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Abstract

Smart devices are all around us, and have made their way into our homes, assist-
ing us in various aspects of our daily lives. This raises some questions regarding
the security implications associated with such rapid adoption of IoT devices in the
home environment. Collecting and analyzing real IoT device traffic for security
research purposes is often desirable, but requires knowledge on a wide variety
of topics, from selecting appropriate collection hardware, to understanding how
to store and process this traffic data. This presents a significant hurdle for re-
searchers, as they must have a thorough understanding of these concepts before
they can proceed with their work. Avoiding this process could lead to inconsist-
encies in their research experiments. In this thesis, we present PacketZapper, an
automated collection and processing platform for IoT traffic. It leverages existing
open-source software together with some custom components to create a scalable
solution for running reproducible experiments with real IoT devices. PacketZap-
per relies on Apache Airflow to automate all aspects of experiments conducted on
the platform, with Elasticsearch serving as the core storage component. Currently,
PacketZapper supports collection of Zigbee and generic 433MHz IoT device traffic
through commercial USB dongles, with code that facilitates for simple integration
of additional IoT protocols in the future. Our requirements-based evaluation of
the platform demonstrated that it is capable of performing basic inference exper-
iments, and has suitable tools for analysis and exploration of the collected traffic
data. Users should have an understanding of writing pipelines for Airflow before
using the platform to better harness the full potential of PacketZapper.
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Sammendrag

Smarte enheter blir stadig vanligere i hjemmene våre og hjelper oss med ulike as-
pekter av hverdagen. Dette reiser spørsmål om sikkerhetskonsekvensene knyttet
til den økende bruken av IoT-enheter i hjemmet. Å samle inn og analysere ekte
IoT-trafikk for sikkerhetsforskningsformål er ofte ønskelig, men krever kunnskap
om mange ulike emner, fra valg av passende innsamlingsutstyr til forståelse om
hvordan man lagrer og behandler trafikkdataene. Dette utgjør en betydelig ut-
fordring for forskere, da de må ha en grundig forståelse av disse konseptene før
de kan fortsette med sin forskning. Å unngå denne prosessen kan føre til komp-
likasjoner i forskningseksperimentene deres. I denne avhandlingen presenterer
vi PacketZapper, vår automatiserte plattform for innsamling og behandling av
IoT-trafikk. Vi bruker eksisterende åpen-kildekode programvare, sammen med
spesiallagde komponenter for å skape en skalerbar løsning for gjennomføring av
eksperimenter med ekte IoT-enheter. PacketZapper benytter seg av Apache Air-
flow for å automatisere alle aspekter av eksperimentene som utføres på plattfor-
men, og Elasticsearch fungerer som kjernen for lagring av data. For øyeblikket
støtter PacketZapper innsamling av Zigbee- og generisk 433MHz IoT-trafikk ved
hjelp av kommersielle USB-dongler, og det er mulig å enkelt integrere ytterligere
IoT-protokoller i fremtiden. Vår evaluering av plattformen viser at den er i stand
til å hjelpe forskere med å svare på komplekse forskningsspørsmål som baserer
seg på bruk av IoT trafikkdata, og har gode verktøy for å analysere og utforske
denne dataen. Brukere bør ha kunnskap om hvordan man skriver arbeidsflyter for
Airflow før de bruker plattformen, slik at de kan utnytte det fulle potensialet til
PacketZapper.
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Chapter 1

Introduction

Smart devices are increasingly becoming an important part of our lives, both in our
homes and the cities we live in. Many of our common household amenities such as
lighting and climate control have made a gradual transition over to the Internet of
Things (IoT) space, helping not only to reduce our power bills, but also to increase
our productivity and general health [1, 2]. With such rapid adoption of IoT, it is
important that it is implemented correctly and safely, so that the devices not only
function as intended, but also do not add any unnecessary risk to the user, such as
stalking or harassment [3]. Researchers have been studying the security implic-
ations of IoT, and many studies make use of real-world IoT device traffic when
conducting such research. This data may be sourced from existing datasets [4], or
be captured by the researchers themselves in their own laboratory setups [5, 6].
Researchers often require different variables than those commonly provided by
existing datasets and must therefore obtain additional knowledge on how to cap-
ture, store, and process IoT traffic that is relevant to their chosen devices. Such
knowledge is often scattered and outdated, making device traffic collection for
IoT research purposes more difficult than one may initially expect.

In this thesis, we present PacketZapper, an automated collection and pro-
cessing platform for IoT device traffic. It was created using mostly off-the-shelf
software components and methods, together with some custom-made tooling, to
create a scalable platform for jump-starting IoT traffic based research projects.

1.1 Problem Description

With the accelerated adoption of IoT devices in our homes, there has been con-
ducted a fair amount of research on better understanding the privacy and security
implications associated with living alongside such technology, and how we can
combat these implications [5, 7–12]. Some papers show that researchers are cap-
able of passively understanding user interactions within the home via high-level
activity inference using data from IoT sensors scattered throughout the home [8].
However, many of these projects rely on pre-existing datasets of network-traffic
that have been pre-processed to allow for easier utilization of the data.

1



2 Mathias F. Hedberg: PacketZapper

If researchers want to capture their own traffic instead of using existing data-
sets, then they would have to spend a significant amount of time understanding
how this could be achieved and allocate time for procurement of the required
software and hardware. At the current state of the art, many available research
papers omit detailed descriptions of how their utilized packet data was acquired.
Some papers provide only a broad overview of the collection process or limited
insight into why certain datasets were selected as their data source [8, 11].

There exist some tools and platforms for conducting both collection and ana-
lysis of device traffic, however these are usually tailored to one specific type of
traffic, such as Zigbee, or TCP/IP traffic. Most of the components required to put
together a complete platform for analyzing data from multiple IoT communica-
tion protocols do exist; however, the organization and implementation of these
components into a complete system seems to be missing, especially for use in an
automated manner. For now, many researchers resort to conducting most of their
data collection manually, which can easily result in mistakes, especially if the col-
lection process involves using multiple systems/tools.

1.2 Justification, Motivation, and Benefits

The creation of an automated collection and processing platform could help alle-
viate some of the issues involved in conducting research based on traffic from IoT
devices. By processing, we mean using the data in some shape or form, whether
that be performing analysis on the data, running inference tasks, or even interfa-
cing with external systems. Such a platform could significantly reduce the amount
of time needed for researchers to go from an experiment idea, to actually acquiring
results. Introducing automated pipelines to the platform could help with consist-
ency in experiments, allowing for a higher level of reproducibility, especially in
the data collection phase of research. A platform that focuses on being protocol
agnostic could see expanded use in the future as it is used together with new
protocols, avoiding the need to create completely new tooling from scratch.

1.3 Research Questions

We have created some research questions that capture the essence of what we
want to achieve in this thesis. These questions serve as a road-map for our research
process and are referenced in later chapters.

RQ1: What is a suitable architecture for a platform that performs automated
collection and processing of IoT device traffic?
RQ2: Are there any existing technologies/solutions that can be implemented?
RQ3: How does the proposed solution perform?
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1.4 Scope and Contributions

We scope this thesis so that it primarily focuses on targeting traffic from IoT
devices and sensors that are used in a home environment. That means focusing on
consumer products such as light-bulbs, motion sensors, and other low-bandwidth
smart devices. Scalability of the platform is however, still an important factor that
is taken into account throughout the whole thesis, highlighting any possible con-
straints/bottlenecks that may occur when elements of the data capture, storage,
and processing components are scaled up.

The intended contributions of this thesis are twofold. Firstly, it is to give read-
ers a better understanding of some of the caveats associated with the current
state of the art when performing collection and processing of IoT device traffic.
Secondly, it is to propose and test a platform on which such research can be more
easily conducted. Together, these contributions could help jump-start future IoT
traffic-based research projects, demystifying elements of the research that may be
challenging to understand.

1.5 Ethical Considerations

The development and testing of the concepts and techniques described in this
thesis involve using real devices in a lab environment in close proximity to other
in-use smart-home networks. The target networks are known, and only passive
data collection is conducted; however some processes, such as channel scanning
involve collecting traffic on additional devices. The privacy implications of this
are relatively limited, as the traffic is (in most cases) encrypted, collected over a
very limited time span, and we make no attempts to infer any user activity on this
excess data.

This begs the question: what would happen if a malicious actor got their hands
on the platform created in this thesis? There is a similar argument that can be had
regarding hacking tools such as Kali Linux or the Flipper Zero (a multi-functional
handheld wireless hacking tool, dubbed the Swiss-army knife for hackers), the
latter of which has been banned from import in countries such as Brazil [13].

It is our opinion that due to the passive nature of the platform, the ethics
to be considered in this case are not much different from cases involving other
existing programs such as Wireshark. However, we must also consider the fact
that the platform may lower the entry bar for conducting forms of cyber-stalking
and harassment using IoT devices as a vector. The concept of scalability is also
central to the design of the platform, and a government organization could see
it in their own best interest to mass deploy the platform to monitor and suppress
political activists, opposition leaders, or dissidents within their own country. We
highlight some of the known weaknesses with the Zigbee protocol but choose not
to publish any of the leaked cryptographic keys, as many devices still rely on these
secrets in their authentication/encryption functionality.

The code is published as an open-source repository, with documentation and
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code examples for basic use cases. There is still some technical skill required to
make use of the platform, which makes it a little less attractive for non-technical
individuals to use the software. In our opinion, this reduces the chance of it being
used as a go-to "one-click" solution for individuals with the sole intent of using
the platform for harassment or stalking.

1.6 Thesis Outline

The rest of the thesis is organized as follows. In chapter 2, we present some of
the relevant background information related to this thesis, with additional atten-
tion given to the Zigbee protocol as it is used in various examples and test cases
throughout the thesis. In chapter 3 we present our IoT collection platform i.e.,
PacketZapper, and the process behind its development. Moving on, in chapter 4,
we present how we chose to evaluate the platform, presenting the different test
cases we utilized to form a better understanding of its utility in a research con-
text. Next, we have the results in chapter 5, which demonstrate how we completed
these test cases and any challenges that arose during their completion. Lastly, we
present our discussion and conclusion.



Chapter 2

Background

In this chapter, we present some of the relevant technologies, concepts and exist-
ing work that can help provide a more thorough understanding of the topic and
lay the foundation for the subsequent discussions. First we take a look at some of
the wireless protocols relevant to the thesis, followed by a brief introduction to
some of the data processing and storage solutions that we use. Finally we intro-
duce some of the existing work we find relevant to this thesis.

2.1 Wireless Communication

Since our platform is designed to collect IoT traffic, it is important to have a
baseline understanding of some of the protocols used by IoT devices for commu-
nication. While there are a plethora of protocols available, we focus specifically
on the Zigbee Protocol, followed by an introduction to the 433MHz ISM band,
which is commonly used by devices throughout the home environment. Increas-
ing our knowledge base on these protocols will also help us in understanding how
to capture and parse the traffic they generate.

2.1.1 Zigbee Protocol

Zigbee is a widely adopted wireless communication protocol designed for enabling
low-cost, low-power, low-data-rate communication between between devices. It
is a central part of many well known smart home ecosystems such as Phillips Hue
and IKEA Trådfri. It provides a reliable and efficient way to connect, control and
monitor devices such as light bulbs, smart-sockets and environment sensors. The
standardization of the protocol means that devices from different manufacturers
can interoperate, with some level of security through message encryption and
authentication protocols.

5
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Network Architecture

The operation of Zigbee networks is defined by the Zigbee Alliance which is re-
sponsible for maintaining and further developing the protocol. Zigbee builds on
the foundations of the IEEE 802.15.4 Low-rate Wireless Personal Area Network
(LR-WPAN) standard, which also serves as the underlying wireless technology for
the Thread1 protocol. Thread is an integral component of the recently introduced
Matter framework2 and some current Zigbee devices may support upgrading to
Thread in the future [14].

