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Preface

This thesis, written in the spring of 2023, concludes my master’s degree in Mechanical and Indus-
trial engineering at the Norwegian University of Science and Technology. The thesis explores the
behavior of a vibration damper through a comparative analysis between analytical solutions and
advanced software. Problems that originate from vibrations are frequently encountered in boring
when machining with long overhangs. Damped tools can solve vibration issues and improve boring
performance.

I would like to extend a special thanks to my supervisor, Knut Sørby, for his guidance and patience
throughout the time-consuming challenges encountered while working with Abaqus. Additionally,
I am grateful to my co-supervisor, Chao Gao, for providing valuable assistance in overcoming
technical obstacles related to the software. It has been an immensely interesting experience delving
into this subject due to its relevance. The concept of a two-mass damping system is not only
applicable to a boring bar but also finds relevance in various vibrations occurring around us.
Exploring damping techniques and simulating them has been an enriching learning journey.

The rubber material, with its unique properties, holds exceptional potential and applicability in
environments that require e↵ective vibration damping. Its versatility and e↵ectiveness make it a
valuable asset.

Through this thesis, I aim to shed light on the aspects of vibration damping, analyze the capabilities
of Abaqus, and explore the broader applications of damping techniques. It is my hope that this work
will contribute to the growing interest in this field and inspire further research and advancements.

Rasmus Møller Guttormsen

Trondheim, June 11, 2023
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Abstract

This thesis focuses on three key aspects of damping phenomena: viscous fluid, spring/dashpot
elements in Abaqus, and rubber elements. Fluid simulations are analyzed using a technique where
a part can be converted into particles acting as a viscous oil. The spring/dashpot element, a
feature in Abaqus, allows the observation of its e↵ect on damping behavior. The rubber elements
are specifically investigated for their shear sti↵ness and damping behavior. These subjects are
examined through combined simulations, resulting in frequency response functions for a simplified
boring bar in Abaqus. By measuring the boring bar’s response to varying input frequencies, it
provides information about its dynamic behavior. The findings demonstrate a close alignment
between the analytical approach and the Abaqus model, particularly in terms of shear sti↵ness,
which also matches the Matlab model.

The study also investigates the impact of viscous damping on a moving mass. Since Abaqus
does not allow running a frequency response function directly by converting a part to particles,
a workaround involves adding a periodic force to a cylindrical mass moving inside a container
and interacting with fluid. Comparing three di↵erent scenarios, the results indicate that Abaqus
demonstrates the e↵ect of viscous damping for both the dashpot element and the smoothed particle
hydrodynamics model.

Overall, this thesis provides valuable insights into the behavior of various damping elements and
their impact on the frequency response of the boring bar. The comparative analyses between
analytical and simulation approaches in Abaqus, along with the inclusion of viscous damping
e↵ects, contribute to a comprehensive understanding of damping phenomena.
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Sammendrag

Denne masteroppgaven fokuserer p̊a tre sentrale aspekter ved dempingsfenomener: viskøs væske,
fjær/demperelementer i Abaqus og gummi-elementer. Væske-simuleringer analyseres ved hjelp
av en teknikk der et objekt kan konverteres til partikler som oppfører seg som en viskøs olje.
Fjær/demperelementet, en funksjon i Abaqus, tillater observasjon av dets p̊avirkning p̊a demp-
ingsoppførselen. Gummi-elementene undersøkes spesifikt med tanke p̊a deres skjærstivhet og de-
mpingsoppførsel. Disse emnene blir undersøkt gjennom kombinerte simuleringer, som resulterer i
frekvensresponsfunksjoner for en forenklet verktøyholder i Abaqus. Ved å måle verktøyholderens
respons p̊a varierende frekvenser gir det informasjon om dens dynamiske oppførsel. Resultatene
viser en tett sammenheng mellom den analytiske tilnærmingen og Abaqus-modellen, spesielt med
hensyn til skjærstivhet, som ogs̊a matcher Matlab-modellen.

Studien undersøker ogs̊a virkningen av viskøs demping p̊a en bevegelig masse. Siden Abaqus ikke
tillater direkte simulering av en frekvensresponsfunksjon ved å konvertere et objekt til partikler, er
metoden for å oppdage demping å legge til en periodisk kraft til en sylindrisk masse som beveger
seg inne i en beholder og omgitt av viskøs væske. Sammenligning av tre forskjellige scenarioer
viser at Abaqus demonstrerer virkningen av viskøs demping b̊ade for fjær/demperelementet og ved
bruk av ”smoothed particle hydrodynamics” teknikken.

Alt i alt gir denne oppgaven verdifulle innsikter i oppførselen til ulike dempingselementer og deres
innvirkning p̊a frekvensresponsen til verktøyholderen. De sammenlignende analysene mellom ana-
lytiske og simulerte tilnærminger i Abaqus, samt inkluderingen av viskøs dempingse↵ekter, bidrar
til en helhetlig forst̊aelse av dempingsfenomener.
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1 Introduction

The present master’s thesis focuses on investigating damping phenomena within the Abaqus soft-
ware. The study examines the damping e↵ects of both an elastic rubber material and a viscous
liquid modeled as particles. The damping phenomena are analyzed using a two-mass system, which
is a system used in the Silent Tool (boring bar), developed by Sandvik Coromant. In contrast to
shorter cutting tools, a boring bar is characterized by its elongated structure. This design makes
it prone to vibrations when delivering cutting forces.

The experimental setup is based on the Silent Tool. The Silent Tool utilizes a damping technique
called tuned mass damping, wherein a counterweight within the tool absorbs kinetic energy from
vibrations. By employing a compensating frequency, these vibrations are mechanically eliminated.
The tuned mass damper plays a crucial role in mitigating uncontrolled vibrations in machining
tools. The target of this research is to assess the capability of finite element analysis software in
accurately simulating the vibration behavior of a simplified Silent Tool.

The research process involves conducting experiments using the rubber material to simulate spring
and the oil to mimic the dampening e↵ect within Abaqus. Both static and dynamic analyses are
performed to investigate parameters such as shear sti↵ness, impact deflection, frequency response
function, and smoothed particle hydrodynamic analysis.

1.1 Objective

The main goal of this master’s thesis is to confirm that Abaqus can produce accurate and depend-
able results. Validating Abaqus will allow Sandvik Coromant to make adjustments to tool designs
or material properties more e�ciently. This, in turn, will enable the company to save time and
money by conducting cost-e↵ective experiments on specific parts of the Silent Tool. For example,
they can explore di↵erent geometries or material properties for the rubber element and experiment
with various viscous fluids by adjusting the viscosity to achieve di↵erent damping e↵ects.

To achieve these objectives, the plan is to establish clear and measurable outcomes by following
a systematic process. The first steps involve becoming familiar with the relevant field of study
and further building on the knowledge of damping in a two-mass system. This knowledge will
guide the appropriate analyses to be conducted in Abaqus and determine a proper approach for
implementing them. However, it is important to acknowledge that certain assumptions need to be
made to accommodate limitations and simplify the experimental setup.

1.2 Method

By comparing results obtained from Abaqus with analytical calculations in Matlab, a fundamental
understanding of the system can be established. The analytical approach in Matlab relies on
theoretical formulas.

Abaqus is a finite element analysis software program that provides a range of simulation capab-
ilities. These simulations encompass simple static analyses with uniaxial stress loads, as well as
frequency and steady-state dynamic analyses. Additionally, Abaqus extends its scope to include
fluid-structure interaction simulations using the smoothed particle hydrodynamics method.

The analytical calculations are based on the modal analysis theory described in the book ”Ma-
chining Dynamics” by Tony L. Schmitz and Kevin S. Smith. For the theoretical calculations
concerning viscous damping elements, the book ”System Dynamics for Engineering Students” by
Nicolae Lobontiu is referenced.

Matlab is chosen for this project specifically because of its robust ”fminsearch” function, which
greatly enhances the capabilities of running optimized frequency response functions. Matlab is a
high-level programming language and environment designed for numerical computation, visualiza-
tion, and data analysis.
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2 Theoretical Background

The theoretical background section provides a foundation for the results presented in the master
thesis. It covers several key subjects that directly and indirectly contribute to the findings.

Firstly, fluid mechanics is explored as a branch of physics that investigates the properties and
behavior of fluids under external forces. Viscosity, a fundamental property in fluid mechanics,
is discussed in relation to a fluid’s resistance to flow. Its significance in practical applications is
emphasized.

The section delves into di↵erent types of viscous damping elements resulting from fluid viscosity.
Both translatory and rotary damping elements are explained. Additionally, the concept of terminal
velocity, which represents the equilibrium between gravitational and drag forces when an object
falls through a fluid, is highlighted.

The two dynamic analysis methods o↵ered by Abaqus and their respective applications are elabor-
ated. It also examines the concept of fluid-structure interaction, which involves studying the inter-
action between a fluid and a solid structure. Furthermore, the smoothed particle hydrodynamics
approach, a commonly used numerical method for simulating fluid-structure interaction problems,
is discussed in detail. Additionally, two notable features in Abaqus, namely the spring/dashpot
element and the amplitude feature, are explored.

Lastly, the Rayleigh damping coe�cient is elaborated. The half-power bandwidth method is em-
ployed to estimate the required damping ratio, which is essential for calculating the damping
coe�cients ↵ and �.

2.1 Viscosity

When studying fluid flow for any purpose, viscosity becomes a fundamental material property that
needs to be considered. Viscosity can take on two primary forms: dynamic and kinematic. This
subsection will explain their di↵erences.

Dynamic viscosity, also known as absolute viscosity, is a measure of a fluid’s internal resistance
to flow. Kinematic viscosity, on the other hand, is the ratio of dynamic viscosity to density. It is
important to note that two fluids with the same dynamic viscosity can have di↵erent kinematic
viscosity depending on their density. Put simply, dynamic viscosity provides information on the
force required to make the fluid flow through a tube illustrated as (a) in Figure 1. While (b) shows
that kinematic viscosity refers to the timed flow rates through orifices, usually driven by the force
of gravity.[1]

Figure 1: (a); The force required to overcome fluid resistance to flow through a tube. (b); Timed
flow rates through orifices.

