
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Caroline Skjøren
Anders Sørskår Larsen

Predictions for Railway Traveller
Information

Developing a new prediction model, and
comparing it to Bane NOR's existing model

Master’s thesis in Engineering and ICT
Supervisor: Nils Olsson
June 2023





Caroline Skjøren
Anders Sørskår Larsen

Predictions for Railway Traveller
Information

Developing a new prediction model, and comparing it
to Bane NOR's existing model

Master’s thesis in Engineering and ICT
Supervisor: Nils Olsson
June 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering





Caroline Skjøren
Anders Sørskår Larsen

Predictions for Railway Traveller Inform-
ation

Developing a new prediction model, and comparing it to
Bane NOR’s existing model

Master’s thesis in Project and Quality Management
Supervisor: Nils O.E. Olsson
June 2023

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Mechanical and Industrial Engineering





PREFACE

This paper is a Master‘s thesis in Project and Quality Management at the Depart-
ment of Mechanical and Industrial Engineering at Norwegian University of Science
and Technology (NTNU) in Trondheim, carried out in the spring of 2023. The master
is a part of the five-year master’s study program Engineering and ICT where both
students have chosen the main profile ICT and Machine Technology. This paper is
based on both authors preliminary specialization projects, written during the autumn
semester of 2022. The supervisor, Nils Olsson, have been supervising both the indi-
vidual specialization projects, and this master thesis.

The project "Predictions for railway traveler information" was chosen due to both
author’s interest in the field of Artificial Intelligence and Machine Learning. The
prospect of applying theoretical machine learning knowledge to a complex real-world
problem really caught our interest.
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ABSTRACT

The railway plays an essential role in terms of people´s daily transportation. Accurate
real-time train delay prediction is essential for efficient railway traffic planning and
management as well as for delivering adequate passenger service quality. However,
predicting train delays is difficult due to the dynamics and uncertainty of the evolu-
tion of the delay.

This master’s thesis delves into the realm of predictive modelling in railway oper-
ations, exploring the effectiveness of Long Short-Term Memory (LSTM) networks, a
deep learning technique, in predicting everyday train delays. It offers a comparative
analysis of the LSTM model against Bane NOR’s current train departure prediction
model. Four key research questions guided the investigation, focusing on the utility
of LSTM in delay prediction, the impact of various train and weather features on the
model’s accuracy, and the comparative performance of the LSTM and Bane NOR’s
models.

The study revealed that the LSTM model, even when devoid of weather features,
outperformed Bane NOR’s model in predicting train departures. This suggests that
the LSTM model’s ability to capture and learn from historical delay patterns may be
a significant contributor to its predictive accuracy. However, the inclusion of weather
data did not improve the LSTM model’s performance as anticipated, potentially due
to limitations such as missing weather data and biases introduced during the data im-
putation process. Despite these challenges, the LSTM model’s superior performance
highlights the potential of deep learning techniques in enhancing the precision and
reliability of delay predictions in railway operations.

These findings extend the burgeoning discourse on the application of machine learn-
ing in transportation modelling. In essence, this thesis provides evidence that LSTM
models could serve as a valuable tool in railway operations, promising more accurate
train delay predictions and, in turn, contributing to improved operational efficiency
and customer satisfaction.
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SAMMENDRAG

Jernbanen har alltid vært en viktig samfunnsaktør for hverdagslig transport. For å
kunne opprettholde en effektiv jernbanetrafikkplanlegging og styring, så er nøyaktig
sanntids tog forsinkelses prediksjoner essensielt. Med det sagt, predikering av tog
forsinkelser er en vanskelig oppgave med tanke på kompleksiteten av dynamikken og
uforutsigbarheten av en forsinkelsesutvikling.

Denne masteroppgaven fordyper seg i området for prediktiv modellering av for-
sinkelser på jernbanen. Studiet utvikler en prediksjonsmodell basert på det kunstig
nevrale nettverket Long Short-Term Memory (LSTM), som er en dyp læring teknikk
for å forutsi daglige togforsinkelser. Prediksjonsmodellens effektivitet blir videre utfor-
sket, analysert og sammenliknet med den norske operative prediksjonsmodell, som er i
bruk av Bane NOR. Med fokus på LSTM prediksjonsmodellens nytteverdi, modellens
nøyaktighets påvirkning av ulike tog- og værparametere, og den komparative ytelse og
prestasjon av LSTM og Bane NOR´s prediksjonsmodeller.

Studiet viser lovende estimater for togavganger av LSTM modellen. Dette gjen-
speiler LSTM modellen sin egenskap til å fange opp og lære mønstre i jernbanen
basert på historisk data, og viser hvordan egenskapen kan benyttes til presisering i
prediktiv modellering. Resultatene til LSTM modellen er mer nøyaktig og realistisk
ved sammenlikning av Bane NOR´s modell. Videre viser studiet hvordan inkludering
av værdata ikke forbedret LSTM-modellens prediksjoner. Det kan være en konsek-
vens av studiets egne begrensninger og dataprosesserings prosess, sånn som manglende
værdata, begrenset tidsperiode og skjevheter i dataen som et biprodukt av imputerings
prosessen. LSTM modellen har vist høy evne gjennom dyplæringsteknikker med im-
plementerte beskrivende jernbanefaktorer til å forbedre presisjonen og påliteligheten
til forsinkelsesforutsigelser i jernbanedrift.

Masteroppgavens funn viser mulighetsrommet for å utvide bruken av maskinlæring-
steknikker i transportsektoren. Oppgaven illustrerer hvordan LSTM-modeller kan være
et verdifullt verktøy i jernbanedrift. Med nøyaktige togforsinkelsesprediksjoner kan
modellen på sin side bidra til forbedret driftseffektivitet og kundetilfredshet.
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CHAPTER

ONE

INTRODUCTION

The railway plays an essential role in terms of people´s daily transportation. Being
reliable and adhering to the schedule with little deviation is one of the most crucial
service level requirements for railway companies. Accurate real-time train delay pre-
diction is essential for efficient railway traffic planning and management as well as for
delivering adequate passenger service quality.

The forecasting has a well-established role in all levels of planning, control and man-
agement of railway traffic. Effective route planning, traffic management, rescheduling,
and passenger information all depend on accurate forecast of train movements in time
and space (H. Wang et al. 2013). The information is essential to meet the goal of
providing reliable train services to transport passengers or goods, allowing them to
take proactive actions to lessen the impact of train delays. Traffic controllers predict
arrival times of the trains within their region to manage the feasibility of timetable
realisation. Transport controllers, working for railway operating firms, evaluate the
feasibility of planned passenger transfers as well as rolling-stock and staff rotation
schemes (Kauppi et al. 2017).

Railway operations depends on timetables, which are described as "a regular vehicle
movement between two or more points at pre-scheduled times, transporting passengers
or cargo" (Spanninger et al. 2022). Due to every path passing via multiple locations
and each participant’s dependence on and influence over one another, the interconnec-
ted system is very complicated. Further, railway networks often operate at or near full
capacity due to an increasing demand. The complexity of railway operations exacer-
bated by delays that might distribute in temporal and spatial directions, causing delay
propagation on the line or even on the network. Train delays are inconvenient for rail-
way operators and their customers as they reduce train service quality where customers
miss their transfers, trains are cancelled, and travel time is increased. These delays
are inevitable as many uncertainties caused by for instance incidents such as passen-
ger crowds, infrastructure failures, or extreme weather, which make the timetable and
perhaps the resource obligations unachievable.

Delay propagation is a major contributor to deviations in railway systems (Yuan
et al. 2002, P. Huang, Zhongcan Li et al. 2021). Making rational decisions is necessary

1



2 CHAPTER 1. INTRODUCTION

to prevent delay propagation, and valid estimations of times of arrival and departure
are seen as fundamental components of these decisions. However, anticipating train
events is a challenging task due to the uncertainty and unpredictability of process time
in railway traffic, dealing with the impacts of mishaps, and bringing trains back into
normal service. The process is challenging because it must take into account society
expectations and trends, industrial conditions, political, economic, and psychological
issues (Profillidis 2006).

Due to increasing data quantities and availability, researchers are now able to
study delays and their causes at a very comprehensive level. The likelihood that the
solutions work well is higher than ever as techniques and approaches progress and
train demand rises. This is valid not just for ordinary operations but also in the event
of unanticipated events or actual realizations of predicted parameters (Lusby et al.
2018a).

Recent advancements in artificial intelligence (AI) offer new possibilities for ad-
dressing the limitations of traditional models. Deep learning approaches, such as Long
Short-Term Memory (LSTM) models, can learn complex patterns and relationships
within large, high-dimensional data sets. These abilities make these deep learning
models highly suitable for a wide range of applications spanning from energy con-
sumption forecasting to natural language processing. In contrast to traditional, static
models, used for train delay prediction, deep learning models can include large amounts
of features as a basis for future predictions. This is beneficial as there are potentially
many factors contributing to train delays.

In this thesis, the primary focus is on predicting small, everyday delays rather
than large, unpredictable delays caused by unforeseen events. These smaller delays
are more commonly caused by delay accumulation along the railway line, and are
crucial for maintaining high service quality and customer satisfaction.

By developing a deep learning model tailored to predict these more frequent, smaller
delays, this paper aim to provide more accurate and actionable predictions for railway
operators. Consequently, this will improve the real-time decision-making and overall
service reliability on the railway. This approach ensures that the thesis discusses on the
most relevant and prevalent types of delays, allowing for more practical and effective
solutions to be proposed and evaluated.

This thesis explores the use of deep learning, specifically LSTM models, for train
delay predictions. An LSTM model is a type of recurrent neural networks (RNN),
capable of capturing long-term dependencies and patterns in sequential data. In this
particular use-case, these patterns could translate to delay propagation and spatio-
temporal dependencies along the railway line. The thesis discuss the challenges of
predicting train delays, including the variety of factors, or features, that can contrib-
ute to delays and the variability of delay patterns over time. Further, it examines the
use of different features through various feature engineering techniques and explore the
incorporation of weather data as an external feature to improve predictive accuracy.
Finally, the LSTM model will be compared to Bane NOR’s existing prediction model.
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The research questions of this thesis, listed below, are designed to explore the
various facets of train delay prediction, using deep learning techniques as a primary
tool. These questions form the backbone of this thesis, driving the direction of research
and analysis, and aligning them with the central objective – improving the prediction
of small, everyday train delays. Each research question corresponds to the challenges
identified in the field of train delay prediction and aims to shed light on the potential
solutions offered by deep learning techniques, primarily through the application of
LSTM models.

RQ 1 How can deep learning techniques, specifically LSTM models, be used to predict
small, everyday train delays?

RQ 2 How do various types of train related features contribute to an LSTM prediction
model’s accuracy and performance?

RQ 3 How does the incorporation of weather data, as an external feature, affect the
predictive accuracy of LSTM models for train delay predictions?

RQ 4 How does the performance of the LSTM model compare to Bane NOR’s existing
prediction model?

This master’s thesis is organised into eight chapters, each discussing different as-
pects of the study. The introduction, chapter 1, sets the context for the research.
Chapter 2 explores a wide array of theoretical concepts related to railway networks,
AI, and data usage in the railway industry, with a specific focus on the Norwegian
context. In chapter 3, a review of related work is provided, including train delay
prediction methods, and the role of weather conditions.

Chapter 4 presents the rail and weather data used. Chapter 5 describe the method-
ology used in this research, from the literature review method to feature engineering,
analysis, prediction methodology, and tool selection.

Chapter 6 offers the results from the prediction model and Bane NOR´s Model,
providing an in-depth comparison of both models’ performance. Chapter 7 delves
into a detailed discussion of the results, evaluating the models, and acknowledging
limitations.

The research concludes in chapter 8 with a summary of the findings, followed by
suggestions for future work.
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CHAPTER

TWO

THEORY

Accurate real-time train delay prediction is crucial for the proactive and anticipatory
regulation of present railway traffic control and providing railway traveller information
(K. Tiong et al. 2022). The need for effective solutions is greater than ever as techniques
and strategies evolve and rail usage increases. By successfully modifying the train
timetable, the uncertainty surrounding passenger departure times might be reduced.
The early stages of the study involved a thorough literature review, and this chapter
contains the theoretical aspect. The theoretical underpinnings needed to comprehend
the complexity of the railway network are first covered. Further, this chapter discusses
the fundamentals required to resolve the problem statement in an efficient and effective
manner. Additionally, this chapter will provide a theoretical foundation of AI and
machine learning, which are essential components for developing accurate and robust
train delay prediction models.

2.1 Railway Network

Since the beginning of the industrial revolution, the rail networks have been one of
the main drivers of global economies (To 2015). Railway operations can be defined
as "a routine vehicle movement between two or more points at pre-scheduled times,
transporting passengers or cargo" (Banerjee et al. 2020). The foundation of a railway
system is created through a thorough planning process that yields a timetable and
resource responsibilities. Pre-planned timetables, often formed long time ahead, de-
termines the specific time slot of the trains’ arrival and departure as well as the route
choice of the trains through the infrastructure. The sequences of train operations can
be assumed to be stochastic processes (Şahin 2017). Rail transportation provides sev-
eral advantages over other modes of transportation, including the ability to move huge
quantities of people or cargo rapidly, efficiently, competitively, and environmentally
friendly (Profillidis 2006). Demands for quality and accuracy in rail are rising across
the board, from the government to the freight industry to the general public.

Many railways are currently running at high-capacity utilization levels as a result
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of decades of rising supply and demand. Railway networks are highly complex, inter-
connected systems where many train units share a small infrastructure of rails. As a
result, railways are more susceptible to unforeseen circumstances and changes leading
to deviation from the original timetable and unmet resource commitments. Due to
the high interdependency between trains from the shared infrastructure, constrained
timetable, and high-capacity utilization, railway operations experience scheduled wait-
ing times and delay propagation, that grow across large distances (Goverde 2005a).
The perceived level of service and unreliability of rail systems are often cited by many
potential train passengers as reasons not to use the train (Cacchiani, Huisman et al.
2014). Therefore, more reliability and service will be required to entice these poten-
tial passengers to utilize the train. Using technology to increase system efficiency is
one option to boost capacity and quality without making substantial infrastructure
expenditures (Lüthi et al. 2007). For proactive and anticipatory regulation of the
current railway traffic control and information provision in passenger rails, accurate
real-time train delay prediction is a key requirement (K. Tiong et al. 2022).

2.1.1 Train Delay

Trains operate strictly according to the instances in the predetermined urban rail
transit schedule. However, the real operating process frequently experiences the in-
teraction of unpredictable factors. There are several errors, which could be caused
by stochastic equipment failure or other human and operation factors. If these in-
terruptions surpass the timeline tolerance, delays will occur. The delay of a train is
calculated as the difference between the event’s realized timestamp and its planned
scheduled time (Thomas Spanninger et al. 2020a). In other words, delay is measured
in units of time. Delays can be either positive or negative, indicating late or early
arrivals and departures, respectively. Let tsD and trD denote the scheduled and realised
departure times, and dD the departure delay:

dD = tsD − trD (2.1)

As railway networks are heavily intertwined systems where numerous trains share
a limited infrastructure of tracks, they are susceptible to delays from even the smallest
deviations. Delays lead to disruption of the normal flow of the railway, resulting disor-
ganization in the transportation system, extending passenger journey times, reducing
customer satisfaction and the overall reliability of the railway (Rudnicki 1997). Delays
can be classified as either a primary delay or secondary delay, here defined by Goverde
(2005a):

Definition 2.1.1. Primary delay: A primary delay is the deviation from a scheduled
process time caused by disruption within the process.

Definition 2.1.2. Secondary delay: A secondary delay is the deviation of a scheduled
process time caused by conflicting train paths or waiting for delayed trains.
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Primary delay is a delayed train directly caused by variations within a process,
e.g. unusual high number of boarding passengers causing longer dwell time or ex-
treme weather causing speed limits (Goverde 2007). Due to the high degree of inter-
dependency in railway operations, primary delays often expand to other trains in the
railway network, causing secondary delays (Jianxin Yuan and Ingo A Hansen 2007).
In other words, secondary delays, also known as knock-on delays, indicate the delays
caused by another train. The majority of delays arise from minor inconveniences,
which mostly happen at train stations according to Palmqvist (2019). Over the course
of a lengthy trip, these minor inconveniences can add up and cause significant delays.
Dynamic delay propagation is the process by which a secondary delayed train causes
additional delays to other trains which can influence the entire network. In order
to create effective countermeasures and maintenance plans, it will be very valuable
to have the ability to identify, relate, and explain the combinations of primary and
secondary delays as well as how they cascade throughout the network.

2.1.2 The Hierarchical Railway Planning Process

Due to the complexity of the individual choice issue in railway planning where judg-
ments taken at each stage will affect the next, a hierarchical strategy must be adopted
according to Goverde (2005a). Complex planning is required for passenger railways,
the signaling systems that must ensure safe train traffic, and which also take into ac-
count the unavoidable train delays brought on by the complex interactions between
technical systems and human behavior. The many interacting processes on the modern
railway depends on a wide range of factors from within the railway system, technical
devices, and from exogenous sources. Variety leads to potential risks of disruptions to
the traffic processes. Although each stage typically takes several months to complete,
the hierarchical approach enables an iterative solution procedure where prior decisions
must be adjusted to find a workable or optimal solution in a later stage.

The hierarchical railway planning process typically distinguishes between three
levels of different planning horizons; strategic planning for processes planning, tac-
tical planning for control of railway traffic and operational planning for management
of railway traffic (Goverde 2005b; M. R. Bussieck et al. 1997; Cordeau et al. 1998).
Train delay prediction belongs to all levels of each process. Strategic planning fo-
cuses on resource acquisition while addressing the fundamental goals of the railway
undertaking. The delay prediction model supports both the planned infrastructure
investment and the strategic design of the scheduled transportation network. Travel
demand is converted into transport supply, train lines, and traffic means for allocation
to the transportation services during the strategic planning phase (Goverde 2005a).
Tactical planning phase involves creation and analysis of the timetable, concerning
with capacity allocation of resources to transport services. Timetables are developed
and updated annually or seasonally, specifying train routes and schedules. To cre-
ate feasible timetables, accurate delay prediction is essential. Operational planning
refers to day-to-day activities that address scheduling changes during an operation in
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the event of unforeseen circumstances. Timetable optimization, conflict detection and
resolution, quality of service enhancements, and delay recovery are all critical issues
that receive top priority during this phase (Wen, P. Huang, Zhongcan Li, Lessan et al.
2019b). In order to make real-time decisions and dispatch disruption trains, oper-
ational level processes depend on accurate predictions of train movements (Goverde
2005a). Real-time decisions are essential regarding rescheduling, train re-sequencing,
or rerouting, as well as to provide reliable passenger information to passengers for trip
planning (K. Y. Tiong et al. 2023a).

Successful planning on all three process levels is crucial for an optimal railway sys-
tem, and can be characterized by flexibility and adaptability (Profillidis 2006). The
railway planning process is repeated yearly so that previous year’s solutions can be
assessed and used again or improved in the current designs. Therefore, having ac-
cess to accurate empirical data to compare the schedule design and its reality is an
important factor to consider when creating a new annual timetable as well as when
identifying and managing deviation between plan and realization during daily opera-
tions. Although train delay forecasts can drive strategic, tactical, and operational level
applications, most studies concentrate on creating predictive models to aid decision-
makers in creating efficient management strategies, which belongs to the operational
planning phase (K. Y. Tiong et al. 2023a).

2.1.3 Train Delay Prediction

Accurate real-time predictions of train delays are crucial for proactive and anticipatory
regulation of the existing railway traffic control. Additionally, train delay predictions
are important service qualities for passengers reducing the uncertainty about their
arrival and departure times, allowing them to take proactive actions to lessen the
impact of train delays (Spanninger et al. 2022).

The train delay prediction methods can be categorized into event-driven and data-
driven models based on their inherent modelling paradigms (Wen, P. Huang, Zhongcan
Li and Mou 2019). In the recent study by Spanninger et al. (2022), a brief literature
review of both approaches is provided. Event-driven approaches explicitly capture
the interactions between train-events, which entails the construction of a network of
consecutive train events such as arrivals, departures, and pass-through. This approach
aims to model the procedures and restrictions governing rail operation dynamics. The
event-driven approach is an iterative process with multi-step predictions since predict-
ing train incidents in the near future directly affects projecting delays that will occur
later. Most event-driven approaches produce stochastic predictions. Event-driven ap-
proaches are primarily based on either a graph model or an equation system, such
as Markov Chains, Petri Nets, Bayesian Networks among others (K. Y. Tiong et al.
2023a). Data-driven methods typically generate one-step predictions by mapping the
input to output, at the desired station or point in time, without using the intermediate
predictions based on train-event dependency structure (Spanninger et al. 2022). Data-
driven methods use observed data to identify useful feature sets and decision criteria.
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Most data-driven models are statistical, machine learning, or deep learning models,
typically yielding deterministic predictions. According to K. Y. Tiong et al. (2023a),
some models are more popular than others, with Neural Networks and Random Forest
models being the most widely used. All data-driven models are totally dependent on
the availability of high-quality historical data. Hence, the methods are very popu-
lar due to the significant increase in data accessibility and availability, especially in
the railway system domain, which improves model calibration and test performance.
According to the thorough literature surveys by Ghofrani et al. (2018) and Wen, P.
Huang, Zhongcan Li, Lessan et al. (2019b), data-driven approaches have been widely
adopted for railway operation, maintenance, and safety since 2010. The surveys elab-
orate upon how research from the literature demonstrates the benefits of utilizing big
data analytics in rail transportation systems to reduce costs and delays while continu-
ously retaining high standards for reliability, safety, and customer satisfaction.

Data-driven train delay prediction models can be categorized into long-term and
short-term delay prediction models, according to Faverges et al. (2018). Long-term
delay predictions are used at both strategic and tactical levels where historical train
operation data, including weather forecast, public holidays, and seasons, among other
external factors, is considered. When different scenarios are encountered, train operat-
ors can make the necessary adjustments to their plans days or even months in advance.
Short-term delay predictions are used at the operational level, fed with real-time data
of the current delays throughout the network with the goal of estimating delay at the
next stops. As stated by Spanninger et al. (2022), the prediction accuracy of a predic-
tion model decreases as its prediction horizon is extended. Furthermore, short-term
prediction models are frequently developed to forecast train movements on a particu-
lar train line, indicating that the model has a limited capacity to generalize to other
train lines. However, through updated, real-time information, network insight and
"hidden" knowledge extracted from train operations, short-term data-driven models
can support train dispatching decisions and activities (Faverges et al. 2018).

2.1.4 Explanatory Variables

Understanding the existing impacts of the factors that cause congestion and disturb-
ance on the railways is crucial. In the recent study by K. Y. Tiong et al. (2023b), a
categorization of explanatory variables of train delays in existing literature is presen-
ted; namely train operation variables, network variables and external variables. An
overview of examples of the explanatory variables from current literature can be found
in table 2.1.1.

Train variables, such as train and train event operations, are variables that capture
the variability of railway traffic. The type of train, its structure and design constitute
specific requirements for their circumstances. Different trains require various amounts
of infrastructural capacity, operate at different frequencies, and have different priorit-
ies. This, for instance, can be seen on the required train dwelling time. Wider doors
(Perkins et al. 2015) and a lower train floor to reduce the vertical gap (Holloway et al.
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Variable Type of feature Concrete examples

Train Operation Train

Train type, train design (length, tonnage,
door width etc.), train speed and horsepower,
train count, train direction, train priority
and train order

Train Events

Delays (arrival, departure, run-time, dwell
times, headway), dwell time (scheduled and
actual), run time (scheduled and actual),
running time between stations, buffer time,
headway (scheduled, actual), train interac-
tion(meet, pass, overtaking)

Rail Network Location

Infrastructure availability, topography, de-
mand for rail service, attributes (station,
area), distance travelled, percentage journey
travelled

Infrastructure

Number of tracks, occupancy of track seg-
ments, conflict indicators for track occupa-
tion, track allocation, platform conflict indic-
ators, designated platform, platform change
status, and the quantity and accessibility of
sidings

External Calendar
Time of day, days of the week, months of
the year, weekends or workdays, time of year,
holiday, season, peak hours or off-peak hours

Weather Temperature, wind direction and speed,
snow depth, and precipitation or rainfall

Disturbances
Duration of delays, reasons for disturbances,
intensity of disturbances, duration of dis-
turbances, the number of affected trains

Others Planned maintenance, customers, train
crews

Table 2.1.1: Explanatory variables in previous research, categorized by K. Y. Tiong
et al. (2023b)
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2016) reduces dwelling time. On the other hand, longer trains remain in place for
a longer duration because train operators need more time to ensure no passengers
boarding before departure (D. Li et al. 2016). Also, the acceleration and speed limits
of various train types may vary, which may impact how they operate. Train event
variables refers to all the pre-scheduled and actual train activities and movements. As
mentioned by K. Y. Tiong et al. (2023b), train event variables have been identified
as the primary factors causing delays in railways. Train event variables are therefore
crucial when studying train delays and an important variable in train management
models (Corman and Meng 2015; Wen, P. Huang, Zhongcan Li, Lessan et al. 2019b).

Rail network variables includes the infrastructure and locations of the physical
environment for train movements. Infrastructure variables encompass the equipment
designed to support, its structure and buildings of the railway system. In contrast to
other means of transportation, the railway network is an interconnected system where
the infrastructure is often scarcely available and rarely offers viable alternative route
between any two points (Dekker et al. 2019). Both small and large deviations can result
in delays. A delayed train must use infrastructure at times that weren’t anticipated,
which creates a conflict when two or more trains requests the same element at the
same time. Infrastructure failure, more specifically issues with security, signalling, and
track systems, were the primary cause of delays on the Norwegian Railway in 2021,
accounting about 20-30% of the total delay (BaneNOR 2023e). Location variables
relate to variables that define a train´s position on the train network. To identify
the pattern of train delay throughout its route, the train operation conditions on each
location needs to be mapped.

The external variables include calendar, weather, disturbance, and others. The rail
demand relies on the calendar; if there are any holidays, whether it is a weekday or a
weekend, and what time of day it is. According to N. Olsson and Haugland (2004),
most delays occur during passengers boarding and disembarking, where the actual
dwelling time exceeds the planned. Weather variables, especially extreme weather
have a negative impact on the train punctuality (Zakeri and N. Olsson 2018; Ling
et al. 2018; Koetse and Rietveld 2009a). Other external variables can be variations in
internal and external factors on daily operations, which results in different individual
process times on the same operation (Goverde 2005a).

A train delay’s root causes are frequently numerous, making the causal picture
extremely complicated. However, a prediction model will not consequently be more
accurate the more variables it is fed. According to Thomas Spanninger et al. (2020b),
real-time data are an essential input in prediction models whenever methods are used
to predict delay development in real-time. Further, most studies take incorporate ob-
servations of realized historic train events, followed by location and external variables.
An overview of previous literature focusing on train delay prediction approaches and
the input data can be found in both K. Y. Tiong et al. (2023b) and Thomas Spanninger
et al. (2020b).
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2.1.5 Punctuality in Railway

In rail services, punctuality is a key performance indicator that gives insight into
whether the planned schedule is optimal or not. Rudnicki (1997) defines punctuality
in transport services as “a feature consisting in that a predefined vehicle arrives, de-
parts or passes at a predefined point at a predefined time”. It is used as a fundamental
indicator of the reliability of railway operations, assessing an entity’s capacity to carry
out a specified task under specific operational and environmental circumstances for a
predetermined amount of time (Jianxin Yuan 2006). Several studies point out punc-
tuality as a critical significant quality factor of the railway system, maybe the most
important in railway operations (Parbo et al. 2015; Joborn and Ranjbar 2022; Økland
and N. Olsson 2021). Weather, the capabilities of the rolling stock, driver behaviour,
traveller behaviour, and even the quality of timetables may have an impact on train
punctuality, which affects how efficiently capacity is used and how stable the opera-
tions are (Lee et al. 2016; Sameni, Landex et al. 2011). Deviations from the origin
plan reduce the overall level of service. Punctuality can be used to evaluate the level of
a product’s perceived performance, quality, and satisfaction, and determine whether
the infrastructure can still maintain connections under adverse conditions.

In response to the rising demand, the capacity utilization of the rail network has
increased. Due to the constrained track capacity in highly interconnected train net-
works, which are common throughout Europe and are particularly prevalent in large
cities, a train’s punctuality is crucial for every other actor in the network. To maintain
the performance and competitiveness of railway enterprises, improved punctuality is
required (Zakeri and N. Olsson 2018; Kjøsnes 2015). To achieve high punctuality, the
rail operating firms are prioritizing the prevention and mitigation of delays (Wen, P.
Huang, Zhongcan Li, Lessan et al. 2019a). The literature has long acknowledged the
trade-off between improving the dependability and punctuality of train operations and
expanding the utilization of the railway network (Jianxin Yuan 2006). In order to util-
ize track capacity to the fullest while maintaining the necessary level of punctuality,
it is crucial to get a realistic picture of each process on the rail network. In order to
maintain current ridership levels and draw in new ones, scheduled train services must
also ensure high punctuality. Customer satisfaction, applied in the commercial sector,
is correlated with the apparent gap between real and ideal service performance levels
(Stradling et al. 2007).

To offer the best user experience, it is necessary to use customer satisfaction meas-
urements. Several studies have shown that punctual trains are requested by passengers
above more frequent trains (Lam and Small 2001b; Norheim and Ruud 2001; Nyström
2008). Travellers are willing to pay more for reduction of variability in their travel
time, according to Zheng Li et al. (2009) research. Low punctuality can be described
as a “dissatisfier”, meaning that the lack of the quality aspect according to the expecta-
tions has a negative rating (Rudnicki 1997). On the other hand, a sense of control and
satisfaction over the travel experience can be attained with punctuality. The study
by Lam and Small (2001a) quantifies the impact of the "dissatisfied" on both time
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and reliability values. They claim that rather than the actual travel time, travellers
are more interested in the reliability of the transit time. These unit values are fre-
quently used when estimating the benefits of government initiatives. The values vary
depending on several factors, and studies have indicated that the unit values tend to
be higher in large cities and rise with travel distance. The table below, 2.1.2, lists
some suggested values for travel time on board regularly operating trains for a trip
under usual circumstances.