There are three main types of devices on a Zigbee network; Zigbee Coordin-
ators (ZCs), Zigbee Routers (ZRs) and Zigbee End-Devices (ZEDs). ZCs are re-
sponsible for forming the network and defining logical addresses for devices on
the network. In the retail world, this device is often known as the bridge or hub
(for example the Phillips Hue Bridge or IKEA Trådfri HUB). Next we have the ZRs
which are responsible for routing/relaying traffic between the nodes on the net-
work, also temporarily storing messages for battery powered devices until they
come online and request new messages. Usually these are mains-powered devices
such as smart-sockets or light-bulbs. Finally we have the ZEDs which do not have
to continuously be online or help route traffic, allowing for sleep to conserve bat-
tery. These devices are usually battery powered sensors such as thermometers or
motion sensors.

Zigbee networks can operate using either distributed or centralized architec-
tures. Distributed networks aim for ease of use and don’t have a ZC, while central-
ized networks aim for higher security, managing encryption through the ZC which
acts as a trust coordinator. Much of the current Zigbee security research [15–17]
is done on centralized networks.

The Zigbee protocol supports 128-bit AES encryption for message authentic-
ation and payload confidentiality, with devices having some encryption keys pre-
installed from the factory. While AES in itself is a sturdy encryption algorithm,
it’s actual implementation in the Zigbee protocol has not been ideal [16]. For ex-
ample, the default link-key used for device authentication was publicly leaked,
introducing a high risk to secrecy of the network [17]. Researchers have also
demonstrated that there is a significant amount of information leakage from this
encrypted traffic [11, 18].

Wirelessly, Zigbee operates on the 2.4GHz Industrial, Scientific, and Medical
(ISM) band, which is the same as 802.11b/g/n WiFi. A Zigbee network will oper-
ate on a single channel, from 11 to 26. Many ZCs allow switching network chan-
nels to avoid interference from other Zigbee or WiFi networks.

Capturing Zigbee Traffic

Zigbee packets can be sniffed using cheap USB dongles designed for interaction
with Zigbee networks. One of more popular dongles is the TI CC2531, which can

1Thread Protocol - https://www.threadgroup.org/What-is-Thread/Thread-Benefits
2Matter Framework - https://csa-iot.org/all-solutions/matter/

https://www.threadgroup.org/What-is-Thread/Thread-Benefits
https://csa-iot.org/all-solutions/matter/
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be had for less than 5 USD from websites such as Ali-Express. It is also possible
to decode the packets in software using a Software Defined radio (SDR) paired
together with GNU-Radio3 modules designed for decoding Zigbee [15]. This lat-
ter approach requires more expensive hardware, and experience with setting up
and using GNU-Radio, a piece of software that has a significant learning curve
associated with it.

One important thing to note when capturing Zigbee traffic, is that we do not
need to be authenticated on the network to sniff traffic. The full packet struc-
ture can be captured, as only the data payload is encrypted. Programs like Wire-
shark can decrypt payloads from Zigbee packets given that the encryption keys
are provided [15].

2.1.2 433MHz ISM Band

The 433MHz ISM (Industrial, Scientific, and Medical) band is a frequency range
allocated for unlicensed use in many countries worldwide. It is commonly used for
remote control and sensor systems, such as garage-openers, Tyre Pressure Monit-
oring System (TPMS), weather sensors, and wireless energy monitoring systems.
Many of the devices that use this frequency band, make use of simple modula-
tion techniques, such as Amplitude Shift Keying (ASK), Frequency Shift Keying
(FSK), or On-Off Keying (OOK). Given the simplicity of these modulation tech-
niques, means the cost and complexity of having such a wireless implementation
in a smart device can be significantly reduced.

There are many smart home ecosystems that make use of this frequency band.
Some of the more popular systems in Europe include Telldus4 and Nexa5. These
companies supply devices such as weather stations, smoke-detectors, light bulbs
and thermometers. It is important to note that devices in these ecosystems run
proprietary communication protocols, so interoperability between brands is not
commonplace. Some research has been done on analyzing the security of smart
home ecosystems that utilize these systems [19, 20].

Capturing 433MHz Traffic

Most of the common types of modulation used for 433MHz communication can
easily be decoded with handheld devices such as the previously mentioned Flipper
Zero, or via a SDR paired with some simple demodulating software. A popular
piece of software for decoding such signals is rtl_4336.

rtl_433 is able to recognize different types of messages being transmitted,
and can display that to the user. For example, if rtl_433 detects a signal com-
ing from a TPMS device, then it will decode the message, and display the actual
tire pressure on screen. It is also great for reading and decoding messages from

3GNU Radio - https://www.gnuradio.org/
4Telldus - https://telldus.com/
5Nexa - https://nexa.se/
6RTL_433 - https://github.com/merbanan/rtl_433

https://www.gnuradio.org/
https://telldus.com/
https://nexa.se/
https://github.com/merbanan/rtl_433
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weather-stations, displaying all attributes that the device transmits, such as wind
speed or humidity. This piece of software supports many of the most popular SDR
devices, including the cheaper variants that are based on the Realtek RTL2832U
chipset (which was originally designed for use as a DVB-T tuner). These can be
had for around 20 USD from sites like Ali-Express.

2.2 Data Storage and Processing

We now take a look at some of the data processing and storage systems/techniques
relevant to this thesis. Having a systematic approach to data management allows
for efficient organization, retrieval, and processing of data, saving time and effort
in searching for or analyzing data. We start off with an introduction the Elastic-
search search engine, followed by some details on the Apache Airflow workflow
orchestration system.

2.2.1 Elasticsearch

Elasticsearch is a highly scalable, distributed search and analytics engine, with
fast and efficient analysis capabilities, designed to handle large volumes of data.
Elasticsearch is part of a well-known technology suite called the ELK stack7, which
is comprised of Elasticsearch, Logstash, and Kibana. It is built on top of Apache
Lucene, which is a high-performance search engine.

Storage Architecture

Data added to Elasticsearch is stored in indexes, which in turn are divided up into
shards. The indexes can be compared to SQL tables, while the shards are a way
to organize the data across multiple systems. It is important to note, however,
that Elasticsearch is a schema-less database. Documents are the basic unit of data
in Elasticsearch, which are stored in these indexes. Each document has a unique
identifier, which is used to update or retrieve the record. When a new document is
added to Elasticsearch (usually in JSON format), each data field is automatically
assigned an appropriate data mapping in the index. This data mapping defines
the data type of the field (such as text, date, or numeric), helping to optimize the
performance of search queries. Elasticsearch infers the data types and properties
by analyzing the contents of the document, however, it can make mistakes. It is
possible to make these fixes later, but for many use cases, it is best to create an
explicit definition of the data types. This definition can be done through an index
template, which is a JSON file that defines the data fields for documents added
to the index. This can be combined with dynamic data mapping in Elasticsearch
to only define a subset of the fields and allow the rest to be auto-mapped by the
system.

7ELK Stack - https://www.elastic.co/elastic-stack/

https://www.elastic.co/elastic-stack/
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Scalability

A powerful aspect of Elasticsearch is that it allows horizontal scalability. In gen-
eral, horizontal scalability is a way to add capacity to a system by adding more
computing resources, as opposed to having more powerful machines (known as
vertical scaling). This is a key feature of Elasticsearch, allowing it to run as both
a single node instance (for example, on a Raspberry Pi) or on a cluster of servers.
Also, more compute and storage resources can be added as the amount of data
increases [21].

When Elasticsearch is configured as a cluster, data is distributed across the
nodes by splitting the index into shards, which are each allocated to a specific
node in the cluster. These shards are self-contained indexes, allowing for searches
on the index to be completed independently on each shard, before being merged
together for the final result.

Open Distro Alternative

Elasticsearch is actively maintained and supported by its founding company Elastic,
which offers users and customers the possibility to use its products as a part of their
Software as a Service (SaaS) offerings. Elastic has recently closed-sourced their
code in an attempt to compete with Amason Web Services (AWS), who also serve
the ELK stack as a paid service on their platform [22]. This resulted in Amazon
forking the project to create their own open-source offering known as Open Dis-
tro8, which now includes additional features compared to the Elastic version such
as security controls and alerts.

Elasticsearch DSL and SQL API

The Elasticsearch Domain Specific Language (DSL) is an extensive syntax for cre-
ating powerful Elasticsearch queries. It uses JSON to define these queries, how-
ever the queries can also be formed using high-level client libraries such as Python
DSL9, which are often more simple to use. Listing 2.1 shows a functioning DSL
query in Python. This query searches for a JSON document in the data_space
index that has the title of demo, which can then be found in the results object.
For those that prefer the SQL syntax, Elasticsearch provides an SQL translation
layer API, allowing users to use the search functionality without having to learn
Elasticsearch DSL. It must be noted, however, that the SQL API, while being easy
to use, does have some limitations compared to the Elasticsearch DSL.

from elasticsearch import Elasticsearch
from elasticsearch_dsl import Search
# Connect to Elasticsearch
client = Elasticsearch(’localhost:9200’)
# Create a Search object
search = Search(using=client, index=’data_space’)

8Open Distro Elasticsearch - https://opendistro.github.io/for-elasticsearch/
9Elasticsearch DSL (Python) - https://elasticsearch-dsl.readthedocs.io/en/latest/

https://opendistro.github.io/for-elasticsearch/
https://elasticsearch-dsl.readthedocs.io/en/latest/
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# Add query criteria
search = search.query(’match’, title=’demo’)
# Execute the search and retrieve the results
response = search.execute()

Code listing 2.1: Example DSL Query in Python

2.2.2 Apache Airflow

Apache Airflow10 is an open-source platform for the management of batch-oriented
workflows. It is built on an extensible Python framework, allowing developers to
build workflows tailored to their specific technology needs. It is designed to handle
large scale data processing and execution of complex workflows.

Core Functionality

Workflows in Apache Airflow are defined as Directed Acyclic Graphs (DAGs). DAGs
allow the user to define workflows and data pipelines that are comprised of smal-
ler tasks. The DAGs tailor for specifying the task order, triggers, dependencies,
and possible areas of parallelization. Tasks in a DAG represent individual units of
work or actions that need to be performed. This could be anything from retrieving
data from a database, to invoking an API call.

The DAGs are defined using python code located in the dags/ folder on the
Airflow host. Airflow will automatically load any python files in this directory,
and add the DAGs it finds to the system. Listing 2.2 shows an example DAG that
is comprised of two functions (task1 and task2) that will run in sequence once
a day. Notice that the tasks call function_1 and function_2 from an external
library, however this could be any python callable.

from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from datetime import datetime
from yourcode import function_1, function_2

# Define default arguments for the DAG
default_args = {’owner’: ’my�name’, ’start_date’: datetime(2023, 1, 1)}
# Create a DAG object
dag = DAG(’demo_dag’, default_args=default_args, schedule_interval=’@daily’)
# Create task instances using the defined functions
task1 = PythonOperator(task_id=’task1’, python_callable=function_1, dag=dag)
task2 = PythonOperator(task_id=’task2’, python_callable=function_2, dag=dag)
# Define dependencies between tasks
task1 >> task2 # task2 depends on task1

Code listing 2.2: Example Airflow DAG written in Python

Although the DAGs files are defined as code, Airflow has a web interface for
managing workflows, checking task status, viewing logs, and other troubleshoot-
ing functionality. The interface is a great tool for visualizing the DAG files in a

10Apache Airflow - https://airflow.apache.org/

https://airflow.apache.org/
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graph view, expanding the tasks as nodes, and dependencies between them as
edges. It is important to note that the web interface does not cater to the creation
and modification of DAG files, so this must be handled externally.