Source: [2]
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The variety of viscosity units can appear extensive. The dimensions of dynamic viscosity are
force⇥time÷area. Where the unit is Newton-second per square meter, and can also be expressed
as pascal-second in SI units. 1Ns/m2 = 1kg/(m·s) = 1Pa·s = 10P where the unit poise (P) is
often used with the metric prefix centipoise because the viscosity of water at 20°C is 1 centipoise.
Kinematic viscosity is obtained by dividing the dynamic viscosity of a fluid by its mass density. The
dimensions of kinematic viscosity are area÷time, and the appropriate units of measurement are
meters squared per second. In the centimeter-gram-second system, the unit of kinematic viscosity
is called stokes (sT). The stoke is defined as one centimeter squared per second. 1 sT = 1 cm2/s =
0.0001m2/s.[3]

2.1.1 Viscous Damping Elements

Damping is associated with energy losses, and in that regard, this section elaborates on study-
ing viscous-type losses in relation to basic viscous dampers. In viscous damping, the damping
force/torque is proportional to the relative velocity. Relative velocity refers to the velocity of an
object with respect to the fluid. In other words, it is the di↵erence between the velocity of the
object and the velocity of the fluid.[4]

Figure 2: Damping through structure. (a); Translatory. (b); Rotary.

Source: [5]

Figure 2 illustrates the principle of translatory and rotary viscous damping. For translatory damp-
ing, a force (fd) is the viscous resistance. As for the force generated in rotary damping (md) is the
moment. This relationship is described by constant damping coe�cients. The translatory damping
force is expressed as fd = ct·v(t) where ct is the damping coe�cient for translation. The rotation
damping moment is written as md = cr·!(t) where cr is the damping coe�cient for rotation. These
two viscous damping coe�cients can be determined as a function of geometrical and material para-
meters. Newton’s law of viscous flow is used, where it is established that shear stresses (⌧) are
created between adjacent fluid layers in both situations. If two surfaces move parallel to each other
with fluid in between, the established shear stress is ⌧ = µ·dv(z)/dz. The coe�cient of dynamic
viscosity is represented as µ, and dv(z)/dz is the gradient of the relative velocity.[5]

2.1.2 Terminal Velocity

The previous section is focusing on the linear profile of velocity between two close parallel surfaces.
The attention in this section is about an object traveling through a fluid. The forces in focus are two
external forces: the gravitational force, which is equivalent to its weight, and the resistance/drag
force. If the object’s mass stays constant, its movement can be explained using Newton’s second
law of motion, which states that force (Fg) equals mass (m) multiplied by acceleration (a). The net
external force (F ) is the di↵erence between the gravitational and drag forces (F = Fg � Fd). The

3



magnitude of the drag is given by the drag equation. Drag (Fd) depends on the drag coe�cient
(Cd), fluid density (⇢), square of the fluid velocity (v), and the projected area (A) of the object
used in Equation (1).[6]

Fd =
1

2
⇢v2CdA (1)

When the weight of an object is light, the point where the drag force equals the weight is quickly
reached. At this point, the object experiences no net external force, and the vertical acceleration
becomes zero. According to Newton’s first law of motion, in the absence of any acceleration
(Fd = Fg), the object falls at a constant speed, as shown in Figure 3. Combining these two
equations gives the terminal velocity Equation. (2).

vterminal =

r
2mg

⇢CdA
(2)

The geometrical shape, velocity, density, and viscosity of the fluid all a↵ect the drag force. For
instance, two objects with similar weight experience the same conditions, a streamlined body shape
has a 0.04 drag coe�cient enabling it to reach a higher terminal velocity than an object like a short
cylinder shape with a 1.15 drag coe�cient. An object’s terminal velocity in water is lower than in
air due to water’s higher density.[7]

Figure 3: Creeping flow past a sphere: Drag force Fd and gravity Fg.

Source: [8]

2.1.3 Reynolds Number

The dimensionless Reynolds number (Re) predicts whether the fluid flow would be laminar or
turbulent. Laminar flow occurs at low Re, where viscous forces dominate and gives smooth fluid
motions. When Re is high, the forces are dominated by inertial forces and result in turbulent flow,
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hence the definition Re = inertiaforce/viscousforce. The properties infecting the prediction are
the velocity, length, viscosity, and type of flow.[9]

When it comes to objects moving in a fluid, Reynolds number is called the particle Reynolds
number Rep, dependent on the surrounding flow and its fall velocity. The equation for the Reynolds
number is represented as Rep = ⇢vd/µ, where ⇢ is the fluid density, v is the relative velocity, d is
the diameter for objects with the circular projected area and µ is the dynamic viscosity. With a
high viscosity, the flow is normally laminar and results in low Re.[10]

Figure 4: Correlation between drag coe�cient Cd and Reynolds number Rep for a cylinder

Source: [11]

An object’s resistance or drag in a fluid environment is measured using the drag coe�cient, and
it correlates with Reynolds number as seen in Figure 4. The drag coe�cient of a short cylinder
when Re is 0.1  Re < 1000, can be calculated as Cd = 24/Re(1 + 0.15Re2/3).[12]

2.2 Fluid-Structure Interaction

Fluid-structure interaction (FSI) refers to the analysis and simulation of the interaction between
fluids and deformable structures. In Abaqus, FSI problems are solved by combining finite ele-
ment method (FEM) for structural analysis and computational fluid dynamics (CFD) for fluid
analysis.[13]

In the FEM approach of FSI, the structure is modeled using finite elements, and the governing
equations for structural mechanics are solved. Instead of directly modeling the fluid, the fluid loads
on the structure, such as pressure or drag forces, are obtained from CFD analysis. These fluid
loads are then applied as boundary conditions on the structure, influencing its deformation and
response.[14]

In the CFD approach of FSI, the focus is on modeling and solving the governing equations of
fluid flow. The fluid domain is divided into small elements using a computational mesh, and the
equations related to fluid dynamics are solved to determine the characteristics of fluid flow. The
deformation of the structure is considered a boundary condition in the fluid domain, which in turn
influences the patterns and properties of the fluid flow.[15]

The modeling approach in FSI can vary depending on the level of interaction between the fluid
and structure, as well as the desired accuracy. For simpler FSI analyses that involve rigid body
motion and heat transfer between the fluid and solid, a CFD approach can be used. In these cases,
the solid component being studied typically does not undergo significant deformation or changes
in shape.[16]
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2.2.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics is a method for simulating fluid flows and FSI problems. SPH
has seen rapid development in the last decade due to its application to engineering problems for
both fluids and solids.

SPH belongs to the meshless numerical methods family. Unlike Finite Element Analysis, these
methods don’t require defining nodes and elements. SPH relies on a collection of points that rep-
resent the body instead. These nodes are usually called particles and they are smoothed using a
kernel function that assigns each particle a density and allows for interpolation of fluid properties
such as pressure and velocity. However, it is important to note that SPH analysis can be computa-
tionally intensive and may require significant computational resources, particularly for large-scale
problems.[17]

Figure 5: (a); Finite element mesh. (b); SPH particle distribution.

Source: [18]

The SPH method is particularly useful for simulating problems with large deformations or complex
geometries, such as fluid flows around moving objects. To use the SPH method in Abaqus, the
particle properties must be defined with material properties and initial position. The simulation
parameters also need to be determined, such as the time step and the kernel function. The material
density, dynamic viscosity, and equation of state (EOS) are required to achieve good accuracy in the
analysis. The viscosity option is used in conjunction with the EOS option to accurately model fluid
behavior in simulations. The combination of these two options allows for a more comprehensive
representation of fluid dynamics and viscosity e↵ects. The ”Us-Up” type is a specific type of EOS
that describes an isotropic compressible material with a linear relationship between the pressure
and the volume change. When selecting ”Us-Up” in ”step 2” of defining the EOS behavior, c0
is the reference speed of sound. If EOS is not utilized in the simulation, it will lack essential
information and eventually encounter errors, leading to termination. Abaqus provides a warning
message stating that the viscosity option must be used in combination with the EOS option.[18]

2.3 Dynamic Analysis in FEM

Dynamic analysis in Abaqus refers to the simulation of the time-dependent behavior of a system
under external loads. Unlike static analysis, dynamic analysis considers nodal forces associated
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with mass/inertia and damping. Abaqus provides two numerical methods for dynamic analysis:
the explicit solver and the implicit solver.[19]

Explicit dynamic analysis is a numerical method that solves the equations of motion using an ex-
plicit time integration scheme. This method is more accurate and e�cient for simulations involving
large deformations and strains, nonlinear material behavior, complex contact, and nonlinear buck-
ling, seen in Figure 6 (b). The explicit solver is well-suited for smoothed particle hydrodynamics
analysis because it can handle large deformations and high strain rates, which are common in
fluid-structure interaction problems. The explicit solver is ideal for fast events and calculates the
appropriate time increment based on the mesh, Young’s modulus, density, and mass scaling. It
is computationally e�cient for large models with short dynamic response time and requires less
computer storage as illustrated in Figure 6 (a).[20]

The implicit dynamic analysis uses an iterative approach to solve the equations of motion and is
suitable for nonlinear problems that require solutions over multiple steps based on the previous
solution. The implicit solver is recommended for structure dynamic types that involve applied
displacements, low-frequency response, vibration, and oscillation. It is extremely time-consuming
for large models and requires more computer storage. The primary distinction between implicit and
explicit methods in numerical analysis is the manner in which they handle time incrementation,
leading to di↵erences in computational e�ciency, accuracy, and applicability to di↵erent types of
problems.[21]

Figure 6: Solver comparison. (a); Computational cost-model size. (b); E�ciency-amount move-
ment of an object.

Source: [22]

In dynamic analysis, the natural time scale is crucial, and it is essential to accurately represent
the physical mass and inertia in the model to capture transient responses. However, there are
often small elements that need to be included. These small elements pose a challenge for Abaqus,
as it needs to accurately integrate the entire model over time. To achieve this accuracy, Abaqus
uses small time increments during the simulation. The inclusion of small elements in the model is
typically a consequence of di�culties encountered in generating the mesh, which is the process of
dividing the model into smaller elements for analysis.[23]

One approach is to scale the masses of these elements. Mass scaling is a technique used to improve
the e�ciency and stability of simulations. It involves artificially increasing or decreasing the mass
of the particles or elements in the model while preserving the overall behavior of the system. Mass
scaling is a technique in SPH where particle masses are adjusted to achieve stability, accuracy,
and computational e�ciency. While it can reduce computational time, it may introduce errors
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in the simulation. Mass scaling used in SPH analyses modifies the mass distribution of particles,
potentially distorting the fluid flow behavior and leading to unrealistic fluid dynamics.[24]

2.4 Abaqus Features

This subsection discusses the dashpot and spring elements, their respective functions, and how
they are used in modeling structures and materials. Further explains the significance of amplitude
in Abaqus for dynamic analysis, where a periodic amplitude type is explained.