Trip purpose and distance Under 70 km 70 - 200 km Over 200 km
Business 451 391 419
Commuting 108 183 233
Leisure 94 120 150
All purposes * 109 162 193

Table 2.1.2: Values of travel time in rail transport, by trip purpose and distance
(NOK per hour) (Lam and Small 2001a)

The focus on improving punctuality has increased over the last decade. The
European research and innovation program Shift2Rail, Europe´s Rail (2020), was es-
tablished in 2014. Their vision was to deliver, via railway research and innovation,
the tools necessary to create the most competitive, time-driven, cost-effective, high
performing, sustainable, and environmentally friendly mode of transportation for all
of Europe. European Commission (2021) worked towards increasing punctuality by
50% by 2020 as one of the overall targets.

2.1.6 Punctuality and Delay

Although punctuality and delays are sometimes used interchangeably, there are some
variations between the two. While punctuality is more of a numerical indicator of
operational reliability expressed by the percentage of trains arriving at stations on
schedule, delay is measured in time unit (Økland and N. Olsson 2021; Parbo et al.
2015). Both measures are commonly used in the analysis of the railway network.
However, the punctuality rate doesn’t say anything about the each individual railway
operation, but rather gives a reflective review of the overall reliability. According to a
recent article by Palmqvist and Kristoffersson (2022), there is a discrepancy between
the desired level of high train punctuality and the parameters that are conventionally
measured to affect punctuality, such as elements of categories including infrastructure,
operations, timetable, and weather. These parameters are the same ones causing
delays.

Since delays are frequently inevitable, transit planners and specialists have worked
hard to improve the performance and reliability of public transportation networks.
Due to its importance, punctuality is a common measurement in railway services. In
rail, punctuality is the proportion of trains that arrive specific position within the
time threshold (Cerreto et al. 2016a). The punctuality goals vary per nation and may
vary between regional and long-distance service, and the category of the journey or
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travel time (Blayac and Stéphan 2021). Table 2.1.3 shows the delay thresholds for rail
services in Europe. The Norwegian thresholds are bold since this paper is based on
data from the Norwegian railway.

The punctuality criteria are satisfied if the train arrives at its defined destination
within the allowed margin. The Norwegian standards, according to the punctuality
report from 2021 (BaneNOR 2023e), punctuality is the percentage of trains that arrive
at the destination and Oslo S within a frame of 03:59 minutes. The margin is 05:59
minutes for freight trains, cross-border trains, and long-distance trains. Delays that
are recovered and fall within the acceptable range for punctuality are not included in
the punctuality statistics.

Delay Threshold Regional Service Long-Distance Service
More than 30 s Hungary Hungary
More than 1 min Croatia Croatia

Japan Japan
More than 2 min and 30 s Finland
More than 2 min and 59 s Denmark Denmark

Switzerland Switzerland
More than 3 min Spain Spain

Netherlands
More than 3 min and 30 s Latvia Latvia
More than 3 min and 59 s Norway
More than 5 min Bulgaria Bulgaria

United-Kingdom
Netherlands

Poland Poland
Portugal Portugal
Slovakia Slovakia

More than 5 min and 29 s Austria Austria
More than 5 min and 59 s Germany Germany

Norway
France France
Belgium
Sweden Sweden

More than 10 min United-Kingdom
More than 10 min and 59 s Belgium

Table 2.1.3: Delay thresholds for regional and long distance services in Europe.
Source: Blayac and Stéphan (2021)

2.1.7 Railway Timetable

A railway system is a public transportation network based on periodic schedules.
Timetable planning falls under the category of tactical level planning. Planning for
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transportation entails choosing the best routes between an origin and a destination,
and allocating the required resources for the future (M. Bussieck 1998). An essen-
tial component for the efficient functioning of a railway network is the comprehensive
schedule of activities. Railway scheduling aims to establish a schedule for trains run-
ning on a railway by identifying their movements on the network in space and time.
All events on a properly specified timetable have planned timing, which is first estab-
lished by the realistically scheduled process timings for the various processes (Goverde
2005a). It outlines the routes that the trains will take on the railway network, includ-
ing the track lines, the stations and junctions that they will pass through, connections
between trains for passengers or freight, and interactions between trains for safe op-
erations (Harrod 2012a). Caprara et al. (2002) and Schlechte et al. (2007) provide
comprehensive discussions of several models and solution approaches for developing
railway timetables.

The problem of scheduling railway operations, also known as railway timetable
planning, is known to be an NP-hard problem (Mascis and Pacciarelli 2002). However,
it is one of the key factors in the successful operation of a railway network. Large-scale
railway networks are challenging to schedule, especially in approaches which model the
railway network at a high level of detail. Individual process times are never exactly the
same from hour to hour or day to day because of the variations in internal and external
factors (Goverde 2005a), even though the railway system in based on periodic schedules
of operations. Modern and complex railway systems, where the infrastructure is used
for both passenger and freight services, in addition to maintenance services, every day
of operations is unique. The study by Gestrelius et al. (2015) identified 314 different
patterns when considering intervals of entire days, studying historical data from a
whole year of 365 days. Further, when considering smaller intervals, a higher amount
of the same patterns repeated is expected (K. Y. Tiong et al. 2023a). However, railway
operators want to resolve complex network-wide scheduling issues quickly and to a
high standard in order to increase the capacity of the railway for transport (Leutwiler
and Corman 2022). It is tempting to run trains at full capacity on the lines while
ignoring the need for margins and supplements, which take up capacity as well. The
outcome is a schedule that is susceptible to disturbances. Hence, railway schedules are
designed capable of withstanding changes in operating conditions, disturbances, and
delays without compromising functionality.

2.1.8 Robustness in Timetables

Robustness in timetables is one of the key factors in the successful operation of a
railway network. The robustness of a system or plan describes how it responds to
uncertainty (Lusby et al. 2018b). Robustness is the capacity to maintain certain per-
formance characteristics, such as stability and performance to withstand threats and
interruptions (Hong et al. 2019). It is considered as the sensitivity to disturbances
with stochastic variables. Given that schedules are set plans, it can be challenging
to make them robust enough to withstand various unforeseen circumstances without
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significantly compromising their effectiveness (Kauppi et al. 2017). One of the primary
factors that can have an impact on the whole railway system is a timetable defect,
whereas one train’s delay can have an impact on trains downstream due to the net-
work’s interaction. The distribution of delays provides a clear picture of how robust
a timetable’s design is and how stable train operations are. Secondary delays often
arise during their arrival or departure at stations where the crossing and/or merging
of lines and platform tracks functions as bottlenecks, especially in extensively utilized
railway networks (Jianxin Yuan and Ingo A Hansen 2007).

Network planning and management now place a high priority on building robust-
ness in transportation networks (Harris et al. 2013). Robustness has been used in
numerous transportation industries to examine the network performance of the trans-
portation system during disturbances. Among other research, robustness was studied
by Hong et al. (2019) and Ye and Kim (2019) in railway system, L. Zhang et al.
(2013) and Tang and S. Huang (2019) in urban road network, Sun et al. (2018) and
X. Yang et al. (2018), in urban rail system, and in air transport by X. Yang et al.
(2018). Both Cacchiani and Toth (2012) and Lusby et al. (2018b) reviews models for
including robustness in rail operations. They demonstrate how issues of robustness
in the quality of particular planning problem solutions and of operations in general
have received increased attention. The quantification of performance may be used as
a robustness indicator for a wide range of diverse challenges in railway planning and
operations. These issues arise in practice, starting with issues with strategic planning
and extending to more operational level planning. Network planning, line planning,
timetabling, rolling stock planning and crew scheduling are all individual operational
planning problems which can benefit from high robustness.

Timetabling is the area most studied for implementing robustness (Lusby et al.
2018b). Many studies have been conducted on how to construct a schedule that is more
robust to delays (Joborn and Ranjbar 2022; Andersson et al. 2015; Cerreto et al. 2016b;
Solinen et al. 2017). Every underlying process’ stochastic behavior has an impact on
the robustness of the schedule. To prevent quick delay propagation, the unforeseen
variation in process time must be taken into account (Goverde and Ingo A Hansen
2013). The distribution of buffer times is a key factor in many robustness concerns.
The appropriate level of time supplements and buffer times must be determined using
analytical, stochastic, and statistical methods without being too cautious.

2.1.9 Timetable Supplement

Timetable supplements, often referred to as slack or buffer times, are frequently util-
ized tools that add buffers and reserves, respectively, to minimum process duration
and minimum headway between train tracks in scheduled timetables to lessen the sus-
ceptibility if deviations occur (N. Olsson, Halse et al. 2015). These deviations may
be caused by disturbances, but they may also include variations in the time used for
certain activities, such as dwelling time on a station, and differences in train speed de-
pending on the driver. These uncertainties around the exact running and dwell times
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of trains are reduced by buffer times. Buffer time may be regarded as a directly rel-
evant or quantifiable indicator of robustness for a modest departure from anticipated
running times. The study by Dewilde (2014) demonstrates how establishing robustness
in rail timetabling relates robustness to delay propagation. More "robust" timetables
are ones that are less vulnerable to propagating delays, and buffer times are virtually
always connected to absorbing delays and then preventing their further propagation.

Jianxin Yuan and Ingo Arne Hansen (2002) used a stochastic model for train delay
propagation analysis at stations on the Hague Holland Spoor in the Netherlands to
demonstrate the necessity of buffer time in their study. The research showed that when
the predicted buffer time between trains at level crossings decreases, the average knock-
on delay of all trains increases exponentially. It was noticed that a train timetable’s
distribution of buffer time affects the probability of interference and has a significant
impact on resolving and minimizing train interference.

The optimization of the running time allocation and supplements in connection to
the expected operating cost and effectiveness of train operations has garnered a lot of
attention in the literature (Jianxin Yuan and Ingo A Hansen 2007).

Another aspect of the effort on punctuality advancement is reducing variance. Al-
most all processes suffer from variation as it reduces the effectiveness of the process or
degrades the quality of the final result. The negative impacts of variation are especially
noticeable in the railway industry, where a lack of flexibility and complicated railway
systems are issues that are closely related (Profillidis 2006). The various components
that make up travel time variability include differences in travel times from day to
day, throughout the day, and even from vehicle to vehicle. Even little variations in
process timings might result in significant delays (Goverde 2005a). Because of the
tight integration, changes in one train’s movements have an impact on others. This
can cause a conflict when two or more trains try to utilize the same element at the
same time (Cerreto et al. 2016a), which can cause delays to spread.

Choosing how much buffer time to utilize involves making a trade-off between
increasing robustness, where the probability of generating primary delays reduces and
the punctuality increases, and a loss in network use and passenger service. For instance,
more buffer requires fewer trains running and longer waiting time for people changing
trains, increasing the travelling time and operating costs which reduce the efficiency
and attractiveness of the rail. It is crucial to maintain time supplements and buffer
times at a reasonable level since they consume capacity.

2.1.10 Capacity in Timetable

The capacity of a rail network is the specific amount of train operations planned
on a number of infrastructure elements in the timetable under a specific service plan
(Krueger 1999). Optimizing the use of railway infrastructure is a complex and difficult,
but an important task. The capacity of a railway network is extremely dependent
of how the network is utilized (Abril et al. 2008). Capacity is dependent on the
specific composition of trains and the sequence in which they travel on the route due
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to the physical and dynamic variability of train characteristics. Also, it evolves as
operating environments and infrastructure change. Some fundamental factors affects
the railway network capacity (Abril et al. 2008). The block and signal system, single
and double tracks, track structure and speed limits, among others are infrastructure
parameters affecting the capacity (Borndörfer et al. 2018). Train composition, regular
timetable, traffic peaking factor, among others are traffic parameters affecting the
capacity (Corman and Henken 2022). Operational conditions like track interruptions,
robustness, train stop time, among other parameters are all affecting the capacity.

Abril et al. (2008) examined the Spanish rail network to identify the key variables
influencing rail capacity. The results show that train capacity changes depending on
the speed of the train, where it stops, the distance between railway signals, and how
reliable the train schedule is. Although different nations and their rail networks have
different train traffic densities and timetable structures, performance measures includ-
ing infrastructure occupancy, timetable stability, feasibility, robustness, and resilience
apply to all railway schedules (Goverde and Ingo A Hansen 2013). The metrics provide
a structure for categorizing data in order to assess the development of timetabling
design processes.

However, a variety of techniques and equipment are applied in capacity utilizing of
the railway network. Seven infrastructure administrators’ timetabling processes were
examined in the research of Goverde and Ingo A Hansen (2013). The methods used
to create schedules in the past ranged from not detecting conflicts to using analytical,
stochastic, and statistical techniques to create a workable and reliable timetable. An
overview of research on timetable optimization and the fundamental model structures
can be found in the research by Harrod (2012b).

Previous railway capacity studies are analysed and discussed in the thorough lit-
erature study by Sameni and Moradi (2022) to further our understanding of how to
achieve effective capacity use. The review discusses the importance of the use of differ-
ent approaches to analyse capacity. Further, capacity analysis methods are divided into
three categories, major papers and their contributions are discussed and the strengths
and weaknesses of each method are emphasized.

2.1.11 Railway Traffic Control

Railway traffic control, also referred to as train rescheduling, is the process of modifying
schedules in real-time to minimize the effects of unforeseen events (Corman and Meng
2015). The process of adapting the plan to the real circumstances is complicated and
presents many potential for improvement. In order to reduce delays and achieve punc-
tuality targets, train rescheduling has been an important study field in recent years.
The growing availability of data in the rail industry gives information from the histor-
ical values. The nature of each factor and their involvement are crucial information
in the forecasting process that must be taken into account (Petropoulos et al. 2022).
Conflicts must be resolved immediately in the event of an unplanned disturbance that
prevents the timetable from being met. Disturbances are comparatively minor per-
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turbations to the railway system that can be managed by modifying the time schedule
without changing the responsibilities for the crew and rolling stock (Cacchiani, Huis-
man et al. 2014). Disturbances corresponds to a rail process, e.g. dwelling in a station
or driving between two, that takes longer time than specified in the timetable. Railway
traffic control focus on minimizing delays of trains and considering precise movements
of train vehicles which minimize travel time of passengers, and consider larger scale
networks by which less train traffic is modelled very roughly. Railway traffic control
attempts to provide an operation-centric strategy, minimizing train delays and tak-
ing precise movements of train vehicles into consideration (Corman, Pacciarelli et al.
2015). Additionally, it provides a passenger-centric strategy that reduces travel time
for passengers and takes into account bigger scale networks with less accurate train
traffic modeling. In both operation- and passenger-centric systems, delay prediction
is essential. The ability to predict delays accurately is crucial for dispatchers to make
smart decisions and for the operation of trains (Wen, P. Huang, Zhongcan Li and Mou
2019). The fundamental idea behind forecasting is that predictions about the future
may be made using information from the past and present (Petropoulos et al. 2022).
There is a conviction that previous value patterns may be found and successfully used
to forecast future values, especially for time series. The method is thought to be ex-
tremely difficult, requiring different constraints for every situation when a problem
arises (informs 2022), yet it is necessary to lower the level of uncertainty in railway
dynamics. If you can adapt the plan to the current circumstances, accurate forecasting
offers great opportunities for improvements. The accurate forecasting of future values,
however, is anticipated to be a challenging undertaking.

Train dispatching is highly regulated, as is any management of essential infrastruc-
ture. There are highly trained human dispatchers that are responsible for the decision
making in the current railway system (Mannino and Nakkerud 2023). The problems
are considered as multi-criteria decision-making problems (Wen, P. Huang, Zhongcan
Li, Lessan et al. 2019b), where the whole network must be taken in to consideration.
The timing of train arrivals and departures, their route, and the arrangement of trains
on common track sections are frequent considerations that must be taken into con-
sideration. In reality, these choices are made using a combination of common sense,
dispatcher expertise, and real-time data. The dispatchers must make decisions rapidly
while taking into account the system’s present status as well as prospective temporal
and spatial state changes. In order to increase the overall transport efficiency of the
railway system, operators must be able to accurate delay predictions in order to quickly
identify recurring delays on railway routes and potential conflicts in train operation.
As a result, rather than focusing on offering the most ideal solutions, issue formula-
tions and solutions may instead be heuristic, sub-optimal ones (Filcek et al. 2021).
Using apps that forecast train delays, where decisions are represented using a variety
of factors and restrictions, can ease the complexity of train rescheduling in real-time
railway systems. Researchers have investigated the use of models and algorithms to
improve the quality of the railway services offered, which has raised the usage of the
involved railway systems (Cacchiani, Huisman et al. 2014). An integrated system that
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combines train control and real-time railway traffic control was recently tested on a
section of Swiss railway as part of the study by Lüthi et al. (2007). The study demon-
strated how early detection of a delay may considerably minimize the overall system
latency. It demonstrated how the specific timetable and network infrastructure had a
significant impact on the approach’s efficacy. The study also shown that quality may
be increased if trains can be timed extremely accurately, for instance by departing a
station at a very exact point.

2.1.12 Train Dispatching Issues

The development of decision support tools by utilizing the most recent computer tech-
niques has drawn the interest of academic researchers as well as operational operators
or modelers in the rail transportation sector. To assist judgments and actions in the
face of delays in future train operations, hidden knowledge gathered from railway
operation data can be used. The existing methods and models used for train delay
analysis may be divided into three categories: delay distribution, delay propagation
and train rescheduling (J. Wu et al. 2022). Delay distribution helps dispatchers get
the probabilities and length of delays by providing a train with basic principles. The
task is difficult due to the varying operating conditions of some lines and networks,
which have a substantial influence on train delay distributions. Dispatchers may use
a number of strategies to absorb delays when a train is delayed, including reducing
running speeds, changing dwell periods, and changing overtaking (Wen, P. Huang,
Zhongcan Li, Lessan et al. 2019a). Delay propagation is a function of delay aggrava-
tion caused by disturbances and delay recovery activities. Traffic controllers are unable
to forecast the spread of delays, particularly when there are complicated rail networks,
dense traffic, and significant disturbances (D’Ariano and Pranzo 2009). The reduction
of delay propagation, however, is given top importance. One of the most significant
and challenging research questions in delay propagation is believed to be delay pre-
diction (Wen, P. Huang, Zhongcan Li, Lessan et al. 2019a). The timetable needs to
be rescheduled by the dispatchers when delays cause disruptions in train operations.
Train scheduling is frequently used to describe the decision to change the arrival, de-
parture, and operating hours of subsequent trains. Via a number of topics, including
delay recovery, conflict detection and resolution, schedule optimization, and quality
of service enhancements, the main challenges of timetable rescheduling are reviewed.
The “Handbook of Optimization in the Railway Industry” by Borndörfer et al. (2018)
provides more descriptions of the train dispatching problem and a summary of the
many model types and solution strategies established over the years.

2.2 The Norwegian Railway Network

The Norwegian rail network consist of 28 rail lines which together constitutes a total
of 4221 km in line kilometers with 335 train stations and stops (Jernbanedirektoratet
2023). The railway network is mostly single track with crossings at stations and certain
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critical junctions. Double tracks have been established on most of the sections closest
to the capital Oslo, which constitutes 290 line kilometers of the rail network. There are
parallel railway lines on only a few sections. The network is arranged in a star pattern
around Oslo, with lines running through it from north to south and east to west.
This area distribute the highest passenger volume and the railway capacity utilization
is maximized with the most departures (Sørensen, Andreas Dypvik Landmark et al.
2017). Over 70% of the rail traffic goes through the Greater Oslo, making it a high-
priority area. Any issues here might have an impact on all of Eastern Norway and the
rest of the railway system. The utilization decrease with distance to the capital. Most
regional, long-distance, and freight trains run on single-track lines. Commuter trains
running through Oslo runs often on both single- and double tracks. Figure 2.2.1 gives
a roughly illustration of the railway network in Norway. A comprehensive railway map
can also be found in appendix A.
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Figure 2.2.1: The Norwegian Railway Network. The yellow line symbolise the chosen
train route, Oslo-Hamar-Dombas-Trondheim, analysed in this thesis.

The many responsibilities of the Norwegian railway industry have been distributed
among a number of actors. Today’s railway system is a result of a partnership involving
many stakeholders. The Norwegian Railway Authority oversees the transportation sys-
tem to guarantee that it is secure for passengers and the surrounding regions. Several
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private and public train operators operate the trains. The state-owned company Bane
NOR is responsible for the national railway infrastructure; the operation, renewal and
maintenance of the train traffic in Norway.

In 2019, before the pandemic, Norway records around 81 million passenger rail trips
(Sentralbyrå 2023). Growth in passenger train journeys depends on satisfied travellers
and a growing customer base for the train companies. High punctuality and regularity
create trust with the customers and contribute to more people taking more trains.
The availability of sustainable spending options, universal station design, and rapid,
accurate customer information across all channels are just a few strategies that assist
to satisfy rail passengers.

Punctuality stands out as one of the most important key performance indicators
across the actors in the rail industry. In Norway, passenger trains that arrive at the
terminus and Oslo S within a margin of 03:59 are considered to be on schedule. For
long-distance trains, freight trains and trains that cross the border between Norway
and Sweden, the margin is 05:59 minutes. Bane NOR records the punctuality data
for each running train. The national database TIOS records remote-control systems’
line data and dynamic train movements. The time registrations are often based on
automated registrations and are thought to be precise measures of the times that trains
enter and leave various parts of the network, with a high resolution (measured and
recorded to the second). TIOS provides operational and administrative assistance for
users, train information, rail operations, and Bane NOR management. According to
the Norwegian notification duty, all businesses using real-time systems are required to
make the real-time data accessible at the national level (Vegdirektoratet 2019). Data
on punctuality includes train information, station information, and codes that explain
any delays that exceed the defined margins for the different classes of traffic.

2.3 Weather and the Railway Sector

Due to the unpredictability of weather conditions, particularly the extreme weather
events brought on by climate change, transportation networks are currently exper-
iencing unprecedented challenges. Weather not only directly harms transportation
infrastructures, but also disrupts transportation services, which has indirect economic
consequences. The railway system are thought to be the least weather-sensitive of the
transport modes, often expected to run when other forms of transport are disrupted
(Xia et al. 2013). However, weather conditions can influence the railway traffic and
cause delays. Especially, weather impacts everyday operations on congested networks
and can lead to substantial delays. Snow and ice can cause tracks to become slippery
and reduce the ability of trains to accelerate and brake. This can lead to delays, slower
speeds, and longer stopping distances. High temperatures can cause tracks to expand,
which can lead to buckling or warping. Trains may also need to slow down due to the
risk of derailment. Heavy rain can cause flooding and washouts, which can lead to
track closures and delays. Strong winds can cause trees and other debris to fall onto
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tracks, which can cause disruptions to train services. Additionally, extreme weather
can affect affect the performance of the train operator directly or indirectly through
disturbances in the railway infrastructure.

To mitigate the weather-related impacts, many transport companies monitor weather
conditions closely and take appropriate action when necessary, such as reducing speeds,
suspending services or implementing alternative routes. Additionally, railway com-
panies can install heating, cooling, and drainage systems to help cope with extreme
temperature fluctuations, precipitation, and flooding. The effect of weather conditions
on daily travel activities may change over time. One direct result of the unpredictable
occurrence of severe weather is that transportation system punctuality is negatively
impacted, making it difficult to forecast whether scheduled service will be provided on
time. Research on how weather impact the transportation sector is therefor important.

It is hard to identify the best implementation options to lessen the negative effects
of disruptions, despite the fact that it is widely acknowledged that transportation
planning and management organizations must increase system resilience in order to
minimize losses and disruptions (Koetse and Rietveld 2009b). This is partly caused
by an inadequate knowledge of how various weather phenomena and specific extreme
weather occurrences affect the functionality of transportation systems. Uncertainty
exists over how affects vary across various event types, as well as regarding how they
vary both geographically and temporally for various means of transportation within
the same event. Therefore, it’s crucial to provide a comprehensive picture of their
effects, map all essential steps toward increased network robustness and resilience, and
find chances for mode substitution (Stamos et al. 2015).

As stated by Sabir (2011), the terms weather and climate are frequently treated as
synonyms even though they are quite different. Weather is the short term state of the
atmosphere at a specific time and place. On the other hand, climate is the long-term
manifestations of weather and other atmospheric conditions in a given area during a
period long enough to ensure that representative values are obtained. Weather refers
to the daily variation in the atmosphere, including the temperature, relative humidity,
cloud cover, precipitation, wind, etc, while climate refers to the general conditions over
long time period in a given location. More studies related to the climate changes and
its impact on the transport sector have been published in the 21-century, hence the
railway system (Baker et al. 2010). Further, it is becoming more and more important
to comprehend how weather events affect the current public transportation networks
due to changing weather patterns. There are two major divisions in the literature on
weather and transportation. First, research on the effects of transportation on weather
and climate changes with an emphasis on emissions from the transportation sector. See
both Chapman (2007) and Koetse and Rietveld (2009a) for a briefly review. Second,
research that concentrate on how the weather affects the transportation sector. This
research certainly belongs within the latter category.

There are several ways to examine the impact of the weather conditions on the
transport mode, according to Koetse and Rietveld (2009a). Transport systems between
regions with very different weather conditions can be compared by the differences in
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performance. This gives an indication of the potential weather impacts. However,
there are several factors that influence the differences between different regions, of
which weather one factor among many others. Given the variations in transportation
infrastructure, traffic operations and the operational conditions, the impact of weather
on travel behavior also varies by nation. Seasonal weather variations influence on travel
behavior and transport performance can also be examined. According to Sabir (2011),
weather has an influence on individual travel demand. Travellers have availability to
information on the exact weather conditions and advanced weather forecasts, which
seems to have an impact on their choice of transportation mode. The study indicates
how adverse weather has a significant modal shift in favor of bicycle, vehicle, and
public transportation. In extremely warm weather, bicycles are used instead of cars
and public transportation. Cycling is replaced by more public transportation and
walking during really cold weather. The weather condition also seems to have an
impact on the travellers behavior at the stations. Passengers seems to seek shelter
from the weather and group around the same locations. As a result, it will take longer
for everyone to board the train, increasing the overall dwell time.

Weather conditions have an impact on the performance of the railway system in
terms of punctuality. Both running and dwelling operations are vulnerable for different
weather conditions, especially extreme weather. Each railway system has its particular
challenges related to the local weather. While the cold weather is unfamiliar in the
southern nations, it poses a difficulty in the Northern countries. The weather-related
issues can be solved in a variety of ways. The British railway system has their own
"Leaf Fall Timetable Changes" (Enquiries 2023). Thousands of tonnes of leaves fall
across the railway network during the autumn. The leaves on the track are compressed
by passing trains producing a thin, black coating that affects train braking and accel-
eration. This implies that train drivers must slow down early for stations and signals
to prevent overshooting them for everyone’s safety. To prevent wheel spin, they must
also accelerate more gradually. This results in a longer travel journey. Timetables are
modified throughout the Autumn to prevent unforeseen delays to journeys.

2.3.1 Norwegian Rail Network and Weather Conditions

Norway stretches from 57° to 78° north, with mountains areas, a long coastal line
and therefor a varying and regional climate. While inland regions often have harsh
winters with plenty of snow, coastal areas typically experience relatively mild and
wet winters. Norway has four seasons, and is strongly exposed to extreme weather.
The many seasons each have their own unique obstacles for rail operations, such as
early spring frost heaving, summer sun kink, and fall defoliation. These physical
changes have a direct impact on the rail system. The transportation system is also
indirectly vulnerable as a result of its own complex technology and strong connections
to other crucial infrastructure, such as electrical and information technology networks
(Langeland et al. 2021). Transport and communication systems may be disrupted by
a power outage, and the traffic management system, real-time traffic, and other ICT
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systems may be affected by an ICT system failure. A strong and resistant rail system
is necessary given the difficult weather conditions.

The Norwegian Railways has a series of procedures with the directive to stop critical
conditions resulting from poor weather scenarios from having an impact on infrastruc-
ture safety. There are strategies to cope with unfavorable weather conditions that must
be used in incident preparation as well as handling occurrences that result from adverse
weather conditions. The instructions outline which procedures need to be followed at
a certain level of the predicted and/or measured temperature, precipitation, and con-
tribution from snowmelt. Stricter weather readiness is implemented in the case of an
elevated danger of weather that is thought to be able to impair rail safety. Norway’s
preparation system is organized into three readiness categories: yellow, orange, and
red alertness, with increasing degrees of activity. Figure 2.3.1 illustrates the emergency
response system structure. The action instructions are gathered from Bane NOR´s
preparedness portal, which includes tactical and operational preparedness information
in emergency situations.
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Figure 2.3.1: Sketch of the Norwegian emergency response system with instructions
for measures in adverse weather conditions (Bane NOR 2023a)

Normal operating conditions on track sections take place when the weather situ-
ation is assessed so that safety-critical incidents will not occur. There will be a higher
likelihood of potential safety-critical occurrences including solar wind, erosion damage,
floods, landslides, and collapse in water-saturated embankments if the temperature an-
d/or volume of precipitation and/or snowmelt rise over a period of 12 hours. When the
weather condition is evaluated, yellow preparedness is initiated because it raises the
likelihood of safety-critical occurrences. To mobilize resources for potential require-
ments, efforts are being made. The track section’s operational environment resembles
that of a normal operation level. When the likelihood of safety-critical occurrences is
determined to be higher than the yellow level of readiness due to the weather, orange
level of preparedness should be applied. Visibility speed must be implemented on the
impacted track segment. Red level of readiness is adopted if the weather conditions
worsen considerably more. At this level, the affected track section is closed.
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2.4 Artificial Intelligence

Artificial Intelligence (AI) refers to the simulation of human intelligence in machines
that are designed to think and act like humans, including perceiving, reasoning, learn-
ing, planning, predicting, and so on (Y. Xu et al. 2021). The development of AI
technology has allowed computers to perform tasks that previously required human in-
telligence, such as natural language processing, image recognition and problem-solving
(Russell and Norvig 2010a). With the increasing power of computing and the avail-
ability of vast amounts of data, AI has the potential to transform a wide range of
industries, from healthcare and finance to transportation and manufacturing. How-
ever, the development of AI also raises ethical and societal questions about the impact
of AI on jobs, privacy and decision-making in sensitive areas such as criminal justice
and national security.

