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Abstract

The potential rise of quantum computers pose a threat to today’s en-
cryption standards. CRYSTALS Kyber a post-quantum lattice-based Key
Encapsulation Mechanism (KEM) used to exchange a set of symmetric
keys used for encryption. However, even the most secure algorithms have
vulnerabilities. The research questions of this thesis ask how information
can be leaked from the implementation of a cryptographic component
and how the leaked information can be used to exploit an algorithm.

This thesis takes a deep-dive into the Kyber algorithm, its sub-
components, its mathematics and how it is implemented in code. The
thesis uses the ChipWhisperer tool in order to analyze power traces of
the Kyber decapsulation phase in order to execute a side-channel attack.
The thesis also explains how the attack is set up, in order to verify
and continue the research of the vulnerabilities of Kyber in regard to
side-channels. The goal of the attack is to extract a part of the secret
key.

The attack did, however, not succeed on the given implementation of
Kyber used in this thesis. Interesting findings were observed, but they
were not specific enough to carry out the entire attack. The findings
are evaluated and interpreted to propose potential explanations for the
attack’s failure. Finally, the thesis proposes areas of improvement for the
attack and important aspects which require further research.





Sammendrag

Den potensielle fremveksten av kvantedatamaskiner utgjør en trussel
mot dagens krypteringsstandarder. CRYSTALS Kyber er en post-kvante,
gitterbasert nøkkelinnkapslingsmekanisme (Key-Encapsulation Mecha-
nism", KEM) som brukes til å utveksle et sett med symmetriske nøkler
for kryptering. Imidlertid har selv de mest sikre algoritmene sårbarheter.
Forskningsspørsmålene i denne avhandlingen spør hvordan informasjon
kan lekkes fra implementeringen av en kryptografisk komponent og hvor-
dan den lekkede informasjonen kan brukes til å utnytte en algoritme.

Denne avhandlingen tar et dypdykk inn i Kyber-algoritmen, dens del-
komponenter, dens matematikk og hvordan den er implementert i kode.
Avhandlingen bruker ChipWhisperer-verktøyet for å analysere strøm-
sporene til Kyber-dekapsuleringsfasen for å utføre et sidekanalangrep.
Avhandlingen forklarer også hvordan angrepet er satt opp, for å verifisere
og fortsette forskningen på Kybers sårbarheter med hensyn til sidekanaler.
Målet med angrepet er å utvinne en del av den hemmelige nøkkelen.

Angrepet lyktes imidlertid ikke på den gitte implementeringen av
Kyber som brukes i denne avhandlingen. Det ble observert interessante
funn, men ikke spesifikke nok til å gjennomøre hele anrepet. Funnene
evalueres og tolkes for å foreslå potensielle forklaringer på angrepets feil.
Til slutt foreslår avhandlingen forbedringsområder for angrepet og viktige
aspekter som krever ytterligere forskning.
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Chapter1Introduction and background

Cryptography plays a crucial role in secure information transmission over networks,
providing confidentiality to the transmitted data. This confidentiality ensures that
the information can only be accessed and read by the intended recipients. This is
highly important for a variety of data types. Whether we’re dealing with government
secrets that demand high levels of security or casual content like internet memes,
encryption is the go-to strategy for secure transmission.

One of the prevalent methods for achieving fast and secure encryption over
networks is the use of a Key-Encapsulation Mechanism (KEM). KEM operates
based on a Public-Key Cryptosystem (PKC), widely used in modern encryption
methodologies. The concept behind the use of KEM is straightforward yet clever.
The mechanism involves the generation and transfer of a symmetric key, which is
then employed for symmetric key encryption.

The beauty of using a KEM in encryption lies in its inherent efficiency. By using a
public-key cryptosystem for the transfer of a symmetric key, we combine the security
advantages of asymmetric encryption with the speed and computational efficiency
of symmetric encryption. This combination results in an encryption system that is
both secure and fast.

The symmetric key used in this system is crucial because it streamlines the mathe-
matical processing elements of the system. Symmetric key encryption algorithms are
computationally less demanding, which allows for faster processing speeds. By using
a KEM, we get the best of both worlds - the security of public-key cryptography and
the speed of symmetric encryption. This makes KEMs an ideal choice for secure and
efficient data encryption over networks.

In 1977 [DH76], the Rivest-Shamir-Adleman (RSA) public-key cryptography
cryptosystem PKC was introduced. As of 2023, this cryptosystem is still widely in
use. RSA is based on the hard problem of finding two prime factors of a "large"
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2 1. INTRODUCTION AND BACKGROUND

composite number. The problem has since its introduction been a sufficiently hard
problem to assume no classical computer can break the security of the cryptosystem,
given the right parameters. However, the introduction of quantum computers poses
a serious threat to the problem of which RSA is based.

In 2016, the National Institute of Standards Technology (NIST) introduced an
open competition, calling for proposals for a new cryptographic standard, able
to withstand quantum computers. The competition had two sections for which
submissions could be sent: 1) key generation and KEM, 2) digital signatures. In
2022 the winners of the two sections were announced. For digital signatures, three
algorithms were selected. For Key generation and KEM, only one remained the
winner: CRYSTALS Kyber.

The purpose of this thesis is to explain how Kyber works, both mathematically, and
in code, how it can be implemented on a micro-controller, and how the implementation
of the algorithm may contain vulnerabilities. The thesis looks at how Kyber can
leak information when commands are being executed, allowing an attacker to extract
secret information and ultimately recover the secret key.

1.1 Research Questions

The research questions stated in the project proceeding this thesis (TTM4502) [Grü22]
will be used in this thesis, with slight modifications. The research questions will be
denoted as RQ1 and RQ2.

RQ1: How can ChipWhisperer be used to measure the power consumption of
cryptographic algorithms?

RQ2: How can we use the information from 1) to construct and execute a
side-channel attack on Kyber?

RQ1 requires a deep understanding of and experience with the ChipWhisperer
tool. RQ2 uses the information from the RQ1 in combination with a thorough
understanding of the Kyber algorithm in order to examine it’s vulnerable parts. RQ2
is highly dependant on RQ1. In order to properly answer RQ2, Kyber must be
examined both mathematically and in code.

1.2 Thesis Structure

The following is an explanation of the thesis structure.

Chapter 1: The background of the thesis, quantum computers and how NIST
prepares for the arrival of quantum computers.
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Chapter 2: The theory of lattice-based cryptography, KEM, Kyber and side-
channel attacks.

Chapter 3: The methodology the thesis. How Kyber is applied to the Chip-
Whisperer and how the attack is executed.

Chapter 4: An analysis of the results. What worked as intended, what results
were achieved and how they can be analysed.

Chapter 5: Discussion of what was good with the methodology and what could
have been better. Also introduces difficulties, pitfalls, areas of improvement and
future research.

Chapter 6: Conclusion and answering the research questions.

1.3 Quantum Computers

Quantum computing is a revolutionary field of computer science that utilizes the
principles of quantum mechanics, a theory in physics that describes the behaviors of
particles, such as atoms and subatomic particles like electrons and photons.

Quantum computers operate quite differently than classical computers. Whereas
traditional computers rely on bits, which can take the value of either a 0, or a 1,
quantum computers use another form of bits, namely "qubits".

Unlike classical bits, qubits can exist in multiple states at once, thanks to the
property of "superposition". When a qubit is in a superposition-state, the qubit may
take the value of both 0 and 1, simultaneously, until measured. [Nan20]

Another key principle of quantum computing is entanglement, wherein the state
of one qubit becomes linked to the state of another, no matter the distance between
them. Changes to one qubit will instantaneously affect its entangled partner, a feature
that allows quantum computers to process information in complex, interconnected
ways that are currently impossible for classical computers. [Nan20]

The properties of superposition and entanglement increased the computational
powers of quantum computers vastly, compared to classical computers. [MN19] The
properties of quantum computers, not only allow for better computational power, but
also new ways to attack. Shor’s Algorithm [Qua21] is an algorithm developed already
in 1994 by Peter Shor. The purpose of the algorithm is to guess the prime factors
of a composite integer. The algorithm consists of two parts: a classical part and a
quantum part. For the algorithm to work properly, both parts need to be applied.
So far, only the classical part has been able to be executed, but with quantum
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computers, the algorithm can applied in its entirety, which may be the demise of the
RSA PKC.

However, although quantum computers may seem superior to classical computers,
there are several problems delaying the arrival of conventional quantum computers
[Gia23]. On the other hand, the research on quantum computers is increasing rapidly.
There are vast uncertainties regarding when a fully-functional quantum computers,
capable of breaking RSA, will arrive. IBM has stated in a blog-post that they will
have a quantum computer ready in 2025 [Gam22], whereas a McKinsey report for
2020 states that there could be between 2,000 and 5,000 quantum computers in the
world by 2030 [HMP20]. Conclusively, there is a possibility that quantum computers
powerful enough to break today’s encryption standards will arrive within the next 10
years.

Even though the arrival of quantum computers will pose several problems in the
future, the actions we are currently taking may increase the impact of the problems.
"Harvest now, decrypt later" [Dur23] is a problematic theory which introduces the
problem of that adversaries may already be "harvesting" data encrypted with non-
quantum resistant schemes, which subsequently will be decrypted when conventional
quantum computers arrive. This significantly underlines the importance of Post-
Quantum Cryptgraphy (PQC) and the fact that it probably should be applied sooner,
rather than later.

1.4 NIST PQC

Widely used public key encryption standards, e.g. RSA and Eliptic Curve Cryptogra-
phy (ECC), base their security on hard mathematical problems which are considered
infeasible for classical computers to crack without sufficient information about the
secret components used in the encryption scheme. Given a correct implementation
and use of parameters, classical computers need about 300 trillion years to brute
force a the secret key of RSA2048 [Dac22].

RSA is based on the "Integer Factorization Problem (IFP)" [Len11], which states
that it is hard for a computer to find two large prime factors of a composite integer.
Shor’s Algorithm [Qua21] with the combination of a quamtum computer is, however,
able to solve the hard mathematical problems of RSA and ECC. Therefore, a need
for new cryptographic standards has emerged, resulting in the NIST PQC petition.

NIST has been playing a key role in the development and standardization of
quantum-resistant cryptographic algorithms, also known as PQC. This effort is of
paramount importance, as quantum computing poses a significant threat to the
security of current cryptographic systems. Once quantum computing reaches a level
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where it can break today’s public key cryptography, significant portions of our digital
infrastructure could be at risk.

