
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Jonas Brunvoll Larsson

Plan caching in MySQL

Master’s thesis in MSIT
Supervisor: Norvald H. Ryeng
June 2023

Jonas Brunvoll Larsson

Plan caching in MySQL

Master’s thesis in MSIT
Supervisor: Norvald H. Ryeng
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

The relational database management systems of today processes enormous amounts of data.

Digital trends lead to increasing amounts of data that must be processed at an ever-increasing

pace. As upgrading hardware is not a reliable solution in the long run, new smart solutions

must continuously be introduced to make relational database management systems capable of

meeting the performance requirements of today and for the future.

Plan caching is an approach used to increase the efficiency of a relational database management

system. Normally when executing a query, a new query execution plan is created for every

execution. When plan caching is applied, query execution plans are being stored in a cache

to enable reuse when matching queries being executed at a later point in time. By using plan

caching, both the execution time and the resource consumption of the relational database

management system is reduced, as well as reusing plans can result in more predictable runtime,

given that the plans are not outdated.

This thesis looks at the possibility of implementing plan caching as a feature to enhance

the overall performance of MySQL. The thesis starts by closely examining existing solutions

and related theory, before a plan cache prototype is implemented into MySQL. Further, two

experiments are carried out to investigate how the performance of MySQL is influenced by the

implementation when enforcing both exact match policy and inexact match policy. The findings
show that plan caching results in both more predictable and faster executing queries when

enforcing exact match policy, while plan caching when enforcing inexact match policy is too

unpredictable to be used.

i

Sammendrag

Dagens relasjonsdatabasesystemer behandler enorme mengder med data. Digitale trender

fører til at mengden med data som må behandles vokser i en stadig raskere hastighet. Siden

oppgradering av maskinvare ikke er en pålitelig løsning på sikt, er det å komme opp med nye

smarte løsninger for å gjøre relasjonsdatabasesystemer i stand til å møte dagens og fremtidige

ytelseskrav.

Planbufring er en metode som brukes til å bedre ytelsen til et relasjonsdatabasesystem. Normalt

når en spørring kjøres, opprettes en ny kjøreplan for hver gang spørringen gjennomføres.

Når planbufring brukes, lagres kjøreplaner i en hurtigbuffer for å muliggjøre gjenbruk ved

gjentgende spørringer. Gjennom bruk av planbufring reduseres både utførelsestiden og ressurs-

forbruket til relasjonsdatabasesystemet, samt at gjenbruk av kjøreplaner resulterer i mer

forutsigbar kjøretid, gitt at planene ikke er utdaterte.

Denne masteroppgaven ser på muligheten for å implementere planbufring i MySQL med

mål om å bedre den generelle ytelsen. Masteroppgaven starter ved å undersøke eksisterende

løsninger og relatert teori, før en planbuffer-prototype implementeres i MySQL. Videre blir

to eksperimenter utført for å undersøke hvordan ytelsen til MySQL påvirkes av den imple-

menterte prototypen når både eksakt samsvarende gjenbruk og unøyaktig samsvarende gjenbruk
håndheves. Funnene viser at planbufring resulterer i både mer forutsigbare og raskere kjøre-

tider ved bruk av eksakt samsvarende gjenbruk, mens unøyaktig samsvarende gjenbruk gir for

uforutsigbare kjøretider til å kunne benyttes.

ii

Preface

This report presents the work done in a master thesis from the Faculty of Information Tech-

nology and Electrical Engineering (IE) and the Department of Computer Science (IDI), at the

Norwegian University of Science and Technology (NTNU). The presented work has been

developed in collaboration with MySQL throughout the spring of 2023, and is based on my

specialization project that was carried out in the autumn of 2022.

First, I would like to thank my supervisor Norvald H. Ryeng for his great support and highly

appreciated guidance in the field of query optimization throughout the project. I would also

thank Knut Anders Hatlen for his guidance in the MySQL repository and C++ development in

general. Without both of you, this thesis would not have been the same.

Trondheim, 12.06.2023

Jonas Brunvoll Larsson

iii

Contents

Abstract i

Sammendrag ii

Preface iii

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Motivation . 2

1.2 Scope . 2

1.3 Structure of thesis . 3

2 Background 5
2.1 The query processor . 5

2.1.1 The query tree . 6

2.1.2 The query parser . 7

2.1.3 The query resolver . 7

2.1.4 The query rewriter . 7

2.1.5 The query optimizer . 8

2.1.6 The query executor . 9

2.2 Prepared statements . 9

3 Theory and related work 11
3.1 Plan caching . 11

3.1.1 Cache match policies . 13

3.1.2 Cache replacement policies . 13

3.2 Existing implementations . 14

3.2.1 Microsoft SQL Server . 14

iv

3.2.2 PostgreSQL . 15

3.2.3 Oracle . 15

3.3 Related optimization approaches . 16

3.3.1 Optimizer hints . 17

3.3.2 Plan pinning . 17

4 Implementation 19
4.1 Reuse of existing functionality . 19

4.2 Implementation of the plan cache . 22

4.2.1 Plan cache properties . 22

4.2.2 PLAN_ROOT . 24

4.2.3 PLAN_CACHE . 26

5 Experiments 29
5.1 Experimental setup . 29

5.1.1 Benchmark . 29

5.1.2 Environment . 30

5.1.3 Hardware and OS . 30

5.2 Implementation of experiments . 31

5.2.1 Benchmark query selection . 31

5.2.2 Plan cache - exact match policy . 31

5.2.3 Plan cache - inexact match policy . 32

6 Results and discussion 33
6.1 Benchmark query selection . 33

6.1.1 Results . 33

6.1.2 Discussion . 34

6.2 Plan cache - exact match policy . 36

6.2.1 Results . 36

6.2.2 Discussion . 37

6.3 Plan cache - inexact match policy . 40

6.3.1 Results . 41

6.3.2 Discussion . 42

7 Conclusion 43
7.1 Future work . 44

Bibliography 45

Appendix i

v

A Source code . i

B Experiment 1 - Benchmark query selection . ii

B.1 Distribution of query optimization and execution ii

C Experiment 2 - Plan cache - exact match policy x

C.1 Recorded performance - tables . x

vi

List of Tables

4.1 Match logics . 23

4.2 Replacement logics . 24

4.3 Entry options . 24

6.1 Cached execution compared to ad hoc execution 36

6.2 Performance comparison between the fastest cached and the ad hoc queries . 38

6.3 The specified parameter values of query 33c 40

vii

List of Figures

2.1 The query processing pipeline . 5

2.2 The query tree . 6

3.1 The major events of a plan cache . 12

3.2 Cursor sharing in Oracles plan cache implementation 16

4.1 The workflow of the plan_cache when creating a new plan_root - object . . . 25

4.2 The workflow of the plan_cache when searching for matching query execution

plans . 27

6.1 Distribution between the optimization and execution query 29b - 33c 34

6.2 Proportional distribution between the optimization and execution query 29b-33c 34

6.3 The 8 JOB queries spending proportional most time on optimization 35

6.4 Execution comparison of query 33c in milliseconds 41

6.5 Execution comparison of query 33c in percentage 41

viii

Listings

2.1 Prepared statements in MySQL . 9

3.1 The challenge of carrying out match operations by hash string comparison only 14

4.1 The mem_root attribute inside the plan_root class 20

4.2 The plan_cache attribute inside the thd class 20

4.3 The swap_mem_root_guard in action . 21

4.4 The entry point of the plan cache . 23

ix

x

Chapter 1

Introduction

Nowadays, implementing digital systems to streamline manual work task is a well-known

measure in most industries. New digital systems are daily being introduced, ranging anywhere

from pioneering tech tools to social media platforms and games. For the majority of these

systems, a database management system - (DBMS) serves as the core component to deal with

data management. However, the ever-increasing number of digital services being introduced

yearly have resulted in an explosion in the amount of data being generated[1]. As a consequence,

the DBMS’s of today must continuously introduce new improvements to be able to handle

the challenges of processing increasing amounts of data, while still meet the performance

requirements of today.

As of May 2023, the DB-Engines ranking lists MySQL as the second most popular DBMS in

the world, only surpassed by Oracle[2]. MySQL is a relational database management system -

(RDMBS), meaning that MySQL organizes data in tables and accesses data by passing Structured

Query Language - (SQL) queries. Serving as the core component in several of themost frequently

accessed applications of today such as Twitter, Netflix and Uber, MySQL has proven to be a

both reliable and high performing system[3]. Like all other commercial RDBMS’s, MySQL must

continuously come up with new improvements not only to remain to be the RDBMS of choice

for existing users, but also to attract new users by being a solid forward-looking system that

can serve upcoming applications.

Plan caching is an approach used to reduce both the query execution time and the resource

consumption of a RDBMSwhen executing the same query frequently. After the initial execution,

the query execution plan is stored in a cache to enable it to be reused when the same query is

executed at a later point in time. By storing the query execution plan, the RDBMS increase it

efficiency by avoid having the need to repeat the process of developing a new executable query

plan for every query execution. While various variants of plan caching have been implemented

in commercial RDBMS’s such as PostgreSQL[4], SQL Server[5] and Oracle[6], the feature have

1

2 CHAPTER 1. INTRODUCTION

yet to be implemented in MySQL.

This thesis investigates the possibility of implementing plan caching as a feature to enhance the

overall performance of MySQL. The research presented in this thesis is based on the research

that was carried out during the specialization project, in the autumn of 2022, where the main

purpose was to investigate whether both plan caching and plan pinning could be adequate

features to implement to increase the performance of MySQL. The findings of both approaches

showed promising results that were worth further exploration. As the research was of the

broader variety, no real implementation of either plan caching or plan pinning was carried

out in the specialization project. The research presented in this thesis attempts to cover this

shortcoming by implementing a plan cache prototype as a feature in MySQL and investigate

how the implementation affects the performance.

1.1 Motivation

As stated in the previous section, the motivation behind implementing plan caching is to

enhance the overall performance of MySQL. More specifically, this mean enhancing the per-

formance of the query processor, the component that carries out both the processing and

execution of incoming queries[7]. A query processor without a plan cache must create and

optimize a new executable plan for every query execution, while a query processor with a plan

cache only creates a new executable plan if none of the plans stored in cache are suitable for

the query that is currently being executed.

Plan caching is not only appropriate for improving the performance of a RDBMS by reducing

the total execution time of a query. Plan caching is also an approach to achieve predictable

query response time, which makes it easier to develop applications that depends on response

from a RDBMS within a given time frame[8]. As explained in more detail in section 2.1.5, there

is a bit of randomness in how efficient a query execution plan ends up. In most cases, the query

processor develops good-enough query execution plans which results in sufficient performance.

