

By analyzing and incorporating Coulomb damping in mechanical system design, engineers can
create systems that exhibit desired motion characteristics and effectively control vibrations, leading
to improved system performance and stability.

Solid Damping: Material damping, also referred to as internal or structural damping, is a type
of damping that occurs within the substance of a mechanical system due to energy dissipation
within the material’s composition. Material damping is a result of the internal friction between
microscopic components of a material as it undergoes deformation. Considering material damping
is vital in systems where energy dissipation within the substance plays a significant role.

For a single degree of freedom (SDOF) system with material damping, the equation of motion can
be expressed as:

m · ẍ + c · ẋ + k · x + k · β · ẋ = 0 (40)

where:

• m is the mass of the system,

• ẍ is the acceleration,

• c is the viscous damping coefficient,

• ẋ is the velocity,

• k is the stiffness of the system,

• x is the displacement,

• β is a dimensionless coefficient specific to the material damping,
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In this equation, the term k · β · ẋ represents the material damping force, which is proportional
to the system’s velocity. This term captures the energy dissipation within the substance as the
system vibrates.

It is important to note that material damping is frequency-dependent, and the rate of energy
dissipation relies on the material properties and the rate of deformation. Some materials exhibit
higher material damping than others, such as specific metal alloys and viscoelastic materials.

Taking material damping into account in mechanical system design enables engineers to optim-
ize the system’s dynamic performance and stability, resulting in more dependable and efficient
operation.

4.5 Vibrations in Machining

Machining processes, such as milling, turning, and drilling, are essential manufacturing techniques
and are applied to a wide spectrum of industries. These processes involve the removal of material
from a workpiece and are known as subtractive manufacturing processes. Machining cells are in
general low in damping and exposed to different types of vibrations. Vibrations normally have a
negative effect on product quality, tool life, and overall productivity as well as affecting the work
environment by loud noise. The complexity of machining vibration is high, and a large number
of parameters are affecting the stability of the machining processes. Larger machines, as well as
high precision machines, are connected to separate fundaments in the ground, with the purpose of
isolating them as much as possible from the space around them, with the purpose of restricting
vibrations to travel in or out from the machining cell. This chapter aims to provide a theoretical
background on vibrations in machining operations, in particular, internal turning operations with
boring bars, and will discuss the different types of vibrations, their sources as well as their impact
on machining performance.

Long boring bars for internal turning operations have low static and dynamic stiffness, making
them prone to vibrations. Boring bars have traditionally been made of different variations of solid
steel and tungsten carbide, providing better stability due to the increased modulus of elasticity,
but at a higher price-point, boring bars of solid steel are normally used up to 4xD (L/D=4), and
tungsten carbide up to 7xD. As mentioned in paragraph 4.3 we divide vibrations in machining into
three categories as well: free, forced, and self-excited vibrations (Sørby 2016).

Free Vibrations: Occurs due to forces externally affecting the machining structure, causing
a deflection, and then ceasing, letting the system oscillate according to its dynamic properties
at a frequency close to one of the eigenfrequencies until the vibrational energy dissipates. Free
vibrations in turning operations can come from chippings jamming between the workpiece and
boring bar, or from significant hard spots in the material. If a free vibration scenario plays out in
a turning operation, it will leave distinct marks in the workpiece, and the vibrations will stop due
to internal structure damping and damping at the contact surface between the cutting tool and
the workpiece.

Forced Vibrations: Originates from periodically induced forces that in a turning operation may
come from radial borings, splines, groves, and other radial inconsistencies, but also from runout
due to crocked fixturing and mismatch between clamping force and workpiece wall thickness, giving
variations in cut-depth and thereby force. Periodic forces may also be applied to the system by an
unevenly distributed mass in relation to the axis of rotation, creating vibrations. The structure
exposed to the periodic forces will oscillate at the same frequency as the periodic force. After a
given time period the system reaches equilibrium, also known as steady-state where the amplitude
and frequency of the oscillations become constant.

Self-exited Vibrations: Chatter, also known as self-excited vibrations, is the most dominant
and damaging group of vibrations in machining. Two major types of chatter are regenerative
and mode-coupling.

Regenerative chatter comes into play when tool oscillations produce a wavy pattern on the sur-
face of the workpiece, which is reproduced in the coming revolutions of the workpiece. The changes
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in chip thickness rely on the phase difference between the wavy patterns in successive revolutions
and therefore rely on the workpiece’s rotational speed. A stability chart, which demonstrates the
stability threshold of a machining process in relation to rotational speed, is normally utilized to
pinpoint high stability for a large depth of cut.

Mode-coupling chatter oscillates elliptically with a variable engagement of the tool, oscillating
between high and low engagement of the cutting tool making the cutting force larger and lower
than the tool stiffness, making the tool vibrate in an elliptical matter. Mode coupling chatter
can occur without interaction with a previously generated surface waviness, differentiating it from
regenerative chatter where a waviness from a previous cut is regenerated in the next revolution.
Mode coupling chatter can occur in some machining operations like thread cutting where the
cutting edge can cut surfaces not cut at the previous revolution, and it is also seen in some
operations with boring bars. Even though it is present in some machining operations, it is generally
not included in chatter analysis in machining.

To sum up, vibrations in machining are generally a bad system behavior that we want to reduce.
Long overhangs and small diameters are a bad combination in terms of avoiding vibrations. Internal
turning operations are exposed to vibrations, this is due to a number of factors, some being:
diameter limitations in order of leaving space for chip removal, operations, and products requiring
high Length/Diameter ratios. By building a TMD (Tuned Mass Damper) into the tip of the boring
bar the system stability and resistance against vibrations can be greatly increased.

4.6 Tuned Mass Dampers in Tool Holders for Internal Machining

Different means of active, semi-active, and passive methods exist in the world of machining and
passive systems are dominant in magnitude. According to a representative from Sandvik Teeness,
a problem with active damping in boring bars is the space that actuators and sensors take up,
negatively affecting the stiffness and space left for maximizing the damping mass. Active damping
is therefore more often seen as useful in the workpiece fixturing and includes sensor packages and
actuators making the systems complex. Semi-active damping systems can also be found for instance
by the use of a coil and magnetorheological fluid to adjust the viscosity of the damper fluid and
by this being able to adjust the system parameters according to different scenarios. Tuned Mass
Dampers are both relatively low-cost and highly efficient in providing high stability and resistance
against vibrations while also being easy to use as a ”plug and play” product for the customers.
This has made the application of a tuned mass damper in the tip of the tool holder popular in the
industry.

The tuned mass damper (TMD) consists of a damper mass, a spring, and a damper element.
TMD’s are tuned in different ways but to begin with, we can say that it is tuned to vibrate at
the same frequency we want to suppress but out of phase so that the masses move in opposite
directions.

Taking the passively damped boring bar with a tuned mass damper located at the free end as the
subject, we can model it as a two-mass system with a spring and damper between both the masses
and the fixed boundary.
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Figure 8: LPM of a Two-Mass system

Where:

• m1: is the mass of the bar

• k1: is the stiffness of the bar and connecting machine interface

• c1: is the internal damping in the bar and connecting machine interface

• x1: is the global displacement of m1

• F (t): is the force applied at the cutting edge over time

• m2: is the damper mass

• k2: is the stiffness of the connecting element between the damper mass and boring bar

• c2: is the internal damping of the damper mass, it consists of the damping in the connecting
element between the damper mass and boring bar and the viscous damping

• x2: is the global displacement of m2

The equations of motion are (Schmitz and Smith 2019): For m1 :

m1ẍ1 + (c1 + c2)ẋ1 + (k1 + k2)x1 − c2ẋ2 − k2x2 = 0 (41)

And for m2 :
m2ẍ2 − c2ẋ1 − k2x1 + c2ẋ2 + k2x2 = 0 (42)
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Normally the connecting element between the damper mass and the boring bar is a rubber element,
and the geometry and material parameters decide the stiffness and damping provided. In order
to look at the force response, F (t) is applied at the boring bar boundary m1. When we get a
force input via F (t), m1 will move, resulting in a deflection of the boring beam x1. Depending
on the system parameters, a change in the damper mass position x2 will take place. A TMD’s
effectiveness is dependent on two major factors: the tuning (the capability to vibrate at the same
frequency as the primary structure), and its mass. TMD’s purpose is to absorb the vibrational
energy from the primary structure and transform it into other forms of energy, primarily heat.
The ability to absorb energy is proportional to the weight of the damper mass, due to the ability
to provide a greater reaction force to a relative displacement between the masses: abs(x1 − x2).
Due to this, high-density materials are often used, and the mass is placed at the location of max
displacement during vibrations(the free end of a boring bar). A number of constraining factors
can be relevant; space, structural integrity, weight constraints, and more, making it a classical
engineering task of finding a suitable compromise for the best result.