Scalability

Much like Elasticsearch, Airflow can make use of a distributed architecture for ho-
rizontal scaling. New nodes can be added to the cluster to handle additional com-
putational requirements. In scenarios where the inter-component message load
is extra high, the message brokering component can be outsourced to other ser-
vices such as Apache Kafka, which is known for its high performance as a message
broker. If there is a Kubernetes cluster available, then it is possible to utilize the
Kubernetes Executor11 to run each Airflow task in its own Kubernetes pod.

2.3 Related Work

There are many existing projects that rely on real IoT traffic to perform different
types of inference and analysis tasks. However from our understanding, there are
none that propose a platform for collection and processing of IoT traffic in a way
that is protocol agnostic, meaning that they instead focus on specific forms of IoT
traffic such as Zigbee, Bluetooth, or plain TCP/IP.

The authors of "Information Exposure From Consumer IoT Devices" [5] set
up multiple IoT device labs, and created a platform for automating the testing of
devices. This test infrastructure allows them to remotely control Android devices
connected to the network. Their collection is limited to TCP/IP traffic passing
through the router, and all traffic analysis is done manually using tools like tcp-
dump and Wireshark. The paper presents no method for analyzing the wireless
traffic directly.

The authors of "IoTSpy" [9] have a different approach to collection, and use
dongle-based sniffers to collect wireless traffic from Zigbee devices. They make use
of the CC2531 Zigbee dongle to eavesdrop on the Zigbee devices in an attempt
to infer user activities. They do mention Z-wave as a potential attack vector, but
did not perform any experiments with this type of traffic data. All collection and
analysis of this traffic was done manually.

The authors of the "Zigator" paper [15] propose a platform for analysis of
Zigbee traffic. The code for their platform is published as an open-source project
on Github12. They make use of an SDR device to not only passively sniff traffic
data, but also perform active attacks on Zigbee networks. Their code has been
utilized in additional works analyzing the security of such networks [23, 24]. Zig-
ator is limited to the analysis of Zigbee networks, and requires the user to have
a thorough understanding of complex SDR control tools such as GNU-Radio. The

11Airflow Kubernetes Executor - https://airflow.apache.org/docs/apache-airflow/stable/
core-concepts/executor/kubernetes.html

12Zigator on Github - https://github.com/akestoridis/zigator

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/executor/kubernetes.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/executor/kubernetes.html
https://github.com/akestoridis/zigator
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authors of the "Zleaks" paper [16] built on the knowledge gained from analysis
of Zigbee networks in the Zigator paper to find methods of inferring user activity
through passive collection. They also do not require the use of an SDR, employing
a CC2531 USB dongle instead.

The "Peek-a-Boo" paper [11] is possibly the closest to what we want our plat-
form to look like in terms of collecting traffic data from multiple types of traffic
sources. They collect and analyze traffic from Zigbee, WiFi and Bluetooth. While
their contributions in regard to analyzing this traffic data are significant, they
omit all details regarding the capture process, and seem to manually process the
collected data.

While there have been significant contributions to the space of analyzing IoT
traffic for security research problems, it seems like this progress still relies on a
heavy amount of manual labor. Also, the platforms that automate some aspects of
this collection and analysis, are tailored for specific IoT protocols.



Chapter 3

Design of PacketZapper

PacketZapper is the name given to our automated collection and processing plat-
form for IoT traffic. It is capable of collecting, parsing, storing, and processing
various types of IoT traffic in near real-time, simplifying the process of systemat-
ically acquiring traffic for research purposes. PacketZapper is built using existing
and well-known open-source solutions, together with some custom components,
creating a scalable and customizable platform that can be tailored for use in a
variety of IoT traffic-based research applications. It can run on a wide range of
hardware, from a single Raspberry Pi to a cluster of high-powered servers. The
source-code is published online on Github1 for anyone to use. In this chapter, we
detail the development process, including requirements for the platform and the
resulting technical implementation.

3.1 Development Process

The development of PacketZapper was structured using the reuse-based software
development methodology [25]. The methodology focuses on identifying where
and how existing resources can be reused, while also making enhancements dur-
ing development to ensure that the end product functions as intended.

Our first step in this development process was to ensure that we had a proper
understanding of the problem, which we then used to create a solution structure.
This structure could then be broken down further to create a more detailed un-
derstanding of how each of the components would function with one another. We
could then develop a reuse plan to identify which problems could be solved with
existing software, and which parts needed more specific code contributions.

This formalized approach to the development of the platform helped ensure
that the resulting product sufficiently targeted the goals of our platform, as high-
lighted by our research questions.

1PacketZapper source code - https://github.com/PacketZapper/PacketZapper
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3.1.1 Solution Structure

Our solution structure was based on our understanding of the problem, which we
discussed in Section 1.1. This also ties well into the first research question (RC1:
What is a suitable architecture for a platform that performs automated collection
and processing of IoT device traffic?), which captures the essence of what we
wanted the platform to do. The earlier scoping of the project was an important
factor when performing this structure modelling. We decided to limit the platform
to target low bandwidth home IoT devices, meaning that we could avoid having to
scale every component to deal with the possibility of multi-gigabit data-streams.
Horizontal scaling was however still an important factor, as we did not want to
directly limit the amount of devices the platform could handle at once.

An existing survey [26] on traffic analysis concepts, together with our problem
understanding and scope, served as a baseline for breaking down the problem
into smaller components. The result of this was a four-stage solution structure.
The four stages are identified as collect, parse, store, and process. Figure 3.1
shows this four-stage solution structure. Together they make up what is required to
perform automated collection and processing of IoT device traffic. The sequential
arrows from stage 1 to stage 4 show the general flow of data, while the arrow
back to the first stage from the process stage signifies a form of feedback loop,
illustrating the automation aspect of the platform.

1. Collect 2. Parse 3. Store 4. Process

Figure 3.1: The four-stage solution structure of PacketZapper.

Moving forward we break down each of these stages, describing their inten-
ded functionality, which we later used to create the system requirements for the
platform.

Collect

The role of the first stage is to collect the data that will be processed. This could be
anything from wireless Zigbee traffic, to the signals coming from a TPMS sensor.
This component handles how the platform is able to interface with the real world.
In essence, it bears the role of demodulating signal data so that the actual inform-
ation being transmitted/modulated can be extracted. Looking at the OSI model,
this stage can be seen as filling the role of layer 1 in the model, receiving the raw
data that is sent over a physical medium.
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Parse

The second stage involves parsing the collected data and extracting as many useful
data points from the collected bit-streams as possible. Parsing the raw bit streams
into a structured format enables the data to be indexed and queried based on
it’s different fields and attributes, especially if saved in a database. Ideally, this
stage would result in an OSI-like data structure, outputting information on any
protocols that the collected data is comprised of.

Store

The store stage involves committing the parsed data to some storage solution so
that it can be processed at a later time. The store stage makes use of a database,
allowing a subset of the data to be retrieved based on the requirements of the
querier, such as the collection time, or some other field in the data structure. The
store component needs to be able to scale based on both the amount of data being
committed and also the complexity of the queries being performed.

Process

The process stage is where the users of the platform are able to experiment with
the collected data. Ideally, this means creating an environment for collaboration
between users and enabling the creation and execution of reproducible experi-
ments. This stage should also provide an interface for manual exploration and
analysis of the collected data.

3.1.2 System Requirements

We created some functional and non-functional system requirements that were
derived from our solution structure. We followed a black-box style for requirement
specification as outlined in [27].

Functional Requirements

In general, functional requirements refer to the specific features and capabilities
that a software system must have to perform its intended tasks. In the case of
PacketZapper, these requirements define the functionality of the four stages of
our solution structure, and define some of the interfaces between them. Table 3.1
lists all of these functional requirements for PacketZapper. Note that the identifier
value for each item starts with FR, indicating a functional requirement.

These requirements are quite general and do not specify exactly which tech-
nologies or tools the platform should use. We are however specific on having the
platform evolve around a JSON based data structure.
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Table 3.1: Functional requirements for PacketZapper.

Identifier Requirement description
FR001 Implementation conforms to the four-stage solution structure (col-

lect, parse, store and process)
FR002 Can handle collection of multiple data sources simultaneously.
FR003 Supports collection of at least 2 different wireless IoT communic-

ation protocols
FR004 Implements an API for remotely controlling the collection of data
FR005 Collection of data can run at physical location separate from other

platform components
FR006 Parsing component outputs timestamped JSON formatted data
FR007 Parsing component supports basic filtration of traffic
FR008 Data storage solution provides graphical interface for verifying

data collection/availability
FR009 Data storage solution can handle time-sequence based JSON

formatted data
FR010 Data storage solution provides interface for querying data based

on the data attributes
FR011 Multiple users can collaborate on creating data pipelines
FR012 Pipelines can interact with the collection API (as mentioned in

FR004)
FR013 Complete platform is capable of executing basic inference attacks

Non-functional requirements

While functional requirements define the features and capabilities of the plat-
form, the non-functional requirements specify how well it should do it. Measuring
non-functional requirements can be a challenging task as they often involve qual-
itative aspects that are difficult to quantify objectively. Despite this, integrating
non-functional requirements into the design process could help ensure that the
platform meets the necessary quality attributes and constraints to achieve its in-
tended purpose. Table 3.2 lists all non-functional requirements for PacketZapper.

Table 3.2: Non-functional requirements for PacketZapper.

Identifier Requirement description
NFR001 The platform should be easy to install, including initial configura-

tion.
NFR002 The platform should have a suitable approach to enabling auto-

mation of workflows.
NFR003 The platform should be scalable and capable of running on a vari-

ety of hardware.
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Note that the non-functional requirements are identified with the "NFR" pre-
fix. These non-functional requirements guided the selection of appropriate design
patterns, architectures, and technologies during the platform implementation pro-
cess.

3.2 Implementation of PacketZapper

In this section, we present the details on the actual implementation of our auto-
mated collection and processing platform for IoT device traffic, i.e., PacketZapper.
We start with an overview of PacketZapper and then break it down into more de-
tail on the different components it is comprised of.

3.2.1 Implementation Overview

PacketZapper implements the four-stage solution structure described in Section
4.1. The platform has three core components that handle all four stages of this
solution structure. In brief, we have the Collection Agent, which is custom soft-
ware for handling the collection and parsing of IoT traffic data (i.e., stages 1.
collect and 2. parse). The next component is Elasticsearch for storing and search-
ing the data (i.e., stage 3. store). The last component is Airflow for processing the
data (i.e., stage 4. process). These components were chosen based on their per-
ceived ability to satisfy the requirements of the platform, such as the requirement
of having scalable components. Figure 3.2 shows a brief outline of how these core
components fit into the four-stage solution structure introduced in Section 3.1.1.

Collection Agent
(Collect & Parse)

Elasticsearch
(Store)

Airflow
(Process)

Figure 3.2: The implementation architecture of PacketZapper.

In addition to these three core components, we have Jupyter Lab for prototyp-
ing, management, and general administration of the platform, and Kibana for easy
visualization of the data stored in Elasticsearch. Together, all these components
make up the PacketZapper platform.

Platform Architecture

Figure 3.3 shows a logical overview of how PacketZapper is designed to be de-
ployed. We have one or many remote nodes located in the target IoT environ-
ments, then the backend, which runs many of the core components on a server,
and finally the user environment, where the platform is administered from.