However, outliers that lead to poor query execution do occasionally occur, which can cause

major problems for applications that depends on predictable response times. After identifying

whether a query execution plan is good-enough, plan caching is an approach to ensure that

this plan will continuously be executed, without having to risk that a less efficient plan is to be

executed.

1.2 Scope

The focus of this thesis is to investigate whether it is feasible to implement plan caching to

enhance the performance of the query processor, as the source code of MySQL is structured

1.3. STRUCTURE OF THESIS 3

today. The thesis also investigates different policies to determine whether the query being

executed can reuse any of the query execution plans stored in the plan cache. In this thesis,

these policies are referred to as cache match policies.

To carry out experiments, a plan cache prototype is initially created and implemented as a

feature into MySQL. The experiments involve executing various queries from the Join Order
Benchmark against a MySQL database containing the IMDB - dataset. During the experiments,

the time-consumption of the various steps within the query processor are logged, before the

findings are later analyzed to compare the performance of the queries.

To extend the research, the experiments are also conducted by using both exact match policy
and inexact match policy, to investigate whether there is reason to believe that a query execution
plan can be reused by the same prepared statement, but with different sets of parameters. If

that is feasible without harming the performance of the query processor too much, there might

be an opportunity to utilize the plan cache more often even and ultimately making MySQL

even more efficient. To better answer these areas of interest, the thesis aims to answer the

following research questions:

• RQ1: Does the findings indicate that implementing plan caching is a measure that would

enhance the overall performance of the MySQL query processor?

• RQ2: How is the performance of the MySQL query processor affected when using a plan

cache enforcing inexact match policy compared to when enforcing exact match policy?

1.3 Structure of thesis

This thesis is divided into seven chapters. After the initial introduction in chapter 1, chapter

2 describes the fundamental knowledge about query optimization. Chapter 3 defines plan

caching as a concept, and presents related work conducted by both commercial companies and

academic communities. Chapter 4 describes the implementation of plan cache prototype in

MySQL. Chapter 5 describes the experimental setup and the implementations of the experiments.

In chapter 6, the experimental findings are presented and discussed, before chapter 7 finally

summarizes the thesis and answers the research questions.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter contains background information that the theory presented in chapter 3 is based

on. Section 2.1 provides a detailed description of the query processor, the component in any

RDBMS responsible for both processing and query execution. Section 2.2 describes prepared

statements, as this feature serves an important part in the plan cach implementation presented

in chapter 4.

2.1 The query processor

The query processor is the component responsible for both the processing and the execution

of query statements in a RDBMS[9]. The workflow of the query processor is commonly

referred to as the query processing pipeline, as the workflow is divided into several steps, each

carried out by a designated internal component in a sequential order. As shown in figure 2.1,

every component except the initial parser, processes the output of the previous component

in the pipeline. The structure of the pipeline somewhat varies depending on the RDBMS,

but essentially all RDBMS’s end up solving the same tasks. A textbook example of how the

components are organized is explained in the sections 2.1.2 to 2.1.6. Before further explaining

these components, section 2.1.1 describes the query tree, the data structure that is passed

between the components within the query processing pipeline.

Figure 2.1: An illustration of the query processing pipeline. The query processing is initiated

by the query parser and ends by returning the results back to the client after completing the

query execution.

5

6 CHAPTER 2. BACKGROUND

2.1.1 The query tree

The query tree is an in-memory representation of the query that enables the components within

the query processing pipeline to interpret and further process the query. The data structure

presents the query as expression tree. Each node represents an algebraic operation, which

together forms one extended relational algebraic expression[10]. The leaf nodes of the tree

represent the parameter conditions provided to the query, while the internal nodes represent

algebraic operations that must be carried out in order to produce some sort of result based on

the conditional terms provided by the two corresponding leaf nodes.

The query tree is created by splitting a query statement into units named blocks. Each block

represents a single SELECT-FROM-WHERE statement, including the optional GROUP-BY and

HAVING clauses[10]. As shown in figure 2.2, the query tree of single SELECT-FROM-WHERE

statement is represented through one block. In cases where the query statement consists of a

given number of nested SELECT-FROM-WHERE statements, the query tree is represented of

equally many blocks.

1 SELECT P.firstname , T.name , L.name
2 FROM Player P, Team T, Leauge L
3 WHERE P.firstname = 'Jonas '
4 AND T.name = 'NTNUI Handball '
5 AND L.name = '2. Devision men -04';

(a) A simple query statement.

(b) The query tree of query (a).

Figure 2.2: An illustration of a query (a) and its corresponding query tree (b). The leaf nodes

(L), represents the conditions of the query, while the internal nodes (I) represent the algebraic

operations based on the provided conditions computes some type of result[10].

2.1. THE QUERY PROCESSOR 7

2.1.2 The query parser

The initial step of the query processing pipeline is to translate the SQL query statement into

a query tree that the forthcoming components in the query processing can interpret and

process[9][11]. This task is carried out by the query parser, through the combination of lexing

and parsing operations.

Lexing involves splitting the query statement into distinct keywords. Each keyword is tagged

with a token to represents the specific keyword type. As an example, a table name is tagged as

an identifier, while a larger-or-equal-then condition is tagged as an operator.

Parsing involves organizing the stream of tokens that was found through the lexing operation

into a query tree. To initialize this process, the parser requests a token from the lexer. The lexer

responds by sending a single token which the parser places into the query tree. This process is

repeated until there are none tokens left to place.

After the lexing and the parsing of the entire query statement is completed, the query parser

ends by verifying that the syntax of the query statement is correctly written and remove

unneeded comments. In case an error is encountered, the query process is cancelled, and an

error message is sent back to the client.

2.1.3 The query resolver

The next step in the query processing pipeline is to ensure that the identifiers represented in

the query tree actually exist in the database[9]. This task is carried out by the query resolver.

After verifying that the identifiers exists, metadata is added to the query tree as proof.

Further, the query resolver verifies that the client is authorized to execute the query[9]. If all

the identifiers exists and the client is authorized to execute the query, the resolver locks the

identifier entries to ensure that the tables and columns referenced in the query statement will

exist in the same state for the remainder of the query execution. Otherwise, if the client is not

authorized to execute the query, the query process is cancelled, and an error message is sent

back to the client.

2.1.4 The query rewriter

The query rewriter simplifies and normalizes the query tree without changing the semantics[9].

In the same way as relational algebraic equations, the query tree can be rewritten to a simpler

expression that requires less computation. This action is done as preparatory work to reduce

the workload of the query optimizer in the next phase. By performing arithmetic evaluation

and heuristics, simplifications such as sub-query flattening and constant folding are carried

out until a logical optimal version of the query tree is finalized.

8 CHAPTER 2. BACKGROUND

2.1.5 The query optimizer

Query optimization is the process of converting the logical plan developed by the query

rewriter into a reasonably efficient query execution plan[9][10]. The query optimizer carries

this process out by combining the two optimization approaches heuristic optimization and cost-
based optimization to determine which rules and strategies to include in the query execution

plan.

Heuristic optimization

Heuristic optimization is the process of implementing optimization rules that are known from

experience to reduce the query execution time, ultimately increasing the performance of the

query processor[10]. There exists several of these rules of thumb such as; "Push selection as
far down as possible" or "Push projection as far down as possible". Common to all the rules is

that they aim to reduce the number of rows that are analyzed during the query execution to a

minimum at the earliest possible stage.

The selection of rules to add to the query execution plan during heuristic optimization are

done without analyzing the data associated with the query. Since no time is spent on data

analyzation, heuristics optimization is a quick process. This also results in no query execution

plans tailored for one specific query, but query execution plans that perform fairly well for

most queries.

Cost-based optimization

Cost-based optimization is the process of selecting the strategy with the one single lowest

estimated total cost out of all the available strategies[10]. The query optimizer accomplishes

this by generating various strategies for carrying out the operations from one specific query

tree, based on statistics provided form the database. Then, after all the strategies have been

generated, the cost of each strategy is evaluated before the strategy estimated to be the least

time-consuming is selected.

The strategy evaluation of cost-based optimization is both time-consuming and resource

demanding. Therefore, the query optimizer usually terminates the evaluation after a certain

time limit is reached, or if a strategy believed to be reasonably efficient is found. If allowed to

continue the optimization process long enough, cost-based optimization should in theory find

the strategy for the provided query tree. In practice, this is rather difficult to guarantee, as the

statistics cost-based optimization is based on are usually not completely accurate.

2.2. PREPARED STATEMENTS 9

2.1.6 The query executor

The query executor executes the internal operations in the query tree, ending up with a result

ready to be sent back to the client[9][10]. Initially, the operations at the bottom of the query

tree are executed, as these operations only takes parameter conditions from leaf nodes as input,

thus making them executable from the beginning. After completed, the operations at the next

level takes the output from the former operations as input.

This traversing process in the query tree continues from bottom to top until all operations have

been executed. The query execution ends after the root operation terminates and the result is

sent back to the client. When executing a nested query, the innermost query will first complete

the execution before the result will be provided as an input condition in the second innermost

query. This order of execution will continue until the outermost query is completed.

2.2 Prepared statements

Prepared statements is a feature used to repeatedly execute the same query statement with high

efficency[12]. Initially, a prepared statement is created by completing the steps up until the

query rewriter. Then, the query tree is stored as a query template, which will remain accessible

for the reminder of the client-server session, or until the prepared statements is deallocated on

purpose.

When a prepared statement is called to be executed, the query template is fetched and the

query processing continues from where it ended when preparing. As shown on line 4 in

listing 2.1, a prepared statement is executed by the command execute followed by the name

of the statement. Any unspecified value (’?’) in the query template must be specified before

execution. This is done by adding the command using, followed by a parameter to set the value.

1 Set @name = "Jonas";

2 Set @sql = "Select * From person p Where p.name = ?";

3 Prepare stmt From @sql;

4 Execute stmt Using @name;

Listing 2.1: A simple example of how a prepared statement is prepared and executed in MySQL.

The parameter @name is used to set the unspecified value of p.name during the execution of

stmt.

10 CHAPTER 2. BACKGROUND

Chapter 3

Theory and related work

This chapter describes the theory behind the logic in the plan cache implementation presented

in chapter 4. Section 3.1 starts by defining plan caching as a concept, before two separate

groups of policies that affect the behavior of a plan cache named Cache match policies and
Cache replacement policies are described in section 3.1.1 and section 3.1.2. Various existing plan

cache implementations from other RDBMS’s are presented in section 3.2. Lastly, section 3.3

describes some alternative approaches to plan caching to influence the decision-making of the

query optimizer.

