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Abstract 
Flooding is a widespread and costly phenomenon that affects millions of people. To 

mitigate the effects of flooding, the development of flood hazard maps has become 

crucial as they serve as valuable tools in flood management. Traditionally, these maps 

have been based on flood inundation models primarily utilizing 1D hydraulic models. 

However, with advancements in remote sensing techniques, 2D hydraulic models have 

emerged as a promising approach. Therefore, this thesis focuses on investigating the 

application of 2D hydraulic models that incorporate high-quality LiDAR data for both 

terrain and bathymetry within the study area.  

Hence, the primary objective of this thesis was to obtain real-world observations, 

preferably SAR data capturing flooding events, to be employed in calibration and 

validation processes. The aim was to assess the effectiveness of utilizing such data and 

examine the outcomes it yields in flood inundation modelling. Although numerous studies 

have delved into this area of research, there is limited literature that specifically utilizes 

LiDAR data to represent river bathymetry. 

The study area, the Surna River, provided numerous real-world observations, including 

multiple SAR images capturing multiple flood events, flood delineation vector data during 

the peak of the flooding caused by Storm Gyda, and observed water surface elevations. 

The integration of this data enabled a comprehensive evaluation of the performance of 

the model. The 2D hydraulic model was established using HEC-RAS software with a 

computational mesh of 10 m grid size, simulating the hydraulic behavior with the shallow 

water equations. Prior to the analysis, pre-processing and thresholding techniques were 

applied to the SAR images to precisely define flood boundaries, resulting in binary flood 

delineation maps used to evaluate and assess the performance of the model in accurately 

representing the flood extent. 

Various calibration approaches were employed, including fine-tuning of Manning's n-

values and regionalized calibration, with the aim of enhancing the performance of the 

model and evaluating the impact of Manning's n-values on the results. The calibration 

processes yielded optimal parameter sets for Manning's n-values in the main channel and 

floodplains, with the specific values dependent on the calibration approach. Notably, the 

model exhibited greater sensitivity to the Manning's n-value in the main channel 

compared to other parameters across all calibration approaches. The incorporation of 

high-resolution LiDAR data to represent the bathymetry of the river resulted in Manning's 

n-values in the main channel falling well within the ranges defined in the existing 

literature. This outcome highlights the potential of utilizing bathymetric LiDAR data in 2D 

hydraulic models. 

The regionalized calibration using observed water surface elevations resulted in a highly 

accurate model performance, with a MAE of 0.02 m and a RMSE of 0.04 m. Furthermore, 

when calibrating the model against SAR imagery, it demonstrated a performance with an 

F1 value of 0.67 and an F2 value of 0.46. The regionalized calibration of the Storm Gyda 

flood event achieved an F1 value of 0.83 and an F2 value of 0.71, indicating a high level 

of accuracy in representing the flood extent.  

The study showcased the promising capability of satellite imagery as a valuable tool for 

calibrating and validating 2D hydraulic models. The utilization of satellite imagery offers 

great potential in evaluating and assessing model results. However, it is important to 

acknowledge that the accuracy of these results is influenced by the uncertainties in the 

techniques employed to delineate the flood extent in SAR imagery. 
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Sammendrag 
Flom er et utbredt og kostbart fenomen som påvirker millioner av mennesker. For å 

redusere virkningene av flom har utviklingen av flomsonekart blitt avgjørende da de 

fungerer som verdifulle verktøy i flomhåndtering. Tradisjonelt sett har flomsonekart blitt 

produsert på bakgrunn av 1D hydrauliske modeller. Imidlertid har 2D hydrauliske 

modeller blitt et lovende alternativ med den fremgangen som er gjort innen 

fjernmålingsteknikker de siste tiårene. Denne avhandlingen har derfor som fokus å 

undersøke bruken av 2D hydrauliske modeller som integrerer høykvalitets LiDAR-data for 

både terreng og elvebunnen i studieområdet. 

Dette danner grunnlag for hovedmålet for denne avhandlingen, som var å innhente 

virkelige observasjoner, helst SAR-data som fanger opp flomhendelser, for å bruke dem i 

kalibrering og validering av modellen. Målet var å vurdere effektiviteten for bruk av slik 

data og undersøke resultatene de gir i modellering av utbredelsen av flom. Selv om 

mange studier har utforsket dette forskningsområdet, er det mangel på litteratur som 

spesifikt bruker LiDAR-data til å representere elvebunnen. 

Studieområdet, elven Surna, ga mange virkelige observasjoner, inkludert SAR-bilder som 

fanger opp flere flomhendelser, vektordata for flomavdekning nær flomtoppen under 

Storm Gyda-flommen og observerte flomvannstander. Integreringen av disse dataene 

bidro til en omfattende evaluering av modellens ytelse. HEC-RAS-programvaren ble brukt 

til å etablere en 2D hydraulisk modell ved å bruke et beregningsnett med en 

rutenettstørrelse på 10 m, der «shallow water» likningene ble brukt for å simulere den 

hydrauliske atferden. Før analysene startet, ble SAR-bildene forbehandlet og analysert 

ved hjelp av en terskelteknikk for å nøyaktig definere flomgrensene. Dette innebar å 

skille mellom vann- og ikke-vannområder innen bildene, noe som resulterte i generering 

av binære flomkart. Disse kartene ble deretter brukt til å evaluere og vurdere modellens 

ytelse i å utføre en nøyaktig representasjon av flomomfanget. 

Forskjellige kalibreringsmetoder ble brukt, inkludert finjustering av Manning's n-verdier 

og regionalisert kalibrering, med mål om å forbedre modellens ytelse og vurdere effekten 

av Manning's n-verdier på resultatene. Kalibreringsprosessene resulterte i optimale 

parameteroppsett for Manning's n-verdier i hovedkanalen og flomslettene, der de 

spesifikke verdiene var avhengig av hvilken kalibreringsmetode som ble brukt. Modellen 

viste spesielt stor følsomhet for Manning's n-verdi i elvebunnen sammenlignet med andre 

parametere i alle de forskjellige kalibreringsmetodene. Integreringen av høyoppløselige 

LiDAR-data for å representere elvebunnen resulterte i Manning's n-verdier i 

hovedkanalen som lå godt innenfor området definert i eksisterende litteratur. Dette 

resultatet understreker potensialet ved å bruke bathymetriske LiDAR-data i 2D 

hydrauliske modeller. 

Den regionaliserte kalibreringen med bruk av observerte flomvannstander resulterte i en 

svært nøyaktig modellprestasjon med en MAE på 0,02 m og en RMSE på 0,04 m. Videre, 

når modellen ble kalibrert mot SAR-bilder, viste den en ytelse med en F1-verdi på 0,67 

og en F2-verdi på 0,46. Den regionaliserte kalibreringen av Storm Gyda-flomhendelsen 

oppnådde en F1-verdi på 0,83 og en F2-verdi på 0,71, noe som indikerer en svært høy 

nøyaktighet i representasjonen av flomomfanget.  

Resultatet av studien viste den lovende evnen til satellittbilder som verdifulle verktøy for 

kalibrering og validering av 2D hydrauliske modeller. Bruken av satellittbilder har stort 

potensiale i evaluering og vurdering av modellresultater. Det er imidlertid viktig å 

erkjenne at nøyaktigheten av disse resultatene påvirkes av usikkerheter i teknikkene 

som brukes til å avdekke flomomfanget i SAR-bildene.  
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1.1 Background 

Flooding is a global phenomenon that occurs when the water level in a river or another 

body of water surpasses its normal capacity, resulting in the overflow onto surrounding 

land areas. It is a natural event that can have both negative and positive effects. While 

flooding is often associated with destructive consequences, such as property damage and 

human casualties, it can also have beneficial impacts, particularly in areas with 

agricultural regions. Additionally, in regions with hydroelectric power systems like 

Norway, spring floods can contribute to filling reservoirs that were depleted during the 

winter, ensuring an adequate supply of water for generating electricity (Tollan, 2023). 

Consequently, there has been an ongoing effort to comprehend, evaluate, and forecast 

flood events and their impacts (Mostert & Junier, 2009). 

In 2021, there were 206 major flood disasters worldwide, representing over 56% of all 

major natural disasters that occurred during that year. This makes flooding the largest 

global natural disaster when compared to other events such as storms, earthquakes, 

wildfires, droughts, and others. These flood disasters resulted in 4393 deaths and 

affected tens of millions of people. The economic losses directly attributed to flood 

disasters in 2021 exceeded 74.6 billion USD. Additionally, the frequency of flood 

disasters in 2021 exhibited a significant increase of 48% compared to the average 

frequency observed over the past 30 years (1991-2020) (Ministry of Emergency 

Management et al., 2022). Furthermore, in Norway, flooding has led to an economic 

consequence of 30.3 billion NOK over the past decade (Hygen, 2023). 

Moreover, according to a recent study by (Blöschl et al., 2020), it was discovered that in 

most of Europe, there has been a 90-year gap separating the flood-rich periods of the 

past from the most recent 30 years. This finding provides a potential explanation for the 

surprise experienced by both the general public and flood managers regarding the 

severity of recent floods. This highlights the importance of flood-risk assessment tools 

and flood-risk management strategies to acknowledge and take into account the current 

extraordinary flood-rich period in Europe. In order to further highlight the significance of 

this issue, a study conducted by (Hanssen-Bauer et al., 2017) examined the projected 

climate changes that will impact Norway until the end of the century. The findings of the 

study indicate that there will be an increase in intense rainfall events, leading to more 

frequent and intense rain-induced floods. Conversely, snowmelt floods are expected to 

occur less frequently and be less severe. The primary challenges that will have a 

significant impact on Norwegian society are urban flooding and flood-related issues 

caused by changes in precipitation, along with the increasing sea levels. 

Given this context, it becomes even more imperative to prioritize the continuous 

development and updating of existing flood hazard maps in Norway. In fact, measures 

are already being taken in this regard. According to a report by (Eikenæs et al., 2020), 

the Norwegian Water Resources and Energy Directorate (NVE) has prioritized the 

upgrade of 57 out of a total of 145 flood hazard maps that have been produced since the 

inception of flood hazard mapping in 1998. Additionally, they are conducting evaluations 
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and improving the hydraulic data foundation to enhance the accuracy and reliability of 

the maps. 

Flood hazard maps are utilized to ensure adherence to safety regulations specified in 

TEK17 (Regulations on technical requirements for construction works) (§ 7-2. Sikkerhet 

Mot Flom Og Stormflo - Direktoratet for Byggkvalitet, n.d.). These comprehensive maps 

are developed by the NVE and primarily focus on areas that are highly susceptible to 

flooding. Flood hazard maps delineate the regions prone to flooding at different 

recurrence intervals, based on historical observations and measurements of water flow 

and/or water levels (3. Flaum - Direktoratet for Byggkvalitet, n.d.).  

A notable illustration of the practical application of flood hazard maps can be found in a 

study conducted by (Kalsnes et al., 2021). The study concluded that a substantial 

investment of approximately 38 billion NOK would be necessary in Norway to ensure 

adequate protection for existing buildings situated in flood-prone regions, mitigating the 

risks associated with flooding and erosion. The assessment was made possible by the 

utilization of flood hazard maps, which serve as essential tools in identifying vulnerable 

areas and guiding the implementation of effective flood risk management strategies. 

Flood inundation modelling is a broad term that encompasses different methodologies 

aimed at studying the behavior of river and floodplain flow. These methodologies include 

empirical methods, hydraulic models, and simplified conceptual models (Teng et al., 

2017). However, when it comes to developing flood hazard maps, the focus is primarily 

on employing flood inundation modelling techniques that utilize hydraulic models. These 

models allow for the simulation and analysis of the intricate dynamics involved in 

flooding, enabling a better understanding of flood behavior, and facilitating the creation 

of accurate flood hazard maps. 

Traditionally, flood hazard maps in Norway have been developed using one-dimensional 

(1D) hydraulic models. However, with advancements in remote sensing techniques and 

research developments, two-dimensional (2D) hydraulic models are increasingly 

recognized as a more effective tool for flood inundation modeling. These models provide 

more accurate and detailed simulations by considering the 2D flow dynamics and 

incorporating the influence of topography and complex geometries. Therefore, the 

utilization of 2D hydraulic models holds great potential for enhancing the accuracy and 

reliability of flood hazard mapping (Cook & Merwade, 2009). 

As previously mentioned, predicting the magnitude of floods is crucial in order to assess 

and mitigate potential damages in terms of economic and social impacts. Flood 

inundation models are a valuable tool for this purpose. However, these models need to 

be calibrated using historical flood events that have occurred in the specific area of 

interest. Conventionally, these models are often calibrated with observed water surface 

elevations, adjusting the roughness values at the cross sections (Pramanik et al., 2010). 

Moreover, due to the extreme nature of flood, obtaining these measurements can be 

challenging, which imposes limitations on the calibration and validation processes (Zotou 

et al., 2020). Despite the challenges involved in acquiring calibration data, achieving 

high-accuracy data is crucial for reliable flood predictions. In recent decades, remote 

sensing techniques have emerged as a reliable source of calibration data, coinciding with 

notable advancements in 2D flood inundation models (P. D. Bates, 2022).  

Indeed, satellite imagery has demonstrated its value in accurately capturing and 

delineating the extent of flood inundation over specific areas during flood events (G. 
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Schumann et al., 2009). Optical sensors aboard satellites have been proven to provide 

robust and accurate detection of flooded areas (Faruolo et al., 2009). However, it is 

important to note that these sensors operate effectively only during daytime and in clear 

weather conditions when there are no clouds. This limitation poses a challenge in flood 

situations, particularly during rainfall events when clouds are typically present, making it 

difficult to obtain imagery using optical sensors. The limitations of optical sensors in 

capturing flood data during cloudy and nighttime conditions have led to an increased 

interest in Synthetic Aperture Radar (SAR) data for flood delineation. SAR is a microwave 

remote sensing technique that operates effectively in all weather conditions, including 

during heavy rainfall and at night. It utilizes radar signals to measure backscattered 

energy from the Earth's surface, allowing for the detection and delineation of flooded 

areas even in challenging weather conditions (Liang & Liu, 2020). 

Previous studies have demonstrated the effectiveness of utilizing SAR data in calibrating 

and validating flood inundation models, with a specific emphasis on determining the 

optimal roughness parameter values (Ezzine et al., 2020; Hong Quang et al., 2019; 

Tarpanelli et al., 2013; Wood et al., 2016). Additionally, researchers have employed 

topographic LiDAR data to depict the terrain as high-resolution data, when employing 

SAR data in the calibration and validation processes (Di Baldassarre et al., 2009; Gobeyn 

et al., 2017; Hostache et al., 2009; Matgen et al., 2007; G. J.-P. Schumann et al., 2011). 

However, the exploration of LiDAR data specifically for representing the bathymetry of 

the river under study during the calibration and validation against SAR imagery is still 

limited. This presents an intriguing area for further research, as the incorporation of 

LiDAR-derived (Light Detection and Ranging) bathymetric information could enhance the 

accuracy and detail of riverbed topography representation, thereby improving the 

accuracy and reliability of flood inundation models. 

1.2 Objective of the thesis 

The objective of this thesis is to identify and gather relevant data for the calibration of a 

2D hydraulic model, specifically focusing on real-world observations obtained during flood 

events. Various sources of calibration data will be investigated, and potential rivers with 

available calibration data will be modelled using HEC-RAS (Hydrologic Engineering 

Centers-River Analysis System) to simulate the flow conditions at the time of data 

collection. The ideal scenario is to find calibration data for rivers that have both 

topographic and bathymetric LiDAR data available. Specifically, the following tasks will be 

performed in the thesis: 

1. Acquire data from real-world observations for a potential river, either from the 

archive of the NVE or from satellite data. The use of SAR imagery is particularly 

valuable as it can remotely detect flood inundation areas, even during nighttime 

and cloudy conditions. 

2. Identify a method for delineating flood inundation areas from SAR imagery, that 

should be used in calibration and validation purposes of the 2D hydraulic model. 

3. Calibrate the model using the available data for the river included in the study and 

assess the roughness values derived from the calibrated model in comparison to 

the typical values used in the development of flood inundation models. 

4. Perform a sensitivity analysis for HEC-RAS with respect to flood inundation 

mapping and assess how the findings from this analysis can enhance the overall 

process. 
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1.3 Structure 

The thesis consists of several chapters that provide a comprehensive exploration of flood 

inundation modelling. The first chapter introduces the background, objective, and overall 

structure of the thesis. The second chapter delves into the theoretical aspects of flood 

inundation modelling and provides a selective literature review, to establish a solid 

theoretical foundation and examine previous research in the field. The third chapter 

focuses on the methodologies employed for data processing, conducting 2D hydraulic 

simulations, and the calibration and validation processes. In the fourth chapter, the 

results obtained from the calibration and validation of the hydraulic simulations are 

presented. The fifth chapter offers a detailed discussion and analysis of the obtained 

results. Finally, the sixth and last chapter presents the conclusions drawn from the study 

and suggests potential directions for future work. 
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2.1 Two-dimensional hydraulic model in HEC-RAS 

HEC-RAS is a software developed by the U.S. Army Corps of Engineers (USACE) that 

enables users to perform various hydraulic analyses. It provides capabilities for steady 

flow calculations in one-dimensional, unsteady flow calculations in one and two-

dimensional scenarios, sediment transport and mobile bed computations, as well as 

water temperature and water quality modelling. HEC-RAS is a freely available software 

that was initially developed in 1995. The first version, 1.0, only supported 1D hydraulic 

models. However, with the release of version 5.0 in February 2016, HEC-RAS introduced 

the capability to create both 1D and 2D hydraulic models. This expanded functionality 

allows users to perform more comprehensive hydraulic analyses and simulations. The 

latest version of HEC-RAS, released June 5, 2023, is 6.4. However, for the 2D hydraulic 

simulations conducted in this study, version 6.3.1 of HEC-RAS was used, which was 

released on September 30, 2022 (HEC-RAS Release Notes, n.d.).  

To gain a comprehensive understanding of the hydraulic capabilities of HEC-RAS, it is 

recommended that the reader consults the HEC-RAS 5.0 Reference Manual (G. W. 

Brunner, 2016). This manual provides detailed information about the full range of 

capabilities offered by HEC-RAS. Subsequently, the following sections will provide a 

simplified presentation of the relevant theories from this manual pertaining to unsteady 

2D hydraulic modelling in HEC-RAS, which were utilized in the study. 

HEC-RAS utilizes the shallow water equations (SWE) for channel and flood modelling, 

which are simplified equations derived from the more complex Navier-Stokes equations 

that describe fluid motion in three dimensions. By making certain assumptions and 

simplifications, such as incompressible flow, uniform density, and hydrostatic pressure, 

the shallow water equations provide a practical framework for simulating water behaviour 

in rivers and floodplains.  

The shallow water equations, commonly referred to as the Saint-Venant equations, 

incorporate the principles of conservation of mass and momentum, allowing for the 

calculation of velocity and flow in both the x- and y-directions. Within HEC-RAS, these 

principles are mathematically represented as partial differential equations, forming the 

basis of the 2D hydraulic models used for simulating water behaviour in various hydraulic 

systems. 

The unsteady partial differential form of the mass conservation (continuity) equation can 

be written as: 

𝜕𝐻

𝜕𝑡
+ 

𝜕(ℎ𝑢)

𝜕𝑥
+

𝜕(ℎ𝑣)

𝜕𝑦
− 𝑞 = 0 

( 1 ) 

where H is the water surface elevation, t is time, h is the depth of water, u and v are the 

vertically averaged velocities in x- and y-direction, x and y are the distance in the flow 

and lateral direction, and q is the lateral inflow term. 

2 Flood inundation modelling 



22 

 

The partial differential from of the momentum equations for two-dimensional flow in both 

the x- and y-directions can be expressed as follows: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=  −𝑔

𝜕𝐻

𝜕𝑥
+ 𝑣𝑡 (

𝜕2𝑢

𝜕𝑥2
+ 

𝜕2𝑢

𝜕𝑦2
) −  𝑐𝑓𝑢 + 𝑓𝑣 

( 2 ) 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
=  −𝑔

𝜕𝐻

𝜕𝑦
+  𝑣𝑡 (

𝜕2𝑣

𝜕𝑥2
+ 

𝜕2𝑣

𝜕𝑦2
) − 𝑐𝑓𝑣 − 𝑓𝑢 

( 3 ) 

where H is the water surface elevation, t is time, u and v are the vertically averaged 

velocities in x- and y-direction, x and y are the distance in lateral direction, vt is the 

horizontal eddy viscosity coefficient, cf is the bottom friction coefficient, and f is the 

Coriolis parameter. 

Diffusion wave, commonly used in 2D hydraulic models, is obtained by simplifying the 2D 

momentum equations. This involves removing the acceleration terms related to changes 

in velocity over time and space. The resulting equation considers only gravity, friction, and 

hydrostatic pressure forces. The diffusion form of the momentum equation can be 

expressed as follows: 

𝑐𝑓𝑢 =  −𝑔
𝜕𝐻

𝜕𝑥
 

( 4 ) 

 

𝑐𝑓𝑣 =  −𝑔
𝜕𝐻

𝜕𝑥
 

( 5 ) 

where H is the water surface elevation, u and v are the vertically averaged velocities in 

x- and y-direction, and cf is the bottom friction coefficient. 

The diffusion wave equations are derived by combining the diffusion form of the 

momentum equations with the continuity equation, with the aim of solving the water 

surface elevation. As a result, the diffusion wave equations offer improved stability, ease 

of solution, and reduced computational requirements for a variety of scenarios. However, 

it is important to acknowledge that the diffusion wave equations sacrifice accuracy 

compared to the full shallow water equations due to the omission of acceleration terms. 

Consequently, their applicability is limited to a subset of problems within the full range 

(G. Brunner et al., 2020). 

Manning's formula is used to determine the bottom friction coefficient cf, and it can be 

expressed as follows: 

𝑐𝑓 =  
𝑛2𝑔|𝑉|

𝑅
4
3

 

( 6 ) 

where n is Manning’s n, g is the acceleration term due to gravity, |V| is the magnitude of 

the velocity-vector, and R is the hydraulic radius. 
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HEC-RAS employs the sub-grid bathymetry approach (Casulli, 2009) to address the 

challenge of incorporating fine topographic details from high-resolution airborne remote 

sensing data into a 2D computational grid. To account for the fine topographic features, 

the computational grid cells include additional information such as hydraulic radius, 

volume, and cross-sectional area, which can be pre-computed from the fine bathymetry 

data. Although the high-resolution details are lost, this approach ensures that the 

numerical method considers the fine bathymetry through mass conservation. 

Furthermore, to take advantage of orthogonality in grids, HEC-RAS utilize a hybrid 

discretization scheme combining finite difference approximations and finite volume 

approximations. Moreover, a Newton-like solution technique is employed to compute the 

discrete solution for the hydraulic equations. 

In HEC-RAS, the computational domain is divided into non-overlapping polygons to 

create a grid, which can be structured or unstructured. The grid allows for various cell 

shapes, such as triangles, squares, rectangles, and polygons with up to eight sides, 

providing flexibility for complex geometries. The software assumes that the cells in the 

grid are orthogonal to each other, simplifying computations and improving computational 

speed (G. W. Brunner, 2023). To account for the second-order derivative terms and the 

differential nature of the variable relationship, HEC-RAS incorporates a dual grid 

alongside the regular grid. This dual grid spans the computational domain and 

establishes a correspondence between dual nodes and regular grid cells, as well as 

between dual cells and regular grid nodes. The inclusion of the dual grid is essential for 

numerically modeling the differential equations in the software (G. W. Brunner, 2016). 

2.2 Data and modelling requirements 

Flood inundation models require four classes of information data: information about the 

topography and bathymetry, boundary conditions, values of the friction coefficient, and 

observations of a real flood to calibrate the model and validate its performance (P. D. 

Bates, 2022). 

2.2.1 Topographic and bathymetric data 

The topography of floodplains and river channels plays a crucial role in flood hydraulics 

and the extent of simulated floods, making it the most critical factor in hydraulic 

modelling for accurate flood predictions (Horritt & Bates, 2001; Nicholas & Walling, 

1997). Given the generally flat nature of river floodplains, deficiencies in topographic 

data can lead to significant discrepancies in hydraulic results, affecting the delineation of 

the flood area (P. D. Bates & De Roo, 2000). As a result, optimizing the quality of 

topographic data is of utmost importance, given the potential errors it can introduce in 

risk assessment, flood management, and flood hazard classification (Casas et al., 2006).  

Over the past three decades, there has been significant progress in improving the quality 

of topographic data, largely driven by advancements in remote sensing technology. 

Particularly, LiDAR data has become increasingly available on a national scale in many 

developing countries, with a horizontal resolution of 1-2 meters and a vertical accuracy of 

approximately 10 centimetres (P. D. Bates, 2022). In Norway, about 80% of the country 

is already covered by topographic data obtained through LiDAR scanning, and full 

coverage is expected by 2023 (Breili et al., 2020). 