The Collection Agent is located in the target environment and collects a given
type of IoT traffic using one or many USB dongles specific to the type of data
being collected (for example, collecting Zigbee data using a CC2531 USB dongle).
It performs some basic filtering and parsing of the data before sending it to the
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Figure 3.3: The logical deployment overview of PacketZapper.

backend where Elasticsearch takes care of storing the data. The Kibana interface
can be used to view the data that is stored in Elasticsearch, create visualizations
or find new trends in the data. Jupyter allows the user to test out Python code
snippets, and make modifications to the DAGs that are run by Airflow.

The Airflow server is, in essence, the core engine of any research experiment
run on PacketZapper. It pulls the levers, controlling the sequence of operations in
the experiment. It has full control over the Collection Agents and can start/stop/-
tune the collection based on the results it sees in the database. It can also call
on external systems or services that an experiment may require. This all happens
through DAG files which allow the user to specify in detail the complete sequence
of events for their chosen experiment/pipeline.

Example Usage

Figure 3.4 shows an example of the sequence of events involved in a simple Zig-
bee packet capture-based experiment that is automated through an Ariflow DAG.
The user triggers the pre-configured DAG which initiates the Collection Agent to
start capturing Zigbee packets. The agent periodically posts its collected data to
Elasticsearch as packets are being captured. Meanwhile, Airflow is checking the
Elasticsearch database for a specified amount of data to arrive before running an
inference task on the data. Airflow then posts these results to Elasticsearch and
requests the Collection Agent to stop sniffing traffic. This could then be expan-
ded to for example trigger a new inference task, or start collection of a different
network. All this can be specified by the user in the DAG file.

Core Infrastructure

PacketZapper is in its default configuration packaged to run inside a Docker runtime
environment. This simplifies much of the setup procedure as the individual Dock-
erfiles handle installation of dependencies and so on, while the docker-compose
files handle networking, storage, and basic configuration of the system. This al-
lows for quick and easy installation of the platform while also giving users the



Chapter 3: Design of PacketZapper 19

3. Post data
Done

4. Query DB
Results

5. Process data

6. Post results
OK

7. Stop sniffing

2. Start sniffing

Stopped sniffing

1. Start pipeline

Finished

Collection Agent Elasticsearch Apache Airflow User

Figure 3.4: PacketZapper example use case for sniffing and analyzing Zigbee
traffic.

flexibility to customize their installation as desired, whether that be scaling up
individual components or adding new components.

Being built on Docker also reveals all the details of how PacketZapper can
be installed on bare-metal (non-virtualized) environments. Users with dev-ops
experience could adapt the code to run on a variety of hardware, even outsourcing
parts such as the Elasticsearch component to a third-party cloud provider.

3.2.2 Collection Agent

The Collection Agent is responsible for collecting and parsing IoT traffic. The agent
relies on physical hardware such as USB dongles to collect traffic, and then uses
software to parse the data coming from these dongles. This traffic data is then
formatted as JSON strings before being sent to the Elasticsearch database. The
Agent runs a lightweight REST API built using the Python FastAPI2 framework.
This allows full remote control of the Collection Agent from an external system.

The agent was designed to function separately from the rest of the platform

2FastAPI framework - https://fastapi.tiangolo.com/

https://fastapi.tiangolo.com/
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and can be scaled out as multiple instances. The current version supports sniffing
typical Zigbee traffic (via whsniff and a CC2531 USB dongle) and also generic
433MHz data (via rtl_433 and an RTL_SDR dongle). Future dongle/protocol sup-
port is planned.

Core Infrastructure

The Collection Agent was written in Python (version 3.9) and is packaged to run
as a module from the command line. We wrapped the code to run inside a Docker
environment by default, but it can easily be moved out to run directly on the
host. The included Dockerfile defines how the package is built, and details all the
external dependencies it relies on. Since the code runs in Docker, it can be installed
on various types of machines, from am ARM based Raspberry Pi, to a powerful
x86 based server. We used docker-compose to create an environment for the code
to run in, defining variables such as the Elasticsearch server endpoint, the API
listen port and so on. It is possible to list all configuration options by calling the
-h/--help flag in the command line.

Having the code written in Python should make it simple to add additional
dongle/protocol support. The code is also laid out in a manner that should make
it easy to understand this process. Our main limitation here is the use of UNIX
pipes, so adding Windows-only parsing software is not supported.

USB Device Passthrough

Running the Collection Agent in Docker means that it is mostly isolated from the
host system, USB devices included. While there are methods to pass through USB
devices to running Docker containers, it is unfortunately not possible on all host
operating systems. For example, macOS runs Docker inside a virtual machine,
making device passthrough even more complex. In the docker-compose file that
is included with the Collection Agent, we run the container in privileged mode
and pass through the whole USB bus so that any USB devices attached to the
host system can be detected and used by the agent. From testing, this works fine
in Linux-based operating systems. Users of macOS would have to run the agent
directly on the host.

Elasticsearch Connection

When running the agent, the user must provide the Elasticsearch endpoint and
also ensure that the agent is reachable by the Airflow service. In the default
runtime configuration via Docker, this connectivity functions out of the box. How-
ever, custom setups such as running the agent in a remote location would require
some modification to the network layer, such as creating an encrypted network
tunnel between the locations (see Section 6.1.2 for more details).

The agent has a built-in index template that is posted to the Elasticsearch
server at startup. It applies rules for any data uploaded to the "packetzapper"
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index, which is the index used by the Collection Agent for all data. This file can be
customized to statically define special variable types if Elasticsearch is unable to
guess the type automatically. In its current configuration, this template will ensure
that numeric values formatted as strings, are interpreted as numeric values, and
not strings. This ensures that aggregation queries can be done using these values
(as functions such as sum() work as intended). The file is included in the Appendix
at A.3.

Data is sent in batches to Elasticsearch in groups of 10-50 items at a time. This
is necessary to avoid sending a deluge of HTTP requests to the instance when large
amounts of data are being collected. Currently, the batch size is hard-coded for
each protocol being collected. However, it would be more optimal for the program
to dynamically adjust the size based on the variations in the influx of data being
collected. This is especially important in scenarios where only a couple of packets
are being collected per minute, as the whole buffer must be filled before the batch
is sent.

Control API

The API runs on port 8000 of the host and exposes endpoints for starting, stopping,
and checking the status of the sniffing processes running on the agent. The API
uses HTTP POST methods for any actions that make state changes to the system
(for example, start/stop collection) and HTTP GET methods for basic information
calls (such as checking the health of the service).

The endpoints for starting the collection of data use the POST data payload
to specify options that would be relevant for that type of collection. For example,
when starting Zigbee sniffing, the user can specify which channel to sniff, and if
none is specified, then it will fall back to a default channel value.

There is also an endpoint at /docs which exposes the auto-generated docu-
mentation, describing in detail the API schemes for all the available endpoints.
This is done using OpenAPI (formerly Swagger) and allows easy debugging of the
endpoints through POST and GET requests, which can be run directly from the
web browser.

The source code is written in a way that should make it easy for a developer
that has some experience with Bash and Python to easily add their own endpoints
for additional services they want to expose over the API.

We also created a basic Python client library for interacting with this API. This
allows for easier integration of the Collection Agent with Python projects, without
having to study the documentation for the different endpoints.

Zigbee Support

Zigbee support was built and tested using USB dongles based on the TI CC2531
System on a Chip (SoC). This somewhat outdated chip is still prevalent and can
be purchased online in a USB-dongle form factor for under 5 USD. The chip must
be flashed with an alternate sniffing firmware, which can be downloaded directly
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from TI3. Unfortunately, flashing the SoC must be done via external hardware,
such as a CC-debugger, which is a special hardware tool for debugging and pro-
gramming SoCs. Many alternate ZigBee projects use the CC2531 and have de-
tailed descriptions of how to flash the chip. The Zigbee2MQTT4 project, for ex-
ample, has up-to-date and detailed instructions on this flashing process for most
operating systems.

The open-source Zigbee sniffing software whsniff5 is used together with the
CC2531 dongle (flashed with the alternative firmware image) to sniff and decode
Zigbee traffic into PCAP format. By piping its output to tshark, the packets can
then be exported in JSON format for ingestion into the database. As the original
data from whsniff is in PCAP format, the whole OSI structure for the packets is
preserved, even when converted to JSON format. We make no attempts to de-
cipher the encrypted Zigbee payload; however, all the headers for the different
layers of the packet structure are still readable.

433Mhz Support

Generic 433Mhz message decoding was implemented using a Nooelec NESDR
SMART6 dongle together with the open-source rtl_433 software package. rtl_433
leverages generic SDR receivers, such as the Realtek RTL2832U chipset, to decode
a variety of common wireless protocols from devices such as weather stations,
temperature sensors, garage door openers, and remote controls.

In the lab environment, running rtl_433 revealed many neighboring devices.
The dongle discovered a handful of sensors that published environment data, such
as temperature and humidity, via the Nexus temperature and humidity sensor
protocol. Often, these are simple weather stations, but verifying their brand and
model were not possible as they were not a part of the lab.

rtl_433 can export live JSON data, which we can ingest into the Elasticsearch
database on the fly. This is done by adding the -F json flag to the argument list
of rtl_433. The software will output a JSON structure to STDOUT every time
a 433MHz signal is detected and decoded. rtl_433 supports a large amount of
command line arguments to for example, limit collection to a specific device type,
or signal strength. It is therefore possible to add extra arguments to rtl_433 when
starting it over the Collection Agent API by specifying the EXTRA_ARGS variable
when sending the POST request to start sniffing.

3.2.3 Elasticsearch

We run an instance of Elasticsearch to store the traffic data coming from the Col-
lection Agents. Elasticsearch was chosen as the main storage system mainly due to
its ability to handle a variety of data structures through its dynamic data mapping

3TI PACKET-SNIFFER - https://www.ti.com/tool/PACKET-SNIFFER
4Zigbee2MQTT - https://www.zigbee2mqtt.io
5homewsn/whsniff - https://github.com/homewsn/whsniff
6Nooelec NESDR - https://www.nooelec.com/store/sdr/sdr-receivers

https://www.ti.com/tool/PACKET-SNIFFER
https://www.zigbee2mqtt.io
https://github.com/homewsn/whsniff
https://www.nooelec.com/store/sdr/sdr-receivers
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functionality. Also, its advanced DSL query functionality opens up the possibil-
ity for different forms of search aggregation. For example, it is possible to define
queries that find the average packet size being transmitted over Zigbee in groups
of 10-minute intervals, or take this a step further by grouping this data based on
the source/destination address.

Index Structure

We do not restrict incoming data to conform to any specific JSON based data
structure as we did not want to limit the types of data that could be added to
the system. If a user decides to add a new protocol for collection to the system,
then they are free to structure the data into a format they feel suitable (given that
Elasticsearch is capable of accepting the data). As mentioned earlier, we make
use of an index-template to control how Elasticsearch reads the data we feed it.
In our current configuration, all data is added to the same packetzapper index,
irregardless of the protocol being collected. When looking at the data in Elastic-
search, the user can differentiate between the different protocols by filtering on
the sniffer key in Elasticsearch. For example, Zigbee traffic is given the sniffer
value whsniff.

Kibana Visualizations

We include an instance of Kibana in PacketZapper to allow for easier explora-
tion and visualization of the data stored in Elasticsearch. Kibana provides a user
friendly interface to create powerful graphical representations of the data, with
additional aggregation and filtering functionality. These visualizations can then
be combined together in dashboards, assisting the user in identifying trends and
getting more insight into the data. There is also search functionality built into
Kibana, aiding the user in creating intricate search queries that use functionality
such as fuzzy-matching and range queries.

If the user creates a filter or visualization that is relevant to some task that
they would like to automate, then it is possible to export these queries as DSL,
and run them directly against the Elasticsearch instance through a Python script
or similar.

We do not include any default Kibana visualizations as we feel this is often
very specific to the task being performed, however we may include some basic
example visualizations in the future to help show the user what is possible.