The frequency response function for the system is based on the formulation: FRF ≡ Output
Innput ⇒

H ≡ x1

F is written:

H(jω) =
k2 −m2ω

2 + jc2ω

A
(43)

where:

A = −m1m2ω
4+(m1c2+c2m2+c1m2)jω3+(k1m2+k2m2+m1k2+c1c2)ω2−(k1c2+c1k2)jω−k1k2

(44)

After the selection of materials and size for the assembly, the tuning is next up. This is done
by adjusting the spring stiffness, which together with the damper mass and fluid decides the
eigenfrequency. Tuning is done based on the parameters k2 and c2, finding the optimum solution.
Depending on which vibration problem one targets to eliminate, two criteria for optimization are
to be described: Minimized magnitude of FRF, and Maximized negative real part of the FRF.
Both optimization methods are based on the Eqn.43

Minimized magnitude of FRF: The dominating method in the industry, and has the key feature
of giving the shortest vibration intervals at free vibrations. When applied there will be two equally
high peaks on the magnitude curve, and it is the optimal tuning when preventing forced vibrations
at the eigenfrequency of the undamped boring bar. Using the optimization criteria will also reduce
the self-excited vibrations caused by mode-coupling to a minimum, and these vibrations happen
at the boring bar eigenfrequency. Due to the qualities of the minimized magnitude of FRF tuning
criterium, it is ideal for turning when chips, material, or discontinued cuts per revolution result
in impact forces. When performing the tuning, the optimal eigenfrequency and damping ratio for
the TMD is found by the formulas (Den Hartog 1947):

ω2,opt =
1

1 + µ
ω1 (45)

ζ2,opt =

√
3µ

8(1 + µ)
(46)

Where:

• µ = m2

m1

• ω1 =
√

k1

m1

After these calculations, Eqn.45 and 46, optimal spring stiffness, k2, opt and damping coefficient,
c2, opt can be found by the equations:
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• k2, opt =
√

k2, opt

m2

• ζ2, opt =
c2, opt

(2m2ω2, opt)

Maximized negative real part of the FRF Has the key feature of giving the highest resistance
to regenerative chatter, which also is the most dominant type of vibration problem found in ma-
chining operations. In the real part of the FRF, it is found strong relations to regenerative chatter,
and thru analyzing turning operations theoretically, we see that there is a critical cutting depth
alim differentiating stable and unstable behavior (Altintas 2012). alim is found by the formulation:

alim =
−1

2KsRe(H(jωc))
(47)

Where:

• ks is the cutting force

• Re(H(jωc)) is the real part of the FRF

– ωc is the chatter frequency

In regenerative chatter, ωc vibrates at the boring bar eigenfrequency or higher directly connected
to the RPM of the workpiece. As seen in Eqn.47, alim becomes positive only by negative values of
the real part of the FRF. Due to efficiency, as high cutting depth as possible while still maintaining
a stable process is of high interest. Eqn.47 shows that alim,min must be at the maximized negative
value of the FRF real part. In order to tune the TMD Sims 2007 showed that the maximized
negative value of the FRF real part is at the optimal frequency:

ω2,opt =

√
µ + 2 +

√
2µ + µ2

2(1 + µ)2
ω1 (48)

In addition, he also found the damping ratio for a maximized negative value of the FRF real part
is equal to the one for the minimized magnitude of FRF, Eqn.46

Eqn.45, 46 and 48 all assume c1 to be neglectable.

4.7 Constitutive Models for Rubber

Rubber materials are present in many applications for instance car tires, shook-absorbers, seals, and
vibration dampers. Due to the increasing use of rubbers in the world of mechanical engineering,
damping, and other applications, the need for good mathematical models to describe material
behavior is high. Elastomers have complicated non-linear behavior, both viscoelastic behavior
and hyperelastic behavior, they are incompressible and have very different behavior depending on
the temperature. The nonlinear behavior of rubbers becomes prominent at large deformations,
hysteresis, and viscoelasticity come into play at high strain rates. There are two main material
model categories used to describe rubbers: Linear viscoelastic models, and hyperelastic models.
Viscoelastic models are normally used at lower strains, and at higher phase-temps (above rubber
plateau), and hyperelastic at larger, with a lower strain limit between the methods at stiffer
materials. This chapter will describe the different categories and some of the specific material
models in each category.
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Figure 9: Rubber temperature shift

Linear Viscoelastic models: Elastomers have a shear modulus depending on the loading history
and loading duration. We denote deformation: γ and stress state: τ . It is seen that when elastomers
are subjected to a constant deformation: γ0 over time, the stress decreases towards a limit: τlim.
This behavior is known as viscoelasticity. The linear viscoelastic models do not account for the
nonlinear behavior at large deformations (Kraus et al. 2017).

Figure 10: Viscoelasticity

Source: https://link.springer.com/article/10.1007/s40940-017-0042-9/figures/1

Hyperelastic models Hyperelastic material models are generally an extended isotropic linear elastic
model that incorporates the nonlinear and large stain behavior when stress is introduced. Hyper-
elastic materials assume isotropic and incompressible qualities. Mathematical representations are
often challenging due to their incompressible nature. A much used workaround is to apply a penalty
method, which introduces a certain degree of compressibility to the strain energy density function.
This penalty function essentially amends the strain energy function, rendering the material nearly
incompressible rather than perfectly incompressible meaning that the bulk modulus is lower than
infinity.

κ =
E

3(1 − 2ν)
(49)

Where:

• κ: Is the bulk modulus

• E: Is Young’s modulus

• ν: Is the Poisson ratio

Hyperelastic material models are generally defined in terms of the Helmholtz free energy per unit
volume, denoted as either Ψ(b) or Ψ(C). This energy is dependent on the principal stretches λi,
with i ∈ {1, 2, 3}.
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The Neo-Hookean model is a basic hyperelastic framework that depends on two primary material
constants: the shear modulus (µ) and the bulk modulus (κ). The corresponding Helmholz free
energy function is represented in Eqn.50.

Ψ(I∗1 , J) =
µ

2
(I∗1 − 3) +

κ

2
(J − 1)2 (50)

The Cauchy stresses for the standard experiments, assuming incompressibility of the material, can
be calculated using Eqn.51 and 52.

σtrue,uniaxial = µ

(
λ2 − 1

λ

)
(51)

σtrue,biaxial = µ

(
λ2 − 1

λ4

)
(52)

Mooney-Rivlin The Mooney-Rivlin hyperelastic model is an expansion of the Neo-Hookean material
model and is defined by three material constants: C10, C01, and the bulk modulus κ. In more
detail, C10 and C01 are the coefficients of the first and second invariants of the right Cauchy-Green
deformation tensor in the strain energy function. They essentially characterize the material’s
response to deformation, with C10 usually being associated with the material’s resistance to shear,
and C01 being associated with the material’s resistance to volumetric changes.

It’s important to note that these are empirical constants, meaning their values are determined
from experiments and not from fundamental physical principles. As such, they can vary widely
depending on the specific material being modeled.

The Helmholtz free energy function can be expressed as:

Ψ(I∗1 , I
∗
2 , J) = C10(I∗1 − 3) + C01(I∗2 − 3) +

κ

2
(J − 1)2 (53)

Assuming the material is incompressible, the Cauchy stresses for the standard experiments can be
computed as:

σtrue, uniaxial = 2

(
λ2 − 1

λ

)
[C10 + C01λ] (54)

and

σtrue,biaxial = 2C10

(
λ2 − 1

λ4

)
+ 2C01

[
λ4 − 1

λ2

]
Simulating rubber in FEM analysis:

The quality of finite elements employed for these computations greatly impacts the numerical sta-
bility, with higher-order elements generally providing more stability than lower-order ones. When
using hyperelastic models for nonlinear studies, it’s necessary to define constants directly or provide
experimental data for internal computation. The load step and mesh should have careful consid-
eration (Harish 2016).
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5 Methodology

This thesis revolves around the subject of vibration-damping, and constitutive models for rubber
materials in order to accurately describe real-world events thru simulations. In order to tune
and validate the simulations and quantify them against real-world events, both simulations in
Comsol Multiphysics and measurements from the lab at Sandvik Teeness have been developed and
executed. They are ultimately giving the thesis data for quantifying goals and objectives, as well as
providing both me and the reader a degree of insight into the ability of the simulation to represent
physical structures like a vibration-dampened tool-holder. As viscous damping was excluded from
the scope of this thesis, the lab experiments were all conducted with a TMD not containing any
damping fluid. Thru this chapter of the thesis, I will provide the methods used in the development
of my simulations in Comsol Multiphysics, the execution of the lab experiments, and how data has
been treated in order to prepare for experimental validation and comparison. This chapter will
also provide the reasoning behind some of my choices, with backing from the theory and literature
study chapter.