2.4.1 Spring/dashpot Elements in Abaqus

In Abaqus, dashpot and spring elements are used to model the viscoelastic behavior of materials.
A dashpot element, also known as a viscous damper, is a component that provides resistance to
motion through the action of a fluid. It consists of a piston moving within a cylinder filled with
fluid. The fluid resistance is proportional to the velocity of the piston, creating a force that opposes
motion. Dashpot elements are used to model damping in structures and materials.[25]

A spring element, on the other hand, is a component that resists deformation when a force is
applied to it. It stores energy as it is deformed and releases it when the force is removed. Spring
elements can be used to model the elastic behavior of materials and structures.[26]

In Abaqus, these elements can be used in combination to model viscoelastic materials, which
exhibit both viscous and elastic behavior. Including both dashpot and spring elements in a model,
makes it possible to simulate the time-dependent response of materials to mechanical loads. This
is an important simulating feature that is used in many engineering applications where a model
experience dynamic loading.[27]

2.4.2 Amplitude Definition

To perform dynamic analysis it is important to be familiar with the use of ”Amplitude” in Abaqus.
The amplitude option is used to specify a function that defines arbitrary time variations of pre-
scribed variables throughout an analysis. There are multiple options for di↵erent types of amp-
litudes in Abaqus. Some of them are tabular, equally spaced, periodic, and modulated. In this
project, the type of amplitude that is of particular relevance is the periodic amplitude. This type
of amplitude refers to loads that repeat their motion within a specific time period. Equation (3)
is the function to define the period amplitude.[28]

a = A0 +
NX

n=1

(An cosn!(t� t0) +Bn sinn!(t� t0)) (3)

This function applies when t � t0, for t < t0 then a = A0. For example, if a sinus curve is desired,
a = Bn sinn!(t� t0), it can be plotted as illustrated in Figure 7.

The circular frequency, starting time, initial amplitude, and amplitudes An and Bn are the para-
meters required to define a periodic curve. Setting the circular frequency to 2⇡ determines that one
wavelength corresponds to a duration of 1 second. The starting time dictates when the periodic
amplitude initiates. The amplitude will remain its initial amplitude for as long t < t0, the amp-
litude (a) equals the initial amplitude (A0). In this particular example, the initial amplitude is -1
and remains constant for a duration of 0.25 seconds. The sinusoidal curve maintains a consistent
amplitude (Bn) of 2, as specified.
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Figure 7: Input parameters defining the periodic curve.

Figure 8 illustrates the sinusoidal curve that is obtained when plotting the input parameters shown
in Figure 7. This example demonstrates how a load or displacement can be defined to change over
time. By assigning a periodic amplitude to a force, for instance, the force will vary as time
progresses.

Figure 8: Periodic amplitude curve with given properties from Figure 7.

2.5 Rayleigh Damping Coe�cients

The Rayleigh method is a suited approach to estimate the damping of a structure. It assumes
that the damping can be represented by a linear combination of mass and sti↵ness matrices, with
damping coe�cients that are determined from a damping ratio and natural frequencies of the
system. [29]

Rubber is a frequently utilized material in engineering applications for its capacity to provide
damping in structures, e↵ectively absorbing energy and diminishing vibrations. The damping
characteristics of rubber are influenced by various factors, including the type of rubber, temper-
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ature, and vibration frequency. When employing the Rayleigh method on a structure containing
damping rubber, the initial step involves estimating the system’s natural frequencies. This estim-
ation can be achieved through finite element analysis or experimental modal analysis. Once the
natural frequencies are determined, the damping ratio can be calculated, and the damping matrix
is expressed through Equation (4).[30]

[C] = ↵[M] + �[K] (4)

[C] is the system damping matrix, [M] is the system structural mass matrix, [K] is the system
structural sti↵ness matrix. The coe�cient ↵ represents the Rayleigh damping that is proportional
to the mass of the system, while the coe�cient � represents the damping that is proportional to
the sti↵ness of the system.[31]

The Rayleigh method is used to determine the damping coe�cients ↵ and �. The two specific
natural frequency of the modes is !1 and !2. The damping ratio associated with !1 and !2 is ⇠1
and ⇠2. The relations between them can be expressed in the following equation.

⇢
↵
�

�
= 2

!1!2

!2
2 � !2

1


!2 �!1

�!�1
2 !�1

1

�⇢
⇠1
⇠2

�
(5)

Equation (5) can be simplified by assuming that the same damping ratio is applied to both !1 and
!2 in real practice.

⇢
↵
�

�
=

2⇠

!1 + !2

⇢
!1!2

1

�
(6)

The damping ratio (⇠) can be obtained experimentally using various testing methods. The damp-
ing ratio of rubber can be determined using the half-power bandwidth method. The half-power
bandwidth method is a technique used to determine the damping ratio of a mechanical or struc-
tural system from its frequency response function. This method involves calculating the di↵erence
between the frequencies f1 and f2, which is known as the bandwidth illustrated in Figure 9. To
determine these frequencies, one can locate the corresponding position of Amax/

p
2, where Amax

represents the peak amplitude.[32]

Figure 9: Half power bandwidth method.

The frequencies fn, f1 and f2 from the frequency response function provide the damping ratio
expressed in Equation (7) with the use of the half-power bandwidth method.
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⇠ =
f2 � f1
2fn

(7)

The Rayleigh damping coe�cient can be obtained by inserting the two modes, !1 and !2 and the
damping ratio (⇠) in Equation (6).
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3 Validation of Fluid Simulations

The chapter explores a comparison between two damping scenarios, namely translatory and rotary
damping, using both analytical and simulation methods. The main focus is on the concept of the
translatory damping coe�cient in viscous damping and its relationship with the velocity of an
object moving through a fluid. Additionally, the chapter explains the iterative approach employed
to calculate the translatory damping coe�cient and its utilization in determining the terminal
velocity of an object. The chapter also discusses the iterated damping coe�cient and the damping
coe�cient obtained from a Smoothed Particle Hydrodynamics analysis.

Furthermore, the chapter explores the concept of the rotary coe�cient of viscous damping, which
relates to the damping experienced by a rotating shaft caused by fluid resistance. A theoretical
model is recreated in Abaqus to facilitate a comparison of the rotary damping coe�cients.

3.1 Translatory Coe�cient of Viscous Damping

This subsection compares an iterated damping coe�cient with a damping coe�cient obtained
from an SPH analysis in Abaqus. The model is made simple to be able to focus on the important
aspects of the comparison. A cylindrical object is falling with the circular projected area faced in
the negative y-direction. The theoretical illustration of the mobile cylinder is seen in Figure 10.

Table 1: Translatory model material data

Model Geometry and Material Properties Value

Projected Area, mobile cylinder 5.0⇥ 10�5 m2

Mass, mobile cylinder 0.0032 kg
Diameter, d 0.008m
Diameter, D 0.02m
Height, h 0.008m

Fluid Density, ⇢ 1000 kg/m3

Dynamic Viscosity, µ 0.1Ns/m2

Eos, c0 1500m/s

Figure 10: The mobile cylinder through a hollow cylinder filled with viscous fluid.

Source: [5]
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Iterated Translatory Damping Coe�cient

To calculate the damping coe�cient of an object through a fluid analytically, the drag force (Fd)
is required due to the equation ct = �Fd/v. There is a circular dependency between the drag
coe�cient (Cd) and the velocity (v) of the object relative to the fluid, as both are needed to
calculate the Reynolds number, which in turn is used to find translatory damping coe�cient (ct).
To break this circular dependency, an iterative approach can be used. Starting the process by
making an initial guess for the velocity and then using that velocity to calculate Re and Cd, where
Cd depends on Re. The fluid flow assumed in the model is a laminar flow and provides a Re within
this specter 0.1  Re < 1000. Then using the calculated Cd for a cylinder. This is needed to
compute the terminal velocity of the object, using the equations from subsection 2.1.1.

The projected area of the object is 5.0⇥ 10�5 m2, and the fluids density is 1000 kg/m3, the weight
of the mobile cylinder is 0.003 kg and the gravity constant working in the model. When the initial
guess for the velocity is close enough compared to the calculated ”new” terminal velocity, the
analytical damping coe�cient can be determined from Equation (8).

ct =
1

2
⇢vCdA (8)

By following these steps, the process can be illustrated as a sheet in Excel with the given geomet-
rical/material properties and with the formulas applied. The iterative approach is shown in Figure
11 step by step. The first terminal velocity guess resulted in a di↵erence of 0.34m/s compared
with the ”new” terminal velocity. Continuing iterating provides a translatory damping coe�cient
ct = 0.0264Ns/m at a converging terminal velocity of 0.85m/s. It is also interesting to compare
the drag coe�cient obtained in the iterative process, which results in a drag coe�cient Cd = 1.24
where the theoretical drag coe�cient to a short cylinder shape is 1.15.

Figure 11: An overview of an iterative translatory damping coe�cient ct calculation.
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Translatory Damping Coe�cient Obtained from SPH Analysis

Now that the analytical damping coe�cient is calculated, the next step is to compare it with the
damping coe�cient obtained from the SPH analysis and examine their correspondence.

Abaqus FEA o↵ers various simulation possibilities, including the SPH method explained in subsec-
tion 2.2.1. To perform an SPH analysis, a similar model to the analytical one is created, including
a mobile cylinder with a specified projected area. The fluid properties such as dynamic velocity,
density, and equation of state values must be specified. Once the assembly is ready, the interaction
between the particles and the object using a particle set for the fluid is defined. Load conditions
like gravity and appropriate boundary conditions for the analysis are specified. The solid-fluid
part is determined into particles. Partition and mesh are defined using an explicit element type.
Dynamic explicit analysis with a specific time step and the desired number of iterations is chosen
to run the SPH analysis successfully.

Figure 12: SPH; Start position Figure 13: SPH; End position

The velocity of the mobile cylinder through the viscous fluid can be extracted from the output data
of the SPH analysis, allowing a velocity-time graph where the terminal velocity can be determined.
The drag coe�cient and Reynolds number are calculated as previously done in the analytical
method with the SPH output data. With the material properties and geometry of the mobile
cylinder, Equation (8) can be used to calculate the translatory damping coe�cient obtained from
the SPH analysis.