LiDAR-derived topographic data is highly suitable for flood inundation modelling due to its 

ability to effectively separate vegetation and buildings from open ground (P. D. Bates, 
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2022). However, it is important to note that topographic LiDAR technology is unable to 

penetrate water (Leatherman, 2003), which can result in a misrepresentation of river 

bathymetry. Studies have highlighted that this limitation can lead to erroneous flood 

inundation predictions (Awadallah et al., 2022). Therefore, while LiDAR offers numerous 

advantages for topographic data collection, the accurate representation of river 

bathymetry requires additional techniques and considerations. 

Obtaining bathymetric data poses significant challenges, even in well-resourced 

countries. Conventional methods like ground surveys employing GPS and total station 

equipment are resource-intensive and face limitations when dealing with large rivers. 

Field surveys also utilize alternative technologies such as side-scan sonar and multibeam 

echo to accurately map channel geometry in extensive river systems (P. D. Bates, 2022).  

Bathymetric LiDAR, a relatively new technology explicitly designed for measuring water 

depth, overcomes some of these challenges. By utilizing aerial vehicles, bathymetric 

LiDAR enables the scanning of much larger areas compared to traditional methods, 

providing enhanced accuracy and spatial resolution. 

LiDAR, a technology developed in the 1960s, is an active remote sensing system widely 

used for terrain modelling. One of the significant advantages of LiDAR is its capability to 

capture highly accurate and high-resolution 3D terrain models, commonly represented as 

point clouds (Dowman, 2004). Remote sensing, on the other hand, refers to the scientific 

discipline focused on gathering information about the Earth's surface features from a 

distance, accomplished typically by utilizing sensors installed on aircraft or satellites 

(Navalgund et al., 2007). 

Topographic LiDAR, commonly referred to as red LiDAR, is an airborne LiDAR system that 

utilizes a light source with a wavelength ranging from 1000 to 1600 nm. This light is 

directed towards the Earth's surface and emitted back to the aerial vehicle upon 

interaction with various objects such as roads, buildings, vegetation, and the ground 

surface (Dong & Chen, 2017). When the laser pulses are directed towards vegetated 

areas, the first interaction occurs with the canopy, followed by the ground. The reflected 

light from the canopy is known as the first return, while the light reflected from the 

ground is called the last return. In cases where a single pulse produces multiple returns, 

certain LiDAR systems have the capability to capture the complete waveform, providing 

more detailed information about the surface. Additionally, the laser pulse interacts 

differently with different surfaces, resulting in variations in intensity, which can be 

leveraged to derive valuable information about the surface and objects (Smith et al., 

2006). 

The laser scanner includes a receiver unit with a discriminator and a time interval meter. 

This unit logs the returning signal and calculates the elapsed time between when the 

signal was sent and when it returns. By using the velocity of light and half the round-trip 

time, this information is then used to calculate the distance between the laser and the 

terrain feature using this formula: 

𝐷 = 𝑐 (
∆𝑇

2
) 

( 7 ) 

where, D is the distance of the object, c is the speed of light, and ΔT is the time required 

by the light to travel (Mehendale & Neoge, 2020). 
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The information is stored and visualized as a three-dimensional point cloud in a digital 

surface model (DSM), which captures elevation measurements for each reflected point. 

Additionally, it is possible to remove points that are above the ground level in order to 

generate a digital terrain model (DTM). The terminology of different elevation models can 

be confusing, as the term digital elevation model (DEM) is commonly used in research 

papers. DEM is often a broad term that can refer to various types of elevation models, 

including DTM, DSM, and others (Dong & Chen, 2017; Smith et al., 2006).  

On the other hand, bathymetric LiDAR, also known as green LiDAR, is specifically 

designed for obtaining information about water depth in rivers and coastal areas. Unlike 

topographic LiDAR, which uses an infrared laser, bathymetric LiDAR employs two lasers 

with different wavelengths to separate the water bottom from the water surface during 

depth measurements. A green laser with a wavelength of 532 nm is utilized to detect the 

water bottom, while an infrared laser with a wavelength of 1064 nm is employed to 

identify the water surface (LaRocque & West, 1999). The wavelength of the green laser is 

optimized for penetrating the water surface and accurately measuring the water depth. 

In contrast, the red laser used in topographic LiDAR cannot penetrate water and hence 

returns the signal from the water surface. The time difference between the two return 

signals is used to calculate the water depth (Lin, 1995).  

However, bathymetric LiDAR faces certain limitations in measuring water depth due to 

factors such as absorption, scattering, and refraction of the green laser in water, which 

can affect laser energy and limit the measurable depth. Other elements that influence the 

maximum water depth measurable by bathymetric LiDAR include water turbidity, 

interaction with bottom radiance, as well as incident sun angle and intensity (Irish & 

White, 1998). Under optimal conditions, bathymetric LiDAR has been able to measure 

water depths up to 60 meters (Wozencraft & Lillycrop, 2003). 

2.2.2 Boundary conditions 

Boundary conditions are crucial parameters in flood inundation modelling as they provide 

vital information about the behaviour at the edges of a system. They can be categorized 

into three types: external boundary conditions, internal boundary conditions, and global 

boundary conditions. External boundary conditions are directly associated with the 

boundary of the 2D flow area and include flow hydrograph, stage hydrograph, normal 

depth, and rating curve. Internal boundary conditions are applied within the 2D flow area 

and encompass flow hydrograph and precipitation. Global boundary conditions, on the 

other hand, apply to the entire model and consist of precipitation, evapotranspiration, 

and wind (G. W. Brunner, 2023). 

The flow hydrograph is the most commonly used upstream boundary condition in flood 

inundation models. It represents the water flow (discharge) over a specific time period. 

Input parameters, including flow values at different time intervals and an energy 

gradient, are required for the flow hydrograph. The energy gradient helps calculate the 

normal depth at the upstream boundary condition, which is then used to distribute water 

to the cells at the boundary. By providing information on the varying flow rates, the flow 

hydrograph enables the model to simulate the dynamic behaviour of the river system 

over time (G. W. Brunner, 2016). 

Normal depth is commonly employed as the downstream boundary condition in flood 

inundation modelling due to the lack of available field data for most design flows. In such 



26 

 

cases, Manning's equation can be utilized to compute an approximate value for the 

normal depth boundary condition (Robinson et al., 2019). 

When selecting the location of boundary conditions in a flood inundation model, it is 

important to place them sufficiently far from the area of interest. This ensures that the 

location of the boundary conditions does not unduly influence the results. By positioning 

the boundary conditions at a suitable distance, the model can provide more reliable and 

accurate outcomes for the specific area of focus. This consideration helps to minimize any 

potential biases or distortions caused by the proximity of the boundary conditions to the 

region under study (G. Brunner et al., 2020). 

Boundary data in flood inundation models can be obtained from various equipment 

sources, such as rain gauges, coastal water level stations, and river gauging stations, 

which measure water level and discharge. Measured data can be used to develop 

numerical and statistical models, allowing for extrapolation when faced with new 

situations. Flood inundation models aim to capture extreme behaviours, which can 

introduce additional complexities. During extreme conditions, measurement equipment is 

more susceptible to failure, leading to increased observation errors. Furthermore, 

numerical and statistical models that are calibrated for specific conditions may need to 

extrapolate beyond the calibrated flow range (P. D. Bates, 2022).  

One example of potential errors in flood modelling arises from rating curves, which 

convert stage values to discharge. These curves are typically developed using 

measurements from non-flood flow states. As a result, during large floods and out-of-

bank flows, the momentum transfer between the main channel and flood can cause flow 

error estimates of up to ±25 % if this mechanism is not considered during rating curve 

development (Ervine et al., 1982). 

Another example is a study done by (McMillan et al., 2012), where they found typical 

errors in river discharge measurements at ground gauging stations range from ±10-20 % 

for medium or high in-bank flows to up to ±40 % for out-of-bank flows. These errors 

exist even before any statistical or numerical extrapolation is performed to estimate 

values for more extreme and unobserved events. 

According to (P. D. Bates, 2022), the accuracy of discharge measurements has not seen 

significant improvement over many decades, and there are no apparent emerging 

technologies that would lead to a drastic increase in accuracy in the future. As a result, 

gauged discharges are expected to become the primary source of error in flood 

inundation modelling studies, particularly as the quality of fine spatial resolution 

topography and validation data improves. 

2.2.3 Roughness assignments 

Roughness, along with topographic data, is a critical input parameter in flood inundation 

models (Marks & Bates, 2000). The calibration process in hydraulic models often involves 

tuning roughness parameters to match model predictions with real-world observations. 

However, this method can be questionable as it may lead to the use of non-physically 

representative roughness values to compensate for deficiencies in the model scheme, 

computation method, or model inputs (Aronica et al., 1998). Therefore, in order to limit 

the range of input parameters during the calibration process of flood inundation models, 

it is essential to prioritize accurate estimates of roughness parameters. This is 

particularly crucial as these models are commonly utilized for designing embankments 

with discharge values that exceed the range of available observed data. Thus, using 

realistic parameters becomes even more important to ensure reliable and meaningful 

results (Straatsma & Baptist, 2008).  



27 

 

Manning's n-value is widely used as a roughness coefficient in hydraulic modelling, 

particularly in open channel flow calculations using Manning's equation. The value of 

Manning's n represents the resistance to flow offered by the channel surface and is 

derived from empirical data obtained from rivers and streams worldwide. It serves as a 

crucial parameter in estimating the flow velocity and water surface elevation in open 

channels. On the other hand, Manning's formula is derived using theoretical principles 

based on the phenomenological theory of turbulence (Gioia & Bombardelli, 2001).  

Aerial or satellite imagery (Chaulagain, 2018; Straatsma & Baptist, 2008), textbooks 

(Chow et al., 1988; Te Chow, 1959), guidelines found in research papers (González-

Sanchis et al., 2012), and site inspections (surveying) are all valuable resources when it 

comes to the assignments of roughness values and determining the values of Manning's 

n coefficient. 

2.2.4 Calibration and validation data 

The utilization of actual flood event observations is paramount in the calibration and 

validation process of a flood inundation model. Consequently, the availability of these 

observations holds significant importance in the development of such models. The 

observations can encompass various types of data, including measured water surface 

elevations, velocity, discharge, as well as flood extent derived through satellite imagery 

or aerial photography. However, it is important to acknowledge that these observations 

are prone to significant errors (P. D. Bates, 2022).  

Numerous studies have investigated the uncertainties associated with the primary data 

sources used in the calibration and validation of flood inundation models. For instance, 

(McMillan et al., 2012) reported an error range of ±10-20 % for medium or high-in-bank 

flows and up to ±40 % for out-of-bank flows when measuring discharge. When it comes 

to water level measurements at gauging stations, an error of approximately ±0.01-0.02 

m has been reported (P. D. Bates, 2022). Post-event high water wrack or water stains, 

used to estimate water level, introduce an average error of around ±0.3-0.5 m, with the 

possibility of more extreme outliers (Fewtrell et al., 2011). Measurements of water 

velocity with a current meter indicate an error of approximately 2% in laboratory tests, 

while under field conditions, an error range of 5-10% is possible (Carter & Anderson, 

1963). Evaluating flood extents using SAR imagery, such as COSMO-SkyMed and 

Sentinel-1b, in comparison with aerial photos, (Horritt et al., 2001) found that radar data 

could capture around 75% of the true flooded area in a flood event in the United 

Kingdom. 

Satellite data is particularly valuable for calibration and validation purposes in flood 

inundation modelling due to its ability to provide measurements over large spatial scales. 

Given that flooding is a large-scale phenomenon, satellite data offers an appealing 

method for obtaining information about flood areas across various temporal scales. Over 

the last two decades, there has been a substantial increase in satellite missions equipped 

with instruments capable of mapping floods. This growth has led to a consensus among 

space agencies and scientists that satellites can effectively support flood monitoring 

efforts (G. J. Schumann et al., 2018). 

The two most commonly used sensors for flood mapping worldwide are optical and radar 

(microwave) sensors. Optical sensors have been in use since the mid-1970s but have 

limitations related to cloud cover and the density of vegetation cover and built-up areas. 

Mapping flood inundation areas using optical images is relatively straightforward and 

these images now hold significant historical value. SAR, on the other hand, has been 

providing more available satellite images of floods since the mid-1990s, with the launch 

of high-resolution SAR satellites in the last decade further improving the situation. During 
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high-impact flood events, weather conditions can be extremely adverse, and this is often 

when accurate high-resolution flood data is needed the most. SAR technology can 

penetrate cloud cover and operate in all-weather conditions, offering day and night 

capabilities, which gives it a distinct advantage for flood mapping purposes (G. J.-P. 

Schumann & Moller, 2015).  

The increased accessibility of satellite data and its ability to operate in all weather 

conditions have significantly improved flood mapping reliability and have contributed to 

significant advancements in flood inundation modelling. Satellite data has become 

increasingly valuable in the calibration and validation of flood inundation models (P. 

Bates et al., 1997). 

In a study by (P. D. Bates et al., 2006) a hybrid 1D-2D flood model was assessed using 

SAR imagery and high-quality data. The researchers used floodplain terrain data from 

airborne LiDAR, upscaled to an 18 m resolution for modelling. Bathymetric data from 

ground surveys were incorporated as a rectangular channel, matching actual cross 

sections. Boundary conditions came from ground gauging stations, and the model was 

minimally calibrated with friction parameters within plausible ranges. This study stood 

out due to its utilization of SAR images from multiple occurrences of a significant flood in 

November 2000. These images precisely delineated the flood shoreline within an 

accuracy range of approximately 1-2 meters, making it one of the most reliable sources 

of information on flood extent ever collected. The research outcomes demonstrated that 

by utilizing an airborne radar image obtained close to peak flow, the model achieved an 

accurately predicted 89 % of the observed inundated area with minimal under- or 

overprediction. 

2.3 The Sentinel-1 mission 

The Sentinel-1 mission consists of a constellation of satellites in polar orbits that conduct 

continuous C-band SAR imaging day and night. With this advanced imaging capability, 

the satellites are able to acquire imagery regardless of weather conditions. Sentinel-1 

serves as the first mission among the five missions being developed by the European 

Space Agency (ESA) for the Copernicus initiative (Sentinel-1 - Missions - Sentinel Online 

- Sentinel Online, n.d.). 

The original configuration of the Sentinel-1 mission included two satellites, Sentinel-1A 

and Sentinel-1B, which shared the same orbital plane. Sentinel-1A was launched on April 

3, 2014, while Sentinel-1B was launched on April 25, 2016. Two new satellites, Sentinel-

1C and Sentinel-1D are planned to replace the first two satellites, Sentinel-1A and 

Sentinel-1B, at the end of their operational lifespan (Sentinel-1 - Mission Summary - 

Sentinel Online - Sentinel Online, n.d.). However, Sentinel-1B has been retired due to 

malfunctioning on December 23, 2021, leaving only Sentinel-1A as the active satellite 

within the constellation. The retirement of Sentinel-1B has accelerated the process of 

launching Sentinel-1C (ESA - Mission Ends for Copernicus Sentinel-1B Satellite, n.d.), 

which was originally planned to launch by the end of 2023 (Sentinel-1C - ITC Satellites 

and Sensors Database, n.d.).  

The Sentinel-1 satellites are positioned in a sun-synchronous, near-polar orbit and 

feature a C-band SAR instrument operating at 5405 GHz. With a revisit period of 12 days 

for each individual satellite, their 180° orbital separation allows for a reduced revisit 

period of 6 days at the equator and even more frequent revisits at higher latitudes. The 

primary acquisition mode of the radar is Interferometric Wide swath (IW), offering a 
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swath width of 250 km and a spatial resolution of 5 m x 20 m (Sentinel-1 - Mission 

Summary - Sentinel Online - Sentinel Online, n.d.), illustrated in Figure 1. 

 

Figure 1: Radar in motion to enable SAR imaging (Overview | Get to Know SAR – NASA-
ISRO SAR Mission (NISAR), n.d.). 

The SAR imagery obtained from the Interferometric Wide swath mode is provided as 

Level-1 Ground Range Detected (GRD) products, often acquired in dual polarization, VV 

(Vertical-Vertical) and VH (Vertical-Horizontal). These products undergo detection, multi-

looking, and projection to ground range using an Earth ellipsoid model. The resulting 

GRD products have square spatial resolution pixels and square pixel spacing, which helps 

in reducing speckle but at the expense of slightly lower spatial resolution (Sentinel-1 - 

Data Products - Sentinel Online - Sentinel Online, n.d.).   

The Sentinel-1 products are made available systematically and free of charge to all data 

users including the public, scientific and commercial users. This have resulted in that 

many researchers have been using Sentinel-1 SAR imagery in studies when assessing 

hydraulic models with the use of SAR data from the Sentinel-1 mission (Elkhrachy et al., 

2021; Ezzine et al., 2020; Melkamu et al., 2022; Zotou et al., 2020). 

2.4 Calibration and validation 

Calibration and validation are critical steps in the development of flood inundation 

models. During the calibration process, model parameters are adjusted to achieve the 

best possible agreement between the model outputs and historical data. This ensures 

that the model accurately represents the observed behaviour of floods and their impacts. 

Subsequently, the calibrated model is validated using independent datasets to assess its 

ability to reproduce flood behaviour and historical flood events that were not used during 

the calibration. Calibration and validation of flood inundation models are essential to 

ensure reliable results and achieve confidence in the accuracy of the model (Dhillon et 

al., 2014).  

The calibration process of the model enhances understanding of the sensitivity to data, 

friction forces, and other empirical coefficients. In contrast, an uncalibrated flood 

inundation model is merely a numerical experiment, lacking an understanding of its 

ability to replicate realistic flows and water surface elevations within the system. The use 
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of an uncalibrated model is only justified in emergency scenarios, where time or data 

limitations prevent calibration, as some information from an uncalibrated model is better 

than having no information at all (G. Brunner et al., 2020). 

In the calibration process of a hydraulic model, the focus is primarily on calibrating the 

surface friction parameter, which is the key parameter in most cases. In contrast, other 

environmental prediction codes often involve tens or even hundreds of parameters that 

require calibration (P. D. Bates, 2022). However, measuring surface friction directly in 

the field remains a challenge, leading to difficulties in parameterizing and calibrating 

friction accurately. Hydraulic resistance encompasses several components that are 

theoretically unmeasurable, although advancements have been made in evaluating 

vegetation-induced resistance using remotely sensed plant biophysical data (Mason et 

al., 2003).  

As a results, despite indirect measurements (Arcement & Schneider, 1989), modellers 

experience, and land use data to establish a plausible range of friction values, the spatial 

distribution of friction parameters remains uncertain. Consequently, adjustments to these 

parameters are often necessary to optimize the agreement between the model and 

observed data. However, it is important to note that the optimization process has a 

limitation: while it brings the parameters closer to their true values, it can also 

unintentionally compensate for errors in the input and validation data, as well as 

discrepancies between the modelled hydraulic processes and real-world conditions (P. D. 

Bates, 2022). 

2.5 Uncertainty 

Uncertainty arises when we have limited confidence in a particular matter, spanning a 

range from complete uncertainty about an outcome to nearly complete certainty. 

Uncertainty analysis involves considering uncertainties associated with various factors 

such as model structure, parameters, boundary conditions, and calibration/validation 

data to evaluate the uncertainty present in model outputs (Prinos, 2009). Uncertainty 

analysis has gained significant attention in the flood inundation modelling community and 

is considered crucial for accurate predictions in non-idealized environmental systems. 

Addressing uncertainty can be achieved through a systematic approach involving three 

key steps (Teng et al., 2017): 

1. Identify and determine the sources of uncertainty. 

2. Quantify or qualitatively rank the uncertainty from different sources and prioritize 

them. 

3. Properly communicate the uncertainty. 

Flood inundation modelling involves various sources of uncertainty, with two fundamental 

types that are important to distinguish: natural and epistemic uncertainty. Natural 

uncertainty arises from unpredictable outcomes inherent in stochastic processes and 

cannot be reduced. Epistemic uncertainty, on the other hand, stems from incomplete 

knowledge about the studied process and can be reduced by acquiring more information 

(Merz & Thieken, 2005). Considering model processes can also serve as a practical 

approach to identifying uncertainties (Beven et al., 2015). According to (Teng et al., 

2017), the most relevant and extensively studied sources of uncertainty in flood 

inundation modelling, which are inherent to the model processes, include: 

• Choice of model structures (Apel et al., 2009) 

• Model parameters (e.g., friction parameters, conveyance parameters etc.) (P. D. 

Bates et al., 2004; Pappenberger et al., 2005; Romanowicz & Beven, 2003) 
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• Model inputs (floodplain and channel geometry, initial and boundary conditions 

such as inflow hydrographs and lateral inflow) (Abily et al., 2016; Pappenberger 

et al., 2008; Savage et al., 2016) 

• Validation data (Stephens et al., 2012; Werner et al., 2005) 

• Change in floodplain landscape over time (e.g., land use change) (Beven, 2011) 

• Change in climate conditions (Neal et al., 2013; Vaze et al., 2011) 

Sensitivity analysis are techniques that efficiently quantify the influence of uncertain 

drivers in a model, identifying those with the most significant impact and assigning them 

a rank or weight based on their influence (Hall et al., 2005). Sensitivity analysis can be 

categorized into two types: local sensitivity analysis and global sensitivity analysis. In 

local sensitivity analysis, parameters are altered individually around a specific point to 

evaluate their influence on the model output of interest (Tsubaki & Kawahara, 2013). 

Global sensitivity analysis evaluates the variation of all parameters together across their 

complete parameter space, thereby capturing the collective influence of each parameter 

averaged over all possible values of other input parameters. This approach enables the 

assessment of parameter interactions and their significance in relation to model 

predictions (Fieberg & Jenkins, 2005). In published sensitivity studies, uncertainties are 

often addressed through model calibration, with particular emphasis on friction 

parameters. Friction parameters are typically prioritized in sensitivity analyses due to 

their significant influence on the overall behaviour and outcomes of the system being 

studied. (Hall et al., 2005; Pappenberger et al., 2005). On the other hand, 

(Pappenberger et al., 2008) conducted a study on different global sensitivity analysis 

methods and found that it is impossible to define sensitivity in a unique way. 

Furthermore, these different methods can lead to variations in the ranking of the 

importance of model factors. 

In flood inundation mapping, it is essential to embrace an inclusive approach to 

comprehending and addressing uncertainty. This entails examining uncertainty from 

multiple angles, including different methods, assumptions, and utilizing multiple models. 

It is important to acknowledge that the communication of uncertainty itself introduces 

uncertainty. A important aspect of uncertainty communication in flood inundation 

modelling is effectively conveying the meaning and significance of the outputs obtained 

from uncertainty analysis (Beven et al., 2015). 
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The methodology in this study is presented in Figure 2, outlining the sequential steps 

undertaken. Firstly, a study area is selected based on predefined criteria. Secondly, the 

terrain data, boundary conditions, and roughness values used in setting up the 2D HEC-

RAS hydraulic model are defined, as well as the collection of calibration and validation 

data. Thirdly, the data processing methodologies are described, with a particular focus on 

flood delineation of SAR images. Fourthly, the setup of the 2D HEC-RAS hydraulic model 

is explained. Fifthly, the establishment of important parameters for executing the 

simulations is detailed. Lastly, the calibration and validation processes are explained, 

along with how the sensitivity analysis is performed and how the model performance of 

the models are evaluated. 

 

Figure 2 - Flowchart of methodology for hydraulic modelling. 

3.1 Study area 

In the thesis, one of the tasks was to locate real-world observation data for a suitable 

river that had both topographic LiDAR and bathymetric LiDAR data available. Potential 

sources of such data was identified in a report by (Alfredsen, 2022). This report 

highlighted rivers where bathymetric LiDAR data had been combined with topographic 

LiDAR data to create a comprehensive DEM of the entire river valley.  

After identifying rivers with merged LiDAR data, the next step in the thesis involved 

investigating potential flood events in these rivers. To determine the flood events that 

had occurred since the launch of the Sentinel-1 mission on April 3, 2014, the Sildre 

[https://sildre.nve.no/] service provided by NVE was utilized.  

To confirm if satellite images were available for the identified flood events, the Varsom 

Xgeo [https://xgeo.no/] tool was employed. Varsom Xgeo is a specialized tool designed 

for preparedness, monitoring and warning of flood, landslides, and avalanches. By using 

3 Methodologies 

https://sildre.nve.no/
https://xgeo.no/
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Varsom Xgeo, changes in satellite images were observed and is displayed as flooded 

areas in the map. This information was essential for selecting suitable study areas for the 

thesis, as it ensured that there were SAR images available for downloading, that could be 

used in the calibration and validation processes.  

Following the identification of the river with a significant number of available SAR images 

capturing various flood events, the Surna River was selected as the primary focus of the 

study. 

The Surna River originates in Rindal municipality, located in Trøndelag county, Norway. 

The river flows through several municipalities, including Surnadal municipality in Møre 

and Romsdal county, situated in western Norway. Eventually, the river empties into the 

Surnadalsfjorden near the towns of Surnadalsøra and Skei. The Surna River begins at the 

confluence of the Lomunda and Tiåa rivers and has a gentle slope, extending for 

approximately 45 kilometers. 