5.1 Comsol Multiphysics Software

Comsol Multiphysics is a sophisticated computational tool utilizing the finite element method for
solving and analyzing a wide field of physics and engineering areas, including but not limited
to, structural mechanics, heat transfer, fluid dynamics, electromagnetics, and chemical engineer-
ing. It is a powerful tool for modeling and simulation of intricate systems and processes such as
vibration-damped tool holders. As stated in its name, Comsol Multiphysics can deal with coupled-
field issues that require simultaneous consideration of multiple physics, such as an interlinked
electro-magnetic-thermal-structural analysis by creating multiphysics couplings in the software.
Furthermore, Comsol Multiphysics post-processing instruments make it possible for the engineer
to present data with a vast set of possible visual representations, enabling thorough examination
of the resulting data sets.

The software enables engineers to conduct complex simulations in order to increase the understand-
ing of real-world systems, their behavior, and key system parameters. Comsol offers the potential
to optimize the design of engineering components and entire systems thru topology, parameter, and
other optimization tools (Comsol 2023e). Its applications span a wide spectrum of fields including
automotive, aerospace, electronics, energy, and medical devices.

For the purpose of this thesis, Comsol Multiphysics was chosen due to its robust capabilities in
simulating vibrations and coupled-field phenomena. These abilities proved particularly crucial
in the development and refining of the simulation models. Especially useful on the path was
the possibility of making a lumped-mechanics-beam-physics coupled mechanics simulation. These
functionalities along with the wish for a deeper investigation of Comsol as a multiphysics and FEM
analysis software led to the preference of Comsol over Abaqus, having prior experience with the
latter, particularly in static strength simulations with contact interaction between parts.

For the basics of how the Comsol Multiphysics environment is set up, and how to navigate and set
up simulations I refer to my autumn semester thesis. Here you can also find possible fall pits and
tips that are based on my personal experience with the software.
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5.2 Modeling and Simulation of Vibration Damped Tool Holders

The journey to achieving full 3D simulations of a two-mass solid mechanics system, including
linear elastic and hyperelastic material models, has been a thorough and comprehensive process.
It has involved countless simulations and hours invested in self-study and in-depth research towards
Comsol simulations and the field of vibrations which was totally new to me. The project’s progress
has been staccato in its form due to its ”learning by doing” nature. Having to gain more insight and
knowledge in order to troubleshoot and develop my Comsol simulations. Various forum threads, as
well as direct contact with Comsol support also played an important role in overcoming obstacles
encountered throughout both the autumn semester thesis and this master’s thesis.

The method of taking small steps in the development of increasingly complex simulations has been
a governing factor for success. Giving motivation by creating a more continuous although staccato
progress, with many smaller milestones. Taking small steps thru the autumn also helped to adjust
and set a realistic scope for the thesis. It was thru my initial simulations and knowledge-building
in the field of fluid simulations that the decision of excluding viscous damping from the scope of
the thesis was made. A decision I deem wise in retrospect.

5.2.1 A general walk-thru of the final simulations

Two final solid mechanic simulations will be presented in this thesis. One simulation model con-
tains a rubber-steel-rubber tube assembly, modeling a TMD without oil, and one with the TMD
assembly model within a boring bar. In both simulations, the rubber parts in the TMD are
modeled using the hyperelastic: Neo-Hookean incompressible material model, and the rest of the
components are modeled with Linear elastic isotropic material models. See the simplified machined
drawing(appendix) in order to see the parts dimensions and corresponding materials.

Figure 11: Simulation assembly model of a TMD without viscous damping(section view)

Figure 12: Boring bar(section view) simulation assembly model with TMD

In order to both reduce the computational load as well as to continue the methodology of increasing
the complexity of the simulations at a steady pace, it was decided to conduct a simulation only
containing the TMD without damper fluid Fig.11 before moving on to the full assembly simulation
model Fig.12.
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5.2.2 Simplified TMD Comsol Simulation

General:
A central objective for the development phase of the simulation was to include a hyperelastic
material model for the rubber materials. The reasoning behind this was to be able of comparing
different material models, such as isotropic linear elastic towards hyperelastic Neo-Hookean. The
hyperelastic model Neo-Hookean was chosen due to the assumption of operating temperature well
below the transition phase to the viscoelastic behavior of the rubber springs. A governing factor
was also the simplicity of the Neo-Hookean, as no material-specific tests were done on the rubber
materials to find parameter values. With the Neo-Hookean material model, calculating the spring
stiffness coefficient based on lab data leads to the start point of the bulk modulus parameter value
before tuning. As the strains are kept relatively low in the simulations, this essentially means that
we are using an isotropic linear elastic material model (not entering the hyperelastic behavior at
large strains), this is described in the theory and literature study Chap.4.7. The hypothesis was
tested and confirmed by testing over a variation of force magnitudes seen in Table 8. In order
to make the thesis results more redundant, the simplified TMD simulations have been performed
at two different evaluation points giving two different result outputs: 1st evaluation point at the
mid-length of the damper mass capturing only eigenmode 1, and 2nd: evaluation point at the end
of the damper mass capturing both first and second eigenmode. This was also done in the lab, by
placing the accelerometer at the two different evaluation points.

Materials:

• Tungsten

– Material model: Linear elastic, isotropic

– Young’s modulus: 360 [Gpa]

– Poisson’s ratio: 0.28

– Density: 17800 [Kg/m3]

• Rubber

– Material model: Hyperelastic, Neo-Hookean

– Damping: Isotropic structural loss factor: 0.08

– Compressibility: Incompressible

– 2nd Lamé parameter(µ): 1.75[Mpa]

– Density: 1100[Kg/m3]

Geometry:
The assembly of the parts making the simplified simulation model of the TMD is made in the
CAD program SolidWorks, and imported into Comsol by the use of the import function for 3D
CAD files. When importing geometry with touching faces, they are joined by bonded contact
meaning that the surfaces are completely coupled but can be deformed. The Damper mass was
also partitioned on the mid-length of the axle to create boundaries to both set the load on and
evaluation point for the resulting output of the simulation.
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Figure 13: Comsol view of imported and partitioned geometry, TMD assembly

Physics:
For the simulation, only Structural Mechanics physics was used.

Load:
A point load is used to perform a convergence study on the mesh based on a stationary study,
as well as to conduct an evaluation of the linearity of the system. Two attack points were set in
order to do a proper evaluation of the damper 1st. and 2nd. eigenfrequency mode shapes and
corresponding frequency response, the two load attack points are run in separate simulation steps.

• Point Load: 0.1, 1, 10[N], Used for the stationary study.

• Point Load Harmonic Perturbation: 1[N], Used for the Frequency domain studies

– attack point: center of damper mass length

– attack point: end of damper mass length

Damping:
The rubber elements are damped by the use of an isotropic loss factor that describes the ratio of
energy dissipation per oscillation. This is a way to replicate solid damping in the material due to
energy dissipation. When using the Neo-Hookean hyperelastic material model, the loss information
is given as a multiplier in strain energy density, in the second Piola-Kirchhoff stress, S. (Comsol
2023d). The value of the isotropic loss factor has been selected in order to give a satisfactory
according to the lab results. Changing the damping affects the amplitude and rate of change in
magnitude greatly. Higher value, lower amplitude, and lower rate of change in magnitude.

• Rubber springs: Isotropic structural loss factor: 0.08

Boundary conditions:
The outer surfaces of the simplified TMD assembly are fully constrained in all translational and
rotational directions. Done by a Fixed constraint.

Meshing:
The meshing is done by a convergence study on the stationary deflection study.

• Element type: Free Tetrahedral

• Element size: Normal

– Max size: 9.8mm

– Min size: 1.76mm
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– Max growth rate: 1.5

• Displacement field: Quadratic serendipity

– Les nodes than Lagrange element but still good results and less computational load

Study (Stationary: Static Deflection):
The Stationary study was conducted in order to check the linearity of the system. The study was
run with the three point loads given above.

Study (Eigenfrequency):
The Eigenfrequency study excludes all loads and damping is deactivated for the study, giving the
undamped eigenfrequencies.

Study (Frequency Domain, Modal: Harmonic Vibration):
Includes an initial step, eigenfrequency study, creating the basis for the frequency domain, and
modal analysis. The modal analysis runs parameter stepping in the frequency domain, giving the
frequency response as output. The modal solver reduces the model by using the precalculated
eigenfrequencies to find eigenpairs, constructing a basis of dominant eigenvectors for the dominant
frequencies found. The method is highly efficient in terms of computational speed due to the way
of solving the underlying equation system by approximation of the parametric coefficients together
with the dominant eigenvectors (few) (Comsol 2023c).

For study step 1: eigenfrequency study, all damping is disabled.