Figure 14: Velocity-time plot of the cylinder moving along the y-axis.
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Figure 14 brings the terminal velocity of the cylinder to light, where it converges approximately
at a velocity of 0.6m/s. The terminal velocity from the SPH analysis is lower compared with the
analytical terminal velocity, resulting in a lower translatory damping coe�cient ct = 0.0225Ns/m.

3.2 Rotary Coe�cient of Viscous Damping

The investigation of the rotary damping coe�cient is of interest, despite the fact that the rotary
motion does not directly occur in the silent tool. This is due to the interaction between the shaft
and the fluid. The approach involves first determining an analytical rotary damping coe�cient, and
then creating a model in Abaqus that uses the same material properties and geometric specifications
taken from Table 2. The theoretical rotary-motion damping model is illustrated as a journal bearing
in Figure 15.

Table 2: Rotary model material data

Model Geometry and Material Properties Value

Shaft diameter, d 0.004m
Bearing diameter, D 0.0046m

Length, l 0.01m
Fluid Density, ⇢ 1000 kg/m3

Dynamic Viscosity, µ 0.1Ns/m2

Eos, c0 1500m/s

Figure 15: Rotary-motion damping for a journal bearing.

Source: [5]

Theoretical Rotary Damping Coe�cient

The moment (md) in rotary damping opposes the relative motion and is directly proportional to
the corresponding relative velocity. The viscous damping moment for rotation is defined as md =
cr!(t), with a constant damping coe�cient (cr). The coe�cient for rotation can be determined
as a function of geometrical and material parameters for the rotary damper. These parameters

15



include the dynamic viscosity (µ) of the fluid, the length (l), the inner diameter (D) of the radial
bearing, and the outer diameter (d) of the shaft.

Since the tangential velocity of the piston’s lateral surface is equal to the product of the angular
velocity and the radius, the damping force resulting from the rotary motion can be expressed as
shown in Equation (9).

fd = ct!
d

2
(9)

Translation damping coe�cient is ct = µA/g where g is the gap between the two surfaces, the
rotary damping force can be written as fd = ⇡µd2l!/D � d. The resulting damping torque is
provided in Equation (10).

md =
⇡µd3l

2(D � d)
! (10)

When comparing damping moment md = cr!(t) and the damping torque equation, the resulting
rotary damping coe�cient is expressed in Equation (11).

cr =
⇡µd3l

2(D � d)
(11)

The resulting theoretical coe�cient for rotational damping is calculated cr = 1.68⇥10�8 Nms with
given properties/dimensions from the Table 2.

Rotary Damping Coe�cient Obtained from SPH Analysis

Figure 16 illustrates an assembly consisting of three parts: the bearing, the shaft, and the fluid.
The fluid is assigned material properties similar to those used in the analytical approach. To
examine the rotary damping coe�cient, a torque for rotation is employed. To apply torque to the
shaft, a coupling with a defined reference point is created. After applying the interaction type and
mesh, a dynamic explicit step with a varying time period is simulated. The duration of the time
period varies due to the changing torque, requiring both shorter and longer dynamic analyses to
obtain the terminal rotary velocity. Applying a torque ranging from 0.01Nm up to 1.0Nm in the
CM1-direction (shown in Figure 15), to run several analyses.

Figure 16: View cut of the rotary model in Abaqus.
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In Abaqus, the torque (md) is defined as a load prior to conducting the SPH analysis. The resulting
output data allows for the plotting of the rotary motion of the shaft. To visualize the rotary motion,
a node-set is created at the outer edge of the shaft. By plotting the amplitude of this specific node
over the given time period, the rotary motion of the shaft becomes apparent. Figure 17 depicts
one of the simulations where the e↵ect of increased torque on the frequency, with two di↵erent
torque values, is illustrated. It is evident that higher torque results in a more rapid frequency.

Figure 17: Rotary motion of the shaft with two di↵erent torques applied. Red; 0.10Nm. Blue;
0.05Nm.

When a torque of 0.1Nm is applied, it results in a rotational frequency (n) of 7.1 cycles/second
due to a wavelength of �1 = 0.14 s. This, in turn, yields a tangential velocity of v = 0.10m/s. The
tangential velocity is determined by multiplying the angular velocity by the radius, with the radius
assumed to be the distance between the parallel surfaces. The angular velocity (!) is calculated
by dividing the angular displacement (✓) by the time. These calculations are detailed in Appendix
A.

In contrast, when a torque of 0.05Nm was applied, a longer wavelength of �2 = 0.18 s was observed,
resulting in both a lower rotational frequency 5.6 cycles/second and tangential velocity of v =
0.08m/s. This process was repeated eight times for di↵erent applied torque values, and a plot was
generated to illustrate the relationship between applied torque and tangential velocity. Notably,
the rotary damping coe�cient for each applied torque showed an increasing trend.

Figure 18 demonstrates a correlation between tangential velocity and torque, indicating that the
velocity increases with higher torque values. The curve exhibits a steep incline at lower torque
values, followed by a gradual plateau as torque increases further. It is important to note that
the rotary damping coe�cient did not exhibit linear growth. For instance, at an applied torque
of 0.01Nm, the rotary damping coe�cient was 6.8 ⇥ 10�4 Nms/rad, which increased to 7.2 ⇥
10�3 Nms/rad when the torque was 1.0Nm.
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Figure 18: Correlation between tangential velocity and torque.

3.3 Fluid Simulations Summary

The translatory damping coe�cient (ct) yielded approximately similar values through both ana-
lytical and SPH simulation methods. The analytical approach, employing an iterative method,
determined a translatory damping coe�cient of 0.0264Ns/m, while the SPH simulations resulted
in a coe�cient of 0.0225Ns/m.

However, the comparison of rotary damping coe�cients (cr) did not align. The analytical calcu-
lations produced a rotary damping coe�cient of 1.68 ⇥ 10�8 Nms. On the other hand, when a
model was recreated in Abaqus, maintaining similar dimensions and fluid properties, the resulting
rotary damping coe�cient varied from 6.8⇥ 10�4 Nms/rad to 7.2⇥ 10�3 Nms/rad due to di↵erent
applied torques. Consequently, the simulated coe�cient exhibited larger values compared to the
analytical coe�cient, showcasing the impact of varying coe�cients.
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4 Spring/Dashpot in Abaqus

There are multiple methods to experiment with the spring/dashpot feature. Since the accessible
Abaqus package does not allow frequency response analysis while using the SPH method, the
chapter explores the verification of the dashpot feature in Abaqus as an alternative approach. One
of the elaborated methods is to run several frequency response analyses of a 2DOF model with
varying dampening input parameters. The model used in this section is a massive steel bar that
is fixed at one end with an added mass at the other end. The mass is not physically connected to
the bar, it is connected by a two-point spring/dashpot element. The output data from the FRF
analyses is used to observe the change in magnitude and natural frequency with the change in
spring/dashpot input.

4.1 Experimental Spring/Dashpot Testing

To be comfortable using the spring/dashpot element in Abaqus, it is essential to work gradually
towards the confident use of this feature. By for example focusing on the spring element as the
first step, it allows the possibility to observe how a simple 2DOF model (Figure 19) will react while
varying the sti↵ness in the spring element.

Figure 19: Theoretical 2DOF square bar model with attached mass

Modeling a square bar ten times the height/width with a box attached under the tip makes it
possible to recreate a model representing the theoretical 2DOF model. The defined material for
this model is steel with Young’s modulus of 210⇥ 109 N/m2 and a Poisson’s ratio equal 0.28. The
defined density of steel is 8050 kg/m3. The box is the dampening mass (m2) which is connected
to the square bar with a spring/dashpot element, representing the sti↵ness (k2) and damping
coe�cient (c2). The mass is restricted to only being allowed to move along the tool’s direction of
motion, which is in the y-direction. The spring/dashpot element is positioned at the tool’s end,
where the equivalent modal mass is computed. It represents the cutting force in the model, aiming
to establish similarity with the theoretical model and verify if the Frequency Response Functions
match between the two.

Figure 20 illustrates an exponential growth of the magnitude peaks when increasing the sti↵ness
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(k2) in the spring element. Also interesting is the natural frequency increasing corresponding with
an increased sti↵ness from 1.5⇥105 N/m to 5.0⇥105 N/m. It is clearly the system is not optimized
against large magnitude peaks.

Figure 20: Experimenting the e↵ect of changing the sti↵ness in the spring element

By inserting a dashpot value, the FRF changes as shown in Figure 21. By increasing the spring
element while obtaining the same dashpot element, it can be seen that in the three curves with
c2 = 20Ns/m, the peaks begin to equalize each other while increasing the sti↵ness. Brown curve
(k2 = 3.20 ⇥ 105 N/m, c2 = 20Ns/m) shows an FRF with two approximately equal heights but
is not optimized due to the complexity of an optimized two-mass system. Alternatively, if the
dashpot element is set to a high value, the curves with c2 = 140Ns/m show higher amplitudes on
the left peak compared to the right peak. This occurs because there is too much damping applied
to the system.

Figure 21: Experimenting with the e↵ect of changing spring/dashpot parameters.
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To connect this founding with a theoretical 2DOF FRF calculated in Matlab, some parameters
of the square bar are needed. To find the k1-value in Abaqus is to run static deflection analysis
of the square bar alone illustrated in Figure 22. The bar is fixed at one end and applied with
a force F = 10N at a defined coupling constraint at the tip of the tool working in negative y-
direction. Resulting in a maximum deflection x = 4.86 ⇥ 10�6 m. It provide the tool sti↵ness,
k1 = 2.06⇥ 106 N/m when using Hooke’s law k1 = F/x.

Figure 22: Static deflection analysis with an applied load at the tip

To calculate the equivalent modal mass (m1), the natural frequency of the 1DOF model must be
determined through a frequency simulation. Resulting in four modes shown in Figure 23 whereas
the first two modes have the same frequency value due to symmetry in the structure. Mode 3 and
4 are not taken into consideration due to their natural frequencies outside the project’s frequency
range. The natural frequency (fn) of the square bar is, therefore, 203.9Hz. The equivalent modal
mass m1 = k1/!2

n, where !n is fn2⇡, is then equal to 1.25 kg.

Figure 23: Eigenvalues obtained from frequency analysis in Abaqus

To calculate the damping coe�cient (c1), the tool sti↵ness (k1), equivalent modal mass (m1), and
a damping ratio (⇠) are required. By using the half-power bandwidth method, the damping ratio
can be determined by using Equation (7) with the data represented in Figure 24. The damping
coe�cient c1 = 2⇠

p
k1m1 is calculated equal to 64.8Ns/m.
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Figure 24: FRF of the bar to find Rayleigh damping coe�cients

With the damping ratio and eigenvalues calculated for this model, it provides the Rayleigh damping
coe�cients as following ↵ = 0.04 and � = 0.000028 by using Equation (6) illustrated in Figure 25.