3.1 Plan caching

Plan caching, occasionally also referred to as query plan caching, is about reducing the total time

and resource consumption of the query processor when processing frequently executed query

statements. This is achieved by storing optimized query execution plans in a cache, enabling

later matching queries to reuse the plans when executed. By doing so, the query processor

avoid having to recompute a new query execution plan for every query execution[8][13].

There are two main reasons why caching plans may be performance enhancing for a RDBMS.

First, plan caching ensures that the query processor does not have to create and optimize a

new query execution plan for every query after the initial execution[8][13]. That being said,

this is only performance enhancing when a match is found within reasonably short time. If

no match is found, the plan cache effectively becomes a dead end, only consuming needless

processing time and resources before the query processing is resumed. Also, a found match

is only performance enhancing if the time spent on searching after and feeding the query

executor with it, is less time-consuming than creating a new execution plan.

Second, by reusing the same query execution plan, the response time when executing a

query should become more predictable compared to the alternative[14]. Occasionally, the

11

12 CHAPTER 3. THEORY AND RELATED WORK

query optimizer ends up creating a different query execution plan than the ones created in

previous executions, which can result in either equally fast, faster or slower response time

when executing the query. In, theory, this uncertainty is eliminated when reusing a cached

plan, as it should result in equally fast response time every time executed. In reality, this

assumption can only be made given the condition that both the data that being accessed and

the corresponding statistics in the RDMBS remain unchanged in between executions.

Figure 3.1, shows the interaction between a plan cache and the query processor when processing

a query statement. A query statement is confirmed as executable after successfully passing

the query resolver in the query processing pipeline. Before continuing the query processing, a

match operation enforcing some type of cache match policy is carried out to check whether

an eligible query execution plan already exists in the plan cache. If an eligible plan do exist,

the plan is sent directly to the query executor, bypassing both the query rewriter and the

query optimizer. Otherwise, if no matching query execution plan is found, the query processor

continue processing the query as usual. After the optimization step is completed, the query

execution plan is stored in the plan cache. If there is no space left to the new plan in the plan

cache, a replacement operation enforcing some type of cache replacement policy is carried out

to make space.

Figure 3.1: A simplified illustration of the major events in a plan cache when processing a query.

The first major event is the match operation, where reusable plans are detected. The second

major event is the replacement operation, which is carried out to free up space if needed to

store a new query execution plan on the cache.

3.1. PLAN CACHING 13

3.1.1 Cache match policies

A cache match policy is a similarity algorithm used to determine whether an incoming query

statement can reuse any of the query execution plans stored in the cache[5][8][15]. Among

others, estimating similarity by comparing the hash value between two query statements is a

commonly used approach[5][6]. While this approach is both fast and uncomplicated to carry

out, it is limiting as only exact matches are accepted.

Other more sophisticated solutions have also been researched over the years. In 2002, Gosh et

al[15] presented PLASTIC - (PLAN Selection Through Incremental Clustering), a framework

where query execution plans were organized in clusters. In PLASTIC, similarly between query

statements is estimated based on query features, such as number of table join operations and

presents of certain tables and query attributes to mention a few.

Parametric Plan Caching (PPC), is another cluster-based plan cache framework that was

proposed by Aluç et al[8] in 2012. PPC map each query statement into a plan space based on

the provided parameter values. Then, the similarity between two query statements is estimated

by measuring the density between the query representations in the plan space. In addition, PPC

makes use of locality - sensitive hashing (LSH) to avoid having to measure similarity between

every possible combination of the query instances represented in the plan space, and instead

focus on only measuring the similarity between query instances that are likely to be similar.

While both the mentioned frameworks have shown promising results, neither of the large

commercial RDBMS’s have yet to implement a cluster-based plan cache implementation. At the

time of writing, some form of hash based plan cache implementation is still the most common

approach.

3.1.2 Cache replacement policies

A replacement policy is an algorithm used to determine which plan out of all query execution

plans stored on the cache that must be evicted to make space for a new plan. Arguable, the most

commonly used replacement logic in any type of cache is the Least Recently Used - (LRU), where
the last accessed object in the cache is thrown out, thus ensuring that the most frequently

accessed objects stays in the cache[16]. Other simpler replacement policies are the First In First
Out - (FIFO) and the Last In First Out - (LIFO) algorithms, where the object that has been in the

plan cache for the longest and the shortest time is thrown out.

14 CHAPTER 3. THEORY AND RELATED WORK

3.2 Existing implementations

Plan caching has for a long time been accepted as an adequate approach to increase the

efficiency RDBMS systems[5]. As a result, several commercial RDBMS’s have introduced

various implementations. This section describes a small selection of these implementations.

3.2.1 Microsoft SQL Server

The RDBMS Microsoft SQL Server have implemented a plan cache capable of caching both

ad hoc queries and prepared statements. The first proficient version of the plan cache was

introduced in the release of SQL Server 7.0 in 1998[17]. This version organized optimized query

execution plans in key-value pairs with the hashed query statement as the key value[5]. Match

operations were carried out by comparing hash values, which made the implementation both

fast and uncomplicated.

The major drawback of this implementation was that because of the hash comparison, the

match operations became case-sensitive which effectively resulted in that only exact matches

were accepted. As a result, it was only possible to store one query execution plan per query

statement. While not a problem when caching ad hoc queries, this made caching prepared

statements problematic as the values of the parameters following the prepared statements were

not taken into account when carrying out math operations. This is problem is illustrated in

listings 3.1, where the hash value of q1 and q2 end up equal, although the set values of the

parameters are unequal.

1 Set @name = "Jonas";

2 Set @q1 = "Select * From person p Where p.name = ?";

3 plan_cache_hash_function(@q1) = akcW ...0ps

4

5 Set @name = "Oda";

6 Set @q2 = "Select * From person p Where p.name = ?";

7 plan_cach_hash_function(@q2) = akcW ...0ps

Listing 3.1: A simplified example to illustrate the challenge of carrying out match operations

by hash string comparison only. The hash function end up producing the the same hash value

when provided both @q1 and @q2 as input, althrough the parameter @name is set to different

values.

To accommodate the problem of caching prepared statements, SQL Server introduced Parameter
Sensitive Plan optimization - (PSP) in SQL Server 2022[18]. PSP is as feature that makes it possible

to store up to three query execution plans of a single prepared statement, each optimized to

different set of parameters. Whenever SQL detects a prepared statement that can potentially

3.2. EXISTING IMPLEMENTATIONS 15

reuse one of the stored query execution plans, each plan is closer examined with regard to the

parameter sets. If an exact match between the parameter sets are found, the query execution

plan is reused. Otherwise, a new query execution plan is created. However, the new plan will

not automatically replace either of the plans already stored in the cache unless specified.

3.2.2 PostgreSQL

The open-source RDBMS PostgreSQL have implemented a simple, yet interesting plan cache

for caching prepared statements[4]. The PostgreSQL server distinguishes between two types

of query execution plans. The first type, the custom execution plan, is re-optimized for every

execution based on the parameters provided for the specific execution. The second type, the

generic execution plan, is an optimized execution plan fetched from a cache that is the same

across all executions, regardless of the provided parameters.

What makes the plan cache of PostgreSQL interesting is how the server determine whether a

generic execution plan should be created and added to plan cache. By default, the server will

issue custom execution plans for the first five executions of a prepared statement. After the

fifth execution is completed, a generic execution plan is created by analyzing the previously

issued plans and their corresponding parameters. Then, if the estimated cost of the generic

execution plan is less than the average execution cost of the custom execution plans, the generic

execution plan is stored in the plan cache.

3.2.3 Oracle

The RDBMS Oracle have implemented an intelligent plan cache capable of caching complete

query execution plans of both ad hoc and prepared statements[19]. Likewise as SQL Server,

after the initial parsing, the query statement is hashed and compared to the queries already

stored in the plan cache. If a match is found, the query execution plan is reused. Otherwise,

the query optimizer creates a new query execution plan and stores it in the plan cache. Also,

the implementation have the ability to analyze parameter values when executing prepared

statements. This process is termed bind variable peeking, which enables the query optimizer to

read the parameter values following the prepared statements as if they were provided in an

ordinary ad hoc statement with literal values. This makes it possible to determine whether a

prepared statement should be executed using a cached query execution plan.

Arguable one the most interesting trait of Oracles plan cache implementation is the con-

cept of cursor sharing which enables caching across multiple client-server sessions[19]. A

cursor is best described as a pointer that points to a specific SQL area. A SQL area is classi-

fied as either private or shared, and is used to store some type of query related information.

A private SQL area is used to store information about a parsed SQL statement and other

16 CHAPTER 3. THEORY AND RELATED WORK

related session - specific information, and is pointed at by a cursor on the client side. A

shared SQL area contains the parse three and the query execution plan of a query state-

ment, and is pointed at by a cursor stored in private SQL areas. Cursors stored various

private SQL areas are able to point at the same shared SQL area, thus enabling reuse of

the same query execution plan by multiple separated client-server sessions. Figure 3.2, dis-

plays a simplified illustration of how the plan caching is achieved through cursor sharing.

Figure 3.2: An simplified illustration of cursor sharing in Oracles plan cache. Both cursors

from the two client processes each point at a separate private SQL area in server process. The

cursors from the two separate server processes point at the same shared SQL area, enabling

both client-server sessions to use the same query execution plan when execution the shown

query statement[19]

3.3 Related optimization approaches

Plan caching is one of several approaches that are used to influence the choice making of

the query optimizer. This section describes two related approaches named plan hinting and

optimizer hints. While both approaches may resemble plan caching, there are some distinct

differences that need to be addressed.

3.3. RELATED OPTIMIZATION APPROACHES 17

3.3.1 Optimizer hints

Optimizer hints are optional statements that can be included in a query statement to override

the decision-making of the query optimizer[20]. When an optimizer hint is included in a query

statement, the hint forces the query optimizer to either choose or avoid a specific strategy when

creating a query execution plan[12]. Various types of optimizer hints exists, all overriding

different parts of the decision-making of the query optimizer. Lastly, multiple optimizer hints

can be included in a query statement. If enough hints are included, the decisions that the

optimizer are able to make become so limited that the query optimizer is effectively forced to

create a predetermined plan.

Unlike plan caching, optimizer hints does not result in a complete bypass of the query opti-

mizer. The query optimizer must still create a query execution plan, but can potentially spend

significantly less time than when optimizing both ad hoc and prepared statements due to the

limited number of possible decisions to make. How much less time is saved by using optimizer

hints depends entirely on how limited the number of strategies the optimizer can choose from

is.

3.3.2 Plan pinning

Plan pinning involves forcing the query executor to execute a predetermined query execution

plan, overriding the query optimizers decision-making completely[14]. How plan pinning is

implemented varies from different RDBMS’s. In some systems, after being recognized, query

statements are being supplemented with optimizer hints to force the creation of a specific

query execution plan[21]. Other systems store optimized query execution plans and forces

execution whenever a corresponding query statement is recognized, completely bypassing the

query optimizer.