To represent the two different configurations: Center(translation) and Side(translation and rota-
tion) there exist two different studies, with the corresponding load activated and all other loads
deactivated. The studies also have different evaluation points to capture the movement. The
evaluation points are at the same boundary point as the attack point of the load

In the result section of the simulation, two 3D evaluation points are selected for creating the
corresponding 1D plot groups. The plot data is plotted as ”solid.disp rms”, which gives the root
mean square of the result values. The RMS function was chosen to account for oscillating values
between positive and negative values as the values are squared removing the negative sign and
filtering extreme variations by the root mean value.

All results from the study have then been added to an export group in Comsol and exported as
.txt files. The data is treated together with the results from the lab in a self-developed Python
script for both single representation and different types of comparison plots.

For the parameter stepping in both studies of the simulation, the following frequency steps in Hz
were decided based on the results of the Eigenfrequency study, (lower limit, step size, upper limit):

• Frequencies: range(0,2,100), range(100,0.05,150),
range(150,2,220), range(220,0.05,300), range(300,2,350)

5.2.3 Simplified Boring Bar with TMD Comsol Simulation

General:
As the simulation with the simplified TMD model was up and running in a satisfactory manner,
the full assembly simulation was next in line. The main objectives for the development of the
simulation included creating correct relations between selected parts in order for the model to
function similarly to real-world events. The simulation in itself is built on many of the same
blocks as the simplified TMD simulation. The three new components, with the one ”boring bar”
and the two ”TMD Restrainer” parts, structural steel, are also added to the simulation, following
the isotropic linear elastic material model. The parts and belonging material can be seen in the
appendix. In order to make the thesis results more redundant, the full assembly simulations have
been run at three different free lengths of the boring bar. 10xD: 400mm, 11xD: 440mm, and 12xD:
480mm, according to the lab experiments
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Material:

• Tungsten

– Material model: Linear elastic, isotropic

– Young’s modulus: 360 [Gpa]

– Poisson’s ratio: 0.28

– Density: 17800 [Kg/m3]

• Rubber

– Material model: Hyperelastic, Neo-Hookean

– Damping: Isotropic structural loss factor: 0.08

– Compressibility: Incompressible

– 2nd Lamé parameter(µ): 1.75[Mpa]

– Density: 1100[Kg/m3]

• Structural Steel

– Young’s modulus: 200[GPa]

– Poisson’s ratio: 0.3

– Density: 7850 [Kg/m3]

Geometry:
The assembly of the parts making the simplified boring bar and TMD is made in the CAD program
SolidWorks, and imported into Comsol by the use of the import function for 3D CAD files. When
importing geometry with touching faces, they are joined by bonded contact meaning that the
surfaces are completely coupled but can be deformed. The boring bar was also partitioned at three
places corresponding to the free lengths 400mm, 440mm, and 480mm in order to create relevant
boundary conditions.

Figure 14: Comsol view of imported and partitioned geometry, Boring bar assembly

Physics:
For the simulation, only Structural Mechanics physics was used.

Load:
The study only includes one harmonic perturbation point load located on the tip of the free end.
This load is used on all the different length variations of the free length.

• Point Load Harmonic Perturbation: 1 [N ], used for the frequency domain studies.
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Damping:
The Rubber springs are damped by the same isotropic loss factor as found in the study of the
simplified TMD in order of conducting an analysis with constant parameter values to make a solid
relation to the lab experiments. The boring bar is damped with Rayleigh damping as done in the
autumn semester thesis. Rayleigh damping model is similar to friction loss and is not frequency
dependent, it was found to provide a stable model with satisfactory results in previous studies
conducted in my autumn semester thesis, and the same values have been used in the simulations
presented in this master’s thesis.

• Rubber springs: Isotropic structural loss factor: 0.08

• Boring bar: Rayleigh damping

– Mass damping parameter (αdM ): 5.36 [1/S]

– Stiffness damping parameter (βdK): 7.46e-5 [s]

Boundary conditions:
Depending on the study three different boundary conditions are active for each study. the boring
bar is locked with a fixed constraint at the domains created by the partitioning. resulting in the
free lengths: 400mm, 440mm, and 480mm

Meshing:
The meshing is the same as found by the convergence study on the stationary deflection study
done in the simplified TMD simulation. Verification of small variances on refining was done in
order to ensure the convergence study validity. This proved the hypothesis that the TMD was the
most demanding subassembly in terms of mesh size, therefore not needing further refining.

• Element type: Free Tetrahedral

• Element size: Normal

– Max size: 9.8mm

– Min size: 1.76mm

– Max growth rate: 1.5

• Displacement field: Quadratic serendipity

– Les nodes than Lagrange element but still good results and less computational load

Study (Eigenfrequency):
The Eigenfrequency study excludes all loads, and damping is deactivated for the studies, giving the
undamped eigenfrequencies. Three Eigenfrequency studies are conducted, one for each variation
of the free length. The eigenfrequencies found in the studies are the basis for the frequency ranges
chosen for the frequency domain, modal studies.

Study (Frequency Domain, Modal, Harmonic Vibration):
Three equal frequency domain, modal studies are conducted, one for each variation of the free
length. The 1st. step in the studies is an eigenfrequency study, creating the basis for the frequency
domain, modal analysis. The modal analysis runs parameter stepping in the frequency domain,
giving the frequency response as output. The modal solver reduces the model by using the pre-
calculated eigenfrequencies to find eigenpairs, constructing a set of dominant eigenvectors for the
dominant frequencies found. The method is highly efficient in terms of computational speed due to
the way of solving the underlying equation system by approximation of the parametric coefficients
together with the dominant eigenvectors (few).

In the eigenfrequency study step of the modal analysis, all damping is deactivated to avoid problems
occurring in the modal solver with the imaginary part included by damping.
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In the result section three separate 3D evaluation points are created at the same domain point (at
the free end) and assigned data from each of the different free-length solutions. A corresponding
1D plot group is made for each of the 3D evaluation points. The plot data is plotted as ”solid.disp
rms”, which gives the root mean square of the result values. The RMS function was chosen
to account for oscillating values between positive and negative values as the values are squared,
removing the negative sign and filtering extreme variations by the root mean value.

All results from the study have then been added to the export group in Comsol and exported as
.txt files. The data is treated together with the results from the Lab in a self-developed Python
script for both single representation and different types of comparison plots.

For the parameter stepping in the studies the following frequency ranges in Hz was decided on the
background of the Eigenfrequency studies, (lower limit, step size, upper limit):

• Harmonic forced vibration, 400mm: range(0,2,50), range(50,0.01,150),
range(150,2,240), range(240,0.01,340), range(340,2,1200)

• Harmonic forced vibration, 440mm: range(0,2,50), range(50,0.01,150),
range(150,2,200), range(200,0.01,300), range(340,2,1200)

• Harmonic forced vibration, 480mm: range(0,2,50), range(50,0.01,125),
range(125,2,175), range(175,0.01,300), range(300,2,1200)

5.3 Lab Experiments at Sandvik Teeness

A central part of the thesis and the basis for adjusting the rubber material model in order to
get results similar to the real-world behavior of the TMD and boring bar is the data from Lab
experiments conducted by Dan Östling at Sandvik Teeness. The fact that Dan and Sandvik Teeness
supported me with the testing, and me being present at the Lab while testing, was an important
factor of motivation throughout the thesis work.

The tests performed were impulse response tests. A force impulse was given to the test structure,
with a sensor measuring the impulse (force/time), and an accelerometer attached to the oscillating
structure by a magnet. The measurements were tracked in the time domain and an FFT: Fast
Fourier Transform gave the resulting data in the frequency domain. Each experiment consisted of
8 impacts and then a mean of these was calculated as the resulting data.
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Figure 15: Impact Hammer

For redundancy and to capture the eigenmodes properly, two test setups were conducted on the
TMD without damping fluid.

1. Impulse impact and measurement on the middle of the damper mass length

2. Impulse impact and measurement on the end of the damper mass length

Figure 16: Setup in test bench: TMD without oil and accelerometer under mid-length
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Figure 17: Setup in test bench: TMD without oil and accelerometer under end of damper mass

Three test setups were conducted with the TMD installed in the boring bar, still with no damping
fluid. The accelerometer was placed at the free end of the bar through all three setups.