3.2.4 Apache Airflow

We use Apache Airflow as the main workspace for running pipelines of tasks,
everything from initiating the collection of data on the Collection Agent, to cal-
culating and presenting inference results. This is done through DAG files that are
run by Airflow. These define the sequence of events to be performed as part of a
pipeline, representing the automation aspect of PacketZapper.
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Instance Architecture

PacketZapper runs an instance of Apache Airflow through a Dockerfile based on
the official Airflow Docker image. It is through this Dockerfile that users can define
additional dependencies needed for their DAG tasks. For example, we add the
Python Elasticsearch packages through this file. We make use of the official docker-
compose.yml file to initiate a standard working environment. An internal bridge
network is also present between Airflow and all the other components (Jupyter,
Collection Agent, and Elasticsearch) so that they can communicate freely with
each other. The docker-compose includes internal services for Airflow such as a
Postgres database instance and a Redis server. The DAGs folder (where the DAG
files are stored) is bind-mounted to the host system so that they can be modified
both on the host operating system and also via the Jupyter instance.

PacketZapper Integration

We provide an example DAG to showcase some of the interactions that are possible
using Airflow in PacketZapper. The DAG is located in the /dags/packetzapper
directory and serves as a great baseline for potential collection experiments on the
platform. It is here that we demonstrate the functionality of the Collection Agent
Python client library implementation, which we introduced earlier in Subsection
3.2.2.

The library can be used to control one or more Collection Agents. An instance
of the PacketZapperClient class is initiated with a list of Collection Agent URLs,
which can then be controlled using this object. It exposes methods for various
functions, such as starting collection with specific parameter, checking that an
agent is online, and stopping collection. Listing 3.1 shows a basic example of how
this library is used for starting Zigbee traffic collection on Zigbee channel 12:

from packetzapper.packetzapper import PacketZapperClient
# Initiate Collection Agent client using a list of hosts
pz = PacketZapperClient([’http://192.168.1.100:8000’])
# start Zigbee sniffing on channel 12 if Collection Agent hosts are online
if pz.ping_hosts:

pz.start_whsniff(channel=12)

Code listing 3.1: Using the Collection Agent client library to start Zigbee traffic
collection

We also show some basic Elasticsearch functionality in the DAG, such as search-
ing in the Elasticsearch database, but there are far more possibilities than this. For
example, we can use Elasticsearch as an Airflow Sensor task to wait for X amount
of data to show up in an Elasticsearch index before continuing with the next task.
This is especially useful for checking that a required amount of traffic data has
been collected before continuing on with an inference task.

Being that Airflow can run standard Python code as an operator task means
that other external services can be called as a part of the pipeline. We were for
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example successful in switching the power of an IoT-enabled relay switch (like an
AC smart socket) on and off by calling the device’s built-in API.

3.2.5 JupyterLab

A JupyterLab instance is included in PacketZapper to allow for remote manage-
ment of the system through a web browser. By default, it has access to all the
configured services and is a great platform for prototyping elements of a collec-
tion pipeline before creating DAGs for Airflow. Jupyter exposes a command line for
easy installation of new Python packages or other system dependencies. Collabor-
ation is also possible by having multiple users connected to the Jupyter instance.

The /dags folder from Airflow is mounted to the Docker image and visible
in the directory structure view shown in the sidebar. If creating or modifying the
DAG files, it may be a good idea to install the "apache-airflow" package from pip
to make development easier (IDE code completion, etc).

Although JupyterLab is a great tool for prototyping, complete management
of the system must still be done through a host shell. For example, starting/stop-
ping/building the Docker containers should be done directly on the host system. It
is possible on Linux systems to pass through the Docker socket to the JupyterLab
container and run the commands from there. However, this is something we did
not implement in an attempt to make the platform as host-platform-agnostic as
possible.





Chapter 4

Evaluation Methodology

In this chapter, we detail the evaluation methodology used to assess the perform-
ance of PacketZapper, which was guided by the functional and non-functional
system requirements. We designed and ran a series of test cases targeting these
requirements, which resulted in a pass/fail grading. This evaluation process in-
cluded setting up a small lab environment comprised of IoT devices and basic
network infrastructure. This allowed the test cases to be performed using real-
world devices.

4.1 Platform Evaluation

Assessing the performance of PacketZapper was crucial in determining whether
PacketZapper’s intended objectives had been accomplished. The evaluation pro-
cess consisted of a requirements-based assessment of PacketZapper, including a
real-world case study to assess its suitability in a specific research context.

The requirements shown in Subsection 3.1.2 served as the baseline for creating
test cases for PacketZapper. Each individual test case was designed to tailor to one
or more of these requirements, bringing us closer to a slightly more quantitative
assessment of the platform. These test cases were placed in two Requirements
Traceability Matrices (RTMs). Each row in these tables represent a unique test
case with an identifier and description, along with the requirements that the test
case targets. The matrices provided the necessary structure needed to complete
such an evaluation process.

4.1.1 Functional Requirements Evaluation

Table 4.1 shows the RTM with test cases targeted specifically at the functional
requirements of PacketZapper. More details on each of these test cases is provided
below.
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Table 4.1: RTM used for evaluation of the functional requirements for Packet-
Zapper.

Identifier Test case summary Reqs served

TC001 Design review: Review design documents to
assess if the platform conforms to the four-stage
solution structure

FR001

TC002 Parallel collection: Demonstrate filtered col-
lection of Zigbee and 433Mhz IoT traffic simul-
taneously via the collection API that is running
on a separate system. Verify data availability in
database.

FR002-008

TC003 Query capabilities: Demonstrate that a single
JSON document containing a Zigbee packet can
be retrieved from the database based on a time
and attribute query

FR006,
FR009-0010

TC004 Case study: Run a case study to demonstrate a
basic inference attack on a Zigbee network

FR011,
FR012,
FR013

TC001: Design Review

The intention of this test case is to assess if PacketZapper conforms to the four-
stage solution structure described in Subsection 3.1.1 and review if the application
of this structure has enabled the structure’s expected benefits (reuse of existing
software, module replacement, scalability, etc). This is a qualitative assessment
that results in a pass/fail score.

TC002: Parallel Collection

In this test, we demonstrate that parallel collection of IoT traffic is possible, and
that the collection can be started/stopped from a machine other than the one
conducting collection. To evaluate all the requirements targeted for this test, the
following must be demonstrated:

1. Start the collection of Zigbee traffic via API, filtering out packets sent from
the ZC.

2. Start the collection of 433Mhz traffic via API, while Zigbee traffic is still
being collected.

3. Stop the collection of both traffic sources via API.
4. Provide a graphical time-series representation of data from both traffic sources.
5. Confirm that no packets originating from the ZC are present in the data.

The test is passed if all items are demonstrated.
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TC003: Query Capabilities

In this test, we demonstrate some of the query capabilities of the storage solution.
For this test, we assume that Zigbee traffic data is in the database from the previous
test case (TC002). To evaluate all the requirements for this test case, the following
must be demonstrated:

1. Query the database for the last collected Zigbee packet, and verify that the
database has retained the structure of the packet.

2. Query the database for the sum of bytes of Zigbee packets transmitted over
the network in 10-minute intervals, grouped by the transmitting Zigbee
device.

TC004: Case Study

This case study is designed to assess if PacketZapper is capable of implementing
some of the passive inference attacks described in the Zleaks [16] paper. This
assists in grounding the evaluation of PacketZapper to concepts and methods that
are currently in use by researchers today. PacketZapper by design, is agnostic to
how the components are used, and it is up to the user to implement their own
custom workflows and solutions. The purpose of this case study is to assess if
the chosen approach to collecting, storing, and analyzing data is suitable for real-
world scientific research on IoT device traffic. The Zleaks paper has significant
contributions with regard to inferring user activity; however, we limit this case
study to only complete some of the more basic inference tasks described in the
paper.

In this case study, PacketZapper is used to:

• Identify the total number of Zigbee devices on the network
• Identify the number of active ZR on the network
• Identify the number of active ZED on the network
• Identify the network ZC

Using PacketZapper to complete these tasks involves creating custom airflow
pipelines, which will require some programming knowledge. The test case is passed
if the platform is capable of running these inference tasks in an automated man-
ner.

4.1.2 Non-functional Requirements Evaluation

We have not designed any quantitative test cases to directly assess the non-functional
requirements; however, qualitative assessments can be done to target them indi-
vidually. Therefore, we have three test cases as shown in Table 4.2.
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Table 4.2: RTM used for evaluation of the non-functional requirements for Pack-
etZapper.

Identifier Test case summary Reqs served

TC005 Easy installation: Review installation and con-
figuration procedure

NFR001

TC006 Automation: Review automation functionality
of PacketZapper in the context of typical use
cases

NFR002

TC007 Scalability: Assess scalability availability and
limitations of PacketZapper

NFR003

TC005: Easy Installation

In this test case, we review the installation procedure and evaluate if it serves
the requirement NFR001: "The platform should be easy to install, including ini-
tial configuration". Extra attention is given to the default configuration and what
further modifications must take place to be up and running.

TC006: Automation

In this test case we review the usefulness of the automation functionality provided
by PacketZapper, and we evaluate how well it serves the requirement NFR002:
"The platform should have a suitable approach to enabling automation of work-
flows". Additional focus should also be given to the ability to debug and monitor
any automation attempted on PacketZapper.

TC007: Scalability

In this test case we assesses the scalability of PacketZapper, including any hard-
ware limitations. This assessment should better highlight if PacketZapper serves
the requirement NFR003: "The platform should be scalable and capable of run-
ning on a variety of hardware". Additional focus should be given to identifying
potential indicators of bottlenecks that may arise as the platform load increases,
and how these can potentially be mitigated.

4.2 Lab Environment

A lab environment was set up in a residential apartment housing students from
NTNU. The apartment and lab environment were not RF-isolated, so wireless sig-
nals from devices in neighboring apartments were still present in the lab. This in-
cluded signals from smart infrastructure such as power meters, weather stations
and other Zigbee networks.

The lab was designed to replicate a typical smart home installation while also
allowing for additional insight and modifications where needed. Figure 4.1 shows
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Figure 4.1: The lab environment for evaluating PacketZapper.

an overview of this setup. A virtual machine running the VyOS1 router operating
system was connected to the internet on a local isolated subnet. Basic services
such as NAT, DHCP, and DNS were configured in addition to a basic firewall con-
figuration. A Raspberry Pi 3B running Raspberry Pi OS Lite was connected to this
local subnet via Ethernet. A ConBee II2 Zigbee dongle was connected to the Rasp-
berry Pi, together with installations of the Phoscon3 and deCONZ 4 apps, allowing
the Pi to act as its own Zigbee gateway. As for the Zigbee network nodes, there
were a selection of devices connected to the network, both ZRs and ZEDs. This
included one smart-socket, two environment sensors, and one smart light. These
devices are shown in table 4.3. The devices were connected using the instructions
provided through the Phoscon web app and it’s discovery process. No further cus-
tomizations were made to the devices once they were on the network.

Table 4.3: List of Zigbee devices connected to the network, their function, device
type, and MAC address.

Device Function Type MAC Address

ConBee II Zigbee gateway node ZC 00:21:2e:ff:ff:06:0b:e4
Hue Bloom Desk lamp ZR 00:17:88:01:0c:67:e6:27
Hue Smart Plug Smart socket relay switch ZR 00:17:88:01:0b:e1:19:53
Hue Motion sensor Environment sensor ZED 00:17:88:01:0b:d0:aa:cf
Aquara temperature Environment sensor ZED 00:15:8d:00:05:44:ee:f6

The Phoscon web interface provided a way to control the Zigbee devices, such
as dimming lights, switching power to smart plugs, and also reading sensor values.
deCONZ on the other hand, provided detailed insight into the Zigbee network,
allowing low level inspection of the network devices and their connectivity (such
as device mac addresses, device types, and link quality).