Figure 25: Rayleigh coe�cient defined in the modal steady-state step.

With the calculated equivalent modal mass, tool sti↵ness, and the damping coe�cient, the op-
timized sti↵ness (k2) and damper (c2) can be obtained in Matlab with a dampening mass (m2)
equal 0.25 kg. It provides an optimized k2-value (2.89 ⇥ 105 N/m) and c2-value (141Ns/m). The
resulting FRF from Matlab is illustrated in Figure 27 (a). Now with the optimization obtained
from Matlab, they are inserted in the spring/dashpot element seen in Figure 26.

Figure 26: Spring/Dashpot point pairs between tool and mass with given input parameters.
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After incorporating the necessary components such as material properties, sections, mesh, and load
conditions, the analysis begins with a frequency analysis. Subsequently, a dynamic steady-state
analysis is conducted to obtain the FRF from the simplified 2DOF model. This approach allows
for a comprehensive assessment of the system’s response under dynamic conditions. The resulting
FRF of the model with the defined spring/dashpot element is illustrated in Figure 27 (b).

Figure 27: Frequency response function. (a); Analytical Matlab plot. (b); Spring/dashpot plot
from Abaqus.

It is interesting to observe how the spring/dashpot feature aligns with the analytical results. Both
plots show an optimized FRF with two peaks at similar frequencies. The right peak di↵ers by
only 0.3Hz, while the left peak has a di↵erence of 4.4Hz. Additionally, the amplitude results
between the Matlab plots and the spring/dashpot are consistent, with both showing an amplitude
of 1.4⇥ 10�6 m.

4.2 Verify Dashpot Element

It is interesting to compare the dashpot element without the spring taken into consideration with an
analytical approach compared to a frequency response analysis in Abaqus. This is to be comfortable
using the dashpot element for later combining multiple findings as elaborated in section 6.

Comparing the dashpot element, specifically without considering the spring component, using both
an analytical approach and frequency response analyses in Abaqus yields interesting insights. This
comparison helps enhance the understanding of the dashpot element’s behavior and enables the
possibility of combined results into more complex models, as discussed in section 6.

The method used is by calculating the viscous damping coe�cient (c) from a single degree of
freedom model to verify the dashpot element in Abaqus. Comparing the analytical viscous damping
coe�cient using the velocity and acceleration output from a dynamic explicit analysis with the
dashpot element input in Abaqus.

An example of an analytical method to derive the viscous damping coe�cient can be calculated
with a damped lumped parameter model as shown in Figure 28. The equation obtained from the
free body diagram is written in Equation (12).

mẍ+ cẋ = f (12)
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Figure 28: Single degree of freedom. Left; Damped lumped parameter model. Right; Free body
diagram.

From Equation (12) the viscous damping coe�cient can be expressed as shown in Equation (13).

c =
f �mẍ

ẋ
(13)

To compare the theoretical damping coe�cient with the dashpot element in Abaqus, the order of
approach is dependent on each other. The theoretical damping coe�cient depends on the velocity
and acceleration of the mass from Abaqus. The output data providing this is a result of dynamic
explicit analysis with an already applied damping coe�cient in the dashpot element. The Abaqus
model (Figure 29) is created similarly to the damped lumped parameter model, with a defined
load in the negative y-direction. The defined dashpot element is applied between the rigid body
and the mass with a damping coe�cient equal 0.10Ns/m. Given the material properties from the
analytical calculation, the weight of the mass in the Abaqus model is similar. The field output
from the dynamic explicit analysis provides a time-dependent velocity/acceleration graph of the
moving mass.

Figure 29: Single degree of freedom model, dashpot element illustrated.

To find the acceleration (ẍ), one can divide the di↵erence in initial and final velocity by the
time period. Resulting in an acceleration equal 7.8m/s2 and the average velocity (ẋ) is 0.06m/s.
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The applied load (f) is 0.032N and the weigh of the mass (m) is 0.00324 kg. This allows for a
comparison between the analytical viscous damping coe�cient and the defined dashpot element
used in Abaqus. The viscous damping coe�cient can be calculated using Equation (13) resulting
in an analytical damping coe�cient equal 0.11Ns/m.

4.3 Spring/Dashpot Summary

The validation process of the spring/dashpot element yielded promising outcomes. Initially, various
input parameters were experimented to observe their e↵ects on the FRF. Subsequently, the model
in Abaqus was compared with a theoretical two-mass system in Matlab. The correspondence
between the two graphs was encouraging, confirming that the spring/dashpot element behaves as
expected in Abaqus. Specifically, the FRF exhibited two peaks with equal amplitude in the same
frequency range.

In terms of validating the dashpot element independently, the resulting damping coe�cient was
found to be similar to the theoretical damping coe�cient in a one-mass system. This indicates
that the dashpot element accurately reflects the expected damping behavior in the specific scenario
compared.
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5 Rubber Testing and Simulating

This section focuses on simulating the damping e↵ect in rubber materials through an impact
simulation. The objective is to investigate the influence of Rayleigh coe�cients on the damping
properties of rubber. In the first subsection, the damping primarily occurs due to the vertical
movement of the rubber, without experiencing any shear loads. This allows a specific focus on the
damping coe�cients. In the following subsection, a shear load is applied to rubber elements to
examine the comparison between the shear sti↵ness by varying Young’s modulus for both models
with one and two rubber elements.

5.1 Damping Consideration and Impact Simulation

This subsection presents a detailed procedure for determining the Rayleigh damping coe�cients
of a structure. To obtain these coe�cients, a simplified model is constructed, comprising a rubber
element with a mass attached, as depicted in Figure 30. An implicit dynamic analysis is performed
to simulate an impact scenario involving the model. By applying an external force to the model,
the rubber element acts as an energy absorber. The objective is to examine how the Rayleigh coef-
ficients influence the time-domain attenuation curve in comparison to the model without defined
Rayleigh coe�cients. Prior to initiating the impact analysis, a frequency analysis and an FRF
analysis are conducted to determine the eigenvalues and damping ratio.

Using Equation (7) where the natural frequency and maximum and minimum frequency corres-
ponding to the Amax/

p
2 is inserted to estimate the damping ratio. This is obtained from a

steady-state dynamic analysis as elaborated in subsection 2.5. After a frequency response analysis
of the rubber model, frequency data is obtained and resulting in a damping ratio ⇠ = 0.058. With
the damping ratio calculated, the Rayleigh coe�cients ↵ and � can be estimated by using Equation
(6) with the given mode frequencies !1 = 112.7Hz and !2 = 372.2Hz. As the damping ratio is
dimensionless, a consistent unit is employed for all frequencies used in the calculations of Rayleigh
coe�cients, such as hertz in this case. The mode frequencies are obtained through a frequency
analysis in Abaqus, resulting in the determination of two eigenvalues, as depicted in Figure 30.

Figure 30: The two frequency modes response along y-direction. (a); First mode shape (!1 =
112.2Hz). (b); Second mode shape (!2 = 372.2Hz).

The resulting Rayleigh coe�cients are calculated in Equation (14) and provide ↵ = 10.05 and
� = 0.00024.
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⇢
↵
�

�
=

2·0.058
112.2Hz + 372.2Hz

⇢
112.2Hz + 372.2Hz

1

�
(14)

With the calculated Rayleigh coe�cient, all the requested material properties are now ready to be
implemented in Abaqus. The density, Poisson’s ratio, and Young’s modulus are filled in with the
damping defined as illustrated in Figure 31.

Figure 31: Rayleigh damping coe�cients input for the rubber material

A dynamic implicit step is created to perform an impact simulation of the rubber model. The
material properties and boundary conditions were defined. There were di↵erent methods to set
up the vibration simulation, such as using an impact hammer to measure the external force and
applying the same impact force in the dynamic explicit analysis. However, in this simulation, the
chosen method is to pull the model a given deflection in the positive y-direction and then release
it. This required two steps to simulate the motion, one static step that propagates further to the
dynamic step.

Figure 32: Amplitude deflection graphs caused by external force with and without Rayleigh damp-
ing coe�cients.
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The impact histories from the rubber model with and without damping applied are shown in
Figure 32. The blue line in the figure shows the Rayleigh coe�cient’s damping e↵ect on the rubber
material. If the damping is excluded as a material property, the yellow line exhibits less damping,
leading to increased amplitude deflections compared to the damped blue line.

5.2 Rubber Element Shear Sti↵ness

This section discusses the comparison of shear sti↵ness between one and two rubber elements. The
aim is to ensure that the shear sti↵ness obtained in Abaqus corresponds to the sti↵ness obtained
in Matlab. To achieve this, the sti↵ness needs to be calculated and verified through static analysis.
The actual damper consists of a high-density mass held by two rubber elements, so the optimization
code in Matlab should provide a value for k2 that represents the overall sti↵ness of both rubber
elements in the Abaqus model. The deflection of the rubber elements is influenced by Young’s
modulus, which directly a↵ects the resulting shear sti↵ness.

Figure 33: (a); Coupling constraint. (b); Boundary conditions for the single rubber element. (c);
Boundary conditions for the model with two grubber elements.

To determine the shear sti↵ness of the two models, Hooke’s law (k = F/x) is utilized. The applied
perpendicular load (F ) divided by the resulting deflection (x) in the y-direction provides the shear
sti↵ness. Both models are configured identically, with the same global size, element shape, and
element family. A coupling constraint is applied to the control point representing the surface,
ensuring a realistic load situation for the rubber elements, as depicted in Figure 33 (a). Regarding
the boundary conditions, the load is consistent for both models, while Figure 33 (b) illustrates a
single fixed surface, and Figure 33 (c) shows two fixed surfaces. The inner surfaces are connected
by a tie coupling to connect the two rubber elements together.

A general static step is created with default incrementation settings to simulate the deflection.
Figure 34 illustrates the deflection of both models before and after the load is applied. The
primary di↵erence in deformation between the two models occurs where the deflection takes place,
owing to variations in geometry.
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Figure 34: (a); Single rubber element before and after deformation. (b); Two merged rubber
elements before and after deformation.