2.4.1 The History of Artificial Intelligence

People have aimed to understand how human intelligence works for thousands of years.
According to Russell and Norvig (2010a), AI is one of the newest fields in science and
engineering. The science aspect involves understanding and explaining how human
intelligence works, while the engineering aspect includes efforts to engineer actual
intelligent entities. There is also a question of how to define intelligence. In 1950,
Alan Turing posed the famous question "Can machines think?". He believed that in
order to answer this question we need to define what thinking is. Due to the arbitrary
nature of thought, he created a test known as the Turing test to determine if a machine
can think. This test measures how closely a machine can imitate human intellect. If
the machine passes the test, it can be considered as having artificial intelligence (Turing
2009).

The area of artificial intelligence (AI) is thought to have begun with a conference
held in 1956 at Dartmouth College. John McCarthy, an influential figure in AI, along
with other researchers from Dartmouth, brought together U.S. researchers interested
in automata theory, neural nets, and the study of intelligence. During the confer-
ence, the attendees discussed the possibility of creating machines that could think
and perform tasks that normally required human intelligence. Among the attendees
were researchers within the field of control theory, decision theory, computer science
and mathematics. McCarthy later moved from Dartmouth to Massachusetts Institute
of Technology (MIT) where he made crucial contributions to the research field. He
published his study in 1958 under the title Programs with Common Sense. The study
describes his program the Advice Taker, regarded as the first on logical AI, i.e. AI
in which logic is the method of expressing information in computer memory. The
program was designed to accept new axioms and embody new knowledge of the world
without being reprogrammed. According to Russell and Norvig (2010a), this repres-
ents the central principles of knowledge representation and reasoning: "that it is useful
to have a formal, explicit representation of the world and its workings and to be able



CHAPTER 2. THEORY 27

to manipulate that representation with deductive processes".
Over the next few decades, AI research and development made significant progress.

Early AI programs, such as the Logic Theorist and General Problem Solver (GPS),
were developed in the late 1950s and early 1960s. These demonstrated the potential for
computers to perform tasks that were previously thought to be the exclusive domain
of human intelligence. However, the scientists that developed the GPS, Allen Newell
and Herbert Simon, were not content having their programs merely solve problems
correctly. What interested them the most were comparing the trace of its reasoning
steps to traces of human subjects solving the same problems. This introduced the
interdisciplinary field of cognitive science, which seeks to construct testable theories of
the human mind bringing together computer models from AI and experimental tech-
niques from psychology into play (Russell and Norvig 2010a). Cognitive intelligence
is defined as a high-level ability of induction, reasoning and acquisition of knowledge
(Y. Xu et al. 2021).

Due to the successes such as the Logic Theorist and GPS fueled the optimism of
AI researchers. Herbert Simon famously stated in 1957 that machines would soon be
capable of solving problems equivalent to those solved by the human mind (Russell and
Norvig 2010a). However, there were still significant challenges to overcome, as early
rule-based programs struggled with handling complex, non-trivial problems. The key
issues were the intractability of many of the challenges that AI was trying to address,
computing constraints, and fundamental restrictions on the fundamental structures
that were being utilized to produce intelligent behavior. The rule-based systems and
symbolic reasoning were achieved by encoding human knowledge and rules into pro-
grams. In the late 1970s and 1980s, AI research shifted towards machine learning
(ML), a branch of AI which involves developing algorithms that could learn from data
and improve their performance over time. This change was primarily brought about
by increased funding and the addition of Deep Learning techniques to the algorithmic
toolset, which John Hopfield and David Rumelhart presented (Hopfield (1982), Rumel-
hart et al. (1986)). Another important innovation that occurred at this period was
export systems. Using rule-based systems and symbolic thinking, the computers were
able to make decisions and solve problems in a variety of domains. They used the Mc-
Carthy’s Advice Taker approach’s central idea, separating knowledge from reasoning
through rules. The first commercially effective expert systems were introduced in the
middle of the 1980s, and generally, the AI sector grew rapidly, going from a few million
dollars in 1980 to billions of dollars in 1988 (Russell and Norvig 2010a). Following this,
the 1990s revived the study of neural networks, which was initially done in 1957 in an
article by psychologist Frank Rosenblatt titled the Perceptron (Rosenblatt 1958).

The focus of AI research changed from symbolic reasoning to probabilistic reasoning
in the early 2000s. Encoding human knowledge and rules takes time, and does not
allow for learning from data. Furthermore, it has a constrained capacity for dealing
with ambiguity and insufficient data. On the other hand, probabilistic reasoning entails
creating algorithms that can make decisions despite uncertainty and inadequate data,
resulting in more flexible and precise decision-making. It currently rules AI research
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and enables experience-based learning.
The availability of large amounts of data has been crucial for the development of AI.

The more data an AI system can be trained on, the better it becomes at the task it is
trained to perform. This is because machine learning algorithms require large amounts
of data to identify patterns and relationships that can be used to make predictions
or decisions. With the advent of the internet and the growth of digital technologies,
there has been an explosion in the amount of data that is being generated every day.
This has made it possible for AI systems to learn and improve increasingly quick.
The emphasis has historically been on the algorithm, as noted by Russell and Norvig
(2010a), but new work suggests that it makes more sense to be concerned with the
data. This is consistent with the growing accessibility of extremely enormous data col-
lections. Banko and Brill (2001) demonstrated that bigger training data considerably
improves learner performance and that learning methods should be less important in
this context.

Another factor enabling AI researchers to develop more complex algorithms that
can handle larger amount of data and perform more sophisticated tasks is the increase
in computational power. AI models can now be trained faster and more efficiently,
and they are being applied to a wider range of applications, including spam detection,
machine translation and robotics (Russell and Norvig 2010a). The availability of data
and computational power has also led to the democratization of AI. Instead of AI
research being limited to researchers with access to specialized hardware and software,
cloud-based services and open-source software has enabled a larger community of de-
velopers and researchers to experiment with and build AI models. This has opened
up new opportunities for innovation and collaboration.

Overall, the evolution of AI has been marked by a shift from rule-based systems
to data-driven approaches, from symbolic reasoning to probabilistic modelling, and
from narrow domain-specific applications to general-purpose intelligent systems. These
developments have been driven by advances in computing power, data availability, and
algorithmic innovation, as well as by changing societal needs and expectations.

2.4.2 Ethical Issues and Considerations

The rapid growth of AI technology during the past decades has had a significant impact
on our society. Although there are many accounts of the technological promise of AI,
painting a picture of profound societal and individual change, we also find warnings
about its perils.

Bostrom and Yudkowsky (2018) provides a comprehensive overview of these chal-
lenges raised by the development and deployment of AI systems. They argue that
AI poses unique ethical challenges because of its potential to create systems that are
more intelligent and powerful than human beings, and by such posing existential risks
to humanity. A range of other issues are also raised, such as privacy, transparency,
accountability and fairness. According to Bostrom and Yudkowsky (2018) the ethical
concerns can be divided into three categories: (1) concerns about the behavior of AI
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systems, (2) concerns about the impact of AI on society, and (3) concerns about the
relationship between humans and AI. Some of the issues the authors discuss within
each of these categories includes the need for AI systems to respect human autonomy
and dignity, the challenge of ensuring transparency and accountability in AI decision-
making, and the potential for AI to exacerbate existing social inequalities.

Similarly, Russell and Norvig (2010a) list six issues concerning the development of
AI technology:

• People might lose their jobs to automation

• People might have too much (or too little) leisure time

• People might lose their sense of being unique

• AI systems might be used toward undesirable ends

• The use of AI systems might result in a loss of accountability

• The success of AI might mean the end of the human race (Russell and Norvig
2010b)

It is worth mentioning that some of these threats differ little from other, less
"intelligent" technologies. E.g., the Spinning Jenny and the Steam Engine reduced
the need for human laborers in the 18th and 19th century respectively causing the
displacement of workers. In the context of decision-making and accountability, ethical
considerations should be integrated into the design and development of AI systems. AI
researchers could potentially work collaboratively with experts in ethics, law and social
sciences to ensure that the development benefits the society (Bostrom and Yudkowsky
2018).

One of the threats posed is particularly worthy of further consideration: "ultrain-
telligent machines might lead to a future that is very different from today" (Russell
and Norvig 2010b). The possible consequences of AI research must be weighted very
carefully so that we do not end up with a future we may not like.

2.4.3 Machine Learning

Machine learning (ML) is a rapidly growing field of study that has found widespread
applications in various domains such as image recognition, natural language processing,
and predictive analytics. The field is a branch of AI, and is built upon the foundation of
statistical learning theory, which aims to develop algorithms that can learn from data
to make predictions or decisions without being explicitly programmed to do so. The
learning process in machine learning can be broadly divided into two types: supervised
learning and unsupervised learning. In supervised learning, the algorithm is trained
on labeled data, which consists of input-output pairs. The algorithm learns to predict
the output for a new input based on the patterns it has learned from the training data.
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In unsupervised learning, the algorithm is trained on unlabeled data, and it learns to
discover the underlying structure or patterns in the data (Jordan and Mitchell 2015).

Progress in ML "has been driven both by the development of new learning al-
gorithms and theory and by the ongoing explosion in the availability of online data
and low-cost computation" (Jordan and Mitchell 2015). ML technology is found in
many aspects of modern society, ranging from web searches to recommendations on
e-commerce websites.

Increasingly, applications which employ ML systems, make use of a class of tech-
niques called deep learning (LeCun et al. 2015). Deep learning is a sub-field of machine
learning that has gained significant attention in recent years due to its ability to learn
complex representations from high-dimensional data. Deep learning is based on arti-
ficial neural networks, which are composed of multiple layers of interconnected nodes,
each of which performs a nonlinear transformation of the input. The process of learn-
ing the weights of the nodes in a neural network is known as back-propagation, which
uses the gradient of the loss function with respect to the model parameters to update
the weights.

2.4.4 Neural Networks

A subset of deep learning algorithms called neural networks is created to find patterns
in data. The structure of a neural network is organized into layers, with each layer
consisting of a set of nodes, or neurons, that perform a specific function. The neurons
are designed to mimic the function of biological neurons in the human brain: neurons
in one layer receive input from other layers’ neurons and perform a nonlinear function
on that input, which is then passed on to the next layer.

The input layer, which is the top layer of the network, receives the data and
transmits it to the next layer. The network’s ultimate prediction or judgment is
generated by the output layer, which is the last layer. There may be one or more
hidden layers between the input and output layers. The number of hidden layers
can vary depending on the complexity of the task it is designed to perform. More
hidden layers lead to more complex computations which in turn lead to more intricate
patterns recognized by the model. The nonlinear computations from the hidden layers
potentially form extremely intricate functions in mapping inputs to outputs (Jordan
and Mitchell (2015), LeCun et al. (2015)). Hornik et al. (1990) showed that the multi-
layer neural networks are universal approximators, i.e., they can approximate any
continuous non-linear function to arbitrary accuracy.
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Figure 2.4.1: Flowchart of a 3-layer neural network structure

Figure 2.4.1 illustrates the flow of a simple neural network with an input and
output layer, and one hidden layer with a set of neurons. The connections between
the layers are associated with a set of weights, typically denoted wij from node i to
node j. Biases and adjusting these weights is how the network recognises patterns in
the data and eventually provide correct output through experience. These adjustments
are done using a training loop, which involve two phases: feed-forwarding and back-
propagation. Feed-forwarding is the process of passing an input through the network.
The input data is presented to the input layer, which passes it through to the first
hidden layer. Each neuron in the hidden layer performs a nonlinear operation on the
input multiplied with the weights associated with each connection, and passes the
result on to the next layer. This process is repeated until the output layer is reached,
which produces the final output of the network. The back-propagation starts with
measuring the error between the model output and the label, which is the correct value
we want the model to approximate. This error value, which is often called the loss of
the model, is back-propagated through the network. During the back-propagation, the
weights are updated using an optimization algorithm, moving the gradient of the loss
function towards minimizing the error of the model, gradually improving its predictive
accuracy. The dual process of feed-forwarding and back-propagation is repeated for a
number of iterations, or epochs.

Neural networks can be distinguished by the way they are connected as a network.
A feed-forward network has connections only in one direction, which means that every
neuron receives input from upstream neurons and delivers output to downstream neur-
ons. A recurrent network, in contrast, feeds its outputs back into its own inputs and
thus introduces loops in its network (Russell and Norvig 2010a).
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2.4.5 Recurrent Neural Network

The concept of recurrent neural networks (RNN) were first introduced by John Hopfield
in 1982 (Hopfield 1982), and were later brought up in 1986 by Rumelhart et al. (1986).
The recurrent networks are designed to handle information from step to step by adding
loops to the network topology. The loops allows the model to process sequential input
more effectively rather than processing data solely in one direction. The model has
the ability to take the previous outputs into account and use them to influence the
current output. By conserving the node states in a hidden layer between time steps
and utilizing the inherent memory produced through these feedback loops, it becomes
possible to use previous inputs as knowledge to affect results in the future (Goodfellow
et al. 2016).

Due to the variable duration of the input, RNNs contain a dynamic number of
inputs and outputs, which makes training them different from training regular neural
nets. Back-propagation Through Time (BPTT), introduced by Lillicrap and Santoro
(2019), is a training algorithm used to update weights in RNNs. The algorithm works
by unrolling the recurrent network and treating each time step as a feed-forward neural
network with a fixed number of inputs and outputs. The network loop and its unrolling
mechanism when training the network is illustrated in figure 2.4.2.
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Figure 2.4.2: Unrolling the recurrent neural network

Future time steps employ the hidden layer’s information in a manner similar to
how human speak. Humans pick their next word in a discussion by building on their
knowledge of the words that have come before it and the context of the situation. This
avoids having to start considering whole new thoughts at every stage. The recurrent
neural networks address this time-dependency to some extent through the ability to
capture context in sequence data. Recurrent neural networks, however, struggle when
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there is a large gap between the present time step and the relevant information time
step. The information from each time step in a recurrent neural network is stored in
a vector in the hidden state. After a certain amount of time steps, some information
about the input sequence is typically "forgotten". According to Y. Bengio et al. (1993)
is it essential to have a deeper grasp of the issue behind the loss of information in re-
current networks in order to build algorithms that can learn long-term dependencies.
Consequently this has been subject to vast amounts of research which in 1997 culmin-
ated in the paper Hochreiter and Schmidhuber (1997), presenting the Long Short-Term
Memory (LSTM) network.

2.4.6 Long Short-Term Memory

The Long Short-Term Memory (LSTM) network is an advanced variant of a recur-
rent neural network capable of learning long-term dependencies. LSTMs has a more
complex model structure, including a memory cell, an input and output gate, and
a forget gate (Goodfellow et al. 2016). These gates regulate the flow of information
into and out of the memory cell, allowing the model to selectively remember or forget
information over long sequences of input data (Hochreiter and Schmidhuber 1997).

When a traditional RNN is trained, the network process a sequence of inputs
by repeatedly applying the same set of weights to each input in the sequence. The
gradients for updating these weights are computed by performing BPTT, and are
multiplied with the weights at each time step, leading to the gradients becoming
exponentially smaller as they propagate through time. As a result, the earlier inputs
in the sequence have very little impact on the final output, and thus the network often
fails in capturing long-term dependencies in the data. This phenomenon is called the
vanishing gradient problem. Through the more complex model structure of the LSTM,
this problem is mitigated to some extent ensuring control over the information flow of
the network. The model structure is illustrated in figure 2.4.3.

As mentioned, the flow of information through a LSTM model involves four main
components:

• Input gate: The input gate regulates the flow of information from the current
input and the previous hidden state into the memory cell. It uses a sigmoid
activation function to decide which information to keep and which information
to discard.

• Forget gate: The forget gate regulates the flow of information from the previous
memory cell to the current memory cell. It also uses a sigmoid activation function
to decide which information to keep and which information to discard.

• Memory cell: The memory cell stores information over time and passes it on to
the next time step. It is updated based on the input and forget gates, as well as
the candidate values.
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• Output gate: The output gate regulates the flow of information from the current
memory cell to the current hidden state. It uses a sigmoid activation function
to decide which information to keep and which information to discard.
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Figure 2.4.3: Long Short-Term Memory model structure

Another advanced variant of a recurrent network is the Gated Recurrent Unit
(GRU), which was first presented by Chung et al. (2014). GRUs reduce the gate
components from three (LSTM) to two; the update gate and the reset gate, and
experiments have shown that GRU performance are comparable to LSTM (Dey and
Salem 2017). Similar to LSTM, GRU uses its gates to control the flow of information
and allows for the model to selectively focus on certain pieces of the information from
the input data. While the reset gate determine how much information to forget from
the previous state, the update gate determine how much information the current input
incorporates into the new state (Goodfellow et al. 2016). This enables the model to
adaptively adjust its internal state based on the current input and previous state.

2.4.7 Other Popular Machine Learning Models

As previously mentioned, according to K. Y. Tiong et al. (2023a) the most widely
used machine learning models for train delay predictions are neural networks and
random forest models. Random forest is an ensemble learning method commonly
used for regression tasks. Neural network techniques have their counterparts in more
conventional methods, including well-known linear techniques such as linear regression,
and more advanced regression methods such as decision tree regression, random forest
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regression and eXtreme gradient boosting (Bishop 1994). This section will briefly
introduce these methods.

2.4.7.1 Linear Regression

Linear regression is a statistical method used to model the linear relationship between
a dependent variable y and one or more independent variables xi.

y = b0 + b1x1 + b2x2 + ...+ bnxn (2.2)

where bi are the coefficients, or weights, which are learned during the training
process of the model. Linear regression is powerful in modelling the linear relationship
between variables, mostly due to the simplicity of the model.

2.4.7.2 Decision Tree Regression

Decision tree regression (DTR) is a regression method which construct a decision tree
model starting with selecting the feature from the feature space that splits the data
into groups with the most similar target values. Based on the values from the chosen
feature the data is yet again split, and the procedure is repeated until a fully grown tree
is constructed. At this point, the feature with the lowest mean squared error (MSE)
for each node is selected for the split. Traversing through the tree and choosing the
predicted value at the leaf node represents the final prediction of the model (Pham
et al. 2017). Similar to linear regression, DTR is a simple and interpretable model,
but it can however be prone to overfitting (Russell and Norvig 2010a).

2.4.7.3 Random Forest Regression

Random Forest Regression (RF) is an emsemble learning method which involve train-
ing a large number of decision trees. Each decision tree is trained on a different subset
of the data. The process is repeated multiple times, and the final prediction is made
based on averaging or voting the predictions of all decision trees in the forest. It is a
robust and powerful method which is able to handle high-dimensional data and non-
linear relationships between variables. It is also less prone to overfitting than DTR
(Rodriguez-Galiano et al. 2015).

2.4.7.4 eXtreme Gradient Boosting

eXtreme gradient boosting (XGBoost, XGB) is a popular and powerful machine learn-
ing algorithm which was introduced by T. Chen and Guestrin (2016), who developed it
as an optimized version of the simpler Gradient Boosting (GB) algorithm. XGBoost is
based on the concept of gradient boosting, which is a method for building a predictive
model by combining several weaker models into a stronger one, correcting errors made
by the previous models. Decision trees serve as the base learners of the models, and
the idea is to iteratively add new models with each new model attempting to correct
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the residual error of the previous model (T. Chen and Guestrin 2016). One of the
key advantages of the model is its ability to handle very large data sets with high
dimensionality.

2.4.8 Historical and Real-Time Data

Historical data plays a crucial role in many forecasting models. This data serves as the
basis for identifying patterns, trends, and correlations over time. By extrapolating this
data into the future, forecasts can be produced. In this project, historical data is used
to train a predictive LSTM model. However, relying solely on historical data can pose
some challenges. Learning patterns from past data does not necessarily mean optimal
performance when faced with real-time, unforeseen circumstances. This is where the
role of real-time data becomes critical.

Real-time data is often used in situations where rapid responses are necessary. Also,
real-time data might be beneficial if the phenomenon being forecasted is highly volatile
and influenced by real-time events. In the context of train delay prediction, real-time
data poses as a crucial complement to historical data as it allows the model to adjust
its predictions according to the current situation. Integration of real-time data is not
without its challenges. Data processing and incorporation into a model need to go
swiftly, demanding efficient data handling mechanisms.

2.5 Use of Data in Rail Industry

The fast development of computing technology and the expanding availability of data
have made it possible to analyse larger and more complicated data sets, igniting in-
terest in analytic and data science (Petropoulos et al. 2022). As a result, the fore-
caster’s toolkit has expanded and become more sophisticated, producing remarkable
outcomes. With techniques like neural networks and other varieties of machine learn-
ing, computer science has led the way, and forecasters and decision-makers are paying
close attention to them. Earlier studies using various approaches are discussed in
chapter 3.

Overall, the rail industry is already taking advantage of data to improve safety,
reliability, and customer experience. Railway operators are using real-time data from
sensors and other sources to monitor train movements, track conditions, and other
factors that can affect train performance. Railway companies are using data from
sensors and other sources to predict when equipment is likely to fail, allowing them to
schedule maintenance activities before a failure occurs. They are also using data to
optimize train schedules and routes, allowing for more efficient and effective movement
of trains and reducing delays. Further, data is used to optimize energy consumption,
reducing costs and environmental impact. As data collection and analysis capabilities
continue to improve, we can expect to see even more innovative uses of data in the rail
industry in the future.
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It is well understood from literature that the quality of the data serves as an up-
per constraint on a machine learning model’s performance (Jain et al. 2020). Poor
data quality can significantly decrease the effectiveness of the related data applica-
tions (Wand and R. Y. Wang 1996). Ensuring good data quality is therefor essential.
Data can be characterized as physical entities that can be stored, retrieved, elaborated
upon, and sent through a network (Maguire 2007). Data quality is a multidimensional
concept, consisting of the attributes accuracy, completeness, consistency, and timeli-
ness, that can, when measured correctly, indicate the overall quality level of data. Data
quality is affected by the design and production procedures used to generate the data.
Understanding what quality is and how it is measured is a prerequisite for designing
for better quality.

Large amounts of train operation data have been gathered and stored through
modern railway signal and control systems. Nevertheless, train operation data was only
retained for a short period of time to aid in the investigation of potential accidents
(Wen, P. Huang, Zhongcan Li, Lessan et al. 2019b). The railway companies first
started keeping their logs in the 21st century after realizing the value and necessity
of this data. Advances in computer science and railway storage devices have made
it possible to collect, store, and analyse real-time train operating data, making it
possible to comprehend delay propagation processes from a data-driven perspective.
In comparison to the current non-science-based methodologies, the genuine historical
data offers more insight into the times or regularities that effect delay propagation
since it is the consequence of all pertinent influencing factors.
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Rail operating companies have long prioritized avoiding and reducing the negative
effects of delays. Numerous models and algorithms have been presented as a response
to the expanding amount and availability of data in the railway sector in an effort
to enhance train services. Additionally, a variety of new opportunities for operations
management in rail transportation are made possible by the quick advancements in
monitoring, communication, and data technology (Thaduri et al. 2015).

3.1 Train Delay Prediction Methods

Goverde and Ingo A. Hansen (2000) declared that it is possible to analyze delay
propagation and conflicts using detailed information of event times associated to train
services from data records of the Dutch train describer TNV-system (Telecommunic-
ation Network Voltage). The real-time record of train description has a precision of a
second and can be used as a helpful tool in railway traffic control. Conte and Schöbel
(2007) demonstrated how data-based approaches might be used to conduct an organ-
ized analysis of dependencies between delays. The goal of the study was to learn
about the relationships between delays in order to identify their root and describe
how they spread throughout the system. In the research by N. Olsson and Haugland
(2004) primary causes of railway delays and the resulting comparison findings are ad-
dressed and discussed. They highlight crucial factors to take into account in advance
of improving railway punctuality based on empirical findings from Norwegian research.
Delays can be brought on by a variety of factors including systemic ones like signal
communication and cable failure as well as human ones like the flow of passengers, oc-
cupancy ratio, and incorrect operation as well as natural events like changing weather.
According to their own and other prior study, the management of boarding and alight-
ing passengers appears to be a critical success element for punctuality on local and
regional trains in congested locations. However, as stated by Sørensen, Bjelland et al.
(2018), it is challenging to get actual data on train ridership. Their study looked into
how mobile phone data can be used as a different source of information to analyse the
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number of travellers on trains and their travel patterns. Their research demonstrates
that it is possible to integrate mobile data with information on train infrastructure
and traffic. The primary conclusion from the research is that studies of ridership may
be possible using data from mobile phones.

In the study by Berger et al. (2011), a stochastic model was put forth and tested
on the German rail network to simulate train delay propagation and compute arrival
and departure time distributions. Kecman and Goverde (2015) proposed a traffic
state delay propagation model that estimates train running and dwell times based
on the volume of traffic at the moment. Their statistical research demonstrates the
relationship between dwell times and running times and the time of day and any
current delays. In addition, the research showed that delays and running times rely
linearly on one another for minor delays up to a certain threshold, particularly for
trains with significant running time supplements.

Taleongpong et al. (2022) examines at the complex non-linear interactions among
the various spatiotemporal factors that control the spread of secondary delays, which
can escalate across the railway network and cause even more significant disruptions.
They develop a framework that predicts key performance metrics, secondary arrival
delay, secondary departure delay, dwell time, and travel time using a variety of ma-
chine learning approaches in conjunction with data mining methods. As compared
to conventional delay prediction systems, the study offers frameworks for accurately
forecasting KPIs using cutting-edge ML models. The study also shows that predicting
the departure delay from the previous station is the most important feature between
prediction of arrival and departure.

3.2 Data-driven Models

Data-driven methods for train delay prediction are single step forecasts that utilize
simulation or historical system data to assess the robustness of a complex system, of-
ten producing deterministic predictions (Yin et al. 2022). Adjetey-Bahun et al. (2016)
suggests a simulation-based model that measures passenger delay and passenger load
as resilience indicators which allows for assessing how resilient the studied system is
relative to a perturbation, by taking crisis management procedures into account. The
given model incorporates all subsystems and their inter-dependencies, simulates op-
eration circumstances for railway transportation systems, and assumes that all data
are deterministic. The Parisian railway system was used to evaluate the model. The
model resembles reality both during the system’s regular functioning and during per-
turbations. The model’s findings demonstrate that the system is robust since trains
continue to operate there regardless of whether they decrease their speed. D. Xu et al.
(2019) showed the effectiveness of their method by examining the link between inher-
ent traits and system resilience using historical data. Using the power of data mining
and machine learning techniques, they developed an advanced business analytical sys-
tem to proactively predict potential disruptions and assist the operational team in
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improving organizational resilience. Nair et al. (2019) paper developed a large-scale,
data-driven ensemble forecasting system to generate forecasts, using two-stage random
forest model to increase the prediction accuracy of train recovery times. The ensemble,
tested on the Deutsche Bahn, performed overall better than constituent models giving
high fidelity forecasts. For the purpose of estimating conflict-free running times and
dwell times, Kecman and Goverde (2015) presents a number of data-driven approaches.
They discovered that decision trees and linear regression models were clearly outper-
formed by random forests, which provided the most precise predictions of running
times.

3.2.1 Neural Network Models

Neural Network models are among the most widely used data-driven models. Re-
current neural networks, which were proposed as a solution to forecasting problems
by Connor et al. (1994) , offered more accurate time-series prediction abilities than
traditional neural networks. As with other neural network techniques, it was claimed
that when using recurrent neural network designs, the input configuration is essential
to successful prediction performance. Another pioneering studies, in 1996, was by
Martinelli and Teng (1996) who developed an neural network model for optimization
of solutions for the train formation problem. The study shows how the neural net-
work model was effective in identifying the limitations of the conventional model as
well as its objective functions. Martinelli and Teng offers a demonstration of how the
model can generate train formation plans quickly and accurately. Yaghini et al. (2013)
presented an artificial neural network model to predict train delay of passenger trains.
A variety of architecture strategies and input approaches where tested, and decision
trees and multinomial logistic regression models where used in order to evaluate the
quality. The findings demonstrate that the delay prediction model has high accuracy
and requires little training, making it a valuable tool for railway operators. Oneto
et al. (2018) developed a neural network train delay prediction model for extensive rail
networks. The model employs machine learning and statistical techniques to take use
of big data analytic methodologies and data processing technologies through its frame-
work. The outcomes demonstrated that advanced analytical techniques outperformed
existing state-of-the-art methodologies by up to two times.

3.2.2 Fine-Tuning Deep Learning Models

Continual learning was proposed by Shon et al. (2022) as an approach to leverage pre-
trained deep learning models on large historical data sets followed by fine-tuning for
specific tasks. Fine-tuning is the process when a pre-trained model is further trained
on a new, usually smaller, data set that is different, but related to, the original data
set (Too et al. 2019).

The study primarily focuses on image classification tasks, but the underlying prin-
ciples and theoretical insights offers valuable guidance in refining models for other
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tasks. An LSTM model could, for instance, be trained on a historical train data set,
and be continuously fine-tuned on real-time data. Continual learning could provide
a framework for maintaining the balance between retaining past knowledge learned
from the historical data, and adapting to new patterns and information provided by
the real-time data.

3.3 Impact of Weather Conditions

There has been some recent research on how weather conditions affect disturbance in
the railway industry, however the examination of published literature has a heavier
emphasis on other modes of transportation (Nagy and Csiszár 2015; Zakeri and N. O.
Olsson 2018). Yet, as Palmqvist (2019) pointed out, the literature has begun to pay
more and more attention to the need to comprehend how weather and climate change
affect railway delays and punctuality.