We used deCONZ to find out more information about the devices on the net-
1VyOS open source router and firewall platform - https://vyos.io/
2ConBee II Zigbee dongle - https://www.phoscon.de/en/conbee2
3Phoscon App - https://phoscon.de/en/app/doc
4deCONZ - https://github.com/deconz-community/deconz-docker

https://vyos.io/
https://www.phoscon.de/en/conbee2
https://phoscon.de/en/app/doc
https://github.com/deconz-community/deconz-docker
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Figure 4.2: deCONZ graph view of the Zigbee network.

work, such as the device types and mac addresses. Figure 4.2 shows a graph view
of the network topology which was provided by deCONZ. In this graph view, the
yellow nodes indicate ZRs, the grey ZEDs and blue ZCs. This information was used
to fill in the device type and mac address seen in Table 4.3.

4.2.1 Attack Vector

The intention of this lab was to simulate a home environment, so in this case, a
potential threat actor does not have physical access to the devices or equipment
located within the lab (as these would be inside the home). The threat actor must
therefore rely on the use of wireless signals to perform their attacks.



Chapter 5

Evaluation Results

In this Chapter, we present the results from the requirements-based evaluation.
The Requirements Traceability Matrices (RTMs) have been updated to include the
results from testing the functional and non-functional requirements.

5.1 Functional Requirements

As seen in Table 5.1, all the test cases aimed at assessing the functional require-
ments were passed, including the case study. We now detail the results from each
of these test cases, detailing any additional steps that were taken to achieve these
results.

Table 5.1: Evaluation results for the functional requirements of PacketZapper.

Identifier Test case Reqs served Results

TC001 Design review FR001 Pass
TC002 Parallel collection FR002-008 Pass
TC003 Query capabilities FR006, FR009-0010 Pass
TC004 Case study FR011, FR012, FR013 Pass

5.1.1 TC001: Design Review

The design review was based on the source code available to check out from Git.
As described in the PacketZapper implementation overview (Section 3.2.1), the
implementation merges stages 1 and 2 of the four-stage solution structure into a
single piece of software, i.e., the Collection Agent.

Despite this, we believe that the design falls well within the structure of the
four-stage design. The Collection Agent should be viewed as a facilitator for integ-
rating various existing software components with the rest of the platform. It en-
ables existing collection hardware such as the CC2531 Zigbee sniffer to be paired

33
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with its protocol-specific parser (in this case, whsniff). Figure 5.1 shows this four-
stage solution structure with more granularity with regard to the Collection Agent,
demonstrating that the intended structure is in fact retained.

Figure 5.1: PacketZapper four-stage analysis.

Adding an additional protocol to the platform, therefore, simply involves find-
ing new collect-parse pairings for that specific protocol, which, after some testing,
can then be added as a part of the Collection Agent. If a USB dongle does not work
as intended, or a different parsing software is to be used, then the structure of the
platform allows for such modifications with relative ease. If the user for example,
wants to swap out Elasticsearch with an Open Distro variant, then this is also
possible with some minor modifications, and does not require a complete rewrite
of the system architecture. This is in part thanks to the platform following this
four-stage solution structure.

Based on this code review and subsequent assessment, we evaluated the test
as PASSED.

5.1.2 TC002: Parallel Collection

For this test, the Collection Agent was installed on a Raspberry Pi 3B placed within
wireless proximity to the Zigbee network of the lab environment. The rest of the
platform was installed via the included Docker configuration on a MacBook Air.
The MacBook and Raspberry Pi were reachable over the same WiFi network. Con-
figuration of the platform involved modifying the Elasticsearch address in the Col-
lection Agent configuration file to point to the external instance.

The Collection Agent has a range of API endpoints that can be called to control
collection. Since the code is built on top of FastAPI, we can leverage the auto-
generated swagger interface at /docs to manually interact with these endpoints
from our web browser. We started Zigbee capturing by posting to /whsniff/start
with the payload shown in Listing 5.1. In the payload, we find the display filter
used to filter out traffic coming from the Zigbee Coordinator (ZC). This filter is
based on the findings from [16] where the Zigbee coordinator is often found to
use 0x0000 as its source address when sending packets.
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{
"batch_size": 5,
"sniffer": "whsniff",
"channel": 25,
"display_filter": "zbee_nwk.src != 0x0000"

}

Code listing 5.1: JSON payload posted to /whsniff/start.

After 4 minutes of Zigbee capturing, we started capturing 433MHz traffic by
sending a POST request to the /rtl_433/start endpoint. These then ran for an
additional 3 minutes before shutting them both down via the /whsniff/stop and
/rtl_433/stop API endpoints.

Using the visualization functionality of Kibana, we created a heat-map view
of the records stored in Elasticsearch, grouped by the capture program (whsniff
and rtl_433). As shown in Figure 5.2, we can visually confirm the start/stop order
of the Zigbee and 433MHz capture tasks. We also observe that far more Zigbee
packets were captured than 433MHz packets.

Figure 5.2: Kibana heat-map visualization of the number of Zigbee and 433MHz
packets captured to the specifications of TC002. X-axis (time) is grouped in 10
second intervals.

To complete the test, we used Kibana to visualize all the values of zbee_nwk.src
to confirm that there were no instances of the value 0x0000 present in the graph,
indicating that the filter worked as intended. Figure 5.3 confirms this result. We
then started whsniff again without the filter to confirm that traffic originating from
0x0000 was in fact present on the network. Based on the results shown here, we
evaluated TC002 as PASSED.

5.1.3 TC003: Query Capabilities

This test made use of the data collected in TC002. To perform these queries, we
used a combination of Kibana for prototyping and Jupyter for the final implement-
ation.

First, we demonstrated querying for the last collected Zigbee packet and veri-
fied the data structure, as instructed by the test. To interact with Elasticsearch, we
used the Python Elasticsearch library. Listing 5.2 shows the code that was run in
a Jupyter notebook to perform this part of the test. Notice that the es.search()
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Figure 5.3: Kibana visualization confirming that src address 0x0000 is not present
in the data, indicating that the filter functioned as intended.

function queries for a document where the sniffer type is "whsniff", it only retrieves
a single document, ordered by the timestamp field.
from elasticsearch import Elasticsearch
es = Elasticsearch([’http://elastic:changeme@elasticsearch:9200’])
res = es.search(index="packetzapper",

query={"match_phrase": {"packetzapper.request.sniffer": "whsniff"}},
size=1, sort={ "timestamp": "desc"})

for hit in res[’hits’][’hits’]:
print(hit["_source"])

Code listing 5.2: Jupyter code to query for last Zigbee packet.

The full JSON packet structure retrieved from this command is attached in the
appendix at A.1. It clearly shows that information from all layers of the Zigbee
packet is retained, including a hex representation of the encrypted data payload.

Elasticsearch supports aggregation in queries. We created a query to give us
the sum of transmitted data per Zigbee device in 10-minute intervals. The full
query is found in the appendix at A.2. The results from this query are shown
below in listing 5.3. This answers part two of the test.
Interval: 2023-05-08T14:00:00.000Z, Device: 0xb0d1, Bytes Sum: 70684.0
Interval: 2023-05-08T14:00:00.000Z, Device: 0x996b, Bytes Sum: 248.0
Interval: 2023-05-08T14:10:00.000Z, Device: 0xb0d1, Bytes Sum: 128183.0
Interval: 2023-05-08T14:10:00.000Z, Device: 0x996b, Bytes Sum: 944.0
Interval: 2023-05-08T14:20:00.000Z, Device: 0xb0d1, Bytes Sum: 85529.0
Interval: 2023-05-08T14:20:00.000Z, Device: 0x996b, Bytes Sum: 391.0
Interval: 2023-05-08T14:30:00.000Z, Device: 0xb0d1, Bytes Sum: 47175.0
Interval: 2023-05-08T14:30:00.000Z, Device: 0x996b, Bytes Sum: 196.0

Code listing 5.3: Result from aggregation query.

Creating this aggregation was not as simple as initially expected, resulting in
a very long query. Despite this, the Elasticsearch database was proven capable of
performing all the tasks defined in the test criteria. We therefore evaluated TC003
as PASSED.

5.1.4 TC004: Case Study

For this case study, we made heavy use of the included Apache Airflow installation
for automation of all tasks. The Jupyter installation was used for the creation of



Chapter 5: Evaluation Results 37

the Airflow Directed Acyclic Graphs (DAGs) and debugging of code to be used
in the DAGs. We created a simple DAG structure to complete the inference tasks.
Figure 5.4 shows a screenshot from the Airflow web interface graph view of the
DAG.

Figure 5.4: Screenshot of the DAG graph view taken from the Airflow web inter-
face while the pz_sleep task was running.

From left to right, we first have pz_online which checks to see that the Collec-
tion Agent is online and responding to API calls. Next, we have pz_start which
starts Zigbee sniffing. pz_sleep makes the pipeline wait for 5 minutes, pz_stop
stops the Collection Agent capturing Zigbee traffic, and finally zleaks_infer con-
tains the inference tasks. This is a simple yet automatic pipeline that could be
expanded to do other tasks. In our specific case, we have set it to only run when
manually triggered. We make use of the Collection Agent Python client library
that was briefly introduced in section 3.2.4 to interact with the API in a Pythonic
manner. The zleaks_infer task contains all the logic for our inference tasks. In
this case, it is to infer the number of devices, Zigbee Routers (ZRs), and Zigbee
End-Devices (ZEDs) on the network, in addition to identifying the ZC. The task
runs these inference tasks and posts the results back to Elasticsearch where the
user can view them.

To count the total number of devices on the network, we can simply do a
count of unique Zigbee packet destination addresses. To find the number of ZRs
on the network, we used the formula described in [16] on broadcast packets with
a Zigbee radius value of 1:

ZRs=
packet payload length� 2

3

To implement this in Airflow, we first confirmed its validity in Kibana by filter-
ing for packets with the destination logical address of 0xffff, and network radius
of 1. Then we observed the field indicating the Zigbee payload length and applied
it to the formula. Once the formula was confirmed to be working, we wrapped it
together into a Python implementation and added it to our zleaks_infer task in
Airflow.

Next, implementing functionality to identify the number of active ZEDs on the
network proved difficult. Both papers detailing the possible passive attack vector
[15, 16] were quite vague in the methodology of such an attack. We reverted
to creating a Kibana dashboard to explore the data and find if there were any
methods that we could implement in Airflow. A screenshot from this workflow is
shown in Figure 5.5. In this dashboard we see graphical representations of the
traffic grouped by the different source addresses and message types.
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Figure 5.5: Kibana web interface view used when debugging the ZED count meth-
odology.

Through this process of analyzing the data in Kibana and digging through the
Zigbee and LR-WPAN specifications [28, 29], we discovered that it was possible
to identify ZEDs that do not perform routing by searching for data requests that
included the WPAN long address, not the short address as instructed by [15, 16].
We also discovered that while Hue Motion Sensor is a battery-powered device, it
did not act like a typical ZED as it was relaying messages like a ZR. Therefore, it
did not show up as a ZED using this new technique we developed (as it was routing
messages). All in all, we could only identify the Aquara temperature sensor as a
ZED. This process showed that the technique for identifying ZED as described in
[16] may be inaccurate, however we were able to come close to finding the true
value.

Finally, to identify the ZC by MAC, we filtered for packets where the Zigbee
source address was 0x0000 and retrieved the last value for the 64-bit Zigbee source
MAC address. We implemented all this functionality into our zleaks_infer task
and triggered the DAG using the Airflow interface. We monitored the progress
and viewed the results in Kibana. Table 5.2 shows the inference results. Details
on how we discovered the true values are detailed in Section 4.2.

