
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Lars-Olav Vågene

Using the ICU library for collations in
MySQL

Master’s thesis in Informatics
Supervisor: Norvald H. Ryeng
June 2023

Lars-Olav Vågene

Using the ICU library for collations in
MySQL

Master’s thesis in Informatics
Supervisor: Norvald H. Ryeng
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Collations are rules deϐining the order of characters in a given language
that applications use to sort text in a locale‑aware fashion. The Interna‑
tional Components forUnicode (ICU) library is awidelyused text‑handling
toolkit with collation support. It has extensive support for collation in
various languages and is a popular choice for applications that require
advanced collation support.

However, collations in ICU are not semantically stable, which means
the underlying rules can change between versions and cause the same
rule set to produce different results. Lack of semantic stability presents
a problem for some applications, such as database management systems
(DBMS). The indexes thesemaintain ondisk canbe invalidatedby changes
in collation order.

This report presents a proof‑of‑concept prototype designed to enforce
semantic stability in collations derived from ICU.We useMySQL in the im‑
plementation, but the general principle applies to other applications with
similar requirements. Several benchmarking experiments measure the
effect of thismodiϐication onperformance. These show that our prototype
has comparable performance to the existing implementation in MySQL
and that ICU offers signiϐicant performance improvements in some cases.

We also demonstrate a utility for verifying that two collations are se‑
mantically equivalent. This utility is notable for its fast run time, which
makes it practical to use as an automated test verifying semantic stability.
It is not exclusive to MySQL and is adaptable to any collation interface.

We use this utility to verify that our prototype is semantically equiva‑
lent to theoriginal ICU collations. From this, we conclude that it is possible
to enforce semantic stability in the ICU library and that this is a practical
solution for applications that require semantic stability.

Sammendrag

Kollasjoner er regler som deϐinerer rekkefølgen av tegn, noe som appli‑
kasjoner bruker for å sortere tekst for et gitt språk. International Com‑
ponents for Unicode (ICU) er et mye brukt bibliotek som blant annet har
støtte for kollasjoner basert på Unicode‑standarden. Det har omfattende
støtte for kollasjoner for ulike språk og er et populært valg for applikasjo‑
ner som krever avansert kollasjonsstøtte.

Kollasjoner i ICU er imidlertid ikke semantisk stabile, noe sombetyr at
de underliggende reglene kan endre seg fra versjon til versjon og dermed
gi forskjellige resultater. Mangel på semantisk stabilitet er et problem for
noen applikasjoner, som for eksempel databasesystemer (DBMS). Disse
opprettholder indekser lagret på disk og disse kan bli gjort ugyldige av
endringer i kollasjonsrekkefølge.

Denne rapportenpresenterer enprototype somoppnår semantisk sta‑
bilitet i kollasjoner basert på ICU. Implementasjonen er gjort i MySQL,
men det generelle prinsippet bak gjelder for andre applikasjonermed lig‑
nende krav. Flere ytelsestester er gjort for å måle effekten av dennemodi‑
ϐikasjonen. Disse viser at prototypen har sammenlignbar ytelse med den
eksisterende implementasjonen i MySQL og at ICU i noen tilfeller gir be‑
tydelige ytelsesforbedringer.

Vi demonstrerer også et verktøy for å veriϐisere at to kollasjoner er
semantisk like. Dette verktøyet er interessant fordi det har kort kjøretid,
noe som gjør det mulig å bruke som del av automatisert testing for å ve‑
riϐisere semantisk stabilitet. Verktøyet kan tilpasses til hvilket som helst
kollasjonsgrensesnitt og er ikke spesiϐikt for MySQL.

Vi bruker dette verktøyet for å veriϐisere at vår prototype er semantisk
ekvivalent med de originale ICU‑kollasjonene. Ut fra dette konkluderer vi
med at det er mulig å oppnå semantisk stabilitet med ICU‑biblioteket og
at dette er en mulig løsning for applikasjoner som krever semantisk sta‑
bilitet.

Acknowledgements

I would like to thank my supervisor, Dr. Norvald Ryeng, for his guidance
and support throughout this project. His enthusiasm for the ϐield andwill‑
ingness to help have been invaluable.

I would also like to thank theMySQL team in Trondheim for their help
and forwelcomingme into their ofϐice. In particular, I appreciate the guid‑
ance from Bernt Johnsen, Magnus Brevik, and Tor Didriksen in navigating
the MySQL codebase.