Inclusion of weather variables in the train delay prediction models have been showed
to improve the overall accuracy of the models. Oneto et al. (2016) developed a dynamic
train delay prediction system that uses state-of-art tools and techniques to combine
heterogeneous data sources and interact with dynamically changing systems in order
to provide meaningful information to traffic management and dispatching operations.
The model can rapidly comprehend the knowledge that is hidden in exogenous weather
data and historical train movement data. When only historical information about train
movement is used, robust models with impressive performance are produced for the
real train delay prediction system. These models are further enhanced by include
exogenous meteorological data (Oneto et al. 2017; Oneto et al. 2016). P. Wang and
Q.-p. Zhang (2019) attempted to comprehend the trends in weather and railway delays.
According to the study, train delays in severe weather are most influenced by the type
of poor weather, but delays in fair weather are primarily influenced by the duration and
frequency of previous train delays. Further, P. Wang and Q.-p. Zhang (2019) found
that infrequently occurring weather, such as snow in southern cities, has a stronger
influence and causes longer train delays.

The impacts of weather phenomena including wind, temperature, and precipitation
on railway operators’ performance of passenger train services are estimated by Xia et
al. (2013). The study was conducted in the Netherlands, and concluded that 4-8% of
all train disturbances were caused by bad weather conditions, and that disturbances to
infrastructure are significantly reduced by wind gusts, snow, precipitation, temperat-
ure, and leaves. Ling et al. (2018) examines the correlation between train delay and the
length of time that trains are exposed to snow and rain. They discovered that trains
frequently display the same delay patterns as in the past and that adverse weather
frequently results in greater than usual train delays. Ludvigsen and Klæboe (2014)
analyzed impact of the winter on freight rail operations in five European countries.
The majority of winter freight train delays were caused by cold days, strong winds and
snowfalls, which may be reasonably predicted a few days in advance. The study found
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that 60% of late arrivals in Finland between 2008 and 2010 were connected to winter
weather by modeling the co-variation between harsh weather and freight train delays.
The weather factors influence the punctuality of trains on the Norwegian railway Nord-
land Line was examined by Zakeri and N. Olsson (2018). The study demonstrates that
winter extreme cold is a significant influencing factor that leads to delays and poor
punctuality. Moreover, snow depth is the meteorological factor that most explains
changes in passenger train punctuality both daily and weekly. Palmqvist, N. O. Ols-
son et al. (2017) investigated the impact of weather on railway punctuality. As the
temperature drops below 0 degrees, punctuality reduces exponentially; at -5 degrees,
it drops by 7.5%, and at -30 degrees, it drops by 50%. The variation in temperature
was highly correlated with the travel distance. P. Huang, Wen et al. (2020) introduced
a train delay prediction model that included a fully connected neural network with
two LSTM components. The study highlighted how crucial it is to take into account
the interactions between trains and stations as well as weather-related factors in terms
of prediction accuracy.

3.4 Review Articles

Many review articles of train delay prediction approaches have been published recent
years, which is consistent with the development of research and methodologies.

Narayanaswami and Rangaraj (2011) presents, examines, and discusses a wide
range of significant railway scheduling and rescheduling activities that have been doc-
umented in the literature. The difficulties of seeing rescheduling as an operational
or real-time control and scheduling as a strategic or tactical operation are further
highlighted. As operational feasibility at a hierarchical level depends on the efficacy
of modeling at other hierarchical levels, the dependency between scheduling and res-
cheduling and the influence of one on the other’s effectiveness need to be investigated
more thoroughly. In particular, Narayanaswami and Rangaraj emphasizes that there
is a scarcity of requirements, models, and strategies for rescheduling at strategic levels
and in real-time when disturbances are discovered just-in-time.

Ghofrani et al. (2018) provides an extensive overview of the areas and means that
big data analytics have been used in relation to railway transportation systems. The
study examined 115 papers in total. In order to spur further study on the subject, they
have established a categorization framework that highlights a variety of research gaps,
potential directions, and difficulties for big data analytics applications. The big data
classification framework constitutes four levels, namely big data analytic domains,
levels of analytics, models, and techniques, all in context of railway transportation
systems.

The research by K. Y. Tiong et al. (2023a) examines prior research on train delay
prediction models for data-driven methods, focusing on technical development. The
study clearly emphasizes the identification of a modeling development framework with
three steps, including design idea, modeling, and assessment, for train delay prediction.
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Through a systematic review, the paper disaggregate the framework into six aspects:
scope determination, model inputs, data quality, methodologies, model outputs, and
evaluation techniques. For each aspect, the paper synthesizes important problems
and techniques while discussing research gaps. The analysis shows that the majority
of studies focus on creating complex algorithms for solely predicting delays at the
next stop, which have limited practical applications. As stated by K. Y. Tiong et al.
(2023a), the basis of comparison between different data-driven approaches is hardly
established. This is due to the individual paper characteristics, where researchers
tend to use their own data sets and develop specific prediction algorithms. As a
result, research findings are the byproducts of a project’s structural components and
structure, which degrades the foundation for comparison. The paper also underlines
the importance for modeling studies to prioritize data quality and conduct thorough
evaluations of the model’s representation power, explainability, and validity. Further,
relatively few studies evaluate other elements of model performance than accuracy,
making it challenging to judge the models’ use in real-world applications.

In Wen, P. Huang, Zhongcan Li, Lessan et al. (2019a) paper, data-driven models
for the railway dispatching problem are briefly examined, with an emphasis on relevant
studies on delay distribution, delay propagation, and rescheduling. 153 papers on data-
driven methods are presented and discussed. The study demonstrates how several
solutions may be produced to support dispatchers’ decision-making using data-driven
models based on train operating records. By implementing hybrid models, which
combine data-driven models with conventional mathematical models, the models may
preserve the benefits of the model-driven approach and eliminate the need for precise
modeling. Wen, P. Huang, Zhongcan Li, Lessan et al. asserts that machine learning or
deep learning techniques have demonstrated promising potential in modeling and data
processing. They may be used for train dispatching modeling and delay classification,
delay propagation modeling, conflict detection and solutions, and buffer time allocation
optimization.

The recent article by Spanninger et al. (2022) provides an extensive literature
review on train delay prediction methods. Methods are classified and discussed in
accordance with the fundamental paradigm of modeling, the precise mathematical
model, the input data employed, the kind of prediction, and its horizon. The purpose of
the article is to explore recent trends and research gaps, such as the impact of increased
data available of railway operations on delay prediction, and to offer some guidance on
which prediction model and data to employ in a given case. One of their discoveries is
that, in terms of prediction accuracy, data-driven techniques, such as Neural Networks
and Random Forests, may outperform event-driven ones. When utilizing data-driven
models, the overfitting risk is mentioned. The power of event-driven systems, which
clearly describe the dynamics and relationships of railway traffic, lies in their ability
to provide predictions that can be understood, as well as their greater robustness
to interruption situations. With the growing availability of data and the expected
increase in railway traffic, a hybrid method that combines network modeling and big
data utilization may become even more relevant in the future. The paper also discusses
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the issue of timetable changes in rail traffic data set. In order to successfully train
and test a prediction model, Spanninger et al. (2022) clarifies that the approach must
be able to abstract from these schedule changes and concentrate on invariant traffic
dynamic features. This is due to the observation, stated by Oneto et al. (2018), that
the delay behavior changes significantly only after a change in the nominal timetable.
Further, the paper states this as a key reason restricting and limiting the time period
of a rail traffic data to train prediction models. Only six of the 40 publications they
analyzed used models that were trained on more than two years of data, whereas 21
studies used six months or less of observations.

3.5 Precision Metrics

To evaluate the model’s performance, the majority of research just consider prediction
accuracy. The precision metrics mean absolute error (MAE) and root mean square
error (RMSE), both of which are further addressed in section 5.5.6, are frequently used
to assess the accuracy of train delay predictions. Since MAE and RMSE are both on
the same scale as the dependent variable, they are well-liked because they are simple to
compare different models. Table 3.5.1 below gives an overview of the previous studies’
MAE and RMSE.

The study by Corman and Kecman (2018) presents a stochastic train delay propaga-
tion model based on Bayesian networks. Bayesian networks have the ability to con-
cisely represent the complex interdependencies between train events. The impact of
the prediction horizon of the model´s prediction accuracy is analysed through MAE.
The prediction horizon of 60 minutes was divided into 1 minute wide intervals and
evaluated by computing the mean value of all corresponding absolute prediction er-
rors. Figure 3.5.1 shows MAE for each considered prediction horizon. The grey band
represent 1st and 3rd quartile, median and average are reported as lines, respectively
in dots and solid ones. The figure clearly illustrates how MAE increases as the larger
prediction horizon is considered. Longer prediction horizons result in a rise in MAE
error, which shows that prediction accuracy is lower. Further, the increasing band size
also indicates a lower level of confidence in the predicted values as well as increased er-
ror and higher variability of the error. There is still a considerable level of uncertainty
regarding the timings of events. However, the median error of the prediction model,
the dotted line, seems to increase slowly compared to the average error. This indicates
that while the majority of predictions continue to be accurate, the huge variations are
harder to foresee (Corman and Kecman 2018).

Zhongcan Li et al. (2022) considers the arrival routes of predicted trains and route
conflicts with forward trains at multi-line stations into account when developing a
train arrival delay prediction model. The study’s goal was to demonstrate how accur-
ate forecasts of train arrival delays at multi-line stations may effectively assist plans
for rescheduling train operations and prevent delay spread throughout the railway net-
work. The model was tested on historical data from the Chinese high-speed railway
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Figure 3.5.1: MAE for all considered prediction horizons, from the study performed
by Corman and Kecman (2018). The band represent 1st and 3rd quartile, median
(dotted) and average (solid) are reported as lines.

network and evaluated with the performance metrics.

Nair et al. (2019) measures RMSE for various prediction intervals, distinct train
class types, and operational statuses using their large-scale, data-driven ensemble fore-
casting engine. Their RMSE for all running trains was 5.52 minutes, for all urban
services it was 8.45 minutes, and for all long-distance trains it was 13.08 minutes.
ZhongCan Li et al. (2021) developed a near-term train delay prediction model to pre-
dict the delay 20 min later. The study separated the samples into two groups based
on delays of three minutes or more and less in order to develop each group’s prediction
model in accordance with the Dutch national punctuality criterion. They first analysed
and extracted influencing delay propagation factors, further used as model inputs. A
data-driven train delay prediction model with random forest regression algorithm was
then established. The findings showed that the present delays are the most significant
if the delay is greater than 3 minutes. If the delay, however, is less than 3 minutes,
the time during which it occurred has the largest impact on the delay 20 minutes
later. This is aligned with the corresponding MAE and RMSE, which can be found in
table 3.5.1. For the rule-driven automated technique of predicting train delays under
several scenarios, J. Wu et al. (2022) employed a random forest implementation. The
study demonstrates how crucial it is to have access to high-quality data when utilizing
deep learning to forecast time series. Both MAE and RMSE were used to assess the
prediction model’s accuracy when combined with various baseline techniques.
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Study Model Type
MAE
(min)

RMSE
(min)

Nair et al. (2019) Data-driven all operational trains - 5.52
Data-driven all urban services - 8.43

Data-driven
all long-distance
trains

- 13.08

ZhongCan Li et
al. (2021)

RF
operational train >

3min
1.708 2.863

RF
operational train ≤
3min

0.687 1.681

ANN
operational train >

3min
1.857 3.051

ANN
operational train ≤
3min

0.788 3.051

XGBoost
operational train >

3min
1.724 -

XGBoost
operational train ≤
3min

0.723 -

J. Wu et al.
(2022)

RF operational train 0.82 1.18

CNN operational train 0.98 1.47
LSTM operational train 0.66 0.78

Zhongcan Li et
al. (2022)

RF
high-speed railway
network

1.513 2.4

RF
high-speed railway
network, route-related
variables

1.223 2.196

DELM
high-speed railway
network

2.389 3.842

DELM
high-speed railway
network, route-related
variables

1.591 2.82

Skjøren (2022) Event-driven
urban services, route
R10

2.52 8.63

Event-driven
urban services, route
R11

2.29 4.92

Event-driven
urban services, route
L12

2.4 10.2

Sørskår (2022) RNN
one long-distance
train

1.23 1.73

LSTM
one long-distance
train

1.17 1.69

GRU
one long-distance
train

1.17 1.68

Table 3.5.1: Overview of other literature’s using MAE and RMSE to evaluate the
performance of their proposed model.
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List of abbreviations used in table 3.5.1:
ANN = Artificial Neural Network, CNN = Convolutional Neural Network, FCNN
= Fully Connected Neural Network, RNN = Recurrent Neural Network, LSTM =
Long Short-Term Memory Networks, GRU = Gated Recurrent Unit, RF = Random
Forest, XGBoost = eXtreme gradient boosting, DELM = The Deep Extreme Learning
Machine

Wen, P. Huang, Zhongcan Li and Mou (2019) used a Long Short-Term Memory
(LSTM) train delay prediction model to examine the correlation between different
railway system features and train arrival delays. The model outperformed the random
forest model and the artificial neural network model in comparison to accuracy tests of
prediction accuracy. The performance metrics were measured and compared for LSTM,
RF and ANN models of different stations. The result was presented in histograms,
shown here in figure 3.5.2a and figure 3.5.2b.

(a) Comparison of MAE values at different stations

(b) Comparison of RMSE values at different stations

Figure 3.5.2: Comparison of MAE and RMSE values at different stations from the
study performed by Wen, P. Huang, Zhongcan Li and Mou (2019)
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3.6 Specialisation Projects

Both the authors of this Master’s thesis completed their own specialisation project in
the Autumn semester of 2022. The project Predicting Train Departure Delays, written
by Sørskår (2022), developed a train delay prediction model based on historical train
data. The project Evaluation of Train Delay Estimates, written by Skjøren (2022),
examined the performance of Bane NOR’s existing train delay prediction model. Upon
completion, it became evident that the projects complemented each other. Thus, the
work conducted during these projects served as a groundwork for this master’s thesis
to build upon.

The specialisation report written by Sørskår (2022) explored the utilisation of vari-
ous machine learning models with the purpose of predicting train departure delays.
The study found that recurrent neural network models were well suited for train delay
prediction, with the best performing models yielding Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE) of 1.17 min and 1.69 min, respectively. In contrast
to this project, the study only examined one single train going in one direction along
the line Oslo S through Trondheim, reducing the complexity of the task. Additionally,
the study underlined the importance of including past delay patterns in form of lagged
observations, or time lag, of the target variable. A significant improvement in pre-
dictive accuracy were evident upon inclusion of these time lags features. Finally, the
study found that the results were comparable to results from previous, similar studies.

The specialisation project written by Skjøren (2022) examines the performance of
Bane NOR´s train delay prediction model on three Norwegian railway routes. The
three routes examined where all running through the capital area, Oslo area, but
only in one direction. The study illustrates how trains estimated departure times are
predicted to be before their actual departure from a station. This illustrates that
the train delay prediction model is too optimistic. The results show an overall high
estimate deviation median for all three routes, above 40 seconds. The study also
illustrates how rarely a departure time is negative, estimated to be after the actual
departure. Several stations experiences high estimate deviations, but it is hard to see
any clear pattern between the estimate deviation and the actual delay. On the other
hand, a clear pattern through the day is to be seen, where the time periods with more
delays are affected by bigger and more distributed estimate deviations. Bane NOR´s
train delay model performance varies between the three routes, examined through both
correlation analysis and performance metrics.
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CHAPTER

FOUR

DATA

Chapter 4 presents the data used and its limitations. In this study, three data sets are
gathered from two separate data sources.

Rail data two data sets with rail traffic data, provided by Bane NOR.

Data set 1 consists of raw data of traffic logs, utilized in the analysis phase. The
gathered data is from the period between 15.06.22-22.03.23. For the analysis
of the current train delay prediction model, data-logs from TIOS records
have been collected consecutively and saved. The main objective of the data
was to investigate the precision of the current used train delay prediction
model.

Data set 2 consists of pre-processed traffic data in the period from 01.01.21. to 28.02.23.
The other data-set is also TIOS records, but is excludes the estimated ar-
rival and departure records. This data-set is going to be subject to various
feature engineering techniques for the purpose of employment and training
of a new prediction model.

Weather data one data set with historical daily meteorological observations have
been gathered from the Norwegian Meteorological Institute

Data set 3 weather data in the period from 01.01.21. to 28.02.23.

To distinguish between the two rail data sets, the succeeding material will refer to
data set 1 as the TIOS raw data set, and data set 2 as the TIOS pre-processed data
set.

As stated by Spanninger et al. (2022), timetable changes in historical traffic data
can be a challenge when training and testing a model, further commented in section
3.4. TIOS raw data have a time period on 10 month, and the TIOS pre-processed data
spans on two years and two months. The restricted period prevents delay behavior
changes in response to adjustments in the nominal timetable. Further, the data, their
purpose and limitations are further described below. Further information about the
different methodologies can be found in chapter 5.

51
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4.1 Rail Data

Rail traffic data is historical data of train movements, collected from the national
database TIOS. TIOS receives route data and dynamic train movements from the re-
mote control systems, as well as information about train composition from the railway
undertakings. There are historical records for every train, including the operating
company, the class, and the train’s number, at every location. Additionally, TIOS
receives GPS data from the running trains. Figure 4.1.1 illustrates the data flow for
each scenario.

TIOS DatabaseKARI Database

Centralised Traffic Control

Automatic registration 

Train Dispatcher

Manual registration 

GPS in train

Train Operating Companies

Data Flow

Other Train 

Companies

Bane NOR´s

Application Service

Figure 4.1.1: Illustration of the data flow of the train record information.

When a message is read into TIOS, a time stamp with the date and time is cre-
ated for each record. Both route data and real-time are included in the data collec-
tion. Route data is predetermined information such a schedule, stops, fares, network,
framework, and general details. Route data complies with the NeTEx standard, which
establishes the data structure and service descriptions for the transmission of line
information, timetables, and other pertinent data for public transportation (Statens
vegvesen 2019).

The remote control system on the railways allows for the automated registration
of real-time data as well as deviation data in the database known as KARI. Data is
manually registered on a few railway routes in Norway, including Gjøvikbanen and
Nordlandsbanen. However, the line chosen in this study automatically saves data.
Continuous modifications and deviation data that are relevant to the current day’s
operations are included in real-time data. KARI data adheres to the European SIRI
standard, which specifies minor alterations to the scheduled timetable. SIRI messages
can be separated into three main categories (Vegdirektoratet 2019), presented in table
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4.1.1 below.

Tag Description
SIRI-ET Estimated Timetable, defines updated estimated times

SIRI-VM Vehicle Monitoring, updates of positions, as well as real-time delays
are communicated here

SIRI-SX Situation Exchange, updates if any deviations

Table 4.1.1: Real-time, SIRI messages used in this project

Every time it passes a sensor for a remote control system, SIRI-ET and SIRI-VM
are continually transmitted, updating real-time information for the railway network.
Both NeTEx and SIRI are XML (Extensible Markup Language) formats that make
it easier to share real-time information on public transportation as well as route data
between distant systems (Bane NOR 2022).

Arrivals and departures information is sent to the TIOS database. This project is
looking at the TIOS departure logs. From the perspective of the passenger, the time
dimension is deemed to be greater in importance. The most recent status for a train’s
departure is provided to passengers using today’s traffic information systems. Train
arrivals are also announced, but they are not as readily available as departures. This is
most likely a result of passengers being more concerned with the train’s departure time
than its arrival time. Every end-station, however, will only have an arrival time and
no departure time. The end-stations in both directions are left out of the constructed
model since it only focuses on departures from stations in this research.

Different tags are used in the TIOS logs for various message types. The TIOS
log STATION, where both scheduled arrival and departure are logged, contains a
pre-defined timetable. The estimated and actual records, both from the real-time
data given by KARI database, are the other TIOS logs used in this project. ETD
(Estimated Time of Departure) and ATD (Actual Time of Departure) tags are used
to identify departure data. Table 4.1.2 below lists the tags used in this project along
with explanations of each tag and its message.

As shown in table 4.1.2, both scheduled departure time and scheduled arrival time
are part of the STATION TIOS log. The pre-scheduled timetables departures will be
referred to as STD (Scheduled Time Departure). Additionally, city is a location code
that is placed at both passenger stations, where passengers board and depart trains,
and base stations, which are locations where trains only passes by.

Estimate records are regularly generated as a train moves through the network and
the system receives new data about a train’s actual position. Therefor, TIOS receives
many estimates for each station, especially when a train is delayed early in the route.
However, only the latest estimate for each station is stored over time in TIOS. When
evaluating the current prediction model, all estimates throughout a route are needed.
Therefor, the two different data sets have been gathered for this project.
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Tag Description Nested tag

All tags
TIOS messages with nested XML syntax. All
logs includes the nested tags where they con-
stitutes the combined primary key

origin_time, city,
train_number, *

STATION

Scheduled timetable. A message for each
station on the train’s route, including train
number, location code, scheduled arrival and
scheduled departure.

scheduled_arrival,
scheduled_departure

STD
Scheduled time departure. A part of the
STATION messages for the scheduled depar-
ture.

scheduled_departure

ATD
Actual time departure, update message at a
station and gives the actual departure of the
train.

actual_departue

ETD
Estimated time departure, forecast data for
new estimated departure values for delayed
trains.

estimated_departue

Table 4.1.2: TIOS tags and their description, used in this project

4.1.1 Case: Oslo - Trondheim

The chosen railway line studied in this master travels from Oslo to Trondheim. The
train route constitutes both Dovrebanen and Gardemobanen. Dovrebanen stretches
from Trondheim to Eidsvoll which constitutes 485 km of railroad, mainly single track.
Gardermobanen stretches from Eidsvoll and Oslo which constitutes 66 km of rail-
road, mainly double track. Today, it operates as an important national route between
Trøndelag and Eastern Norway. The line consists of 67 stations, where 20 of them
are stop-stations, and the remaining 47 stops are intermediate stops. An illustration
of the route can be found in figure 2.2.1 marked in orange and the corresponding line
map can be found in appendix A.

There are a total of 12 train rides between each endpoint, six in each direction,
every day. Two of the trains rides at night, and they are excluded in this study. Route
tables for both directions can be found in Appendix B. The train numbers can be used
to determine the time of day, where it increases throughout the day. Morning trains
have the smallest train numbers, while evening trains have the largest train numbers.

4.1.2 Limitations

Timetables are pre-scheduled times for arrivals and departures for train routes in the
order of minutes. When the designated minute is nearing and the driver is given per-
mission to begin moving, the train can leave a station. However, time registrations are
often based on automated registrations from signal systems with a resolution measured
and recorded to the second. This indicates that there is a good likelihood that the
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scheduled time log will be somewhat different from the actual and estimated time logs.
Measurements from the actual remote signal system installed on the rail net-

work are recorded in TIOS real-time traffic logs. The readings are thought to be
precise timers for when trains enter and leave specific locations. The registration
points, however, are not precisely where trains stop at a station, which might provide
measurement-related difficulties. In order to account for the "typical" time the train
will take to go from the registration point to the train’s actual stop, an offset is often
employed at stations. Likewise applies for departures. This implies that there is no
genuine precision even when actual times are measured in seconds. The accuracy of
the real-time recordings is more unclear the more away a sensor is positioned from the
station.

The measurements, however, are same across all trains since they use the same
methodology and measuring position. Real-time information will differ between the
stations and may not necessarily represent how customers perceive the rail traffic (N.
Olsson, Halse et al. 2015). When comparing actual and estimated time records from
TIOS, there is nothing incorrect with the measurement itself because every train is
measured the same at every stop, at the same location. There will be a difference
between the real signal records and the scheduled time records, nevertheless.

4.2 Weather Data

Historical weather data were obtained from the Norwegian Meteorological Institute
(MET) in the period from 01.01.2021 to 28.02.2023 (Institute 2023a). Initially, access
to MET Norway’s archive of historical weather and climate data was gained through its
Application Programming Interface (API). The Frost API provides access to quality
controlled daily, monthly and yearly measurements of various weather elements such
as precipitation, temperature and wind data, along with metadata about weather
stations.

In order to retrieve relevant weather data, the locations of the weather stations
of interest had to be collected. Through usage of the additional API, Google Maps
API (Google 2023), coordinates were drawn from the train stations along the railway
line. These coordinates were further used to retrieve the most nearby corresponding
weather station number.

Further, the actual weather element data from these stations were then collected,
retrieved by using the command: geometry = nearest(POINT (latitude, longitude)).
This command outputs the station ID for the station closest to the given coordinates,
along with other metadata. Setting the station IDs of interest, along with the weather
elements and the time period to be included, will result in the retrieval of JSON ready
for analysis.

The downside of using the API for data retrieval is the less organized format of the
JSON file compared to a fully formatted .csv file. Further, the content of the JSON
file had to be verified as there is no automatic verification as to whether the desired
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data content was included or not. The laborious analysis of the data obtained through
the API revealed that there were actually significant gaps in the data for both the
requested station IDs and the relevant time period. The data availability is visualized
in appendix D, which was plotted by using the same coordinates obtained from the
Google Maps API.

As an alternative, MET Norway also provides a web based portal, seklima.met.no
(Institute 2023b), providing access to the same database through a more user-friendly
interface. The data availability is here plotted on the Norwegian map, providing
weather statistics for specified weather stations in Norway. From this portal, the time
period and the weather elements were chosen and cherry-picked, before an automatic
compilation of a ready-to-use .csv file containing the weather data.

Data column Description
NAME Name of the Weather station
STATION Station ID - SN****

DATE DD.MM.YYYY covering the time period for
each station and for each weather element

VALUE Daily weather element value.

Table 4.2.1: Weather data retrieved from seklima.met.no

The following weather elements were chosen and gathered for this analysis:

Temperature Daily mean temperature. An arithmetic average of 24 hourly values.

Precipitation Daily sum of precipitation

Snow depth Daily registration of snow depth - snow coverage measured in centimeter
above ground.

Wind Daily mean wind value. An arithmetic average of 24-hourly values.

4.2.1 Limitations

There exist several limitations with regards to the weather data. Firstly, and most
importantly, the availability of data for both the desired time period and weather
elements varies greatly between the different weather stations. As shown in the visual
representation in appendix D, there are several gaps in the data coverage along the
railway line, particularly for snow depth data. For some stations, data is only available
for a few months, while for others, data is available for the entire time period. This
can be due to various reasons such as malfunctioning equipment or insufficient funding
for maintenance and repairs. Although the visual representation of data availability in
the web portal which were ultimately preferred to the API gave a more comprehensive
data collection, this method also yielded gaps especially in the chosen time periods.
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Furthermore, the process of retrieving weather data through APIs can be time-
consuming and cumbersome, particularly when dealing with JSON files. This can also
lead to the possibility of errors in data analysis and interpretation.

It is also worth noting that the weather data provided by MET Norway is subject
to quality control, but there may still be errors or inaccuracies in the data due to
various factors such as measurement errors or station location changes.
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CHAPTER

FIVE

METHODOLOGY

The study has employed a variety of methodologies. This chapter introduces and de-
scribes the different methods and tools employed.

5.1 Literature Review Method

A literature review was done to gather information and analyse the complexity of the
railway system, the gap in delay forecasts, and the status of current knowledge. In
the work of the specialization project articles, during Autumn 2022, the first round
with a literature review was formed. Both authors delivered their respective special-
isation project; Sørskår (2022) and Skjøren (2022). The literature reviews in both
specialization project papers served as the foundation for the literature review in this
master’s thesis. In addition, a comprehensive review of the literature was conducted to
supplement the existing review, cover new theoretical areas, and convey the most re-
cent findings. This master’s thesis employed the same research methodology that was
developed and applied for the article for the specialization project. A comprehensive
description of the methodology follows below.

From the start of the study, a broad review was conducted before it was narrowed
down to provide a systematic perspective. The papers from conferences, academic
books, and manuals were examined. Annual reports from rail operation businesses
and recent research reports from research institutes have also been examined. Only
papers published in English and Norwegian proceedings as of 2010 were included. How-
ever, the reviewed material on the history of railway systems and its research subject
was evaluated regardless of when it was written. The reviewed material on the history
of Artificial Intelligence (AI) consists of textbooks and articles written by recognized
authorities in the field. Most of them are widely used in academic settings and are
considered seminal work in the AI field. The completed literature review produced
results and information that are quite intriguing and useful for this report.

59
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Google Scholar, ScienceDirect, Scopus, and Oria were the digital databases used.
Along with terms that encompass the subjects relevant to each phase, keywords that
pertain to railway transportation, such as "rail", "railway," and "train," were em-
ployed. Five stages can be taken to break down the conducted literature search.

Step 1 examined the foundation of the railway system and its difficulties in light of
train delays and the operational planning stage. The handbook by Profillidis
(2006) was studied, especially the chapters "Railways and Transport", "Policy
and Legislation", "Forecast of Rail Demand" and "Planning and Management
of Railways". During the literature search, the terms "delay," "real-time," "dis-
patching," and "prediction" were employed. Based on the findings from the first
step, the subsequent steps supplement with more information.

Step 2 examined on how tactical planning’s pre-work helps avoid delays and additional
propagation. The terms "timetable," "robustness," "buffer time," and "res-
cheduling" were employed.

Step 3 examined the use of and open data policy in the rail sector. Research reports
and literature reviews were both done. In addition, both domestic and foreign
open data information pages were examined.

Step 4 examined the evolution of accurate real-time train delay prediction, the models
used and its advancement regarding to the increased amount of data. "Big
data", "data-driven models", and "delay prediction models" were employed as
keywords.

Step 5 examined machine learning models and their use in earlier studies. The terms
"Feature Engineering", "Recurrent Neural Network", and "Machine Learning"
were employed in this step.