Plan pinning may appear similar to plan caching in certain situations, but there are some

important differences. A plan cache is continuously being updated, whether it is being filed up

with new query execution plans or replacing old plans with new ones. Plan pinning prevents

the query executor from creating new query execution plans entirely, and is most often applied

to prevent the query optimizer from creating poor plans[14]. This is useful when executing

query statements that for some reason frequently end up with poor query execution plans.

Plan pinning is also applied to avoid plan regression, which leads to a sudden reduction in the

performance of the query processor. For most applications, a sudden increase in response time

from the RDBMS is much more critical than a significant speedup, and is therefore the most

crucial outcome to avoid[14].

18 CHAPTER 3. THEORY AND RELATED WORK

Chapter 4

Implementation

This chapter describes the implementation of a plan cache prototype with functionality based

on the theory presented in chapter 3. Section 4.1 describes some of the most significant function-

alities from the mysql-server repository, as well as explaining how these functionalities were

reused in the implementation. Thereafter, section 4.2 describes the plan cache implementation

and specify design choices.

4.1 Reuse of existing functionality

The plan cache implementation is partly developed by reusing parts of the already existing

functionality from MySQL’s open-source repository, mysql-server. Having a brief understand-

ing of this functionality is a prerequisite to be able to understand the workflow and the design

choices of the implementation that are later described in section 4.2. Therefore, this section is

included to highlight the most significant reused functionality and explain how these functions

are used in the implementation.

MEM_ROOT

The mem_root is a data structure that makes it easier to keep track of memory allocations[22].

In the mysql-server repository, a mem_root - object is initialized at the start of every client-

server session and is used to store data properties that should not be deleted, unless specified,

when preforming cleanup operation at the end of query executions. In addition to being fast,

the mem_root - object automatically release all memory allocations when destroyed.

In the plan cache implementation, a new mem_root - object is created to store each query

execution plan and all corresponding data properties that are generated during the optimization.

This makes both match - and replacement - operations fairly straight forward to carry out, as

stored query execution plans are clearly separated in dedicated mem_root - objects.

19

20 CHAPTER 4. IMPLEMENTATION

36 public:

37 PLAN_ROOT(std::vector <prepared_statement_parameter > _parameters)

{

38 parameters = _parameters;

39 set_timestamp_created ();

40 set_timestamp_last_accessed ();

41 }

42

43 MEM_ROOT mem_root;

Listing 4.1: Displaying of the mem_root attribute inside the plan_root class, fetched from

sql_plan_root.h. The attribute is public to make the query execution plan accessible.

Thread handler - (THD)

The thread handler - (thd) data structure is a central part of the logic in the mysql_server.

Each time a new session between a client and the mysql-server is established, a new thd -

object is created and dedicated to the session[23]. This thd - object is not destroyed until the

session between the client and the mysql-server is terminated. The thd - object points to the

mem_root - object of the session. This makes it possible to store data within the thd - object

throughout the session.

In the plan cache implementation, the ability to store information inside the thd object is

exploited by adding an object of the class plan_cache as a local attribute inside the thd class.

The plan_cache is the main data structure in the plan cache implementation. By doing so, a

new plan_cache instance is created inside the thd object whenever a new session between

client and the mysql-server is established.

928 class THD : public MDL_context_owner ,

929 public Query_arena ,

930 public Open_tables_state {

931 public:

932 /**

933 Controlled memory stats for this session.

934 This member is the first in THD ,

935 to initialize Thd_mem_cnt () before allocating more memory.

936 */

937 Thd_mem_cnt m_mem_cnt;

938 PLAN_CACHE plan_cache;

Listing 4.2: Displaying the empty plan_cache attribute inside the thd class, fetched from

sql_class.h

4.1. REUSE OF EXISTING FUNCTIONALITY 21

Swap_mem_root_guard

The swap_mem_root_guard is a data structure used to temporarily swap out the mem_root -

object pointed at by the thd with another specified mem_root - object[24]. This is operation

is conducted by calling the function mem_root_guard, which updates the thd - object to

point to a specified mem_root - object, while temporarily holding the pointer to the original

mem_root - object. The swap_mem_root_guard destructor is automatically called at the end

of the scope, making the thd point back to the original mem_root - object.

In the plan cache implementation, shown in 4.3, the swap_mem_root_guard swaps out the

main mem_root - object with the mem_root - object dedicated to the query execution plan

before the optimization takes place. After the execution, themainmem_root - object is swapped

back, before the fixed cleanup operations are carried out. This avoids the query execution plan

and other corresponding data properties from being deleted.

775 // Switch to plan roots mem_guard.

776 PLAN_ROOT* ptr_plan_root = thd ->plan_cache.get_active_plan_root ();

777 Swap_mem_root_guard mem_root_guard{thd , &ptr_plan_root ->mem_root };

778

779 if (!thd ->plan_cache.plan_root_is_optimized ()) {

780 if (unit ->optimize(thd , /* materialize_destination=*/nullptr ,

781 /* create_iterators=*/true , /* finalize_access_paths

=*/true)){

782 return true;

Listing 4.3: Displaying the swap_mem_root_guard being used to make the thd point at the

mem_root dedicated to the plan_root before optimizing the query execution plan. Fetched

from sql_select.cc

Access_path

The access_path is the data structure in the mysql-server that represents the internal nodes of

the query tree[25]. As described in section 2.1.1, each access_path - object contains information

about how the algebraic operation between the two child nodes is to be solved. The algebraic

operation itself is not conducted by the access_path - object, but by an associated iterator -

object, which takes the information from the access_path - object as input.

In the plan cache implementation, all access_path - objects and the corresponding iterators

are stored inside the mem_root of the dedicated plan_root - object. When a stored plan is

being reused, the executor is simply provided with the root node of the accees_path - tree

without having to re-compute all the algebraic operations or having to regenerate matching

iterators.

22 CHAPTER 4. IMPLEMENTATION

4.2 Implementation of the plan cache

The plan cache implementation is an extension of the mysql-server version 8.0. The cen-

terpiece of the implementation is the plan_cache, which is responsible for maintaining an

overview over all the cached query execution plans, and to carry out both matching- and

replacement - operations whenever necessary. The behavior of plan_cache is determined by

a set of properties, which are further described in section 4.2.1.

The second component of the implementation is the plan_root, which serves as a container-

object dedicated to store one query execution plan and additional related data properties. All

plan_root - objects are organized by the plan_cache - object of the session. Together, the

plan_cache and the plan_root make up the entire implementation, including the auxiliary

logic to interact with the mysql-server. The details and the workflow of both the classes are

explained in section 4.2.2 and section 4.2.3.

A few simplifications are made to avoid making the implementation too advance. First, the

implementation is only able to store query execution plans of prepared statements. This is

done to simplify the match operations. As explained in section 2.2, after the initial preparation

is completed, a prepared statement is stored as a template and remains accessible for the

remainder of the session. To maintain an overview over the query execution plans the are

stored in the cache, the implementation simply maintains a list of the pointers of the prepared

statements.

Second, the implementation is session based. This means that a new instance of a plan cache is

created whenever a new session between a client and the MySQL server is established. Likewise,

a created plan cache instance is destroyed whenever the session terminated.

4.2.1 Plan cache properties

The behavior of the plan cache implementation is determined by a set of parameters that are

being provided when a prepared statement enters the plan cache. As shown in listings 4.4,

in addition to the pointer of the prepared statement and its corresponding parameters, three

additional parameters are provided. These parameters represent the cache match policy (match
logics), the cache replacement policy (replacement logics) and the number of query execution

plans entries each prepared are able to store in the plan cache. By combining these properties

in different combinations, various behaviors are specified for the plan cache.

4.2. IMPLEMENTATION OF THE PLAN CACHE 23

1002 /* match_logic , entries , replacement_logic , pointer preared statement ,

corresponding parameters */

1003 thd ->plan_cache.enter_plan_cache("INEXACT_MATCH", "ONE_ENTRY", "LRU",

stmt , parameters_prepared_statement);

Listing 4.4: Displaying the entry point of the plan cache. The parameters passed into the

function enter_plan_cache determines the behavior of the plan cache by specifying the match

logic, the number of entries and the replacement logic that should be enforced.

Match logic

As described in section 3.1.1, the cache match policy is used to determine whether two queries

are matching. In the implementation, the match policy is used to specify what type of match

algorithm that shall be used when carrying out matching operations. Table 4.1, provides an

overview of the various match algorithms the plan cache implementation can be specified to

use.

Parameter name Short description

exact_match Match if the parameter sets are identical.

inexact_match Match as long as the numer of parameters and the parameter types in

both sets are equal.

Table 4.1: Overview of the various match logics the plan_cache can be specified to enforce.

Replacement logic

As described in section 3.1.2, the cache replacement policy determines which query execution

plan to remove in order to free up space for a new plan. In the implementation, the replacement

policy is used to specify what type of replacement algorithm that shall be used to determine

which plan_root - object to remove to make space to a new plan_root - object. Table 4.2,

provides an overview of the various replacement algorithms the plan cache implementation

can be specified to use.

Entries

The entries parameter specifies whether the plan cache can store multiple plan_root - objects

containing a query execution plan corresponding to the same prepared statement. Allowing

multiple versions of query execution plans, enables the possibility of storing multiply query

execution plans optimized for different sets of parameters. Table 4.3, provides an overview of

the various entry options the plan cache implementation can be specified to enforce.

24 CHAPTER 4. IMPLEMENTATION

Parameter name Short description

lru Enforces the Least Recently Used - logic.

fifo Enforces the First In First Out - logic.

lifo Enforces the Last In First Out - logic.

worst_match The worst_match - logic rank all the plan_root - objects stored in

the plan cache based in their similarity between the parameter sets of

the incoming prepared statement. The worst ranked plan_root -

object is thrown out of the cache.

Table 4.2: Overview of the various replacement logics the plan cache can be specified to enforce.

Parameter name Short description

one_entry Strictly one version of each prepared statement is allowed in the cache.

n_entries ’N’ number of versions of each prepared statement are allowed to be

stored in the cache. The value ’N’ is set during the initialization of the

plan cache, at the beginning of the session.

Table 4.3: Overview of the various entry options the plan cache can be specified to enforce.

4.2.2 PLAN_ROOT

The plan_root is the data structure where query execution plans are stored to enable reuse.