1. 10xD: 400mm free length

2. 11xD: 440mm free length

3. 12xD: 480mm free length

Figure 18: Setup in the lathe for impulse test of the boring bar with TMD(without damper fluid).
An accelerometer at the tip of the free end

40



5.4 Experimental Validation

In order to set up the simulations for experimental validation, the rubber model needed to be tuned.
As the damper mass was given from Sandvik to be 1.19kg and the first mode eigenfrequency was
found in the lab results to be 120Hz. Initial parameter values could be calculated:

ktot = (Fn · 2π)2 ·m

ktot = (120 Hz · 2π)2 · 1.19 kg

ktot = 676502 N/m

G = k
A · d

G = 676502 N/m
(π
4 (33.52−11.52))·10−6 m2 · 2 · (4) · 10−3 m

G = 2.568 MPa

Where:

• k is spring constant [N/m]

• Fn is the eigenfrequency [Hz]

• m is mass [kg]

• A is area [m2]

• d is thickness [m]

• G is the shear modulus [Pa]

Initial Values
Incompressible rubber material gives Poisson’s ratio = 0.5
Isoropic structural loss factor(recommended by Sandvik representant) =0.06
2nd. Lamé parameter: µ = G = 2.568 MPa

In order to perform the tuning it is of interest to use results with as few uncertainties as possible.
Due to this, the TMD translational case will be used as the case for parameter tuning, and the
resulting parameter values found will be used for all other simulation cases, to replicate the real
world as the parameters stay the same in all the lab experiments. The first objective for the
tuning is to match the frequency of the peak value in the lab to the one in the simulation. This
will be done by increasing(higher eigenfrequency) or decreasing(lower eigenfrequency) the 2nd.
Lamé parameter dependent on whether or not the simulation peak frequency is lower(increase)
or higher(decrease) than the lab eigenfrequency. After the Lamé parameter is found, the shape
of the curve is the next objective. The shape is to be adjusted by steady steps up(slower rate of
change in frequency response) or down(faster rate of change in frequency response) in the isotropic
structural loss factor. The goal is to adjust the curve so that the fit after applying a scalar value
to the simulation curve, the two curves of the lab and simulation will fit as well as possible. For
the damping factor, a visual approximation is considered good enough.

The results from the lab, simulation, and comparison of these have all been plotted by the use
of my Python script, this was done to avoid screenshots from Comsol and to enable equal visual
representation, and most importantly, the ability to put data sets from both lab and simulation in
the same plot and perform magnitude adjustment, ultimately providing an informative visual rep-
resentation of the results. The simulation and Lab results were compared in the frequency response
with the magnitude plotted on the y-axis (mm for the simulations and mm/N for the lab) and the
frequencies plotted on the x-axis in Hz. Due to the lab results represented as compliance [mm/N]
all simulations were run with 1N force magnitude to remove the need for any post-calculation of
magnitude for correct comparison between lab and simulation results.
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The Lab results were handed to me with values of the real and imaginary part of the FRF as
accelerance:[m/s2/N]. To convert the values into magnitude in the form of compliance: [m/N], we
first divide both parts with the angular frequency: (2 ∗ π ∗ f)2.

Than we square the imaginary and real parts, add them together, and apply the root:
√

(Re)2 + (Im)2

The presentation of the results from the simulation and lab is structured by presenting case by
case.

1. TMD without oil

(a) Results of parameter tuning

(b) Eigenfrequencies and Eigenmodes

(c) Lab and simulation frequency response, translation

(d) Lab and simulation frequency response, translation, with amplitude correction on the
simulation result.

(e) Lab and simulation frequency response, translation and rotation

(f) Lab and simulation frequency response, translation and rotation, with amplitude cor-
rection on the simulation result.

2. Boring bar with TMD(without damping fluid)

(a) Comparison of the three free-length variations

(b) Free length 10xD: 400mm

i. Eigenfrequency and Eigenmodes

ii. Lab and simulation frequency response

iii. Lab and simulation frequency response, with amplitude correction on the simulation
result.

(c) Free length 11xD: 440mm

i. Eigenfrequency and eigenmodes

ii. Lab and simulation frequency response

iii. Lab and simulation frequency response, with amplitude correction on the simulation
result.

(d) Free length 12xD: 480mm

i. Eigenfrequency and Eigenmodes

ii. Lab and simulation frequency response

iii. Lab and simulation frequency response, with amplitude correction on the simulation
result.

The plots presenting the simulation and lab results are the basis of the experimental validation, and
the peak values in the different cases will give an indication of the ability of the Comsol simulations
to estimate the frequency and amplitude values of the real-world system eigenmodes. Eigenfre-
quencies and mode shapes are dependent on the geometry of the system, mass distribution, and
stiffness properties, but the amplitude is dependent on factors like damping, boundary conditions,
and specific excitation. Therefore, it is likely to be a larger deviation in the amplitude than in the
frequency of the peaks. Therefore a scaling shall be performed on the simulation results, based on
the first eigenmode amplitude. For the lab and simulation results on the simplified TMD assembly
cases, the scaling is to be done based on the TMD translation case and applied to both cases due
to the first eigenmode should be close to equal for both cases. Each of the varying free-length cases
is to be scaled individually. In order to quantify the agreement between the lab and simulation
peak values(frequency, and magnitude), the error of the simulation peak values shall be calculated
against the lab peak values. Error estimations of the peaks in the amplitude-scaled simulation
curves shall also be included to give insight into whether or not this reduces or increase the overall
error of each case.
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6 Simulation and Lab Results

This section will present all relevant results gained thru the thesis research, both lab and simulation
data, as well as comparisons of the two. Emphasis has been put on providing informative and clear
visualizations with a strong connection to the thesis goals and objectives. The results presented
will all be subject to a discussion where I will present my evaluations and thoughts on both the
results and the validity of the results.

6.1 TMD without oil

In order to perform tuning of the relevant rubber material parameters in my simulations, lab
experiments had to be carried out to collect data from real-world behavior. Testing on the assembly
with the least elements interfering with the eigenfrequencies of the system was of high interest,
to decrease the complexity and minimize uncertainty. The testing on only a TMD assembly
without oil was highly beneficial for the parameter tuning. The TMD translation case was used for
tuning, and the parameter value of the second Lamé parameter was decreased by steady steps until
the eigenfrequency of the TMD translation simulation and lab results were within the objective
value of 5%. The isotropic structural loss factor was increased from its initial value of 0.06 and
locked at 0.08. Even though this resulted in different amplitudes between the lab and simulation
results the goal was to get a similar curve after magnitude correction. This was done by adjusting
the simulation results by a scalar= (Lab peak magnitude) / (Simulation peak magnitude). The
parameter value was accepted upon visual evaluation, not by numerical methods.

After a great number of iterations with decreasing step size, the final parameters included in the
Neo-Hookean hyperelastic material model used to model the rubber elements in my simulations
were locked at the following values:

• 2nd. Lamé parameter (µ) : 1.75Mpa

• Isotropic loss factor: 0.08

Giving the following results in the simplified TMD simulation:

Eigenmode Eigenfrequency [Hz]
1 119
2 240

Table 2: Simulated Undamped Eigenfrequencies (Simplified TMD simulation)
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The mode shapes from the frequency domain modal simulation with their respective frequency are
seen in the figure below:

(a) Simplified TMD, Modeshape at 119Hz (b) Simplified TMD, Modeshape at 240Hz

Figure 19: Simplified TMD, Modeshapes

First Mode (Translational Mode): The first mode of vibration for the TMD is similar to the first
mode of a simply supported beam. It represents a half-sine wave along the length of the assembly.
In this mode, the entire damping mass moves up and down, essentially translating parallel to its
steady state position. All of the deformations occur in the rubber springs, as there is very little
force acting on the very stiff damping mass. This mode, as seen in this simulation usually has
the lowest frequency of all the vibrational modes and is often referred to as the fundamental or
primary mode of vibration.

Second Mode (Rotational or Bending Mode): The second mode of vibration represents a full sine
wave along the length of the TMD, similar to the second mode of a simply supported beam. In
this mode, the damping mass oscillates with a nodal point at the center of the body. The nodal
point remains stationary while the ends of the body move in opposite directions. This results in
a bending or rotational motion around an axis thru the nodal point in the damping mass body’s
radial direction.

Comparison between lab and simulation, Translational movement(mode 1):

Figure 20: Comparison between Lab and Simulation, TMD: Translation

Adjusting for the amplitude difference gives the following result:
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Figure 21: Comparison between Lab and Simulation, Simplified TMD translation, Corrected Sim-
ulation Magnitude based on first mode peak values(Scalar= 0.571)

Figure 22: Comparison between Lab and Simulation, TMD: Translation and Rotation

The same scalar adjustment as in the pure translation case gives the following result:

Figure 23: Comparison between Lab and Simulation, Simplified TMD translation and rotation,
Corrected Simulation Magnitude based on first mode peak values(Scalar= 0.571)
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6.2 Boring bar with TMD(without damping fluid)

After tuning the material model for the rubber elements, all parameters belonging to the TMD
assembly were set and re-used in the full-assembly simulation. As the model increases in size, new
uncertainties are added, such as the solid damping values of the boring bar. This chapter will
present the simulation results of three configurations of the overhang(Free length). The chapter
starts with a picture containing the lab result’s frequency response curves of the three variations.
Following, are the results of each and one of the three free-length variations in its own section.