Each phase employed a combination of keywords to search through titles, abstracts,
and literature keywords to ensure the quality and applicability of the evaluated papers.
Papers from the mentioned literature were also reviewed. Papers without full-text
availability or of purely low quality were not included. A literature review was con-
ducted for each of the specialization project. Further literature study were established
in the early phase of the master. The entire amount of material reviewed and included
in this study, given its broad reach, consisted of 187 distinct articles.

5.2 Data Management

Building understanding of the data and its provenance is the goal of the data manage-
ment process. Data management is the process of gathering, arranging, and gaining
access to data to improve decision-making and increase productivity. A data man-
agement procedure aids in ensuring that data is accurate, accessible, and secure. The
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exploratory data analysis identifies and resolves any potential issues with data. This
data insight is essential for the pre-processing of the data. Data wrangling is the pro-
cess of transforming raw data to facilitate subsequent analysis. It includes preparing
data for analysis by cleaning, manipulating, and integrating it. Data wrangling aims
to enhance the quality of the data and make it more appropriate for the data mining
process. Exploratory data analysis and data wrangling constitutes the infinite loop of
data science.

Depending on the data source, we often have different expectations for quality. The
three different data sets were all received in very different conditions and therefor also
required different scale of data wrangling and exploratory data analysis. This indicates
that it was necessary to introduce three separate data management processes, one for
each individual data set, including both data wrangling and exploratory data analysis.

5.2.1 Data Wrangling

Data wrangling has been defined as "a generic phrase capturing the range of tasks
involved in preparing your data for analysis" (Rattenbury et al. 2017). In this stage,
the data quality was examined, files were formatted, structure was simplified, and
new measurements were generated for further use in the analysis. Each data-set was
separately examined due to their condition and further purpose.

5.2.1.1 TIOS raw data, traffic logs with train records

The data set with TIOS-logs was received as 814 files, each formatted as .txt format.
Each file consists of raw data of TIOS logs in form of list of strings. Each log has a
timestamp for when the record was received, and the train record itself. The TIOS
train records are XML formatted, a nested structure with a set of information. The
table below shows how the data logs were before and after the first data wrangling
phase.

Before: [dd.mm.yyyy hh:mm:ss]: <TIOS-tag ><nested-tag>...</nested-tag></TIOS-
tag>

After: <TIOS-tag><nested-tag>...</nested-tag></TIOS-tag>

First phase of data wrangling focused on structuring and formatting the files. Each
file looped through the list of strings. The timestamp, ([dd.mm.yyyy hh:mm:ss]:), was
first separated from the rest of the string. By using the Python module BeautifulSoup,
each TIOS log message on xml-format was located by its TIOS tag. For the desired
TIOS tag STATION, ATD and ETD, logs were obtained and stored in the correspond-
ing lists. The ETD TIOS record’s timestamp was saved for later examination, while
the timestamp was taken out of the other two tags. Table 4.1.2 provides a summary of
the tags that are being used, their descriptions, and nested tags. Further, the parser
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"lxml" extracted the desired data from the xml-strings. The strings with TIOS xml-
messages were now contained in the three separate lists, each of which represented a
TIOS tag.

Before: <TIOS-tag><nested-tag>...</nested-tag></TIOS-tag>

After: TIOS-tag Dataframe:

nested-tag 1 nested-tag 2 ... nested-tag n-1 nested-tag n

value 11 value 12 ... value 1n−1 value 1n

value 21 value 22 ... value 2n−1 value 2n

... ... ... ... ...

value n− 11 value n− 12 ... value n− 1n−1 value n− 1n

value n1 value n2 ... value nn−1 value nn

Second phase of the data wrangling was further structuring of the data. TIOS
messages were converted from lists of strings into rows of tables. Three tables, also
known as dataframes in Python, represented one TIOS tag each. Dataframes with
their rectangular, regular structure are used in this project because they are easy
manipulate and analyse. The converting process also conducted a set of cleanings.
The nested TIOS-tags that were not needed in this project was removed. Further,
the train numbers that are not used in this project were also cleaned out. All time
record were converted from a string to a Python´s datetime object, as it is easier to
manipulate when working with date and time. Finally, missing values and NaN (not a
number) were removed from each dataframe. The three final dataframes serve as the
basis for additional calculations and analysis of the TIOS data logs, further explained
in chapter 5.4.

Three dataframes were now representing the scheduled, actual and estimated data.
Scheduled is represented in the dataframe STATION. The dataframes could then being
merged for further analysis of the data. A main key was created before merging the
related dataframes.

Key: train number, origin time and station code

The values of the nested-tags train number, origin time and station code together
make up a unique train record identifier, hence they are utilized as the combined
primary key in all dataframe merging operations. The key locates and gathers the
correct logs before merging the dataframes.

For the analyse of the TIOS traffic logs, section 5.4, further calculations were made.
See table 4.1.2 in chapter 4 for TIOS-tag descriptions. The following equations, 5.1,
5.2 and 5.3, were introduced.
The time difference between the actual departure time and the scheduled departure
time is used to calculate the actual train delay (AD).

AD = ATD − STD (5.1)
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The difference between the corresponding actual estimated departure time is used to
calculate the estimate deviation (ED).

ED = ATD − ETD (5.2)

The difference between the associated predicted departure time and the scheduled
departure time is used to calculate absolute estimate deviation (AED).

AED = ETD − STD (5.3)

As earlier mentioned, timestamps were saved and appended to each corresponding
ETD train record. The timestamps are used to delineate which estimation that should
be taken into consideration in the analyse. TIOS database receives estimated arrival
and departure time that are predicted continuously throughout a route. The estimates
are predicted both very early before and close to an actual arrival and departure. This
is because the train delay prediction model used by Bane NOR generates predictions
for the upcoming stations far in advance of their arrival. By excluding both too early
and too late generated estimates, the two models are more comparable and a more
reflective analyse can be established. Estimates predicted more than 50 minutes before
the actual departure are eliminated. Additionally, estimates predicted five minutes or
less before the actual departure are also eliminated. The longest travel between two
stations, between Heimdal and Støren, is about 38 minutes, and our model’s delay
constraint is 10 minutes, thus the time limit is set at 50 minutes. When the correlation
and accuracy of the two models are examined and compared, this constraint increases
their comparability.

5.2.1.2 TIOS pre-processed data, traffic data

Since the second TIOS data set was received in a pre-processed Excel file, the extent
of required re-formatting and re-structuring was minimal. However, certain portions
of the data had to be removed before using it for further analysis and training of the
machine learning model. Firstly, this includes detecting and removing outliers in the
data. This procedure is described in section 5.2.2.1. Secondly, delay records from base
stations had to be removed from our data set before training the prediction model.
This procedure is described in section 5.3. Common for both are presence of bias in
our data, which is highly undesirable when training a machine learning model.

5.2.1.3 Weather data

As described in the Data section, the desired weather elements were cherry-picked
for the relevant station along the railway line. The results were a pre-processed .csv
file containing the weather data. However, one major limitation of using weather
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data from MET Norway is the varying degree of data availability for different weather
elements.
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Figure 5.2.1: Data availability for four weather elements at all stop-stations along
railway line Oslo S - Trondheim. Dots indicates the missing data.

Figure 5.2.1 contains information about the missing elements in the weather data.
Dots indicate missing values for the given weather element at close proximity of the
given train station. Missing information in the data set can make processing and
analysis of the data more complicated, and it can introduce a degree of bias in the
data. One solution to this is list-wise elimination of cases with missing values. Another,
better alternative is the process of data imputation. Data imputation is defined as
the procedure of using alternative values in place of missing data (Simplilearn 2023).
There exist various data imputation techniques. Some of these include K Nearest
Neighbors, Average or Linear interpolation, etc. However, for time series data, there
are specific techniques who are more efficient and simpler than others. Time series
data have a sorted structure wherein nearby values are more comparable than far-off
ones. Therefore, the next or previous value inside the time series, in this case the value
at the next or previous station, has been substituted for the missing value. In the case
of Snow Depth at Kvam station, an average was calculated from the previous and next
station.

5.2.2 Exploratory Data Analysis

Exploratory data analysis (EDA) was introduced by John Tukey as a different ap-
proach to data analysis that deviated from the conventional use of confidence inter-
vals, hypothesis testing, and modelling. "Exploratory data analysis is actively incisive,
rather than passively descriptive, with real emphasis on the discovery of the unexpec-
ted," (Tukey 1972) according to Tukey, who views it as a philosophical approach to
managing data.

Exploratory Data Analysis is the process of examining and analysing a data set
by utilizing various statistical and graphical techniques to better understand the re-
lationships and patterns within it. While summary statistics provides a summary of
the data sets central tendency and variation, will data visualization identify patterns,
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trends, and clusters in the data. Both techniques have been used.
The three data sets were separately explored through EDA to get better insight into

and knowledge about their data properties. Key properties, like structure, granularity,
how fine/coarse is each datum, scope and temporality, how is the data situated in time,
are all important insight for both the data cleaning and further analysis. A thorough
understanding of the data enables to determine if a problem identified is minor and
can be overlooked or fixed, or whether it seriously restricts the utility of the data.
EDA was therefore preformed from an early stage of the analysis and in parallel to the
data wrangling process in every stage of the data lifecycle.

5.2.2.1 Outlier detection and removal

Some use-cases of machine learning include fraud-detection, medical diagnostics, etc.
In such cases, the goal is to detect anomalies in the data. An anomaly is a data point
which do not fit the normal pattern of the data. The goal of this project is to create
a prediction model which can predict "normal", or "everyday-delays", and not large,
unpredictable delays resulting from unforeseen events. In that sense, fitting the model
to the normal pattern of the data is essential.

The boundary values for outlier removal were calculated using box plots. A box plot
is used to show the distribution of the quantitative variables in the descriptive statistics
process (Galarnyk 2022). Box plots provide a clear and concise representation of the
distribution of the data, which can help in identifying the central tendency, dispersion,
skewness, and presence of outliers in the data. The technique is further described and
illustrated in the graphic inspection chapter 5.4.1.1.

The interquartile range (IQR) is a statistical measure of the spread of a data set.
It is calculated as the difference between the third (Q3) and the first quartile (Q1) of
the data distribution, which is the range between the 25th and 75th percentiles of the
data. The IQR method for identifying outliers is used by setting up a "fence" outside
of Q1 and Q3, or minimum and maximum values. Values outside of these boundaries
are considered outliers.

lower_boundary = Q1− 1.5 · IQR ≈ −5.075 (5.4)

upper_boundary = Q3 + 1.5 · IQR ≈ 10.005 (5.5)

Equations 5.4 and 5.5 uses Q1, Q3 and IQR to calculate the lower and upper fence
around the data, or the outlier boundary values of the data. The equations shows that
the lower and upper boundary value is set to -5.075 and 10.005 respectively.

A histogram is used to illustrate the frequency distribution of the delays against
the number of occurrences in the variable category. Its simplicity and clarity make it
a very useful graph. Histograms are further described and illustrated in the graphic
inspection chapter 5.4.1.2. Figure 5.2.2 shows the data distribution before and after
outlier removal using the upper and lower boundary values calculated using the IQR



66 CHAPTER 5. METHODOLOGY

method.

Figure 5.2.2: Data distribution before and after outlier removal.

5.2.3 Data Size

In terms of predicting train delays, the data size available for this study provides a
strong basis compared to other research articles. Having a well-sized sample is crucial
for prediction models because it ensures that the model’s estimates are reliable and
accurate. If the sample size is too small, the model may not capture the full range of
variability in the data, and it can lead to overfitting or underfitting. Overfitting occurs
when the model is too complex and fits the training data too closely, resulting in poor
generalization to new data. Underfitting, on the other hand, happens when the model
is too simple and fails to capture the underlying patterns in the data. Therefore,
having a sufficient sample size is essential for building robust, accurate, and reliable
prediction models. For a comprehensive review of data-driven approaches used to
forecast train delays, including their scope, methodology, and data size considerations,
please refer to the study by K. Y. Tiong et al. (2023a).

The three data sets all have different time span and data size, presented below:

TIOS raw data, traffic logs with train records, the total of data received con-
sisted of 814 files with the total of 251.554.101 train records. After the data
wrangling process, the data size constituted 2.715.816 train records.

TIOS pre-processed data, traffic data, the total of data received was pre-processed,
consisting of 328 675 train records.
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Weather data, daily weather data were gathered from the Norwegian Meteorological
Institute, for four different weather elements:

Temperature A total of 13 673 data records.

Precipitation A total of 14 202 data records.

Snow depth A total of 9 468 data records.

Wind A total of 12 624 data records.

Due to the varying availability of data for the different elements, data imputation
methods were utilized to get a complete data set. This procedure is described in
the Analysis section.

5.3 Feature Engineering

Feature engineering is the process of transforming raw data into features that can be
used to improve the performance of machine learning algorithms. A feature is a vari-
able used to describe some aspect of a data object (G. Dong and H. Liu 2018). E.g.,
in the case of time series data describing a railway line and its occupying trains, a
feature could be time-and-space related, or related to the trains’ physical attributes.
The quality of the features can have a significant impact on the accuracy of the mod-
els. G. Dong and H. Liu (2018) defines feature engineering broadly as a workflow that
could include several phases such as feature transformation, feature generation, fea-
ture selection, feature analysis and evaluation. When performing feature engineering
techniques on your data, domain knowledge is essential in order to effectively extract
meaningful features from the raw data.

Domain knowledge has been gained from the TIOS pre-processed data through an
EDA. The data set spans from January 1st 2021 to February 28th 2023, and the data
was received pre-processed and formatted in a .csv file containing 328675 rows and 13
columns.

Figure 5.3.1: Plotting target variable, departure delay, before cleaning the data.
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Variable Description
Year The year the train journey took place
Date The date the train journey took place
Train_num The identification number of the train
Sequence The order of the train in a particular journey
Station The name of the train station
Station_code The code associated with the train station
Planned_arr The planned arrival time at the station
Actual_arr The actual arrival time at the station
Planned_dep The planned departure time from the station
Actual_dep The actual departure time from the station
Train_set The identification number of the train set
Arr_delay The delay in arrival time
Value The value to be predicted by the model, called the target

variable, the delay in departure time

Table 5.3.1: Received data set format

The problem at hand is predicting the departure delay at every stop-station, i.e.
stations where passengers can board and exit the train, along the railway line from
Oslo to Trondheim. The line consists of 67 stations, where 20 of them are passenger
stations, and the remaining 47 stops are base stations. An immediate thought was to
exclude the base stations from the data set, as predicting delays at these locations is
not of interest. As one can observe from 5.3.1, there exists negative departure delays
in the data set. This means that sometimes trains leave the train station before the
scheduled time, which is a major inconvenience for passengers. After analysing the
data, a total of 44 332 occurrences of negative departure delays were found. However,
only 7 723 of these corresponded to delays at stop-stations. In practice, a negative
delay at a base station could mean bigger dwell times at stop-stations, which again
means higher probability of departing the stop-stations without any delays. Therefore,
the departure delay at the preceding base station at a given stop-station should be
used to inform the model about possibilities of future departure delay. A new feature
is created, delay_grad, and if the delay at the preceding base station is:

∀Delays =


< −5minutes delay_grad = 1

≥ −5and < 1minutes delay_grad = 2

≥ 1and ≤ 5minutes delay_grad = 3

> 5minutes delay_grad = 4

This feature, known as ’delay_grad’, was included at a later stage of the modelling
process, as it was hypothesized that additional information about past delays could
significantly affect the predictions. For clarity and enhanced comprehension through-
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out this thesis, this term will henceforth be referred to as delay classification. After
this feature is extracted from the departure delay at base stations, the delays are ex-
cluded from the data set. This is due to the bias they create in the data, as it is
not preferable for the model to potentially predict negative delays at stop-stations.
This means a big reduction in data size, but it preserves the integrity of the data that
should be used to train the model.

Before starting the feature transformation phase including deriving new, useful
features out of existing ones, the model needs to be informed that there are trains
going in both directions, north- and southbound. It is sufficient to create a binary
variable indicating the direction. Next, the "station" column is encoded into numerical
values, and columns which are deemed statistically insignificant are discarded. The
Python library Pandas and its functions set_index() and to_datetime() is used to set
the "Date" column as DatetimeIndex with assigned Timestamps.

Additionally, all features should be converted into the correct data types enabling
the model to understand the data it is being fed. This includes converting strings
from the data set into integer or float types. Also, the DatetimeIndex objects can
be used to extract features such as "day_of_week" and "week_of_year" using built-
in functions from the Pandas library. Additionally, index.date can be used to extract
data about holidays, which could potentially result in higher demand and thus increase
possibilities for delays. Finally, index.hour is transformed into cyclical hour_sine and
hour_cosine time features to let the model know that 23:59 is close to 00:01, etc.

A final, popular feature engineering technique is employed - adding lagged obser-
vations, or time-lags of the target variable to the feature space. The idea is that
there is often patterns or trends in the time series data that can be used to make
predictions of future values. Looking at past values of the target variable can help the
model in identifying these patterns and use them to make informed forecasts. Finding
an optimal number of these time-lags to include as features could help optimize the
predictive performance of the model. The number of time-lags to include is highly
dependent on the nature of the data and the model, hence finding a standard which
count for all models is infeasible. The effect of including these values will be further
analysed when performing the correlation analysis. As time lags and auto-correlation
are closely related concepts in time series analysis, the correlation coefficient will likely
be large. What is interesting, however, is to analyse and assess the coefficient as the
time-lag window increases, and to assess the impact of increasing that window. This
was done in the specialization report by Sørskår (2022), which found that the optimal
time-lag window size in this particular predictive task is set to 5.

The station-to-integer mapping used on the train station column is also used to
encode the corresponding weather stations in the weather data retrieved from MET
Norway. The weather data should be merged with the train data to include the weather
elements in the feature space. This is done using the Pandas merge() function on one
Dataframe containing the train data, and one Dataframe containing the weather data.
The Dataframes are joined on the "Date" and "Station" columns. The original train
data set is preserved as a copy, so that the effect of including the weather elements
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can be further analysed through correlation analysis. This method will be further
discussed in the Analysis section.

Figure 5.3.2 depicts the reduction of rows as a result of various procedures during
the data wrangling, EDA and feature engineering phases. The data was received at
step 0. Step 1 included removing base stations in between stop stations, as described
in this section. Step 2 included removing NaN values from the merged weather data.
Finally, step 3 included removing outliers from the data using the outlier boundary
values described in section 5.2.2.1.

Figure 5.3.2: Reduction of rows through data wrangling, EDA and feature engineer-
ing

After performing EDA, and feature engineering techniques, the data has been trans-
formed from a 2-dimensional Excel table to a 2-dimensional Dataframe with the fol-
lowing shapes: (328675, 13) → (67310, 18). The final data set and its feature space is
described in table 5.3.2.

It is important to note that the delay classification feature was introduced into the
feature space at a later stage of the modelling process. This was done to scrutinize its
effect on the overall predictive performance. Consequently, two different models were
built and trained: the LSTM model, which does not include the delay classification
feature, and the LSTM model, which includes the delay classification feature.
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Variable Description

value The target variable, departure delay

Delay_grad Delay classification. Categorical variable indicating de-
gree of delay from the previous base station

Train_num The id of the train

Station The id of the train station

Direction A binary variable indicating which direction the train is
moving in

Temp The daily mean temperature in degrees Celsius

Prec The daily sum of precipitation in mm

Snow A daily measurement of snow depth in cm above ground

Wind The daily mean wind speed in m/s

Lag1 - Lag5 The values of the target variable from the previous 5
time steps

Day_of_week The day of the week

Week_of_year The week of the year

Hour_sine,
hour_cosine

The sine and cosine of the hour of the day

Is_holiday A binary variable indicating whether the day is a holiday

Table 5.3.2: Data set after performing feature engineering

5.4 Analysis

Several analyses have been performed in order to comprehend the data. The proced-
ures, methods, and tools are described in the following sections. Section 5.2.1 describes
how the data set was prepared to the analyse phase.

5.4.1 Graphical Analysis

Graphical analysis was used to better visualize and understand the train records data
and the quantitative variables. Different graphical tools depict different data features
such as trend, frequency, dispersion, and distribution shape.

5.4.1.1 Box Plot

Box plot is used to show the distribution of the quantitative variables in the descriptive
statics process (Galarnyk 2022).
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Figure 5.4.1: Box plot figure which demonstrates the minimum, maximum, first
quartile Q1, third quartile Q3, median and outliers

The box plot’s graphical appearance conveys the following characteristics of the
data distribution:

Median, the middle value of the data set.

First Quartile, Q1÷ 25th percentile, the middle number between the smallest num-
ber, not minimum, and the median of the data set.

Thrid Quartile, Q3÷75th percentile, the middle value between the median and the
highest value, not maximum, of the dataset.

Interquartile Range, 25th to 75th percentile.

Whisker, the two horizontal lines out of the box, representing the scores outside
the middle 50th percentile, i.e. the lower 25th percentile and the upper 25th

percentile of the scores.

Outliers, values that is numerically distant from the rest of the data.

Maximum, Q3 + 1.5 · IQR, the highest score excluding outliers.

Minimum, Q1− 1.5 · IQR, the lowest score excluding outliers.

The different components of the box plot are displayed in figure 5.4.1. A visual
representation of the data distribution is provided by box plots, which split the data
into sections with bottom and upper whiskers, first and third quartiles each containing
around the 25th percentile of the data set. Box plots show the location, spread, and
skewness groups and provide brief explanations of the sample and data measurements.
The box plots were created using the Python Library module Plotly since it prohibits
interactive data display and enables both graphical and descriptive statistics.
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5.4.1.2 Histogram

A histogram is a graph that displays the values of a numeric variable’s distribution as
a collection of bars (J. Chen 2023). A variety of classes are divided into columns along
the horizontal x-axis in the bar graph representation of the data. The numerical count
or percentage of occurrences for each column in the data are shown on the vertical
y-axis. Usually, each bar represents a range of numerical values. Each bar’s height
represents the proportion of data points that have values that fall into a certain bin.
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Figure 5.4.2: A histogram in which values from a collection of data are separated
into bars of the same length as their frequency.

5.4.2 Correlation Analysis

Correlation analysis is a statistical technique that is used to determine the strength
and direction of the relationship between two or more variables. Correlation analysis
is used to understand the distributional characteristics of train operations for both
the current used train delay prediction model and our developed model. By analysing
the relationships between the quantitative measurements actual delay and absolute
estimate deviation, the correlation strength is measured for each model using a nu-
merical value called the correlation coefficient. This allows gaining insights into the
distributional characteristics of train operations on the route and compare the results.

Significant relationships between measurements and estimations are shown by strong
correlations. Finding the directions and strengths of the link might also help future
study to focus its results. A correlation analysis can have one of three outcomes:

Positive correlation, if an increase in one variable leads to an increase in the
other.



74 CHAPTER 5. METHODOLOGY

Negative correlation, if an increase in one variable leads to an decrease in the
other.

No correlation, there is no relationship between the two variables.

Pearson correlation coefficient is used to measure the correlation because of the
linear relationship between the two quantitative variables. There is a linear relationship
between two variables if a change in one is proportionate to a change in the other.
Equation 5.6 is a formula for calculating the Pearson correlation coefficient r:

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(5.6)

A Pearson coefficient value of 1 represents a perfect positive relationship, -1 a
perfect negative relationship, and 0 indicates the absence of a relationship between
variables. The interpretations of the relationships strength, commonly referred to
as the effect size, reveal the practical significance of the outcome. Correlation is an
effective size and the most common way of determining linear correlation. The guide
by Evans (1996) suggests the following evaluation for the absolute value of r ∈ :

[0.00, 0.19] [0.20, 0.39] [0.40, 0.59]

weak moderate strong very strong

[0.60, 0.79] [0.80, 1.00]

very weak

Figure 5.4.3: Evaluation of absolute value of the Pearson Correlation Coefficient.

5.5 Prediction Methodology

Departure delays at Stationt+n is predicted based on time lags from the n previous
stations, as illustrated in figure 5.5.1, in addition to other features. After completing
the initial EDA and feature engineering techniques, the last step of the data prepara-
tion process is to scale and split the data. Subsequently, the model architecture needs
to be defined and built in Python. Then the model has to be trained on the prepared
data set, before techniques for evaluating the model performance is described.

5.5.1 Data Scaling and Split

It is common that the features of a data set contain data with on different scales.
Column A could for instance contain integers valued up to 1000, while column B could
contain floats valued up to 1.5. This difference in scale can cause disarray during
training of the model, potentially resulting in inaccurate predictions. To mitigate
this issue, all the data is scaled to help normalize the data. In this case, all features
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are scaled using the MinMax Scaler into a range between 0 and 1 (Bisong 2019).
This benefits the model particularly in two ways. Firstly, the model avoids large
weight update during training making the model converge more smoothly. Secondly,
it improves generalization enabling the model to learn underlying patterns in the data
more efficiently.

Figure 5.5.1: Using time-lags to predict departure delay at Stationt+n with a window
size of n=3, at t=1,2,3,4 timesteps.

The data is typically split into three sets: training set, validation set and test set,
with each serving its own purpose. During training, the model’s trainable parameters
are updated based on the error between the predicted output and the actual target
value. When the data is split, it creates two vectors for each set; X and Y , where X

contains all variables, or features, which the model is going to base its predictions on,
and Y contains the target variable, in this case the departure delay. The model tries
to approximate a function f on input X such that

f(X) ≈ Y (5.7)

Minimizing the error on the training set alone can lead to overfitting, which means
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performing well on the training set alone but poorly on new, unseen data. Therefore,
the model is evaluated on the validation set during training, to assess the generalization
performance of the model, which is crucial for accurate predictions post-training. After
training is completed, the loss from both the training set and the validation set is
typically compared in a loss curve. Also, the test data is fed into the model in order
to generate predictions and evaluate the performance.

5.5.2 Modelling

In this thesis, a LSTM model is tasked with predicting departure delay at stop stations
along the railway line Oslo - Trondheim. The model was built using the Python library
PyTorch. The model consists of three LSTM layers and one fully-connected layer from
the torch.nn module, which provides building blocks for machine learning models.
Table 5.5.1 and figure 5.5.2 shows the architecture and parameters of the model.

Parameter Value
Input dimension 20
Output dimension 1
Number of layers 3
Number of hidden units 64
Dropout probability 0.2
Learning rate 0.0001
Weight decay 0.000001
Number of epochs 50
Optimiser Adam
Loss function MSE
Activation function Tanh

Table 5.5.1: Model architecture and parameters

The parameters are explained in further detail in appendix F. The LSTM layers
all have 64 hidden units, or neurons. The first LSTM layer takes the data as input,
and performs the mathematical calculations on the input data, illustrated in figure
2.4.3 and further explained in appendix F. The data is then propagated through the
entire network. The fully-connected layer, or the output layer is tasked with taking
the output of the last LSTM layer as input, and produce a one-dimensional output,
or the final prediction of the model.

5.5.3 Training the Model

The training procedure can start once the model architecture and optimization para-
meters are defined. During training, the model is fed batches of training data, and
these are forward-propagated through the model network. The loss function, mean
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squared error (MSE,) is used to calculate the error between the predicted output and
the actual value:

L =
1

n

n∑
i=1

(yi − ŷi)
2 (5.8)

Where yi is the actual value at timestep i and ŷi is the predicted value at timestep i.
The goal of the training process is to minimize the loss function. This is done using an
optimisation algorithm. In this case, the Adam optimizer is chosen, due to its fast and
efficient convergence during training. The optimizer updates the model’s parameters,
the weights and biases connecting the neurons, in the direction of the negative gradient
of the loss function with respect to the parameters. The parameters are updated using
backpropagation through time (BPTT). Once the parameters are updated and the
error has been minimized, the next iteration of the training process begins. This
involves feeding the next batch of data through the network, computing the loss, and
performing backpropagation to update the parameters again. This process is repeated
until the specified number of epochs is reached, or the validation loss stops improving.
The training procedure and the various parameters are explained in further detail in
appendix F. Once the training is complete, the final trained model can be used for
making predictions on the unseen test data.

Input Data

Dimension:

Number of features

LSTM LSTM

LSTM layers Fully connected layer /

Output layer

LSTM FC

Loss

MSE

MSE = mean squared error

Back Propagation

20 64 64 64 1

64 neurons 64 neurons64 neurons

Number of hidden nodes
Forward propagation

Data set

Target Value Y

Figure 5.5.2: LSTM model architecture

5.5.4 Hyper-parameter Tuning and Evaluation

Deep neural networks like LSTMs depend on a wide range of hyper-parameters to be
chosen wisely for optimal performance. Some of these parameters include choices about
the network architecture, the input data, regularization and optimization (Feurer and
Hutter 2019), as shown in table 5.5.2. According to L. Yang and Shami (2020), se-
lecting the optimal hyper-parameter configuration has a direct impact on the model’s
performance.

There could be many possible factors causing sub-optimal prediction perform-
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Parameter Category
Number of LSTM layers Network architecture
Number of hidden units Network architecture
Activation function Network architecture
Dropout probability Regularization
Weight decay Regularization
Learning rate Optimization
Optimiser Optimization
Loss function Optimization
Number of epochs Optimization
Data-split configuration Input data

Table 5.5.2: Hyper-parameter categories

ance. The hyper-parameters involving the network architecture define the depth and
complexity of the model and its ability to capture complex patterns in the data.
Optimization-related parameters include the learning rate, the optimiser algorithm
and the loss function. If the parameters are not well configured, the model could fail
to converge to a good solution. The data-split configuration, i.e. the portion of the data
which is used for training, validation and testing, is also important. If, for instance, the
training portion is too low, the model could struggle with capturing sufficient amount
of patterns in the data, and the performance would be poor when evaluated on the
test data. On the other hand, if the training portion is too big, the model could overfit
on the training data and fail to generalize, struggling with performing inference on
new data. If regularization parameters are properly defined they could help prevent
overfitting. As previously stated, a well composed set of hyper-parameters could easily
improve the performance of the model.