CONTENTS

Abstract . i
Sammendrag . iii
Acknowledgements . v

1 Introduction 1
1.1 Background and motivation 2
1.2 Problem statement . 5
1.3 Contribution and signiϐicance 6
1.4 Objectives and scope . 7
1.5 Structure of the thesis . 8

2 Background andmotivation 11
2.1 Code reuse . 12

2.1.1 Versioning . 13
2.1.2 Dependency management 14

2.2 Collation . 16
2.2.1 Set theory . 16
2.2.2 What is collation? . 17
2.2.3 Semantic stability and equivalence 19

2.3 Unicode . 20
2.3.1 CLDR and DUCET . 21
2.3.2 Practical considerations: An example 22

2.4 ICU . 23
2.4.1 Tailoring and comparison levels 24
2.4.2 Usage . 24
2.4.3 Changes across versions 25

vii

2.5 Databases and collation . 27
2.5.1 What is an index? . 27
2.5.2 Practical examples 28

3 Related work and state of the art 35
3.1 Collation in MySQL . 35

3.1.1 Background and motivation 36
3.1.2 Implementation details 37
3.1.3 Previous debate . 38

3.2 Collation in PostgreSQL . 39
3.3 Other DBMSs using ICU . 40

4 Implementation 43
4.1 Overview of the prototype 43
4.2 Why use MySQL? . 44
4.3 Collators and how they are made 45
4.4 Collation operations . 46
4.5 Implemented collations . 47
4.6 Development ϐlow . 47
4.7 Limitations and simpliϐications 48

5 Experiments and results 53
5.1 Experimental setup . 53

5.1.1 Building MySQL . 54
5.2 Experiment 1: Performance benchmarks 55

5.2.1 Setup . 56
5.2.2 Data collection and processing 61
5.2.3 Results . 61
5.2.4 Summary . 68

5.3 Experiment 2: Flame graph comparison 71
5.3.1 Setup . 71
5.3.2 Results . 73
5.3.3 Summary . 77

5.4 Experiment 3: Validity checks 77
5.4.1 Deϐining and limiting scope 78
5.4.2 Test data . 82
5.4.3 Test process . 83

5.4.4 Results . 84
5.4.5 Summary . 84

6 Conclusion 85
6.1 Future work . 87

A Appendix A 91
A.1 Experiment 1 ‑ Performance benchmark 91

B Appendix B 99
B.1 Implementation . 99

CHAPTER1

INTRODUCTION

This thesis is a study of the ICU 1 library and its use for collation in appli‑
cations that require semantic stability. This is investigated in the context
of databasemanagement systems (DBMSs), and a prototype implementa‑
tion is developed for MySQL, but the general approach should also apply
to other applications.

The primary goal of the thesis is to investigate the feasibility of using
ICU for collation in applications that require both semantic stability and
the ability to upgrade to newer versions of the library easily. The scope
of the investigation is limited to a single prototype implementation in or‑
der to demonstrate the feasibility of the approach, as well as a series of
experiments to test the performance and correctness of the prototype.

In this chapter, we will discuss the context, background, and motiva‑
tion for the study, the problem statement, the objectives and scope, the
contribution and signiϐicance, as well as the structure of the thesis.

1International Components for Unicode

1

1.1 Background andmotivation

The term collation commonly refers to the process of gathering and com‑
paring data 2. In the context of databases, collation refers more speciϐi‑
cally to the process of sorting or comparing text according to a set of pre‑
deϐined rules. This set of rules is often referred to as a collation order or
simply a collation, andhence theword can refer to either the act of sorting,
the set of rules used for sorting, or a concrete implementation of such a
rule set. These rules can be complex and depend on the language, region,
and conventions of the intended audience, also known as the locale.

One example of collation is the ordering of names in a phone book,
where the names are sorted alphabetically to allow a reader to ϐind the
phone number associated with a given name quickly. For example, in a
Norwegianphonebook, thename Aasmund Aasmundssonwouldbeplaced
towards the end of the list 3. On the other hand, it would be placed at the
very beginning of a British phone book. Because the collation order de‑
pendson the locale, it is important for applications touse the correct colla‑
tion order for the intended audience. Whilemost users do not think about
collation when using an application, it is an important part of the user ex‑
perience and can be a source of frustration if it is done incorrectly. Colla‑
tion is a fundamental operation in many applications, particularly in the
case of DBMSs, where it is used for sorting and comparing text in queries,
as well as for creating indexes on text columns. It is, therefore, important
to get collation right and to ensure that it is done consistently.