The purpose of this investigation is to compare the shear sti↵ness of both models. Theoretically,
the model with two rubber elements should have a sti↵ness twice as large as the model with one
rubber element. By increasing Young’s modulus of the rubber material while keeping a constant
load applied, the maximum deflection is observed to decrease linearly. Consequently, this leads to
an increased shear sti↵ness for both models, as depicted in Figure 35.

Figure 35: Blue curve; Representing model with one rubber element. Orange curve; Representing
the model with two rubber elements.

The model featuring two rubber elements exhibits a shear sti↵ness approximately twice as large
as that of the single rubber element model. The percent deviation between twice the sti↵ness of
the single rubber element model and the shear sti↵ness of the two rubber element model remains
approximately around 3.0%. The analysis is conducted by incrementally increasing the applied
Young’s modulus from E = 3.0⇥ 106 N/m2 to E = 50.0⇥ 106 N/m2, with a total of nine intervals
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considered for both models.

5.3 Rubber Element Summary

The damping e↵ect of the rubber is confirmed by assigning Rayleigh coe�cients to the material.
An impact analysis was conducted on two similar setups, one with Rayleigh coe�cients and the
other without, and a comparison was made. The presence of these coe�cients resulted in a more
rapid decrease in motion within the model. These coe�cients reflect the rubber’s ability to absorb
kinetic energy when subjected to an external force, considering the defined damping properties.

Furthermore, the rubber element exhibits a linear correlation between the shear sti↵ness of the
model and the defined Young’s modulus of the rubber. This relationship was confirmed through
multiple static analyses, indicating that an increase in Young’s modulus leads to an increase in
shear sti↵ness. This approach is employed to determine the optimized sti↵ness k2 for the rubber
elements in a two-mass system. The subsequent section will utilize this shear sti↵ness approach to
construct a model that allows for the most accurate comparison with an analytical FRF.
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6 Combined Simulations

This section presents the combined results of an FRF comparison between an analytically optimized
two-mass system simulated in Matlab and a two-mass system modeled in Abaqus. The comparison
focuses on the influence of the shear modulus of the rubber elements on the frequency response
function. The results revealed that the theoretical model and the Abaqus model achieved an
optimized FRF curve by increasing the sti↵ness value in Abaqus.

Furthermore, this section explores the e↵ect of fluid on the motion of a moving mass subjected to
a periodic force. The model primarily focuses on the tip of the tool, which is no longer treated as a
two-mass system. In this model, the tool body remains fixed while a periodic force is applied to the
moving mass, which is supported by two rubber elements immersed in the fluid. To assess whether
the fluid can be realistically treated as a damping viscous fluid, the motion of the moving mass is
compared with a similar model where the fluid is replaced by a dashpot element. By examining
the damping coe�cients the investigation determines whether the presence of either the fluid or
the dashpot element provides any damping e↵ect on the motion of the moving mass.

Table 3 presented below provides a summary of the material properties of the models discussed in
this section. Regarding the meshing technique employed, Appendix B provides a detailed overview
of each component.

Table 3: Material properties for steel, rubber, and fluid

Material Properties Value

Young’s modulus, steel, E 210⇥ 109,N/m2

Density, steel, ⇢ 8050, kg/m3

Assumed damping ratio, tool body ⇠ 0.02
Poisson’s ratio, steel, v 0.28

Density, rubber, ⇢ 1060, kg/m3

Poisson’s ratio, rubber, v 0.45
Density, fluid, ⇢ 1000, kg/m3

Dynamic Viscosity, µ 0.1,Ns/m2

Reference sound speed, c0 1500,m/s

6.1 Tuned Mass Damper Simulation

This subsection is an FRF comparison between a simplified Silent Tool and an analytical approach.
The silent tool is a complex component that incorporates various features, such as the insert and
channels for cutting fluid. The model used for analysis makes certain assumptions and simplific-
ations regarding material properties and geometries. These simplifications are necessary to align
the model as closely as possible with the analytical 2DOF model implemented in Matlab. The
simplified silent tool is illustrated in Figure 36.

Assuming the tool body to be a massive cylinder simplifies the analysis of its equivalent modal mass
(m1), sti↵ness (k1), and damping coe�cient (c1). Due to its simplified geometry, calculating these
parameters becomes relatively straightforward. For a massive cylinder with a length ten times its
diameter, the natural frequency is determined to be 178.7Hz. Additionally, the tool body sti↵ness
is calculated as 1.24 ⇥ 106 N/m. The equivalent modal mass can be obtained by utilizing these
two parameters through the equation m1 = k1/!2, resulting in a value of 0.98 kg. The damping
coe�cient is equal 44.2Ns/m with an assumed structural damping ratio ⇠ = 0.02. Adjusting the
material density specified for the dampening mass (m2) allows for modification, in this analysis
m2 = 0.08 kg. These parameters play a crucial role in optimizing the frequency response function
to achieve the most favorable outcome.

The optimization process implemented in Matlab (see Appendix C) yields optimized values for the
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sti↵ness (k2) and damping coe�cient (c2). By inserting these values, it results in an optimized
sti↵ness value k2 = 85.2⇥ 103 N/m and dampening coe�cient c2 = 28Ns/m.

Figure 36: Boundary conditions of tool integrated with damper at the tip.

A damping mass integrated inside the tip of the tool withholds by two rubber elements and a
dashpot element illustrated in Figure 37. The assembly comprises the main tool body, followed by
the damping system consisting of two rubber elements and a mass. All components are connected
using the ”tie interaction method”. The dashpot element connects the damping mass, to the tool
body. In the steady-state analysis, the boundary conditions involve a concentrated force of 1.0N
applied at the tip, while the opposite end is fixed in all directions.

Figure 37: Cross-section of the tool’s geometry.

The interesting thing with this part of the experiment is the rubber’s ability to dampen the system
by the experience of shear stress response to uniaxial stress. The sti↵ness value needs to be
correlated with the rubber elements, by simulating the sti↵ness for the rubber elements isolated.
While the damping coe�cient is defined as a dashpot element since the acquirable Abaqus package
does not include the possibility to run steady state analysis with smoothed particle hydrodynamic
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part.

Figure 38: Static deflection analysis of rubber element.

Both rubber elements are considered to contribute to the k2 value in the Matlab code. The shear
sti↵ness of the rubber elements is determined using the same procedure described in subsection
5.2. Before defining the elastic properties of the rubber material, a static analysis is performed
to calculate the shear modulus of the rubber elements. Hooke’s law, k = F/x, is employed to
calculate the sti↵ness (k2). Figure 38 illustrates that a deflection of x = 1.177 ⇥ 10�5 m with a
force of F = 1.0N results in sti↵ness of k2 = 85.0⇥ 103 N/m, which is approximately equal to the
optimized sti↵ness obtained in Matlab. This sti↵ness requires Young’s modulus of E = 2.0MPa,
which is equal to the shear modulus G = 0.69MPa.

Another important parameter to consider is the Rayleigh damping data, which is defined in the
steady-state dynamic step under the ”damping” section. The eigenvalues obtained from a frequency
analysis are presented in Figure 39. In this simulation, an assumption is made that only the tool
body, without the attached damping system, contributes to the eigenvalues. Mode 1 exhibits a
frequency of 199.2Hz, while mode 2 corresponds to 1153.4Hz.

Figure 39: (a); Mode 1. (b); Mode 2.
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The Rayleigh coe�cients can be calculated using Equation (6), as previously presented. The
damping ratio is determined from the frequency response function, illustrated in Figure 40, utilizing
Equation (7). In this case, the natural frequency (fn) is found to be 199Hz, corresponding to
an amplitude peak of Amax = 4.072 ⇥ 10�5 m. The frequencies at which Amax/

p
2 occur are

f1 = 197Hz and f2 = 201Hz. By calculating the damping ratio to ⇠ = 0.01, the resulting Rayleigh
coe�cients are determined to be ↵ = 0.02 and � = 0.000015, which are applicable to all modes.

Figure 40: Frequency response function of the tool body.

The final parameter is the dashpot element, which is characterized by the optimized damping
coe�cient obtained through Matlab. The procedure involves connecting the moving mass to the
tool body, as previously described, and defining the dashpot element with the optimized damping
coe�cient while leaving the spring undefined. The optimized FRF from Matlab and the FRF from
Abaqus with equal k2 and c2 values yield two plots, as shown in Figure 41. Plot (b) shows a small
tendency towards exhibiting two peaks, although it falls short of achieving the desired optimal
damping when compared to the analytical FRF. On the other hand, plot (a) displays two equally
amplified peaks, indicating the presence of an optimized FRF for the specific tool being studied.
However, the amplitude in plot (b) significantly deviates from the desirable amplitude in plot (a).

Figure 41: Frequency response function. (a); Analytical FRF of a two-mass system from Matlab.
(b); FRF with rubber and dashpot values from Matlab inserted in Abaqus.

Further adjustments are required for Young’s modulus of the rubber elements, which influence the
sti↵ness and shear modulus. Figure 41 (b) reveals that an increased shear modulus is necessary,
as experimented in subsection 4.1, when the right peak is larger than the left peak, the two peaks
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will in this scenario equalize when increasing the sti↵ness. By slightly increasing Young’s modulus
to 2.67MPa, a shear modulus of 0.92MPa was obtained.

Figure 42: Frequency response function. (a); Analytical FRF of a two-mass system from Matlab.
(b); FRF with adjusted shear modulus value inserted in Abaqus.

This new shear modulus results in an optimized FRF shown in Figure 42 (b). With the updated
sti↵ness value of k2 = 108.0⇥103 N/m, the two plots demonstrate a notable correlation, particularly
in terms of their amplitude of 3.5⇥ 10�6 m. Both plots exhibit an FRF with two equalized peaks,
which are observed at approximately the same frequencies, specifically around 150 � 170Hz and
190�210Hz. It is also noteworthy that the initial amplitude corresponds between the two models.

To get a better visual understanding of the model, a YouTube link is available here: Click to watch
video.

6.2 A Fluid-A↵ected Mass Subjected to Periodic Force

The Silent Tool incorporates a damping system consisting of a high-density cylinder between two
rubber elements and surrounded by a viscous fluid. When the tool is in operation, the damping
mass moves in various directions. Consequently, it is of interest to investigate the behavior of the
fluid surrounding a cylindrical object subjected to a periodic force, in comparison to a dashpot
element.

To conduct this study, an assembly model is created, isolating the damping system as illustrated
in Figure 43, while excluding the rest of the tool body. The surrounding cylinder is fixed, and
the cylindrical mass is centered and capable of movement along the y-axis. It is attached to each
rubber element, utilizing the same dimensions as described in the previous subsection.