One common method for hyper-parameter tuning is the grid search technique
(Bergstra and Yoshua Bengio 2012). Grid search is a systematic approach that involves
searching through a predefined set of hyper-parameter values, evaluating the perform-
ance of each combination, and selecting the best-performing set of values. By perform-
ing an exhaustive search, grid search can help identify optimal hyper-parameters that
lead to improved model performance. However, this technique can be computationally
expensive, particularly when dealing with a large number of hyper-parameters and a
wide range of values. To mitigate this, a more efficient alternative such as random
search or Bayesian optimization can be employed. In this study, grid search was ad-
opted for hyper-parameter tuning due to its comprehensiveness and simplicity. The
chosen hyper-parameters and their respective ranges are listed in table 5.5.3. During
the grid search process, the model undergoes training with multiple configurations of
these hyper-parameters, and their effectiveness is assessed by evaluating model per-
formance on the test data. Based on the evaluation metrics MAE and RMSE, the
best-performing hyper-parameter combination will be selected and used for the final
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model.

Hyper-parameter Value Ranges

Learning rate 0.001, 0.0001

Number of LSTM layers 2, 3, 4

Number of hidden units 64, 128, 256

Number of epochs 20, 30, 40, 50

Dropout probability 0.1, 0.2, 0.3

Data-split 80-10-10, 70-15-15

Table 5.5.3: Grid search hyper-parameter setup

A common practice for train-val-test splitting, as suggested by Goodfellow et al.
(2016), is to use approximately 60-80 percent of the data for training, 10-20 percent for
validation, and 10-20 percent for testing. However, these proportions can be adjusted
depending on the size and characteristics of the data set. The proportions which
were deemed optimal in this particular case were 70-15-15 percent for the training-,
validation- and test set respectively.

To ensure accurate future predictions, it’s vital to evaluate the model’s ability to
generalize to new data. Performance metrics, such as Mean Average Error and Root
Mean Squared Error, will be explained in further detail in section 5.5.6. Another
common way of diagnosing the performance, is through learning curves. A learning
curve is a plot of model learning performance over time, or epochs of training, typically
both for training- and validation loss. Examples of learning curves demonstrating
underfitting and overfitting of the data is shown in figure 5.5.3.
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Figure 5.5.3: Learning curves illustrating underfitting and overfitting of the data

5.5.5 Bane NOR´s Train Delay Prediction Model

The train delay prediction model that are being used on the Norwegian railways today
is part of the KARI-system, developed by an external German company called Funk-
werk. KARI-system has a goal to ensure that passengers nationwide are provided with
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visual and acoustic real-time information on rail services (Group 2023). Like all the
other functions, the train delay prediction model is subdivided into an independent
software subsystem and mapped centrally via a user-friendly interface. An illustration
of the data flow in Funkwerk´s system can be found in figure 4.1.1.

The train delay prediction model from Bane NOR uses an event-driven method-
ology to clearly record the relationships between train events. The model is created
upon a system of linear equations, with an iterative process and multi-step forecasts,
to predict train delays. The ability to foresee impending railway accidents has a direct
bearing on how long delays will last. The objective is to capture the processes and
constraints for the dynamics of rail operation.

The estimates are being generated based on either GPS information from the train
every 10 seconds, information from sensor trigger points, or manual information regis-
tration by the train dispatcher or the train driver. The following stations are auto-
matically updated when an estimate at one station is updated, including the lead-in
time between and at the stations. The estimate is made right away, however the client
information is not displayed before the delay exceeds 1 minute 59 seconds. Addi-
tionally, the system uses a rounding requirement, where it don’t show seconds on the
customer’s display, making 5 minutes and 45 seconds seem as 5 minutes. This only
applies to client information, not to data in the TIOS database.

The model’s delay predictions begin with the route plan and Operation Control
Points (OCP). Each OCP has the following attributes:

STA/STD (Scheduled Time of Arrival/Departure): These are the pre-defined arrival
and departure times for each OCP based on the route plan.

runTimes minimalTime : This indicates the minimum time the train can travel
between two OCPs.

operationalReserve : This represents the "slack" time or the extra time available
between the planned departure time and the next arrival, considering the min-
imum travel time between OCPs.

stopTimes minimalTime : If the train stops at an OCP, this value indicates the
minimum time the train should remain stationary.

Figure 5.5.4 illustrates a simplified specific case on how the model by Funkwerk
calculates further train delays on the route. The model uses predefined parameters
and Operational Control Points (OCPs). OCPs are specific points along the route
plan that are used to represent necessary driving patterns. The general basis for
the predictions is calculated similarly for all locations. However, when GPS data is
available, the model can provide a more accurate prediction for the nearest OCP, which
doesn’t necessarily correspond to a station.
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Calculate delay:

delay = time            - t 

           = 10:36:47 - 10:31:16
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Calculate arrival time on current segment:

arrival      = time         + (arrival  - departure  -  or  )  rest 

                 =10:36:47+(10:33:00-10:30:00-00:00:20) (100-42)%         

                 =10:36:47+00:01:33

                 =10:38:20



Consider minimum stop time on stop x for departure:

departure    = arrival   +  min_stop_time 
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Figure 5.5.4: Specific case illustrating how the train delay prediction model is cal-
culating further delays.

The model calculates delay predictions based on the above-mentioned parameters
and uses the GPS data to refine the predictions between established TIOS reference
points. First, the reference time for position is calculated, using scheduled time of ar-
rival and departure based on the pre-defined route plan, the train´s position progress
and the timestamp. When GPS data is available, the model uses it to improve the
delay predictions for the nearest OCP. The arrival time on the current segment is then
calculated where the operational reserve is being considered. The use of GPS data en-
sures that real-time information about the train’s location and speed is incorporated
into the predictions, making them more accurate. Calculations for further propaga-
tion on the subsequently segments then follows. An example on further propagation
calculations for the specific case can be found in figure 5.5.5. Additionally, the ori-
ginal figures prevented by Funkwerk, achieved from Bane NOR, can be found in the
appendix C.
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Example propagation calculation: 
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11:02:35  ( + 01:35 )

11:02:35  ( + 01:35 )

Segment

Figure 5.5.5: Example on propagation delay estimation based on the calculations
from the specific case.

5.5.6 Performance Metrics

Two common performing metrics were used in both analysis and feature engineering
phase, to determine whether the model was a good fit to the data or not. Further, the
metrics gives a review of the models them self, in addition to being good indicators
when comparing with other prediction models, both in this and in other researches.

The performance metrics mean average error (MAE) and root mean square error
(RMSE) (JJ 2022) are described below and shown in the respectively equations 5.9
and 5.10. When taking into account the predicted and observed times, the prediction
models’ accuracy is assessed using both MAE and RMSE. These parameters, accord-
ing to Handelman et al. (2019), are a gauge of how well the regression line fits the
data and produces accurate predictions.

MAE, Mean Average Error, determines the average magnitude of the errors in the
models’ predictions without accounting for their directional component. When consid-
ering the average of the absolute differences between prediction and actual observation
in the test sample, all individual deviations are given equal weight.

RMSE, Root Mean Square Error, is a quadratic scoring formula that determines
average error magnitude. The average squared discrepancy between the predicted res-
ult and the actual observation is what determines this.
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MAE ==
1

N

N∑
k=1

|ŷk − yk| (5.9)

RMSE ==

√√√√ 1

N

N∑
k=1

(ŷk − yk)1 (5.10)

where yk and ŷk respectively represents the actual delay and absolute estimate
deviation. Both metrics can range from 0 to ∞ where a lower MAE and RMSE
indicates more “accurate” predictions, lower “average loss” across data, and a better
performance of the model. However, there isn’t an universally accepted definition of a
good score because MAE and RMSE are returned on the same scale as the predictions.
The evaluation of the score is in other words defined within the context of the dataset.
From the related research on train prediction models, MAE equals to When errors are
squared before being averaged, RMSE lends comparatively significant weight to large
errors. This shows that observations that are farther from the mean are more likely to
cause the RMSE to increase. You can reach a low RMSE only by having both a high
precision and no systematic error. Furthermore, the errors have a wider range and are
more evenly distributed the further apart the MAE and RMSE are.

5.6 Methods and tools

The following methods and tools are used in data management, analysis and feature
engineering phases.

Python is a popular computer language for data research and data management.
Python was chosen for this project because of its large open-source modules that
are appropriate for scientific computing and data analysis and its convenience of
use due to its many uses, including ease of analysing and organizing the data. In
this project, libraries like Pandas, NumPy, Matplotlib, and Pythouch are used.

Jupyter is a web-based notebook interface made by JupyterLab. It was a useful tool
to use because of its programming approach, which allows for the execution of
specific sections of code without running the entire program. The interface’s
ability to work with a variety of tools and programs is helpful in a number of
circumstances, including the collecting, cleaning, analysing, and displaying of
data.

Pandas is an open source Python library that supports processing tabular data and
is based on the Python programming language. As it supports data processing,
cleansing, and munging, Pandas is one of the fundamental libraries in any work-
flow for data science projects.

BeatifulSoup is a Python library to extract data from HTML and XML files. To
enable idiomatic means of exploring, finding, and updating the parse tree, it
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collaborates with external parsers. The library and the ’lxml’ parser were used
to navigate and search through the data throughout the data cleaning process,
which greatly reduced the amount of time required.

Plotly is the Python library for interactive data visualizations, effective at describing
and examining data. Trends, patterns, and linkages in the data collection are
easier to identify, comprehend, and express thanks to the visualization tool. Box
plots have been created using Plotly.

NumPy is a library in python which offers mathematical functions, random number
generators, linear algebra routines, and more. NumPy is often used working with
arrays, and the functionality within the domain of linear algebra makes it highly
relevant for machine learning projects.

Google Maps API include a set of programming interfaces and tools provided by
Google which allows developers to embed Google Maps in their own applications.
It has been utilized for geo-coding, which means converting addresses (or names
of train stations in this example) into a set of geographic coordinates.

PyTorch is an open source machine learning framework in python. It is used for
building and training deep neural networks. PyTorch offers several key features
including support for GPU acceleration, dynamic computation allowing network
architecture modification on-the-fly, and it has a large community which provides
access to vast amounts of resources.

Scikit-Learn is a popular open-source machine learning library in python. It is built
on top of NumPy, SciPy and matplotlib, and provides a range of tools and
algorithms for data analysis. The algorithms include regression, clustering and
dimensionality reduction algorithms which are commonly used in the feature
engineering phase of a machine learning project.

5.7 Pipeline

To provide a comprehensive overview of the project from start to finish, a visual
representation tool known as a pipeline has been developed to demonstrate all the
stages involved. This is visually depicted in figure 5.7.1. The green pipes in the centre
of the illustration, with arrows flowing from left to right, represent the main path
from the start to the end. These are the primary procedures. Different processes are
outlined for each green pipe, one for each data set process. The figure is also divided
to signify two main categories: data retrieval and data management to the left, and
analysis to the right. This division aids in delineating the various stages of the project
for a clearer understanding.
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Figure 5.7.1: Python pipeline of the project from start to end.
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CHAPTER

SIX

RESULTS

Results from each phase in the study are presented in this chapter. First, the results
from the LSTM train delay prediction models and their performance statistics are
presented. Then, the analysis of Bane NOR´s model is presented. Finally, some
graphic inspection with comparison of the two results is presented. Outliers in the
data set is removed using the boundary values presented in section 5.2.2.1. Likewise,
delays exceeding the boundaries is removed from the data used in the analysis of Bane
NOR’s model.

6.1 LSTM Model

This section presents the results from the LSTM models which has been developed and
trained on the TIOS pre-processed data. As mentioned in section 5.3, two separate
models have been trained: the LSTM model, which does not include the delay classi-
fication feature, and the LSTM model, which includes the delay classification feature.
Both these models have in turn been trained separately with weather data included in
the feature space, and without it. This was done to evaluate the effect of including an
external factor, weather, aiming to increase the predictive accuracy of the model. The
results include learning curves from the training phase of the LSTM models, which
are used to evaluate their ability to generalize on the data. Additionally, results from
the correlation analysis will be presented. Finally, the Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) for both models will be calculated and presen-
ted. As the learning curves for the LSTM model and the LSTM model were nearly
identical, results from the LSTM model is presented below.

6.1.1 With Weather Data

In this subsection, the results of the LSTM model that includes weather data in the
feature space are presented. Figure 6.1.1 shows the learning curves for this model
during the training phase. The figure demonstrates that as the number of epochs

87
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rises, the training and validation losses converge, demonstrating that the model is
successfully learning from the data.

Figure 6.1.1: Learning curve for the LSTM model. Training data includes weather
data.

Figure 6.1.2: Comparing the predicted delays with the actual values.

Figure 6.1.2 presents a plot comparing the predicted train delays with the actual
values. Visually analyzing the plot allows one to evaluate the general accuracy of the
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predictions and observe any patterns or disparities between expected and observed
delays. Upon close examination of the plot, it becomes evident that the model has
barely predicted any negative values. While 8 % of the actual values are negative, only
0.5 % of the predictions are negative.

Table 6.1.5 presents the MAE and RMSE values for the model with weather data.
These metrics provide a quantitative measure of the model’s performance in predicting
train delays. In order to assess the effects of including weather condition information,
it is essential to compare these values with the model that does not contain weather
data, where a lower number for both MAE and RMSE implies better and more accurate
performance.

6.1.2 Without Weather Data

In this subsection, the results of the LSTM model that does not include weather data
in the feature space are presented. Figure 6.1.3 shows the learning curves for this
model during the training phase. The training and validation losses converge as the
number of epochs rises, similar to the model using weather data, indicating that the
model is also successfully learning from the data.

Figure 6.1.3: Learning curve for the LSTM model without weather features included
in data set.

Figure 6.1.4 presents a plot comparing the predicted train delays with the actual
values. Similar to 6.1.2, the model without weather data also tends to predict positive
delays. Although the training data contain a small percentage of negative delays, the
portion of negative predictions are far smaller than for the actual values. This finding
will be discussed in the discussion.
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Figure 6.1.4: Comparing the predicted delays with the actual values.

6.1.3 Hyper-parameter Tuning

Table 6.1.1 shows the performance of the LSTM model for four different hyper-
parameter configurations. These configurations represent the best-performing among
numerous other configurations calculated using grid search. The table displays the
selected hyper-parameters from table 5.5.3, including learning rate, number of LSTM
layers, number of hidden units, number of epochs, dropout, and data-split, as well as
the resulting mean absolute error (MAE) and root mean squared error (RMSE) for
each configuration.

Hyper-parameter Config 1 Config 2 Config 3 Config 4
Learning rate 0.001 0.0001 0.0001 0.0001

Number of LSTM layers 4 4 3 3
Number of hidden units 64 128 64 64

Number of epochs 30 40 50 50
Dropout 0.2 0.1 0.2 0.2

Data-split 70-15-15 70-15-15 70-15-15 80-10-10

MAE (min) 1.18 1.19 1.21 1.18
RMSE (min) 1.73 1.69 1.70 1.70

Table 6.1.1: Hyper-parameter configurations and performance

It is essential to note that the differences in performance between the four configur-
ations are relatively small. However, the best-performing configuration, Configuration
4, is chosen for its slightly better performance in terms of both MAE and RMSE.
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These results demonstrate the importance of hyper-parameter tuning for LSTM mod-
els, as it can help identify configurations that yield improved prediction accuracy.
The grid search method used in this study allowed for an extensive exploration of
the hyper-parameter space, and the inclusion of only the top four configurations in
the table highlights the effectiveness of the method in selecting the best-performing
configurations.

6.1.4 Correlation

In this section, the correlation between the LSTM and the LSTM model’s predictions
and the actual train delays are assessed, as well as the correlation between weather fea-
tures and train delays. This analysis provides insights into the relationships between
the variables and helps explain the performance differences between the two LSTM

models: one with weather features and one without. Additionally, correlations are
calculated between actual train delays, predictions and the lagged target value obser-
vations, before and after including the delay categorisation feature, delay_grad.

Firstly, Pearson correlation coefficients were computed between each weather fea-
ture, the actual train delays, and the LSTM model predictions.

Actual Delay Prediction
Temp rtemp,d = −0.071 rtemp,p = −0.137

Prec rprec,d = 0.014 rprec,p = 0.005

Snow rsnow,d = 0.016 rsnow,p = 0.022

Wind rwind,d = 0.056 rwind,p = 0.107

Table 6.1.2: Pearson correlation coefficients between actual delays, predictions, and
weather features for the LSTM model.

All four weather features showed weak correlations with both actual delay values
and predictions. Temperature (Temp) had a correlation of rtemp,d = −0.071 with
actual delay and rtemp,p = −0.137 with predictions. Precipitation (Prec) showed a
correlation of rprec,d = 0.014 with actual delay and rprec,p = 0.005 with predictions.
Snow had a correlation of rsnow,d = 0.016 with actual delay and rsnow,p = 0.022 with
predictions. Lastly, Wind had a correlation of rwind,d = 0.056 with actual delay and
rwind,p = 0.107 with predictions.

The correlations between predictions, actual delay, and lagged delay observations
were computed for both LSTM models, with and without weather data.

Subsequently, the delay classification feature were added to the correlation analysis.
This addition was included to explore the potential influence of additional recent delay
trends on the LSTM model’s predictions and actual train delays.

When comparing the tables 6.1.3 and 6.1.4, the correlation coefficient between
actual delays and predictions for the LSTM model with and without weather data has
increased from rpredw = 0.564 and rpred = 0.618 to r̄predw = 0.694 and r̄pred = 0.735,
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LSTM With Weather LSTM Without Weather
Actual Delay Prediction Actual Delay Prediction

Actual Delay rdelw = 1.000 rpredw = 0.564 rdel = 1.000 rpred = 0.618

Prediction rpredw = 0.564 rdelw = 1.000 rpred = 0.618 rdel = 1.000

Time Lag 1 rtl1wd
= 0.547 rtl1w = 0.955 rtl1d = 0.604 rtl1 = 0.973

Time Lag 2 rtl2wd
= 0.327 rtl2w = 0.620 rtl2d = 0.396 rtl2 = 0.649

Time Lag 3 rtl3wd
= 0.210 rtl3w = 0.401 rtl3d = 0.210 rtl3 = 0.338

Time Lag 4 rtl4wd
= 0.149 rtl4w = 0.263 rtl4d = 0.200 rtl4 = 0.295

Time Lag 5 rtl5wd
= 0.113 rtl5w = 0.168 rtl5d = 0.182 rtl5 = 0.230

Table 6.1.3: Correlation coefficients for the LSTM model with and without weather
data

LSTM With Weather LSTM Without Weather
Actual Delay Prediction Actual Delay Prediction

Actual Delay r̄delw = 1.000 r̄predw = 0.694 r̄del = 1.000 r̄pred = 0.735

Prediction r̄predw = 0.694 r̄delw = 1.000 r̄pred = 0.735 r̄del = 1.000

Delay_grad r̄dgwd
= 0.273 r̄dgw = 0.415 r̄dgd = 0.288 r̄dg = 0.385

Time Lag 1 r̄tl1wd
= 0.547 r̄tl1w = 0.836 r̄tl1d = 0.604 r̄tl1 = 0.855

Time Lag 2 r̄tl2wd
= 0.327 r̄tl2w = 0.524 r̄tl2d = 0.396 r̄tl2 = 0.561

Time Lag 3 r̄tl3wd
= 0.210 r̄tl3w = 0.338 r̄tl3d = 0.271 r̄tl3 = 0.399

Time Lag 4 r̄tl4wd
= 0.149 r̄tl4w = 0.232 r̄tl4d = 0.200 r̄tl4 = 0.295

Time Lag 5 r̄tl5wd
= 0.113 r̄tl5w = 0.137 r̄tl5d = 0.182 r̄tl5 = 0.230

Table 6.1.4: Correlation coefficients for the LSTM model with and without weather
data

respectively. Interestingly, for the model with weather data, the delay classification
feature demonstrated a correlation of r̄dgwd

= 0.273 with actual delays and r̄dgw = 0.415

with predictions, indicating a moderate positive relationship. However, the inclusion
of the delay classification led to a slight reduction in correlation coefficients for the time
lags. For instance, the correlation of Time Lag 1 with actual delays and predictions
dropped to r̄tl1wd

= 0.547 and r̄tl1w = 0.836, respectively. This reduction continued
with each subsequent time lag, suggesting that the delay classification feature might
be capturing some of the information that was previously accounted for by the time
lags.

For the LSTM model without weather data, the delay classification feature demon-
strated a correlation of r̄dgd = 0.288 with actual delays and r̄dg = 0.385 with predic-
tions. The correlation coefficients for the time lags also reduced upon the inclusion of
delay classification, in a similar pattern observed in the model with weather data.

In summary, the inclusion of the delay classification feature appears to enhance
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the correlation between actual delays and predictions for both models. However, this
addition also seems to reduce the correlation coefficients for the time lags, suggesting
a shift in the models’ reliance on these features. A comprehensive discussion and
interpretation of these results, including the implications of the inclusion of delay
classification, will be addressed in the Discussion chapter.

6.1.5 Performance Metrics

In this section, the performance of four LSTM models is evaluated. These models are
variations of two base models, LSTM and LSTM , each trained on data sets both with
and without weather features. The model’s performances are assessed using commonly
employed performance metrics for regression tasks: Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE). These metrics help quantify the accuracy of the
models in predicting train delays and facilitate a direct comparison of their perform-
ance.

The initial LSTM model, trained without weather features and excluding delay
classification, achieved a lower MAE (1.41 min) compared to its counterpart trained
with weather features (1.55 min). This suggests that, on average, the model without
weather features produced smaller prediction errors. Similarly, the RMSE was lower
for the model without weather features (1.98 min) versus the model with weather
features (2.11 min), implying it was less prone to larger errors.

Upon the introduction of the delay classification feature, represented by the LSTM
models, an improvement was observed in the performance of both weather-inclusive
and -exclusive models. The LSTM model with weather features yielded an MAE of
1.32 min and an RMSE of 1.84 min, while the LSTM model without weather features
exhibited superior performance, achieving an MAE of 1.18 min and an RMSE of 1.70
min.

Table 6.1.5 presents a summary of the performance metrics for all LSTM models:

Model MAE RMSE
LSTM with weather features 1.55 min 2.11 min
LSTM without weather features 1.41 min 1.98 min
LSTM with weather features 1.32 min 1.84 min
LSTM without weather features 1.18 min 1.70 min

Table 6.1.5: Summary of performance metrics for all four models.

In summary, the inclusion of the delay classification feature led to improved per-
formance for both models. Even so, the models without weather features consistently
outperformed the ones with weather features, in terms of both MAE and RMSE,
regardless of the inclusion of the delay classification feature.
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6.2 Bane NOR´s Model

Bane NOR´s train delay prediction model have been examined. Both the correlation
coefficient and the precision performance have been measured.

Some initial work have been done in order to have models with performances that
are as comparable as feasible. As described in section 5.4, estimates predicted more
than fifty minutes and under five minutes before the departure have been removed
from the data set. By excluding both early and late generated predictions, the two
models are more comparable. Further, the same delay restrictions as the LSTM model
have been put in place, excluding the bigger delays. The time limit constraint was put
in place to replicate the estimation from the LSTM model, -5.075 and 10.005 minutes,
respectively. In order to assess the performance precision of the model in general, it
has also been assessed both without and with boundaries on an hour. Below follows
an overview of the delay restrictions and the responding data set sample size.

The data set without delay boundaries, [∞,∞], has a sample size equal to 1.187.845

The data set with an hour delay boundaries, [−60min, 60min], has a sample size
equal to 1.141.950

The data set with the same delay boundaries as the LSTM model, [−5.075min, 10.005min]],
has a sample size equal to 756.708

The results follows below.

6.2.1 Correlation

The Pearson correlation coefficient were calculated have been measured and analysed
to examine the relationship between the actual delay, equation 5.1, and absolute estim-
ate deviation, equation 5.3. The coefficients are used to evaluate the linear correlation
for Bane NOR´s model on the train route between Oslo and Trondheim in the period
between 15th of June 2022 and 22th of Mars 2023. A strong correlation indicates that
the estimated departure time is close to the actual departure time.

Restrictions Pearson Correlation Coefficient
[∞,∞] r[∞,∞] = 0.745

[-60 min, 60 min] r[−60,60] = 0.892

[-5.075 min, 10.005 min] r[−5.075,10.005] = 0.660

Table 6.2.1: Summary of the Pearson correlation coefficients for Bane NOR´s model
with different restrictions

The Pearson correlation coefficient equation can be found in 5.6 followed by an
evaluation guide. Based on this evaluation guide, the following can be said about the
coefficients:
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r[∞,∞] The Pearson correlation coefficient without boundaries is a strong correlation.

r[−60,60] The Pearson correlation coefficient with an hour boundaries is a very strong
correlation.

r[−5.075,10.005] The Pearson correlation coefficient with the same boundaries as the
LSTM model is a strong correlation.

The Pearson correlation coefficient was measured to be r[∞,∞] = 0.745 when in-
cluding all estimates and delays. This is a strong coefficient. When excluding delays
above an hour before and after, the Pearson correlation coefficient was measured to be
r[−60,60] = 0.892. The coefficient is considered as very strong. Further, the delay bound-
aries were decreased to the same as the LSTM train delay prediction model, -5.075 and
10.005 minutes, respectively. The Pearson correlation coefficient was then measured
to be r[−5.075,10.005] = 0.660. One can observe that when the delays decreases, the
correlation decreases from strong to moderate. All three Pearson correlation coeffi-
cients have a positive correlation between the two quantitative values, meaning that
when a delay increase the estimated departure time also increases.

6.2.2 Performance Metrics

The overall prediction precision of the model have been examined through the per-
formance metrics MAE and RMSE, equation 5.9 and 5.10, further described in section
5.5.6.

Restrictions MAE RMSE
[∞,∞] 4.99 min 17.85 min
[-60 min, 60 min] 3.46 min 6.311 min
[-5.075 min, 10.005 min] 1.79 min 2.55 min

Table 6.2.2: Summary of performance metrics for Bane NOR´s model with different
restrictions

The performance metrics illustrates how the models accuracy varies depending on
the delays. The accuracy tempt to increases when the delay restrictions decreases.

MAE describes the average error. An MAE between 1-4 minutes is not very good,
but an acceptable average error. Both MAE´s with restrictions are therefor acceptable
errors. The model is however not very accurate when accepting the bigger delays too.

Big RMSE indicates that there are large errors. Large errors are given a relatively
high weight by RMSE, since they are squared before being averaged. This demon-
strates that observations that deviate more from the mean are more sensitive to the
RMSE. The big RMSE indicates that there are large errors. Additionally, errors have
a wider range and are more evenly distributed the farther apart the MAE and RMSE
are from one another. The big span between the metrics indicates that the errors are
distributed on all of the data set. This applies in particular to the performance metrics
without and with an hour boundaries.
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6.3 Model Comparison

New plots containing the output from both models have been formed in order to make
it easier to compare and analyze the two models. First, a summary of the correlation
coefficients and performance indicators is gathered and given in two tables.

6.3.1 Model Performance Overview

The tables provide a clear picture of the relationships between model strength and
accuracy. The Pearson correlation coefficients are displayed in Table 6.3.1. The results
of the accuracy metrics are summarized in Table 6.3.2 gives an overview of the precision
metrics outcomes.

Model Pearson Correlation Coefficient

LSTM with weather features rpredw = 0.564

LSTM without weather features rpred = 0.618

LSTM with weather features r̄predw = 0.694

LSTM without weather features r̄pred = 0.735

Bane NOR [∞,∞] r[∞,∞] = 0.745

Bane NOR [−60min, 60min] r[−60min,60min] = 0.892

Bane NOR [−5.075min, 10.005min] r[−5.075min,10.005min] = 0.660

Table 6.3.1: Overview of the Pearson correlation coefficient for both models.

Model MAE RMSE

LSTM with weather features 1.55 min 2.11 min

LSTM without weather features 1.41 min 1.98 min

LSTM with weather features 1.32 min 1.84 min

LSTM without weather features 1.18 min 1.70 min

Bane NOR [∞,∞] 4.99 min 17.85 min

Bane NOR [-60 min, 60 min] 3.46 min 6.311 min

Bane NOR [-5.075 min, 10.005 min] 1.79 min 2.55 min

Table 6.3.2: Overview of the performance metrics for both LSTM models, and Bane
NOR´s.

6.3.2 Visual Inspection

Visual inspection is a qualitative assessment technique used to analyse the estimate
deviation for the two models. Box plots are used as the visual tool to easier see
the spread of the deviations, the normality and its outliers. Box plots are described



CHAPTER 6. RESULTS 97

in section 5.4.1.1. Further, the box plots were provided by plotly, see section 5.6.
Plotly gives valuable insight of the descriptive numerical values, like medians, highest
maximum and lowest minimums of each box.

When comparing the two data sets, only stations for passenger transit have been
examined. The base stations, where trains don’t stop, have been removed from TIOS
raw data set.

Estimate deviation, equation 5.2, have been examined to visual inspect the perform-
ance of the two models. The deviation demonstrates how far the model’s estimations
are off based on the observed departures. The blue boxes show the estimate divergence
from the LSTM model, while the red boxes show the estimate deviation from Bane
NOR’s model.

x-axis The horizontal axis represents each station from first to last, presented from
Oslo S to Trondheim.

y-axis The vertical axis represents the delay, displayed in minutes.

The condition of the position of a box and its characteristics in the box plot indicates
the following:

∀points ∈ boxplot =


> 0 etd predicted to be earlier than atd

= 0 etd predicted to be at same time as atd

< 0 etd predicted to be later than atd

When generating box plots with the Python library Plotly, described in section 5.6, the
characteristics of a box is presented. For each box, the median have been collected to
measure the average deviation for all stations. The average deviation formula follows:

AverageDeviation =
1

n

n∑
j=1

|xj| (6.1)

where n is number of stations and |xj| is the absolute value of the median on each
station.