Figure 24: Lab: Frequency Response Function, Comparison of varying free length

The peaks in the frequency range: 700Hz-1100Hz are not considered further in the result section
due to none of the simulations showing any peaks in this range. Therefore the frequencies at this
high Hz are removed in order to provide a finer resolution of the impulse response curve ranges
found in both simulation and lab results. This will be further commented on in the discussion
section Chap.7.3.
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6.2.1 Free Length 10xD: 400mm

Eigenmode Eigenfrequency [Hz]
1 96
2 232
3 308

Table 3: Simulated Undamped Eigenfrequencies (Simplified Boring Bar, 400 mm)

The mode shapes from the frequency domain modal simulation with their respective frequency are
seen in the figure below:

(a) Simplified Boring bar with
TMD, Modeshape at 96Hz

(b) Simplified Boring bar with
TMD, Modeshape at 232Hz

(c) Simplified Boring bar with
TMD, Modeshape at 308Hz

Figure 25: Simplified Boring bar with TMD, 400mm, Undamped Modeshapes

Figure 26: Comparison between Lab and Simulation, Free Length: 400 mm

Figure 27: Comparison between Lab and Simulation, Free Length: 400mm, Corrected Simulation
Magnitude based on first mode peak values(Scalar= 1.688)
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6.2.2 Free Length 11xD: 440 mm

Eigenmode Eigenfrequency [Hz]
1 91
2 230
3 271

Table 4: Simulated Undamped Eigenfrequencies (Simplified Boring Bar, 440 mm)

The mode shapes from the frequency domain modal simulation with their respective frequency are
seen in the figure below:

(a) Simplified Boring bar with
TMD, Modeshape at 91Hz

(b) Simplified Boring bar with
TMD, Modeshape at 230Hz

(c) Simplified Boring bar with
TMD, Modeshape at 271Hz

Figure 28: Simplified Boring bar with TMD, 440mm, Undamped Modeshapes

Figure 29: Comparison between Lab and Simulation, Free Length: 440mm

Figure 30: Comparison between Lab and Simulation, Free Length: 440mm, Corrected Simulation
Magnitude based on first mode peak values(Scalar= 1.536)
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6.2.3 Free Length 12xD: 480 mm

Eigenmode Eigenfrequency [Hz]
1 84
2 224
3 247

Table 5: Simulated Undamped Eigenfrequencies (Simplified Boring Bar, 480 mm)

The mode shapes from the frequency domain modal simulation with their respective frequency are
seen in the figure below:

(a) Simplified Boring bar with
TMD, Modeshape at 84Hz

(b) Simplified Boring bar with
TMD, Modeshape at 224Hz

(c) Simplified Boring bar with
TMD, Modeshape at 247Hz

Figure 31: Simplified Boring bar with TMD, 480mm, Undamped Modeshapes

Figure 32: Comparison between Lab and Simulation, Free Length: 480mm

Figure 33: Comparison between Lab and Simulation, Free Length: 480mm, Corrected Simulation
Magnitude based on first mode peak values(Scalar= 2.391)
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6.2.4 Comparison of simulations and lab results based on peak values

The peaks in the frequency response curves show the eigenfrequencies of the system. The taller the
peaks are, the more dominant the mode is considered to be. The peak values are of high interest
when it comes to considering the stability of a system and is used in the tuning method of the
minimized magnitude of FRF Chap.4.6. We, therefore, want to look at the relation between Lab
and simulation peak values(frequency, magnitude). This can give an indication of the performance
to identify the frequencies at which the system can become unstable due to resonance, and the
magnitudes will be of high interest when it comes to tuning the system for specific behavior and
resistance against selected types of vibration.

For the simulated peak values(frequencies[Hz], and magnitude[mm]) the error is calculated against
the lab results.

Simulation error = (Simulated Value − Lab Value)
Lab Value · 100%

Case Lab Freq.(Hz) Sim. Freq.(Hz) Sim. error(%)
TMD Translation 120 119 -1%
and Rotation 246 240 -2%

400mm 98 96 -2%
238 228 -3%

* 284* 308* 8%*
318 308 -3%

440mm 92 90 -2%
232 227 -2%
262 271 -3%

480mm 84 84 0%
222 223 0%
250 249 0%

Table 6: Comparison of lab and simulation peaks(Frequency)

*Uncertain lab result, further elaborated in Chap.7.3
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Case Lab Disp.[mm/N] Sim. Disp. at1N [mm] Sim. error %
TMD Translation 0.0079 0.0134 70%
and rotation 0.0018 0.0093 416%

TMD Translation 0.0079 0.0077 -3%
and rotation 0.0018 0.0053 194%
Scaled amplitude

400mm 0.0054 0.0032 -41%
0.0022 0.0010 -55%

* 0.0061* 0.0031* -49%*
0.0027 0.0031 15%

400mm, 0.0054 0.0054 0%
Scaled amplitude 0.0022 0.0018 18%
* 0.0061* 0.0053* -13%*

0.0027 0.0053 96%

440mm 0.0086 0.0056 -35%
0.0041 0.0018 -56%
0.0049 0.0035 -29%

440mm, 0.0086 0.0086 0%
Scaled amplitude 0.0041 0.0027 -34%

0.0049 0.0054 10%

480mm 0.0220 0.0092 -58%
0.0068 0.0033 -51%
0.0026 0.0028 8%

480mm 0.0220 0.0220 0%
Scaled amplitude 0.0068 0.0079 16%

0.0026 0.0067 158%

Table 7: Comparison of lab and simulation peaks(Magnitude)

*Uncertain lab result, further elaborated in Chap.7.3

In order to test the linearity to see that we, in fact, are below the strain rates resulting in hypere-
lastic nonlinear behavior, the simulation was run with a static deflection analysis with the forces:
0.1N, 1N, and 10N, the results showed an absolute linear relation to the force input.

Force (N) Displacement (mm)
0.1 1.5e-4
1 1.5e-3
10 1.5e-2

Table 8: Testing the linear relationship between force and displacement when using Neo-Hookean
hyperelastic material model
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7 Discussion

Managing to set up a full 3D simulation of a vibration-damped tool holder with a high focus on
applying a material model to accurately describe the rubber behavior has been a time-consuming
competence intensive task. Running the simulations with seemingly good results, was therefore
an important milestone during the thesis work. Performing lab experiments at Sandvik Teeneess
enabled parameter tuning of the rubber material model, resulting in very satisfactory results in
terms of peak frequency values, although the simulation and lab results are not equal. The differ-
ence between lab and simulation may be an effect of incomplete simulation modeling, imperfect lab
setup, and monitoring errors. The choices, methodology, results, roots of error, and connections
between findings and literature will be discussed in this chapter along with the implications of the
thesis work.

7.1 Simulation and Lab Setup

The modeling of the components is done in a simplified matter, both in order to replicate the
necessary geometry, and to keep the company secrets of Sandvik Teeneess intact. Damper mass
inner/outer diameter and length, rubber spring geometry, and boring bar outer and inner diameters
are equal to the real-world components. The boring bar body has material properties confirmed by
Sandvik Teeneess representant, the material damping used in the simulation for both the boring
bar and rubber springs was said to be ”close to reality”. The simulations conducted in this thesis
all use the modal frequency domain solver. As the frequency peaks in the magnitude were known
from the lab experiments, it could easily be validated that the modal analysis picks up the relevant
frequencies, by looking at the peaks in the simulations, in relation to the lab results. For an
analysis without a real-life result for verification, a direct frequency domain solver would provide
more safety for getting the frequency response(Ivar 2023), but it requires a lot more computational
power which was not available for me and my thesis. The direct solver solves the whole model in
one, instead of the reduction based on the eigenfrequency study as the modal analysis does. This
might result in a better prediction of the magnitudes and a lower deviation between the calculated
2nd. Lamé parameter and the final tuned value due to a better implementation of the damping in
the model and its responses in the frequency sweep.

When importing the simplified TMD assembly into Comsol, the assembly is formed as a union,
creating an object with connected domains, separated by common boundaries with the adjoining
entities. If joined as an assembly the geometry would still be joined into a single object, but with
disconnected domains and mesh, the boundaries in contact have identity pairs securing continuity
in the physics. ”Form assembly” is useful when modeling unequal types of contact and boundary
conditions between parts(Comsol 2023b). For future investigation, it would be interesting to test
with different types of contact modeling to see how this affects especially the magnitude of the
simulation result.

Due to the way boundary conditions are set on the simplified boring bar with TMD assembly, it
becomes unnaturally stiff compared to the lab experiments. This is due to the real-world fixturing
not being completely rigid like the simulation. Exactly how big the difference is between the
simulation and lab setup is hard to estimate, but it would be possible to model a fixed boundary
condition with a given stiffness locking the boring bar body resembling the lab setup. It is possible
that the peaks in the range: 700 Hz - 1100 Hz come from vibrations in the fixturing of the tool in
the CNC lathe.