Table 5.2: Results from Airflow Zigbee inference pipeline posted to Elasticsearch.

Inferred item True value Inference Result

Device count 5 5
ZRs 2 2

ZEDs 2 1
ZC MAC 00:21:2e:ff:ff:06:0b:e4 00:21:2e:ff:ff:06:0b:e4

As we can see in the table, we were able to infer many attributes from the
network using only passive methods. However, we were unable to infer the correct
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number of ZEDs using the technique described in [16], or by developing our own
methods. The discrepancy was however not the fault of the platform, but rather
the inference techniques used.

Reviewing the overall test case, we assess the platform as a suitable choice for
conducting inference experiments. This case study showcased the functionality of
the platform for both automating tasks and developing and debugging methods.
We assess this test case as PASSED.

5.2 Non-functional Requirements

We now present the results from the test results targeting the non-functional re-
quirements of our platform, which were obtained through test cases TC005-007.
These results provided insight regarding the installation, automation, and scalab-
ility of the platform. Table 5.3 presents an updated RTM that includes the test
results.

Table 5.3: RTM evaluation results for the non-functional requirements of Pack-
etZapper.

Identifier Test case Reqs served Results

TC005 Easy installation NFR001 Pass
TC006 Automation NFR002 Pass
TC007 Scalability NFR003 Pass

5.2.1 TC005: Easy Installation

In this test, we reviewed the installation procedure to evaluate if it meets the
requirement of being easy to install (see NFR001). As presented in our imple-
mentation overview of PacketZapper in section 3.2.1, the platform is in its default
configuration built on top of the Docker ecosystem. With such a configuration,
it is possible to include a default configuration that is seemingly identical across
deployments. Docker is supported on Windows, Mac, and Linux, achieving a level
of cross-platform compatibility for the PacketZapper.

Installation becomes slightly more difficult when moving the Collection Agent
out from the Docker context. This is required on hosts where Docker does not
support device passthrough (such as MacOS, and likely Windows). In this case,
the user must handle the installation of dependencies themselves, which while
being possible, is not recommended. We also make use of bash pipe functionality,
which is not supported on Windows hosts. It may be beneficial to include host re-
quirements (such as running on a Linux machine) in the installation instructions.
Based on the fact that the platform functions out-of-the-box (given that the user
can install Docker), we assess that the test case is PASSED.
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5.2.2 TC006: Automation

In this test, we assessed the implementation of automation in the platform and it’s
suitability with regard to the types of tasks that may be run on the platform. Auto-
mation in the platform is administered from Apache Airflow. Airflow can interact
with all components of the platform, including controlling the collection of data
on the Collection Agent. Being that Airflow DAG tasks are implemented in Python,
we assess Airflow as a suitable building block for building out automation tasks.
While Airflow may be slightly difficult to get started with, it is a popular techno-
logy that has proven itself in many companies over the last couple of years. The
automation functionality of the platform worked as intended when performing
the case study in TC004. We assess that this test case is PASSED.

5.2.3 TC007: Scalability

In this test, we assessed the scalability of PacketZapper. Scaling is handled in all
stages of collection in PacketZapper. The Collection-Agent can be scaled horizont-
ally, meaning that multiple instances of this component can run simultaneously.
As discussed in section 2.2.1, Elasticsearch is built for scaling, implementing ho-
rizontal scalability through the use of node clustering. Airflow is also in a similar
situation as Elasticsearch, being built with scale in mind.

Although the core technologies of PacketZapper support horizontal scaling,
the supporting infrastructure in its current configuration does not cater to such
modifications of Airflow and Elasticsearch in an easy manner. Some work would
have to be done by the user to move the deployment away from docker-compose
to a technology suitable for their use case (for example Kubernetes). Despite these
limitations, we do not believe that such massive horizontal scaling of these com-
ponents would be required when collecting IoT traffic.

We do however, believe that having a single Collection Agent could be a poten-
tial bottleneck for the platform. Fortunately, installation of the Collection Agent
on, for example, a Raspberry Pi proved relatively simple. Such an installation
could be duplicated across multiple Raspberry Pis and added to the platform with
relative ease as this does not require changes to the rest of the platform.

While there are some challenges involved in achieving massive scaling of the
platform, it is still possible as there are no fundamental issues with the technolo-
gies used. We assess that scaling is taken into account, and the test case is therefore
PASSED.



Chapter 6

Discussion

We were successful in designing, building and testing a platform to collect, parse,
store and process IoT device traffic. We followed a reuse-based software devel-
opment methodology, which prompted the creation of a solution structure and
requirements for the system. After the development of PacketZapper was com-
pleted, we performed a series of test cases to assess if the platform conformed
to the system requirements. In this chapter, we discuss this development process,
along with an in-depth assessment of the resulting platform as a whole.

6.1 Design of PacketZapper

PacketZapper was designed and developed using our four-stage solution struc-
ture (collect, parse, store, process). We created a custom software component
(i.e., the Collection Agent) which handled stages 1 and 2, while the remaining
stages were handled by existing open source projects; Elasticsearch and Apache
Airflow respectively. We start of by discussing our choice of components, followed
by a discussion on alternate configurations that could be implemented with said
components.

6.1.1 Choice of Components

As noted in the results from TC001 (Design review) in Subsection 5.1.1, the Col-
lection Agent is a facilitator for connecting collection hardware to its appropriate
parsing software, while also handling transport of any resulting data to Elastic-
search. In its current state, PacketZapper supports Zigbee and 433MHz collection.
Zigbee collection relies on a TI CC2531 USB dongle paired with the whsniff soft-
ware, while 433MHz on a Nooelec dongle paired with the rtl_433 software. The
intention of the Agent is to allow for simple dongle-software pairings based on
the requirements of the user. However, an alternative approach to this could be
the use of a Software Defined radio (SDR) to handle all wireless signals, and then
decode them in GNU Radio running the appropriate decoding modules. This was
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how the authors of the Zigator paper [15] approached performing sniffing, spoof-
ing and jamming attacks targeting Zigbee networks. Although such an approach
allows for more fine grain control over the collection process, it requires a whole
new skill-set to use complex software such as GNU Radio, not to mention the cost
of SDRs often being in the thousands of dollars. We believe that the current im-
plementation of collection and parsing is suitable, balancing cost, ease of use and
performance. It is worth noting however, that SDR and GNU Radio pairings are
still at a theoretical level still possible to add within the structure of the Collection
Agent. Implementing the software used in Zigator into the Collection Agent may
be an idea for future work.

We chose Elasticsearch for the storage stage. This choice boiled down to it’s
heavy adoption in the data analytics industry, along with it’s powerful query fea-
tures and scaling functionality. We did initially look at some other well known,
lightweight data storage platforms such as InfluxDB1 and MongoDB2. InfluxDB
was a strong competitor to Elasticsearch as they both function using a schema-
less design for ingest of data. InfluxDB however does not support nested JSON
structures. This means that new data sources would have to have be flattened
and converted into InfluxDB’s own ingest format known as line protocol before
ingest into the database. This increases the amount of work needed to implement
a new collection protocol into the Collection Agent. MongoDB was a stronger can-
didate, supporting complex nested JSON structures, with a powerful query engine
that supports various types of data aggregation queries. This final choice boiled
down to the data exploration functionality that can be achieved in Elasticsearch
via Kibana, which is part of the Elastic Stack. TC004 highlighted the importance of
being able to do data exploration, prototyping new queries and discovering new
insights in the data. MongoDB does have the MongoDB charts tool for data visu-
alization, however this was not something we tested as the Elasticsearch-Kibana
combination served all our requirements as is, while having an established in-
dustry adoption.

We chose Apache Airflow as the solution for the process stage. Airflow is a
relatively new piece of software, which made us cautious when deciding if it was
suitable for implementation in PacketZapper. The Apache Software Foundation,
who are the maintainers of Airflow, have done some surveying of Airflow users
which can help shine light on this question. The 2022 survey [30] is the latest of
3 surveys completed since 2019. It shows that the platform has had a consistent
growth in use in large companies, with also a steady increase in the willingness to
recommend the technology to new users. Based on this it could seem like Airflow
is a relatively established technology, and we may see even more widespread ad-
option of Airflow in the future, to the benefit of PacketZapper. In it’s current state,
and as seen through the testing of PacketZapper via the case study (TC004), it
becomes clearer that Airflow is not as simple and user friendly to use as one may
initially expect and desire. The use of DAGs are for many people a new concept

1InfluxDB - https://www.influxdata.com/
2MongoDB - https://www.mongodb.com/

https://www.influxdata.com/
https://www.mongodb.com/
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that users must get an understanding of from a conceptual level, before they can
even start coding their pipelines using this technology. Example DAGs could def-
initely help kick-start new types of collection on PacketZapper, so having some
examples bundled with the platform is almost a must. There are some alternative
to Airflow, that could function as an almost drop-in replacement. For example,
there is Kubeflow3 and Kedro4, which are tailored more towards Machine Learn-
ing (ML) tasks. If the user is familiar with these technologies, then this could be
an option. We are however of the opinion that Airflow is generic enough to tailor
to a variety of tasks that may be run on the platform.

6.1.2 Alternate Configurations

As described throughout Chapter 3, the PacketZapper platform comes bundled
together via docker-compose files. Everything from the Collection Agent to the
Jupyter Lab instance runs on the same host. But thanks to the modularity of the
components and open-source nature of the code, it is possible to make alternate
configurations of the platform based on variations in the user’s requirements.

Firstly, it is likely that some scenarios could require the Collection Agent to run
at a remote location away from the rest of the infrastructure. Cloud hosting is a
great example of this, where the user can deploy most of the platform on powerful
infrastructure at Google Cloud or Amazon Amason Web Services (AWS), but have
the Collection Agent installed locally. Users could also decide to collect data from
multiple locations at the same time using a single instance of the core compon-
ents of PacketZapper. While we did not directly test any of these configurations
ourselves, they still had an influence during the design and implementation of
the platform. In its current state, the platform handles multiple Collection Agent
instances, but it does not take into account inter-service communication over un-
secured networks such as the internet (as would be required in the cloud scen-
ario). It is difficult to recommend a one-size-fits-all solution to this problem as
it depends on a variety of variables such as firewalls and internal company/uni-
versity policies, especially if some form of port forwarding has to be enabled on
the network. We discuss possible solutions to this in Section 6.2.3.

6.1.3 PacketZapper Evaluation

We had a two part evaluation, grouped by the test cases targeting the functional
and non-functional system requirements. The test cases targeted at the functional
requirements enabled us to demonstrate the capabilities of the platform. Having
a case study as a part of this testing was a good method for showcasing that the
platform could be used in real world inference tasks. Optimally, there should have
been more than one case study, possibly even targeting the 433MHz traffic data.

3Kubeflow - https://www.kubeflow.org
4Kedro - https://kedro.org/

https://www.kubeflow.org
https://kedro.org/
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Many of the test cases involved making queries to run on the Elasticsearch
database. The Kibana interface was crucial in helping create these queries, as it
has tools for creating queries using graphical drag-and-drop tools. The resulting
queries were quite large, and complex to understand at a glance. It might have
been beneficial to instead highlight some of the SQL functionality that is possible
in Elasticsearch, especially since SQL is such a universally understood query lan-
guage among IT professionals.

The case study in TC004 had issues counting the number of ZED on the net-
work. Despite this, we still evaluated the test as a success, as this discrepancy was
not the fault of PacketZapper. We could even argue that this served in the interest
of PacketZapper, because it allowed us to demonstrate the data exploration func-
tionality that the platform provides. Although the resulting query was not capable
of counting the true number of ZEDs, it was capable of counting ZEDs that did
not also implement routing functionality (which is uncommon for ZEDs).