A general contact interaction is defined between the fluid and the solid components. As for the
moving mass, a coupling constraint is positioned with a control point at the center of the mass.
The defined mesh for the rubber elements is similar to the mesh used in earlier analyses including
the rubber elements. As for the oil, a solid part is converted to 20 000 particles acting like a viscous
fluid with a defined viscosity and density presented initially in this section.

The result will consist of three di↵erent setups, compared to the periodic amplitude representing
the applied force. The only parameter varying is the viscous damping, where one model has
particles, one has a dashpot element and the last one has neither fluid or dashpot. This is to
compare how the periodic force will work di↵erently in the three models.
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Figure 43: A view-cut of the model. (a); View of XY-plane. (b); View of XZ-plane

To simulate how the mass’s motion is reacting at certain frequencies, the most suitable simulation
method would be to perform a steady-state dynamic analysis. Since this is not attainable combined
with an SPH part in the model, a force is applied with a given amplitude instead. With a specified
periodic amplitude, it provides the possibility to examine the motion of the moving mass compared
with the periodic force acting on the mass. The defined force is constant, while the circular
frequency of the periodic amplitude varies. This means that the force acting on the moving mass
is not constant, when the sinus curve peaks, it equals the defined load working in either positive or
negative y-direction. This is to observe if there is any di↵erence in the delay of motion compared
to the force amplitude. The mass is situated at the center of the cylinder, and starting the mass
from its equilibrium state ensures that it returns to the center after completing one wavelength.
Hence, the choice of a sinusoidal curve is justified by considering the initial conditions.

Figure 44: Applied periodic force (sin(10⇡)) compared with the displacement of the mass

Figure 44 illustrates a comparison among three models under an applied periodic sinusoidal curve
with a frequency of 5.0Hz. The orange line represents the periodic curve subjected to an applied
force of 1.0N, which is analyzed using all three models. The yellow line corresponds to the model
with the largest displacement, indicating the least e↵ect of damping, which is natural due to
its missing viscous damping. In contrast, the model incorporating viscous damping exhibits a
damping e↵ect, resulting in minor deviations. The dashpot model (black line) is assigned a damping
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coe�cient of 100.0Ns/m to assess its deflection in comparison to the fluid model (blue line).

All three models exhibit a consistent motion pattern, and it is evident that the presence of viscous
fluid leads to a damping e↵ect. The locations of the amplitudes are similar, confirming the com-
parable behavior of all three models. The most significant di↵erence in amplitude is observed in
the first wavelength. If the mass had not been connected to the rubber elements, this di↵erence
would have persisted for a longer duration.

The observed delay contributes to the non-uniform periodic motion of the mass. The sinusoidal
curve is advancing at a faster rate than the moving mass can keep up with under the given
conditions.

Figure 45: Applied periodic force (sin(5⇡)) compared with the displacement of the mass

The corresponding trend is seen in Figure 45. In this particular scenario, the force is elevated to
50.0N with a periodic sinusoidal curve of 2.5Hz. The purpose was to investigate the ability of the
moving mass to synchronize with the periodic force. It is noteworthy that both figures provide
some evidence regarding the damping phenomenon during the simulated two-second period, as
indicated by the gradual decrease in maximum displacement across all three models.

To get a better visual understanding of the model, a YouTube link is available here: Click to watch
video
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7 Discussion

The study shows that Abaqus is a suitable tool for reproducing a simplified optimized boring bar
that includes rubber elements and a dashpot element. However, when comparing the theoretical
2DOF model with the Abaqus-designed model, there are several factors and parameters that can
contribute to potential errors and faults in the FRF comparison. This section discusses some of
the potential sources of error.

In the case of fluid simulations, there is some uncertainty in the results due to the accuracy of
SPH analysis in Abaqus, which can be influenced by various factors and parameters. This section
provides an elaboration on some key factors that can introduce errors and faults in SPH analyses.
Despite these considerations, the fluid simulations did demonstrate a visible damping e↵ect.

7.1 Assessment of Shear Sti↵ness

The results of the study confirmed the validity of the rubber element using various simulation
methods in Abaqus. By calculating shear sti↵ness and simulating Rayleigh damping coe�cients,
it becomes possible to explore geometrical modifications of the rubber elements for optimization.
The shear sti↵ness was investigated by simulating multiple rubber elements analyses with varying
the rubber’s Young’s modulus, confirming a linear relationship between shear sti↵ness and the
applied Young’s modulus. However, before making such modifications, a more realistic and complex
model needs to be developed. This model should be compared to an actual boring bar to identify
di↵erences and areas for improvement. It is important to note that this thesis only compared a
theoretical model to an Abaqus-designed model, but the underlying principles still apply.

Several factors may contribute to the need for adjustments compared to the optimal FRF obtained
in Matlab. One possible factor is the placement of the entire damping system in the Abaqus model.
The Matlab code for the theoretical two-mass system is based on the idea that the damping system
is located at the very end of the simplified boring bar. Consequently, the equivalent modal mass
calculated in Abaqus may not correspond to the theoretical equivalent modal mass used in Matlab.
When reducing the input of the equivalent modal mass in Matlab, the left amplitude peak becomes
lower compared to the right amplitude peak. This adjustment leads to an FRF that shows some
resemblance to the initial attempt of the simplified boring bar in Abaqus. However, it is not
as simple as just changing the equivalent modal mass, as doing so a↵ects the viscous damping
coe�cient due to the formula used for its calculation. By theoretically decreasing the equivalent
modal mass and incorporating the sti↵ness value obtained from the optimized sti↵ness in Abaqus,
it is possible to achieve an FRF in Matlab that closely resembles the FRF obtained in Abaqus,
with a similarly applied sti↵ness and damping coe�cient. This adjustment also enables the entire
FRF to shift to the right, resulting in more similar natural frequencies compared to the simplified
boring bar in Abaqus.

The accuracy of material properties incorporated into the Abaqus model plays a crucial role in the
reliability of the FRF comparison. The theoretical model consists of simplified assumptions about
material behavior, overlooking factors such as material nonlinearities and viscoelasticity that can
impact the system’s response. In contrast, Abaqus allows for the inclusion of more precise material
properties obtained from experimental data or detailed material models. By utilizing these accurate
material properties, the Abaqus model enhances the accuracy of the FRF comparison.

As for the approach to finding Rayleigh damping coe�cients, the half-power bandwidth method
confirms a certain validity to the damping ratio which resulted in a dampening e↵ect. Hence this
observation, the di↵erences observed in the resulting FRFs can be caused due to incorrect Rayleigh
damping coe�cients. Adjusting the coe�cient in proportion to the system’s mass (↵) can lead to
changes in the FRF, including a decrease in the amplitude on the right side and an increase on
the left side, resulting in a higher maximum amplitude. Conversely, increasing the coe�cient in
proportion to the system’s sti↵ness (�) can cause the two peaks in the FRF to approach each other,
leading to uneven peaks. If the coe�cient becomes too large, it may ultimately merge the peaks
into a single peak, which deviates from desired optimized two equalized peaks. Hence, even small
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errors in these coe�cients can lead to undesired changes and potential flaws in the resulting FRF.
Therefore, it is crucial to carefully determine and validate these coe�cients to ensure accurate
FRF predictions. One approach to solve this could involve determining the Rayleigh damping
coe�cients experimentally for both the tool body and the rubber elements. A possible error in
the combined simulation is the assumed common set of damping coe�cients utilized for the entire
model and not two di↵erent sets of coe�cients disturbed to the rubber elements and the tool body.
To validate this result, an experimental impact test using appropriate vibration measurement
equipment should be performed.

The simplified boring bar required partitioning using finite elements, and the choice of meshing
and element types could have influenced the FRF since it can a↵ect the accuracy of the result. The
odds of inadequate mesh refinement or inappropriate element types creating errors in the FRF are
reduced due to regular testing of the mesh.

It is important to note that the results obtained are not necessarily intended to replicate the
behavior of a realistic tool damper. This is primarily due to assumptions made regarding material
properties and simplifications in the model. These decisions were made to ensure a high level
of similarity between the Abaqus model and the theoretical model, allowing for a more precise
comparison of the spring and damping coe�cients. Future work should involve developing a more
detailed model and comparing it to an existing Silent Tool. Defining an amplitude reflecting the
realistic cutting force could have been interesting to apply to the simplified boring bar. This
would help create an even more realistic frequency response function due to the assumed constant
cutting force in this thesis. Also, comparing the detailed Abaqus model with experimental data can
help identify and address any errors or discrepancies, such as incorrect load conditions, improper
location of the cutting force, or inadequate boundary conditions.

7.2 Evaluation of Fluid Simulations

Some factors causing the small di↵erence between the translatory damping coe�cient obtained
from the SPH analyses compared to the iterative analytical approach are discussed here. The
terminal velocity of the mobile cylinder was found to be lower than the terminal velocity calculated
analytically, suggesting the presence of some error. The most probable cause of the error is the
relative velocity. The velocity graph presented only considers the cylinder’s velocity and does not
account for the particles moving in the opposite direction, resulting in a higher relative velocity.
The relative velocity is a more suitable velocity that should have been used for the calculation
of the translatory damping coe�cient. When tracking the velocity of a specific particle moving
alongside the cylinder in the opposite direction, a higher relative velocity is observed. This error
could have occurred because the gradient of the relative velocity between the moving surface and
the fixed one is assumed to work in the same direction as the mobile cylinder. To reduce this error,
one option is to increase the gap between the moving cylinder and the shell cylinder, making the
particles pushed by the moving cylinder travel more scattered and not as a concentrated flow in
the opposite direction.

The comparison between the two rotary damping coe�cients did not match, possibly due to flaws in
the simulation setup and limited access to a su�cient number of computing cores, which hindered
the achievement of optimal results. The main di↵erence between the model geometry is that the
”side-walls” in the Abaqus model are exposed as a friction surface, and could provide a higher fluid
resistance, but this error alone seems unlikely to cause the large di↵erence. The limited number of
converted particles, constrained by time and computational limitations, may have contributed to
the observed di↵erences in the rotary damping coe�cients. The absence of a fixed mesh introduces
challenges in capturing complex geometries, interfaces, and contact interactions accurately. The
method used to determine the rotary damping coe�cients is also a subject for discussion, partic-
ularly regarding its comparability. The theoretical approach focuses on examining the gradient of
the relative velocity between the rotary shaft and the radial bearing. Obtaining this information
in Abaqus was challenging due to the computational cost.