Looking at the lab magnitude plot of the boring bar with TMD at 400mm free length Fig.26. The
peak at 284Hz is rough around the edges, this might indicate noise in the measurements, and if
compared to the trend in the 440mm free end and 480mm free end, the peak seems unnaturally
high Fig.24. Another element is that there are three peaks instead of two peaks that have been
the case for the 440mm and 480mm free length. If we take a look at the trend for the two peaks
of the curves in the range: 200 Hz - 300 Hz it seems like the left peak increases in magnitude with
increased free length, and the opposite happens with the right peak with increased free length. It
also looks like the peaks become closer to each other with increased free length. Even though we
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performed three different free-length experiments, it is hard to draw any sound conclusion from the
data, and in retrospect, a greater number of free-length variations would be beneficial for looking
at trends in the curve with changes in free length.

7.2 Parameter Tuning

As mentioned in the methodology chapter, the TMD translation case was used as the basis for the
parameter tuning of the hyperelastic Neo-Hookean material model for the rubber springs.

When tuning the rubber material parameters, the 2nd. Lamé parameter was found effective to
tune the frequency of the peaks in the frequency response simulations. The final tuned parameter
value deviated surprisingly much from the initially calculated 2nd. Lamé parameter. Starting at
the initially calculated value: 2.568 Mpa giving 144 Hz, towards the target peak value found in the
lab of 122 Hz, resulting in a final value of 1.75 MPa and a frequency: 119 Hz. Deviation: 2.568
Mpa - 1.75 Mpa = 0.818 Mpa, or 32% lower than calculated. The reason for this may be due to an
incorrect contact modeling, or due to the modal solver, but this has to be tested in future research.

The Isotropic structural loss factor was used to adjust the width and height of the curve in the
simplified TMD translation simulation. Landing on 0.08 gave satisfactory results based on a
visual inspection of the curve. Visual verification was seen as good enough, as opposed to a more
analytic or numerical tuning method, due to the frequency fitting of the peaks being set as a high
priority, and the magnitude having a lower priority. Looking at the TMD translation and rotation
plots Fig.22, the magnitude curves become distant from each other at the second peak(rotation):
244Hz(lab). Why the relative deviation is larger at the rotation mode is unclear. Part of the reason
can be that the accelerometer might not have been placed all the way to the edge of the damper
mass, which only would affect the rotation mode magnitude. But the simulation contact modeling
between the damper mass and the rubber elements formed as a union in Comsol, might also not
limit movement correctly. In real life, the TMD assembly has some degree of axial pressure due
to a hollow axle(center tube) used to hold the components tight in place and used to tune the
damper. This hollow axle and the tension introduced by it might restrain the deflection of the
damper mass to some degree as well as compress the rubber spring disc, which would give a lower
calculated initial value for the 2nd. Lamé parameter due to the change in thickness.

7.3 Interpretation of Simulation and Lab Results

Taking the peaks of the lab and simulation frequency response curves into consideration. The
frequency and magnitude values of the peaks have been seen as a good way of quantifying the
simulation capabilities of predicting real-world dynamics. The peak values are of high interest
when it comes to tuning and identifying frequency ranges exposed to resonance.

The peaks are identified by my self-made Python script handling both simulation and lab data and
plotting them with frequency and magnitude values. The values were then filled into tables and
the error of the simulated values are calculated. For the TMD cases, the translation and rotation
case is the only one used, as both frequency and magnitude of the first mode is very similar to the
pure translation case and therefore deemed excessive. For the magnitude overview, both original
and magnitude-adjusted values are used to give insight into how the error changes after adjusting.

Looking at the frequency overview in Table 6 We can clearly see that the simulation is highly
capable of predicting the peak frequencies of the real-world system after parameter tuning with
the TMD translation case. With errors ranging from -3% to 8%, the error width is 11%. But if
we exclude the 8% peak, discussed as a possible subject of measurement noise the range is only
from -3% to 0% giving 3% width, which is considered a huge success taking in the objective of
max 5% error. All errors except for the 8% error at the 400mm case are on the negative error
side and therefore the 2nd. Lamé parameter could possibly be increased slightly to decrease the
max absolute error. This conforms with the fact that the simulation peak in the TMD translation
case was at 119Hz after the tuning was finished and the lab magnitude peak was at 122 Hz. But
the error in the case of finished tuning was only 2% and this was seen as good enough. As a
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former CNC operator, I was taught a golden rule for manufacturing, based on productivity and
predetermined tolerances: ”as coarse as possible, and as accurate as required”. So when I reached
an error within my objective, I was satisfied. Not knowing if the trend would become a negative
error due to the negative error in the tuning case was also a reason to not spend more time reaching
0% error. The mean of the absolute error values is 1%, indicating a highly successful ability of the
simulation to predict real-life behavior.

Magnitude deviation was expected from the start of the thesis and set as a secondary priority
to accurate simulation of the frequencies. The magnitude overview in Table 7 confirms what we
could see in the plots, that the magnitude has a significantly larger error than the frequencies. But
even though the errors are larger, it is not seen as a failure. Plotting the curves, the overall curve
shape as well as the width and height ratio of the peaks are well suited for magnitude adjustment,
providing very good agreement between lab and simulation from the first peak up to the area of
the second peak. As the error varies within the cases with few clear patterns, it is likely that
the problem with the model is not of linear nature. Taking the mean of the absolute errors in
the original simulations results in: 73% error, while the mean of the absolute errors of the scaled
simulation magnitude gives: 60% error. This indicates some improvement in scaled simulation
magnitude. Scaling based on the first peak values of the lab and simulation was done to create a
clearer picture of how the magnitude curves follow each other up to and beyond the first peak as
this is also the largest frequency span without other peaks. Other ways of scaling may create a
lower overall error and a better agreement of the curves all over and would be a point for further
research. A pattern that is possible to see from the unscaled free-length plots is that the simulation
magnitude of the first and second peaks is consistently below the lab results. This is in opposition
to the TMD cases where the simulation magnitude is above the lab magnitude for both cases and
both peaks in the TMD translation and rotation case. This can occur from the Rayleigh damping
parameters in the boring bar not being absolutely accurate.

7.4 Goals and objectives

The eigenfrequency deviation is within the objective for the thesis of a maximum value:5% as seen
in Table 6 with the exception of the 400mm free length of 8%. Variations in the amplitude error
for each case are also an interesting parameter, as we would want these errors to be as similar as
possible for each case, resulting in the best curve fit for the peaks with magnitude correction. The
magnitude errors can be seen in Table 7

For the boring bar with TMD cases, spikes can be observed in the lab magnitude in the range of
700 Hz - 1100 Hz. Simulation outputs for the range showed no increased response. It was evaluated
to be frequencies coming from a high stiffness solid component, and therefore possibly the machine
structure and the tool fixturing itself.

Looking at the plot of the lab results Fig.24 the 400mm plot has a relatively high spike at 286Hz,
better visualized in Fig.26. Without further knowledge of the way data is treated in Sanvik Teeneess
lab software, it is hard to conclude, but based on the fact that the system becomes stiffer, we could
argue that a downward trend in the peaks with decreasing free length would be normal. It has
therefore been a high suspicion that the peak is unnaturally high, and may stem from measurement
noise.
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7.5 Addressing Research Questions

In the context of the main research question ”How can a finite element model of a vibration-
damped tool holder for internal turning operations be developed and validated using COMSOL
Multiphysics, with a focus on accurately representing and tuning the behavior of rubber to return
simulation results close to real-world behavior?”. The Comsol simulation, with its rubber model
and contact definitions, performs very well in terms of peak frequency behavior. However, it lacks
the same accuracy when it comes to the magnitude. To improve the performance of the simulations,
more focus should be put on accurately describing the contact at the rubber spring boundaries and
the effect of axial pressure holding the TMD assembly together. Research needs to be done towards
a direct solver being used on the simulations, but this requires high computational capacity.

”How do the results of the finite element simulations and experimental validation conform with each
other, and which parameters are best used to tune the rubber constitutive model?*” The validation
of the hyperelastic material model is primarily based on comparing the simulation results with the
experimental data. If these plots match closely in their behavior, then it’s a strong indicator that
the chosen material model is an accurate representation of the material’s real behavior. But many
other factors in the simulation setup come into play, like contact modeling, meshing, and more,
which can be hard to distinguish in the result.

Choosing the hyperelastic material model is justified based on the assumption of the rubbery phase
of the material and the validation from the stationary study showing a linear relationship between
load and deformation within the deformation ranges found in the output of the frequency domain
studies in Table 8. The Neo-Hookean model was chosen due to its simplicity and low number of
parameters that needed to be tuned.

”What are the key material properties and constitutive models of rubber that need to be considered
for accurately modeling their behavior in a vibration-damped tool holder?”, it has been found that
the choice of a hyperelastic material model over a viscoelastic model was appropriate to describe the
eigenfrequencies of the system. This decision was made based on the assumption that the rubber
material operates within its rubbery phase temperature range Fig.9, demonstrating hyperelastic
behavior. Hyperelastic materials can undergo large deformations and then return to their original
shape once the load is removed.