ICU is a set of free and open‑source libraries for Java, C, and C++, ini‑
tially developed in the late 1990s by IBM and currently maintained by the
Unicode Consortium [2]. Through the Unicode Consortium, ICU is sup‑
ported by a broad alliance of companies and organizations [3] and is likely
to be well maintained for the foreseeable future. ICU provides a wide
range of support related to Unicode, text handling, and internationaliza‑
tion, including collation support for a large number of locales.

There are other libraries available that could be used for collation sup‑
port, such as the GNU C library (commonly known as glibc). However, ICU
is a common choice for applications that require support for multiple lo‑

2From the Latin collatiō, meaning to bring together [1].
3Because in Norwegian ’Aa’ ≈ ’Å’, the last letter of this alphabet. See section 2.3.2.

cales, andmanydifferentDBMSs already use ICU in someway for collation
support 4

While it is certainly possible for an application developer to imple‑
ment collation support themselves, it is a complex task, and there are
many advantages to using a third‑party library. One of the main advan‑
tages is that the work of development and maintenance is ofϐloaded to
the maintainers of the library, which allows the application developers to
focus on their core business. This can save a signiϐicant amount of time
and money in terms of time spent developing new features. More impor‑
tantly, the developers are freed from time‑intensive maintenance tasks,
such as ϐixing bugs and keeping up with changes in the Unicode standard.
A third‑party library is likely to have a larger user base and garner more
interest from the community, which in turn means that bugs are more
likely to be discovered and ϐixed. Such bugs could even represent security
vulnerabilities, making it evenmore important to have them ϐixed as soon
as possible.

However, a problem with using third‑party libraries to provide col‑
lation support is that of semantic stability. In the context of databases,
the term semantic stability refers to whether queries retain their original
meaning while the implementation changes [4]. If the implementation is
semantically stable, the same query should produce the same result ev‑
ery time. On the other hand, if a collation implementation changes and no
longer produces the same result, then it is not semantically stable. A lack
of semantic stability does not mean that the new result is wrong, merely
that it differs from the previous result. This instability is acceptable or
preferable for some applications, as the change is likely an improvement,
and themain concern is that the result is correct. For example, the change
could be a bug ϐix correcting an error in the previous implementation or
adding a new symbol that did not exist before. In such cases, most users
would prefer the new result over the old one as they likely value correct‑
ness over stability.

However, the lack of semantic stability can be a serious problem for
other applications. One example of this problem is the use of indexes in
DBMSs. An index is a secondary data structure that is used to speed up
queries bymaintaining a collection of sorted keys pointing to the primary

4See section 3.3 for a list of DBMSs using ICU.

data 5. Indexes exist outside of the realm of databases as well, and a fa‑
miliar example is the index at the end of a book. Imagine, for example,
looking up the name Aasmundsson in the alphabetically sorted index of a
Norwegian book. An international reader might expect to ϐind this term
at the start of the index, or at least before any terms starting with B. How‑
ever, this relies on the assumption that the index was created with the
same collation rules as the reader is used to. If the index is sorted using
Norwegian rules, the name is instead moved toward the end.

Another possible scenario is the introduction (or removal) of a bug
which causes the collation order to change and be different from what is
expected. In either case, the result is that the user cannot ϐind the term
they are looking for. The same problem applies to an index in a DBMS,
where the DBMS expects that the index was created using the same rules
it uses when reading the index. If the rules differ and items are not in
their expected order, the system will fail to ϐind the data at the expected
location. Changes to the collation order render the existing index invalid
and make using it impossible or error‑prone until the issue is resolved.
The simplest solution when this happens is to rebuild the index. When
changes are introduced to the collation order in aDBMS, the existing index
is rendered invalid, and using it is likely to cause errors or other issues.
Whether this represents a minor inconvenience or a signiϐicant problem
depends on the size of the index, the time required to build it, and the
guarantees provided by the DBMS in terms of downtime during upgrades,
among other things.