The resulting viscous damping e↵ect on the mass when subjected to a periodic force does not align
with a realistic operational frequency range. This is because the Silent Tool typically operates
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at higher frequencies. The purpose of using these low frequencies was to visually highlight the
di↵erences among the three models. By simulating a simplified boring bar with a periodic force
with a 200Hz frequency, it became challenging to observe the distinctions due to the rapid and
short-lived periodic motions. The objective of the simulation was to investigate whether the fluid
had any damping e↵ect when a low-frequency force was applied to the mass. While the results
indicate the presence of viscous damping, further validation is necessary due to the limited outcomes
obtained from the analysis.

One common source of error in SPH simulations arises from the substantial computational resources
required. Inadequate hardware configurations, characterized by limitations in processing power
and memory capacity, can significantly impact the accuracy and e�ciency of the analysis. To
address and minimize these sources of error and faults in SPH analyses, several steps can be taken.
For example, conducting mesh convergence studies using more robust hardware configurations
can help ensure reliable results. By refining the mesh and evaluating the convergence of the
simulation, the accuracy of the analysis can be improved. Additionally, it is crucial to validate
the simulation results against experimental data. Comparing the simulated outcomes with real-
world measurements allows for verification of the accuracy and reliability of the SPH analysis. In
dynamic analyses, the simulation time is divided into increments to discrete the process. However,
if incrementation strategies are not necessarily accurately employed throughout this thesis it may
have been leading to unstable or inaccurate simulations of fluid models. It is also important to
acknowledge that mass scaling, may have introduced some errors into the fluid simulations. The
purpose of using mass scaling is to reduce computational time, but it was di�cult to validate the
correct use of this feature. It is important to use mass scaling with caution and validate the results
against experimental data to ensure the accuracy and reliability of the simulation.
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8 Conclusion

In conclusion, the objective of this study was to validate the accuracy and reliability of Abaqus in
producing dependable results. By confirming the capabilities of Abaqus, Sandvik Coromant can
e↵ectively make adjustments to tool designs or material properties with greater e�ciency. Through
various analyses and comparisons, it was demonstrated that Abaqus can provide reliable insights
into tool performance, enabling informed decision-making in design optimization. The utilization
of advanced modeling techniques, such as dynamic analyses and fluid-structure interaction, further
enhanced the understanding of complex tool behavior. Overall, the validation of Abaqus as a tool
for engineering analysis empowers Sandvik Coromant to continuously enhance tool designs and
ensure optimal performance in real-world applications.

The comparison between the fluid analysis using SPH in Abaqus and the analytical calculation
revealed interesting findings. The analyses considered translatory and rotary damping coe�cients.
The translatory damping coe�cient obtained from Abaqus showed similarities when compared to
the analytical approach, providing confidence in its accuracy. However, there was a noticeable
disparity in the results of the rotary damping coe�cient, raising concerns about its accuracy. This
discrepancy could potentially be attributed to various sources of error, which need to be further
investigated and addressed to improve the reliability of the rotary damping coe�cient in SPH
analyses.

After conducting several analyses of the spring/dashpot element in Abaqus, it can be concluded
that it is highly reliable, as it demonstrates strong similarities to analytical methods. The com-
parison of the FRFs between the simplified two-mass systems clearly shows a high degree of cor-
respondence in both frequencies and amplitudes. This knowledge opens up possibilities for further
advancements in the model, such as simulating di↵erent rubber element geometries with an ap-
plied dashpot element to represent the damping coe�cient. By replacing the fluid with a dashpot
element, significant computational time can be saved while still capturing the essential damping
behavior. This approach allows for more e�cient exploration of design variations and optimization
strategies in a timely manner.

Further experimentation and testing are recommended to compare the proper damping behavior of
the rubber material using Rayleigh damping coe�cients. However, the damping coe�cients applied
to the model resulted in a damping e↵ect observed during impact analysis. By geometric testing of
the rubber elements, the half-bandwidth method can be used as a temporary solution to calculate
the damping ratio and determine the appropriate Rayleigh damping coe�cients. This approach
provides a practical way to capture the desired damping behavior and improve the accuracy of the
simulation results.

The combined simulations provided promising results, with the damping behavior of the simplified
boring bar corresponding to the analytical predictions. By incorporating proper shear sti↵ness for
the rubber elements, applying the dashpot element with confidence, and using Rayleigh damping
coe�cients, the simulated two-mass system achieved optimized damping behavior. However, cer-
tain discrepancies between the Abaqus model and the analytical predictions were observed due
to geometrical di↵erences and assumptions made. The presence of viscous fluid in the combined
SPH model contributed to damping, but accurately assessing its real-world correspondence re-
mains challenging. These findings highlight the complexity of the simulated boring bar, suggesting
further refinement and investigation.

8.1 Further Work

Further validation is strongly recommended to accurately evaluate the parameters required for
creating an FRF for a more detailed boring bar. Additionally, conducting further experiments
to simulate a damping coe�cient between the mass and the fluid in the dampening viscous fluid
model would be beneficial.

The simplified boring bar can be modeled with accurate geometry, resulting in a more realistic
FRF of the Silent Tool. The assumed weight of the damping mass has an impact on the FRF,
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increasing the weight leads to di↵erent optimized sti↵ness and damping coe�cients. Currently, the
mass is constrained to deflect only along the y-axis, which is an unrealistic assumption since the
boring bar will experience deflection in all directions during operation. There is also recommended
to further explore the periodic force amplitude, applied as a more realistic cutting force to the
tool. This method allows simulations of SPH analyses. Additionally, it may be valuable to try out
Abaqus’ ”gasket thickness behavior” material definition, as well as the ”gasket transverse shear
elastic” material behavior, which can save the user some time. Providing an input box to define
the shear sti↵ness could be a helpful addition.

In terms of SPH analysis, accessing a greater number of cores is essential to simulate large-scale
SPH analyses due to the significant time requirements involved. By increasing the number of
particles and extending the duration of the time step, the damping behavior can be further explored,
leading to more accurate results. It is worth considering the inclusion of fluid temperature since
it has an impact on dynamic viscosity. The viscous properties of the fluid decrease rapidly as
temperature increases, which can result in a varying damping coe�cient influenced by the frequency
and duration of the motion.
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Appendix

A Rotary Damping Data

This is an overview of the calculations related to the rotary damping SPH model. It is important
to note that these calculations are based on the assumption of a linear damping model. Rotary
motion with di↵erent applied torque, with stabilized wavelengths, is illustrated in Figure 46.

Table 4: Rotary model results

Torque, md

[Nm]
Wavelength, �

[s]
Tangential

velocity, v [m/s]
Angular

velocity, !
[rad/s]

Damping
coe�cient, cr
[Nms/rad]

0.01 0.425 0.0318 14.8 6.80⇥ 10�4

0.025 0.265 0.0510 23.7 1.05⇥ 10�3

0.05 0.175 0.0772 35.9 1.39⇥ 10�3

0.10 0.135 0.1001 46.5 2.15⇥ 10�3

0.25 0.092 0.1466 68.2 3.67⇥ 10�3

0.50 0.064 0.2121 98.6 5.07⇥ 10�3

0.75 0.052 0.2616 121.7 6.16⇥ 10�3

1.00 0.045 0.3002 139.6 7.16⇥ 10�3

(a) 0.01Nm and 0.025Nm (b) 0.05Nm and 0.1Nm

(c) 0.25Nm and 0.5Nm (d) 0.75Nm and 1.0Nm

Figure 46: Rotary motion from SPH simulations
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B Abaqus Meshing Techniques

Various meshing methods were developed during the specialization project (TPK4540). One of
the project’s targets was to identify the most suitable mesh type for the model, which is utilized
in this master’s thesis. Mesh size analyses were performed whenever the model incorporated new
geometries. The number of elements was increased iteratively until the resulting output reached a
stable value, with the exception of the fluid. Due to computational limitations, the mesh size for
the fluid analysis was constrained. The following figures illustrate the specific mesh type and size
used.

Figure 47: Linear standard 3D stress, 37 586 elements

Figure 48: Linear standard 3D stress, 1 920 elements

Figure 49: Linear standard 3D stress, 616 elements
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Figure 50: Linear explicit 3D stress, 20 000 elements/particles

Figure 51: Fluid part conversion to particles
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C Optimal TMD Matlab Code

%Using the MATLAB function fminsearch to find the values of k2 and c2 that will
minimize the magnitude curve of the two-mass system,!

function maxPoint = OptimalTMD(x)

m1 = 0.98; %[kg]
k1 = 1.24e6; %[N/m]
c1 = 44.2; %[Ns/m]
m2 = 0.08; %[kg]
k2 = x(1); %[N/m]
c2 = x(2); %[Ns/m]

w = [0:1:2500]; %[rad/s]

TF = (k2-m2*w.^2+1i*c2*w)./(-m1*m2*w.^4+...
(m1*c2+c2*m2+c1*m2)*1j*w.^3+(k1*m2+k2*m2+m1*k2+c1*c2)*w.^2-...
(k1*c2+c1*k2)*1j*w-k1*k2);

magnitude = abs(TF);

plot(w./(2*pi), magnitude)
pause(0.1)

maxPoint=max(magnitude);

end

%New file to call optimization function

clc
close all
clear all

% function call
figure
[opt, ~] = fminsearch(@OptimalTMD,[3e5 200]);
k2 = opt(1);
c2 = opt(2);
fprintf('The optimized stiffness is %d, and the optimized damping is

%d\n',k2,c2);,!

% repeating problem one with new values
N = (k2-m2*w.^2+1i*c2*w)./(-m1*m2*w.^4+...

(m1*c2+c2*m2+c1*m2)*1j*w.^3+(k1*m2+k2*m2+m1*k2+c1*c2)*w.^2-...
(k1*c2+c1*k2)*1j*w-k1*k2);

amp = abs(N);

figure
plot(w./(2*pi), amp)
ylabel('Amplitude, m ')
xlabel('Frequency, Hz')

% maximum magnitude
[max_magnitude, max_frequency] = max(amp);
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fprintf('Maximum magnitude of %d, at a frequency of %d with optimized k2 and
c2\n',max_magnitude, max_frequency,!

Output data from command window:

The optimized sti↵ness is 8.518987e+04, and the optimized damping is 2.861005e+01

This code is sourced from the ”Machining and Additive Manufacturing” course (TPK4440) at
NTNU.
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