Moreover, the Surna River has its source in the mountainous regions of Trollheimen in 

the northeastern part of Møre and Romsdal county. It is fed by four smaller rivers, 

namely Rinna, Bulu, Folla, and Vindøla, all originating from Trollheimen. The majority of 

the river system is located within Surnadal and Rindal municipalities. It shares borders 

with the Søya and Todalselva rivers to the west, the Driva river to the south, the Orkla 

river to the east, and the Svorka and Bøvra rivers to the north. The drainage area of the 

river at its outlet is approximately 1200 km2, and the mean annual specific runoff for the 

area is estimated to be 48 l/s∙km2. The river system exhibits significant variations in 

elevation, ranging from sea level up to an elevation of 1668 meters above sea level. The 

highest point in the area is Snota, situated in the Trollheimen mountain range. The 

average elevation of the region is approximately 610 meters above sea level (Leine, 

2018). 

Currently, the catchment area is heavily regulated, with approximately 60% of the total 

precipitation affecting the Surna River system. The power plant system was established 

in 1968. As a result of this regulation, the Trollheimen power plant generates 

approximately 809 GWh of electricity annually, while the Gråsjø power plant produces 

around 73 GWh per year. One notable impact of the regulation is the significant reduction 

in the intensity of the annual spring floods in the regulated parts of the river system. 

(Ugedal et al., 2021).  

On the other hand, the Surna River system experiences its largest floods during autumn, 

primarily due to heavy rainfall and often in combination with snow melting. The limited 

storage capacity of the reservoirs also plays a role in intensifying these floods, especially 

in the lower parts of the catchment area. The regulations in place have increased the 

prominence of autumn floods in the Surna River system compared to previous conditions. 

These autumn floods can be rapid and intense due to limited self-regulation in the 

unregulated parts of the catchment area. The presence of the two artificial reservoirs, 

Follsjø and Gråsjø, typically mitigates the floodwater from the eastern part of the 

catchment area. However, if the reservoirs are already full during the autumn period, 

their ability to dampen the floodwater is limited (Leine, 2018). 

The study area in the Surna River starts from 112.27 Skjermo measuring station and 

goes down to Øye bru in Skei center, as illustrated in Figure 3. 
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Figure 3: The study area located in Surnadal municipality, western Norway. 

3.2 Terrain data 

The terrain data used in the hydraulic model is a DEM generated in a study by 

(Awadallah et al., 2022) where they integrated bathymetric LiDAR data with topographic 

LiDAR data, respectively acquired through green and red LiDAR, as shown in Figure 4.  

The bathymetric data retrieved from the green LiDAR has a resolution of 0.5 m, a point 

density of > 1.0 points/m2, and was scanned with the laser RIEGL VQ-880-G. The 

scanning was done by AirborneHydroMapping GmbH (AHM) between 20 August 2016 and 

26 August 2016, on a mission for the hydropower operator Statkraft (Sundt et al., 2021).  

The topographic data retrieved from the red LiDAR has a resolution of 0.5 m, a point 

density of 2.0 points/m2, and was scanned with the laser Leica ALS80. The scanning was 

done by TerraTec AS between 21 July 2016 and 8 October 2016 (Gulbrandsen, 2017). 

 

Figure 4: DEM of study area with green LiDAR data merged with red LiDAR data. 
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3.3 Boundary conditions 

Boundary conditions in HEC-RAS are being used to reflect physical constraints of the 

system being studied, in order to accurately model real-world scenarios. Hence, 

boundary conditions are the set of constraints that define the behaviour of the flow at the 

edges of the computational 2D domain in HEC-RAS. The flow behaviour at the boundaries 

of the system can have significant impact on the hydraulic dynamics throughout the 

entire system. Therefore, it is crucial to understand and carefully select the appropriate 

boundary conditions to ensure accurate modelling results.  

Boundary conditions in HEC-RAS can be classified into three categories: external, 

internal, and global. External boundary conditions can be placed outside the 2D flow 

area, while internal boundary conditions can be placed anywhere inside the 2D flow area. 

Global boundary conditions provide meteorological data to the entire model, if being 

used. Different types of boundary conditions can be applied, such as flow hydrograph, 

stage hydrograph, normal depth, and rating curve. 

Flow hydrograph used as external boundary condition can send flow in and out of the 2D 

flow area by applying positive or negative flow values. Stage hydrograph is an external 

boundary conditions that sends flow in and out of the 2D flow area based on the 

elevation of the ground. If the ground or water surface is lower than the stage, water will 

flow in; if the water surface is higher than the stage, water will flow out of the 2D flow 

area. Normal depth and rating curve are external boundary conditions that can only be 

used where flow leaves the 2D flow area, often being utilized as the downstream 

boundary condition. Internal boundary conditions can only be applied using the flow 

hydrograph as the boundary condition type (G. W. Brunner, 2023). 

3.3.1 Upstream boundary condition 

The upstream boundary condition for the 2D flow area is based on flow values from the 

gauging station 112.27 Skjermo. 112.27 Skjermo was established in 1986 as a 

replacement for the 112.7 Honstad gauging station, to measure the total discharge in the 

Surna River downstream of the Trollheimen power plant. The catchment area for 112.27 

Skjermo is approximately 925 km2 and includes most of the regulation system in the 

Surna River. 

Although the station is located in a well-suited river profile, the quality of the stage-

discharge curve has been assessed by a field hydrologist to be slightly below average. 

While the curve has been well measured, with two flood measurements taken during a 

large flood in 2016, there is some variation in the measurement basis for the curve 

(Leine, 2018). 

The stage-discharge curve was updated in 2017 because of the flood measurements in 

2016. This updated curve now provides significantly more water than the previous 

version due to new measurement technology ADCP (Acoustic Doppler Current Profiler), 

that provides more accurate results than traditional methods like using a current meter. 

However, the field hydrologist believes that the current curve may still underestimate the 

amount of water during large floods, and further improvements may be necessary to 

achieve better accuracy (Leine, 2018). 

The placement of the upstream boundary condition was determined based on two 

different scenarios. In the first scenario the boundary condition was placed where the 

112.27 Skjermo gauging station is located, to limit the uncertainty between water inflow 

between the boundary condition and gauging station. In the other scenario the 2D model 
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domain was extended approximately 370 m upstream of 112.27 Skjermo gauging station 

as shown in Figure 5. This was done in order to use an observed water surface elevation 

at 112.27 Skjermo from the August 14, 2003, flood event for calibration and analysis 

purposes. 

 

Figure 5: Upstream BC in 2D flow area (left: first scenario, right: second scenario). 

The upstream boundary condition was defined with an external boundary condition using 

a flow hydrograph (discharge versus time) to bring flow into the 2D flow area, which is a 

required data for this boundary condition. The other required data is the energy slope for 

computing normal depth along the boundary condition line for each computational time 

step, using the given flow rate and underlying terrain data in the cross section. Once the 

normal depth of water is determined using the energy slope, a flow distribution is 

computed based on the normal depth water surface and the underlying terrain of the 

boundary condition line. This flow distribution is then utilized to assign the water flow to 

the cells along the boundary condition line that are wet. At every time step of the 

simulation, it is possible that only a section of the boundary condition line is wet, 

meaning that only those cells whose water surface elevation exceeds the elevation of 

their outer boundary terrain will receive water. A conveyance weighting approach is 

employed to send water to the cells, if all the cells along the boundary condition line is 

lower than the computed normal depth water surface (G. W. Brunner, 2023). Therefore, 

the width of the boundary condition line is also of relevance to simulate realistic flow 

situations along the boundary condition.  

In accordance with (Robinson et al., 2019), it is considered good practice to position 

upstream boundary conditions at locations characterized by narrow floodplains and 

minimal hydraulic complexity. These locations exhibit hydraulic conditions that are closer 

to 1D flow, which better represents typical flow distribution. Moreover, this approach 

simplifies the estimation of inflow hydraulics. However, due to constraints in the vicinity 

of the 112.27 Skjermo measuring station, this ideal placement was not attainable. 

To address this limitation, a sensitivity analysis was conducted, incorporating different 

energy slopes based on the bed slope in the proximity of the boundary condition. 

Unrealistic values with very steep slopes were also included to assess the tolerance of the 

model for such parameters. The energy slope values ranged from 0.0001 to 0.01, and 

Figure 6 illustrates the corresponding water surface elevation for each slope. The 

sensitivity analysis utilized the full shallow water equation, a Manning's n value of 0.06 

across the entire 2D domain, and a flat hydrograph with a flow rate of 465.0 m3/s. 
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Figure 6: Water surface elevations from upstream boundary condition to 200 m 
downstream. 

The results of the sensitivity analysis indicate that moving the area of interest 

approximately 220 m downstream from the upstream boundary condition will limit the 

uncertainty from the calculated energy slope in the flow hydrograph option. Thus, the 

water surface elevation will be normalized before reaching the 112.27 Skjermo gauging 

station and the analysis can be performed from this point. It also shows that both 

scenarios can be used. However, the first scenario must move the area of interest even 

further down the river reach before the analysis can be carried out. The energy slope 

used in the upstream boundary condition for further simulations was 0.0007, as it had 

the most natural slope on the water surface elevation from the sensitivity analysis 

results. Nevertheless, this value is not of significantly importance if the area of interest is 

moved far enough away from the boundary condition line but should be used within 

realistic values. 

3.3.2 Downstream boundary condition 

The Surna River has a relatively flat slope, implying that the downstream boundary 

condition can significantly impact the accuracy of model results. Therefore, to reduce 

uncertainties from the downstream boundary, the model should be extended further 

downstream from the study area (Robinson et al., 2019). In this case, the bathymetric 

LiDAR data in the DEM serves as the constraining component, so the downstream 

boundary condition was placed just upstream of the Øya bridge, where the LiDAR data 

ends as shown in Figure 7. 
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Figure 7: Downstream boundary condition using normal depth option. 

If LiDAR data were available all the way to the fjord, the model area could have been 

extended, and a stage hydrograph could have been used to define the downstream 

boundary condition, potentially limiting uncertainty in the results by utilizing ocean tides. 

There are no stream gauges in the region of the downstream boundary condition with 

known water surface elevations, so any stages for a given flow is not known. Therefore, 

the normal depth boundary condition was used. To compute water surface elevations for 

each given flow in the normal depth option, the friction slope (slope of the energy grade 

line) is used withing the Manning’s equation to calculate the water surface elevation 

based on the cross section underneath the 2D boundary condition line (G. W. Brunner, 

2023). 

Normal depth assumes uniform flow conditions, but since it do not normally occur in 

naturals stream normal depth boundary condition should be placed far enough 

downstream from the study area to not have interference with the results (G. W. 

Brunner, 2016). Therefore, a sensitivity analysis was performed to see the effect of 

different friction slopes in water surface elevations upstream of the boundary condition as 

shown in Figure 8. The friction slopes used in the sensitivity analysis ranged from 0.0009 

to 0.0450 and was based on water surface elevation downstream of the boundary 

condition derived from LiDAR data, average bed slope of the river reach, and bed slope in 

the river in the vicinity of the boundary condition line as suggested by (G. W. Brunner et 

al., 2023). The sensitivity analysis was run using the full shallow water equation, 

Manning’s n value of 0.06 for the whole 2D domain, and a flat hydrograph with the flow 

of 465.0 m3/s.  
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Figure 8: Water surface elevations from downstream boundary condition to 4000 m 
upstream. 

The results of the sensitivity analysis indicate that moving the area of interest 

approximately 3000 m upstream from the downstream boundary condition will limit the 

uncertainty from the calculated friction slope in the normal depth option. This will also 

reduce the possibility for interference from ocean tides, as this can significantly impact 

water surface elevations. The friction slope of 0.0013, calculated from the average bed 

slope for the whole river reach was used in the normal depth boundary condition as 

suggested by (Goodell, 2010). 

3.3.3 Lateral boundary conditions 

The lateral boundary conditions in the model consist of all the tributaries that contribute 

to the total flow in the Surna River, and they are used as both external and internal 

boundary conditions. The largest and most influential tributary, the Vindøla River, is 

employed as the external boundary condition, while the smaller tributaries are used as 

internal boundary conditions. 

In the development of the model a preliminary sensitivity analysis was performed to see 

the difference in the results between using external and internal boundary conditions for 

the small tributaries as shown in Figure 9. When using external boundary conditions, it is 

recommended to define the tributaries with refinement regions and breaklines with a 

smaller cell size than the 2D flow area to get a detailed description of the terrain from 

the edge of the model domain to the main river (G. W. Brunner, 2023). This to direct the 

water through the 2D domain without water spilling into other cells, which can lead to 

unrealistic flooded areas. On the other hand, when using internal boundary conditions, 

the flow into the perimeter can be placed anywhere, “dropping” water into the model at 

the cells where the internal boundary condition line crosses. The internal boundary 

condition lines were placed where the tributaries enter the main channel, and the 

tributaries was defined with a breakline with the same cell size as the 2D flow area. 

No significant difference was observed in the flooded area when comparing the two 

methods in the model. As a result, internal boundary conditions were used, leading to 

shorter computational times due to reduced computational cell counts and possibility to 

use larger timesteps. 
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Figure 9: Left: Tributary with internal boundary condition. Right: Tributary with external 
boundary condition. 

The Vindøla River was used as an external boundary condition as earlier mentioned, 

because of the size of the river compared to the other tributaries. It was placed 

downstream the Vindøla bridge, approximately 700 meters upstream of the confluence to 

the Surna River as shown in Figure 10. The purpose of this is to accurately simulate the 

flow dynamics when the Vindøla tributary merges with the main channel. 

The energy slope for the external boundary condition was calculated based on the 

average bed slope from the boundary condition line and 400 meters downstream, which 

gave a value of 0.0049. The uncertainty in this value does not significantly affect the 

outcome of the calculation results, as the boundary condition is located high enough 

upstream in the river that the flow behaves normally before it reaches the Surna River. 
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Figure 10: Vindøla tributary that enters the main channel with external boundary 

condition. 

To calculate the contribution from the tributaries, scaling is a traditional method used in 

the practical fields in Norway and other countries (Faulkner et al., 2012; Fleig & Wilson, 

2013). The scaling method is using a scaling factor to scale whole time series of flow 

from gauged to ungauged catchments, respectively the donor catchment and target 

catchment. The formulas used to scale flow time series is: 

𝑄𝑇 =  𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∗  𝑄𝐷 

( 8 ) 

𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝐴𝑇 ∗  𝐹𝑇

𝐴𝐷 ∗  𝐹𝐷

 

( 9 ) 

where QT is the discharge at the target location, QD is the discharge at the donor 

location, AT is the area of the target catchment, AD is the area of the donor catchment, FT 

is the mean specific annual runoff of target catchment, and FD is the mean specific 

annual runoff of donor catchment.  

(Lobintceva, 2014) performed a study in seven catchments in central Norway where they 

compared the scaling method and regional modelling, where the scaling method got 

better results than the regional modelling in all catchments that where tested. However, 

there will always be uncertainties in predicting flow for ungauged basins.  

The tributaries listed in Table 1 were scaled from the gauged catchment Rinna (Table 2), 

located in Rindal municipality in Trøndelag county. The gauging station 112.8 Rinna is the 

only measuring station in the Surna catchment that is not affected by regulations (Leine, 

2018). Rinna was selected because it is the closest unregulated catchment with similar 

characteristics to the study area, meeting one of two assumptions required for the 
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scaling method. The other assumption is that the catchments must be located near each 

other and receive similar amounts of rainfall at the same time (Abdalla, 2019). 

Table 1: Ungauged tributaries with the calculated scale factor and associated boundary 

condition number in the model. 

Nr. Name target QN (l/s * km2) Area (km2) Scale factor 

2 
Bergemsbekken 35.3 0.4 0.004 

Bergåa 38.2 3.5 0.036 

3 Hommelstadbekken 39.5 3.2 0.034 

4 Storbekken 37.3 2.6 0.026 

5 
Lekkaren 46.1 1.6 0.020 

Brøskjåa 42.9 7.7 0.090 

6 Sollibekken 31.9 0.5 0.004 

7 Lomtjønna 34.7 0.8 0.008 

8 Tjuvevja 34.1 1.1 0.010 

9 Sverkestykket 36.0 2.4 0.024 

10 Talgøya 44.4 6.3 0.076 

11 
Røstigbekken 37.4 0.6 0.006 

Ranesbekken 50.0 6.8 0.093 

12 Honnestadfossen 50.6 10.0 0.138 

13 Sprenbekken 34.5 1.3 0.012 

14 Sagbekken 44.8 5.2 0.064 

15 Storøra 31.4 1.0 0.009 

16 

Vindøla 68.3 95.01 1.770 

Fergemannshølen 33.0 0.3 0.003 

Småøyan 33.4 0.8 0.007 

 

Table 2: Unregulated gauged catchment used for scaling. 

Name donor QN (l/s * km2) Area (km2) Scale factor 

Rinna 41.2 89.0 - 

 

The tributaries were, in general, very small, except for the Vindøla River. Consequently, 

certain tributaries were combined. Figure 11 illustrates all the boundary conditions in the 

model, with the merging of several tributaries, such as the combination of 

Bergemsbekken and Bergåa (2), Lekkaren and Brøskjåa (5), Røstigbekken and 

Ranesbekken (11), and Fergemannshølen and Småøyan with the Vindøla River (15). 

Additionally, the boundary condition (0) corresponds to the downstream boundary 

condition, while (1) represents the upstream boundary condition. 

 
1 The Vindøla River catchment area is a total of 169.0 km2, but due to 74.0 km2 of the 

upper part is transferred into 112.27 Skjermo catchment area, the area used for scaling 

is 95.0 km2 (Leine, 2018). 
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Figure 11: Overview over all the boundary conditions in the model. 

The transmission capacity from the upper part of the Vindøla River catchment area to 

Gråsjø that is in the 112.27 Skjermo catchment area is a total of 27.5 m3/s (Multiconsult, 

2010), and under high flood conditions the uncertainty of this transmission can be very 

large. Therefore, an alternative to the scaling method for calculating the discharge from 

the Vindøla River was made. 

As said before, the Vindøla River is the largest tributary of the Surna River, making it the 

lateral boundary condition with the most significant influence on the results. In a flood 

estimation study by (Leine, 2018), peak flow discharges were calculated for floods with 

different recurrence intervals at 13 different locations, including upstream and 

downstream of the confluence of the Vindøla River, and gauging station 112.27 Skjermo. 

Based on these values, a linear regression analysis was performed with respect to 112.27 

Skjermo and downstream the inflow from the Vindøla River, which includes the inflow of 

water between these points. The tributaries Fergemannsholen and Småøyan are already 

accounted for in the boundary condition for the Vindøla River, but since Talgøya is an 

internal boundary condition, its calculated discharge must be subtracted from the 

calculated discharge of the Vindøla River. 

Two linear regression formulas were created, one for discharge values under 513 m3/s: 

𝑄𝑉𝑖𝑛𝑑ø𝑙𝑎  = 0.3279 ∗ 𝑄112.27 𝑆𝑘𝑗𝑒𝑟𝑚𝑜 − 17.206 

( 10 ) 

and one for discharges values over 513 m3/s:  

𝑄𝑉𝑖𝑛𝑑ø𝑙𝑎  = 0.1441 ∗ 𝑄112.27 𝑆𝑘𝑗𝑒𝑟𝑚𝑜 + 116.74  

( 11 ) 

where QVindøla is the discharge at the Vindøla River external boundary condition, and 

Q112.27 Skjermo is the discharge at 112.27 Skjermo gauging station. 

The explanation for using two different regression formulas is that between mean annual 

flow and a return period of 20 years the transmission from the upper part of Vindøla 

catchment is accounted for, making Vindøla a regulated catchment. From a return period 

of 50 years until 1000 years, its estimated as an unregulated catchment area (Leine, 

2018). 
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3.3.4 Area of interest based on sensitivity analyses 

The sensitivity analyses conducted on the upstream and downstream boundary 

conditions revealed the extent of their influence in the model. To reduce uncertainty 

stemming from these boundary conditions, a specific area of interest within the 2D model 

domain was identified. This defined area of interest, depicted in Figure 12, was used for 

all subsequent analyses and results in the study, ensuring a focused and consistent 

evaluation within a controlled region. 

 

Figure 12: Area of interest inside the 2D flow area from the hydraulic model in HEC-RAS, 

with the border of the land photo defining the extent of the 2D flow area. 

3.4 Roughnesses (Manning’s n-values) 

In hydraulic models, the roughness of surfaces is one of the most significant factors that 

impact the flow of water. Thus, understanding the roughness of the land cover and its 

effect on the flow of water is essential for accurate flood inundation modelling. The 

roughness coefficient, represented by Manning’s n-value, is used to quantify the surface 

roughness of different land covers. Accurately representing the surface roughness of 

different land covers is therefore essential in predicting the and mitigating the impacts of 

floods. 

The land cover map used to provide Manning’s n-values for the different land cover types 

as defined by NIBIO (Norwegian Institute of Bioeconomy Research), was downloaded 

from Geonorge.no [https://www.geonorge.no/] (accessed on March 10, 2023) as shown 

in Figure 13. 

 

Figure 13: Land cover map of area of interest. 

The land cover map developed by NIBIO is called AR5 and is a classification system that 

divides the land surface into different types of land cover based on criteria such as 

vegetation and land use (Ahlstrøm et al., 2019). To give specific Manning’s-n values to 

the model either a land cover layer or user defined polygons can be used to define 

various roughness values in the 2D flow area. Therefore, the AR5 land cover map was 

used to create a spatially land cover layer in RAS Mapper with a cell size of 5 meters. 

Once created, a table of land cover versus Manning’s n-values was made and associated 

with the geometry file(s).  

Complete soil cultivated, surface cultivated soil, and infield grazing (pasture) are land 

cover types that refer to different forms of land use. Complete soil cultivation refers to an 

https://www.geonorge.no/
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area where the soil has been fully tilled and used for agricultural purposes. Surface 

cultivated soil, on the other hand, refers to an area where the soil has been partially 

tilled and used for agricultural purposes, and the remaining vegetation provides some 

roughness. Infield grazing refers to an area where livestock are allowed to graze, 

resulting in a mixture of vegetation and soil cover. Overall, these land cover types have 

different hydraulic properties and affect flow resistance in different ways, but it can be 

useful to combine them into a single roughness group to simplify the calibration process. 

(Te Chow, 1959) states that the Manning’s n-value range from 0.025 and 0.050 in 

pasture areas, and from 0.020 to 0.050 in cultivated areas. Studies have used Manning’s 

n-values as high as 0.1 for floodplains (Horritt & Bates, 2002). 

Forest as a Manning’s n-value can vary depending on factors such as tree density, 

canopy cover, and the type of vegetation under the trees. The forests surrounding the 

Surna River mainly consists of deciduous forest as shown in Figure 14. According to (Te 

Chow, 1959) trees with straight dense willows at the summer has Manning’s n-values 

ranging from 0.110 to 0.200. (G. W. Brunner, 2023) describes deciduous forest as areas 

with trees mostly greater than 5 meters tall, and a total vegetation cover greater than 20 

%. Seasonal change is a significant factor in the Norwegian climate and according to the 

description, more than 75% of tree species must shed foliage simultaneously in response 

to seasonal changes. Hence, the Manning’s n-value range from 0.100 to 0.200 in his 

description will most likely represent the forest surrounding the Surna River. 

 

Figure 14: Picture of the Surna River in upper Surnadal (Melby, 2019). 

Open land is areas that do not fit into other defined categories, such as urban or 

agricultural land. This land cover type can be classified as developed, open space areas 

with a mostly vegetation in the form of lawn grasses, and a mixture of some constructed 

materials, where less than 20 % of the total cover is impervious surfaces. The Manning’s 
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n-value is according to (G. W. Brunner, 2023) ranging between 0.03 to 0.05 in 

developed, open space. 

Water is a land cover type in AR5 that includes lakes, rivers, and streams. In the study 

area there are no lakes, and only a few insignificant small streams in relation of 

contribution to the total water area. The land cover type mainly consists of the Surna 

River, which is a natural river with a width ranging from approximately 40 m to 150 m in 

the study area. The riverbed between the Trollheimen powerplant and the fjord is mainly 

composed of gravel, which covers 53 % of the total area, and rocks, covering 25 %. 

Sand is also present in significant amounts (14 %) between the gravel and rocks. 

Additionally, boulders are commonly found along the riverbanks, with a coverage of 4 % 

(Gabrielsen et al., 2017). According to (Fergus et al., 2010) natural rivers that are over 

30 meters wide can have Manning’s n-value between 0.025 and 0.1. (Barnes, 1967) did 

an evaluation of roughness characteristics of natural channels and found Manning’s n-

values between 0.024 and 0.075. (Te Chow, 1959) defines mountain streams with no 

vegetation in channel, banks usually steep, trees and brush along banks submerged at 

high stages. He separates the bottom conditions with different Manning’s n-values, were 

a bottom with gravel, cobbles and few boulders have n-values between 0.030 and 0.050. 

Cobbles with large boulders have Manning’s n-values between 0.040 and 0.070.  