NIST initiated its PQC Standardization process in 2016[oSta23] to solicit, evaluate,
and standardize quantum-resistant public key cryptographic algorithms. The process
has involved multiple stages of evaluation, which includes public comment periods
and third-party analysis of the proposed algorithms.

The goal of this project is to select one or more algorithms for each of the following
cryptographic primitives: public-key encryption and key-establishment algorithms,
and digital signatures. These new algorithms will be resistant to both classical and
quantum computer attacks, ensuring the continued security of digital communications
in a post-quantum world.

NIST issued a call for proposals in in February 2016. Researchers and experts
submitted their proposals of quantum-safe encryption schemes. By the deadline, in
Novemeber 2017, there was a total of 69 proposals of both digital signature schemes
and Key Encapsulation Mechanisms, which were considered "complete and proper".
The standardization process has continued, filtered out multiple schemes over a
period of several years, as well as a total of four rounds of submissions. In 2022,
one Public-key Encryption and Key-establishment algorithm remained: CRYSTALS
Kyber.

1.5 Related work and other contributions

The focus on quantum-computers and how it can break today’s encryption is becoming
increasingly popular. The paper from [KdG21] has been a great motivation and guide
for this thesis, managing to execute a side-channel attack on a specific implementation
of Kyber. Highly advanced attacks, such as [Guo23] has managed to execute an
attack on Kyber with a small sample of leaked information. The "pqm4"-library
[KPR+] is a continuously updated library purely created for testing and benchmarking
post-quantum algorithms.





Chapter2Theory

This chapter will give a brief introduction to lattice-based cryptography, the Learning
With Errors (LWE) and Module Learning With Errors (MLWE) problems, the
definition of the Kyber algorithm and a KEM, as well as an introduction to Side-
Channel Attack (SCA) with specific focus on the Correlation Power Analysis (CPA)
attack. Some sections contain re-used information from the project proceeding this
thesis (TTM4502) [Grü22], with adjustments and additions to have the information
better align with the scope of this thesis.

2.1 Lattice-based cryptography

In lattice-based cryptography, the fundamental building blocks are lattices, which
are geometric structures formed by an infinite set of points in a multi-dimensional
space. These lattices exhibit rich mathematical properties and offer a fertile ground
for developing cryptographic schemes that resist attacks from classical and quantum
adversaries.

A lattice is a set of points in an n-dimensional space, generated by n-linearly
independent vectors, v1, . . . , vn ∈ Rn. The set vectors is called a basis for the lattice.
Equation 2.1 shows the mathematical expressions of a lattice. [Reg06]

L(v1, . . . , vn) :=
{

n∑
i=1

aivi | ai ∈ Z

}
(2.1)

In other words, a lattice is the set of points generated by all integer linear
combinations of the vectors in the basis.

In a 2-dimensional space, consider two linearly independent vectors, denoted
as r1 and r2. Figure 2.1 illustrates a subset of the points that can be reached by
combining these vectors in various ways. Furthermore, let c be a point in the space,

7
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Figure 2.1: A 2-dimensional lattice and a good basis

Figure 2.2: A 2-dimensional lattice and a bad basis

close to a lattice point. The key problem of lattice-based cryptography is finding the
combination of vectors which reach the point closest to c. [Laa15]

For the basis of r1 and r2, it can easily be observed that the point closest to c

can be reached by the combination 2sr2 + 2(−r1).

The basis r1 and r2 is not the only set of vectors which generate this lattice.
Figure 2.2 illustrates the same lattice, but with the basis b1 and b2.

The shortest combination of b1 and b2 to reach the point closest to c, is already
more complicated, being 8b1 + 6(−b2). For a 2-dimensional lattice, this is fairly
simple. But as the dimensions increase, the problem becomes significantly harder.
Furthermore, without the correct information, the person solving the problem does
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not have the lattice points, only the basis of the lattice.

In a lattice-based PKC scheme, the so-called "good" vectors are usually part of a
private key, while a set of "bad" vectors is used to form a public key. When a sender
wishes to transmit a message, they select a point within the lattice, often adding
random noise to obscure the original message. The recipient, using the private key,
has the means to ’correct’ this noise and recover the original message. However,
for an outside observer without access to the private key, determining the original
lattice point from the noisy data – essentially solving a high-dimensional ’closest
point’ problem – is computationally infeasible. This computational hardness forms
the basis of the security in these schemes, and it is closely related to a well-known
mathematical challenge known as the Learning With Errors (LWE) problem.

2.1.1 Learning With Errors

The LWE problem poses a complex challenge where we must solve a system of
linear equations of the form ax = b. Here, ’a’ and ’b’ are known values, while ’x’ is
the unknown variable we aim to determine. However, the problem is compounded
by the presence of a noisy component added to ’b’, making the task of accurately
determining ’x’ significantly more difficult. Owing to this computational hardness,
the LWE problem is widely considered to be resistant to both classical and quantum
computing attacks. This resistant nature renders it a suitable foundation for PQC.

The Module Learning With Errors (MLWE) problem introduces a higher degree
of complexity to the traditional LWE problem by incorporating the concept of
module lattices. Unlike standard lattices, module lattices are defined over rings of
polynomials, resulting in an intricate structure that is inherently more efficient to
manipulate. Similar to the LWE problem, the MLWE problem also necessitates the
solution of a system of linear equations - yet in this case, these equations are situated
over a ring of polynomials, rather than standard integers.

The MLWE problem retains the presumed hardness of the LWE problem, making
it a suitable foundation for secure cryptographic systems. Furthermore, its structure
allows for more efficient cryptographic constructions, which is why it’s used in
encryption schemes like Kyber.

2.2 Key Encapsulation Mechanism

A Key Encapsulation Mechanism (KEM) takes use of a PKE scheme to transfer a
key which can be used for symmetric key encryption, such as AES. The PKE-scheme
is transformed into a KEM, using a Fujisaki-Okamoto (FO) transform. The details of



10 2. THEORY

the FO transform will not be explained in this thesis. The FO transform does make
the KEM secure against chosen ciphertext attacks (CCA), making it "CCA-secure".

Symmetric encryption is generally faster, requires less storage and often have
built-in hardware-based encryption.

A KEM consists of three main functions:

1. Key Generation:

keyGen():
Input: None
Output: publicKey, privateKey

Identical to any regular PKE scheme. A public and private keypair is generated
randomly.

2. Encapsulation:

keyEncaps():
Input: publicKey
Output: ciphertext, symmetricKey

Contrary to a PKE scheme, the encapsulation function does not have a message
(plaintext) as input. The encapsulation function takes the public key generated
from keyGen(), and randomly generates a symmetric key. The symmetric key
will then be encapsulated, using the public key of the recipient.

3. Decapsulation:

keyDecaps():
Input: ciphertext, privateKey
Output: symmetricKey

The recipient will then receive the ciphertext. The ciphertext is decapsulated
using the recipient’s private key, and gets the symmetric key, hereby denoted
as the "shared secret".

Conclusively, there are a total of 3 (4) keys used in a KEM: The private and
public keys, generated by Alice. Alice keeps the private key and and issues the
public key. The shared secret, of which both Alice and Bob possess a copy, used for
symmetric encryption.

Figure 2.3 illustrates the flow of messages during the process of a KEM between
two participants.
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Figure 2.3: A sequence diagram of a KEM

2.3 CRYSTALS Kyber

This section will explain the Kyber algorithm Kyber has three main implementations
with varying security levels and complexity: Kyber-512, -768 and -1024. The
specifications from [ABD+19] will be used for this thesis. Multiple parts of the
specifications, such as the several mathematical definitions, are out of scope for this
thesis and will not be explained. Therefore, the algorithms contain simplifications.

2.3.1 The Kyber Algorithm

The Kyber algorithm is based on the MLWE problem. Kyber is an "Indistinguishable
under Adaptive Chosen Ciphertext Attack (IND-CCA2)"-secure algorithm, meaning
an attacker cannot distinguish between the encryptions of the chosen plaintexts, even
when they are allowed to make adaptive chosen ciphertext queries. In other words,
an attacker can request the decryption of any ciphertext of their choosing, before
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and after they choose the two target plaintexts, as long as the challenge ciphertext is
not queried.

The construction of Kyber follows a 2-step approach. Firstly, there is the CPA-
secure PKE scheme which encrypts the 32-byte message (shared secret). This will be
denoted as Kyber.CPAPKE. Secondly, there is the FO-transformed IND-CCA2-secure
KEM, denoted as Kyber.CCAKEM.

[ABD+19] goes in detail of how the Kyber algorithm is constructed, using
pseudocode. There will be parts of the explanation which are out of scope for
this thesis. Therefore, a slightly simplified version, similar to the explanation from
[KdG21] will be given.

Notation

We denote the set of 8-bit unsigned integers {0, ...255} as B, i.e bytes. Furthermore,
the notation Bk denotes the array with bytes of length k.

The polynomial ring Zq[X]/(Xn + 1) will be denoted as Rq. The parameters n,
n′ and q are fixed as n = 256, n′ = 9 and q = 3329. Vectors are written in bold font
and matrices are written with bold, capital letters. A matrix AT is the transposed
matrix of A. For an x ∈ Q, we use ⌈x⌋ as the rounding of x to the closest integer,
where ties are rounded up.

For the explanation of Kyber, [ABD+19] firstly explains the three algorithms:

1. Parse : B∗ → Rn
q

2. CBDη : B64η → Rq

3. Decodeℓ : B32ℓ → Rq

While this thesis will not delve into the details of these specific algorithms, they
are fundamentally utilized within the subsequent algorithms.