Figure 6.3.1 examines the estimation deviation for each model without any limita-
tions. This figure gives an overview of the models span of estimation deviation when
there are no restriction other than the models restriction them self.

Figure 6.3.1 illustrates how much more distributed the estimate deviation from
Bane NOR´s model is. When examining Bane NOR´s model, the absolute estimate
deviation average median is 1.74 minutes, which is 104.4 seconds. The box plot figure
shows how the model has some very big deviations on Oslo S. When examining the
estimate deviation average median , but excluding Oslo S, the deviation is 1.28 minutes,
which is 76.8 seconds. However, as the figure illustrates, Bane NOR´s model have more
distributed and higher average deviation on the whole route than the LSTM prediction
model. The estimate deviation average median for the LSTM model is 0.39 minutes,
which is 23.42 seconds.
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Figure 6.3.1: Box plot showing the distribution of the quantitative values of estimate
deviation for both models, plotted for each station.

Figure 6.3.2: Box plot showing the distribution of the quantitative values of estimate
deviation for both models, plotted for each station, zoomed in on the boxes.

Figure 6.3.2 gives a more reflective overview of the interquartile range of each box,
as it is zoomed in. The figure also examines the estimation deviation for each model
without any limitations.
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Figure 6.3.3 also examines the estimation deviation for each model, but the devi-
ations below 10 and above 15 minutes are removed. This has more an influence on the
performance outcome of Bane NOR´s model. However, when removing the outliers,
the characteristics of each box plot is easier to observe.

Figure 6.3.3: Box plot showing the distribution of the quantitative values of estimate
deviation for both models, plotted for each station. Estimation deviation boundaries
is here set to 10 minutes before and 15 minutes after.

The figure illustrates how only Bane NOR´s model is affected when removing
estimate deviations below and above the boundaries. Neither maximum nor minimum
estimate deviation by the LSTM model reach 10 in absolute value. The model´s
highest maximum is 9.96546 minutes from the station Oslo S, and lowest minimum is
-9.070591 minutes from the station Støren.

The estimate deviation average median with boundaries for Bane NOR´s model
is measured to be 1.41 minutes, which is 84.5 seconds. The average deviation is the
same as the average deviation without boundaries, but excluded Oslo S. Further, when
excluding Oslo S measuring the estimate deviation average median with boundaries, it
is measured to be 1.36 minutes, which is 81.4 seconds. The two figures and its measures
indicates that Oslo S is an problematic station for the prediction model to Bane NOR.
The estimate deviation average median with boundaries for LSTM prediction model
is measured to be the same as without boundaries, namely 0.39 minutes.

Finally, figure 6.3.4 presents an overview of the interquartile range of each box
with the estimate deviation boundaries. The figure illustrates how the Bane NOR´s
model have a positive trend for their estimate deviation, while the LSTM model trend
is more negative. This can also be seen when studying the medians.
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Figure 6.3.4: Box plot showing the distribution of the quantitative values of estimate
deviation for both models, plotted for each station. Estimation deviation boundaries
is here set to 10 minutes before and 15 minutes after.



CHAPTER

SEVEN

DISCUSSION

The results presented in the previous chapter Results, and the research questions,
introduced in the chapter Introduction, are discussed below. It is advised to act-
ively use the referred result tables and plots when reading the discussion. Additional
supplementary and plots can be found in the appendix. In this way, the appendix
substantiate the findings by providing a more comprehensive picture.

7.1 LSTM Prediction Model

This section discusses the findings of the research and provides an interpretation of the
results in the context of predicting train delays. The main focus is on the comparison
between the LSTM model with weather data on the one side, and the model without
weather data on the other. Additionally, the influence of various pre-processing tech-
niques and alterations on model architecture and hyper-parameters will be discussed
in light of the obtained results.

7.1.1 Incorporation of Weather Features

Four weather features were included in the feature space of the data set for this project:
temperature, precipitation, snow depth and wind. These were all included in the hope
of improving the predictive accuracy of the LSTM model. The idea was to add a layer
of context that are often important in transportation scenarios. Weather features
can have a significant impact on train operations. By incorporating these weather
features, the LSTM model could account for external factors of delay, making its
predictions more robust and realistic. However, the results clearly indicate that the
LSTM model’s performance worsened when weather features were included in the
feature space, in contrast to the theoretical expectations, provided in section 2.3. As
indicated by the Pearson correlation coefficients in table 6.1.2, these weather features
have an insignificant correlation with both the actual train delays and the predictions.
Despite the strong theoretical basis suggesting that weather conditions could impact

101
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train delays, the model incorporating weather features performed worse than the one
without these features. In fact, the MAE and RMSE decreased when weather features
were removed, illustrated in the table 7.1.1 below.

Model MAE RMSE
LSTM with weather 1.32 min 1.84 min
LSTM without weather 1.18 min 1.70 min

Table 7.1.1: Performance metrics for the LSTM model with and without weather
features.

This suggests that inclusion of the weather features seems to impair rather than im-
prove the predictive performance of the model. Further, this prompts several possible
interpretations and lines of enquiry.

This thesis seeks to precisely forecast small, everyday railway delays, as mentioned
in RQ 1. The weather conditions taken into account in the model might not be the
main causes of delays of this kind. This is consistent with the previous study by P.
Wang and Q.-p. Zhang (2019) which illustrated how good weather not seem to have
any notable impacts on the daily train delays. However, weather may play more of a
significant role in causing substantial delays on congested networks or during extreme
weather conditions. For instance, high temperatures might only cause delays if they
cross a certain threshold leading to track expansion, or large changes in snow depth
during small time-windows might cause large delays. Similarly, as noted by P. Wang
and Q.-p. Zhang (2019), snowy weather could have a bigger impact in locations which
experience snowy weather more rarely. In such cases, simply including raw weather
features may not be sufficient. Alternatively, a more nuanced incorporation of weather
features could be considered, e.g. through categorisation of weather conditions using
specified thresholds rather than raw weather data. In fact, including the raw weather
features in the model may add noise to the data, which could increase the error in
the model’s predictions, leading to higher MAE and RMSE values. More importantly,
these cases of extreme weather conditions potentially lead to substantial delays, which
is not the focus of this particular prediction model. The more routine delays might be
influenced by other features.

The mismatch between theory and results could also be attributed to the quality
and completeness of the weather data used. There was missing data for certain time
periods and locations along the railway line. Although data imputation techniques
were employed, this did not account for every occurrence of missing data. Such de-
ficiencies in the data could introduce noise and reduce the model’s predictive power,
especially if the patterns of missing data is not random.

In reaction to weather conditions, railway companies frequently implement mit-
igation measures. This may also lessen the effect of weather-related railway delays,
making it a less important feature in the forecast model. Due to the complicated, pos-
sibly non-linear, and conditional nature of this relationship, translating the theoretical
knowledge of weather’s influence on train delays into a prediction model has proven
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to be a challenging task.
In addition to an alternative incorporation of weather features, future research

could also include consideration of larger delays, rather than purely focusing on small,
everyday delays. Also, addressing the potential data quality issues, ensuring weather
data is accurate and complete, will be crucial for improving the model’s performance.

7.1.2 Feature Contribution on Model Performance

Several features were extracted from the original time series data set, delivered from
Bane NOR, using various feature engineering techniques. It has been found that some
features yielded more statistical significance than others. Firstly, the lagged obser-
vations, time-lags, of the target variable achieved high correlation coefficients. This
aligns with the findings from the study by Sørskår (2022) which underlines the im-
portance of past delay patterns when predicting future delay, as presented in section
3.6. Secondly, delay classification from the previous non-stop station, described in 5.3,
also achieved moderate correlation coefficients. Both features contributed to higher
predictive accuracy in terms of the performance metrics displayed in table 6.1.5. This
demonstrates the predictive power embedded in past delay patterns, further emphas-
izing the importance of historical data in forecasting future outcomes. The time-lags
provide delay patterns from the previous 5 stop station, which help capturing the delay
propagation pattern along the railway line.

There are a varying number of base stations in-between certain stop stations, which
are not part of these time-lags. As described in section 5.3, the data from these stations
were removed from the training data as they introduce negative delays in the data.
These kinds of delays are undesirable due to the inconvenient outcomes of trains leaving
the stations earlier than scheduled. However, information about the time status of the
train at these stations serve as a valuable pointer to a probability of departing on time
at the next stop-station. This feature was included at a later stage of the modeling
process, to illustrate the effect of the delay classification between the stations.

Model Type with weather without weather

LSTM Actual Value rpredw = 0.564 rpred = 0.618

Time Lag 1 rtl1w = 0.955 rtl1 = 0.973

LSTM Actual Value r̄predw = 0.694 r̄pred = 0.735

Delay_grad r̄dgw = 0.415 r̄dg = 0.385

Time Lag 1 r̄tl1w = 0.836 r̄tl1 = 0.855

Table 7.1.2: Overview of the discussed Pearson coefficients between the predictions
for the LSTM and LSTM models, and their features.

Two distinct sets of tables show the correlation coefficients of the feature space
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after the models had been trained, both with and without weather data. From table
6.1.3 and 6.1.4 one can easily observe that some of the statistical relationship between
the target variable and the time-lags are shifted to this delay classification feature,
delay_grad. The discussed coefficients are summarized in table 7.1.2.

The Pearson coefficient between time lag 1 and the predictions for the first model-
ling iteration, LSTM , shows a very strong correlation rtl1w = 0.955 and rtl1 = 0.973,
respectively. When including the delay classification in the feature space, LSTM , the
coefficient decreased to r̄tl1w = 0.836 and r̄tl1 = 0.855. In spite of the decrease, the
correlation coefficients are still considered strong. The importance of the time lag
features for the LSTM model without delay classification is proved by this change in
correlation. After the delay classification is implemented in the LSTM model, the
relationship between the features are more distributed. Further, the change also illus-
trates how the delay classification feature is capturing meaningful information about
the train delays, as expected. However, the varying Pearson coefficients underlines
the complex inter-dependencies between features in this predictive task. When com-
paring the two LSTM models, the relationship between the prediction values and the
actual values are more similar for LSTM than LSTM . This indicates that the model
with delay classification is closer to the real world historical data when evaluating
correlation.

The overall Pearson correlation coefficient between the actual and predicted value
for the two prediction models also differ. The LSTM have a stronger correlation than
LSTM, which can be seen when comparing r̄predw = 0.694 and r̄pred = 0.735, with
rpredw = 0.564 and rpred = 0.618. Further, the LSTM without weather feature have
the strongest correlation, indicating a more accurate prediction model.

In addition to the correlation analysis, the accuracy of the models were analysed
through performance metrics, presented in table 6.1.5. The performance metrics also
gives a reflective review of the models after inclusion of the delay classification in
the feature space. LSTM improved both MAE and RMSE, both with and without
weather feature. The MAE was improved with 0.23 minutes from the LSTM to LSTM

model, both with and without the weather feature. The LSTM model without weather
feature have an mean average error of 1.18 min, which is a insignificant one compared
to other studies. The RMSE improved with 0.27 minutes for the models with weather
features and 0.28 minutes for the models without. However, neither of the performance
metrics for all four model editions are very high, illustrating that the errors are not
too large.

There are a variety of factors contributing to train delays. While the aforemen-
tioned features contribute to capturing the delay patterns along the railway line, which
mostly arise from delay propagation, there are other features which could potentially
help capture more general, high-level patterns in the data. This could be broader,
seasonal, and cyclic trends in the data. These kinds of features are presented in table
5.3.2, and include Day_of_week, Week_of_year, Hour_sine and Hour_cosine, and
Is_holiday. For instance, weekday travel patterns, particularly during rush hours,
might differ from those on weekends. Additionally, certain times of the day might see
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more delays due to increased passenger congestion. Also, the week of the year might
help the model capture broader seasonal trends. Holidays might also have an impact
on travel patterns, often leading to either a increase or decrease in travel demand,
depending on the nature of the holiday. However, the trains included in the data set
are all long-distance trains. The impact of these features might therefore differ from
short-travel scenarios. While weekday patterns still might influence delays, the impact
might not be as pronounced as in short-travel scenarios. On the other hand, holidays
and vacation periods could have a more significant impact on long-distance trains, as
more people opt for long-distance travel during these times. Given the long duration
of the travel, the impact of the hour of the day might be diluted as the journey spans
across multiple hours. Yet, the departure times could still influence the likelihood of
delays due to factors like peak-hour congestion.

The cyclic, seasonality-related features could provide valuable contextual informa-
tion that helps the model capture more general, high-level patterns in the data. How-
ever, these features achieved insignificant correlation coefficients, all falling within the
range [−0.08, 0.04]. A low correlation coefficient does however not necessarily imply
that a feature should be discarded from the feature space. The correlation coefficient
measures the linear relationship between two variables, but many real-world relation-
ships are non-linear. Including such features could, for instance, help the model gener-
alize better on unseen data. This could be due to a more comprehensive picture being
captured, and could particularly be important in time series prediction tasks where
conditions typically vary across different times and locations.

Removing outliers can help the model focus on the more common patterns in the
data, which may lead to a better understanding of the general trends and relationships
between the features. Also, as stated in 5.2.2.1, it was essential to remove outliers from
the data before training the model in terms of prediction performance, as the purpose
of the model was to predict certain types of delays. In this sense, the outliers introduce
noise and removing them can potentially help the model fit the data more accurately.
However, although not evident during the visual inspection of the data during the
EDA, some of the delays that were considered outliers could have been related to
specific higher-level trends. While the most substantial delays are most likely related
to rare, unforeseen events, some could potentially take part in a broader trend in the
data.

As highlighted in section 6.1, the LSTM model demonstrates a significant under-
prediction of negative delays. Although negative delays comprise 8% of both the overall
data set and the test set used for evaluation, a mere 0.5% of the model’s predictions
were negative. This under-representation can be attributed to the original data set’s
skewed distribution of negative and positive delays, which stems from operational
constraints: negative delays, indicating early departures, can inconvenience passengers
and are thus usually avoided. Consequently, the model has a tendency to overfit on
the positive delay values, virtually neglecting the negative ones.

While there are techniques available to address such imbalances in regression tasks,
these have not been applied in this case. Given the undesirability of negative delays,
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the model’s bias towards predicting positive delays could be interpreted as a positive
outcome in this specific context.

The results from the correlation analysis and the performance metrics calculated
for the LSTM model will be further discussed when comparing the LSTM model with
Bane NOR’s model in section 7.3.

7.1.3 Model Architecture and Hyper-parameters

The results presented in table 6.1.1 underscore the importance of meticulous hyper-
parameter tuning in machine learning applications. The table presents the perform-
ances of four distinct configurations of the LSTM model, with Config 4 demonstrating
marginally superior performance. Although the differences may seem minimal, even
minor improvements in MAE and RMSE can have significant implications in real-world
scenarios. These small improvements may affect hundreds or thousands of commuters
daily.

Configuration 4 defined a learning rate of 0.0001, three LSTM layers, 64 hidden
units, or neurons, 50 training epochs, a dropout probability of 0.2, and a data split
allocating 80%, 10% and 10% of the data set to the training-, validation-, and test set
respectively. This configuration yielded the lowest MAE, 1.18 min and RMSE, 1.70
min. This highlights that the best results were achieved when using a lower learning
rate, fewer LSTM layers, and a higher percentage of data for training. The optimal
configuration suggests that a more careful and gradual learning approach, coupled
with a simpler model architecture, is more suited for this specific prediction problem.

The four configurations presented in table 6.1.1 included the best-performing out
of a total of 432 configurations generated using grid search. The grid search method
enabled an extensive exploration of the hyper-parameter space, and the results provide
a demonstration of the effectiveness of this method. However, there exist more hyper-
parameters, and larger value ranges which could be explored. This generates a vast
number of possible configurations which could provide further improvements, but
would require more time and computational resources, and was deemed unnecessary
for this project.

The significance of pre-processing techniques and architectural adjustments to the
LSTM model can not be overstated. Prediction models require good predictors of
the target value, and thus the feature engineering techniques employed in this thesis
has been paramount for the model performance. Data normalization ensured that
the model was not unduly influenced by features with larger scales. Also, the careful
handling of extreme values, or outliers, has played a critical role in preserving the
integrity of the data set for this particular model aiming to predict small, everyday
delays. Moreover, the choice of LSTM as the model architecture plays into the time-
series nature of train delay data. This is due to the LSTM’s inherent ability to handle
long-term dependencies and perform complex predictions.
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7.2 Bane NOR´s Model

Bane NOR’s existing train delay prediction model is analysed and discussed based on
the result, both model performance and correlation, presented in section 6.2. Only
estimates created in the time interval between 50 and 5 minutes prior to a station are
analyzed.

7.2.1 The Pearson Correlation

The Pearson correlation coefficients between actual delays and absolute estimate devi-
ation can be found in table 6.3.1. All three measured Pearson coefficients are positive,
indicating that when the actual delay increases, the estimated delay also tends to
increase. This is a crucial component of the prediction model, but also a type of
prerequisite.

The train delay prediction model has a strong correlation when including all delays.
The Pearson correlation coefficient on r[∞,∞] = 0.745 indicates that the train delay pre-
diction model estimates correlates to the actual train registrations. Further, the correl-
ation increase to very strong when removing the biggest delays. With delay boundaries
on 60 minutes, the Pearson correlation coefficient is measured to be r[−60,60] = 0.892.
This indicates a very strong linear relationship between the two variables. It is tempt-
ing to draw the conclusion that the train delay prediction model has a more linear
connection with smaller delays based on the two outcomes. However, when measuring
the correlation coefficient with the same outlier boundaries as the LSTM train delay
prediction model, the linear relationship decreases. The Pearson correlation coeffi-
cient with a lower delay boundary on -5.075 minutes and an upper delay boundary on
10.005 minutes was measured to be r[−5.075,10.005] = 0.660. The correlation coefficient,
however, is considered as a strong correlation even though it is weaker than the two
others.

Correlation does not, however, imply causation, which means that changes in one
variable do not always result in changes in the other variable. The model will gen-
erate and update new estimates each time it will receive new train position progress
information. Since the model is an event-driven model, it predicts the delay evolution,
resulting in estimates for the following stations. When a train runs on schedule, the
predictions will follow, indicating that it will stay on time. Upon slight deviations,
delays will occur, and the model will update the estimates thereafter. Furthermore,
a delayed train can manage to drive in time, getting back into its schedule. Early
predicted estimates might therefore be outdated and will not match the actual arrival
and departure times. In these cases, the actual delays and absolute estimate deviation
will not imply causation. This will weaken the correlation where the linear relationship
decreases, especially on the last stations of the route.

It is worth noticing that the sample size do matter when checking the correlation
between two variables in a data set. As presented in section 6.2, the three represent-
ative data sets corresponding to each delay boundary has different sample size. Each
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sample size is, however, assumed to contain a representative number of data. The
constraints also affect the information stored in the three samples. However, either
the size, content, or both, seems to influence the correlation strength, which can be
observed by the three measured Pearson´s coefficients. There can be several reas-
ons to this variability. First, when including all delays, the data lack homogeneity of
variance. Since the model generates estimates for several following stations, some es-
timates will be outdated and under- or overestimated. Additionally, the bigger delays
will also have a wider range of wrong estimates, further from the linear regression
line. Bigger delays will open up the possibility of greater variation in estimates, higher
variability. However, r[∞,∞] shows a strong correlation, even though the bigger delays
are included. That might be because early bigger delays might be more actionable
and easier to predict for following stations. When comparing r[∞,∞] with r[−5.075,10.005],
the linear relationship is weaker, even though it has lower variability. This might be
because the model predicts estimates in minutes. Small variance have a bigger effect
on smaller estimates, since it constitute a larger percentage. That could be a signific-
ant factor as the correlation coefficient decreases as the delay boundaries are further
constrained. Additional influencing factors could be the difference in dynamics inher-
ent in short delays compared to moderate or longer delays. This include operational
recovery, where trains often make up for short delays by increasing speed slightly if
conditions allow, without affecting the overall schedule significantly. Additionally, rail
operators add slack time, which absorb minor delays and prevent them from cascading
down the line.

It is also important to note that the samples stemming from the various delay
boundaries which have been set are subsets of each other. Bane NOR data set with
delay boundaries [−5.075min, 10.005min] is a subset of Bane NOR [−60min, 60min]

and Bane NOR [∞,∞], and Bane NOR [−60min, 60min] is a subset of Bane NOR
[∞,∞]. Considering the sample size reduction when introducing the delay bound-
aries, it is apparent that the sample from Bane NOR [−60min, 60min] constitute a
large percentage of the sample from Bane NOR [∞,∞], as the sample size is only
reduced from 1.187.845 to 1.141.950. This could explain the increase from r[∞,∞] to
r[−60min,60min], as the samples that has been removed include unusually large delays
not partaking in a general pattern in the data. Furthermore, the sample size of Bane
NOR [−5.075min, 10.005min], when introducing the delay boundaries also used in
the LSTM model, decrease from 1.141.950 to 756.708, indicating that a larger por-
tion of the data is removed. Upon removal, the correlation coefficient decrease to
r[−5.075,10.005]. This might indicate that narrowing the delay boundaries to only ac-
count for smaller, everyday delays decrease the sample size significantly, which further
reduces the model’s ability to capture the full variability of the delays. The scope
of delays being analysed is reduced, but the noise is not removed. Consequently, the
noise’s impact on the correlation is bigger.
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7.2.2 Precision metrics

The precision metrics MAE and RMSE, presented in table 6.2.2, gives an illustration of
the accuracy of the prediction model. The three different delay boundaries have been
examined for both metrics. The performance metrics shows a clear pattern, where the
model´s accuracy increases when the boundaries decreases.

When the train delay prediction model is tested without delay boundaries, both
performance metrics scores above the acceptable accuracy restriction. Here MAE[∞,∞]

= 4.99 minutes and RMSE[∞,∞] = 17.85 minutes. This indicates that the model have
both high average and many large prediction errors when including the longer delays.
Additionally, the big span between the two metrics illustrates that the errors have
a wider range and are more distributed. Large errors are particularly undesirable
since correct estimations are essential for proactive and anticipatory regulation of the
current railway traffic control and offer passenger information. Additionally, decreasing
the delay boundaries reduces the gap between MAE and RMSE. As bigger delays are
eliminated when the boundaries are narrowed, this is an expected outcome. The model
predicts smaller estimates when the delays are less, and the errors would have a less
skewed distribution.

When removing delays over an hour, both before and after, the precision metrics
decreases to MAE[60,60] = 3.46 min and RMSE[60,60] = 6.31 min. These boundary
constraints undeniably increase the precision of the model. However, RMSE[60,60]=
6.31 min indicates some relatively large prediction errors. MAE[60,60] is less than 4
minutes, which is in the higher tier, but within an acceptable average error.

The precision metrics turns out to be MAE[−5.075,10.005] = 1.79 min and RMSE[−5.075,10.005]

= 2.55 min, when analysing the model with the same delay boundaries used for the
LSTM models. The prediction model’s accuracy falls within acceptable bounds. The
average error is below two minutes, and the standard deviation of residuals are two
and a half minute, meaning the data is more concentrated around the line of best fit.

When compared to other related studies’ prediction errors, found in table 3.5.1,
the model’s precision metrics without boundaries MAE[∞,∞] and RMSE[∞,∞], are
remarkably higher. It is worth noticing that the train delay prediction Bane NOR
uses today do not have any boundaries. Additionally, the model generates estimates
throughout the whole route. This indicates that early stations have less estimates
than the latest station on a train route. Further, the estimates will always take the
current situation into consideration. This can explain why delay boundaries clearly
reduce the larger errors, which can be seen in the drop between the precision metric
values from RMSE[∞,∞] = 17.85 min to RMSE[60,60] = 6.31 min. When excluding
the bigger delays, the gap between the scheduled and actual departure time decreases.
The largest possible error can either be when the prediction model estimates that the
train is on time, but it is delayed. The second option is that the train is on time,
but the prediction model estimates a delay. The second option is less realistic when
considering the constraints of the model. By introducing delay boundaries, you also
exclude the larger errors. Further, when analysing the model without any boundaries,
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it is reasonable to infer that the larger errors, illustrated by RMSE[∞,∞], is most likely
related to the bigger delays and the early estimates when a delay has not occurred yet.
The model predicts that the train is running on schedule, but is delayed later on the
route.

7.3 Model Comparison

This section will undertake a detailed comparison between the LSTM and Bane NOR’s
model. The discussion will initially focus on their divergent underlying modelling
paradigms, event-driven and data-driven, exploring the implications of these differ-
ences on the utility and adaptability of the respective models. Then, their performance
is discussed and compared to each other. The linear relationship, the model accuracy
and the estimate deviation are all discussed.

7.3.1 Prediction Methodology

The two models are both short-term delay prediction models for the operational plan-
ning phase. However, they differ by their underlying modelling paradigm, being data-
driven or event-driven, and the specific mathematical model used. Bane NOR’s model
is event-driven with a linear equation system, while the LSTM model is a data-driven
function approximator. Both data-driven and event-driven approaches are assumed
to be suitable for real-time train delay prediction (K. Y. Tiong et al. 2023a). How-
ever, the fundamental differences have some direct effects on the outcomes from both
models, making comparability complicated. Both models have their advantages and
disadvantages, further presented and explored below.

Bane NOR’s event-driven model focuses on creating a dependency network of train
events within the prediction horizon using infrastructure and operational data. This
approach leverages a variety of data sources to calibrate model parameters, incorporat-
ing real-time information to generate estimates. The event-driven nature of the model
allows it to capture the dynamic relationships between train events, making it possible
to generate probabilistic predictions of delay evolution across multiple stations. Bane
NOR’s model generates a series of estimates for multiple following stations along the
route, estimating the evolution of delays. These estimates can serve as a valuable
decision-support tool for train dispatchers, enabling them to track delays across the
rail network. Moreover, passengers benefit from having information about potential
delays at multiple upcoming stations, enhancing their ability to plan their journeys.
However, this model’s estimates are not without limitations; as the prediction horizon
extends in terms of both time and distance, its accuracy may decrease, making it chal-
lenging to keep up with dynamic changes occurring during a train ride. As presented
in 3.5, a study by Corman and Kecman (2018) explored how an extended prediction
horizon impacts the prediction accuracy. They found that the mean absolute error
(MAE) of their prediction model increased when increasing the prediction horizon.
Although the majority of predictions continued to be accurate, they found that huge
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variations were harder to foresee. This aligns with the challenge of keeping up with
dynamic changes occurring during a train ride, and is reflected in the inaccuracies in
the estimates generated for multiple stations ahead by Bane NOR’s model.

On the other hand, the data-driven LSTM model is built and trained on historical
train data, learning patterns and trends from this data to generate predictions on un-
seen data. This approach primarily relies on direct predictors, or explanatory variables,
which are indicative of real delays. While the data-driven model is adept at identifying
general patterns and capturing the complexities of historical train operation data, it
generates deterministic single-value predictions for only the next station. These single-
value predictions are straightforward to interpret, offering a clear perspective on the
future development of train delays. The practical utility of single-value predictions is
somewhat limited, as they only predict for the next station and thus may not meet the
full information needs of passengers and train dispatchers. Additionally, the LSTM
model incorporates the most recent train operation status data when generating pre-
dictions. However, these predictions overlook the sporadic appearance of disturbances
within the prediction horizon and do not provide an indication of their uncertainty.

Both data-driven and event-driven approaches have their merits when it comes
to real-time train delay prediction. While the event-driven model benefits from its
ability to generate estimates for multiple stations, capturing the dynamic nature of
train events, the data-driven model excels at processing multi-dimensional noisy data
and identifying hidden patterns in the data. However, the divergent nature of these
paradigms also leads to differences in the utility and adaptability of the respective
models.

Bane NOR´s model uses real-time data to generate multiple-value estimates. By
continuously updating the estimates as new information is fed into the model, it is able
to maintain a high level of responsiveness to evolving circumstances. This real-time
data utilisation enables the model to account for sudden changes, disturbances, or
unforeseen events, making it more suitable for dynamic, real-world railway operations.

On the other hand, the LSTM model learns patterns and trends from historical
train data which are then used to generate predictions for unseen data. It uses this
historical data to approximate a function that maps a set of predictor variables to a
target variable. Although the LSTM model is effective at detecting general patterns
in the historical data, it may struggle to account for unique, day-to-day fluctuations
or rapidly changing conditions that are not reflected in the training data.

One way to enhance the performance of the LSTM model is to integrate real-time
data into the training process. As stated in section 3.2.2, an approach to adapting a
pre-trained model to new data is called fine-tuning. By fine-tuning the LSTM model
using real-time data, the model can capture more accurate and timely information
about the current status of the train operations. This can provide a more precise
representation of the current operational environment, potentially leading to more
accurate delay predictions. As stated in section 3.2.2, Shon et al. (2022) proposed
continual learning as an approach for fine-tuning a pre-trained model. Although the
authors study this method with regards to image classification, a similar approach



112 CHAPTER 7. DISCUSSION

might be a viable solution towards continual fine-tuning of an LSTM, progressively
updating the model parameters based on new incoming data. Real-time data integra-
tion allows the model to account for any sudden changes, disturbances, or unforeseen
events which may not be captured in the original historical data used for training.
Thereby it could serve to enhance the LSTM model’s predictive ability and accuracy.

Moreover, every day of operations in a modern and complex railway system is
unique. Although there exist some relationships and patterns which could be gener-
alized by a machine learning model trained on historical data, there also exist unique
patterns on a day-to-day basis. As presented in section 2.1.7, Gestrelius et al. (2015)
identified 314 different patterns when studying historical data from a whole year of
365 days, further emphasising the variability of patterns emerging in railway systems.
This also underlines the potential importance of training on real-time data when per-
forming accurate real-time predictions. This does, however, depend on maintaining
the correct balance between retaining past knowledge learned from the historical data,
and adapting to new patterns provided by the real-time data. Continuous fine-tuning
could improve the adaptability of the model, making it a more useful tool for real-time
train delay prediction.