Given these issues, onemight expect ICU to be semantically stable, but
this is not the case. While changes to collation order are rare, and changes
to the default collation order are even rarer, they can happen, and ICU
does not guarantee semantic stability when upgrading from one version
to another. Upgrading to a new version of ICU can therefore break exist‑
ing indexes, which is a serious problem for DBMSs. However, upgrading
can also be essential, as the newversionmay ϐix security vulnerabilities or
other serious bugs. Applications using ICU for collation are therefore left
with a dilemma: Accept the lack of semantic stability, or forego regular
patching of ICU. If they choose the former, they risk having their indexes
break when upgrading to a new version of ICU. The latter option means

5For more information on indexes, see section 2.5.1.

requiring a static version of ICU to be used for the lifetime of the applica‑
tion, with no possibility of upgrading to newer versions. For applications
where neither of these options is acceptable, such as MySQL, the only re‑
maining choice has been to implement and maintain collation support on
their own.

1.2 Problem statement

For security reasons,most applications require the ability toupgrade third‑
party libraries. MySQL is no exception to this, and keeping its dependen‑
cies up to date is essential to ensure that security vulnerabilities are ϐixed
quickly. There are also applications that either require or would greatly
beneϐit from having guaranteed semantic stability. This also applies to
MySQL because it would be problematic to require users to rebuild their
indexes due to changes in dependencies. The problem is that for colla‑
tion, these two requirements conϐlict. Collations change slowly, but by
their nature, they inevitably change over time. New characters are cre‑
ated regularly, and people change their minds about how to sort them.
Such changes are eventually reϐlected in updates to the ICU library, along‑
side bug ϐixes to unintended errors in collation order. This makes it chal‑
lenging to both require stable behavior and the ability to upgrade because
the two requirements are fundamentally contradictory.

However, the architecture of ICU is such that itmaybepossible to solve
this problem. The library exposes an interface for adding custom rules
that modify its behavior, which could be exploited to provide semantic
stability. This would allow the library to be upgradedwhile still providing
the same collation order as before. Given the potential beneϐits of using
ICU for collation, it is worth investigatingwhether this is a viable solution.
These beneϐits primarily include extensive collation support, covering a
wide range of languages and locales, but also the possibility of improved
performance. Given that ICU is a specialized collation library, it may be
able to provide better performance 6 than the current implementation in
MySQL.

The main research question for this thesis is as follows:
6I.e., the time required to perform collation. See section 5.2 for details.

RQ1 How can applications that require semantic stability use ICU for col‑
lation without requiring a static library version?

Secondary research questions which support themain research ques‑
tion are:
RQ2 Given that ICU is a specialized library, does it perform better than

the current collation implementation in MySQL?

RQ3 Does it harm performance to enforce semantic stability in ICU?

RQ4 How can we detect changes to a collation order?
While some available academic literature is related to the topics dis‑

cussed in this thesis, very little is directly relevant. The topic is speciϐic to a
particular use case and library, andmost applications do not require both
semantic stability and regular patching. Because of this, the pre‑study re‑
port for this thesis failed to ϐind any academic literature addressing the
issue of semantic stability [5]. There is, however, some discussion of the
issue in articles and blog posts, which acknowledge and discuss the prob‑
lem 7. Therefore, we believe there is a gap in the literature that this thesis
can help ϐill, however slim that gap may be.

1.3 Contribution and signiϐicance

The primary contribution of this thesis is a demonstration of how ICU can
be used for collation in applications that require semantic stability across
arbitrary versionsof the library. This is achievedby implementing aproof‑
of‑concept patch for MySQLwhich adds collations based on ICU, and then
demonstrating that the patch works as intended.

As a secondary contribution, we demonstrate a utility for quickly com‑
paring twocollation implementations todeterminewhether theyare equiv‑
alent. This utility was developed speciϐically to validate the results of the
prototype implementation but could potentially be useful in other con‑
texts as well. It is DBMS agnostic and can easily be adapted to compare
different implementations, given that they both expose an interface for
string comparison.

7See discussion in section 3.1.3 and section 3.2.

In addition, the thesis discusses the beneϐits and drawbacks of using
third‑party libraries and the speciϐic challenges of refactoring an existing
codebase like MySQL to use such libraries.

The original problem which spawned this thesis was the difϐiculty of
using ICU for collation without breaking indexes in DBMSs. An alterna‑
tive approach to solving this problem would be to investigate fast algo‑
rithms for repairing indexes, as that would alleviate this speciϐic problem
for DBMSs. While this is a possible future research direction, it is outside
the scope of this thesis.