Each plan_root - object is dedicated to a single prepared statement. The lifespan of a

plan_root - object goes as following: A new plan_root - object is created by the plan_cache

to store a new query execution plan in the cache. During the rewrite step and the optimization

step, the attributes of the plan_root - object are being populated by the access_path - tree,

timestamps to keep tack of when the plan_root - object was both created and last accessed,

and other data necessary properties that were generated during the optimization step. Also, it

must be pointed out that all the attributes are allocated inside the mem_root - object of the

plan_root - object, making it possible to access the attributes in forthcoming query executions.

As described in section 3.1, when a match is later found, both the rewrite step and the opti-

mization step of the query processing pipeline are bypassed. Instead of preparing a new query

execution plan, the query executor is feed with a pointer pointing at the plan_root - object

containing themem_root - object where the query execution plan is stored. Lastly, if a prepared

statement at some point is re-prepared, the corresponding plan_root - object is destroyed

and a new plan_root - object is created and dedicated to the new prepared statement.

4.2. IMPLEMENTATION OF THE PLAN CACHE 25

Figure 4.1: BPMN diagram illustrating the workflow when a new plan_root - object is created

and populated, before later being used to bypass the optimization process.

26 CHAPTER 4. IMPLEMENTATION

4.2.3 PLAN_CACHE

The plan_cache is the main data structure in the implementation and where the majority of

the logic is handled. The three main tasks of the class is to maintain an overview of the query

execution plans stored in the cache, to conduct match operations between incoming prepared

statements and the prepared statements stored in the cache, and lastly to conduct replacement

operations in order to free space for new query execution plans.

In short, the workflow of the plan_cache goes as following: The execution of a prepared

statement is initiated. After completing the preparation phase, the pointer of the prepared

statement along with the predetermined properties of the plan cache is sent to the plan_cache.

The plan_cache start by examine whether the prepared statement being pointed at is already

stored in the plan_cache - object.

If it turns out that the pointer is not stored in the cache, the plan_cache continues by examine

whether are any available spots in the plan cache. A spot is available of the number of cached

query execution plans is not greater than the predetermined attribute global_limit. If a spot

is available, the plan_cache created a new plan_root - object dedicated to the prepared

statement. Otherwise, if there are no available spots, the plan_cache first carries out a

replacement operation, before a plan_root - object is created and dedicated to the prepared

statement.

If it turns out that the pointer is already stored in the cache, the examination of the correspond-

ing query execution plans continuous according to the specified logic. At any point if a match

is found, the process is terminated as there is no need to continue the examination. If no match

is found due to too different parameter sets, a replacement operation is carried out and a new

plan_root - object is dedicated to the prepared statement.

4.2. IMPLEMENTATION OF THE PLAN CACHE 27

Figure 4.2: BPMN diagram illustrating the workflow of the plan_cache when searching after

a plan_root - object containing a matching query execution to reuse. If none match is found,

a new plan_root - object is created. If space must be freed before storing a new plan_root -

object on the cache, a replacement operation is carried out.

28 CHAPTER 4. IMPLEMENTATION

Chapter 5

Experiments

Three experiments have been conducted to evaluate the performance of the plan cache im-

plementation. The experiments all involved executing various prepared statements against a

MySQL database to obtain insight about how the performance of the query processor is affected

by the plan cache prototype. In addition, ad hoc versions of the query statements were also

executed to enable performance comparing.

The chapter starts by describing the experimental setup in section 5.1. The benchmark used

when carrying out the experiments is justified in section 5.1.1 before both environmental and

hardware details during of the experiments are described in section 5.1.2 and section 5.1.3.

Lastly, the implementation of each experiment is described in section 5.2.

5.1 Experimental setup

This section describes the preparatory work that was carried out before the experiments

were conducted. The choice of benchmark used during the experiments is justified and both

environmental details and hardware details of the laptop used to carry out the experiments are

described.

5.1.1 Benchmark

The Join Order Benchmark - (JOB) is the benchmark that was used when carrying out the

experiments. JOB is based on the Internet Movie Data Base - (IMDB) dataset and contains an

enormous amount of movie-related information, distributed between 21 tables containing

anywhere between 4 rows to 36 million rows[26]. The benchmark consists of a total of 113

individual SELECT - query statements, divided into 33 different query structures, each structure

having between 2-6 versions with slightly different parameters[26].

29

30 CHAPTER 5. EXPERIMENTS

With an average of 8 join operations, the queries forces the query optimizer to spend time on

finding an appropriate join-strategy. This trait made JOB the ideal benchmark for evaluating

the impact on the query processor when caching query executing plans, as selection of the join-

strategies is arguable the most time-consuming operation performed by the query optimizer.

For this reason, JOB was selected instead of other benchmarks such as Sysbench[27], TPC-C[28]

and TPC-H[29], as these benchmark were more adequate when evaluating time spent on query

execution, rather than time spent on query optimization.

The JOB benchmark is written using PostgreSQL syntax. Although the SQL - statements of

MySQL and PostgreSQL are fairly similar, the syntax does not always translate. When preparing

for the experiments, it was discovered that the syntax if query 10a and 10b did not translate and
resulted in errors. Rather than rewriting the queries to MySQL syntax, they were not included

in the experiments described in section 5.2.

5.1.2 Environment

InnoDB is the default storage engine of MySQL[30]. To fit the entire JOB dataset inside the main

memory during the experiments, the InnoDB configuration innodb-buffer-pool-size was set to
12GB. This measure was done to avoid potentially having to carry out slow read operations

during the experiments towards disk, which would have had an impact on the measured query

execution time. All other default configurations of MySQL remained unchanged during the

experiments.

5.1.3 Hardware and OS

All experiments were conducted on Dell laptop with the listed specifications:

- Hardware Model: Dell Inc. Latitude 7420.

- Memory: 32GB.

- Processor: 11th Gen Intel® Core™ i7-1185G7 @ 3.00GHz × 8.

- Graphics: Mesa Intel® Xe Graphics (TGL GT2).

- Disk Capacity: 512GB.

- OS Name: Ubuntu 22.04-2. LTS.

- OS Type: 64-bit.

- Gnome version: 42.5.

The laptop was restarted before each experiment. Also, all non-relevant applications were

terminated to reduce the number of applications sharing the hardware to a minimum.

5.2. IMPLEMENTATION OF EXPERIMENTS 31

5.2 Implementation of experiments

The experiments involve testing the performance of the query processor when executing

both cached and ad hoc queries with the plan cache implementation enforcing either exact
match policy or inexact match policy. The experiments started by carrying out a preparatory

examination of all the 111 included queries from the JOB benchmark to detect the queries that

are the most interesting to include in the subsequent experiments. After the initial examination

followed two experiments, on for each of the aforementioned match policies.

The following experiments were conducted in the following order:

- Experiment 1: Benchmark query selection.

- Experiment 2: Plan cache enforcing exact match policy.

- Experiment 3: Plan cache enforcing inexact match policy.

To evaluate the performance, the time-consumption when processing the query of both the

query optimizer and the query executor were timed and written to a local log file. All write

operations to the log file was carried out after each the query execution had completed to avoid

interfering with the timing.

All experiments where carried out by initiating a bash script which automatically feed a running

instance of the mysql-server with a .sql file, containing all query statements corresponding to

the specific experiment. Afterwards, bash and python scripts were used to format and analyze

the data, as well as presenting the findings.

5.2.1 Benchmark query selection

The initial experiment involved executing the ad hoc - version of all 111 queries against a

running mysql-server. The goal of the experiment was to pinpointed which queries that were

most likely to provoke a significant change in the performance of the query processor when

caching queries, and would thus be the most interesting queries to include in the forthcoming

experiments.

After warming up the memory, all the queries were executed in a sequential order against the

mysql-server. To avoid that any query with unusual query processing distribution should shape

the results too much, the execution process was repeated 10 times before the average durations

of both the query optimizer and the query executor was computed.

5.2.2 Plan cache - exact match policy

The second experiment involved executing cached queries the mysql-server when the plan

cache implementation enforced exact match policy. The goal of this experiment was to investi-

32 CHAPTER 5. EXPERIMENTS

gate how the performance of the query processor was affected when caching queries with exact

matching parameter sets. Afterwards, the findings were compared against the performance of

the query processor when executing ad hoc versions of the same query statements.

Before conducting this experiment, the 8 queries that spent proportionally the most time on

optimization were detected and written as prepared statements. Further, both the ad hoc

versions and the prepared statement version of all the queries were copied into a separate .sql

filed, before each file was executed against the mysql-server in order. For the same reason as

explained in 5.2.1, the experiment was repeated 100 times before the experiment was completed.

5.2.3 Plan cache - inexact match policy

The third experiment was carried out in the same manner as the experiment 2, except that

the plan cache implementation was set now to enforce inexact match policy. The goal of this
experiment was to investigate how the performance of the query processor was effected when

caching queries with only inexact matching parameter sets.

Before conducting the experiment, 1 out of the 8 query statements from experiment 5.2.2 was

selected and rewritten to a prepared statement with 5 unspecified parameter values. During the

initial 10 executions, the parameters were set to the original values. The next ten executions, 1

out of the parameters was set to a value different to the original value to investigate how the

query processor would be affected. This experiment was repeated for 5 separate parameter

values. Like the experiment 2, the experiment was then repeated 100 times to ensure a good

foundation to discuss results.

Chapter 6

Results and discussion

This chapter evaluates the findings from the experiments that were described in chapter 5. First,

section 6.1 presents and discusses the queries that were found to effect the performance of the

query processor the most when caching query execution plans. Then, section 6.2 presents and

discusses the performance of the query processor when caching queries provided with exact

matching parameters. Lastly, section 6.3 presents and discusses the performance of the query

processor when caching a query provided with inexact matching parameters.

6.1 Benchmark query selection

The goal of this experiment was to detect the queries that were most likely to noticeably

affect the performance of the query processor when caching query execution plans, and would

therefore be the most interesting queries to include in the subsequent experiments. To ensure

good readability, only the most interesting results are presented in this section. A complete

overview of the results from all 111 query executions are included in appendix B.

6.1.1 Results

The stacked bars in figure 6.1 displays the average time spent by the query optimizer and the

query executor when processing query 29b to query 33c inclusive. Two clear observations

emerges. First, the total execution time varies greatly from query to query. The total execution

time of the queries 29b and 29c, both takes more than 10 seconds to complete, while the queries

33a, 33b and 33c, takes less than a second to complete. As a result of the large difference in

total execution time, some bars in the figure are hardly visible. Second, based on the queries

with visible bars, it appears that the query executor consumes more of the total execution time

than the query optimizer.

33

34 CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.1: The total execution divided between time set to optimization [blue] and time set to

execution [orange], when carrying out ad hoc executions of query 29b to query 33c inclusive.