The tests targeting the non-functional requirements were mostly reviews of
code and design documents. It would have been beneficial to also have some
form of user survey to better understand the usefulness of PacketZapper from the
perspective of a potential user. We gave all the test cases a passing score, however
a potential user of the platform may view the need to code DAGs as regressive in
the lens of automation functionality.

Circling back to the problem description and research questions from Chapter
1, we believe that the PacketZapper platform is more than sufficient for research-
ers who want to run reproducible experiments that make use of real IoT device
traffic. It provides the building blocks for creating automated collection work-
flows, but does require some Python coding experience from the user. PacketZap-
per makes use of industry established software such as Elasticsearch and Apache
Airflow to help achieve its goals. Requirements testing demonstrated that the plat-
form is capable of performing basic inference tasks.

6.2 Future Work

We now detail some items of interest that should be considered for future work.
These items could help elevate the functionality of the platform, enabling the
platform to be used in additional environments and use cases.

6.2.1 Additional Protocol Support

Currently, PacketZapper only supports two different wireless protocols. It should
be a trivial task to add more low-bandwidth IoT protocols such as Bluetooth or
Z-Wave to the platform. This process would involve finding USB dongles capable
of sniffing, together with some software component that is capable of parsing this
data, and outputting it in a JSON format.

From an initial glance, Bluetooth support could be implemented with a fairly
cheap USB dongle from either Nordic Semiconductor (using the PCA10031 or
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PCA10059 USB dongle) or Texas Instruments (using the CC2540EMK USB dongle).
These cost in the range of 10-50 USD, and can sniff the Bluetooth advertising
packets with ease. We found a github repository called Blesniffer5 that seems to
function in the same manner as whsniff does for Zigbee sniffing. This could be a
potential candidate for implementing Bluetooth sniffing.

Z-Wave support could also be interesting for users of PacketZapper. From what
we gather, there are open-source projects capable of sniffing and parsing Z-wave
data using a USB dongle such as the UZB1 USB stick6 running modified firmware.
We have not tested any of these software solutions ourselves, but it seems like it
should be possible to implement. This is definitely a topic of interest for future
work.

6.2.2 Instrumentation of Devices

The lab environment we used had a series of devices that reacted to interactions
from users in the operating environment. For example, the motion sensor would
register motion if a person walked in front of the sensor. It would however be in-
teresting to interact with these devices automatically, something known as instru-
mentation. For example, one may be interested in observing the authentication
handshake of a device when it powers on, and may want to run this sequence
of events hundreds of times. The Airflow instance could potentially interact with
a smart socket connected to the device, powering it on or off based on the re-
quirements of the task. One approach to this could be to deploy instrumentation
devices running the ESPHome7 custom firmware around the operating environ-
ment. Devices running ESPHome can be controlled over a built in API, so these
devices could be commanded to for example interact with a motion sensor, or
toggle the power to a device, all from an Airflow DAG. This should be possible to
implement in PacketZapper with the current infrastructure it provides.

6.2.3 Enhanced Networking

As mentioned earlier, there are many scenarios that may benefit from having some
of the components located in different locations/networks from the rest of the
platform. There is at the time of writing, no functionality to handle the configura-
tion of such complex network setups. A possible solution to this could be running a
Software Defined Network (SDN) such as ZeroTier8 to connect the different com-
ponents together. ZeroTier is a service for creating peer-to-peer encrypted virtual
networks without having to expose any firewall ports. More traditional forms of
tunneling could be used such as WireGuard9, OpenVPN10 or even IPSec, how-

5ura14h/Blesniffer - https://github.com/ura14h/Blesniffer
6UZB 1 - https://z-wave.me/products/uzb/
7ESPHome - https://esphome.io/
8ZeroTier - https://www.zerotier.com/
9WireGuard - https://www.wireguard.com/

10OpenVPN - https://openvpn.net/

https://github.com/ura14h/Blesniffer
https://z-wave.me/products/uzb/
https://esphome.io/
https://www.zerotier.com/
https://www.wireguard.com/
https://openvpn.net/


46 Mathias F. Hedberg: PacketZapper

ever one should note that these would require some form of firewall configura-
tion, external VPN gateway, or similar to run. ZeroTier avoids the port-forwarding
complications as it makes use of UDP hole punching to traverse NAT configured
networks, establishing true end-to-end connections. This does, however, require
that the nodes can establish a connection to the ZeroTier Simple Traversal of UDP
through NATs (STUN) servers, so offline use could be more difficult.



Chapter 7

Conclusion

PacketZapper is our automated collection and processing platform for IoT device
traffic. It was created to assist researchers in performing IoT traffic based research,
handling everything from capturing the traffic via a USB dongle, to running infer-
ence tasks on said traffic data.

PacketZapper was designed and created using a reuse-based software devel-
opment methodology. It’s design was based on a four-stage solution structure,
serving as the framework for the reuse of existing software, while also enabling
future expansion of the platform’s functionality and protocol support. In it’s cur-
rent state, PacketZapper supports collection of Zigbee and 433Mhz traffic via USB
dongles, which is coordinated through our horizontally scaleable Collection Agent
software. PacketZapper relies on Elasticsearch for data storage, and Apache Air-
flow for enabling users to automate their traffic collection and processing work-
flows.

We demonstrated that PacketZapper is capable of handling a variety of tasks,
conforming to the system requirements defined for it during its design process.
Through the use of a case study, we demonstrated the application of a basic infer-
ence experiment running in an automated manner, and could also highlight the
platform’s data-exploration capabilities.

PacketZapper’s complexity necessitates overcoming a learning curve before
users can fully realize and harness its potential. Proficiency in Python, Elastic-
search, and Apache Airflow would significantly enhance users’ ability to navigate
and leverage the platform’s advanced features, particularly in terms of automation
and data exploration. More work should be done on enabling collection of addi-
tional protocols such as Bluetooth and Z-wave to further PacketZapper’s relevance
in IoT-traffic based research activities.
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Appendix A

Additional Material

A.1 Zigbee packet structure

Zigbee packet structure retained by the elasticsearch database.

{
"timestamp": "2023-05-08T12:45:45.125000",
"layers": {
"frame": {
"frame_frame_section_number": "1",
"frame_frame_interface_id": "0",
"frame_frame_interface_name": "-",
"frame_frame_encap_type": "104",
"frame_frame_time": "2023-05-08T12:45:45.125203000Z",
"frame_frame_offset_shift": "0.000000000",
"frame_frame_time_epoch": "1683549945.125203000",
"frame_frame_time_delta": "0.006337000",
"frame_frame_time_delta_displayed": "1.100469000",
"frame_frame_time_relative": "5250.125203000",
"frame_frame_number": "63240",
"frame_frame_len": "53",
"frame_frame_cap_len": "53",
"frame_frame_marked": false,
"frame_frame_ignored": false,
"frame_frame_protocols": "wpan:zbee_nwk:data"

},
"wpan": {
"wpan_wpan_frame_length": "51",
"wpan_wpan_fcf": "0x8861",
"wpan_wpan_frame_type": "0x0001",
"wpan_wpan_security": false,
"wpan_wpan_pending": false,
"wpan_wpan_ack_request": true,
"wpan_wpan_pan_id_compression": true,
"wpan_wpan_fcf_reserved": false,
"wpan_wpan_seqno_suppression": false,
"wpan_wpan_ie_present": false,
"wpan_wpan_dst_addr_mode": "0x0002",
"wpan_wpan_version": "0",
"wpan_wpan_src_addr_mode": "0x0002",
"wpan_wpan_seq_no": "214",
"wpan_wpan_dst_pan": "0x539c",
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"wpan_wpan_dst16": "0x0000",
"wpan_wpan_addr16": [
"0x0000",
"0xb0d1"

],
"wpan_wpan_src16": "0xb0d1",
"wpan_wpan_fcs": "0x910c",
"wpan_wpan_fcs_ok": true

},
"zbee_nwk": {
"zbee_nwk_zbee_nwk_fcf": "0x0248",
"zbee_nwk_zbee_nwk_frame_type": "0x0000",
"zbee_nwk_zbee_nwk_proto_version": "2",
"zbee_nwk_zbee_nwk_discovery": "0x0001",
"zbee_nwk_zbee_nwk_multicast": false,
"zbee_nwk_zbee_nwk_security": true,
"zbee_nwk_zbee_nwk_src_route": false,
"zbee_nwk_zbee_nwk_ext_dst": false,
"zbee_nwk_zbee_nwk_ext_src": false,
"zbee_nwk_zbee_nwk_end_device_initiator": false,
"zbee_nwk_zbee_nwk_dst": "0x0000",
"zbee_nwk_zbee_nwk_addr": [
"0x0000",
"0xb0d1"

],
"zbee_nwk_zbee_nwk_src": "0xb0d1",
"zbee_nwk_zbee_nwk_radius": "30",
"zbee_nwk_zbee_nwk_seqno": "255",
"text": "ZigBee Security Header",
"zbee_nwk_zbee_sec_field": "0x28",
"zbee_nwk_zbee_sec_key_id": "0x01",
"zbee_nwk_zbee_sec_ext_nonce": true,
"zbee_nwk_zbee_sec_counter": "14740956",
"zbee_nwk_zbee_sec_src64": "00:17:88:01:0c:67:e6:27",
"zbee_nwk_zbee_sec_key_seqno": "0",
"zbee_nwk_zbee_sec_mic": "4d:bf:fe:75",
"_ws_expert": {
"zbee_nwk_zbee_sec_encrypted_payload": null,
"_ws_expert__ws_expert_message": "Encrypted Payload",
"_ws_expert__ws_expert_severity": "6291456",
"_ws_expert__ws_expert_group": "83886080"

},
"data": {
"data_data_data": "8d:2f:fb:ed:a4:7b:b2:bf:8b:ee:a7:b3:e8:77:5d:fb",
"data_data_len": "16"

}
}

},
"packetzapper": {
"request": {
"batch_size": 5,
"sniffer": "whsniff",
"channel": 15,
"display_filter": "zbee_nwk.src != 0x0000"

}
}

}
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A.2 Elasticsearch aggregation query

Aggregation query used in TC003.

query = {
"query": {

"range": {
"timestamp": {"gte": datetime.now() - timedelta(minutes=30),
"lt": datetime.now()}

}
},
"aggs": {

"by_interval": {
"date_histogram": {

"field": "timestamp",
"fixed_interval": "10m"

},
"aggs": {

"by_device": {
"terms":

{"field": "layers.zbee_nwk.zbee_nwk_zbee_nwk_src.keyword"},
"aggs": {

"bytes_sum":
{"sum": {"field": "layers.frame.frame_frame_len"}}

}
}

}
}

}
}
response = client.search(index="packetzapper", body=query)
for interval in response["aggregations"]["by_interval"]["buckets"]:

interval_time = interval["key_as_string"]
for device in interval["by_device"]["buckets"]:

device_name = device["key"]
bytes_sum = device["bytes_sum"]["value"]
print(f"Interval:�{interval_time},�Device:�{device_name},�Bytes:�{bytes_sum}")

A.3 Elasticsearch index template

This is the index template used for PacketZapper.

PUT _index_template/packetzapper
{
"template": {
"mappings": {
"dynamic": true,
"numeric_detection": true,
"date_detection": true,
"dynamic_date_formats": [
"strict_date_optional_time",
"yyyy/MM/dd HH:mm:ss Z||yyyy/MM/dd Z"

],
"_source": {
"enabled": true,
"includes": [],
"excludes": []
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},
"_routing": {
"required": false

},
"dynamic_templates": []

}
},
"index_patterns": [
"packetzapper"

]
}
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