The main signiϐicance of the study lies in demonstrating that it is vi‑
able for applications likeMySQL to use ICU for collation. This is important
because it allows such applications to ofϐload the work of implementing
andmaintaining collations to a third‑party library and to beneϐit from the
specialized knowledge and experience of the developers of that library.
This, in turn, beneϐits the users of these applications in that they gain ac‑
cess to a broader set of collations that covermore languages and locales. It
also beneϐits the developers of these applications in that they can focus on
their core functionality and do not need to spend time on implementing
and maintaining collations.

1.4 Objectives and scope

As stated by the research questions and desired contributions outlined
above, the main objective of this thesis is to investigate the feasibility of
using ICU for collation in applications that require both semantic stability
and the ability to easily upgrade to newer versions of the library. MySQL is
an example of such an application due to the issue of changes in collation
order affecting indexes. The topic should, however, be relevant to other
DBMSs andother applicationswhich require semantic stability. The scope
of the thesis is limited to the speciϐic case ofMySQL, but the results should
also apply to other applications.

In order to achieve the stated objective, we will be using a research
design consisting of a proof‑of‑concept implementation and several ex‑
periments. As the prototype implementation is a proof‑of‑concept, it is
not expected to be production‑ready, but it should be able to demonstrate
the approach’s feasibility.

The performance experiments are intended to show that the proto‑
type implementation does not incur a signiϐicant performance penalty.
However, it falls outside the scope of the thesis to provide a thorough
and comparative analysis of this performance. Whilewe plan to conduct a
preliminary analysis of any observed performance disparities, wewill not
delve deeply enough to pinpoint the precise causes with certainty. For ex‑
ample, as the prototype is a proof‑of‑concept implementation, it is at a
disadvantage in terms of performance when compared to a battle‑tested
andoptimized implementation like the one currently used inMySQL. Also,
the prototypemust be adapted toworkwith the currentMySQL codebase,
withminimal changes to the existing code 8. Because of this, it is expected
that the prototypewill be sub‑optimal in termsof performance, but the ex‑
periments should still be able to indicate whether or not there is a mean‑
ingful performance difference between the implementations being tested.

The results from the experiments will be presented in chapter 5, and
the code used to conduct them will be made available to allow others to
reproduce the results. The code for the prototype implementation will
also be made available to allow others to build on the work potentially.
Short excerpts or code snippets may be included in the thesis itself, but
the code will otherwise be available on GitHub.

Data collection and analysis from the experiments will be performed
using a combination of shell scripts and Python scripts. These will log the
results of the experiments to an SQLite database, from which the graphs
and tables in chapter 5 will be generated. The experiments will provide
a quantitative basis for evaluating the prototype implementation, but the
advantages anddisadvantages of the approachwill also bediscussedqual‑
itatively. For example, certain aspects of the prototype implementation
may be challenging to quantify, such as the maintainability of the code or
the beneϐit of having access to ICU collations.

1.5 Structure of the thesis

Chapter 2 presents relevant background information and underlying con‑
cepts required for understanding the problem and the proposed solution,

8See discussion in section 4.4.

which may serve as a helpful reference for readers unfamiliar with the
topic. This is followed by a review of related work in chapter 3, where we
discuss the current state of the art and the challenges faced in the ϐield. In
particular, we will discuss how other DBMSs deal with the problem and
how they compare to the approach taken in this thesis, as well as the cur‑
rent implementation in MySQL.

In chapter 4, we describe the basic principles of our proposed solu‑
tion, followed by a more detailed explanation of its implementation. The
prototype implementation consists of a modiϐication of the MySQL code‑
base that adds collations based on ICU.

Chapter 5 outlines the experiments conducted to verify the correct‑
ness andperformanceof theprototype implementation. Theperformance
experiments aim tomeasure any performance gains or penalties incurred
by theprototype implementation. In contrast, the correctness experiments
aim to verify that the prototype produces the same collation order as the
original ICU collations.

Finally, in chapter 6, we summarize the experiments’ results andwhat
has been discussed in the thesis, and what that means for the feasibility
of the approach.