Kyber.CPAPKE

Algorithm 2.1 briefly describes the process of generating a keypair. However, as
previously described, this is a simplification. We can observe in line 6 and 7 that the
public key is generated as pk = As + e and the private key as sk = s. It is important
to observe the error vector, e. This error vector introduces the MLWE problem, as
it represents the random noise added.
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Algorithm 2.1 Kyber.CPAPKE.KeyGen()
1: Output: Secret key sk
2: Output: Public key pk
3: Generate matrix A ∈ Rk×k

q

4: Sample s ∈ Rk
q from Bη1

5: Sample e ∈ Rk
q from Bη2

6: pk := As + e
7: sk := s

Algorithm 2.2 Kyber.CPAPKE.Enc(pk, m, r)
1: Input: Public key pk
2: Input: Message m
3: Input: Random coins r
4: Output: Ciphertext c
5: Generate matrix A ∈ Rk×k

q in NTT domain
6: Sample r ∈ Rk

q from Bη1

7: Sample e1 ∈ Rk
q from Bη2

8: Sample e2 ∈ Rq from Bη2

9: u := AT r + e1
10: v := tT r + e2 + Decompressq(m, 1)
11: c := (Compressq(u, du)||Compressq(v, dv))

From 2.2 we can observe the three inputs: pk, m and r and one output, i.e. the
ciphertext c. In line 11, of Algorithm 2.2, we can observe how the ciphertext is
the concatenation: c = (Compressq(u, du)||Compressq(v, dv)). This concatenation is
equal to c = c1||c1, where c1 = (Compressq(u, du) and c2 = Compressq(v, dv)). This
will later be observed in Chapter 3.

Algorithm 2.3 Kyber.CPAPKE.Dec(sk, c)
1: Input: Secret key sk
2: Input: Ciphertext c
3: Output: Message m
4: u = Decompressq(c1, du)
5: v = Decompressq(c2, dv)
6: m = indcpa dec(sk, m) // m = v − skT u
7: m = Compressq(m, 1)

Kyber.CCAKEM

2.4, 2.5 and 2.6 are the pseudo-codes for the three main functions of a KEM.
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Algorithm 2.4 Kyber.CCAKEM.KeyGen()
1: Output: Secret key sk
2: Output: Public key pk
3: z ← B32

4: (pk, sk′)← Kyber.CPAPKE.KeyGen()
5: sk := (sk′||pk||H(pk)||z)
6: return (pk, sk)

Algorithm 2.5 Kyber.CCAKEM.Enc(pk)
1: Input: Public key pk
2: Output: Shared Secret K
3: Output: Ciphertext c
4: m← B32

5: m← H(m)
6: (K, r)← G(m||H(pk))
7: c← Kyber.CPAPKE.Enc(pk, m, r)
8: K ← KDF(K||H(c))
9: return (c, K)

Algorithm 2.6 Kyber.CCAKEM.Dec(sk, c)
1: Input: Ciphertext c
2: Input: Secret key sk
3: Output: Shared secret K
4: pk ← sk + 12kn

8
5: h← sk + 24kn

8 + 32
6: z ← sk + 24kn

8 + 64
7: m′ := Kyber.CPAPKE.Dec(s, c)
8: (K ′, r′) := G(m′||h)
9: c′ := Kyber.CPAPKE.Enc(pk, m′, r′)

10: if c = c′ then
K := KDF(K ′||H(c))

11: return K
12: else

K := KDF(z||H(c))
13: return K
14: end if
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2.3.2 Kyber Parameters

Tables 2.3.2 and 2.2 give the parameters for the current versions of Kyber[Gon21].
This thesis will focus on an implementation of the Kyber512 version. For all versions
of Kyber, the shared secret, ultimately used for symmetric key encryption, is 32
bytes in size. Table 2.2 states the security levels of the Kyber versions. It should be
emphasized that it is not trivial to compare the security levels of quantum-resistant
algorithms and non-quantum-resistant ones.

The following parameters in Table 2.3.2 are defined as:

– n: The maximum degree of a polynomial

– k: Amount of polynomials per vector

– q: Modulus for numbers/coefficients

– η1, η2: Maximum value of coefficients in “small” polynomials

– du, dv: Control how much (u, v) get compressed

– δ: Probability of a wrong decryption result

Name n k q η1 η2 du dv δ

Kyber512 256 2 3329 3 2 10 4 2−139

Kyber768 256 3 3329 2 2 10 4 2−164

Kyber1024 256 4 3329 2 2 11 5 2−174

Table 2.1: Parameters for Kyber

Table 2.2 shows the different security levels of Kyber, in comparison to AES.

Version Security Level Private Key Size Public Key Size Ciphertext Size
Kyber512 AES128 1632 800 768
Kyber768 AES192 2400 1184 1088
Kyber1024 AES256 3168 1568 1568

Table 2.2: Kyber security levels
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2.4 Side-Channel attacks

(This section thoughout the subsection "Vertical CPA attack" contains partly re-used
information from the pre-project from TTM4502 with necessary adjustments to align
better with this thesis.)

A side-channel attack (SCA) is an attack on a cryptographic system, based on
additional information such as power consumption, execution time, electromagnetic
radiation, sound, etc. In contrast to mathematical cryptographic attacks, instead
of finding a way to break through the mathematical hard problem of the algorithm,
SCA exploits vulnerabilities in hardware implementation. Knowledge about how
the algorithm is, however, still crucial. NIST explains SCA as: An attack enabled
by leakage of information from a physical cryptosystem.[oST17] SCA is a powerful
tool, which, if properly executed, can crack most cryptographic systems. To further
emphasize the impact of SCA, it can be observed that in the specifications [ABD+19]
of Kyber, it is specified that Kyber will be vulnerable to Differential Power Analysis
(DPA) (an advanced power analysis attack). The specifications further states that
certain countermeasures can be implemented in order to mitigate the probabilities of
a successful attack.

The idea of SCA is to attack via information leakage on a system. One of the
first official SCA attacks is explained by P. Wright in [Wri87]. In 1965, MI5 tried to
break a cipher used by the Egyptian Embassy in London, but failed, due to lack of
computational power. Wright then placed a microphone near the rotor-cipher device
in order to listen to the sounds the rotors made. The additional information from
the sounds of the rotors made MI5 able to crack the ciphering mechanism and spy in
the Egyptian Embassy for years. [ZF05]

FIPS 140-2 (superseded by 140-3, not yet implemented) is a standard, created
by NIST, which standardizes security levels of cryptographic components. 140-2
is dated back to 2002, yet re-evaluated every fifth year. 140-2 states 11 areas and
their specifications needed to achieve a certain security level. The levels span from 1
(lowest) to 4 (highest). The areas include ports and interfaces, roles, authentication,
key management, etc. In order to achieve a certain security level of an area, the
standard specifies what requirements are needed. Section 4.11 "Mitigations of
other attacks" of the standard states that cryptographic components may be
susceptible to attacks for which:"testable security requirements were not available at
the time this version of the standard was issued" [oST02]. In other words, side-channel
attacks were not taken into consideration when the standard was originally released.
It is further stated that if components are designed to be resistant to such attacks, it
should be documented, such that it can be reviewed when the mitigations are part
of a standard. FIPS 140-3 has been approved and is currently under testing [oSta19],
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yet it does not include direct specifications against side-channel attacks.[oST19]

Side-Channel Attacks have three separate classifications, depending on how the
attack is executed. The classifications are: control over the computation process, the
way of accessing the module and the method used for the analysis. [ABCS06]

For the control over the computation process, there are two main methods of
attack. A passive attack is an attack in which the attacker does not interfere with
the operation of the target, whereas in an active attack the attacker exerts some
influence on the target. For how the module is accessed, there has been defined three
approaches. An invasive attack is an attack in which the attacker can deconstruct
the device, and e.g. add a probe on a bus to measure values. A semi-invasive attack
is an attack in which the attacker has access to the device but does not damage
the physical layer or make electrical contact other than what already exists. A
non-invasive attack is an attack in which the attacker does not physically interfere
with the device, but can still measure leaked information. This attack is, in most
cases, completely undetectable. [ABCS06] The method used for analysis simply
describes how to analyze the traces received when measuring power. For the attack
on Kyber in this thesis, a passive attack is executed, as the algorithm itself remains
unchanged. Whether the attach is an invasive or semi-invasive is not completely
straightforward. Triggers are applied in the software of the code, in order to mitigate
the amount of samples captured. However, the ChipWhisperer uses built-in hardware
in order physically measure the power consumption.

2.4.1 Power Analysis

A power analysis attack is based on measuring the power consumption of a device
when it is performing cryptographic operations. The goal of a power analysis attack
is to look at one (or more) plot(s) retrieved from the measuring power consumption,
analyze the plots and ultimately retrieve a secret key. The plot is made of one (or
more) trace(s), which is an array of measured electrical power. Each power trace has
a given amount of samples, which will be illustrated by the x-axis of the plots. For
the ChipWhisperer implementation the traces are normalized around 0, making the
samples span within the values of -0.5 and 0.5. Figures 2.4 and 2.4 are illustrations
of work done in TTM4502 [Grü22]. The figures illustrate the pure basics of how to
analyze different traces. For the simple traces in the figures, the attacker can easily
observe a pattern and make reliable hypotheses of the underlying operations being
executed.

The differences between Figures 2.4 and 2.5 and Figures 2.6 and 2.7 indicate the
difference in required samples to observe the executed operations. Operations which
are executed over several clock cycles, require more samples. This information is
important for the attack on Kyber.
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Figure 2.4: 5 incrementing loops Figure 2.5: 8 incrementing loops

Figure 2.6: Multiplication by 11
in 10 loops

Figure 2.7: Division by 11 in 10
loops

As stated in TTM4502 [Grü22], power analysis attacks can be divided into Simple
Power Analysis (SPA), Differential Power Analysis (DPA) and Correlation Power
Analysis (CPA). SPA is already explained in the TTM4502, therefore it will not
be explained in this thesis. The CPA attack is the attack used in this thesis, so it
will be thoroughly explained. CPA and DPA are terms often used as each other.
As [ABD+19] stated that Kyber is vulnerable to DPA attacks, it is safe to assume
it also is vulnerable to CPA attacks. The attacks are, in detail, different types of
attacks, yet the fundamentals of the attacks remain the same: gather enough data to
perform a statistical attack. As they both are quite similar in nature, the terms have
a tendency to get mixed up. The DPA attack works similarly to CPA, but instead of
looking at the correlation of the guesses and the traces captured, the DPA attack
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looks at the difference between the traces.

For this thesis, the most relevant attack on Kyber is a CPA attack. The reason for
this is partly because SCA attacks are more widespread. Whenever scientist attempt
to execute advanced power analysis attacks, SCA is generally used (in combination
with even more advanced techniques, such as machine learning). This causes the
amount of data, research papers and theory of SCA to outweigh DPA.

2.4.2 Correlation Power Analysis

For CPA attacks, multiple several traces with a large amount of samples is generally
needed. TTM4502 [Grü22] went into detail on how a CPA attack could be executed
on AES128. In that CPA attack, the method of operations was to encrypt multiple
plaintexts with the same symmetric private key. The more traces captured, the
higher the probability of the best correlating guesses actually being the right key
bytes.