Urban area is a land cover type that can be classified as developed with low intensity in 

the study area, since most of the area in the floodplains include single-family housing 

units. That implies that 20 % to 49 % of the total cover is impervious surfaces and is a 

mixture of constructed materials and vegetation. Manning’s n-value for this land cover 

type range between 0.06 and 0.12 according to (G. W. Brunner, 2023). 

Roads in the study area are both asphalt and gravel roads, but do not represent a 

significant part of the total area. Therefore, the roads are defined as asphalt surface, 

where the Manning’s n-value can range from 0.013 to 0.016 according to (Te Chow, 

1959).  

Although swamp and sea are land cover types included in AR5, they are not present in 

the study area and therefore will not be discussed further. 

The range of Manning’s n-values for different land cover types based on the presented 

sources used in the model calibration is listed in Table 3.  

Table 3: Manning's n-values min and max values based on land cover types. 

Class Land cover type Area 

(km2) 

Area 

(%) 

Manning’s-n 

min 

Manning’s-n 

max 

21 Complete soil cultivated 5.19 60.4 0.020 0.100 

22 Surface cultivated soil 0.01 0.1 0.020 0.100 

23 Infield grazing (pasture) 0.13 1.5 0.020 0.100 

30 Forest 1.32 15.4 0.100 0.200 

50 Open land 0.28 3.3 0.030 0.050 

81 Water (Main channel) 1.05 12.2 0.020 0.100 

11 Urban area 0.42 4.9 0.060 0.120 

12 Road 0.19 2.2 0.013 0.016 
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3.5 Calibration & validation data 

3.5.1 Copernicus Data Space Ecosystem 

Copernicus Data Space Ecosystem is a new service launched in January 2023, that gives 

free user access to large amounts of data from the Copernicus Sentinel satellites from 

Earth observations. Researchers, businesses, and institutions can use this as a powerful 

tool to analyse, stream, download, visualize, and discover data with the next level of 

data processing and distribution infrastructure. (Ecosystem | Copernicus Data Space 

Ecosystem, n.d.) 

This service can be used to see if there were any Sentinel-1 satellites above the area of 

interest at the time of the flood event. The area of interest must be marked, and the 

time range of the event needs to be specified. The data source that is going to be used 

for flood delineation is a Sentinel-1 C-SAR Level-1 GRD image. All the available products 

will be listed with sensing time, product information and possibility to download the 

product for further analysis. 

Table 4 presents an overview of the satellite passes over the study area during the flood 

events that aligned with the active period of the Sentinel-1 program. The acquired SAR 

images from November 26, 2016, January 21, 2020, and November 24, 2021, 

demonstrated significant potential in terms of capturing flooded areas. These SAR images 

were subsequently employed in the delineation of flood extents, forming an integral part 

of the calibration and validation process for the 2D hydraulic model. 

Table 4: Sentinel-1 satellites with time of SAR imagery capture and the discharge at 
112.27 Skjermo when the image was taken. 

Satellite Time of peak Peak 

discharge 

(m3/s) 

Time of SAR 

imagery capture 

Image 

discharge 

(m3/s) 

Sentinel-1A 2016-11-25 23:00  451 2016-11-26 05:47 215  

Sentinel-1B 2016-12-05 05:00 388 2016-12-04 16:46 –  

Sentinel-1B 2016-12-09 11:00 358 2016-12-09 16:54 - 

Sentinel-1B 2020-01-21 03:00 356 2020-01-21 05:54 289 

Sentinel-1A 2021-11-24 03:00 583 2021-11-24 05:47 420 

3.5.2 Copernicus Emergency Management Service 

The Copernicus Emergency Management Service (CEMS) is a service that supports 

decision-making during natural and man-made disasters. The service uses geospatial 

data and images from satellites from the Copernicus Programme to provide timely 

information and analysis for effective emergency management. CEMS constantly 

monitors Europe and the world for signs of potential disasters and provides critical 

insights to help responders and authorises take prompt action. (What Is Copernicus | 

COPERNICUS EMERGENCY MANAGEMENT SERVICE, n.d.) 

One of the services CEMS deliver is Rapid Mapping products, which provides geospatial 

information and data within a short timeframe in the immediate aftermath of a disaster, 

usually within hours or days of a service request. The Rapid Mapping product can be 

requested by a diverse range of users at different levels, including regional, national, 

European, and international entities and organizations involved in emergency 

management. Although the service only can be requested by a certain type of 
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stakeholders, the Rapid Mapping products generated from these requests are freely 

available and accessible for download. The Rapid Mapping products typically include 

maps and imagery that provide a visual representation of the affected areas, highlighting 

key features such as damage assessment, infrastructure status, and potential risks. (The 

Emergency Management Service - Mapping | COPERNICUS EMERGENCY MANAGEMENT 

SERVICE, n.d.) 

One of the key components of the Rapid Mapping product is the delineation feature, 

which offers an evaluation of the extent and impact of the event. In the context of flood 

mapping services provided by CEMS, this feature utilizes satellite imagery to swiftly 

capture and assess the flooded areas following an emergency event.  

On January 12, 2022, the western and central parts of Norway were bracing for the 

impact of Storm Gyda, a severe weather event characterized by warm temperatures, 

strong winds, and heavy rainfall. In anticipation of potential flooding caused by the 

combination of snow melt and rainfall, the Directorate for Civil Protection and Emergency 

Planning (DSB) activated the Rapid Mapping service. As a result, delineation products 

were generated for several rivers in the potentially affected areas, including the Surna 

River in Surnadal. The Emergency Management Service Rapid Mapping (EMSR) product 

for the Surna River can be found in Appendix 1.  

The EMSR product includes vector data depicting the delineation of the flood extent 

caused by Storm Gyda. This information was obtained through satellite imagery captured 

by a COSMO-SkyMed mission satellite, which is part of the Copernicus Programme. To 

generate the flood delineation vector data, SAR imagery from the COSMO-SkyMed 

mission, as indicated in Table 5, was specifically utilized.  

Table 5: Copernicus Programme satellite with time of SAR imagery capture and the 

discharge at 112.27 Skjermo when the image was taken.  

Satellite 

mission 

Time of peak Peak 

discharge 

(m3/s) 

Time of SAR 

imagery capture 

Image 

discharge 

(m3/s) 

COSMO-SkyMed 2022-01-13 16:00 692 2022-01-13 17:21 657 

 

This SAR image played a crucial role in accurately outlining the extent of the flood-

affected areas, illustrated in Figure 15. The flood delineation map was subsequently 

employed in the calibration and validation process of the 2D hydraulic model. 

 

Figure 15: Vector data depicting the delineation of the flood extent caused by Storm 

Gyda. 

3.5.3 SR16 forest resource map 

The SR16 forest resource map is a comprehensive dataset that offers an overview of the 

distribution of the forest resources in Norway. It provides detailed information regarding 
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the extent of forest cover, as well as various characteristics such as tree species 

composition, forest volume, and other relevant parameters.  

The SR16 dataset is created using advanced automated processes that integrate various 

data sources, including 3D remote sensing data (such as photogrammetry and LiDAR), 

terrain models, satellite data, existing map data (AR5), and information from the 

National Forest Inventory. Laser data from the Norwegian Detailed Elevation Model and 

Sentinel-2 imagery are fundamental datasets utilized in the development of SR16. 

SR16 is divided into two parts: SR16R, a raster map, and SR16V, a vector map. SR16R 

consists of pixels with a resolution of 16 x 16 meters, while SR16V comprises polygons 

that represent homogeneous forest areas, derived from the pixel data. The attributes in 

SR16V are primarily calculated as averages of the corresponding pixel values in SR16R 

(Skogressurskart (SR16) - Nibio, n.d.).  

The SR16V map, illustrated in Figure 16, was downloaded from Geonorge.no 

[https://www.geonorge.no/] (accessed on May 9, 2023), and was used to represent the 

flooded areas that were not identified in the flood delineation of the SAR images. 

 

Figure 16: SR16V vector map clipped inside the area of interest. 

The SR16V forest resource map was spatially clipped to include only the areas within the 

predicted flood inundation area generated by the model. This clipped SR16 map was then 

merged with the binary maps derived from the flood delineation of the Sentinel-1 SAR 

images and the delineated vector data obtained from COSMO-SkyMed SAR imagery. It 

played a crucial role in the calibration and validation processes by providing a reference 

to compare against the simulated flood extent generated by the model. This comparison 

helped assess the accuracy and performance of the model in accurately reproducing the 

observed flood extent. 

Figure 17 provides a visual representation of the methodology employed in this process. 

In (a), the simulated flood inundation area is depicted in black, with the vector data 

obtained from the Storm Gyda flood event on January 13, 2022, overlaid in blue. Moving 

to (b), the same information from (a) is presented, with the addition of the clipped SR16 

map displayed in pink. Upon observing the black areas in (a) that indicate the flooded 

areas, it is highly plausible that these areas are indeed flooded, especially when 

compared to the forest areas clipped in (b).  

This observation aligns with previous research, which highlight the challenges of using 

SAR imagery to detect and map flooded areas in vegetated environments. Vegetation can 

attenuate and scatter the SAR signal, making it difficult to differentiate between flooded 

areas and dense vegetation. As a result, accurate identification and delineation of flooded 

areas in such regions require careful analysis and integration of different data sources 

and techniques (Horritt et al., 2003).  

https://www.geonorge.no/
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Figure 17: Storm Gyda flood event January 13, 2020. In (a), black represents the 

simulated flood inundation area, blue is the vector data from the flood delineation of the 
flood event, and in (b) pink is the SR16 clipped inside the simulated flood inundation 

area.  

3.5.4 Observed flood water levels 

In collaboration with Surnadal municipality, NVE conducted a post-flood survey to 

measure the water levels following a flood event on August 14, 2003. The survey was 

carried out immediately after the flood and is considered to be of high quality. The 

recorded values, listed in Table 6 (Bævre & Øydvin, 2007), were originally based on the 

NN54 reference system but have been adjusted to the more recent NN2000 reference 

system for consistency and compatibility with the data of the study and analysis. The 

survey mark data used to transform the water levels to NN2000 was collected from 

norgeskart.no [https://www.norgeskart.no/] (accessed on March 29, 2023). Figure 18 

illustrates the profile lines from Table 6, with their profile line number. 

Table 6: Flood water levels from the flood event August 14, 2003 (Bævre & Øydvin, 

2007). 

Profile 

line 

Flood water 

levels at 465 

m3/s discharge 

(Skjermo) [masl 

NN54] 

Survey mark 

ID 

Difference 

NN54 to 

NN2000 

Flood water 

levels at 465 

m3/s discharge 

(Skjermo) [masl 

NN2000] 

1 5.96 E26N0079 + 0.055 6.02 

2 7.95 E26N0047 + 0.056 8.01 

3 7.93 E26N0047 + 0.056 7.99 

4 10.27 E26N0048 + 0.057 10.33 

5 11.93 E26N0049 + 0.058 11.99 

6 15.30 E26N0051 + 0.061 15.36 

7 17.20 E26N0051 + 0.061 17.26 

8 19.08 E26N0052 + 0.062 19.14 

9 21.05 E26T0238 + 0.063 21.11 

10 23.78 E26N0053 + 0.063 23.84 

 

https://www.norgeskart.no/
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Figure 18: Profile Lines 1 - 10 with observed water levels inside the area of interest. 

3.6 Flood delineation from Sentinel-1 SAR imagery 

Flood delineation from Sentinel-1 SAR imagery involves the process of identifying the 

extent and boundaries of flood-affected areas using image processing techniques. This 

process includes pre-processing of the SAR imagery, followed by the application of a 

thresholding technique, used to take advantage of the contrasting backscatter properties 

between water and non-water surfaces presented in the SAR imagery. The sequence of 

the different steps of the process is shown in Figure 19. 

 

Figure 19: Flowchart of methodology for flood delineation from Sentinel-1 SAR imagery. 

The tool to perform these processes is the Sentinel-1 Toolbox 9.0.3 (S1TBX) that is a 

plugin for the SNAP 9.0.0 (released 2022-06-29) (SeNtinel Applications Platform) which 

are a free and open-source software developed by the European Space Agency (ESA). 

S1TBX provides a wide range of functionalities for SAR data analysis. These includes pre-

processing tools, polarimetric and interferometric analysis capabilities, data product 

readers and writes, visualization and analysis tools, and support for third-party SAR data 

(Toolboxes, n.d.).  

The Sentinel-1 mission had several passes over the study area during some of the major 

floods that occurred between 2014 and 2022 (as previously listed in Table 4). Table 7 

provides a list over which of these SAR images that were used for processing and flood 

mapping, with additional specifications.  

Table 7: Specifications of Sentinel-1 SAR images used for flood mapping. 

Satellite Acquisition time Acquisition 

mode 

Product 

type 

 Polarization Pixel 

spacing 

Sentinel-1A 2016-11-26 05:47  IW GRD  VH + VV 10x10 m 

Sentinel-1B 2020-01-21 05:54 IW GRD VH + VV 10x10 m 

Sentinel-1A 2021-11-24 05:47 IW GRD VH + VV 10x10 m 
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The first thing that was done after loading the SAR image into S1TBX was using the 

function image subset. Image subset is used for extracting a smaller portion of an SAR 

image to only focus on the specific area of interest within the image illustrated in Figure 

20. This was done to reduce the size of the SAR images, since files are over 1.5 GB in a 

full-sized SAR image. Other advantages of cropping the images are faster computations 

times, and more pixels that are flooded, making it easier to find threshold values 

between flooded and non-flooded areas. 

 

Figure 20: Sentinel-1 SAR full image with subset image representing area of interest. 

The orbit state vectors in the metadata information of the SAR products are not always 

accurate when the product is generated. To compensate for this, precise orbits of the 

satellites are determined after a few days and made available a few days to weeks after 

the generation of the product. So, the function apply orbit file was used to receive these 

precise orbit files to provide more accurate information about the position and movement 

of the satellite at the time of image acquisition (Filipponi, 2019).  

Image intensity in Sentinel-1 SAR images is caused by random fluctuations in the 

electronics due to temperature change, particularly in the cross-polarization (Park et al., 

2017). This can introduce a radiometric bias in the backscatter, that can 

disproportionately affect pixels with low backscatter values, such as water bodies or 

flooded areas. Therefore, the thermal noise removal function was used to reduce the 

noise effect and normalize the backscatter signal in the Sentinel-1 SAR images. 

Calibration is a radiometric correction process that was used to convert SAR integer 

digital numbers (DN) to backscatter coefficients, which represents the radar backscatter 

intensity in each pixel of the surface (sigma nought). The calibration process is necessary 

because Sentinel-1 SAR images often contains significant radiometric bias that can affect 

the accuracy of quantitative analysis (Mangidi et al., 2023). The Sentinel-1 GRD product 

includes a calibration vector with image intensity values that allows for the conversion 

into backscatter coefficient using a calibration equation (Filipponi, 2019).  

Speckle in SAR images is caused by the interference of electromagnetic waves that are 

scattered by the surface being imaged (Park et al., 2017). Speckles can be described as 

random, granular pattern of bright and dark pixels that are not necessarily indicative of 

the true scattering properties of the surface. Speckle can produce a wide range of pixel 

values that appear as noise in the image, that can lead to misclassification, making it 

difficult to interpret. S1TBX provides several speckle filters that are designed to reduce 
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the impact of speckle in SAR images. These filters work by applying mathematical 

operations to the image data to smooth out the noise caused by speckle while preserving 

the important information about the underlying scattering properties of the surface. The 

filters available in S1TBX range from simple linear filters like Lee and Frost filters to more 

complex non-linear filters like Gamma Map, each with their own strength and 

weaknesses for different types of imagery. (Rana & Suryanarayana, 2019) did a study 

where they evaluated de-noising methods for SAR images. The results indicated that the 

Lee filter 3 x 3 kernel size provided a good balance between preserving image features 

and reducing speckle noise compared to other filters. Therefore, it was selected as the 

preferred speckle filter when pre-processing the Sentinel-1 SAR images as shown in 

Figure 21. 

 

Figure 21: Sentinel-1 SAR image with VV polarization of flood event from November 24, 
2021. Left: Before applying speckle filter. Right: After applying Lee 3 x 3 speckle filter. 

The satellite reference system is defined with respect to the orbit of the satellite at a 

specific point of time. Hence, applying terrain correction is to set a geographic reference 

system to the pixels from the satellite reference system. Terrain correction also corrects 

the geometric distortion that are caused by topography in SAR images. This correction 

compensates for distortions such as foreshortening and shadows, caused by the varying 

viewing angle of SAR data acquisition (Selmi, 2021). Range Doppler Terrain Correction 

utilizes orbit state vector information, radar timing annotations, and slant to ground 

range conversation parameters along with a reference digital elevation model to 

accurately project the image pixels onto a georeferenced system (Filipponi, 2019), and 

was used to ensure precise geolocation data using the Range Doppler orthorectification 

approach (Small & Schubert, 2008). The digital elevation model used in the Range 

Doppler Terrain Correction was the ASTER 1sec GDEM downloaded from ASTER Global 

Digital Elevation Model [https://gdemdl.aster.jspacesystems.or.jp/] (accessed on 

February 6, 2023), and map projection were set to UTM / WGS 84 for having x- and y-

coordinates in a 2D coordinate system as shown in Figure 22. 

https://gdemdl.aster.jspacesystems.or.jp/
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Figure 22: Sentinel-1 SAR image with VV polarization of flood event from November 24, 

2021, after applying Range Doppler Terrain Correction. 

Linear to logarithmic (dB) was then used as a conversion of backscatter coefficients to dB 

values using a logarithmic transformation. This will make it easier to see, understand, 

and manipulate the distribution of the pixel values, as most of the pixels have a very 

small backscatter value and a few have large values before the transformation. This 

created a new band that was saved by using the convert band function. 

Thresholding is one of several approaches used to detect non-permanent water surfaces 

(Carreño Conde & De Mata Muñoz, 2019). Different algorithms have also been employed 

for the same task, including supervised classification (Chapman et al., 2015), automatic 

non-supervised classification (Borah et al., 2018), and RGB combination (Tavus et al., 

2018), among others. Thresholding is a popular technique because it is relatively simple 

and efficient, making it a useful way to identify water surfaces in remote sensing images. 

Therefore, thresholding was used to specify water bodies inside the Sentinel-1 SAR 

images and create binary flood maps. 

The objective of thresholding is to distinguish between the flooded areas and not flooded 

areas assuming a pixel threshold value that separates the wet pixels from the dry pixels 

in the SAR image. This is done by creating a histogram based on a statistical distribution 

of pixels and their backscatter intensity in dB. Bimodal distribution of the histogram is 

considered an ideal situation for determining a threshold value to identify flooded and 

non-flooded areas. In this situation, the histogram displays two distinct peaks separated 

by a valley. The first peak represents the pixels in flooded areas, which typically have low 

backscatter values due to the specular reflection on the water surface (Selmi, 2021). The 
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second peak represents the pixels in non-flooded areas, which generally have higher 

backscatter values. By selecting an appropriate threshold value at the valley between the 

two peaks, it is possible to effectively distinguish between flooded and non-flooded areas 

in the image. But in most cases, it is often rare to find an image where a large portion of 

the area is flooded, resulting in a clear bimodal distribution in the histogram. Instead, the 

histogram may show a single peak with a long tail representing the flooded area and 

another peak or plateau representing the non-flooded areas shown in Figure 23.  

 

Figure 23: Histogram derived from Sentinel-1 SAR image with VV polarization, showing a 
single peak in the backscatter values of pixels during the flood on November 24, 2021. 

A seen in the histogram of the pixel distribution, it does not show a clear definition in 

what pixel intensities that are flooded or not. To address this issue a method of focusing 

the attention to the flooded areas, creating polygons to select the region of interests.  

When selecting regions with approximately the same amount of flooded and non-flooded 

areas as shown in Figure 24, a more evenly distribution of flooded and non-flooded pixels 

is achieved. 



56 

 

 

Figure 24: Polygons around flooded areas to better separate flooded pixels and non-

flooded pixels. 

This method generates vector data, which was then used to provide a bimodal 

distribution of pixel values, as shown in Figure 25. The valley of the bimodal distribution 

is around -16.0 dB meaning all values below this value will be identified as flooded pixels, 

while all the values above -16.0 dB will be identified as non-flooded pixels. However, it is 

important to note that using the threshold technique can result in misclassification and 

uncertainty in identifying flooded pixels. Some pixels with backscatter values within the 

range of flooded pixels may not actually be flooded, while some pixels with backscatter 

values outside this range may be flooded, leading to both false positives and false 

negatives.  
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Figure 25: Histogram with bimodal distribution of pixels derived from vector data in 
Sentinel-1 SAR image with VV polarization during the flood on November 24, 2021. 

To further refine the threshold value for distinguishing between flooded and non-flooded 

areas, polygons were used to capture the boundaries of several randomly flooded areas 

within the Sentinel-1 SAR image. This allowed for the creation of a histogram showing 

the distribution of pixel intensity only within the flooded areas. The Sentinel-1 SAR image 

with VV polarization during the flood on November 24, 2021, has pixel intensity 

distribution ranging from -27.5 dB to -12.5 dB in the flooded areas as shown in Figure 

26.  



58 

 

 

Figure 26: Histogram with distribution of pixels intensity from flooded areas, derived 
from Sentinel-1 SAR image with VV polarization during the flood on November 24, 2021. 

This confirms that the pixel intensities from the bimodal is correct, and a threshold value 

can be applied to the band maths feature in S1TBX. Band maths can be used to perform 

mathematical operations on data acquired from Sentinel-1 SAR data images. It allows for 

the creation of new bands by combining and processing existing bands, resulting in a 

binary image for the flooded areas as shown in Figure 27. The expression used to capture 

the binary image was Sigma0_VV_db <- 15.0. However, the binary image shows more 

wet area than only the river and floodplains. This is because remote sensing imagery 

provides a comprehensive overview of all flood-related processes, including bank 

overtopping, excess rainfall, backwater effects, complex 2D and 3D flows in the 

floodplain (Di Baldassarre et al., 2009), and even lakes in mountainous regions. As a 

result, the binary images produced by applying the threshold on the band maths feature, 

capture not only the flooded areas in the river and floodplains, but also the additional wet 

areas that are a result of these various flood-related processes. 
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Figure 27: Binary flood map derived from Sentinel-1 SAR image with VV polarization 

during the flood on November 24, 2021. 

The Sentinel-1 SAR images that were captured during the flooding events contains both 

VV and VH polarizations. (Pham-Duc et al., 2017) compared the VV and VH polarization 

when deriving surface water, where they found a 72 % spatial linear correlation with the 

reference water mask when using VH polarization. VV polarization showed a spatial linear 

correlation of 62 %. They also used both the polarizations for the classification, where 

they found a correlation of 76 %, and concluded that using both polarizations will 

increase the retrieval accuracy, since the two polarizations carry different information. 

Therefore, the produced math bands feature was used to merge both VV and VH 

polarizations with the expression IF Sigma0_VV_db < -15.0 OR Sigma0_VH_db < -20.0 

THEN 1 ELSE 0. The expression was changed for the other Sentinel-1 SAR images with 

their respective intensity threshold values as shown in Table 8.   

Table 8: Pixel intensity values for Sentinel-1 SAR images for both VV and VH polarization. 

Satellite & 

Acquisition time 

Polarization dB range for 

wet pixels 

dB used in 

band maths 

Sentinel-1A 

2016-11-26 05:47  

VV -24.0 to -10.0 -14.0 

VH -32.5 to -17.5 -18.0 

Sentinel-1B 

2020-01-21 05:54 

VV -20.0 to -10.0 -15.0 

VH -40.0 to -22.5 -22.5 

Sentinel-1A 

2021-11-24 05:47 

VV -27.5 to -12.5 -12.5 

VH -47.5 to -20.0 -20.0 
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The binary maps created for each flooding event, merged with VV and VH polarization 

was then imported as a raster to ArcGIS Pro, where they were converted to vector data 

and clipped according to the area of interest inside the study area. The flood delineated 

binary maps that were used for further analysis is shown in Figure 28. 

 

Figure 28: Flood delineated binary maps for det flood events: (a) November 26, 2016, 
(b) January 21, 2020, and (c) November 24, 2021. 

3.7 HEC-RAS 2D hydraulic model 

The HEC-RAS hydraulic model was set up in RAS Mapper in HEC-RAS. This section 

includes the methodology for the process of developing the HEC-RAS 2D unsteady 

hydraulic model to be ready for simulations. The flow data used in the boundary 

conditions is elaborated for in this section, but the placement and procedure for setting 

up the boundary conditions was previously covered in an earlier chapter. 

In the HEC-RAS hydraulic model development, a projection file was utilized to accurately 

represent the spatial locations in the coordinate system. This projection file was obtained 

from spatialreference.org [https://spatialreference.org/] (accessed on February 22, 

2023) and specifically chosen to transform the curved Earth surface onto a flat surface. 

The selected projected coordinate system was ETRS89/UTM zone 32N, which uses the 

metric system SI units. To ensure consistency, these SI units were also set as the project 

units within HEC-RAS. This process guarantees that the model accurately reflects the 

real-world geographic locations and allows for precise analysis of the hydraulic behaviour. 