However, there might be a presence of viscoelastic behavior in the real application that isn’t cap-
tured in the simulations by the hyperelastic Neo-Hookean material model. Viscoelastic materials
exhibit both elastic and viscous behavior, meaning they deform over time when subjected to a
constant strain, which isn’t a characteristic captured by the hyperelastic model. This may affect
the amplitude and contribute to the differences between lab and simulation amplitude.

The two key parameters in the hyperelastic Neo-Hookean material model, the 2nd Lamé para-
meter, and the isotropic structural loss factor both influence the system’s frequency and amplitude
responses, but in different ways.

The 2nd Lamé parameter, often denoted as the shear modulus G, determines the material’s res-
istance to shape changes when a force is applied. An increase in this parameter results in a stiffer
system that has higher eigenfrequencies and lowers the amplitude of the response. Changes in
this parameter have a significant impact on both frequency and magnitude, meaning that this
parameter can be finely tuned to match the system’s physical properties.

The isotropic structural loss factor determines how much energy is dissipated as heat in the material
during deformation. A higher value of this factor smooths the response curves, reducing the rate
of change in displacement and lowering the amplitude of the response. Changes in the isotropic
structural loss factor have a solid effect on the rate of change in displacement and in magnitude.

”How can the finite element model of the vibration-damped tool holder be optimized to improve
its accuracy and computational efficiency, considering the complexities of the materials involved?”
Further optimization for computational speed could potentially be achieved by reducing the model
to beam physics, the computational speed achieved with the modal solver is already quite satis-
factory.
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Instead of focusing on further computational efficiency optimizations, future research should ex-
plore different modeling techniques for physical phenomena such as boundary contact, with the
aim of increasing the simulation’s approximation of the real world. This can include the use of dif-
ferent solver settings that are more appropriate for the specific physical problem. Further research
into the rubber material used in the damper could also be of interest to better model its physical
properties. If heavy computational power is available, the direct frequency domain solver should
also be run as this takes in the complex value of the eigenfrequencies of the damped structures.
But this solver requires data power I was not in possession of throughout my thesis.

Finally, in terms of the last research question ”What experimental methodologies and techniques
can be employed to validate the simulation results obtained from the COMSOL Multiphysics
model, ensuring the reliability and accuracy of the findings?” Throughout the thesis, the emphasis
when developing the simulations and tuning the rubber material model has been towards the
eigenfrequencies. The methodology applied has been to tune the parameters based on the TMD
experiments, and then keep the same parameters for the full assembly simulations of the boring
bar with TMD. The method is robust in the way that it limits the number of uncertainties when
tuning the rubber, but in retrospect, impulse response tests should be performed on the steel
boring bar as well to ensure accurate modeling of its material damping properties. With increased
data power and more time, parameter tuning(which requires many simulation runs to perform)
with the direct frequency domain solver in Comsol would be of high interest to see if this fixes
some of the amplitude errors in the simulation.

7.6 Implications of the results and my contribution

As a manufacturer of vibration-damped tool holders, it is of high priority to understand and be
able to efficiently model different variations of possible design variations, pushing to make better
and more efficient products. The use of powerful simulation software can enable a highly efficient
development phase and reduce the number of physical prototypes needed to be made on the way
to a finished product. Comsol has through this thesis proven to be an efficient tool for simulating
complex structures of different materials. Furthermore, Comsol shows promising behavior towards
making more accurate simulations and incorporating viscous damping in the model to fully replicate
a vibration-damped tool holder. Although the technology of vibration-damped tool holders has
been around for many years, the importance of economic efficiency as well as designing for a more
automated production line are factors that may require a redesign of existing products. Having
the possibility to perform simulations, and accurately describe real-world events allows for swift
adjustments to meet market needs, and the ability to provide short lead time on special builds,
research, and development of new products. A robust simulation setup and understanding of key
features in the solver settings and boundary conditions can provide:

• Cost-effective validation of a wide range of concepts

• Help optimize the design for a more atomized production, assembly, and tuning of the TMDs

• Short time from idea to validation of the concept.

• Les demanding in terms of the number of people needed to perform analysis and validation
than with physical production to test every concept.

Thru my autumn semester thesis and master’s thesis, I have developed my simulations with a high
degree of independence. Starting with no theoretical knowledge in the field of vibrations, and very
limited knowledge in the Comsol software it has been a knowledge trip. The biggest challenge has
without a doubt been to manage setting up the simulations in Comsol and to get useful results from
the simulations. Neither I nor my advisor had any knowledge of how to perform vibration analysis
in Comsol, it was therefore a great deal of help when a representant from Comsol was able to dig
up some relevant theory for me to help guide the way, (Comsol 2023f) and (Comsol 2023a). The
simulations have been developed by myself with no assistance in the simulation setup, I have also
done all validation of the simulations independently, but with a discussion of my theory with advisor
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Knut Sørby. Being relatively fresh in the field of vibration and damping, having such a competent
advisor in these fields as well as in the fields of measurement technique has been of high importance
to me throughout the thesis. For further work, it is important to recognize the short amount of time
and independence, especially in the development of the simulations. Therefore, I would strongly
recommend a walk thru of the simulations and validations with a senior engineer having solid
knowledge in FEM simulations, preferably Comsol, and vibration theory. Throughout my thesis,
I did not manage to arrange such a review, as the Comsol office in Trondheim, unfortunately, was
out of capacity to help in such a short time. All though the thesis isn’t reviewed by anyone with
such competence, the results and margins of errors in the peak magnitudes indicate a successful
simulation with surprisingly low errors on the magnitude, and a very good ability to predict
the frequency of magnitude peaks measured at Sandvik Teeneess. This makes the thesis a solid
foundation for further development of the Comsol simulations, incorporating fluid dynamics into
the simulation models for a full-scale simulation of a real-world vibration-damped tool holder.
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8 Conclusion

The research throughout the thesis has been of a high degree of independence, providing simulation
results on cases similar to lab experiments performed at the Sandvik Teeness lab by Dan Östling.
The data from the lab and simulation of several equal cases make the results robust and fit for
evaluation. Using a low-level assembly (TMD without oil) ensured as few unknown elements and
disturbances as possible when tuning the unknown rubber material parameters to ensure accurate
simulations. Comparing simulations with tuned rubber material parameters to lab results showed
promising margins of errors, leading to believe that Comsol is a powerful tool for commercial use
in the production of vibration-damped tool holders.

8.1 Summary of Key Findings

Using the case: TMD Translational Ref:19a, as a tuning basis resulted in the consistent prediction
of peak frequencies for all cases. The resulting parameter values after tuning:

• 2nd. Lamé parameter (µ) : 1.75Mpa

• Isotropic loss factor: 0.08

The value of the 2nd. Lamè parameter ended 32% lower than the value calculated from the lab
data. The reason for the deviation is unknown but is likely affected by: Unnaturally stiff simulation
setup, incomplete modeling of the axial compression in the TMD assembly, the use of a modal solver
over a direct solver in Comsol, and incomplete contact modeling. When tuning the rubber material
isotropic loss factor I wanted to stay close to the value of 0.06 as Sandvik indicated this value as
close to reality. Ending at 0.08 gave very good magnitude agreement in the tuning case after
adjustment Fig.21. After fully tuning the rubber material parameters, results showed very good
performance in the estimation of eigenfrequencies with less than 4% error, but the performance
in predicting the magnitude, although better after correction, should be subject to improvement
to make the simulations useful in the commercial segment. Magnitude deviations of the degree
seen in the results are accepted in this thesis, as it was a lesser priority compared to frequency
accuracy. It is necessary to continue research and development to develop a simulation model
including viscoelastic damping, to reach a point where the simulations ultimately can streamline
the product development phase.

8.2 Further Work

The thesis concludes with a solid foundation for further work and development, deeming Comsol
Multiphysics as a highly competent simulation tool to simulate vibration-damped tool holders.
competent personnel should review the thesis work to do a professional evaluation on the continu-
ation of the project towards commercial use.

In the event of continuation, the following points are seen as important areas of further work:

• Using the direct frequency domain solver in Comsol to run the simulations instead of the
modal solver. New parameter tuning might be necessary, and high computational power is
easily accessible for most engineering companies.

• Investigating different ways of modeling contact in Comsol. With the rubber-steel-rubber
boundaries as subject to the contact modeling.

• Include some degree of flexibility in the boring bar fixture in the simulation to account for
the flexibility in the real-world lab experiments and the machine structure flexibility.

• Perform an impulse test on the boring bar to find the solid damping in the boring bar body.
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• Perform more impulse tests on a boring bar with TMD to make detection of magnitude and
peak trends with varying free length.

• Include viscous damping in the simulation model after improving the magnitude performance
and the roots of error in the 2nd. Lamé parameter.

• Do further research on the TMD assembly and understand the forces at play in a steady
state of the TMD.
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