A commonly used hypothesis, is that the Hamming weight of an operation will
correlate with samples measured on a power trace. The Hamming weight refers
to the amount of 1s in a binary representation, and in a variety of digital systems,
power consumption correlates with the Hamming weight of the data being processed.
This is due to the power required when a binary bit transitions from 0 to 1 or 1 to 0,
with more simultaneous transitions leading to higher power usage. By observing the
power trace during a cryptographic operation, an attacker can estimate the Hamming
weight of the data being processed, potentially revealing sensitive details. [Owe17]

A CPA attack generally consists of four steps:

1. Data Collection:

Firstly, an attacker needs to collect traces of the device’s power consumption
while it’s processing a cryptographic operation. The attacker would also need
to know the plaintext or ciphertext associated with each trace. This causes the
attacker to have both public information, as well as leaked information in the
form of power traces. This thesis uses the ChipWhisperer toolkit in order to
gather the power traces. For the attack posed on Kyber, the ciphertexts are
pre-calculated, simulating a scenario in which an attacker has "sniffed" multiple
chiphertexts. The ChipWhisperer open-source software also contains built-in
functions to generate key guesses, plaintext and ciphertext.

2. Hypothesis Phase:

The attacker generates a hypothesis about the value of a part of the secret key.
Based on this hypothesis, the attacker guesses an intermediate value of the
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cryptographic operation for each trace. From TTM4502, this was the S-BOX
operation in AES. For this thesis, it will be observed how the multiplication
of coefficients can be such a sensitive point. The function that maps the key
hypothesis and known plaintext/ciphertext to the intermediate value is often
called the "leakage model". A fundamental principle of this phase, is that the
Hamming weight of the operation will correlate with the specific sample in
which the operation takes place.

3. Correlation Calculation:

The attacker calculates the Pearson Correlation Coefficient (PCC) between the
observed power traces and the predicted power consumption from the leakage
model. This is done for each time sample in the traces. The correlation is
calculated separately for each key hypothesis. ρX,Y = cov(X,Y )

σX σY

he PCC takes in two sets of data and returns a number, ρ, between -1 and
1, based on the linear correlation of the numbers. If ρ is -1 or 1, there is an
accurate, linear correlation between the numbers. If 0 < ρ < 1 or -1 < ρ < 0,
it is possible to find a linear correlation line between the numbers. However, if
ρ = 0, there is no correlation. In other words, given two input numbers, X and
Y, we can say that if Y always increases when X increases, ρ will be 1. If Y
always increases when X decreases, ρ will be -1. If ρ is between 1 and -1 but
not equal to 0, there is a correlation.

4. Key Selection:

In CPA attacks, high correlation means a good guess. The more traces are
captured, the higher the probability of a good guess actually is a correct guess.
The key hypothesis that results in the highest correlation with the power traces
is considered the most likely correct value of the key.

5. (Repeat for All Key Parts)

Vertical CPA

As described in Section 2.4.1, a power trace is the measured power consumption of a
device during the execution of operations. Often, even with ChipWhisperer, it can
be difficult to completely isolate and measure the exact operation of interest in an
algorithm. Typically, the attacker will have to measure the power consumption over
a variety of commands, knowing the desired operation is amongst them. For this
reason, "Vertical CPA attacks" are beneficial. In a vertical CPA attack, the attacker
focuses on only one operation at a low level, in which both the known information
(ciphertext/plaintext) is used, as well as part of the hidden key. In a vertical CPA
attack, it is necessary to have the operation under attack be represented in a single
sample. The reason for this is can be explained with the Hypothesis Phase: the
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Figure 2.8: Illustration of a Vertical CPA attack

attacker needs to make a hypothesis on a single value. This value will be represented
as a sample in the power trace. The attackers guess will be the Hamming weight
of the known text combined with a guess for the hidden part of the operation. The
theory then states that the Hamming wight of this operation will correlate with the
given sample.

When capturing multiple traces, the idea of a Vertical CPA attack is to align
the traces and observe the correlation on each sample of each trace. For the attack
posed in this thesis, 200 traces are gathered, with 1000 samples for each trace. The
Vertical CPA attack calculates the correlation between an array of guesses and the
jth sample of all the traces. E.g. if a multiplication operation is executed at sample
100, the correlation between the guesses and the 100th sample from all the traces
should yield a much higher correlation than any other sample number in the traces.

Figure 2.8 illustrates how a Vertical CPA attack is executed. The red box
containing the Hamming weights of each guess combined with the ith ciphertext
calculates the correlation of all the jth samples. The illustrations show each sample
as a trace, when in reality each sample is a number.

The use of the PCC calculation only makes sense if there is an equal amount
of values in both arrays. Using a Vertical CPA attack, the traces are transposed,
meaning first element of the transposed array represents all the first samples of the
200 traces. The red box from Figure 2.8 is the hypothesized guess for each ciphertext.
I.e. the first value of the red box (HW1) represents the Hamming weight of the first
ciphertext and a fixed key byte guess. The second element (HW2) is the second
ciphertext combined with the same fixed key guess used for HW1. For the attack on
Kyber, it will be observed that the red box is denoted as rst. The red box is "slided"
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along the aligned traces, calculating a correlation for each sample number.



Chapter3Methodology

This chapter explains the lab setup, how to capture the leaked information and
ultimately, how to use the leaked information to construct and execute an attack.
The attack introduced in this thesis is a semi-static setting. This includes the
ciphertexts and the secret key being hard-coded into the implementation. A Python
implementation of Kyber [Pop] was used to execute Algorithms 2.4 and 2.5. The
reasoning for using another implementation of Kyber, is simply to generate and
use real ciphertext and keys. If the versions of Kyber being run is the same, it is
irrelevant what kind of implementation was used when generating the ciphertext and
keys. Therefore algorithms 2.4 and 2.5 were used to generate the static secret key
and ciphertexts. Furthermore, testing was done to ensure the decapsulation of the
ciphertexts yielded the same results in both implementations.

3.1 Lab Setup

The lab setup includes the ChipWhisperer-Lite board, an STM32F-3 target board
with a 32-bit ARM Cortex M4 Processor and a CW308 UFO board. Furthermore,
the entirety of the Kyber algorithm is gathered from pqm4 library, available on
GitHub. The host computer is my own personal computer, a Macbook Pro M1-pro.

3.1.1 ChipWhisperer

The ChipWhisperer kit is used to research power-analysis side channel attacks and
glitching attacks. ChipWhisperer-Lite comes in two main parts: the capture board
and the target board [Inc22]. The capture board is used to capture the power traces
and transfer them to the host computer via a Micro-USB cable. The traces can
then be reviewed and analyzed in order to execute and attack. The target board,
on the other hand, is where the algorithms are implemented. In the case of this
thesis, the clean implementation of Kyber512 algorithm from the Post-Quantum M4
(PQM4)-library [KPR+] will be implemented onto the target board, and the capture
board will send captured power traces to the host computer.

23
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The communication with the ChipWhisperer capture board and the host computer
is done in Python. For the lab setup for this thesis, an IDE (Visual Studio Code)
was used to modify makefiles used for compiling, apply the static ciphertext and
private key, as well as having my own "master"-code ("egentest.c") which states what
algorithms to execute. Building and compiling the project, as well as flashing it onto
the target board is done via Jupyter Notebook. This allows for individual cells to be
re-run when preferred.

ChipWhisperer and NewAE technology is a fully open-source system, including
hardware, software, firmware and FPGA-code. NewAE has created a GitHub
repository, which includes an entire start-up guide, as well as demo projects with
examples on how certain side-channel attacks can be executed. In order for the
capture board to communicate with the target board, the SimpleSerial protocol is
used in almost all of the demo projects. This allows ASCII-characters to be sent to
and from the target board, initiated by the capture board. The data can then be
sent back to the host computer. The target board has a buffer of 192 bytes, meaning
at most 192 bytes can be sent at once. Due to the fact that most of the demos use
SimpleSerial for communication to the target board, this was the method of approach
for the thesis as well. The use of SimpleSerial proved crucial for the execution of the
attack, as well as for verifying the correctness of decapsulation. The small buffer-size
did, however, pose problems when trying to extract the 768-byte sized ciphertexts.

The functionalities of the demos also introduces a severely important topic: the
triggers. The triggers are used by the capture board in order to limit when to start
and when to stop capturing the leaked power information. The triggers are defined
in a "hal.h"-file from the ChipWhisperer Github repository. This allows for the pins
which capture the power to initiate and end capturing. For an SCA to work, it is
essential to understand the activities in the power traces. For simplicity of the thesis,
we do not (and can not with the given equipment) capture the power consumption
of the entire algorithm. Instead, we apply the triggers inside the code in a desired
area. This allows for analysis to be more easily executed.

3.1.2 The pqm4 library

pqm4 is a crypto library for the M4 processor [KPR+]. It includes Kyber, as
well as other KEMs and Digital Signatures. Furthermore, pqm4 has versions of
Kyber spanning from 512 to 1024, as well as speed optimized versions, memory
optimized versions, clean implementations and "m4"-implementations. The clean
implementations are the ones originally proposed to NIST, without any optimizations.
This thesis will focus on a combination of the implementations.

Each algorithm is composed of a series of intertwined header (.h)-files, .c-files
and, in some cases, .S-files (Assembly). The algorithms from Section 2.3.1 can be
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Figure 3.1: The ChipWhisperer-Lite capture board in black, STM32-f3 taget board
in blue and UFO board in red

observed throughout the files in pqm4. E.g. The final key generation algorithm, 2.4,
can be found in the kem.c file, while 2.1 is found in the indcpa.c file.

Within pqm4, there are several Python-files which can be used for testing and
running benchmarks for the different algorithms. The Pyhton-files are created so
that they are flashed over the ChipWhisperer, execute key generation, encapsulation
and decapsulation. Finally the results are stored within several folders which can be
used for a variety of research- and study cases. In order to compile the projects, the
ARM toolchain is required [Devc].

3.1.3 Applying Kyber to ChipWhisperer

For the lab setup, the entire folder containing the algorithm, was copied to the
ChipWhisperer’s repository. This allows for the Kyber algorithm to easily include
both the SimpleSerial-protocol, as well as the functionality needed for the triggers to
be applied. For the following explanation, the Kyber512-clean implementation will
be used.