Furthermore, a terrain dataset was loaded to create a terrain model in RAS Mapper. The 

terrain data used in this case was the DEM generated in a study conducted by (Awadallah 

et al., 2022), which compromises both bathymetric and topographic LiDAR data with a 

resolution of 0.5 meters. The DEM is georeferenced in the ETRS1989 UTM zone 32N 

coordinate system, and by using the high-resolution and accurately georeferenced terrain 

model precise geometries could be created in the RAS Mapper. 

https://spatialreference.org/
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Once the necessary foundations for creating the HEC-RAS hydraulic model was 

established, the initial geometry was developed. By default, HEC-RAS assigns a 

Manning's-n value of 0.06 to the entire 2D flow area if no other land cover layers are 

incorporated. This default value was used in the construction of a "Quick and Dirty" 

model, which involves setting up flow area polygons, defining cell sizes, incorporating 

breaklines, refinement regions, and establishing boundary conditions. This approach, 

combined with the diffusion wave, allows for quick computations and facilitates the 

testing of different settings to achieve a robust model. By utilizing the "Quick and Dirty" 

model, it was possible to extensively test the model with various configurations and 

settings before introducing the land cover layer and applying the shallow water equation 

in the calibration and validation phases. This testing phase allowed for the identification 

of any necessary adjustments and optimizations, ensuring more accurate and reliable 

solutions during subsequent simulations. 

3.7.1 Mesh generation 

The generation of the 2D computational mesh began by drawing a polygon boundary for 

the 2D flow area within the study area. The polygon representing the 2D flow area was 

carefully delineated at higher elevations to encompass areas that are unlikely to be 

inundated during flood events. This precaution was taken to ensure that the water does 

not reach those elevated regions. Additionally, the 2D mesh was extended to include the 

upstream and downstream boundary conditions, allowing for the incorporation of external 

boundary conditions into the model. 

After establishing the 2D mesh with a grid resolution of 5 meters, a simulation was 

conducted using a 1000-year flood event. The simulation utilized a default Manning's n-

value of 0.06 for all cells and a flow value of 1512 m3/s (Leine, 2018). The purpose of 

this simulation was to generate a water extent that far exceeded what would typically be 

observed during calibration and validation processes. Once the simulation was 

completed, the 2D flow area was adjusted to be a few meters away from the water 

extent borders, as depicted in Figure 29. This adjustment aimed to potentially reduce 

computational times by reducing the number of computational cells in the mesh while 

ensuring that no water would reach the polygon boundary. 

 

Figure 29: 2D flow area with a 1000-year flood water extent. 

Once the polygon boundary of the 2D computational area was defined, the next step was 

to determine an appropriate mesh cell size. The cell size is crucial as it defines the 

resolution of the underlying terrain, with finer resolutions representing the terrain more 

accurately. However, using smaller cell sizes within the 2D flow area results in a larger 

number of cells and longer simulation times. 
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In order to achieve a balance between model accuracy and simulation times, it was 

important to carefully select the cell size within the 2D flow area. While using the same 

cell size as the terrain model would provide the most accurate results, it was not practical 

due to the significant increase in simulation times, especially considering the large 

number of simulations runs required during the evaluation of Manning's n-values in the 

calibration and validation processes. 

In HEC-RAS, a detailed volume/area relationship is employed to accurately represent the 

underlying terrain. This is achieved by representing each cell face as a detailed cross-

section of the terrain, which is then processed to establish relationships between detailed 

elevation volume/area, wetted perimeter, and roughness (G. W. Brunner, 2023). As a 

result, HEC-RAS allows for the use of larger cell sizes while still effectively capturing the 

characteristics of the terrain. This approach enables the selection of larger cell sizes 

without significantly compromising the accuracy of the hydraulic model. 

However, it is important to note that the water surface elevation is computed at the 

center of each cell. Therefore, if the cell size is too large, the averaged water surface will 

be calculated over a longer distance. In cases where the water surface slope and velocity 

change rapidly, such as in small, steep rivers, choosing a smaller cell size is necessary to 

accurately capture these changes. On the other hand, in large, flat floodplains where 

water surface and velocity changes are more gradual, a larger cell size can be chosen 

without significant loss of accuracy. 

Taking these factors into consideration, a cell size of 10 meters was selected for the 

development of the hydraulic model in this study. This choice balanced the need for 

accuracy with reasonable computational times, with simulations typically taking around 

1-2 hours to complete. While no sensitivity analysis was conducted to evaluate the 

accuracy of the model with different cell sizes, it was assumed that this cell size would 

yield satisfactory results given the functionality of detailed volume/area relationship 

within HEC-RAS. 

In summary, selecting an appropriate mesh cell size involves a trade-off between 

accuracy and computational efficiency. By choosing a cell size that strikes a balance 

between these factors, the model can provide accurate answers while keeping the 

simulation times within acceptable limits. 

3.7.2 Breaklines and refinements regions 

Once the 2D computational mesh with 10 m cells was created for the 2D flow area, 

additional enhancements were made through the use of breaklines and refinement 

regions. Breaklines and refinement regions was introduced to better represent the high 

grounds and other barriers to the flow with aligning the computational cell faces along 

these features.  

Through an iterative process, breaklines were strategically placed at locations where 

water was leaking through structures that were higher than the water surface elevations. 

These breaklines served to rectify any inaccuracies in the model by effectively aligning 

the cell faces and preventing water from flowing through undesired paths. Additionally, 

breaklines were also introduced at high ground features such as levees, roads, and other 

elements that could impact the accuracy of the model. To avoid significant increases in 

simulation times, the breaklines were introduced with the same resolution as the 2D 

computational mesh, ensuring a balance between model accuracy and computational 

efficiency. 
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To accurately represent the main channel aligned with the flow, a refinement region with 

integrated breaklines was introduced. This approach improves the accuracy of the 

hydraulic model by reducing numerical diffusion and enhancing computational accuracy. 

The refinement region was specifically placed along the channel banks in the main 

channel, which also can lead to improved modelling results (Sanchez, 2021). By aligning 

the cell faces with the channel banks, the issue of leakage through higher channel banks 

than the actual flow in the main channel is effectively addressed. This alignment ensures 

that the cells accurately represent the channel geometry and flow characteristics. 

Additionally, to further refine the alignment of cells within the refinement region, 

breaklines were drawn along the centre of the region, following the path of the flow. The 

number of near repeats for the breaklines was determined based on the width of the 

river at the specific location of the breakline. This approach ensures that the cells aligned 

precisely with the refinement region, as depicted in Figure 30.   

 

Figure 30: Main channel before and after enforcing a refinement region and breaklines. 

3.7.3 Hydraulic structures 

Hydraulic structures, such as bridge decks, piers, culverts, weirs, and gates in 2D 

hydraulic modelling can either serve as the focus of the analysis or as features that can 

significantly impact the hydraulic behaviour of the system (Robinson et al., 2019).  

There are two bridges in the study area that crosses the Surna River, but according to 

(Bævre & Øydvin, 2007), they have sufficient clearance in relation to flood and ice 

accumulation. Hence, they will not be included as hydraulic structures in this analysis. 

The bridge in the Vindøla River is not included as a hydraulic structure since the external 

boundary condition is placed downstream the bridge, therefore the flow of water will not 

be impacted by the presence of this structure. 

Regarding culverts and bridges in the smaller tributaries within the study area, they can 

often be represented as a terrain elevation in the DEM generated from LiDAR data as 

shown in Figure 31. 
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Figure 31: Terrain elevation in DEM generated from LiDAR data. 

Since internal boundary conditions is being used for the tributaries at the confluence to 

the Surna River, the potential backwater effects in flooding events caused by limiting 

capacity in the culverts and low bridge decks in the tributaries is not taken into 

consideration in the hydraulic model. However, to achieve a more accurate simulation, 

the terrain has been flattened out as terrain modifications in RAS Mapper in HEC-RAS as 

shown in Figure 32. This flattening of elevations leads to a more realistic rise of water in 

the tributaries as the water surface elevation in the Surna River increases. 

 

Figure 32: Terrain in tributary after terrain flattening done in RAS Mapper. 

3.7.4 Flow data 

Flow data used for the upstream and lateral boundary conditions during the various 

flooding events simulated was obtained from Sildre. Sildre is a publicly accessible web 

service provided by the NVE that offers a comprehensive database of historical and near 

real-time hydrological data. The platform features a map displaying all registered 

measuring stations in Norway. The prioritized measurements available for display and 

download as time series, in both table format and graphs, include water-stage, 

discharge, and water temperature. 

The flow for the upstream boundary condition in the model was derived directly from 

112.27 Skjermo measuring station for the different events. However, for the flood event 

that occurred on August 13, 2003, the observed flow from the acquisition of the water 

surface elevations was utilized (Bævre & Øydvin, 2007). On the other hand, the lateral 

boundary conditions, represented by the Vindøla River and the smaller tributaries, the 

developed regression formulas, and scaling from Rinna, respectively, was used as flow 

input in the model.   
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i. Flood August 14, 2003 

Flow data for this flooding event that reached a peak discharge of 602 m3/s were based 

on what the discharge in 112.27 Skjermo was when the observed water surface 

elevations was acquired, as previously mentioned. The flow data in every boundary 

condition is used as a flat hydrograph since there is no timesteps for the collected water 

surfaces. The duration of the flow data that is 12 hours, and the flows for all the different 

boundary conditions is shown in Figure 33. 

 

Figure 33: Flow data for flood event, August 14, 2003 (Blue bars is the Surna River and 
Vindøla River. Pink bars is the smaller tributaries.) 

ii. Flood November 26, 2016 

Flow data for the flood event that reached a peak discharge at 451 m3/s, covers a 

duration of 24 hours, starting on November 25, 2016, at 10:00 and ending on November 

26, 2016, at 10:00 as shown in Figure 34. 

 

Figure 34: Flow data for flood event, November 26, 2016. 
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iii. Flood January 21, 2020 

Flow data for the flood event that reached a peak discharge at 356 m3/s, covers a 

duration of 24 hours, starting on January 20, 2020, at 12:00 and ending on January 20, 

2020, at 12:00 as shown in Figure 35. 

 

Figure 35: Flow data for flood event, January 21, 2020. 

iv. Flood November 24, 2021 

The flow data for the flood event that reached a peak at 583 m3/h, covers a duration of 

33 hours, starting on November 23, 2021, at 08:00 and ending on November 24, 2021, 

at 17:00 as shown in Figure 36. 

 

Figure 36: Flow data for flood event, November 24, 2021. 
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v. Flood January 13, 2022 

The flow data for the flood event that happened during Storm Gyda, which reached its 

peak at 692 m3/s, covers a duration of 32 hours, starting on January 12, 2022, at 16:00 

and ending on January 14, 2022, at 00:00 shown in Figure 37. 

 

Figure 37: Flow data from Storm Gyda, January 13, 2022. 

3.8 Simulations 

Furthermore, apart from creating the 2D computational mesh with breaklines, refinement 

regions, hydraulic structures, land cover layers, and defining flow boundary conditions, 

there are additional parameters in the 2D hydraulic model that need to be adjusted to 

control numerical operations during simulations. These parameters play a critical role in 

ensuring accurate and reliable results. The upcoming sections will cover the parameters 

that were taken into consideration and adjusted prior to conducting the simulations. 

3.8.1 Diffusion Wave vs Shallow Water Equation 

HEC-RAS offers the option to use both the diffusion wave equations and the shallow 

water equations for 2D unsteady flow routing. When using the shallow water equations, 

there are two solver options available: SWE-ELM (Shallow Water Equation, Eulerian-

Lagrangian Method) and SWE-EM (Shallow Water Equation, Eulerian Method). The SWE-

EM is a more conservative form of the momentum equation and utilizes an explicit 

solution scheme. It is particularly useful when analysing water surface and velocity 

changes around hydraulic structures, piers/abutments, and areas with tight contractions 

or expansions. However, for most scenarios that require a comprehensive solution 

scheme based on the full momentum equation, the original SWE-ELM solver is more than 

sufficient. It provides accurate results and is suitable for a wide range of problems (G. W. 

Brunner, 2023). 

On this background, simulations using both the diffusion wave equation and the original 

shallow water equation in the 2D hydraulic model was run and the results were 

compared. Figure 38 displays the outcomes obtained from the simulations of the August 

14, 2003, flood event. Upon visual analysis of the results, it was observed that the 

diffusion wave equation tends to underestimate the water surface elevations in certain 

areas. 
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Figure 38: Comparison between diffusion wave and shallow water equation simulating 
the August 14, 2003, flood event. 

Considering this discrepancy, the shallow water equations (SWE-ELM) was chosen as the 

preferred equation set. It is recommended to assume that the answers using the full-

momentum equations are more accurate when there are significant differences in the 

results (G. W. Brunner, 2023).  

3.8.2 Computational time step 

Timing parameters are crucial when utilizing the diffusion wave or shallow water equation 

to perform an unsteady flow analysis in HEC-RAS. In particular, two important 

parameters need to be considered: the simulation time window and the computation 

settings. 

The simulation time window is determined by the available flow data and represents the 

duration over which the model will simulate the hydraulic behaviour. This parameter is 

straightforward and depends on the specific flow data used for the analysis. 

Computation settings, on the other hand, encompass the determination of suitable 

computational time steps that align with the computational mesh, cell sizes, and the 

characteristics of the modelled event. The computational time step governs the 

frequency at which the model updates and calculates hydraulic variables during the 

simulation. It is important to select a time step that strikes a balance between accuracy 

and computational efficiency. A smaller time step provides more precise results but 

increases computational time, while a larger time step reduces computational time but 

may sacrifice accuracy (G. W. Brunner, 2016).  

The computational time step was estimated using the Courant Condition with one of the 

following equations: 

𝐶 =  
𝑉∆𝑇

∆𝑋
 

( 12 ) 
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∆𝑇 ≤  
𝐶∆𝑋

𝑉
 

( 13 ) 

where C is the Courant number, V is the flood wave velocity, ΔT is the computational 

time step, and ΔX is the average cell size. 

HEC-RAS is capable of utilizing Courant numbers as high as 3.0 for shallow water 

equations and up to 5.0 for diffusion wave equations while maintaining stability and 

accuracy. However, the specific choice of the Courant number depends on the 

characteristics of the event being modeled. If the flood wave exhibits gradual changes 

over time and space, larger time steps can be employed, allowing for a higher Courant 

number. Conversely, if the flood wave changes rapidly in relation to time and space, a 

smaller time step must be used to satisfy the Courant condition. Specifically, a Courant 

number close to 1.0 is generally recommended to ensure accurate modeling outcomes in 

these types of events when using the shallow water equations (G. W. Brunner, 2023). 

Since the release of version 6.0, HEC-RAS has incorporated the capability to employ a 

variable time step in the flow engine for 2D unsteady flow models. Previously, a fixed 

computation time step was utilized throughout the simulation, which were calculated 

based on the Courant Condition equations. However, with this enhancement, a minimum 

and maximum Courant number can be specified, enabling the utilization of lower 

processing times and improved accuracy in modeling outcomes, taking into account the 

behavior of the flood wave concerning time and space. For more detailed information on 

the variable time step capabilities of HEC-RAS, readers are encouraged to consult the 

HEC-RAS 2D User's Manual (G. W. Brunner, 2023). 

The following computation settings was utilized for the simulations: 

• Computation interval: 5 Second 

• Maximum Courant: 2.0 

• Minimum Courant: 0.95 

• Number of steps below minimum for doubling: 4 

• Maximum number of doubling base time step: 4 

• Maximum number of halving base time step: 4 

3.8.3 Initial conditions 

Initial conditions in hydraulic modelling can be either a “hot start” or a “cold start”. In a 

hot start, the model is initialized with water, while in a cold start, the model begins with 

no water. The choice of initial conditions depends on the specific requirements and 

objectives of the simulation.  

In this study, two different methods were employed in HEC-RAS to handle the initial 

conditions of the model: restart files and initial conditions ramp up time. These methods 

are used to warm up the model before the actual computations begin and establish the 

initial water conditions (“hot start”). 

The restart file method was utilized when a flat hydrograph was employed, specifically in 

the case of the August 14, 2003, flood event. It involves running a simulation with 

predefined parameters and creating a restart file that captures the conditions of the 

model at the end of the simulations. The restart file is then loaded, providing the initial 

conditions for the actual computations, allowing for faster convergence and shorter 
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simulation times. However, it is important to note that when using a restart file, no 

modifications to the geometry in the 2D flow area can be made. If any changes to the 

geometry are required, a new restart file must be generated to incorporate those 

adjustments. 

For the other flood events that utilized a full hydrograph with different flow values for 

each time step, the option initial conditions ramp up time was employed. This method 

fills the model with water over a specified duration of time using the first flow value in 

the hydrograph. As a result, when starting the simulations, the time is initialized with a 

negative value representing the specified ramp-up time and counts down to zero. Once 

the time reaches zero, the simulations proceed by utilizing the complete hydrograph for 

representation of the flood event. 

Additionally, the initial conditions ramp up fraction parameter can be set within the range 

of 0 to 1.0. This parameter determines the proportion of the initial conditions ramp up 

time that will be allocated for gradually increasing the flow to the first value of the 

hydrograph. For instance, if an initial conditions ramp up time of 10 hours is specified 

and an initial conditions ramp up fraction of 0.1 is used, the first hour of the ramp up 

time will be utilized to incrementally raise the flow to the first value of the hydrograph 

within the initial conditions ramp up time. 

Through a trial-and-error approach, it was determined that an initial conditions ramp up 

time of 8 hours, coupled with an initial conditions ramp up fraction of 0.1, was sufficient 

to fill the model with water and provide a “hot start” before the actual computations 

commenced. 

3.9 Calibration 

Calibrating 2D hydraulic models against observed water surface elevations or flood 

extents is an extensive task that requires using different Manning’s n-values to represent 

the roughness of the different land cover types. Therefore, the calibration process started 

with applying the land cover map AR5 as a base, using different sets of Manning’s n-

values for the main channel (0.02 – 0.1) and floodplains (0.02 – 0.1), while keeping the 

rest of the Manning’s n-values constant. Complete soil cultivated, surface cultivated soil, 

and infield grazing are individual land cover types, but were treated as a combined 

roughness group for the floodplains and assigned the same Manning’s n-value. The 

constant Manning’s n-value for the other land cover types was: 

• Open land (0.040) 

• Urban area (0.100) 

• Forest  (0.150) 

• Road  (0.016) 

• Swamp (0.050) 

Then, simulations were run using individual land cover layers in HEC-RAS for all the 

different Manning’s n-value combinations. The Manning’s n-values for the floodplains 

were increased by 0.01 through all the different main channel values, while the rest of 

the Manning’s n-values where kept constant to limit the number of simulations. Each land 

cover layer was linked to the same number of identical geometries and set up as 

individual plans in unsteady flow analysis, to utilize the run multiple plans function in 

HEC-RAS. The first process of calibrating was to achieve the best parameter set for 

Manning’s n-values without using calibration regions to individualize roughness values in 
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different parts of the main channel and floodplains or using Manning’s n-values that were 

not inside the defined range to achieve a better goodness of fit. This calibration approach 

was done on both the flood from August 14, 2003, where observed water surface 

elevations were acquired during the flood and the flood from November 24, 2021, where 

Sentinel-1 SAR imagery was captured.  

After completing the initial calibration, a fine-tune calibration was conducted for the flood 

event that took place on August 14, 2003. This calibration aimed to further improve the 

goodness of fit. The best fit Manning’s n-value for the main channel was adjusted within 

a range of +- 0.005, while the n-values for the floodplains were increased by 0.01 

progressing from the low to high range, for each increment in Manning’s n-value in the 

main channel. 

Studies have shown that the model sensitivity to Manning’s n-value for floodplains have 

found to be relatively small (Horritt, 2006). Therefore, a regionalized calibration was 

conducted for the Manning’s n-values in the main channel for the August 14, 2003, flood 

event, while keeping the Manning’s n-values for the floodplains and other land cover 

types constant during the calibration process. The Manning’s n-values for the other land 

cover types were set as described earlier in this chapter, while the Manning’s n-value for 

floodplains was set to 0.05. Then calibration regions were made in HEC-RAS on a reach-

to-reach basis, based on the observed water surface elevation profile lines. A calibration 

region in HEC-RAS is used to redefine all the Manning’s n-values within that specific 

region for each land cover type. The start and ending of the calibration regions were 

placed varying from a couple of hundred meters to a few kilometres upstream and 

downstream the profile lines, depending on how much of an adjustment to the simulated 

water surface elevation had to be made. This was a trial-and-error calibration approach, 

were the placement of the regions and Manning’s n-value for the main channel was 

adjusted until the best fit between the simulated and observed water surface elevations 

was achieved. 

Although the model sensitivity is relatively small for floodplain Manning's n-values, a 

regionalized calibration was performed specifically for the flood event that occurred 

during Storm Gyda on January 13, 2022. To establish a baseline, the parameter set with 

the best measure of fit from the previous calibration, conducted for the flood event on 

November 24, 2021, was utilized. Subsequently, calibration regions were defined within 

the main channel and floodplains to adjust the Manning's n-values on a local and reach-

to-reach basis as necessary. This calibration process followed a trial-and-error approach, 

involving modifications to the placement of regions for both the main channel and 

floodplains, as well as the corresponding Manning's n-values. The ultimate objective was 

to achieve the best measure of fit between the simulated flood extent and the observed 

flood extent derived from the EMSR vector product merged with the SR16 forest resource 

map. 

3.10 Validation 

Validation is a crucial and integral step in the modelling process as it enables the 

assessment of the accuracy and reliability of the calibrated flood inundation models. The 

primary objective of the validation process was to verify the capabilities of the calibrated 

models in accurately simulating various flood events by comparing them with real-world 

observations.  
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In this study, the validation analysis included a comparison between the model 

predictions and multiple sources of data. These sources included observed water surface 

elevations, flood delineation maps generated from SAR imagery acquired from the 

Sentinel-1 and COSMO-SkyMed satellites, and the SR16 forest resource map merged 

with the mentioned flood delineation maps.  

Figure 39 visually presents the flood delineation maps represented in black, along with 

the SR16 forest resource map displayed in pink. It is important to note that the SR16 

forest resource map was clipped separately within each flood simulation in this study, to 

represent the flooded areas that were not delineated from the SAR images. As a result, 

the displayed clipped SR16 areas in the figure is not representative to all the validation 

analyses conducted. It is provided for illustrative purposes only to demonstrate the flood 

delineation maps with the SR16 map. 

 

Figure 39: Flood delineated maps of SAR images (black) with the SR16 forest resource 
map (pink). (a) Flood event, November 26, 2016. (b) Flood event, November 24, 2021. 
(c) Flood event, November 24, 2021. (d) Storm Gyda flood event, January 13, 2022. 

These flood delineated maps from the SAR images offer valuable insight into the 

observed flood extent, allowing for a comprehensive evaluation of the performance of the 

model. The utilization of SAR images enables direct comparison of the simulated flood 

extent with the actual flood extent observed from space, thus enabling a visual 

confirmation of the accuracy of the model. By conducting thorough validation against 
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multiple flooding events and utilizing different sources of validation data, this study 

ensures a comprehensive assessment of the performance of the model and strengthens 

the overall credibility of the flood inundation models. 

The different calibration events validated is listed below, with the elaboration of what 

validation data is used in each event.  

i. Flood August 14, 2003 

The flooding event that occurred on August 14, 2003, was initially calibrated against 

observed water surface elevations. Subsequently, the calibrated model was validated 

using all available Sentinel-1 SAR images (a), (b) and (c), and the EMSR product derived 

from the COSMO-SkyMed program (d) (see Figure 39). The validation was conducted 

using the best parameter set obtained from the fine-tuned calibration process, as well as 

Manning’s n-values from the calibration regions obtained through the regionalized 

calibration approach. 

vi. Flood November 24, 2021 

The flood event that took place on November 24, 2021, underwent a calibration process 

to determine the optimal Manning’s n-values for the main channel and floodplains. This 

calibration step aimed to achieve the best measure of fit for the model. Subsequently, 

the calibrated model, utilizing the best parameter set, went through validation using two 

Sentinel-1 SAR images (a) and (b), as well as the EMSR product derived from the 

COSMO-SkyMed program (d) (see Figure 39). Additionally, the model was validated 

using observed water surface elevations from the flooding event that occurred on August 

14, 2003. 

vii. Flood January 13, 2022 

The flood event that happened during Storm Gyda was regionalized calibrated trough 

changing Manning’s n-values in channel and floodplains locally with calibration regions, to 

provide the optimal measure of fit. The calibrated model with the best measure of fit 

were validated using the three Sentinel-1 SAR images (a), (b) and (c) (see Figure 39). 

Furthermore, the model underwent validation using observed water surface elevations 

from the flooding event that took place on August 14, 2003. 

3.11 Sensitivity analysis 

Sensitivity testing was conducted for the upstream and downstream boundary conditions 

prior to the calibration and validation processes. This step was essential in defining the 

study area and avoiding the influence of different friction and energy slopes calculated for 

the boundary conditions. Additionally, a preliminary sensitivity test was performed for the 

lateral boundary conditions to compare the effects of using external and internal 

boundary conditions.  