CHAPTER2

BACKGROUND ANDMOTIVATION

This chapter gives a brief introduction to some of the concepts and tech‑
nologies that are relevant to the thesis. It is intended to provide the reader
with enough background material to understand the rest of the thesis.
For readers who are already familiar with the topics discussed, it can be
skipped and referred to as needed. We will also give a more detailed ex‑
planation of the technical challenges forming the motivation behind the
thesis, whichwere discussed brieϐly in the previous chapter. This includes
a discussion of the problems that the thesis aims to solve andwhy they are
important.

In section 2.1, we discuss some general concepts relevant to the the‑
sis, such as code reuse, third‑party libraries, and dependency manage‑
ment. Next, we cover the concept of collation in greater detail and deϐine
relevant terms in section 2.2. We also discuss when to consider two col‑
lations equivalent and how this relates to a semantically stable collation
implementation. We then cover some relevant concepts from the Unicode
standard in section 2.3 and introduce the ICU library in section 2.4. Fi‑
nally, in section 2.5, we explain through practical examples how indexes
in databases are affected by collation.

11

2.1 Code reuse

Code reuse refers to using existing code in new projects rather than writ‑
ing new code from scratch. Writing code that is versatile enough to be
reused has a high upfront cost, but it can save time and effort in the long
runbecause less codeneeds tobemaintained [6]. It canalso lead tohigher‑
quality software because the code has already been tested and used else‑
where. The high upfront cost of developing reusable code is often justiϐied
because it can be reused in many different projects, whichmeans the cost
is spread over many projects. From the point of view of individual de‑
velopers and organizations, this cost is often irrelevant because someone
else “pays” for it, and the code is used as‑is. This typically takes the formof
using a third‑party library, where the code is written by someone else and
made available for others to use. Much like in a physical library, a devel‑
oper can browse and borrow freely from this collection of resources and
use it in their projects. When a project relies on a third‑party library, this
is referred to as a dependency. Code reuse is a common practice in soft‑
ware development [7], and it can signiϐicantly reduce the work required
to develop software.

A key advantage of using third‑party libraries is that it allows develop‑
ers to focus on the core functionality of their software rather than spend‑
ing time on implementing features that are not directly related to the pur‑
pose of the software. It also allows developers to use code written by ex‑
perts in the ϐield, which can lead to higher‑quality software. In practice,
the reused code is also often more mature and better tested than newly
written code, which means there is a greater chance that security vulner‑
abilities and bugs have been found and ϐixed. This is particularly true for
widely used open‑source libraries, which are often used bymany projects
and have a large community of developers and users.

There are, however, some disadvantages to using third‑party libraries.
For example, the library is not likely to be tailored to the project’s spe‑
ciϐic needs, so some extra work or inefϐiciencies could be involved. Also,
if the library is not well maintained, it could become outdated and force
the users to either update it themselves or ϐind a replacement. This could
happen, for instance, if a critical security vulnerability is found in an aban‑
doned library or if the library needs to be updated to work with a newer

version of the programming language or operating system.
However, the advantages of using third‑party libraries typically out‑

weigh the disadvantages, and few choose to write custom implementa‑
tions if a suitable library exists.

2.1.1 Versioning

Because third‑party libraries are often updated, it is important to keep
track of which version of the library is being used. This is necessary be‑
cause the library might change in ways that affect the application using it,
such as by removing or changing features or by introducing bugs. While li‑
brary developers are not likely to be intentionally breaking their software,
it is not uncommon for an update to introduce a bug or incompatibility
thatwas not caught during testing. For these reasons, many organizations
and developers have a policy of not updating their dependencies immedi‑
ately (unless critical security vulnerabilities are discovered) but instead
waiting for a while to see if any issues are reported by other users.

One common approach to describing software versions, be it for a li‑
braryor anapplication, is touse semantic versioning (alsoknownas semver) [8].
This is a versioning scheme that, in its simplest form, consists of three
numbers separated by dots, such as 1.2.3. The ϐirst number is the major
version and is incremented when the update contains breaking changes.
The second number is the minor version and is incremented when the
update contains new features that are backward compatible. The third
number is the patch version and is incrementedwhen the update contains
backward‑compatible bug ϐixes. This ismeant to giveusers of the software
an indication of the level of difϐiculty in upgrading to a new version. For
example, upgrading from 1.2.3 to 1.2.4 should be a trivial upgrade and is
not likely to cause issues. On the other hand, upgrading from 1.2.3 to 2.0.0
could be a major undertaking, and users should be prepared for break‑
ing changes. Developers can use version numbers like these to specify a
range of acceptable versions for their dependencies. For example, a de‑
veloper could specify that their software requires version 1.2.3 or newer
but not version 2.0.0 or newer. This is typically done by specifying a range
of versions, such as [>=1.2.3, <2.0.0].