As the ChipWhisperer repository has the crypto-algorithms inside the hard-
ware/victims/firmware/crypto folder, the same will be done in this thesis. The folder
containing the entire algorithm will be denoted as kyber512_clean. Furthermore,
the files "fips202.c (and .h)" and "randombytes.c (and .h)" from pqm4/common must
also be copied over. Within the same folder, a makefile must be created. This file
explains what header-files and object-files to be compiled during the make-function.
Figure 3.2 shows the contents of the makefile. The second makefile is used to link
the makefile in /crypto/kyber512 with the final makefile. Figure 3.3 shows the
contents of the second makefile in /crypto. The line with the headers (.h-files)
may be redundant, yet it works. The final makefile is located in a folder specific
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to the Kyber512 algorithm. This folder, named "simpleserial-kyber512", is located
in hardware/victims/firmware. This folder is the one being used when building
the project in Jupyter Notebook. Figure 3.4 shows the contents of the makefile
in hardware/victims/firmware/simpleserial-kyber512. Notice how this makefile has
the command "SRC += egentest.c" on line 8. The file "egentest.c" is the file which
runs the algorithms and keeps track of which ciphertexts to decapsulate during the
decapsulation.

When the makefiles have been created, the correct files are imported and the
folders are located in the proper locations, the project can be built. This is done
similarly to the other ChipWhisperer demo projects. Figure 3.5 illustrates the steps
needed to build the Kyber512 algorithm from pqm4.

Figure 3.2: Contents of the makefile in /crypto/kyber512_clean

Figure 3.3: Contents of makefile in /crypto

3.2 Setting up attack on Kyber

The attack on the clean implementation on Kyber512 is done during the decapsulation
stage. This is due to it being the only part of the algorithm using the secret key.
Whereas the pre-project [Grü22] executed an attack on the S-Box substitution
step in AES, this thesis also goes in depth of the decapsulation in order to find
a vulnerable leakage model. Within the decapsulation stage, there is a segment
executing a coefficient multiplication of two polynomials. The polynomials are
modified representations of the secret key and the ciphertexts. For the attack, a
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Figure 3.4: Contents of makefile in hardware/victims/firmware/simpleserial-
kyber512

Figure 3.5: Running commands to build Kyber512
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total of 200 ciphertexts was used, thereby using 200 power traces. Each power trace
was set to capture 1000 samples. The reasoning behind using 200 traces, is because
it is the same amount used in [KdG21]. This should provide a sufficient amount of
samples, reducing the probability of completely random results occurring.

The paper [KdG21] has managed to execute an attack on an implementation
of Kyber, which in this thesis will be labeled as the "m4"-implementation. In the
mentioned paper, the focus is also on the coefficient multiplication in the decapsulation
phase. This thesis will use similar logic, but on the clean implementation. [KdG21]
has been used as a guideline to execute the same type of attack.

The previous section has already explained how to import Kyber into the
ChipWhisperer-repository. The idea behind this was to be able to use the trig-
gers to capture the power traces, as well as being able to use the SimpleSerial
protocol for debugging. The SimpleSerial protocol proved to be crucial, not only for
debugging, but for executing the attack as well.

The decapsulation of the different ciphertexts yield 200 different shared keys.
However, it is not the shared keys which are under attack, it is the static private
key used for decapsulation. From Table 2.2, it can be observed that the secret key
used for decapsulation is 1632 bytes, all the 200 ciphertexts are 768 bytes. Lastly,
the shared secret is only 32 bytes long. With the limited buffer size of 192 bytes
in the SimpleSerial protocol, sending 200 ciphertexts of size 768 would be an issue.
Therefore, the setup is as follows. The Python-implementation of Kyber512 [Pop]
has been used to generate the secret key, as well as the ciphertexts. The secret key is
implemented as a static variable in "egentest.c", with the 200 ciphertexts are added
in a separate header-file, named "data.h", located in /simpleserial-kyber512. Using
this lab-setup, the only necessary part from pqm4 is the decapsulation. The benefits
of this are a wide and clear view of all the ciphertexts, as well as the secret key, the
possibility to quickly alter amount of ciphertexts to be decapsulated and a variable
flashing time, causing a faster method for testing and debugging.

3.2.1 Decapsulation of ciphertexts

As the ciphertexts are stored in a separate header-file, it can easily be included by
adding the command "#include data.h" in "egentest.c". One large issue remains
for the decapsulation to function properly: when capturing the power traces, how
can be make the program only decapsulate one ciphertext per power trace? The
initial thought was to simply add the decapsulation method into a loop, and iterate
over all the ciphertexts. This would, however, cause the program to decapsulate
all the ciphertexts for each power trace, which would be useless for the attack to
work properly. The solution was inspired by the password bypass SPA attack from
TTM4502 [Grü22]. By creating helper-functions which allow for reading and sending
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of information using SimpleSerial, we can send the target board a "counter" value.
When capturing the power traces, the counter will be sent from Jupyter Notebook,
and read by the target board, using the my_read function. The target board will
then decapsulate the ciphertext with the same index as the counter, causing each
power trace to be the decapsulation of a single power trace. Furthermore, the use of
this counter makes it also possible to store all decapsulated ciphertexts (i.e. shared
secrets), and finally sending them back to Jupyter Notebook (using the regular
simpleserial_put-function) verifying the decapsulation has been properly executed.

Following these steps, the program should properly decapsualate each ciphertext
properly with the possibility to verification by sending the shared secret back to
the host computer. The final step of setting up Kyber on the ChipWhisperer is
to add the triggers. As the entire project is located in the ChipWhisperer repos-
itory, the functionality of the triggers is already defined in /hardware/victims/-
firmware/hal/stm32f3/stm32f3_hal.c, and can easily be imported by adding the
command: <#include ..hal/hal.h>, depending on the what target board is being
used and the folder-structure of the "attacker". Including this file, allows for the use
of <trigger_high()> and <trigger_low()> around the desired functions.

Figure 3.6: Kyber512 running on CW

Figure 3.6 represents the main-function being set up on the target board. The
functions on line 62-64 are functions necessary to use the triggers. On line 66, the
array for taking in the counter variable is defined. The size of this could be altered to
save storage, however the amount of possible storage to be saved is negligible. The
array is then filled with the input from the function on line 68. For it to properly work
as intended, it needs to be converted to an integer, as done in line 69. Line 71 is the
actual decapsulation. The first parameter is the pointer to the output array of shared
keys. The second parameter, all_ciphertexts is the 200*768 array containing all the
ciphertexts. The final parameter is the static private key used for decapsulation. This
is predefined at the beginning of the script. Finally, the simpleserial_put-function
on line 72 sends back each shared key, verifying the correctness of the decapsulation.
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3.3 Attack on Kyber

The attack on Kyber is a vertical CPA attack, explained in Section 2.4.2. The goal
of the attack is ultimately be able to extract the entire secret key. However, in order
to succeed with extracting the secret key, it must be reconstructed byte by byte.
The attack focuses on the extraction of the intermediate values of a set of secret key
bytes, k0k1k2k3, which are the first four bytes of the unpacked secret key. When all
unpacked bytes are extracted, the key can be packed and correctly reconstructed.
Finding k0k1k2k3 proves the attack can be executed on the remaining bytes.

The previous section explained how to build Kyber and flash it onto the Chip-
Whisperer target board. Furthermore, details on how to execute one decapsulation
for each ciphertext is explained. Finally how to apply the triggers were explained.

3.3.1 Data Collection and Hypothesis phase

In order to properly initiate the first phase of a CPA-attack, i.e. the data collection
phase, it is necessary to go in depth into the decapsulation algorithm of Kyber. As
described in Section 2.4.2, the idea of a CPA-attack is to find a low-level operation
of a known value and an unknown value and measure the power consumption of this
operation. For Kyber, this means the attacker needs to find such a low-level operation.
The triggers could, in theory, have been put around the entire decapsulation-algorithm.
This would, however, cause a large data set with a very large amount of operations,
i.e. a trace with a large amount of samples. Furthermore, the amount of samples
needed would far exceed the amount of possible samples for the ChipWhisperer-Lite.
Therefore, it is essential to find the low-level operations within the algorithm and
then apply the triggers around this operation.

The function, PQCLEAN_KYBER512_CLEAN_crypto_kem_dec, used in "egentest.c"
is the same as Algorithm 2.6. This algorithm in turn invokes CPAPKE.Dec(s, c)
(Algorithm 2.3). Simply put, the KEM decapsulation process employs the standard
Kyber decryption method. Hence, the attack can be specifically targeted at Algorithm
2.3. For the successful setup of the attack, it is critical to understand how the
ciphertext is decompressed and divided into the polynomial u and the vector of
polynomials v. Line 6 of Algorithm 2.3 calls the indcpa_dec(sk, m), with m =
v − skT u. In the clean implementation, the "unpacking" of the ciphertext is done
within the indcpa_dec-function, (shown in Figure 3.7) yet it maintains the same
functionality.

The thesis will not go in depth on how the decompression is done, however, it can
be observed that the function unpack_ciphertext(&b, &v,c); on line 319 takes
in the ciphertext, c, as argument. The variables b and v are the respective vector
of polynomials and the polynomial. It can also be observed how the secret key, sk
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Figure 3.7: indcpa_dec

Figure 3.8: Definition of "poly"-
structure in c

Figure 3.9: Definition of
"polyvec"-structure in c

is unpacked as well into a vector of polynomials. Table 2.2 explains the size of the
polynomial and amount of polynomials per vector. In the case of Kyber512, this
means that the variable b is now a vector containing two polynomials, each polynomial
having 256 coefficients. The definitions of the "poly"- and "polyvec"-structures are
shown in Figure 3.8 and 3.9, respectively. During this stage of the decryption, it
is also important to notice how the "poly"-structure is defined as containing a list
of 256 "int16_t"-values. This means each coefficient is in the structure of a 16-bit
signed integer.