However, these sensitivity tests were conducted during the model setup phase aimed to 

establish a reliable and robust model for various types of flood events. Trough the 

analysis of the sensitivity of the model to these boundary conditions, potential 

uncertainties associated with them could be minimized. This to give confidence in the 

model to accurately simulate hydraulic behaviour and provide trustworthy results for a 

range of scenarios and conditions. 
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It is important to note that sensitivity testing on the mesh resolution in the hydraulic 

model could provide valuable insights, as this parameter can significantly impact the 

modelling results (Shustikova et al., 2019). This can be achieved by varying the grid size 

from coarse to refined, finding the optimal balance between mesh detail and 

computational efficiency. However, in this study, the grid cells were already set at a 

resolution of 10 m, matching the pixel resolution of SAR imagery from the Sentinel-1 

satellite program. Therefore, further testing on this parameter was not conducted. 

The Manning's n-values hold significant importance, if not the utmost importance, in the 

calibration of 2D hydraulic models (Pappenberger et al., 2005). Altering the Manning's n-

values can significantly impact the modelling outcomes, emphasizing the need to 

investigate the parameters that have the most pronounced influence on the modelling 

results when adjusted. Consequently, a comprehensive global sensitivity analysis was 

carried out on the three dominant land cover types within the study area: floodplains, 

main channel, and forest areas, accounting for 62%, 12.2%, and 15.4% of the total 

area, respectively. To manage the extensive range of Manning's n-value combinations 

and ensure a manageable number of simulations, these parameters were assumed to 

exert the greatest influence on the modelling results, thereby being the primary focus of 

the sensitivity analysis. 

Through the systematic variation of Manning's n-values within established literature-

based ranges, the sensitivity analysis sought to evaluate the holistic performance of the 

model in replicating observed water surface elevations and flood extent. This thorough 

assessment will offer valuable insights into the parameters that are most susceptible to 

changes in Manning's n-values, thereby emphasizing their critical role in the calibration 

process. 

3.12 Model analysis and results comparison 

The effect of different Manning’s n-values on the performance of a hydraulic model was 

investigated in this research. To assess the accuracy of the model in predicting water 

surface elevation, two sets of performance metrics were used for calibration. 

Furthermore, flood extent was calibrated and validated using the measure of fit F, which 

was computed by comparing model predictions with observed satellite imagery. This 

performance evaluation provides valuable insights into the sensitivity of the model to 

Manning’s n-values and the appropriateness of different metrics for hydraulic modelling. 

When plotting simulated water surface elevations in the profile lines from the model 

results, variations in the water surface elevation along the profile occur when using the 

shallow water equation. There will always be uncertainty in both the simulated and 

observed water surface elevation. For instance, when measuring water surface 

elevations, there can be uncertainty in several factors. These sources can be the 

accuracy and precision of the instrument, human error, environmental factors, spatial 

variability, and temporal variability. Therefore, an assumption was made, that the 

uncertainty in the simulated and observed water surface elevations offsets each other. 

This assumption means that any errors and uncertainties in the model are balanced by 

error or uncertainties in the measurement, resulting in that no measures were taken to 

evaluate or quantify the uncertainties.  

To account for the variability in the simulated water surface elevations at the profile lines 

used for the performance evaluation, an average of the observed water surface elevation 

along the profile line was calculated. 
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As part of the evaluation of the performance of the model the statistical measures Mean 

Absolute Error (MAE) and Root Mean Squared Error (RMSE) was used. Both measures 

have their strength and weaknesses, MAE is more robust to outliers since it does not 

square the differences, while RMSE puts more weight on large errors. Accordingly, RMSE 

can be used to reduce large errors in the model, while MAE can be used to minimize the 

overall difference between the simulated and observed values. 

MAE measures the average absolute difference between simulated and observed values 

with the equation written as: 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|𝑆𝑊𝐸𝑜𝑏𝑠 −  𝑆𝑊𝐸𝑠𝑖𝑚|

𝑛

𝑖=1

 

( 14 ) 

RMSE measures the average squared difference between simulated and observed values, 

taking the square root of the result with the equation written as: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑆𝑊𝐸𝑠𝑖𝑚 −  𝑆𝑊𝐸𝑜𝑏𝑠)

𝑛

𝑖=1

 

( 15 ) 

where SWEsim is the simulated water surface elevation, and SWEobs is the observed water 

surface elevation in both equations. 

Both MAE and RMSE have their advantages and limitations, so to provide a more 

comprehensive picture of the model performance they were reported together. 

The measures of fit used when comparing flood extent maps derived from SAR imagery 

with flood extent from the model have been proven to provide reliable results in 

comparing different model outputs across various reaches and flood events in flood 

inundation modeling problems (Horritt, 2006; Horritt et al., 2007). These measures are 

represented by the following equations:  

𝐹1 =
𝐴

𝐴 + 𝐵 + 𝐶
 

( 16 ) 

𝐹2 =
𝐴 − 𝐵

𝐴 + 𝐵 + 𝐶
 

( 17 ) 

where A is the flood area that are correctly predicted by the model, B is the predicted 

flood area that is observed dry (over-prediction), C is the flooded area not predicted by 

the model (under-prediction). The value of F1 can range from 0 to +1, while F2 can range 

from -1 to +1, where values closer to +1 means better goodness of fit. 

In the numerator of the equation F2, the term negative B is used to penalize the model 

for over-prediction, meaning that the model is given a lower score if it predicts more wet 

area than actually observed. This penalization is important because remote sensing 

imagery often captures multiple flood-related processes and tends to show a larger flood 

extent, whereas the model only incorporates a few of these processes, resulting in less 
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inundation of the floodplain (Di Baldassarre et al., 2009). By penalizing over-prediction, 

F2 has been found to give better results when assessing the performance of the model 

(Horritt et al., 2007). 

On the other hand, F1 does not penalize over-prediction. It simply calculates the ratio of 

correctly predicted flood area (A) to the sum of correctly predicted flood area, predicted 

dry area (B), and flood area not predicted by the model (C). However, it still can be a 

good measure of fit for models that significantly overpredict inundated area (Horritt et 

al., 2007). 

In summary, F2 is the preferred measure since it penalizes model over-prediction, 

providing more realistic assessment of the goodness of fit in the model. Nevertheless, F1 

is still useful, but it may give a relatively high score even if the model over-predicts the 

flood extent significantly. Therefore, both measures were used when evaluating the 

calibration and validation of the different modelled flooding events compared to SAR 

imagery. 
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4.1 Evaluating the flood event, August 14, 2003 

4.1.1 Calibration of Manning’s n-values 

The results of the calibration process, involving various Manning's n-values ranging from 

0.02 to 0.1 for the main channel and floodplains, are shown in Figure 40. The objective 

was to minimize the discrepancy between the observed and simulated water surface 

elevations. To achieve this, a strategy was employed to explore all combinations of 

Manning's n-values within the literature-based range, while avoiding unrealistic values 

that could compromise the calibration. The remaining Manning's n-values for the other 

land cover types were held constant to minimize the number of variations and 

subsequent simulation runs. The optimal MAE and RMSE values, measured at 0.29 m and 

0.43 m respectively, were obtained when the Manning's n-value for the channel was set 

to 0.03 and 0.1 for the floodplains.  

 

Figure 40: Heatmap illustrating the results from the calibration of the flood event on 
August 14, 2003. Left: MAE plotted against varying Manning’s n-values. Right: RMSE 

plotted against varying Manning’s n-values. 

The contour plots from the same calibration process are shown in Figure 41. The contour 

plot provides further insights into the effectiveness of different parameter settings in the 

calibration process. The tendency observed in the contour plot is that the optimal 

parameter set, based on the MAE results, is 0.03 for the Manning's n-value in the main 

channel, and 0.09 – 0.1 for the floodplains. However, Manning’s n-values between 0.028 

and 0.042 for the main channel and values between 0.02 and 0.01 for the floodplain will 

still provide reasonably accurate results compared to the optimal parameter set. In 

contrast, the RMSE results indicate a narrower range of optimal parameters for the 

Manning's n-value in the main channel, with optimal values between 0.03 and 0.033, but 

a broader range for the floodplains, with values between 0.02 and 0.1. 

4 Results  
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Figure 41: Contour plot illustrating the results from the calibration of the flood event on 
August 14, 2003. Left: MAE plotted against varying Manning’s n-values. Right: RMSE 
plotted against varying Manning’s n-values. 

The differences between observed and simulated water surface elevations at each profile 

line using the best parameter set for the Manning's n-values in the main channel and 

floodplain are shown in Figure 42. Noteworthy, the largest deviations are observed in 

profile lines 2, 7, 8, and 9, with values of 0.36 m, 0.70 m, -0.27 m, and -1.03 m, 

respectively. Negative values indicate an overestimation of simulated water surface 

elevations, while positive values indicate an underestimation. 

 

Figure 42: Plot of observed and simulated water surface elevations at each profile line, 
with a difference line showing the discrepancy, using the optimal parameter set from the 

calibration of the flood event on August 14, 2003. 

4.1.2 Fine-tuned calibration of Manning’s n values 

To investigate if the MAE and RMSE performance metrics would further improve, a fine-

tuned calibration was performed, specifically focusing on the Manning's n-value in the 

channel. The range of 0.025 to 0.035 was chosen for the Manning's n-value in the 

channel based on the results from the initial calibration, which showed the best 

performance within this range. For the floodplain, a range of 0.02 to 0.1 was tested for 

all the main channel values. The results from the fine-tuned calibration showed a slight 

improvement in MAE, reducing it to 0.28 m, a decrease of 0.01 m. The RMSE value 

remained the same at 0.43 m. The optimal parameter set obtained from the fine-tuned 

calibration is shown in Figure 43, with Manning's n-values of 0.28 for the main channel 

and 0.1 for the floodplains. 
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Figure 43: Heatmap illustrating the results from the fine-tuned calibration of the flood 
event on August 14, 2003. Left: MAE plotted against varying Manning’s n-values. Right: 
RMSE plotted against varying Manning’s n-values. 

The fine-tuned calibration process, visualized in Figure 44, reveals a range of Manning's 

n-values that yield respectable outcomes in terms of MAE and RMSE values. The contour 

plot demonstrates the effectiveness of different parameter settings. Based on the MAE 

results, the optimal Manning's n-values for the main channel lie within the range of 0.031 

to 0.033, while for the floodplain, they range from 0.08 to 0.1. Within these ranges, the 

model demonstrates good performance. Similarly, the RMSE results indicate that the 

main channel achieves the best accuracy with Manning's n-values between 0.030 and 

0.032, while the floodplain values range from 0.06 to 0.1. These findings emphasize the 

impact of the fine-tuned calibration process on the model performance.  

 

Figure 44: Contour plot illustrating the results from the fine-tuned calibration of the 
flood event on August 14, 2003. Left: MAE plotted against varying Manning’s n-values. 

Right: RMSE plotted against varying Manning’s n-values. 

The comparison between observed and simulated water surface elevations at each profile 

line using the optimal parameter set for the Manning's n-values in the main channel and 

floodplain is presented in Figure 45. Notably, significant deviations are still observed in 

profile lines 2, 7, 8, and 9, with deviations of 0.32 m, 0.61 m, -0.31 m, and -1.09 m, 

respectively. Negative values indicate an overestimation of simulated water surface 

elevations, while positive values suggest an underestimation.  
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Figure 45: Plot of observed and simulated water surface elevations at each profile line, 
with a difference line showing the discrepancy, using the optimal parameter set from the 
fine-tuned calibration of the flood event on August 14, 2003. 

The optimal parameter set from the fine-tuned calibration yields a flood inundation area 

of 5.10 km2 within the study area shown in Figure 46.  

 

Figure 46: Flood inundation area from the flood event on August 14, 2003, using the 
optimal parameter set from the fine-tune-calibration. 

4.1.3 Regionalized calibration of Manning’s n-values in main channel 

The regionalized calibration approach will help address the challenges associated with 

accurately representing water surface elevations in different areas, leading to improved 

model accuracy and reliability. In the calibration and fine-tuned calibration processes, a 

single Manning's n-value was used for the entire channel reach. However, in reality, 

natural rivers exhibit variations in Manning's n-values along their course. To account for 

this, a regionalized calibration approach was employed, dividing the river into Manning's 

regions as shown in Figure 47. Each region was assigned a specific Manning's n-value to 

minimize the discrepancy between observed and simulated water surface elevations. 

 

Figure 47: Manning's regions inside the study area used in the regionalized calibration 
approach of the flood event on August 14, 2003. 

Through a trial-and-error process of adjusting the size of the Manning’s regions and 

adjusting the Manning’s n-value within the regions, with several iterations, the 

regionalized calibration resulted in a MAE of 0.02 m and a RMSE of 0.04 m. These 
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metrics indicate the level of agreement between the observed and simulated water 

surface elevations and was achieved when using the Manning’s n-values listed in Table 9. 

Table 9: Manning's n-values main channel assigned to Manning's regions. 

Manning’s 

region 

Manning’s n-value 

main channel 

1 0.030 

2 0.057 

3 0.018 

4 0.037 

5 0.054 

6 0.038 

7 0.050 

8 0.009 

9 0.004 

10 0.042 

 

The comparison of observed and simulated water surface elevations at each profile line, 

utilizing the Manning's n-values obtained from the regionalized calibration, is depicted in 

Figure 48. The discrepancies between observed and simulated values have been 

minimized, with many profile lines exhibiting a difference of 0 m. However, slight 

deviations are observed in profile lines 2, 3, and 8, with deviations of 0.07 m, -0.09 m, 

and -0.01 m, respectively. Negative deviations indicate an overestimation of simulated 

water surface elevations, while positive deviations indicate an underestimation. These 

results demonstrate a significant improvement in accuracy, as the MAE and RMSE values 

approach zero, indicating a high level of agreement between observed and simulated 

values. 

 

Figure 48: Plot of observed and simulated water surface elevations at each profile line, 
with a difference line showing the discrepancy, using Manning’s n-values in the main 
channel from the regionalized calibration of the flood event on August 14, 2003. 

The Manning’s n-values that provided the best performance of the model, hence the 

lowest MAE and RMSE values from the regionalized calibration yields a flood inundation 

area of 4.19 km2 within the study area as shown in Figure 49.  
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Figure 49: Flood inundation area from the flood event on August 14, 2003, using 
Manning’s n-values in the main channel from the regionalized calibration. 

4.1.4 Model sensitivity to Manning’s n-values 

The study area primarily comprises three main land cover types: the main channel, 

floodplains (including complete soil cultivated, surface cultivated soil, and infield 

grazing), and forest. These land cover types account for approximately 12.2%, 62%, and 

15.4% of the total area, respectively. The remaining land cover types collectively 

represent the remaining percentages. Therefore, to assess the sensitivity of the model, 

an evaluation of the performance and behaviour of the model was made for these three 

main land cover types. 

The model sensitivity was assessed by varying the Manning’s n-value in the main 

channel, specifically using values of 0.02 and 0.1, while keeping the remaining Manning’s 

n-values at their reference levels. The resulting flood extent from both Manning’s n-

values are showed Figure 50. The blue area represents the overlapping region where 

both simulations coincide. In contrast, the black area corresponds to the additional 

flooded area resulting from the use of a Manning's n-value of 0.1, extending beyond the 

overlapping region. The flood inundation area within the study area is 4.01 km2 when 

using a Manning's n-value of 0.02. However, when a Manning's n-value of 0.1 is used, 

the inundation area expands to 7.01 km2. This indicates an additional flooded area of 3.0 

km2 resulting from the use of the higher Manning's n-value. When utilizing a Manning's 

n-value of 0.02 in the main channel, the MAE and RMSE are calculated to be 0.48 m and 

0.58 m, respectively. However, when the Manning's n-value is increased to 0.1, the MAE 

and RMSE values rise to 1.02 m and 1.15 m, respectively. 

 

Figure 50: Flood inundation area from the flood event on August 14, 2003, using 
Manning’s n-values 0.02 and 0.1 in the main channel. The blue area indicates the region 
where both simulations overlap and coincide. The black area represents the additional 

flooded area when a Manning's n-value of 0.1 is used, extending beyond the overlapping 
region. 

To further investigate the sensitivity of the model, the Manning's n-value for the 

floodplains was evaluated using values of 0.02 and 0.1. The Manning's n-value of 0.032 

in the main channel, determined as the best parameter from the fine-tuned calibration, 

was retained. The remaining Manning's n-values for other land cover types were kept at 

their reference levels. Figure 51 displays the flood extent resulting from the simulations 

using the two different Manning's n-values for the floodplains. The blue area represents 
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the overlapping region where both parameter sets produce similar flood extents. On the 

other hand, the black area indicates the additional flooded region that arises when using 

a Manning's n-value of 0.1 in the floodplains, extending beyond the overlapping area. 

When a Manning's n-value of 0.02 is applied to the floodplains, the flood inundation area 

measures 4.86 km2. In comparison, utilizing a Manning's n-value of 0.1 yields a flood 

inundation area of 5.10 km2, representing an expansion of approximately 0.26 km2. 

The MAE and RMSE values when using a Manning's n-value of 0.02 are 0.31 m and 0.43 

m, respectively. When employing a Manning's n-value of 0.1, the MAE remains at 0.28 

m, while the RMSE remains unchanged at 0.43 m. 

 

Figure 51: Flood inundation area from the flood event on August 14, 2003, using 
Manning’s n-values 0.02 and 0.1 for the floodplains. The blue area indicates the region 
where both simulations overlap and coincide. The black area represents the additional 

flooded area when a Manning's n-value of 0.1 is used, extending beyond the overlapping 
region. 

The land cover type “forest” was the last Manning’s n-value that was assessed, which 

constitutes a substantial portion of the study area, covering 15.4 % of the total area. The 

Manning's n-value for the main channel was set to 0.32, determined as the best 

parameter from the fine-tuned calibration. The remaining Manning's n-values for other 

land cover types were maintained at their reference levels. In the literature, the 

Manning's n-value for forests typically ranges from 0.1 to 0.2 in the study area. 

Therefore, increments of 0.01 were examined to cover the range of Manning's n-values 

for forests, while simultaneously increasing the Manning’s n-values for the floodplains 

from 0.02 to 0.1 through all the forest increments.  

The results from the simulations, presented in Figure 52, indicate that the optimal MAE 

achieved is 0.28 m by utilizing a Manning’s n-value of 0.1 for the floodplain and a 

Manning’s n-value of 0.15 for the forest area. On the other hand, the best RMSE value 

obtained is 0.42, with a Manning’s n-value of 0.1 for the floodplains and 0.1 for the 

forests. 
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Figure 52: Heatmap of results when analyzing the land cover type "forest" during the 
flood event on August 14, 2003. Left: MAE plotted against varying Manning’s n-values. 
Right: RMSE plotted against varying Manning’s n-values. 

To visually analyse the impact of different Manning's n-values on the performance of the 

model, a contour plot was generated and is presented in Figure 53. The contour plot 

provides insights into the relationship between the variations in Manning's n-values for 

the floodplain and forest and the corresponding model performance. 

Upon examining the plot, it becomes evident that the model achieves the best MAE 

performance when utilizing Manning's n-values within the range of 0.08 to 0.1 for the 

floodplain and 0.14 to 0.16 for the forest. In contrast, the best RMSE performance is 

attained by employing Manning's n-values between 0.09 and 0.1 for the floodplain, and 

0.1 and 0.11 for the forest. 

 

Figure 53: Contour plot of the results when analyzing the land cover type "forest" during 
the flood event on August 14, 2003. Left: MAE plotted against varying Manning’s n-
values. Right: RMSE plotted against varying Manning’s n-values. 

To assess the sensitivity of the model to variations in Manning's n-value for the forest, a 

flood inundation map was created. This map, presented in Figure 54, displays the 

distribution of flood areas for two scenarios: using the minimum Manning's n-value of 0.1 

and the maximum Manning's n-value of 0.2 for the forest. In the map, the blue area 

represents the region where both sets of parameter values yield similar flood extents, 

while the black area indicates the additional flooded region that arises when a Manning's 

n-value of 0.2 is applied to the forest. This portion of the map extends beyond the 

overlapping area, signifying that a higher Manning's n-value leads to a larger flood extent 

compared to the lower value. 

When a Manning's n-value of 0.1 is applied to the forest, the flood inundation area 

measures 4.93 km2. In contrast, utilizing a Manning's n-value of 0.2 results in a larger 
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flood inundation area of 5.24 km2. This represents an expansion of approximately 0.31 

km2 when the higher Manning's n-value is used, highlighting the sensitivity of the flood 

extent to changes in the forest's Manning's n-value. 

 

Figure 54: Flood inundation area from the flood event on August 14, 2003, using 
Manning’s n-values 0.1 and 0.2 for the forest, and 0.1 for floodplains. The blue area 
indicates the region where both simulations overlap and coincide. The black area 
represents the additional flooded area when a Manning's n-value of 0.2 for forest is 

used, extending beyond the overlapping region. 

4.1.5 Validation of the calibrations using SAR imagery 

The best set of Manning’s n-values from the fine-tuned and regionalized calibration from 

the August 14, 2003, flood event, is validated with Sentinel-1 SAR imagery of captured 

floods over the study area within the time-period when the satellites in the Sentinel-1 

program has been active. Furthermore, the calibrations are also validated with vector 

data of the flood event that occurred during Storm Gyda, which was derived from the 

EMSR product created by Copernicus Emergency Management Service. The flood 

delineation maps from the satellite imagery are overlayed the simulated flood inundation 

maps, creating areas that shows where the model correctly predicts, over-predicts, or 

under-predicts simulated flooded areas, respectively with the colour blue, black and pink. 

Additionally, the forest resource map SR16 was merged with the flood delineation maps 

to examine the impact of forests on the results. Forests can obstruct SAR imagery, 

making it challenging to capture images of water that is concealed beneath the forest 

canopy. By combining the forest information from SR16 with flood delineation maps, a 

more comprehensive understanding can be gained regarding the influence of forests on 

flood mapping accuracy and the detection of water-covered areas. 

The measure of fit F1 and F2 are calculated based on the flood overlay maps, as depicted 

in Figure 55 and Figure 56. These measures serve as indicators to evaluate the 

performance of the simulated flood events when comparing them to real-world 

observations using the Manning's n-value obtained from the fine-tuned calibration and 

regionalized calibration. The flood overlay maps provide a visual representation of the 

agreement or discrepancy between the simulated flood extent and the flood extent from 

satellite imagery. 
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Figure 55: Flood overlay plots used for validation of the fine-tuned calibration of the 
August 14, 2003, flood event. (a) Flood event, November 26, 2016. (b) Flood event, 
November 26, 2016, with merged SR16 map and SAR binary map. (c) Flood event, 

January 21, 2020. (d) Flood event, November January 21, 2020, with merged SR16 map 
and SAR binary map. (e) Flood event, November 24, 2021. (f) Flood event, November 24, 
2021, with merged SR16 map and SAR binary map. (g) Flood event, January 13, 2022. 
(h) Flood event, January 13, 2022, with merged SR16 map and SAR binary map. Blue: 
correctly predicted. Black: over-predicted. Pink: under-predicted. 

 

Figure 56: Flood overlay plots used for validation of the regionalized calibration of the 
August 14, 2003, flood event. (a) Flood event, November 26, 2016. (b) Flood event, 
November 26, 2016, with merged SR16 map and SAR binary map. (c) Flood event, 

January 21, 2020. (d) Flood event, November January 21, 2020, with merged SR16 map 

and SAR binary map. (e) Flood event, November 24, 2021. (f) Flood event, November 24, 
2021, with merged SR16 map and SAR binary map. (g) Flood event, January 13, 2022. 
(h) Flood event, January 13, 2022, with merged SR16 map and SAR binary map. Blue: 
correctly predicted. Black: over-predicted. Pink: under-predicted.  

The measure of fit F1 and F2 from the validation of the fine-tuned calibration and 

regionalized calibration is presented in Table 10. The results are reported with measure 

of fit values from the comparison of simulated flood inundation maps with flood 

delineation maps, and flood inundation maps compared with flood delineation maps 

merged with the forest resource map SR16. 
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Table 10: Flood events used in validation of the fine-tuned and regionalized calibration. 

F1 and F2 values presented both with and without SR16 map merged with flood 
delineation map. (FTC = Fine-tuned calibration, RC = Regionalized calibration). 

 Flood delineation map Flood delineation map + SR16 

 FTC RC FTC RC 

Flood event F1 F2 F1 F2 F1 F2 F1 F2 

2016-11-26 0.34 -0.16 0.36 -0.13 0.50 0.15 0.53 0.22 

2020-01-21 0.29 -0.25 0.30 -0.21 0.45 0.07 0.47 0.14 

2021-11-24 0.50 0.10 0.49 0.07 0.62 0.34 0.61 0.31 

2022-01-13 0.66 0.34 0.63 0.27 0.79 0.60 0.75 0.52 

4.2 Evaluating the flood event, November 24, 2021 

4.2.1 Calibration of Manning’s n-values 

The calibration of the flood event that occurred November 24, 2021, that had a flood 

peak of 583 m3/h was based on comparing the flood delineation map from the Sentinel-1 

SAR image as shown in Figure 57, with flood inundation maps from the simulations with 

different Manning’s n-value combinations. 