The LSTM model could also be extended to predict delays at multiple stations by
incorporating real-time data and using a sequence generation approach. This method
is akin to next-word prediction in language models, where the prediction of the next
word depends on the previous words. Similarly, in the context of train delay prediction,
the LSTM model can predict the delay for the next station based on the sequence of
delays at the previous stations.

The input sequence length of such a model would have to be constant (N). So,
at the first couple of stations where there are none or few previous delays to base its
predictions on, the input sequence of delays could be padded with zeros, essentially
letting it know that there have not been a full set of stations prior to the following
station. For each station it predicts, this prediction would be added into the input
sequence, and the earliest delay in the sequence is removed to keep the length constant.
This process is repeated at each subsequent station on the route each time using the
updated sequence of delays as input to the LSTM model. Alternatively, instead of
padding the input sequence, this model could be used only from the Nth station and
onwards after receiving enough real-time data to fill up its input sequence.

This approach essentially transforms the LSTM model into a generative model,
generating a sequence of predicted delays for multiple future stations, one station at a
time. As the train progresses along its route, and actual delay data becomes available,
this data is used to update the input sequence. This ensures that the predictions for
future stations are always based on the most recent data and helps to maintain the
accuracy of the predictions.
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7.3.2 Model Performance

Precision metrics and correlation analysis have been used to assess the models’ per-
formance. Box plots have also been generated to visually inspect the range of the
estimate deviation for each station for both models. The measurements with the
comparable delay bounds, [-5.075,10.005], serve as the starting point for comparison
between the two models. An overview of all results discussed in this section can be
found in section 6.3.

As stated in section 7.3.1, Bane NOR’s model and the LSTM models differ in their
prediction horizons. While Bane NOR’s model generate estimates for multiple stations
ahead, the LSTM model only predict the delay at the next station. This essentially
means that Bane NOR’s model has an N : 1 relation between the estimates and the
actual delay, and the LSTM model has a 1 : 1 relationship between the predicted and
actual delay. This difference might have significant implications on model performance
and interpretation of results.

7.3.2.1 Comparison of the Pearson Correlation Coefficients

All measured Pearson coefficients for both models are positive, and moderate or strong.
Bane NOR´s model has higher Pearson correlation coefficient when compared with the
LSTM model without delay classification. When implementing delay classification, the
LSTM model have higher linear relationship.

LSTM with weather features, rpredw = 0.564

LSTM without weather features, rpred = 0.618

LSTM with weather features, r̄predw = 0.694

LSTM without weather features, r̄pred = 0.735

Bane NOR with delay boundaries, r[−5.075min,10.005min] = 0.660

The Pearson r for the LSTM model with weather features is a moderate correlation.
The two other are considered as strong, where Bane NOR´s is r[−5.075min,10.005min] =

0.660 and the LSTM without weather is r = 0.618. However, r[−5.075min,10.005min] linear
relationship is not significant stronger than the two others.

Further, when including the delay classification in the LSTM model, the LSTM

model has a stronger correlation than Bane NOR´s. The Pearson coefficient for the
LSTM model with weather feature is r = 0.694 and without r = 0.735. Both predic-
tion models have a strong Pearson correlation coefficient, indicating that the models
are able to adjust the departure time estimates according to the actual departures.
However, neither of the model has a very strong relationship.

As Bane NOR’s model produces multiple departure estimates for each actual delay,
there is an N : 1 relation between them. The correlation coefficient is, in other words,
effectively evaluating the general trend of these estimates against the actual value. In
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the case of the LSTM model’s 1 : 1 relationship, the correlation coefficient provides a
direct measure of how well each prediction align with the corresponding actual delay.
This indicates that individual errors or inaccuracies in the model’s predictions directly
impact the correlation coefficient.

7.3.2.2 Comparison of the Performance Metrics

The mean average error for both Bane NOR´s model and all of the LSTM model
versions are below two minutes, as seen in table 6.3.2. MAE below two minutes is
considered as good performance for a train delay prediction model, compared to other
studies presented in table 3.5.1. Further, all four LSTM model performances are more
accurate than Bane NOR´s model. With MAE equal to 1.18 minutes, the LSTM

model without weather feature is the most precise prediction model. Compared to
Bane NOR´s MAE, which is equal to 1.79 minutes, the model has over half a minute
more average error than the LSTM model. Additionally, when comparing the root
mean squared error, the prediction performance of Bane NOR’s prediction model seems
to have larger and less skewed errors. However, this counts mostly for the model when
not excluding the bigger delays. Bane NOR´s RMSE[−5.075,10.005] equals 2.55 minutes
while the LSTM model without weather feature equals 1.70 minutes.

Both MAE and RMSE can be interpreted directly in the units of the output vari-
able. In the context of train delay prediction, MAE = 1.18 minutes indicates that,
on average, the LSTM model’s predictions are off by approximately 1.18 minutes,
meaning that passengers can expect to actually depart within a one-minute window
around the predicted time. It is worth noting, however, that this is the average error
and that the actual error for a specific prediction could be both higher or lower. There
is also the possibility of larger errors occasionally, which is something the RMSE can
help assess. For the LSTM model, RMSE = 1.70 minutes indicates that the spread
of the error distribution around the actual delay time is roughly 1.70 minutes. RMSE
offers an understanding of the error variability, including the risk of larger errors. So,
a lower RMSE not only implies a lower average error but also that large errors are
less common, which in many situations, such as public transport scheduling, can be
crucial.

7.3.2.3 Visual Inspection of Box Plots

The box plots give a good reflection of stations with more distributed and worse
estimate deviations throughout the train route. Figure 6.3.1 shows the two models
estimate deviation when including all delays. The figure illustrates how Bane NOR´s
model, red boxes, have both more and bigger deviation outliers on every station,
compared to the LSTM model. Even some stations have estimate deviation above
200 minutes, which is an estimate deviation above three hours. Additionally, especially
the three stations Oslo S, Lillehammer and Støren have negative estimate deviations,
below 200 minutes. This means that the train is estimated to be three hours delayed,
but it reach the station on scheduled time.
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When only comparing the interquartile range of each box, the two models are more
comparable. Figure 6.3.2 and 6.3.4 illustrates the characteristics of the boxes for both
models, illustrating the deviations with and without the deviation boundaries. Bane
NOR´s model seems to have a bigger span in estimate deviation, as the interquartile
range is bigger compared to the LSTM model´s, for all stations. These observations
indicates that Bane NOR´s model predicts more and too optimistic estimates than
the LSTM model. This optimistic trend was expected to find, as it was one of the
found in the study by Skjøren (2022), as noted in 3.6. Further, the red boxes also
lies above the blue ones, having a higher positive span. The median of the red boxes
are always above y = 0, indicating an overall positive estimate deviation. On the
other hand, the interquartile ranges of the blue boxes, representing the LSTM model´s
estimate deviations, spans more over both sides of y = 0. The departure time estimate
misses with both a little bit before and behind the actual departure, according to the
LSTM model, which appears to have a realistic approach. Further, the majority of
the blue boxes medians are below y = 0. This indicates that the LSTM model
predicts estimated departure times before the actual departures. However, figure 6.3.4
illustrates how small estimate deviations are. There are only a few medians below -1,
indicating that the rest deviation medians are less than a minute. In other words, the
two models have the opposite estimate deviation median, where the Bane NOR model
is too optimistic, while the LSTM model is too pessimistic.

Additionally, the exact absolute estimate deviation average median was calculated.
The LSTM model´s absolute estimate deviation average median is 23.42 seconds,
while Bane NOR´s models is 104.4 seconds. Further, when excluding the problematic
station Oslo S, the estimate deviation average median is 76.8 seconds. These numbers
indicates that the LSTM model predicts more accurate estimates all over.

Figure 6.3.3 illustrates how the estimate deviation for Bane NOR´s model on Oslo
S decreases when the bigger absolute estimate deviations are removed. The median on
Oslo S decreases from 8.7 minutes to 2.35 minutes. The lower boundary is ten minutes
and upper is 15 minutes. Further, almost none of the other boxes seems to be touched
by the restrictions. Actually, as commented in 6.3, the highest maximum estimate
deviation for the LSTM model is 9.96546 minutes, on Oslo S, and lowest minimum
is -9.070591 minutes, on Støren. This indicates that the model´s estimate deviations
never reach outside the boundaries, and will therefor have the same absolute estimate
deviation average median on 23.42 seconds. Bane NOR´s absolute estimate deviation
average median is on the other hand reduced from 104.4 seconds to 84.5 seconds.
Further, when excluding the problematic station Oslo S, the estimate deviation average
median is 81.4 seconds seconds. These numbers indicates that the LSTM model
predicts more accurate estimates all over. Additionally, Oslo S is a problematic station
for Bane NOR´s prediction model, but only when including large estimate deviations.

Bane NOR´s predicted departure time seems to have an optimistic trend, as men-
tioned above. However, from a railway perspective, this might be a tactical decision.
A train is not allowed to depart from a station before the official, published depar-
ture time. In other words, if the train is ready to depart from a station before a
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predicted departure time, an already delayed train has to wait, and will become even
more delayed. An overly pessimistic estimate is not very approaching customer ser-
vice. That means predicting departure times too late can result in worse effects than
predicting them too early.

In terms of communicating train delays to the end-users, there are a number of ways
this could be done. A direct delay prediction provides a simple, easily understandable
figure that passengers can use to adjust their plans. It does not, however, represent
the uncertainty inherent in any prediction. If the actual delay significantly deviates
from this single value, it could lead to dissatisfaction among passengers. A more
nuanced approach might involve providing a delay prediction along with a confidence
interval. Rather than giving a single value, this would present a range within which
the actual delay is likely to fall, offering a clearer picture of the uncertainty involved.
Alternatively, the delay prediction could be accompanied with a probability, indicating
a confidence level of the prediction. This could quantify the certainty of the prediction,
helping passengers manage expectations. The downside of these additional degrees of
information is that they could serve to over-complicate, and confuse the passengers.

Adding a buffer to the predicted delay could also enhance the utility of delay
predictions. This buffer would serve as an additional margin of error, further ensuring
that passengers have sufficient time to accommodate any unpredicted variations in
train delays. It could be beneficial, as the cost of underestimating a delay is often
higher than the cost of overestimating it. However, consistently overestimating delays
might lead to unnecessary wait times for passengers. Also, if the buffer is perceived as
an arbitrary addition to predicted delays, it could lead to skepticism about the precision
of the prediction model. Thus, if implemented, it should be clearly communicated as
a precautionary measure rather than a correction for prediction inaccuracies.

7.4 Limitations

The data used in this study was received in three separate data sets, from two dif-
ferent sources, further described in section 4. There were two data sets from TIOS
database, one with raw data and the other one with pre-processed data. Further,
one data set with historical daily meteorological observations was gathered from the
Norwegian Meteorological Institute. Both historical train observation data sets from
TIOS included noisy data with outliers. Therefore, abnormal data has been removed,
including duplicates, invalid data, and incorrect data.

The process of acquiring weather data from Met Norway presented a set of chal-
lenges. The data for specific train station locations subject to analysis was not con-
sistently available. Some stations lacked certain weather elements altogether, while
others had data for only certain time periods. Furthermore, these time periods did
not always align with the time interval pertinent to this analysis.

As detailed in section 5.2.1.3, data imputation techniques were employed to coun-
teract the potential adverse effects of these missing values. In instances where data
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were unavailable, we substituted values from nearby stations or calculated and used
mean values from multiple proximate stations.

Despite these efforts, the data imputation approach failed to address all instances
of missing data, which left some data points blank. This led to the exclusion of entire
rows of data. Should these instances of missing data not be randomly distributed
but part of a discernible pattern, they could introduce bias, thereby rendering the
weather features as noise. This potential bias could offer an explanation for the inferior
performance of the model that included weather data compared to the model that did
not incorporate such data. The missing weather data could, for instance, be related
to other factors such as certain weather conditions leading to missing data due to
equipment failure. The missing data would not be a random subset of the weather
data, but a subset related to the very conditions which we aim to model, leading to a
biased and potentially misleading model.

When comparing the two models, the data is imbalanced as a result of the models’
different modelling paradigms. Since Bane NOR´s model predicts many estimates
for each station on a train route, the data size is bigger than for the LSTM model.
When comparing the two data sets used for model evaluation, Bane NOR´s model has
measured 355.281 unique actual delays and estimated delay, while the LSTM model
has 13.162 ones. This results in imbalanced data when comparing the two data sets,
indicating reflection of an unequal distribution. However, when comparing the two
data sets, box plots are used. The box plot is a good trade-off between summary
statistics and data visualization. As long as both data set has enough data to be
representative, the two different data sizes will not have too much of an impact on the
analysis. An issue with the box plot is that it hides the shape of the data, telling us
some summary statistics but not showing us the actual data distribution. However,
when comparing the overall performance of the models and their estimate deviation,
a statistic summary gives a reflective overview.

The weather data set and the TIOS pre-processed data set both include data that
covers the period from 01.01.21 to 28.02.23, just above two years. This period was
impacted by COVID-19 pandemic. It has been demonstrated in other research that the
pandemic affected peoples’ travel behaviors, which is likely to have an influence on our
data sets. However, the pandemic seems to have changed peoples travelling patterns,
which indicates that data before the pandemic might be outdated. It is challenging
to draw any conclusions when projecting travel patterns, but this supports the case
for dynamic models that can be continually improved and adapted to new patterns
by using new training data. This is an advantage of the machine learning model, as
explained above.

TIOS raw data spans from the summer, 15th of May 2022, until the end of the
winter, 22th of March 2023. Compared to the two other data sets, the period is
smaller. The data might therefore include abnormalities that have occurred in the
same period, or not being able to observe a travel pattern. The quantity of the data
after data wrangling was 2.715.816 train records, which is considered enough data to
allow for a model analysis that was representative of the data.
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The paper only examines the long-distance train route, running between the capital
Oslo and Trondheim. Additionally, the rail network consists primarily of single-track
lines with little traffic. More traffic and multiple-track lines are accessible the closer
you are to Oslo S. The performance of the LSTM model as well as the training and
testing processes will be impacted by these railway factors. Other patterns is expected
to be observed when analysing other train routes. The different features of the model
might then have a bigger impact on the prediction outcomes, like day of the week and
week of the year. Further, as the train route has less traffic, a train is more rarely
affected by others in the rail network. Other train routes might experience more delay
propagation, leading to more noisy data. This limitation also counts when examining
the prediction model used by Bane NOR. The event-driven model based on a linear
equation system is generic with the same framework regardless of the rail behaviour
patterns. It is therefore assumed that when examining the models performance on
other routes, one will get another result.

One of the primary objectives of this master’s thesis was to develop an LSTM train
delay prediction model, and to compare it to Bane NOR’s existing prediction model.
As presented throughout this report, the two models differ greatly both with regard
to their respective modelling paradigm, data utilisation, and prediction horizons. In
order to facilitate a comparison between the two models, a selective analysis of Bane
NOR’s model has been conducted. This mainly includes narrowing the prediction
horizon and setting outlier boundaries similar to those used for the LSTM model.
While some might argue that the models are incomparable by nature, it could be
argued that this selective analysis of Bane NOR’s model has contributed to reducing
the gap between the differences. Only accounting for estimates, generated by Bane
NOR’s model, in a window of [50, 5] minutes before the departure at a station, has
helped approximate the prediction procedure of the LSTM model, which only predicts
delays at the next station. However, the estimates generated is purely based on linear
functions. By training on historical train data, the LSTM works as a complex function
approximator, creating a mapping between input variables and the target variable.
Hence, the LSTM serves as a more powerful and complex tool accounting for numerous
factors contributing to the train delays.

While the evaluation of the LSTM model has shown promising results in terms
of MAE and RMSE, it is crucial to consider the treatment of outliers in the training
data when interpreting these results. The outlier boundaries [−5.075, 10.005] were set
to focus the model on the most common delays, and to minimize the impact of very
large delays that could disproportionately influence the model’s learning. However,
this implies that delays within this range are the ones the model has primarily learned
to predict. The boundary limitation inherently reduces the potential magnitude of
any individual error. For instance, the greatest possible absolute error would be 15
minutes if a delay of 10 minutes was predicted as -5 minutes. Consequently, the
MAE and RMSE, being averages of these individual errors, are naturally bound to
be relatively low due to the restricted range of possible errors. This is an important
consideration for the broader application of the model. Potential implementation in a
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real-world scenario containing larger delays would yield lower performance.
Moreover, the assessment of the LSTM model’s performance bears certain con-

straints. Prior to the model’s construction and training phase, the data was parti-
tioned into training, validation, and test sets. Due to the sequential nature of the
data and the historical delay patterns embedded within, these sets were split chrono-
logically rather than randomly shuffled. Consequently, the training set comprises the
initial 70% of the data, while the validation and test sets account for the subsequent
15% each. As a result, the test set, which is used to calculate the performance metrics
of the model, encompasses data from late November 2022 to the end of February 2023.
This confines the performance evaluation to a relatively narrow time period, which
may not fully represent the model’s overarching performance.

One approach to account for this limitation and gain a more comprehensive un-
derstanding of a machine learning model’s performance is through Cross-Validation.
This technique involves dividing the data into multiple subsets or folds. The model is
then trained and tested multiple times, each time using a different fold as the test set
and the remaining folds as the training set. This ensures that the model’s perform-
ance is evaluated on various parts of the data, providing a more holistic assessment.
Moreover, the results obtained from cross-validation could help in tuning the model’s
hyper-parameters and potentially improve its predictive power, thereby enhancing its
utility in real-world applications. As stated in section 3.2.1, Oneto et al. (2018) de-
veloped a neural network train delay prediction model which outperformed traditional
models. The study demonstrated how exploitation of the Cross-Validation technique
contributed to improved performance through optimal hyper-parameter tuning.

Finally, it is essential to mention that the time frame of the LSTM model evaluation
is a subset of the time period during which Bane NOR’s model was analysed. Bane
NOR’s model was assessed on data from the 15th of June 2022 to the 22nd of March
2023. This discrepancy in evaluation periods has implications for the comparative
analysis between the two models. The broader time frame for Bane NOR’s model
means that it might be influenced by factors that the LSTM model did not have the
opportunity to encounter in its test set. On the positive side, despite the discrepancy
in evaluation periods, there is overlap in the timeframes that the two models were
evaluated on. This shared subset of data allows for some degree of comparability
between the models. This offers a valuable opportunity to directly compare how each
model handles the same set of circumstances, and it strengthens the validity of the
comparative analysis conducted in this study.
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CHAPTER

EIGHT

CONCLUSIONS

This study embarked on a quest to explore the performance of two different prediction
models for estimating train departure delays: a machine learning model utilising Long
Short-Term Memory (LSTM) networks, and Bane NOR’s current model. The prin-
cipal objective was to determine if machine learning, particularly LSTM, could provide
a more accurate prediction model, especially under fluctuating weather conditions.

Our first exploration was focused on RQ 1, which concerned the utilization of
LSTM models in predicting small, everyday train delays. The LSTM model was
developed and tested with and without the inclusion of weather features. The key
performance metrics such as the Pearson Correlation Coefficient, Mean Average Er-
ror (MAE), and Root Mean Squared Error (RMSE) were used to assess and compare
the performance of both models. Through this, we were able to establish that LSTM
models are powerful in capturing delay patterns owing to their ability to retain and
process historical data over long sequences.

Following this, we addressed RQ 2, which explored how various types of train-
related features contribute to an LSTM prediction model’s performance. The results
revealed that certain features, specifically the time-lags of the departure delay and the
delay classification feature, had a significant positive impact on the model’s predictive
accuracy.

Subsequently, we turned our attention to RQ 3, which focused on the impact of
incorporating weather data as an external feature on the predictive accuracy of LSTM
models for train delay predictions. While the expectation was that weather features
would enhance the model’s performance, the results did not evidence an improvement.
However, it is worth noting that the lack of improvement could be attributed to data
limitations encountered, such as missing weather data and potential biases introduced
during the data imputation process. This may have obfuscated the true influence of
weather conditions on train departure delay, and could be an area for future investig-
ation.
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Finally, we addressed RQ 4, conducting a comparative analysis of the LSTM model
and Bane NOR’s current prediction model. Despite the data challenges and the spe-
cific focus on one train route in Norway, the LSTM model demonstrated a stronger
correlation and lower error rates than the existing model.

While this study focused on a specific train route in Norway, the findings bear wider
implications for the transport industry. Machine learning models, such as LSTM,
have the potential to enhance the accuracy of predictive models, thereby improving
operational efficiency and customer satisfaction. These models are adaptable, and can
be continually improved and refined with new data, making them a robust solution in
a rapidly changing world.

Despite some limitations, such as imbalanced data sets, data quality issues, and
potential seasonal biases in the performance evaluation, this research contributes to a
growing body of literature advocating for the use of machine learning in transportation
modelling. Future research should focus on improving data quality, testing the mod-
els on various train routes with different characteristics, and possibly incorporating
more sophisticated techniques such as cross-validation for a more robust performance
assessment.

In conclusion, this study provides evidence that machine learning, and LSTM mod-
els in particular, have the potential to outperform traditional methods in predicting
train departure times. The results emphasize the value of a comprehensive approach
to train delay prediction, one that integrates weather data, exploits historical delay
patterns, and incorporates the influence of previous station delays. This strategy,
coupled with careful pre-processing and model tuning all contributed to the develop-
ment of a model that could effectively handle the complexity and variability inherent
in train delay data. Future research can build upon these findings, exploring other
feature engineering techniques or external factors that might enhance the model’s pre-
dictive power even further. As such, the LSTM model could serve as a valuable tool
in improving the efficiency and reliability of railway operations.

8.1 Future work

The insights derived from addressing the research questions offer a sound foundation
upon which further advancements can be made. Several areas of focus for future work,
in light of the research conducted, are as follows:

Real-time Predictions While this study used historical data for predictions, future
research could also look at enabling the LSTM model to make real-time delay
predictions by utilising real-time data, enhancing its practical utility for railway
operation management. Section 7.3.1 offered two potential ways of doing this.
The first option is continuously fine-tuning the pre-trained LSTM model with
new incoming real-time data. This approach depends on the correct balance
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between the model retaining past knowledge learned from historical data, and
adapting to new patterns provided by the real-time data. The second option
includes real-time predictions for multiple stations. This could be done trans-
forming the predictive LSTM model to a generative LSTM model, generating a
sequence of predicted delays for multiple future stations. As the train progresses
along its route, and actual real-time delay data becomes available, this data is
used to update the input sequence.

Impact of Weather Conditions: Despite the lack of improvement in model per-
formance with the inclusion of weather features in this study, further research
on how weather conditions impact train delays is recommended. This holds with
regard to predictions of both minor and major delays. Enhancing the granularity
and quality of weather data, particularly concerning severe weather conditions
that lead to more substantial delays, could offer more nuanced insights and im-
prove the model’s predictive performance.

Inclusion of Exogenous Information: The findings concerning RQ2 and RQ3 high-
light the potential value of additional features in enhancing the predictive per-
formance of the LSTM model. Future research could involve the analysis and
inclusion of further exogenous information affecting railway operations, such as
real-time passenger load, track maintenance schedules, and special events, among
others. Such information, if available, could provide a richer feature set for the
LSTM model, potentially leading to more accurate delay predictions.

Examination Across Various Rail Lines: This study’s findings are based on a
single long-distance railway route in Norway. Given the uniqueness of each rail
line, future work should focus on testing the LSTM model on different sections
of the railway network. Such an examination would help validate the model’s
adaptability and effectiveness across diverse operational and environmental con-
ditions.

Cross Validation: The implementation of more robust techniques such as Cross-
Validation can be beneficial for enhancing the generalisability and robustness of
the LSTM model’s performance. Cross-validation, which involves partitioning
the data set into multiple subsets and validating the model on each, could provide
a more thorough performance assessment and facilitate model refinement. Also,
a more comprehensive approach to the Grid Search method, described in section
7.1.3, could provide further refinements of the hyper-parameters of the model.
Consequently, this could further improve model performance.

Delay Communication: Future work in the area of delay communication can ex-
plore strategies that balance the simplicity and comprehensibility of direct delay
predictions with the detailed information provided by techniques like confidence
intervals or probability measures. The impact of these strategies on passen-
ger satisfaction, perception of prediction accuracy, and overall travel experience
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could be studied to inform the development of more effective communication
methods.

Buffer: Future research could focus on testing the utility of incorporating a buffer
into delay predictions. This would involve determining optimal buffer sizes that
balance accuracy, manage unforeseen delay variations, and maintain passenger
trust in the prediction model.

In summary, the research insights gleaned from this study offer a platform for fur-
ther exploration and advancement in the field of machine learning-based train delay
prediction. By continuing to build upon these findings, it is anticipated that future
research will contribute to enhancing the precision and reliability of train delay pre-
dictions, ultimately leading to improved railway operations.
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APPENDICES

A Norwegian Railway Network

A.1 The Norwegian Railway Network Line Maps

Line maps from BaneNOR (2023d)
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A.2 Dovrebanen Line Maps

Line map from BaneNOR (2023c)
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A.3 Gardermobanen Line Maps

Line map from BaneNOR (2023b)

B Timetable from SJ

Routetables are gathered from SJ (2023)
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B.1 Oslo - Trondheim
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B.2 Trondheim - Oslo
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C Figures of Bane NOR´s Train Prediction Model
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D Data availability along the railway line

Data availability along the railway line. The number of elements refer to how many
weather elements were available at the given weather station.
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E Results: Visual Inspection

E.1 Box plot from figure 6.3.1
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E.2 Box plot from figure 6.3.2
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E.3 Box plot from figure 6.3.3
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E.4 Box plot from figure 6.3.4
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F Long Short-Term Memory (LSTM)

F.1 Parameters and Functions

Dropout Probability: Dropout is a regularization technique used to mitigate the
risk of overfitting in neural networks. It randomly sets a fraction of the input units
to 0 at each training step. This helps to reduce interdependent learning among the
neurons. The dropout probability dictates the fraction of input units to be set to zero
out during training (Goodfellow et al. 2016).

Learning Rate: The learning rate is a hyper-parameter that governs the step
size at which the model parameters are updated during training. A higher learning
rate allows the model to learn faster but may result in overshooting the optimal
solution, while a lower learning rate may lead to slower convergence. The learning
rate is typically set between 0 and 1 (Goodfellow et al. 2016).

Weight Decay: Weight decay, or L2 regularization, serves as a valuable technique
to counteract overfitting in machine learning models. It involves augmenting the loss
function with a penalty term based on the magnitude of the model weights. By doing
so, weight decay promotes the learning of smaller weight values, effectively curbing
the complexity of the learned function. The weight decay parameter governs the
intensity of the regularization term, influencing the extent to which weight values are
encouraged to be minimized during training (Goodfellow et al. 2016).

Optimiser: The optimizer serves as a critical algorithm employed to adjust
the model parameters using computed gradients during the training process. It
plays a pivotal role in determining how the model learns from the provided train-
ing data. Various commonly used optimisers include Stochastic Gradient Descent
(SGD), Adam, RMSprop, and Adagrad. Through optimizer hyper-parameters, one
can precisely control the behavior of the optimization algorithm, influencing factors
such as the learning rate schedule and momentum. These hyper-parameters play a
vital role in optimizing the training process and enhancing the model’s performance
(Goodfellow et al. (2016); PyTorch (2023)).

Activation Functions

Sigmoid Function (σ): The sigmoid function is used in the input, forget, and
output gates. It is used to squash the input values into the range [0,1]. Particularly
useful for deciding whether to forget, to update, or to output the cell state.

σ(x) =
1

1 + e−x
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Hyperbolic Tangent Function (Tanh): The tanh function is used for creating the
new cell state candidate. It is used to squash the input values into the range [-1,1],
which can handle both positive and negative correlations in the data.

tanh(x) =
ex − e−x

ex + e−x

F.2 Training Procedure

The training of an LSTM model involves the use of Backpropagation Through Time
(BPTT) and an optimization algorithm like Stochastic Gradient Descent (SGD) or
its variants. This project has employed the Adam optimiser, which is an extended
variant of the SGD. However, for the sake of simplicity, the training procedure will be
explained using the SGD.

We assume the input at time t to be xt and the output to be yt. The hidden state
is represented by ht and the cell state by ct. The model parameters include the weight
matrices W , U , and bias vectors b. Subscripts i, f , o, and c denote the input gate,
forget gate, output gate, and cell state, respectively.

Forward Pass

The LSTM cell computations for a given time step t are as follows:

• Input gate: it = σ(Wixt + Uiht−1 + bi)

• Forget gate: ft = σ(Wfxt + Ufht−1 + bf )

• Output gate: ot = σ(Woxt + Uoht−1 + bo)

• New memory cell: c̃t = tanh(Wcxt + Ucht−1 + bc)

• Final cell state: ct = ft ◦ ct−1 + it ◦ c̃t

• Hidden state: ht = ot ◦ tanh(ct)

Here, ◦ denotes the Hadamard (element-wise) product and σ represents the
sigmoid function. (PyTorch 2023)

Compute Loss

The loss for a single time step is computed as the mean squared error between
the predicted output (ŷt) and the actual output (yt). The total loss is the sum of the
individual losses across all time steps.
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L =
1

T

∑
t

(ŷt − yt)
2

Backward Pass

Gradients of the loss function with respect to the model parameters are computed
using the chain rule of differentiation. For instance, the gradient of Lt with respect to
the input gate weights Wii is computed as follows:

∂Lt

∂Wii

=
∂Lt

∂ŷt

∂ŷt
∂ht

∂ht

∂it

∂it
∂Wii

These gradients are then used to update the model parameters.(PyTorch 2023)

Update Parameters

Model parameters are updated in the direction that minimizes the loss. For in-
stance, the update for Wii using SGD with learning rate η is as follows:

Wii = Wii − η
∂L

∂Wii

The same procedure is followed to update all other parameters. This process is
repeated for a number of iterations, or epochs, or until the model’s performance on a
validation set stops improving. (Goodfellow et al. 2016)
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