Line 322 in Figure 3.7 calls polyvec_ntt(&b);. This perform an Number-
Theoretic Transformation (NTT) on each of the polynomials in the vector. Going
even deeper into the algorithm, polyvec_basemul_acc_montomery(&mp, &skpv,
&b); is called. The description of the function is as follows: "Multiply elemnts of a
and b in NTT domain, accumulate into r, and multiply by 2−16", a and b is called
as &skpv and &b, respectively and r being &mp. The definition of the function is
shown in Figure 3.10. Furthermore, Figure 3.10 also introduces the triggers. The
triggers are placed around the first poly_basemul_montgomery(r, &a->vec[0],
&b->vec[0]);-function. It can be observed that a total of two basemul_montgomery
functions are called. The first one calls the first elements of the vectors of the variables
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a, and b, i.e. &skpv and &b. The second basemul_montgomery-function is called
within a loop. However, the iteration starts at i = 1 and ends with i < KY BER_K.
For Kyber512, KY BER_K is defined as the total number of polynomials per vector,
i.e. 2.

Figure 3.10: polyvec_basemul-function in c

The basemul_montgomery function can be seen in Figure 3.11. This function
calls the basemul-functions a total of 64 times (KYBER_N/4). The first basemul
takes in the first coefficient of a and b (skpv and b) and performs the operations
shown in Figure 3.12. The values of the inputs are then applied in the fqmul-function.
This function multiplies the values together and reduces them using a Montgomery
reduction. It is ultimately the multiplication within the fqmul-function the attacker
can utilize.

Figure 3.11: basemul-function in c

Figure 3.12: Definition of basemul-function in c

Figure 3.13: fqmul-function in c
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The work behind the first phase of the CPA-attack is now done, and the actual
capturing of traces can begin. The only final modifications which do not interfere
with the execution of the algorithm, is to apply simpleserial_put-functions in
order to debug. Section 3.2 elaborated on how a counter was used in order to capture
the power traces individually, for each ciphertext. Figure 3.14 illustrates how the
traces are captured, using the counter.

Figure 3.14: Capturing of traces in Jupyter Notebook

In the script, i is incremented from 0 to 199. The value of i is then stored as a
character. The reset_target(scope-function is simply a pre-defined function that
adds some waiting time and switches the IO-pins off and on. Then, the scope is
armed and the buffer of the target is reset. The character is then written to the target
board, which reads the character and defines it as the "myInt"-variable, shown in
Figure 3.6. With the triggers applied around the first basemul_montgomery-function,
the plot of all the 200 traces can be seen in Figure 3.15

Figure 3.15: Traces with triggers around basemul_montgomery
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The attack posed in this thesis focuses on the same parts of the decapsulation
as the attack, i.e. the basemul functions. However, the attack from [KdG21] is
done on the "m4"-implementation, which has implemented Assembly code for several
operations, including the two basemul-operations. [KdG21] states that finding the
first four bytes (k0k1k2k3) with high probability can be done by attacking the first
basemul. The steps are (direct quote from [KdG21]):

1. Make a guess for k2k3 (216 possibilities) and compute the result rst = [rst0, ..., rst200
where rsti is the Hamming weight of the operation smultt (...) using the ith
ciphertext.

2. Compute Pearson correlation coefficient between Ti and rst for all i and keep
the biggest value in absolute PCCk2k3 .

3. Repeat step 1-2 for all possibilities of k2k3 and keep a sample S = {k2k3 such
that PCCk2k3 > x}. For example x = 0.6.

[KdG21] has previously defined T i
j as: "Let T i

j denote the ith point of the jth
trace and Ti be the vector such that Ti = [T 1

i , ..., T 200
i ]". This thesis understands this

a minor typo, with the intended notation as: "Let T j
i denote (...)", simply swapping

the i and the j. Therefore, this thesis will use the definition: "Let T j
i denote the ith

point of the jth trace and Ti be the vector such that Ti = [T 1
i , ..., T 200

i ]". In other
words, Ti is simply the array of traces, transposed, indicating a vertical CPA attack,
as explained in Section 2.4.2.

The smultt operation is an Assembly instruction, which takes two 32bit integers
and multiplies the lower halves of them. I.e. a simple multiplication of two 16-bit
integers.
The statement "...using the ith ciphertext" is interpreted as the unpacked and
NTT-transformed ciphertext bytes, denoted as b0b1b2b3. From the explanation of the
decapsulation previously in this section, the ciphertext is unpacked into a vector of two
polynomials and NTT-transformed. This means the ciphertext needs to be modified
substantially before the correlation can be calculated. In the "m4"-implementation,
the ciphertext is firstly unpacked in the regular c-code and NTT-transformed in
Assembly.

From the attacker’s point of view, the same functions must be applied to the
intercepted ciphertext used in the c-code in order to get the proper correlation. This
does add an additional piece of information needed in order to execute the attack;
the "zetas". The zetas are values used to perform the NTT-transformation. This
problem will be discussed further in Chapter 5.
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In order to overcome this problem, there are several solutions. Either, the
functions needed to unpack and transform the ciphertext can be recreated, using the
same zetas as the implementation. Another solution, which was used for this thesis, is
to use the SimpleSerial protocol to send the modified ciphertext bytes directly to the
host machine in Jupyter Notebook. SimpleSerial allows for the transmission of both
the ciphertext bytes, as well as the unpacked secret key bytes. The unpacked secret
key bytes, are not known to the attacker and is only used for testing purposes in this
thesis. Adding the simpleserial_put commands in an "if"-statement, conditioning
if i = 0, will give the attacker the first bytes of both the unpacked ciphertext and
the unpacked secret key. Figure 3.16 shows how the SimpleSerial functions may be
applied.

Figure 3.16: SimpleSerial functions in basemul_montgomery

When reading the outputs of simpleserial_put, a function similar to how the
traces are captured, needs to be applied in Jupyter Notebook. Figure 3.17 illustrates
the use of the counter in order to get the first ciphertext and secret key bytes from the
respective ciphertext decapsulation. For each output (decapsulation of a ciphertext),
the values of the secret key bytes remain static, further verifying the correctness of
the function.

Figure 3.17: Function to intercept the intermediate ciphertext and secret key bytes
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3.3.2 Correlation Phase

Given the attacker has successfully extracted the correctly unpacked and transformed
ciphertext bytes, phase 3 i.e. the correlation phase can begin. For this phase, the
steps from [KdG21] can, more or less, be used.
Firstly, the built-in Pearson correlation coefficient function from numpy
(numpy.corrcoef(x,y)), which takes in two arrays of equal size, is fairly slow.
Therefore a simplified version of the calculation is defined, which can be seen in
Figure 3.18. Tests have been executed to verify the correctness of this function.
The only "limitation" of using this function is that the arrays it takes in must be a
"numpy-array". This is due to how it uses np.sum(x), which requires the use of a
numpy-array. The "problem" is easily solved by converting regular python arrays to
numpy arrays, using the function array = numpy.array(array).

Figure 3.18: The fast_pearsson function

Figure 3.19: Full script of the attack
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Figure 3.19 gives a suggested method to execute steps 1-3 from [KdG21]. In the
first loop, i is iterated over all possible key guesses. A threshold is set for testing.
An rst-array is generated for each guess, giving a total of 65536 rst-arrays. With
1000 samples for each trace, there is a total of 1000 transposed traces. In other
words, the PCC is calculated 1000 times for each guess, adding up to a total of
65536 ∗ 1000 = 65536000 calculations. Running a single attack on a two-byte value
takes about 12 minutes.

When steps 1-3 from [KdG21] has been executed, there should remain a sample
of possible k2k3 guesses. The continuation of the attack is to fix each k2k3 from the
sample and repeat steps 1-3, using a function which combines the secret key values,
with a guess on k0k1. In other words, for n possible values of k2k3, the remaining
steps need to be executed n times. With an execution time of approximately 12
minutes, this gives a total execution time of n*12 minutes.

To combine the k2k3 and k0k1, the attack from [KdG21] uses the pkhtb-function.
This is an Assembly function which combines a halfword from one register with
a halfword from another register [Deva]. The clean implementation does not use
neither the smultt operation, nor the pkhtb operation. Therefore, the attack on
the clean implementation focuses on the first operation (line 177) in the basemul as
the smultt operation in steps 1-3 and the third (line 179) operation as the pkhtb
operation.

3.3.3 Real World Scenario

In a real world scenario, the situation will be quite different for this phase. There
would be no SimpleSerial and trigger functionality. The scenario could be e.g. an
IOT-device which has a built-in Kyber512 cryptosystem. To initiate communication
with a client, the shared keys must be exchanged as used a symmetric key encryption.
If the IOT-device has a static secret key, which is rarely refreshed, the ground terms
for the attack is accepted. The attacker must execute an invasive side channel attack,
in order to measure the power consumption of the device during decapsulation.

Furthermore, the attacker needs to have a tool for capturing the ciphertexts, sent
over e.g. the MQTT-protocol. Given that the attacker is able to measure the power
traces and "sniff" out the ciphertexts, there are still several problems. Firstly, the
attacker needs to know exactly what implementation and security level of Kyber the
IOT-device is using. The basemul-functions will work mostly similarly in the different
implementations, however, when capturing a power trace of the entire decapsulation,
knowing exactly where in the trace to observe the basemul-operations will be helpful
and reduce the time of the attack significantly. Secondly, it is crucial to pack the
secret key correctly, based on the values of k, which vary, depending on the version
of Kyber.





Chapter4Results and Analysis

The study in this thesis has focused on exploring side-channel attacks on the clean
implementation of Kyber512 from the pqm4 library. Chapter 3 has explained how to
set up Kyber on the ChipWhisperer and how to use the information from [KdG21]
to suggest an attack on the clean implementation on Kyber. This chapter will
explain the results observed compared to the anticipated results, the limitations of
the attack and ultimately the limitations of the difficulties and limitations of using
ChipWhisperer Lite in combination with Kyber.

4.1 Results

The attack on the clean implementation of Kyber yielded interesting results. The
goal of the attack would be to get a small sample of numbers with significant max
correlation, i.e. a "spike" with high correlation on a small range of samples, and
generally low correlation elsewhere. It would be anticipated that wrong guesses
would have generally low correlation and no "spikes".

The continuation of the attack would proceed to take the sample of bytes, e.g.
10 probable bytes, fix each one of them and continue the attack. The final part of
the attack would then take approximately 10*12 minutes to extract the first four
bytes (k0k1k2k3) of the secret key. Again, due to how the bytes in this intermediate
operation is unpacked, as can be seen in Figure 3.7, it would be reasonable to assume
that all the bytes of a polynomial or both polynomials of the vector must be extracted,
in order to re-pack the key into its original form.