 

Figure 57: Flood delineation from Sentinel-1 SAR image of flood event, November 24, 
2021, inside the area of interest. Red color is the flood delineation line that mark the 
potential wet pixels by utilizing the threshold method. 

The calibration process aimed to minimize the discrepancy between the observed and 

simulated flood extent by adjusting Manning's n-values for the main channel and 

floodplains. Manning's n-values ranging from 0.02 to 0.1 were explored, which are within 

literature-based range while avoiding unrealistic values that could compromise the 

calibration. To minimize variations and simulation runs, the Manning's n-values for other 

land cover types were held constant. The best measure of fit F1 and F2, measured at 0.54 

and 0.21 respectively, were obtained when the Manning's n-value for the channel was set 

to 0.02 and 0.02 for the floodplains as shown in Figure 58. 
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Figure 58: Heatmap illustrating the results from the calibration of the flood event on 
November 24, 2021. Left: F1 plotted against varying Manning’s n-values. Right: F2 plotted 
against varying Manning’s n-values. 

The calibration process, as depicted in Figure 59, provides a visualization of the 

relationship between Manning's n-values and the corresponding F1 and F2 values. The 

contour plot illustrates the effectiveness of different parameter settings in achieving 

optimal outcomes. 

Based on the results of F1 and F2, the optimal Manning's n-values for the main channel 

fall within the range of 0.02 to 0.03, while for the floodplain, they range from 0.02 to 

0.1. Within these ranges, the model demonstrates the best performance in terms of 

simulating the observed flood extent. 

 

Figure 59: Contour plot illustrating the results from the calibration of the flood event on 
November 24, 2021. Left: F1 plotted against varying Manning’s n-values. Right: F2 plotted 

against varying Manning’s n-values. 

The measure of fit F1 and F2 are calculated by using the areas where the model correctly 

predicts flood (blue), where it over-predicts (black), and where it under-predicts (pink) 

as illustrated in Figure 60. When using the best measure of fit Manning’s n-values from 

the calibration the correctly predicted area is 2.47 km2, the over-prediction is 1.51 km2, 

while the under-predicted area is 0.61 km2.  
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Figure 60: Flood overlay plot from the flood event on November 24, 2021, using best 
measure of fit Manning’s n-values 0.02 in the main channel and floodplains. The blue 
area indicates the region the simulation and flood delineation map of the SAR image 
overlap and coincide. The black area represents the over-prediction from the simulation, 

while the pink is illustrating the under-prediction.  

The forest resource map SR16 was combined with the flood delineation map derived from 

the SAR image of the flood event to examine the impact of forests on the outcomes. The 

results of this integration are illustrated by the measures F1 and F2, as shown in Figure 

61. By utilizing Manning's n-values of 0.02 for both the main channel and floodplains, the 

calibration process yields a F1 value of 0.67 and an F2 value of 0.46. 

 

Figure 61: Heatmap illustrating the results from the calibration of the flood event on 

November 24, 2021, when integrating SR16. Left: F1 plotted against varying Manning’s 
n-values. Right: F2 plotted against varying Manning’s n-values. 

The contour plot, represented in Figure 62, offers a visual representation of the 

correlation between Manning’s n-values and their corresponding F1 and F2 values. It 

effectively showcases the efficacy of different parameter configurations, indicating that 

the most favorable Manning’s n-values for the main channel lie within the range of 0.02 

and 0.03, while for the floodplain, the optimal values range from 0.02 to 0.1. It is within 

these specified ranges that the model exhibits the highest performance in accurately 

simulating the observed flood extent when adding the forest resource map SR16. 
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Figure 62: Contour plot illustrating the results from the calibration of the flood event on 
November 24, 2021, when integrating SR16. Left: F1 plotted against varying Manning’s 
n-values. Right: F2 plotted against varying Manning’s n-values. 

The measure of fit, F1 and F2, is determined based on the classification of predicted flood 

areas into three categories: correctly predicted (blue), over-predicted (black), and under-

predicted (pink), as visualized in Figure 63. By utilizing the SR16 map merged with the 

flood inundation map from the SAR image the model achieves a correctly predicted area 

of 3.06 km2, it exhibits an over-prediction of 0.92 km2, and under-predicts an area of 

0.61 km2.  

 

Figure 63: Flood overlay plot from the flood event on November 24, 2021, using best 
measure of fit Manning’s n-values 0.02 in the main channel and floodplains. The blue 

area indicates the region the simulation and flood delineation map of the SAR image 
merged with SR16 map overlap and coincide. The black area represents the over-
prediction from the simulation, while the pink is illustrating the under-prediction. 

4.2.2 Validating using SAR imagery and observed water surface elevations 

The validation of the November 24, 2021, flood event is done using the Manning’s n-

value that gave the best measure of fit when calibrating the model. The Manning’s n-

value of 0.02 in the main channel, and 0.02 in the floodplains, while keeping the rest as 

the reference levels was validated against the flood events from: 

• August 14, 2003 

• November 26, 2016 

• January 21, 2020 

• January 13, 2022 

The simulated flood inundation maps are overlayed the flood delineation maps from the 

respective floods simulated, resulting in the areas representing the correctly predicted 

flood areas (blue), over-predicted flood areas (black), and under-predicted flood areas 

(pink), as depicted in Figure 64. 
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Figure 64: Flood overlay plots used for validation of the calibration of the November 24, 
2021, flood event. (a) Flood event, November 26, 2016. (b) Flood event, November 26, 
2016, with merged SR16 map and SAR binary map. (c) Flood event, January 21, 2020. 

(d) Flood event, November January 21, 2020, with merged SR16 map and SAR binary 

map. SR16 map and SAR binary map. (e) Flood event, January 13, 2022. (f) Flood event, 
January 13, 2022, with merged SR16 map and SAR binary map. Blue: correctly predicted. 
Black: over-predicted. Pink: under-predicted. 

Table 11 presents the measure of fit values, F1 and F2, obtained from the validation of 

the calibration process of the flood event from November 24, 2021. The results are 

reported by comparing the simulated flood inundation maps with the flood delineation 

maps, as well as the flood inundation maps compared to with the flood delineation maps 

merged with the forest resource map SR16. 

Table 11: Flood events used in validation of the calibration of the November 24, 2021, 

flood event. F1 and F2 values presented both with and without SR16 map merged with 
flood delineation map. 

 Flood delineation map Flood delineation map + SR16 

Flood event F1 F2 F1 F2 

2016-11-26 0.40 0.05 0.54 0.33 

2020-01-21 0.29 -0.14 0.46 0.20 

2022-01-13 0.68 0.41 0.82 0.69 

 

Furthermore, the calibration is validated by comparing the simulated water surface 

elevations with the observed water surface elevations from the flood event of August 14, 

2003. Using the Manning's n-values obtained from the calibration process, the MAE and 

RMSE are calculated as 0.49 m and 0.59 m, respectively.  

The difference between the observed and simulated water surface elevations along each 

profile line, employing the Manning’s n-values that provide the best measure of fit in the 

main channel and floodplain from the calibration of the November 24, 2021, flood event, 

are depicted in Figure 65. It is notable that the simulation generally underestimates the 

water surface elevations along most profile lines, with the exception of profile line 9 

where and overestimation occurs. Negative values signify an overestimation in the 

simulated water surface elevations, while positive values indicate an underestimation. 
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Figure 65: Plot of observed and simulated water surface elevations at each profile line, 
with a difference line showing the discrepancy, using the best measure of fit Manning’s 
n-values from the calibration of the flood event on November 24, 2021. 

4.3 Evaluating the flood event, January 14, 2022 (Storm Gyda) 

4.3.1 Regionalized calibration of main channel and floodplains 

The calibration process for the flood event that took place on November 24, 2021, 

achieved the best measure of fit by utilizing a Manning's n-value of 0.02 for both the 

main channel and floodplains. Subsequently, these optimized Manning's n-values were 

applied to simulate the flood event during Storm Gyda on January 14, 2022, resulting in 

measure of fit values of F1 = 0.82 and F2 = 0.69, when comparing against the flood 

delineation map derived from COSMO-SkyMed SAR image that was merged with the 

SR16 forest resource map. The simulation accurately predicted a flood area of 4.04 km2, 

with an over-prediction of 0.66 km2 and an under-prediction of 0.23 km2. 

To optimize the outcomes even further, a regionalized calibration was performed 

specifically for the Storm Gyda flood event, with particular emphasis placed on certain 

zones during the calibration process, as shown in Figure 66. 

 

Figure 66: Storm Gyda flood event simulated using optimized Manning's n-values 
overlayed the flood delineation map derived from COSMO-SkyMed SAR image merged 
with the SR16 map, highlighting prioritized zones in the regionalized calibration. The 

colors represent the following: blue for correctly predicted areas, black for over-

predicted areas, and pink for under-predicted areas. 

As illustrated in Figure 66, zones 1-4 display noticeable under-prediction of the simulated 

flooded areas (pink areas), while zone 5 shows some over-prediction (black areas). In 

order to address this, Manning's calibration regions were created specifically for these 

zones to locally adjust the Manning's n-values inside the zones, as depicted in Figure 67. 
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Figure 67: Manning's calibration regions to change the Manning's n-values inside the 
calibration zones. 

To assess the impact of adjusting the Manning's n-values in the floodplains, the baseline 

Manning's n-values of 0.02 for floodplains and 0.15 for the forest were modified within 

the under-predicted zones. The baseline values fall within the lower- to mid-range based 

on existing literature. Therefore, within Manning’s region 1-4, the Manning's n-values for 

floodplains and forest were increased to 0.1 and 0.2, respectively, which represent 

values in the upper range of Manning's n-values. 

Figure 68 presents the results of the simulation using the newly adjusted Manning's n-

values in calibration zones 1-4. These adjustments led to an increase in the accurately 

predicted flood areas, resulting in a total of 4.08 km2. Additionally, there was a slight 

increase in the over-predicted areas, totaling 0.68 km2. On the other hand, the under-

predicted areas decreased to 0.19 km2. However, the measure of fit values, F1 and F2, 

was unchanged, with the values of 0.82 and 0.69, respectively.  

 

Figure 68: Storm Gyda flood event simulated using new Manning's n-values for zone 1-4, 
overlayed the flood delineation map derived from COSMO-SkyMed SAR image merged 
with the SR16 map. The colors represent the following: blue for correctly predicted 
areas, black for over-predicted areas, and pink for under-predicted areas. 

The difference in flooded areas before and after changing the Manning’s n-values for the 

floodplains and forest inside calibration zones 1-4 is illustrated in Figure 69, where (a) 

and (b) is zone 1, (c) and (d) is zone 2, (e) and (f) is zone 3, and (g) and (h) is zone 4. 
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Figure 69: Zones 1-4, where (a) and (b) is zone 1, (c) and (d) is zone 2, (e) and (f) is 
zone 3, and (g) and (h) is zone 4, before and after changing Manning’s n-value for 
floodplains and forest. Blue is correctly predicted, black is over-predicted, and pink is 

under-predicted. 
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To further improve the accuracy of the model, the calibration zone 5 was split into three 

Manning’s calibration regions as displayed in Figure 67. Iterative simulations were 

performed in a trial-and-error approach to minimize the overestimation, adjusting the 

Manning's n-value in the main channel within each Manning's calibration region. The 

compilation of all the Manning's n-values employed in the regionalized calibration can be 

found in Table 12. 

Table 12: Manning's n-values assigned to Manning's regions. 

 Manning’s n-value 

Manning’s region Main channel Floodplains Forest 

1 0.020 0.100 0.200 

2 0.020 0.100 0.200 

3 0.020 0.100 0.200 

4 0.020 0.100 0.200 

5 0.001 0.020 0.150 

6 0.001 0.020 0.150 

7 0.014 0.020 0.150 

 

Figure 70 represents the outcomes of the simulation incorporating the recent 

modifications to the Manning's n-values in all calibration zones. The final adjustments 

made to the Manning's n-values in calibration zone 5 led to a reduction in correctly 

predicted flooded areas to 4.03 km2, a decrease to 0.58 km2 in over-predicted areas, and 

the under-predicted areas was unchanged at 0.23 km2. As a result, there was an 

improvement in the measure of fit values, with F1 increasing to 0.83 and F2 increasing to 

0.71. 

 

Figure 70: Storm Gyda flood event simulated using new Manning's n-values for all 
calibration zones, overlayed the flood delineation map derived from COSMO-SkyMed SAR 
image merged with the SR16 map. The colors represent the following: blue for correctly 
predicted areas, black for over-predicted areas, and pink for under-predicted areas. 

The difference in flooded areas before and after changing the Manning’s n-values for the 

main channel inside calibration zones 5 is illustrated in Figure 71. 

 

Figure 71: Calibration zone 5 before (a) and after (b) changing the Manning’s n-values 

for the main channel in the Manning’s regions 5-7. Blue is correctly predicted, black is 
over-predicted and pink is under-predicted. 
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The regionalized calibration of the Storm Gyda flood event involved merging the forest 

resource map SR16 with the flood delineation map from the SAR image captured by the 

COSMO-SkyMed satellite during Storm Gyda for comparing overlay areas and assessing 

the measure of fit values. To evaluate the performance of the model without the 

integration of the SR16 map, the modelling results were compared using only the flood 

delineation map. The initial results obtained using the best Manning's n-values of 0.02 for 

the main channel and floodplains showed measure of fit values of 0.68 for F1 and 0.41 for 

F2. The correctly predicted area was 3.37 km2, the over-predicted area was 1.33 km2, 

and the under-predicted area was 0.23 km2. 

After performing the regionalized calibration with the updated Manning's n-values from 

Table 12 in the calibration zones and comparing the modelling results to the flood 

delineation map from the SAR image, there was an improvement in the measure of fit 

values. The F1 value increased to 0.70, and the F2 value increased to 0.44. The correctly 

predicted area remained unchanged at 3.37 km2, the over-predicted area decreased to 

1.24 km2, while the under-predicted area remained the same at 0.23 km2, illustrated in 

Figure 72. 

 

Figure 72: Storm Gyda flood event simulated using new Manning's n-values for all 

calibration zones, overlayed the flood delineation map derived from COSMO-SkyMed SAR 
image. The colors represent the following: blue for correctly predicted areas, black for 

over-predicted areas, and pink for under-predicted areas. 

To summarize, Table 13 shows the measure of fit values F1 and F2 before and after the 

regionalized calibration. 

Table 13: Measure of fit values before and after the regionalized calibration (RC), when 
comparing to the flood delineation map, and the flood delineation map + SR16 map. 

 Flood delineation map Flood delineation map + SR16 

Measure of fit Before RC After RC Before RC After RC 

F1 0.68 0.70 0.82 0.83 

F2 0.41 0.44 0.69 0.71 

4.3.2 Validating the regionalized calibration of Storm Gyda flood event 

The validation of the regionalized calibration of the Storm Gyda flood event that occurred 

January 13, 2022, is done using the Manning’s n-values from Table 12 in the different 

Manning’s regions, while keeping the rest Manning’s n-values at reference levels. The 

regionalized calibration was validated against the flood events from: 

• August 14, 2003 

• November 26, 2016 

• January 21, 2020 

• January 13, 2021 

The simulated flood inundation maps are overlayed the flood delineation maps from the 

respective floods simulated, resulting in the areas representing the correctly predicted 
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flood areas (blue), over-predicted flood areas (black), and under-predicted flood areas 

(pink), as depicted in Figure 73. 

 

Figure 73: Flood overlay plots used for validation of the regionalized calibration of the 
Storm Gyda, flood event. (a) Flood event, November 26, 2016. (b) Flood event, 
November 26, 2016, with merged SR16 map and SAR binary map. (c) Flood event, 
January 21, 2020. (d) Flood event, November January 21, 2020, with merged SR16 map 
and SAR binary map. SR16 map and SAR binary map. (e) Flood event, November 24, 

2021. (f) Flood event, November 24, 2021, with merged SR16 map and SAR binary map. 
Blue: correctly predicted. Black: over-predicted. Pink: under-predicted. 

Table 14 displays the measure of fit values, F1 and F2, derived from the validation of the 

regionalized calibration of the Storm Gyda flood event. The results are presented through 

a comparison of the simulated flood inundation maps with the flood delineation maps, as 

well as the flood inundation maps compared to the flood delineation maps merged with 

the forest resource map SR16. 

Table 14: Flood events used in validation of the regionalized calibration of the Storm 

Gyda, flood event. F1 and F2 values presented both with and without SR16 map merged 
with flood delineation map. 

 Flood delineation map Flood delineation map + SR16 

Flood event F1 F2 F1 F2 

2016-11-26 0.39 0.06 0.52 0.32 

2020-01-21 0.29 -0.13 0.45 0.18 

2021-11-24 0.54 0.23 0.66 0.48 

 

Moreover, the effectiveness of the regionalized calibration was further assessed by 

comparing the simulated water surface elevations with the observed water surface 

elevations recorded during the flood event on August 14, 2003. By utilizing the Manning's 

n-values derived from the regionalized calibration in the respective Manning's regions, 

the MAE and RMSE were calculated, resulting in values of 0.52 m and 0.61 m, 

respectively. 

The disparities between the observed and simulated water surface elevations along each 

profile line are illustrated in Figure 74. It is noteworthy that, in general, the simulation 

tends to underestimate the water surface elevations along most profile lines, except for 

profile line 9 where an overestimation occurs. The differences are represented by 

negative values, indicating an overestimation in the simulated water surface elevations, 

while positive values indicate an underestimation. 
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Figure 74: Plot of observed and simulated water surface elevations at each profile line, 
with a difference line showing the discrepancy, using the Manning’s n-values from the 
Manning’s regions from the regionalized calibration of the Storm Gyda flood event. 
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5.1 Evaluation of flood event, August 14, 2003 

5.1.1 Calibration of Manning’s n-values 

The findings from the calibration and fine-tuned calibration processes emphasize the 

value of using the same Manning's n-value for the entire main channel and floodplain in 

gaining insights into the range of Manning's n-values within the study area. This holistic 

approach enables a comprehensive understanding of the hydraulic behaviour and 

roughness characteristics across the entire system. By systematically exploring all 

possible combinations of Manning's n-values within a literature-based range, it became 

possible to determine the suitable ranges for these parameters. 

Furthermore, the results indicate that the difference in the goodness of fit between the 

calibration and fine-tuned calibration was minimal. In the fine-tuned calibration, when a 

new parameter set was found, with Manning’s n-values of 0.032 for the channel and 0.1 

for floodplains, the RMSE remained unchanged, while the MAE exhibited a reduction of 

0.1 m. RMSE, being sensitive to outliers, places more emphasis on extreme values. The 

lack of reduction in RMSE suggests that the significant deviations in the difference 

between observed and simulated water surface elevations have not been effectively 

addressed or improved. These findings suggest that the initial calibration process 

effectively captured the essential hydraulic properties and achieved a reasonable level of 

accuracy in simulating water surface elevations. 

However, it is important to note that the fine-tuned calibration did have a slight impact 

on the overall difference in the simulated water surface elevations, as shown in Figure 

75. Specifically, the fine-tuned calibration resulted in slightly higher water surface 

elevations, where positive values indicate the increase. This outcome aligns with 

expectations since a higher Manning's n-value implies greater resistance on the water 

surface, leading to higher water levels. 

 

Figure 75: Difference in water surface elevations between calibration and fine-tuned 
calibration. 

The observed and simulated water surface elevations had some significant deviations 

from both the calibration approaches, particularly in profile lines 2, 7, 8 and 9, as shown 

in Figure 42 and Figure 45, that can be influenced by various factors. One significant 

factor contributing to these deviations is the presence of uncertainties in the observed 

5 Discussions 
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data. Measurement errors or variations in data collection methods that can contribute to 

these deviations, such as limitations in measurement instruments (Biemer et al., 2013). 

Moreover, the specific location within the profile line where the measurements are taken 

can also impact the observed water surface elevation.   

Additionally, the timing of the water surface elevation measurements can introduce 

further uncertainties. In the study area, where the river spans approximately 17.7 km, it 

may not be possible to measure water surface elevations at every location 

simultaneously, when the discharge is exactly 465 m3/s at the 112.27 Skjermo 

measuring station. This temporal mismatch between the discharge measurement and the 

collection of water surface elevations can lead to discrepancies between observed and 

simulated values. On top of that, further uncertainties can evolve from the calculated 

discharge in the ungauged tributaries that are represented in the model. 

Furthermore, the natural variability of the river system itself can contribute to deviations 

between observed and simulated water surface elevations. Rivers are complex and 

dynamic systems influenced by various factors such as flow rates, sediment transport, 

channel morphology, and vegetation (Sun et al., 1996). The observed water surface 

elevations were collected in 2003, and the LiDAR used in the model were acquired in 

2016. This timespan can introduce changes in the factors mentioned, that cannot be 

captured by the model, leading to differences in between the simulated and observed 

water surface elevations. 

In addition to the uncertainties associated with the observed water surface elevations, 

deviations between observed and simulated values can also arise from other contributing 

factors. One such factor is the inherent variations in roughness that occur along the 

length of natural rivers (Bathurst, 1978), which are not accounted for when using a 

single Manning’s n-value throughout the entire river. 

The deviations observed between the observed and simulated water surface elevations 

can be attributed, at least in part, to these variations along the river. To address this, a 

regionalized calibration approach was employed to better align the simulated water 

surface elevations with observed data. This approach involved adjusting the Manning’s n-

values in specific regions in the river to improve the fit between observed and simulated 

values. 

To achieve the best possible fit between observed and simulated water surface 

elevations, numerous iterations were performed, experimenting with different Manning's 

n-values and Manning’s region sizes in an attempt to achieve a better performance of the 

model. After careful evaluation, the values mentioned in Table 9 were determined to 

yield the best outcome in terms of minimizing the deviations between observed and 

simulated water surface elevations. Unrealistic Manning’s n-values were introduced in 

Manning’s regions 3, 9, and 10, utilizing the values 0.018, 0.009, and 0.004, 

respectively. These values, that are not within the literature-based range, were 

specifically selected to optimize the alignment between the simulated and observed data 

in those particular regions, and further emphasizes the uncertainties in the observed 

water surface elevations. The observed and simulated water surface elevations exhibited 

minimal deviations in most profile lines, with deviations close to 0 m, as shown in Figure 

48. However, profile lines 2 and 3 showed deviations of 0.07 m and -0.09 m, 

respectively. These were the optimal values that could be achieved in these profile lines. 

When attempting to minimize one, the other would increase, and vice versa. This 

necessitated finding the optimal balance between the two profile lines. Accepting this 
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deviation was necessary as there could be several factors influencing it, including 

measurement uncertainties as previously described, inaccuracies in representing the 

discharges within the river system, or hydraulic properties. 

During the calibration process, the focus was to minimize the discrepancies between 

observed and simulated water surface elevations at specific profile lines. However, it is 

important to note that the dynamics occurring between these profile lines are not fully 

accounted for in this approach. This limitation becomes evident when comparing the 

flood inundation areas generated by the fine-tuned calibration (see Figure 51) and the 

regionalized calibration (see Figure 54). 

The fine-tuned calibration resulted in a flood inundation area of 5.10 km2, whereas the 

regional calibration produced a smaller area of 4.19 km2. The difference of 0.91 km2 

represents a significant reduction in the flood inundation extent when employing the 

regionalized calibration approach. This finding highlights the importance of considering 

the spatial variability and local characteristics within the study area when calibrating 

hydraulic models. 

5.1.2 Model sensitivity 

The sensitivity of the model to changes in the Manning's n-value was evaluated for the 

three major land cover types: the main channel, floodplains, and forest. To further 

investigate this, simulations were done using the minimum and maximum Manning’s n-

values within the literature-based range. The objective was to assess the resulting 

impact on the simulation outcomes, specifically in terms of flooded area and changes in 

performance metrics. The findings from the model sensitivity analysis provided intriguing 

insights into the influence of different Manning's n-values on the performance of the 

model. 

It was observed that changes in the Manning's n-values for the floodplains did not have a 

significant effect on the performance of the model when the Manning's n-values for the 

main channel were relatively low. However, as the Manning's n-values for the main 

channel increased, there were noticeable deviations between the MAE and RMSE for the 

minimum and maximum Manning’s n-value for the floodplains. This suggests that the 

accuracy of the model is more sensitive to the Manning's n-values in the floodplains when 

higher Manning's n-values are applied to the main channel.  

One possible explanation for this observation is that higher water surface elevations in 

the river, resulting from increased Manning's n-values in the main channel, lead to 

increased water flow into the floodplains. As a consequence, the floodplains Manning's n-

values become more critical in determining the accuracy of the model, particularly when 

dealing with higher water surface elevations. Nonetheless, when using the optimal 

Manning’s n-value of 0.032 for the main channel, the model exhibits marginal sensitivity 

to changing the Manning’s n-value from 0.02 to 0.1 in the floodplains, even though the 

floodplains comprise the largest area (62 %).   