The large differences in total execution time makes it problematic to visualize the results from

multiple queries in the same graph, as some bars simply disappears. To accommodate this,

figure 6.2 displays the average proportional distribution between the query optimizer and the

query executor when processing the queries. Two new observations clearly emerges. First, a

small subset of the JOB queries spend a significant amount of the total execution time on query

optimization. Second, all the detected queries that spend a significant proportion of the total

execution time on query optimization are fast-executing queries. Query 33a, 33b and 33c, are
all clear examples of this, as they are barely visible in figure 6.1, and clearly spend a significant

proportion of the total execution time on query optimization, as shown in figure 6.2.

Figure 6.2: The proportional distribution divided between time set to optimization [blue] and

time set to execution [orange], when carrying out ad hoc executions of query 29b to query 33c

inclusive.

6.1.2 Discussion

As described in section 3.1, a match in the plan cache causes the query processors to bypass

the query optimizer. In theory, this means that the time spent on query optimization should

be deducted whenever a match is found, ultimately reducing the total execution time. In

practice, some time will be spent on overhead, such as carrying out match operations and

possible remote operations. Still, it is likely that the queries that make the query processor

spend proportionally the most time on optimization, are also the queries that most likely will

6.1. BENCHMARK QUERY SELECTION 35

noticeably affect the performance of the query processor the most. Figure 6.3 displays the 8

query statements were the query optimizer was found to consume proportionally the most time

out of all the 111 queries. These queries are therefore included in the forthcoming experiments.

Figure 6.3: The proportional distribution divided between time set to optimization [blue] and

time set to execution [orange], of the 8 queries that proportionally spends the most of the total

execution time on optimization.

36 CHAPTER 6. RESULTS AND DISCUSSION

6.2 Plan cache - exact match policy

The goal of this experiment was to investigate how the performance of the query processor

was affected when caching queries with exact matching parameters. Likewise as in experiment

1, only the most interesting results are presented. A complete overview of the actual time

consumption in milliseconds of both cached and ad hoc executions are attached in appendix C.

6.2.1 Results

Table 6.1 displays the recorded performance of the query processor when comparing the

execution of the cached queries and the ad hoc queries. The results show that the average time

spent on optimization for all queries when caching the query execution plan is close to 100%

faster compared to when executing the ad hoc queries. Further, for all queries, the average

execution time was somewhere between 0% and 5% faster when caching the query execution

plan. Interestingly, the results shows that some queries, like 11b, had a max execution time

17.41% faster than the ad hoc executions, while query 33b, had a far worse execution time

41.15% slower than the ad hoc executions. Lastly, the relative standard derivations in execution

time varied less when executing most of the cached queries compared to the ad hoc queries.

The only exception to this was query 33b, were the relative standard derivations in execution

time varied 2.56% more when executing the cached query.

Execution comparison between the cached queries and the ad hoc queries

Query Average
optimization

Min execution Max execution Average
execution

Relative
standard
derivation

11b -99.48% 0.16% -17.41% -4.93% -47.3%

27a -99.93% 0.18% -4.35% -0.2% -13.86%

27b -99.92% -0.33% -9.21% -0.19% -2.03%

27c -99.91% 2.4% 1.08% -0.07% -2.28%

30b -99.97% 0.03% -10.18% -0.07% -8.85%

33a -99.97% -1.0% -0.69% -4.0% -10.59%

33b -99.97% -1.07% 41.15% -3.19% 2.56%

33c -99.99% -1.36% -7.98% -2.84% -3.53%

AVG -99.89% -0.12% -0.95% -1.94% -10.73%

Table 6.1: Performance comparisons between execution of cached queries and ad hoc queries.

Overall, cached queries appears to execute slightly faster and with less variation in time spent

on execution.

6.2. PLAN CACHE - EXACT MATCH POLICY 37

6.2.2 Discussion

The observations from table 6.1 are interesting and reveal a lot of information about the current

plan cache implementation. First, the short time spent on query optimization indicates that the

query execution plans are successfully being fetched from the plan cache. With close to 100%

less time spent on optimization on average, caching plans is clearly faster than creating new

ones when carried out as in this experiment. The result may be slightly colored by the fact that

the cache always contained one matching plan when the experiment was carried out. If the

cache had contained more plans, more match operations must have been carried out, which

probably would have resulted in a somewhat increased average time spent on optimization

than recorded.

The reduced variation in relative standard derivation support that query execution plans are

successfully being cached, as reused plans should lead to more predictable execution time. As

stated, the only exception with recorded higher relative standard derivation is query 33b. This
is most likely the result of the multiple executions with poor performance such as the recorded

max execution of the query.

Interestingly, the average execution time is only slightly reduced when caching and not as much

as expected. As shown in figure 6.3, the query optimizer was found to on average consume

approximately 24%, 29% and 19% of the total execution time when executing query 33a, 33b
and 33c. With these results as the starting point, one would expect a deduction in the total

execution time close to these percentages when caching.

There could be several reasons to why this happened. First, there is the possibility that solution

for feeding the query executor with cached query execution plans is not sufficient. As described

in section 4.2, the actual match operation and the way the query optimizer is fed with a query

execution plan, are two separate operations. This means that even if the first performs well,

the latter does not necessarily have to. This may also explain why the max execution time of

some cached queries are slower than the max execution time when executed as ad hoc queries.

Second, the performance of a cached query is entirely dependent on how good the execution

plan the query optimizer made during the first execution. As described in section 2.1.5, there

is a bit of randomness in which rules and strategies that end up being included in the query

execution plan. Therefore, the recorded execution times may be colored by that the query

execution plans created during the initial executions were on average less efficient plans

compared to the ones created during the ad hoc executions, and therefore resulted in a poorer

execution.

38 CHAPTER 6. RESULTS AND DISCUSSION

Analysis of the fastest cached queries

As described in section 3.2.2, the plan cache implementation of PostgreSQL attempts to avoid

poor execution plans from being stored in the plan cache by delaying creating a generic

execution plan. First after at least five executions, a generic plan is created and stored in

the cache, given that the plan preforms provably better than the average custom execution

plan. Such logic does not exist in the current plan cache implementation, but the concept of

only storing provable efficient plans in the plan cache is interesting. A similar feature could

potentially be added to improve the plan cache implementation. This section takes a closer

look at the possible outcome of experiment 2, if only the query execution plans that resulted in

the fastest executions of each query were stored in the cache.

Results

Table 6.2 displays the recorded performance of query processor when only comparing the

executing of the fastest cached queries and the ad hoc executions. The results show a significant

improvement among all queries. The recorded max execution time and the average execution

time have both been reduced for all queries. Also, the found relevant standard derivation shows

that the execution time is now even more predictable compared to the ad hoc executions.

Execution comparison between the fastest cached queries and the ad hoc queries

Query Max
optimization

Min execution Max execution Average
execution

Relative
standard
derivation

11b - 1.86% -51.68% -6.56% -76.25%

27a - 1.29% -40.14% -5.38% -76.18%

27b - -0.33% -60.42% -24.97% -50.72%

27c - 4.35% -42.41% -4.92% -82.84%

30b - 0.03% -24.75% -3.81% -94.6%

33a - 0.21% -38.58% -8.91% -44.69%

33b - -0.2% -41.51% -10.4% -56.93%

33c - 0.2% -39.15% -6.72% -49.51%

AVG - 0.93% -42.33% -8.96% -66.46%

Table 6.2: Performance comparisons between the fastest cached queries and the average ad hoc

executions. Max optimization is not included as the recorded performance include both the

initial and the cached executions of the queries.

6.2. PLAN CACHE - EXACT MATCH POLICY 39

Discussion

Not surprisingly, the execution time is significantly better results when only comparing the

fastest executing cached queries. Arguably more important, the results show that the query

execution times varies less. As described in section 3.3.2, predictable execution time is for

most applications more important than fast execution. Based on these results, there are several

indications that the implementation would benefit from being more careful about which query

execution plans to be stored in the cache.

40 CHAPTER 6. RESULTS AND DISCUSSION

6.3 Plan cache - inexact match policy

The goal of this experiment was to investigate how the performance of the query processor

was affected when caching queries provided with inexact matching parameters. As described

in section 5.2.3, one out of the 8 queries used in experiment 2 was selected for this experiment.

Using a randomizer, query 33c ended up as the selected for the experiment.

As described in section 5.1.1, the queries from the Join Order Benchmark are all used to return

data from the enormous Internet Movie Data Base - (IMDB) dataset. Exactly what rows of data

that is returned when executing 33c is not relevant for this experiment, but how the execution

time is affected when the query executor is feed with a query execution plan optimized for

different parameter values. Table 6.3, displays the parameter values and provides a short

description of how the new parameter values affects search area of query 33c.

Specified parameters in query 33c

Parameter Original
value

New
value

Short description

p0 - - No change in parameter values. Added for reference.

p1 !=’[us]’ !=’[de]’ Query 33c must not return content of Danish origin,

rather to the original parameters where content of

American origin where excluded.

p2 ’rating’ ’budget’ Query 33c must return content containing the search

word ’rating’ instead of the original search word

’budget’.

p3 ’tv series’ ’movie’ Query 33c must return content of type ’movie’ instead

of the original content type ’tv series’.

p4 ’3.5’ ’6.0’ Query 33c must return content width weighted

individual average of all user ratings equal ’6.0’

instead of the original rating ’3.5’.

p5-1 2000 1995 Query 33c must return content where production

period start sometime between 1995 and 2010 instead

of the original timeline between 2000 and 2010.

(Increased search space)

p5-2 2000 2005 Query 33c must return content where production

period start sometime between 2005 and 2010 instead

of the original timeline between 2000 and 2010.

(Reduced search space)

Table 6.3: The parameter values of query 33c that were changed between the executions.

6.3. PLAN CACHE - INEXACT MATCH POLICY 41

6.3.1 Results

The recorded performance when executing query 33c with both exact and inexact matching

parameters is displayed as milliseconds in figure 6.4 and as percentage difference in figure

6.5. Two clear observations emerges. Most noticeably, when setting the weighted individual

average of all user ratings (p4), from ’3.5’ to ’6.0’, the average query execution time increases

from 12.1ms to 23.7ms, approximately a 96% increase in execution time. Further, increasing the

search space by setting the start year of the production period (p5-1) from 2000 to 1995, resulted

in an approximate 16% increase in execution time. When setting reducing the search space by

setting the start year to 2005 (p5-2), the execution time was reduced with 25%. The execution

time was also reduced with approximately 17% when the content type was changed from ’tv

series’ to ’movie’. Otherwise, the query executed with pretty much the same performance

when provided with new values for the parameters p0, p1 and p2.

Figure 6.4: Execution time of query 33c when provided with both exact [blue] and inexact

[orange] matching parameters. The execution time is measured in milliseconds.