4.1.1 Observed results

Total PCC-values

The attack in Figure 3.19 does yield interesting results, yet it is not able to extract a
small enough sample to continue the attack. A plot of all the values in the pcck2k3-
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array can be seen in Figure 4.1. In the plot, the y-axis is the max, in absolute,
PCC-value and the x-axis is each key guess in decimal.

Figure 4.1: Plot of each max PCC-value for each key guess

There are several interesting observations with this plot. Firstly saw-tooth pattern
can be observed. For key guesses below 100, the correlations are fairly high, indicating
a good guess. The highest spikes are when the guesses are of powers of two, which
can be most easily seen at key guess 8192. After this guess, the PCC-value drops
substantially, and initiates the saw-tooth pattern. The pattern does very much
indicate that there is a repeating pattern, with a phase of approximately 16384, or
214. The reasoning behind this is currently unknown for this thesis. However there
are several hypotheses.

Firstly, the unpacking of the secret key may be a reason for the pattern. When
reproducing the unpacking-function and applying it to the used secret key, the values
of all the coefficients for both polynomials are below the value 3329. 3329 is the
value of the modulus used for coefficients, so it does certainly make sense for the
values to be below the modulus value. Furthermore, the values used as inputs in the
basemul-functions are all "int_16"-values, stating they are signed 16-bit integers. For
a signed 16-bit integers, the range of values span from -32768 to 32767. Both of these
assumptions give an indication of why the saw-tooth pattern spikes at certain values
and plummets right after. However, this would rather imply that the saw-tooth
pattern would either have a phase of 3329 or 32768, it does not explain why the
phase is of value 16384.

The values of the negative numbers of the signed 16-bit values is also worth a
discussion. In the attack, i is incremented from 0 to 216− 1, i.e. 0 to 65535. i is then
multiplied with the intermediate ciphertext bytes, converted to binary and counting
the amount of "1"s in the binary string. The multiplication does yield a 32-bit signed
integer, which is also the data type of the value used within the fqmul-operation.
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However, the Hamming weight of a signed 16-bit integer does span over the exact
same range as the Hamming weight of an unsigned 16-bit integer. It does not make
a difference on the Hamming weight of the calculated product, whether the values of
the factors are negative or positive.

PCC-values of single guesses

Whereas Figure 4.1 is a plot of all the max-PCC values for each guess in absolute,
it is also interesting to observe the PCC-values for a single guess. Assuming Little-
Endian notation the first values going into the first basemul-operation would be the
strings: "FAD4FED4" for the ciphertext and "0A420A75" for the secret key. The third
operation in the basemul-function, is r[0] = fqmul(a[0], b[0]), stating that the
two last bytes of each string is to be multiplied and Montgomery reduced. In other
words, somewhere in the power traces there should be a multiplication of the values
"FAD4" and "0A42" (262610). The fifth line in the basemul-function uses the same
value for b[0], but uses the final two bytes of the secret key, a[1] = 0A75 = 267710.
This would imply that if we are using the first two bytes of each unpacked ciphertext
as input values in the attack, we should observe significant values for the guesses
"2626" and "2677".

Figure 4.2: PCC-values for one correct and one wrong guess with low correlation

Figure 4.2 show the PCC-values of two guesses. The brown plot is the correlation
when the key guess has the value 2677. The blue plot is a wrong guess and has the
value 8407. It can be observed that the wrong guess has minor spikes around the
same samples as the correct guess. Even though the PCC-values of the wrong key
guess follows a similar, yet minor, pattern as the correct guess, the absolute value of
the max PCC-value of the wrong guess is below 0.3, indicating it is a wrong guess.
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Figure 4.3: PCC-values for two correct guesses

Figure 4.3 is the plot of the PCC-values of the two correct guesses. The hypothesis
does match with the observed values. In the blue plot, at sample 200, the correlation
of the guess 2626 (0A4216) has its maximum (minimum, rather yet the absolute of the
value is what is desired), implying the operation a[0] * b[0] or FAD416 ∗0A4216 =
6421210 ∗ 262610 is observed at this sample. This is further emphasized with the
brown plot. The brown plot is the value of a[1] * b[0] or FAD416 ∗ 0A7516 =
6421210 ∗ 267710. It can be clearly observed that the correct guess in the blue plot
appears before the the correct guess in the brown, which matches with the code.

The problem, however, is the large amount of "false positives" which appear and
even have higher correlation than the correct guesses. Figure 4.4 show how even
though 2626 is the correct guess, the PCC values of a wrong guess, 2048, has higher
correlation in multiple occurrences.

Figure 4.4: PCC-values for one correct (2626) and one wrong (2048) guess
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4.2 Analysis of the results and potential pitfalls

4.2.1 Powers of 2

Further analysis states that key guesses of a power of two has the highest correlation.
Going back to the original attack, the array rst is simply the Hamming weight of
the product of the guess and the intermediate ciphertext byte. If the key guess is
a power of 2, the Hamming weight will remain the same as the Hamming weight
of the ciphertext byte. E.g. the value FAD416 = 6421210 is represented in binary
as 11111010110101002, which has a hamming weight of 10. The product 6421210 ∗
262610 = 13150617610 is represented in binary as 1111101011010100000000000002
which also has a Hamming weight of 10. On the other hand, the product FAD416 ∗
0A4216 = 6421210 ∗ 262610 = 16862071210 = 10100000110011110010101010002 which
is the correct guess multiplied by the intercepted ciphertext bytes has a Hamming
weight of 12. In other words, it would appear as that values which have a Hamming
weight equal to the ciphertext bytes have a higher correlation than values equal to
the product of the key guess and the ciphertext bytes. Conclusively, it seems the
attack does not find the product of the ciphertext and secret key, but rather the
ciphertext itself.

Verifying this is rather difficult. Each rst contains 200 values for each ciphertext.
Some key guesses will give the same Hamming weight as the ciphertext for some of
the ciphertexts, but not necessarily for all. However, whenever the guess is a power
of 2, every single value in the rst array has a Hamming weight equal to the Hamming
weight of the ciphertext. It must be emphasized that this is only an assumption to
the reasoning behind the high correlation of key guesses of powers of 2.

Ultimately, the attack generates far too many "false positives" in order to proceed
with finding the correct byte values. With 65536 key guesses and a threshold of 0.75,
there are still over 500 potential candidates. An idea could be to remove all the
candidates if they are a power of 2. This would simply remove a maximum of 16
values. Furthermore, it would also remove candidates for the key which, in a real
world attack, could as well have been correct guesses. The problem lies in that there
exists a large amount of values between 0 and 655355 which yield a Hamming weight
equal to the Hamming weight of the ciphertext.

4.2.2 Differences in implementations

The attack has been executed on the clean implementation of Kyber512 from the
pqm4-library. How the code is executed, down to a bit-wise level, on the target
might be problematic. Whereas a single MUL operation on the Arm Cortex M4
processor takes one cycle to execute [Devb], other factors can cause the operation
to require more cycles. The technical reference manual states that more complex
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operations such as a signed or unsigned Multiply-Accumulate (MLA, MLS) take 2
cycles [Devb]. This can cause the multiplication operation under attack in this this
thesis to be executed over multiple samples for a power trace, indicating a wrong
result. The attack from [KdG21] was executed on the SMULTT operation, which only
uses one clock cycle. The multiplications on the 16-bit signed values in the clean
implementation should be possible to execute in a SMULL operation, using 1 cycle, yet
there may be different factors, e.g. compiler functionality, which may cause problems.

4.2.3 Noise in traces and trigger positions

The triggers have been strategically placed to minimize the amount of possible noise
in the trace. However, there is always a possibility of noise appearing in the capture
board, which may cause problems for the attack. If this were to be the case, there
would not have been such a strong correlation on certain guesses and simply a slightly
lesser correlation on other guesses. If all the traces contained vast amounts of noise,
it would be safe to assume there would be no coherent correlations. However, slight
amounts of noise can cause issues when executing a CPA-attack.

The trigger placements, themselves, may also be problematic. In this attack, the
triggers are placed around a basemul-function measuring the power consumption
of that execution. In the attack of this thesis, the main focus is on an even deeper
level than where the triggers are positioned, i.e. the multiplication in the fqmul-
operation. An idea would therefore be to apply the triggers around this multiplication.
However, this function is being continuously called throughout the entire decap-
sulation, meaning when the fqmul-operation is called from the basemul-function,
the fqmul-function has already been executed a vast amount of times, called from
other functions. This would rise a need for a much larger sample size, increasing the
execution time of the attack severely.
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The research field of side-channel attacks on a cryptographic implementation is a
deep-dive into a world of micro-processors, c-coding, electrical physics, advanced
mathematics and a general ability to combine all these aspects. When the crypto-
graphic algorithm is an un-standardized algorithm, currently undergoing testing and
a standardization, the field is quite narrow. An SCA, itself, is an old concept; seek
leaking information from a system and use that information to exploit the system.
Applying the concepts of an SCA to a new cryptographic algorithm in order to seek
its vulnerabilities may have several outcomes. Posed attacks may be successful and
vulnerable parts of the algorithm can be proven. On the other hand, researcher may
try continuously to attack different parts of the algorithm, and conclude that it is
difficult to extract any hidden information from said parts. This thesis has landed
somewhere in between. The basemul-operation may certainly be a vulnerable part
of the algorithm. Interesting results are found, yet the results have not been good
enough to retrieve the secret key. This chapter will be a discussion and self-evaluation
of the experiment and methodology.

5.1 Difficulties with applying Kyber

A large part of the thesis has been managing to apply Kyber to the ChipWhisperer.
Although seemingly easy, this task requires experience with makefiles and flashing.
An ignorant assumption was that this was as easy as in TTM4502 [Grü22], where the
makefiles were already written and the demos guide the user seamlessly along multiple
SCAs. This section explains a handful of difficulties researchers may encounter when
attempting the same experiment.

5.1.1 pqm4

As explained in detail in Chapter 3, the process of applying Kyber is not onto the
ChipWhisperer is not straightforward. The pqm4 library contains a huge amount
of files, some being exclusive to each implementation of Kyber, and other files in
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the library, being global files, used in most implementations, e.g. the randombytes
files. This causes a need for understanding the hierarchy of the pqm4 library, as well
as understanding what files are relevant to the exact implementation. Furthermore,
the pqm4-library is mainly used for testing. The integrated files used in the library
uses standardized functions to call the different algorithms. It is therefore essential
to understand how to extract the correct calls for the desired functions in order to
properly execute them in your own code.