On the other hand, when changing the Manning's n-value in the main channel between 

the minimum and maximum values, the model exhibits significant sensitivity. This can be 

attributed to the volume of water flowing through the river during flooding events. While 

a substantial amount of water may overflow the banks, there is still a considerable flow 

remaining within the river. A lower Manning's n-value results in less surface resistance, 

allowing for higher velocities and lower flows. Conversely, a higher Manning's n-value 

increases surface resistance, leading to lower velocities and higher flows. 
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The land cover type "forest" is of particular interest in terms of the Manning's n-value, as 

forests and vegetation often border the river and serve as the first point of contact when 

water overflows the banks. Therefore, a comprehensive sensitivity analysis was 

conducted on the Manning's n-value for the forest land cover, ranging from 0.1 to 0.2, 

which represents the typical range for the forest type within the study area. This analysis 

was performed while considering different Manning's n-values for the floodplains and 

utilizing the optimal Manning's n-value of 0.032 for the main channel. 

The results of the analysis showed that the model did not exhibit significant sensitivity to 

the Manning's n-value for the forest land cover. This finding is consistent with earlier 

observations that the sensitivity of the model to different Manning’s n-values in the 

floodplains is primarily influenced by the Manning's n-value used in the river (Horritt, 

2006). 

5.2 Evaluting the flood event, November 24, 2021 

The flood event on November 24, 2021, was characterized by the highest discharge 

among all the Sentinel-1 images used in this study. Consequently, this event was chosen 

for a thorough calibration of the Manning's n-values for the main channel and floodplains, 

using the F1 and F2 measure of fit values to evaluate the performance of the model. 

The optimal Manning’s n-values obtained from the calibration process were determined to 

be 0.02 for both the main channel and the floodplains. When assessing the performance 

of the model using the F1 measure of fit, which do not penalize for over-prediction, a 

value of 0.54 was obtained. This indicates reasonably good results for the chosen 

Manning’s n-values, suggesting that the model performs well in terms of accurately 

predicting flooded areas. However, when evaluating the model using the F2 measure of 

fit, which penalize for over-prediction, a value of 0.21 was obtained. This suggests that 

the model tends to overestimate the extent of flooded areas. 

Indeed, the limitations of Sentinel-1 satellite imagery can contribute to the over-

prediction observed in the modelling results. The SAR imagery may not provide the 

necessary level of detail to accurately delineate all flooded areas, leading to some areas 

being misinterpreted as flooded when they are not. This can result in an overestimation 

of the extent of flooding. 

The subjective nature of the threshold method used for flood delineation is another factor 

that can contribute to over-prediction. Setting the threshold value involves a degree of 

subjectivity, and different individuals may interpret the flooded areas differently. 

Exploring alternative flood delineation methods that are less subjective and more robust 

can help improve the accuracy of flood extent delineation and reduce over-prediction. 

The consistent prediction of flooding in forest areas by the model throughout the 

calibration and validation processes may also contribute to the over-prediction. Forested 

areas, especially those located near rivers, can hinder the ability of the satellite to 

capture images of potential water beneath the vegetation (Horritt et al., 2003). As a 

result, this limitation introduces a disparity between the modelled flood extent and the 

observed flood extent in SAR images. Consequently, this disparity can contribute to an 

overestimation of the flood extent by the model. 

When calibrating the model against the flood delineated SAR image, it became evident 

that the model is most sensitive to changes in the Manning's n-value in the main 

channel, similar to the calibration of the August 14, 2003, flood event against observed 

water surface elevations. However, there was not a significant difference in the measure 
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of fit when varying the Manning's n-value in the floodplains at each increment of 

Manning’s n-value in the main channel. 

Interestingly, the model also produced reasonable results for the F1 measure of fit when 

using a Manning's n-value of 0.3 for the main channel, which aligns with the findings 

from the calibration of the August 14, 2003, flood event. According to (Barnes, 1967), 

Manning's n-values in the main channel can range from 0.024 to 0.075, which 

corresponds with the findings in the calibration approaches. However, there are instances 

of unrealistic outliers observed during the regionalized calibration processes. These 

outliers can be attributed to specific hydraulic properties inherent in the model, which 

hinder the effective utilization of realistic Manning's n-values. Nonetheless, utilizing high-

resolution LiDAR to represent the bathymetry in the river enables the establishment of a 

clear contextual understanding of the Manning’s n-values in the main channel.  

This implication suggests that the calibration process can be streamlined, as the 

regionalized calibration required minimal adjustments once the optimal uniform 

Manning’s n-value was determined for the entire main channel. This finding highlights the 

potential to achieve an optimal goodness of fit with fewer calibration iterations when 

applying bathymetric LiDAR data.  

Furthermore, the necessity for employing unrealistic Manning's n-values to achieve 

satisfactory calibration results is very minimal. This suggests that the integration of 

bathymetric LiDAR data can mitigate the requirement for such unrealistic values, which 

may otherwise compromise the calibration when validating it against other flood events. 

One advantage of calibrating against SAR imagery is the ability to visually inspect the 

model results against the flood delineation map. Figure 60 highlights areas of over-

prediction (black areas) and under-predicted (pink areas) when using the optimal 

Manning’s n-values, which compromises the results in both the F1 and F2 values. Refining 

the flood delineation map and reducing these areas would possibly lead to an 

improvement in the F-values. 

Additionally, when visually inspecting the model it exhibits an over-prediction in the 

upper part of the river, indicating that the Manning's n-values for the main channel in 

this section may not fall within the literature-based range of 0.02 to 0.1. The calibration 

of the August 14, 2003, flood event also revealed an over-prediction in these areas, 

suggesting the need for lower Manning's n-values than those suggested by the literature 

to compensate for this discrepancy. 

To address the over-prediction of flooded areas, the forest resource map SR16 was 

incorporated and merged with the flood delineated map derived from the SAR imagery. 

This integration aimed to compensate for the areas that were not captured by the SAR 

images due to the presence of dense vegetation. By including these potential flooded 

areas, the impact on the performance of the model, as measured by the F1 and F2 values, 

was observed. 

When utilizing the optimal Manning's n-values, it was observed that the F1 value 

increased by 0.13, indicating a greater agreement between the predicted flood extent of 

the model and the merged map incorporating the forest resource data. The F2 value also 

exhibited a significant increase of 0.25, indicating a reduction in the over-prediction area, 

subsequently leading to less penalization of the performance.  

It is important to acknowledge that uncertainties exist regarding the presence of water in 

every area of the forest within the flooded regions. However, upon analysing the satellite 

images, it is highly plausible that these forested areas are indeed flooded as shown in 

Figure 17. This highlights the significance of incorporating potential flooded areas when 
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calibrating the model, as it can have a substantial impact on the performance metrics. 

The significant increase in the F2 value can be attributed to the reduction in over-

prediction area, while the smaller increase in the F1 value is due to the improvement in 

correctly identifying flooded areas, which also benefits the F2 metric. 

5.3 Evaluating the flood event, January 14, 2022 (Storm Gyda) 

The vector data representing the flooded areas during Storm Gyda on January 14, 2022, 

acquired from the post-flood event EMSR product, was utilized for a regionalized 

calibration of the model. The best measure of fit Manning's n-values obtained from the 

calibration of the November 24, 2021, flood event served as the base for the regionalized 

calibration, as these Manning’s n-values also provided the best measure of fit for the 

Storm Gyda event. 

The regionalized calibration started with assessing the local influence of the Manning's n-

value on floodplains by adjusting the Manning’s n-value for floodplains and forest within 

specific regions. The calibration process involved dividing the study area into different 

calibration zones and making specific adjustments to the Manning's n-values within each 

Manning’s region inside the zones. Previous calibrations had shown minimal sensitivity to 

changing the Manning's n-value for the floodplains and forests for the entire system. By 

adopting a regional calibration approach, it was possible to visually interpret and analyse 

the local changes in the flooded area. 

Although some changes were observed in the different zones depicted in Figure 69, the 

adjustments made to the Manning's n-values within these regions, ranging from the 

lowest to the highest value within the literature-based range, did not have a significant 

influence on the performance of the model, as reflected by the measure of fit values F1 

and F2. However, there was a noticeable increase of 0.04 km2 in the correctly predicted 

areas, a 0.02 km2 increase in the over-predicted areas, and a 0.04 km2 decrease in the 

under-predicted areas. This indicates an improvement in the performance of the model, 

albeit not substantial enough to influence the measure of fit values.  

The upper region of the study area, which was designated as calibration zone 5, 

exhibited a significant amount of over-prediction. Since the Manning's n-values for the 

floodplains and forest already were within the lower and mid-range, it was hypothesized 

that reducing the flow in the river by adjusting the Manning's n-values in the main 

channel would help mitigate the over-prediction. Therefore, calibration zone 5 was 

divided into three Manning's regions, and through a trial-and-error process, suitable 

Manning's n-values were identified for each region. In order to address the over-

prediction, Manning's n-values were chosen that fell outside the literature-based range, 

similar to the regionalized calibration of the flood event from August 14, 2003. 

This suggests that there might be a factor in the model that leads to significant over-

prediction in this specific area, when using Manning's n-values within the desired range. 

It also highlights the potential need for adjustments of Manning’s n-values outside the 

literature-based range during calibration events to achieve the desired results and 

improve the performance of the model.  

Figure 71 shows the results of the of using the calibrated Manning’s n-values for the 

main channel in zone 5. The Manning’s n-values did have a noticeable impact on the 

measure of fit values. The F1 value increased to 0.83, and the F2 value increased to 0.71. 
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As a result of the regionalized calibration, there were slight changes in the areas. The 

correctly predicted areas decreased by 0.01 km2, the over-predicted areas decreased by 

0.08 km2, and the under-predicted areas remained the same. This explains why the most 

significant improvement was observed in the F2 value, as the over-predicted areas is 

used to penalize the model in this measure, where the most decrease was observed. It 

further demonstrates that the Manning's n-value for the main channel has the greatest 

impact on the performance of the model, as earlier calibrations also have exhibited. 

Overall, the regionalized calibration approach, including adjustments to the Manning's n-

values in the main channel, led to improved performance in the model, particularly in 

reducing over-prediction. 

In summary, it is possible to consider that implementing more Manning's regions for the 

floodplains could enhance the performance of the model. However, it remains uncertain 

whether the benefits gained from the additional work required for a regional calibration 

approach, focused on locally influencing the floodplains, would be substantial enough to 

justify its implementation. Considering the overall low sensitivity of the floodplains, a 

careful assessment is necessary to determine if the potential benefits outweigh the 

additional calibration work involved. Given that adjusting the Manning's n-value in the 

main channel has demonstrated the most significant impact on the performance of the 

model, it may be advisable to adopt a regionalized calibration approach with separate 

Manning's regions for the entire main channel, similar to what was done in regionalized 

calibration of the August 14, 2003, flood event. 

5.4 Validating the calibrated models 

A fundamental requirement for all calibrations performed on 2D hydraulic models, is that 

they need some form of validation to confirm and give confidence in the calibration 

results. Therefore, all the different calibration event was validated against the available 

observed water surface elevations, SAR imagery and vector data from the EMSR product 

that was derived from SAR imagery. In doing so, the point was to see if there were any 

connection between the calibration processes and how they responded individually to the 

validation data.  

Table 15 provides an overview of the flood events that were subjected to various 

calibration approaches and subsequently validated against SAR imagery. Upon evaluating 

the model performance, it becomes apparent that the measure of fit values obtained 

from the validation against SAR imagery for the November 26, 2016, and January 21, 

2020, flood events do not yield satisfactory results. The presence of negative values 

suggests an over-prediction by the model, indicating that the calibration might not be 

optimal or that the flood delineation from the SAR image does not accurately capture the 

flooded areas.  

Specifically, the models calibrated against observed water surface elevations tend to 

exhibit a tendency for the largest over-predictions compared to the other calibration 

approaches, which could be attributed to the use of high Manning's n-values in the main 

channel.  

An additional important observation when analysing the flood delineation from SAR 

images is the presence of under-predicted areas located far from the river and 

floodplains. These areas can be attributed to wet patches created by rainfall or instances 

where the river has receded, leaving wet spots on the ground. The satellite detects these 

wet areas, leading to their identification as wet pixels in the threshold method. 

Consequently, the under-prediction of flood extents is influenced by these falsely 

detected wet pixels, introducing inaccuracies in the performance of the model. 



106 

 

Regarding the January 21, 2020, flood event, it is interesting to note that a significant 

number of flooded areas in the upper parts of the study area were identified, despite the 

low discharge recorded when the SAR image was acquired. This observation suggests the 

presence of obstructions in the river, potentially in the form of ice accumulation, which 

can cause water to accumulate and result in additional flooded areas. These obstructions 

likely contribute to the lower performance of the model in accurately predicting the flood 

extent. 

Furthermore, it is important to consider that these flood events have relatively low flows 

at image acquisition compared to the November 24, 2021, and January 13, 2022, flood 

events. As a result, the flooded areas might not be adequately captured by satellites due 

to their relatively large resolution. The low flow conditions may lead to smaller inundated 

areas that are not easily distinguishable at the resolution of the SAR imagery.  

It is important to acknowledge these limitations when interpreting the results, as they 

can have a significant impact on the accuracy and performance of the model during 

calibration and validation against SAR imagery. 

The November 24, 2021, and January 13, 2022, flood events, on the other hand, had 

SAR imagery that were captured at very high flow conditions in the river. The COSMO-

SkyMed program captured the Storm Gyda flood event at 657 m3/s, where the flood 

peaked at 692 m3/s. This occurrence is indeed remarkable, as capturing one of the 

largest measured floods the river has experienced on a satellite image coinciding with the 

river being nearly at its peak is quite fortuitous. Such a coincidence provides a unique 

opportunity to study and analyse the flood event in detail, allowing for a more 

comprehensive understanding of its characteristics and impacts. The November 24, 

2021, flood event exhibited a peak discharge of 583 m3/s, while the satellite image was 

captured at a slightly lower discharge of 420 m3/s.  

The validation results against the November 24, 2021, flood event demonstrate improved 

measure of fit values when using the fine-tuned and rationalized calibration of the August 

14, 2003, flood event, as well as the regionalized calibration of the flood event from 

Storm Gyda on January 13, 2022.  

The F1 value for all the approaches is relatively similar, but the Storm Gyda event 

exhibits the best measure of fit with a value of 0.54. This can be explained by the fact 

that when the model over-predicts the flood extent significantly, it may still capture the 

correctly flooded areas visible in satellite imagery.  

However, the significant difference is evident in the F2 value, where there is a notable 

deviation between the calibration based on observed water surface elevations and the 

Storm Gyda regionalized calibration based on SAR imagery. This discrepancy can be 

attributed to the regionalized calibration approach, which effectively addresses over-

predictions by locally adjusting the flood extent in specific regions where the model tends 

to overestimate. By fine-tuning the flood extent in these areas, the model achieves a 

closer match with the actual flood extent, resulting in improved accuracy. 

Simultaneously, the rest of the model benefits from utilizing optimal Manning's n-values, 

ensuring accurate predictions for other areas. As a result, the regionalized calibration 

approach exhibits a better F2 measure with reduced penalization, indicating enhanced 

performance in capturing the actual flood extent. 

Furthermore, it is intriguing to note that none of the calibration approaches exhibit 

negative values in the F2 measure of fit. This suggests that calibrating against SAR 

imagery, particularly during larger flood events, offers advantages in terms of accuracy. 
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The flood event from Storm Gyda on January 13, 2022, provides pre-processed vector 

data containing the delineation of the flooded areas from SAR imagery captured by the 

COMSO-SkyMed program. It is worth noting that this data has undergone algorithmic 

processing to identify and delineate the flooded areas. Interestingly, this delineation 

specifically removes flood areas that are located away from the river and floodplains. In 

contrast, SAR images used from the Sentinel-1 program, which utilized the threshold 

method for flood delineation, included these areas in their flood extent representations. 

The analysis of the results from the validation against the Storm Gyda flood event clearly 

demonstrates a significantly improved measure of fit. This highlights the importance of 

pre-processing the flood delineation products derived from SAR imagery, as it has a 

substantial impact on the measure of fit results. 

In terms of the F1 values obtained from the different calibration approaches, they exhibit 

values close to each other. However, the calibration performed for the November 24, 

2021, flood event stands out as the best, yielding a measure of fit F1 value of 0.68. This 

calibration approach involves using the optimal Manning's n-value consistently across the 

entire river and floodplains, without local adjustments. 

This distinction is further evident in the F2 values, where the calibration approach used 

for the November 24, 2021, flood event exhibits significantly less over-prediction 

compared to the regionalized calibration of the August 14, 2003, flood event, which was 

calibrated against observed water surface elevations. 

From these results, it is clear that although the regionalized calibration showed excellent 

performance in terms of MAE and RMSE, with values close to 0, this does not necessarily 

translate to better results when validating against SAR imagery. In contrast, the 

calibration approach specifically tailored to SAR imagery demonstrates very good 

performance in capturing the actual flood extent. 

Overall, when analysing the results, the flood events that are calibrated against SAR 

imagery demonstrate the most promising outcomes when validated against other flood 

events captured by satellites. 

Table 15: Calibrated flood events validated against flood delineation maps from SAR 
imagery acquired from satellite programs. 

  2016-11-26 2020-01-21 2021-11-24 2022-01-13 

Calibrated flood 

event 
F1 F2 F1 F2 F1 F2 F1 F2 

2003-08-14 

Fine-tuned calibration 
0.34 -0.16 0.29 -0.25 0.50 0.10 0.66 0.34 

2003-08-14 

Regionalized calibration 
0.36 -0.13 0.30 -0.21 0.49 0.07 0.63 0.27 

2021-11-24 

Calibration 
0.40 0.05 0.29 -0.14 - - 0.68 0.41 

2022-01-13 

Regionalized calibration 
0.39 0.06 0.29 -0.13 0.54 0.23 - - 

 

One common observation in the study is the presence of non-wet areas between the 

river and the floodplains in the flood delineation maps obtained from both the Sentinel-1 

program and the COSMO-SkyMed program. Upon visual interpretation of the simulated 

flooding areas from the flood events, it was observed that these areas were indeed 

flooded, aligning with forested areas according to the SR16 forest resource map. This 
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suggests that the SAR imagery from satellites is unable to detect the flooded regions 

beneath the forest canopy. Consequently, the models exhibit higher levels of over-

prediction, which in turn affects the measure of fit values. To explore this observation, 

the SR16 forest map was merged into the flood delineation maps, and the resulting 

measure of fit values are presented in Table 16. 

It is worth highlighting that all the measure of fit values experienced a significant 

increase after incorporating the forest areas into the calibration and validation process. 

This highlights the substantial impact of neglecting the presence of forested regions when 

calibrating against SAR imagery. In the worst-case scenario, if the objective of calibration 

is to accurately represent the flooding by ensuring that the model does not falsely 

classify wet spots as dry, the calibration would be severely erroneous without considering 

the forested areas. This emphasizes the critical importance of accounting for the 

presence of such areas in the calibration process to ensure accurate and reliable flood 

predictions. 

However, it is important to acknowledge the presence of uncertainties in this approach. It 

is impossible to assert with absolute certainty that these areas are flooded without 

conducting ground observations or having direct measurements. However, in the context 

of this study, where all simulated events consistently showed these areas as flooded and 

considering the plausibility based on the observed patterns, it is highly likely that these 

areas are indeed affected by flooding. While uncertainties exist, the evidence gathered in 

this study supports the notion that these areas are prone to flooding. 

Table 16: Calibrated flood events validated against SR16 forest resource map merged 
with flood delineation maps from SAR imagery acquired from satellite programs. 

  2016-11-26 2020-01-21 2021-11-24 2022-01-13 

Calibrated flood 

event 
F1 F2 F1 F2 F1 F2 F1 F2 

2003-08-14 

Fine-tuned calibration 
0.50 0.15 0.45 0.07 0.62 0.34 0.79 0.60 

2003-08-14 

Regionalized calibration 
0.53 0.22 0.47 0.14 0.61 0.31 0.75 0.52 

2021-11-24 

Calibration 
0.54 0.33 0.46 0.20 - - 0.82 0.69 

2022-01-13 

Regionalized calibration 
0.52 0.32 0.45 0.18 0.66 0.48 - - 

 

The results of the various calibration events using the optimal Manning's n-values when 

comparing against observed water surface elevations are presented in Table 17. It is 

interesting to note that the models calibrated against SAR imagery for the November 24, 

2021, and January 13, 2022, flood events exhibit larger deviations in the performance 

metrics, specifically MAE and RMSE. This can be attributed to the differences in the 

calibration procedures employed. The August 14, 2003, calibration was based on 

observed water surface elevations, aiming to minimize the disparity between observed 

and simulated values. In contrast, when calibrating against SAR imagery, there is no 

direct information about water surface elevations available, and the calibration is focused 

solely on matching the flood extent. Consequently, the simulated water surface 

elevations derived from SAR imagery calibrated models may not correspond as 

accurately to specific points in the model. However, as observed during the validation of 

the various calibration events against SAR imagery, calibrating the model using SAR 

imagery can still lead to an improvement in overall model performance.  
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Indeed, it is worth highlighting that calibrating against SAR imagery resulted in a smaller 

difference between the MAE and RMSE values, indicating a reduced presence of outliers 

compared to the fine-tuned calibration approach. Consequently, calibrating against SAR 

imagery holds the potential for achieving an overall better balance in the calibrated 

model. 

Table 17: Calibration of flood events using best goodness of fit Manning’s n-values 
compared to observed water surface elevations in the profile lines. 

Calibrated flood event MAE RMSE 

2003-08-14 

Fine-tuned calibration 
0.28 0.43 

2003-08-14 

 Regionalized calibration 
0.02 0.04 

2021-11-24  

Calibration 
0.49 0.59 

2022-01-13 

 Regionalized calibration 
0.52 0.61 
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This study aimed to calibrate and validate 2D hydraulic models that utilize high-

resolution LiDAR data to represent the terrain and the river’s bathymetry. Through a 

meticulous and comprehensive calibration process involving various flood events, 

incorporating different types of calibration data, the results highlight the significant 

influence of Manning’s n-values for the main channel. Notably, the regionalized 

calibration approaches focusing on the Manning's n-value in the main channel exhibited 

superior model performance.  

Interestingly, the study revealed that achieving optimal results in the regionalized 

calibration sometimes necessitated the introduction of Manning's n-values that fell 

outside the range defined in existing literature. This highlights the importance of 

considering unconventional values to accurately capture the complex hydraulic behaviour 

of the system. However, with the integration of bathymetric LiDAR data, the reliance on 

these unrealistic values was very minimal. The findings indicated that the Manning's n-

values for the main channel largely fell within literature-based ranges. These findings 

suggest that utilizing bathymetric LiDAR data to represent the river can reduce the 

calibration requirements by facilitating the identification of appropriate Manning's n-

values. Furthermore, employing realistic Manning's n-values in the calibration yields 

greater confidence in the model when validating against other flood events. 

Additionally, through a sensitivity analysis of the boundary conditions it became very 

clear that some of the boundary conditions have significant impact on the modelling 

results. This underscores the importance of carefully considering boundary conditions 

during the development of flood inundation models. 

The SAR imagery derived from the Sentinel-1 mission has demonstrated its usefulness in 

calibration and validation processes. Nevertheless, the findings suggest that the 

effectiveness of SAR images in representing floods may be influenced by the size of the 

flood event. The threshold technique applied for flood delineation in the study yielded 

satisfactory results. However, it was observed that this approach did not consider flood 

forest areas, leading to a diminished performance in the measure of fit values due to 

over-prediction. Moreover, the technique resulted in numerous flooded areas located far 

from the river and floodplains, resulting in under-prediction. To address these limitations, 

the study merged the flooded forest areas with the flood delineation maps, which greatly 

enhanced the measure of fit values in all calibration and validation results. These findings 

emphasize the necessity for additional refinement in the processing of SAR imagery to 

potentially enhance the accuracy when utilizing them in the calibration and validation of 

flood inundation models. 

The utilization of flood delineation vector data from the Rapid Mapping product provided 

by the Copernicus Emergency Management Service proved to be highly beneficial in the 

calibration and validation processes. This positive outcome calls for further utilization of 

similar products and emphasizes the importance of activating such services before 

significant flooding events. By capturing valuable data that can be used to aid in the 

development of flood hazard maps, these services can greatly enhance flood risk 

management and preparedness efforts. 

6 Conclusions and further work  
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Based on the findings of this study, there are several interesting areas for further 

investigation. Firstly, exploring and comparing different flood delineation techniques for 

deriving flooded areas in SAR images could shed light on their impact on the performance 

of calibration approaches. This could involve testing alternative thresholding techniques 

or even exploring advanced machine learning algorithms for more accurate flood 

delineation. 

Additionally, studying other river reaches and investigating whether there is a correlation 

between the optimal Manning's values derived from this study and those obtained in 

different study locations would provide valuable insights. It would help to understand if 

the Manning's values derived from one specific location can be generalized or if they are 

influenced by the characteristics of the river reach under investigation. 

By conducting further research in these areas, we can improve our understanding of 

flood modelling and calibration approaches, leading to enhanced accuracy and 

performance in predicting and managing flood events.  
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