Figure 6.5: Difference of execution time of query 33c in percentage when provided with exact

[blue] and inexact [orange] matching parameters.

42 CHAPTER 6. RESULTS AND DISCUSSION

6.3.2 Discussion

The observations from figure 6.4 and figure 6.5 showcases the three possible outcomes when

executing a query in terms of performance. As described in section 3.1, repeated query execution

can either result in equally fast execution (p0, p1 and p2), faster execution (p3 and p5-2), or
slower execution (p4 and p5-1).

The outcome of changing the parameters (p4) and (p5-2) went as one might expect. Both values

specify the same parameter, which is used to limit or increase the search area of the query

executor by specifying the production period. When increasing the search (p4), the query
execution takes longer time to complete, as the query executor is forced to parse more rows

of data than previously. Similarly, when reducing the search space, the execution completes

faster, as the requirements limits the number of possible rows of data for the executor to parse.

The outcome of the parameters (p4) and (p5-2) could quite possibly been found through some

type of quick preparatory analysis of the parameters values, as the end of the production period

is specified in the query. In contrast, it had presumably been far more difficult to predict the

outcome when changing parameter (p5-1) from ’3.0’ to ’6.0’, as there is are no indicators in the

query statement that suggest that the search space would increase.

These results highlight a major weakness of allowing execution of inexact matching queries

without any deeper analysis of the parameters. It is very difficult to predict how the change

in parameter values will end up affecting the performance of the query processor. As stated

previously in section 3.1 and 3.3.2, unpredictable performance is arguable the most critical

outcome to avoid for the majority of application. Therefore, the results show that executing

caching queries with inexact matching parameters is not only unwise, but also cause major

problems for applications relaying on predictable response time from the RDMBS.

Chapter 7

Conclusion

The main goal of this thesis was to investigate whether it was feasible to implement plan

caching to enhance the performance of the MySQL query processor. So far, fundamental

knowledge about the query optimization was presented in chapter 2. In chapter 3, plan caching

as concept and different implementations, in addition to various related approaches to influence

the decision-making of the query optimizer were described. Then, the implementation of a

plan cache prototype in MySQL was described in chapter 4, before three experiments described

in chapter 5 were conducted, and the findings were presented and discussed in chapter 6. Based

on the observations made throughout the stated chapters, this chapter attempts to answer the

research questions that were presented in chapter 1. The following questions were asked:

RQ1: Does the findings indicate that implementing plan caching is a measure that would

enhance the overall performance of the MySQL query processor?

RQ2: How is the performance of the MySQL query processor affected when using a plan cache

enforcing inexact match policy compared to when enforcing exact match policy?

To answer RQ1. Based on the findings, it appears that plan caching can contribute to enhance

the overall performance of the MySQL query processor. The experiments show that cached

queries on average completes slightly faster than the ad hoc queries. More importantly, the

execution time also appears to vary less when executing cached queries compared to ad hoc

queries. However, the experiments have also revealed that the current plan cache implemen-

tation is prone to occasionally cause poor query performance. Before MySQL can consider

implementing the plan cache implementation as a feature, this problem must be eliminated.

To answer RQ2. Based on the finding, caching queries with inexact matching parameters is a

too unpredictable to be enforced. Whether the performance of the query processor increases,

remain the same or decreases, when allowing uncritical inexact matching parameters to be

included, depends entirely on what parameter value that is provided. To make caching of

43

44 CHAPTER 7. CONCLUSION

query execution plans with inexact matching parameters feasible with predictable performance,

more sophisticated methods to carry out match operations must be implemented than the one

experimented with in this thesis.

7.1 Future work

There are several aspects of plan caching that would be interesting to closer investigate in

the future. First, it would be interesting to experiment with more sophisticated solutions to

closer investigate whether it is possible to reuse query execution plans when enforcing inexact

matching policy with predictable performance. Solutions such as PLASTIC[15] and Parametric

Plan Caching[8], have shown promising results, so a cluster based implementation could be

a possible solution. Further, it would be interesting to closer examine how the size of the

plan cache influences the search time when carrying out match operations. Being able to

establish a limit to the number of query execution plans possible to store in the cache before

the number of match operations becomes too time-consuming and ends up harming the overall

performance of the query processor, would be a valuable contribution. Lastly, it would also be

interesting to closer investigate how the logic for carrying out replacement operations affects

the performance of the query processor.

Bibliography

[1] P. Taylor, Total data volume worldwide 2010-2025, en. [Online]. Available: https://
www.statista.com/statistics/871513/worldwide-data-created/ (visited on

05/25/2023).

[2] DB-Engines Ranking, en. [Online]. Available: https://db-engines.com/en/ranking
(visited on 05/14/2023).

[3] What is MySQL? en. [Online]. Available: https://www.oracle.com/mysql/what-is-
mysql/ (visited on 05/14/2023).

[4] PREPARE, en, May 2023. [Online]. Available: https://www.postgresql.org/docs/15/

sql-prepare.html (visited on 05/26/2023).

[5] G. Low, A. Prout, C. Fraser, et al., Plan Caching in SQL Server 2008, en-us, Aug. 2009.
[Online]. Available: https://learn.microsoft.com/en-us/previous-versions/

sql/sql-server-2008/ee343986(v=sql.100) (visited on 05/31/2023).

[6] H. Baer, B. Bolltoft, A. Cakmak, et al., Improving Real-World Performance Through Cursor
Sharing, en-US, topic, Publisher: December2021. [Online]. Available: https://docs.

oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-

cursor-sharing.html#GUID-8CC2E0D8-4C67-4795-93A8-9F563E7F27C7 (visited on

05/26/2023).

[7] SyBooks Online. [Online]. Available: https://infocenter.sybase.com/help/index.
jsp?topic=/com.sybase.help.sqlanywhere.12.0.1/dbusage/plan-caching-

queryopt.html (visited on 01/19/2023).

[8] G. Aluç, D. E. DeHaan, and I. T. Bowman, “Parametric Plan Caching Using Density-

Based Clustering,” in 2012 IEEE 28th International Conference on Data Engineering, ISSN:
2375-026X, Apr. 2012, pp. 402–413. doi: 10.1109/ICDE.2012.57.

[9] J. M. Hellerstein, M. Stonebraker, and J. Hamilton, “Architecture of a Database Sys-

tem,” en, Foundations and Trends® in Databases, vol. 1, no. 2, pp. 141–259, 2007, issn:
1931-7883, 1931-7891. doi: 10.1561/1900000002. [Online]. Available: http://www.

nowpublishers.com/article/Details/DBS-002 (visited on 04/13/2023).

[10] “Query Optimization,” en, in Fundamentals of database systems, Seventh edition, OCLC:

ocn913842106, Hoboken, NJ: Pearson, 2016, pp. 691–727, isbn: 978-0-13-397077-7.

45

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://db-engines.com/en/ranking
https://www.oracle.com/mysql/what-is-mysql/
https://www.oracle.com/mysql/what-is-mysql/
https://www.postgresql.org/docs/15/sql-prepare.html
https://www.postgresql.org/docs/15/sql-prepare.html
https://learn.microsoft.com/en-us/previous-versions/sql/sql-server-2008/ee343986(v=sql.100)
https://learn.microsoft.com/en-us/previous-versions/sql/sql-server-2008/ee343986(v=sql.100)
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html#GUID-8CC2E0D8-4C67-4795-93A8-9F563E7F27C7
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html#GUID-8CC2E0D8-4C67-4795-93A8-9F563E7F27C7
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html#GUID-8CC2E0D8-4C67-4795-93A8-9F563E7F27C7
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.12.0.1/dbusage/plan-caching-queryopt.html
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.12.0.1/dbusage/plan-caching-queryopt.html
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.12.0.1/dbusage/plan-caching-queryopt.html
https://doi.org/10.1109/ICDE.2012.57
https://doi.org/10.1561/1900000002
http://www.nowpublishers.com/article/Details/DBS-002
http://www.nowpublishers.com/article/Details/DBS-002

46 BIBLIOGRAPHY

[11] “Strategies for Query Processing,” en, in Fundamentals of database systems, Seventh
edition, OCLC: ocn913842106, Hoboken, NJ: Pearson, 2016, pp. 655–687, isbn: 978-0-13-

397077-7.

[12] MySQL :: MySQL 8.0 Reference Manual :: 13.5 Prepared Statements. [Online]. Available:
https://dev.mysql.com/doc/refman/8.0/en/sql-prepared-statements.html

(visited on 02/28/2023).

[13] I. Fernandez, “Establishing a baseline,” en, in Beginning Oracle Database 12c Administra-
tion: From Novice to Professional, I. Fernandez, Ed., Berkeley, CA: Apress, 2015, pp. 324–
328, isbn: 978-1-4842-0193-0. doi: 10.1007/978-1-4842-0193-0_3. [Online]. Available:

https://doi.org/10.1007/978-1-4842-0193-0_3 (visited on 05/31/2023).

[14] M. Ziauddin, D. Das, H. Su, Y. Zhu, and K. Yagoub, “Optimizer plan change management:

Improved stability and performance in Oracle 11g,” Proceedings of the VLDB Endowment,
vol. 1, no. 2, pp. 1346–1355, Aug. 2008, issn: 2150-8097. doi: 10.14778/1454159.1454175.

[Online]. Available: https://doi.org/10.14778/1454159.1454175 (visited on

12/18/2022).

[15] A. Ghosh, J. Parikh, V. S. Sengar, and J. R. Haritsa, “Plan selection based on query

clustering,” in Proceedings of the 28th international conference on Very Large Data Bases,
ser. VLDB ’02, Hong Kong, China: VLDB Endowment, Aug. 2002, pp. 179–190. (visited

on 06/03/2023).

[16] W. Stallings and K. Goutam, Operating systems: internals and design principles. Pearson
New York, 2012, vol. 9.

[17] Chapter 1 - What’s New in SQL Server 7.0, en-us, Jan. 2010. [Online]. Available: https:
//learn.microsoft.com/en-us/previous-versions/cc917537(v=technet.10)

(visited on 06/01/2023).

[18] R. West and D. Wilson, Parameter Sensitive Plan optimization - SQL Server, en-us, May

2023. [Online]. Available: https://learn.microsoft.com/en-us/sql/relational-

databases/performance/parameter-sensitive-plan-optimization (visited on

06/01/2023).

[19] H. Baer, B. Bolltoft, A. Cakmak, et al., Improving Real-World Performance Through Cursor
Sharing, en-US, topic, Publisher: December2021. [Online]. Available: https://docs.

oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-

cursor-sharing.html (visited on 06/03/2023).

[20] 17 Optimizer Hints, Dec. 2003. [Online]. Available: https://docs.oracle.com/cd/
B12037_01/server.101/b10752/hintsref.htm (visited on 06/05/2023).