5.1.2 Makefiles and compiling

Makefiles may seem fairly simple, yet they can cause a lot of distress. It is highly
recommended to have prior experience with makefiles when going into this project. A
makefile will compile several files defined in the makefile. Different ways to compile
the files can also be applied by adding different "flags" in the makefile. When starting
with minuscule experience with makefiles, compiling the entire project into a hex-file
for it to be flashed onto the micro-controller turned out to be bigger of a problem
than first anticipated.

In the tutorials from ChipWhisperer, the makefiles were already made, and simply
had to be called by executing a command, also already made. Again, when going
into a project of this scale, it would be highly recommended to understand the logic
and interactions of a makefile, in order to have a better understanding of how to
compile the project.

Whereas compiling the entire project is in fact a problem in itself, so is the sheer
size of the project. When compiling the 200 ciphertexts, the Kyber512 algorithm, and
the storage for the 200 shared secrets, needed for debugging, the total size of the hex
file is approximately 165kB. Even though this does not seem like a lot, when flashing
it onto the target, this can take up to 4 minutes. When making small changes to
the c-code trying with a large amount of test, the 4 minutes needed to flash makes
testing quite time consuming.

5.1.3 Kyber is not an integrated part of ChipWhipserer

ChipWhisperer has great tutorials for the projects they have implemented. The
entire idea of the ChipWhisperer is to research on effects of side-channel attacks. It is
assumed the user of a ChipWhisperer has a general understanding of the algorithms
used. However experience with and understanding of the algorithm are not in any
way needed to execute the attack. ChipWhisperer has made it easy enough to
execute an advanced attack on e.g. AES, that only a few commands and a minor
time investment is needed. It is highly recommended to understand the underlying
theory of the ChipWhisperer and the guides they provide before using the same
concepts and ideas on another algorithm.
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For this thesis, a general understanding of both ChipWhisperer and side-channel
attacks in general was researched on in the pre-project from TTM4502 [Grü22].
However, the pre-project merely scratched the surface of the the underlying integrated
functions in the ChipWhisperer library. As described in Chapter 3 the ChipWhisperer-
library allows for an integrated function when captures traces, allowing for both
sending of an encryption key, as well as plaintext while capturing the trace. For
encryption schemes using small keys and plaintexts this works fairly fine. However,
with the 1632 byte secret key and the 768 byte long ciphertexts, the buffer size of the
SimpleSerial protocol is not sufficient for the integrated commands in ChipWhisperer.
There are other ways of solving this issue than the use of the counter explained in
Chapter 3, yet the problem remains the same: how can the attacker capture the
traces of single decapsulations for different ciphertexts? Even if NewAE-Technology,
the producers of the ChipWhisperer, were to make guides on Kyber, the buffer size
for small versions of ChipWhisperer, e.g. the ChipWhisperer Lite, will still have the
small buffer.

ChipWhisperer has somewhat addressed this issue with the attacks on RSA. For
their own implementations of attacking RSA, they consider an RSA key of a far
smaller key size than in standardized RSA [Inc18]. In hindsight, the same idea could
be applied in this thesis. Instead of focusing on a full-scale implementation of Kyber,
the attack could be on a self-made implementation of "Baby-Kyber", e.g. equal to
[Gon21]. This could also give interesting results, yet it was not the intention of this
thesis.

5.1.4 Endianess and SimpleSerial

Even though SimpleSerial has been a key component of this thesis it has also caused
some confusion. The outputs from 3.17 are in one order, while the values used in in
the attack is in reversed order. This is due to how the bytes are being reversed in
certain situations when using SimpleSerial. This has, naturally, caused confusion.
Firstly, when addressing the issue of whether the decapsulation is done correctly,
SimpleSerial was used to send the shared secrets for each decapsulation. Verifying
the answers, showed that the decapsulation was in fact done correctly. The shared
secrets matched with the anticipated results.

However, further testing indicated that this is not always the case. The bytes in
3.17 are in fact in reversed order, or Little-Endian represented. The reason for this is
not entirely known. One hypothesis could be that SimpleSerial treats different data
types differently. The shared keys are stored as the data type "unsigned char". This is
because this is what was used in the original implementation from pqm4. One would
therefore reasonably assume that data sent as the data type "int16_t" also would be
in correct order. A lot of testing was therefore done with values in reversed order. Is



48 5. DISCUSSION

this, however, a problem when the rst-array is an array of Hamming weights? Yes,
e.g. the ciphertext "D4FA" multiplied by a key guess will, in most cases, yield a
different Hamming Weight, than the ciphertext "FAD4" multiplied with the same
guess. Verifying that the outputs of Figure 3.17 was done by defining two known
values with a known product and sending the values over SimpleSerial. The exact
reason to why it is reversed is not known. It could be parameters defined in the
c-code or it could be how SimpleSerial interprets different types. Nevertheless, for
an attacker, it is important to have this in knowledge when sending information via
SimpleSerial.

5.2 Areas of improvement and future research

The focus are for this thesis has been the clean implementation of Kyber from the
pqm4 library. More specifically, the attack has been on coefficient multiplication
during decapsulation. For this thesis, there are several areas which need more
understanding to be able to completely analyze the attack. This section poses
to iterate through the weakest points of the attack and discuss how they can be
improved.

5.2.1 Intermediate values

Finding ciphertext bytes

During the research for this thesis, a challenge has been to calculate the rst-array.
As it should simply be the Hamming weight of the multiplication of two 16-bit
integers, finding the value of the first factor, i.e. the ciphertext bytes has not been
straightforward.

In this thesis, the final solution was using SimpleSerial to extract the values of
the bytes. In a real-world scenario, this would, in most cases, not be practically
possible. If an attacker would have the ability to read intermediate values directly
from the source code, the better approach would simply be to read the secret key
bytes. Therefore, for an attacker to have knowledge of the intermediate ciphertext
bytes, both the unpack_ciphertext-function and the polyvec_ntt function must be
recreated. unpack_ciphertext is mostly straightforward, as it uses one decompress
function for the vector, and one for the polynomial. Knowing simply how these
functions operate, which is public information, would allow to unpack the ciphertext.

Then, the ciphertext is NTT-transformed, using the polyvec_ntt-function. For
the NTT to take place, a set of "zeta"-values need to be generated. Generating the
matrix of zetas is not trivial, however for each version of Kyber, the zetas remain
the same. They are static and can therefore be hard-coded into the implementation
in order to save execution time. However, from the attacker’s point of view, it is
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essential to know exactly when the zeta values are being used. E.g. in the clean
implementation used in this thesis, all coding is done in in c. The zeta values
used in the decapsulation are applied before a "Barret reduction". In the "m4"-
implementation, used in [KdG21], the NTT-transformation is done at a different
stage in the decapsulation. The zeta-values, by themselves, should remain static
for each implementation, yet when processed at different stages of the algorithm,
the values of the zetas may be different and/or rearranged. This emphasizes even
further the importance of understanding the exact decapsulation algorithm in order
to execute the attack.

Optimizing the range of guesses

In the attack posed in this thesis, the number of guesses range from 0-65535. One
question which may arise from this is whether that span is necessary. When the
secret key is unpacked, certain operations are performed to generate a vector of
polynomials from the 1632 sized byte string. As previously stated, the coefficients
for each polynomial are reduced modulo 3329. Is there therefore a possibility that
if the attack, in reality, poses to find the coefficients of the polynomials, would the
range of guesses go from 0-3329? When attempting to re-create the unpacking of the
key, all the values remained under 3329. However, in order to verify the correctness
of the unpacked key, it would have to be re-packed and matched with the original
key. This thesis did not enter that area, but should be researched on further, as it
could potentially reduce the execution time of the attack significantly.

The modulus of the coefficients also raise the question: are the intercepted
ciphertext bytes intercepted correctly? The intercepted hex value "FAD4" has the
decimal value of 64212. This value is far beyond the the modulus of 3329. In other
words, seemingly one of the factors used to calculate the rst array in the attack may
have been interpreted wrongly.

5.2.2 A different attack

The attack posed in this thesis has been a vertical CPA attack. Although it being
a strong attack, the "horizontal" CPA attack could be considered. This attack has
not been within the scope of this thesis, yet it could generate interesting results.
Whereas a vertical CPA attack focus on single executions, a horizontal CPA attack
focuses on operations in which the secret key is used in multiple occasions [CFG+10].

Completely different attacks, such as the one posed in [Guo23] seems to yield
significant results. This attack presents advanced techniques, modeling the traces as
low-density parity-check code and extracting the secret key using an average of 12
traces.





Chapter6Conclusion

This thesis has researched the effects of a CPA attack on the clean implementation of
CRYSTALS Kyber from the pqm4 library. The ChipWhisperer tool has been used to
gather power traces from the algorithm during the decapsulation phase. Ultimately,
the attack did not succeed the way it was initially intended to. However, interesting
results have been documented and can provide a relevant foundation for further
research.

In the context of the attack posed in this thesis, the recommendation when
implementing Kyber for security reasons is to frequently refresh the secret key.

Chapter 2 explained the definition of Kyber, both mathematically and algorithmic,
the theory of power traces and how they can be utilized to execute a CPA. This
theory has been the basis of Chapter 3.

The thesis has explained, in detail, how the Kyber algorithm can be applied on
the ChipWhisperer tool, hopefully lowering the entry barrier for researchers wanting
to contribute to the field. Even though the ChipWhisperer tool makes attacks on
certain algorithms trivial, it is highly recommended for researchers to possess a deep
understanding of c-code, the desired algorithm under attack and the ChipWhisperer
library.

The research questions were:

RQ1: How can ChipWhisperer be used to measure the power consumption of
Kyber?

This was partly explained in TTM4502 [Grü22], however, using an algorithm
which is not an integrated part of the ChipWhisperer library complicated this research
question. Ultimately, this was done successfully, as described in Chapter 3.
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RQ2: How can we use the information from 1) to construct and execute a
side-channel attack on Kyber?

A side-channel attack on Kyber was constructed and executed on Kyber. The
intended results were unfortunately not achieved, yet interesting results were found.

It is difficult to conclude why the attack did not succeed. Chapter 5 introduced
possible suggestions to why the attack failed, which may be foundation for future
work. On the other hand, there is a possibility that the clean implementation of
Kyber512 requires a different attack.
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