[21] IBM Documentation, en-US, Mar. 2023. [Online]. Available: https://www.ibm.com/

docs/en/db2/11.1?topic=plans-optimization-profiles-guidelines (visited on

06/05/2023).

https://dev.mysql.com/doc/refman/8.0/en/sql-prepared-statements.html
https://doi.org/10.1007/978-1-4842-0193-0_3
https://doi.org/10.1007/978-1-4842-0193-0_3
https://doi.org/10.14778/1454159.1454175
https://doi.org/10.14778/1454159.1454175
https://learn.microsoft.com/en-us/previous-versions/cc917537(v=technet.10)
https://learn.microsoft.com/en-us/previous-versions/cc917537(v=technet.10)
https://learn.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitive-plan-optimization
https://learn.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitive-plan-optimization
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html
https://docs.oracle.com/cd/B12037_01/server.101/b10752/hintsref.htm
https://docs.oracle.com/cd/B12037_01/server.101/b10752/hintsref.htm
https://www.ibm.com/docs/en/db2/11.1?topic=plans-optimization-profiles-guidelines
https://www.ibm.com/docs/en/db2/11.1?topic=plans-optimization-profiles-guidelines

BIBLIOGRAPHY 47

[22] MEM_root Struct Reference. [Online]. Available: https://dev.mysql.com/doc/dev/
mysql-server/latest/structMEM__ROOT.html#details (visited on 04/19/2023).

[23] THD Class Reference. [Online]. Available: https://dev.mysql.com/doc/dev/mysql-
server/latest/classTHD.html (visited on 04/19/2023).

[24] Swap_mem_root_guard Class Reference. [Online]. Available: https://dev.mysql.com/
doc/dev/mysql-server/latest/classSwap__mem__root__guard.html#details

(visited on 04/19/2023).

[25] AccessPath Struct Reference. [Online]. Available: https://dev.mysql.com/doc/dev/
mysql-server/latest/structAccessPath.html#details (visited on 05/14/2023).

[26] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann, “How good are

query optimizers, really?” Proceedings of the VLDB Endowment, vol. 9, no. 3, pp. 204–
215, Nov. 2015, issn: 2150-8097. doi: 10.14778/2850583.2850594. [Online]. Available:

https://dl.acm.org/doi/10.14778/2850583.2850594 (visited on 05/01/2023).

[27] A. Kopytov, Sysbench, original-date: 2015-03-07T08:27:40Z, May 2023. [Online]. Available:

https://github.com/akopytov/sysbench (visited on 05/10/2023).

[28] TPC-C Homepage. [Online]. Available: https : / / www . tpc . org / tpcc/ (visited on

05/10/2023).

[29] TPC-H Homepage. [Online]. Available: https://www.tpc.org/tpch/default5.asp
(visited on 05/10/2023).

[30] Configuring InnoDB Buffer Pool Size. [Online]. Available: https://dev.mysql.com/doc/
refman/5.7/en/innodb-buffer-pool-resize.html (visited on 05/10/2023).

https://dev.mysql.com/doc/dev/mysql-server/latest/structMEM__ROOT.html#details
https://dev.mysql.com/doc/dev/mysql-server/latest/structMEM__ROOT.html#details
https://dev.mysql.com/doc/dev/mysql-server/latest/classTHD.html
https://dev.mysql.com/doc/dev/mysql-server/latest/classTHD.html
https://dev.mysql.com/doc/dev/mysql-server/latest/classSwap__mem__root__guard.html#details
https://dev.mysql.com/doc/dev/mysql-server/latest/classSwap__mem__root__guard.html#details
https://dev.mysql.com/doc/dev/mysql-server/latest/structAccessPath.html#details
https://dev.mysql.com/doc/dev/mysql-server/latest/structAccessPath.html#details
https://doi.org/10.14778/2850583.2850594
https://dl.acm.org/doi/10.14778/2850583.2850594
https://github.com/akopytov/sysbench
https://www.tpc.org/tpcc/
https://www.tpc.org/tpch/default5.asp
https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool-resize.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool-resize.html

48 BIBLIOGRAPHY

Appendix

A Source code

The source code of the implementation can be found at: https://github.com/jonasbrunvoll/mysql-

server. The open-source mysql-server repository, can be found at MySQL’s Github repository:

https://github.com/mysql/mysql-server.

i

ii BIBLIOGRAPHY

B Experiment 1 - Benchmark query selection

B.1 Distribution of query optimization and execution

Figure 1: The total execution divided between time set to optimization [blue] and time set to

execution [orange], when carrying out ad hoc execution of query 01a to query 04c inclusive.

Figure 2: The proportional distribution divided between time set to optimization [blue] and

time set to execution [orange], when carrying out ad hoc execution of query 01a to query 04c

inclusive.

B. EXPERIMENT 1 - BENCHMARK QUERY SELECTION iii

Figure 3: The total execution divided between time set to optimization [blue] and time set to

execution [orange], when carrying out ad hoc execution of query 05a to query 08b inclusive.

Figure 4: The proportional distribution divided between time set to optimization [blue] and

time set to execution [orange], when carrying out ad hoc execution of query 05a to query 08b

inclusive.

iv BIBLIOGRAPHY

Figure 5: The total execution divided between time set to optimization [blue] and time set to

execution [orange] , when carrying out ad hoc execution of query 08c to query 12c inclusive.

Figure 6: The proportional distribution divided between time set to optimization [blue] and

time set to execution [orange], when carrying out ad hoc execution of query 08c to query 12c

inclusive.

B. EXPERIMENT 1 - BENCHMARK QUERY SELECTION v

Figure 7: The total execution divided between time set to optimization [blue] and time set to

execution [orange], when carrying out ad hoc execution of query 13a to query 16c inclusive.

Figure 8: The proportional distribution divided between time set to optimization [blue] and

time set to execution [orange], when carrying out ad hoc execution of query 13a to query 16c

inclusive.

vi BIBLIOGRAPHY

Figure 9: The total execution divided between time set to optimization [blue] and time set to

execution [orange], when carrying out ad hoc execution of query 16d to query 19d inclusive.

Figure 10: The proportional distribution divided between time set to optimization [blue] and

time set to execution [orange], when carrying out ad hoc execution of query 16d to query 19d

inclusive.

B. EXPERIMENT 1 - BENCHMARK QUERY SELECTION vii

Figure 11: The total execution divided between time set to optimization [blue] and time set to

execution [orange], when carrying out ad hoc execution of query 20a to query 24a inclusive.

Figure 12: The proportional distribution divided between time set to optimization [blue] and

time set to execution [orange], when carrying out ad hoc execution of query 20a to query 24a

inclusive.

viii BIBLIOGRAPHY

Figure 13: The total execution divided between time set to optimization [blue] and time set to

execution [orange], when carrying out ad hoc execution of query 24b to query 29a inclusive.

Figure 14: The proportional distribution divided between time set to optimization [blue] and

time set to execution [orange], when carrying out ad hoc execution of query 24b to query 29c

inclusive.

B. EXPERIMENT 1 - BENCHMARK QUERY SELECTION ix

Figure 15: The total execution divided between time set to optimization [blue] and time set to

execution [orange], when carrying out ad hoc execution of query 29b to query 33c inclusive.

Figure 16: The proportional distribution divided between time set to optimization [blue] and

time set to execution [orange], when carrying out ad hoc execution of query 29b to query 33c

inclusive.

x BIBLIOGRAPHY

C Experiment 2 - Plan cache - exact match policy

C.1 Recorded performance - tables

Performance ad hoc executions

Query Max
optimization -
(ms)

Min execution
- (ms)

Max execution
- (ms)

Average
execution -
(ms)

Average
standard
derivation -
(ms)

11b 0.605 1.235 2.941 1.4309 0.2501

27a 1.448 4.335 7.910 4.8573 0.4127

27b 1.565 2.761 8.078 3.9253 0.3588

27c 1.232 7.926 14.896 8.8534 0.6142

30b 2.667 46.205 61.750 48.2223 1.5712

33a 3.807 3.784 7.354 4.4850 0.4742

33b 3.989 3.451 6.788 4.0711 0.4372

33c 6.223 10.164 18.196 11.4917 0.6910

Performance cached executions

11b 0.003 1.237 2.429 1.3603 0.1318

27a 0.002 4.343 7.566 4.8475 0.3555

27b 0.005 2.752 7.334 3.9180 0.3515

27c 0.004 8.116 15.057 8.8473 0.6002

30b 0.003 46.217 55.461 48.1875 1.4322

33a 0.003 3.746 7.303 4.3057 0.4240

33b 0.002 3.414 9.581 3.9411 0.4484

33c 0.002 10.026 16.744 11.1659 0.6666

Performance fastest cached executions

11b 0.122 1.258 1.421 1.3370 0.0594

27a 0.688 4.391 4.735 4.5961 0.0983

27b 0.683 2.752 3.197 2.9452 0.1768

27c 0.573 8.271 8.578 8.4176 0.1054

30b 1.942 46.217 46.469 46.3844 0.0849

33a 1.855 3.792 4.517 4.0854 0.2623

33b 1.777 3.444 3.970 3.6476 0.1883

33c 3.397 10.184 11.072 10.7200 0.3489

Table 1: Experiment 2, recorded performance of the ad hoc, the cached and the fastest cached

query executions, measured in milliseconds.

	Abstract
	Sammendrag
	Preface
	List of Tables
	List of Figures
	Introduction
	Motivation
	Scope
	Structure of thesis

	Background
	The query processor
	The query tree
	The query parser
	The query resolver
	The query rewriter
	The query optimizer
	The query executor

	Prepared statements

	Theory and related work
	Plan caching
	Cache match policies
	Cache replacement policies

	Existing implementations
	Microsoft SQL Server
	PostgreSQL
	Oracle

	Related optimization approaches
	Optimizer hints
	Plan pinning

	Implementation
	Reuse of existing functionality
	Implementation of the plan cache
	Plan cache properties
	PLAN_ROOT
	PLAN_CACHE

	Experiments
	Experimental setup
	Benchmark
	Environment
	Hardware and OS

	Implementation of experiments
	Benchmark query selection
	Plan cache - exact match policy
	Plan cache - inexact match policy

	Results and discussion
	Benchmark query selection
	Results
	Discussion

	Plan cache - exact match policy
	Results
	Discussion

	Plan cache - inexact match policy
	Results
	Discussion

	Conclusion
	Future work

	Bibliography
	Appendix
	Source code
	Experiment 1 - Benchmark query selection
	Distribution of query optimization and execution

	Experiment 2 - Plan cache - exact match policy
	Recorded performance - tables