Not all projects followsemantic versioning, but it is a commonpractice
and is used by many popular libraries and applications. Even for projects

following semantic versioning, mistakes can still happen, and breaking
changes can be accidentally introduced in aminor or patch version. How‑
ever, it is still a useful tool for developers to communicate the level of risk
involved in upgrading to a new version.

2.1.2 Dependency management

Once the choice to use a third‑party library in a project has beenmade, the
next step is to decide how to manage this dependency. Dependency man‑
agement refers to handling, including, and updating dependencies in an
application. The two main approaches are bundling and system libraries.
The exact details of how it is done depend on the programming language,
build system, and operating systems used, but the general ideas are the
same.

When bundling a library, the library is somehow included with the
project and provided alongside the source code or binaries of the project.
However, this means that the library is not sharedwith other projects and
that each project has a separate copy of the library. This duplication can
lead to inefϐiciencies, as the user might end up with multiple copies of the
same library on their system. More signiϐicantly, it can be a security issue
because bundled libraries are not updated automatically. Instead, it falls
on the developer to keep track of updates andmanually release a new ver‑
sion of their application with an updated version of the library included.
This is a problem because it relies on manual action from both the appli‑
cation developer and the user. Even if both are actively working to keep
the software updated, it could signiϐicantly delay the release of security
updates, leaving users vulnerable to attacks.

Because of these issues, it is generally considered to be a better prac‑
tice to use system libraries instead whenever possible. This means the
application relies on the library being available on its system rather than
including it with the project. Using shared system libraries allows each
library to be shared betweenmultiple projects, and it also means that the
library can be updated independently of the project. Installing and up‑
dating these shared libraries is typically done by the operating system (or
a package manager included with the operating system). However, it can
also be donemanually by the user. The operating system or packageman‑
ager can also be conϐigured to automatically install updates, so the user

does not have to worry about keeping the libraries updated. Even if a sys‑
tem is not set up for automatic updates, it is still easier and faster toupdate
a shared library than a bundled one.

While bundling libraries is problematic, it does guarantee that the li‑
brary is available on the system and that the expected version is used.
When relying on system libraries, the application cannot control which
libraries are installed or their versions. Therefore bundling is sometimes
still used, but it is often discouraged and considered a last resort. For ex‑
ample, the Fedora Project (a common Linux distribution) has a policy rec‑
ommending that shared libraries should be used if possible [9]. Shared li‑
braries are preferred because they allow the system to update the library
independently of the application using it, which means that security vul‑
nerabilities and bugs can be ϐixed without having to update the software.
It also reduces the amount of disk space the system uses because the li‑
brary only needs to be stored once and can be shared by all applications.
However, there are cases where it is necessary to bundle dependencies,
such as when the target system does not provide the required libraries.
For example, MySQL currently bundles ICU because it was previously un‑
available on some systems they supported. However, this was acceptable
for them because they did not use it for collation and could update the
bundled version easily.

In practical terms, there is no difference between a system depen‑
dency pinned to a speciϐic version and a bundled dependency because the
software will only work with the required library version. In either case,
the software will be locked to a speciϐic library version, so the only differ‑
ence is where the library is stored. However, if the software developers
trusted the versioning scheme of the library sufϐiciently, they could use a
system dependency and specify a broader range of accepted future ver‑
sions. For instance, if the current version of the library is 1.2.3 when the
application is released, the application could still be conϐigured to accept
system libraries in the range [>=1.2.3, <1.3]. In this scenario, it would be
possible for users to upgrade to newer patch library versions without re‑
quiring any action from the application developers.

2.2 Collation

In this section, we will discuss the concept of collation in greater detail
than in the introduction. We will also attempt to provide clear deϐinitions
of relevant terms and concepts related to collation which will be neces‑
sary for the rest of the thesis. We start with a brief overview of relevant
concepts from set theory in section 2.2.1 to be able to deϐine more pre‑
cisely what a collation is in section 2.2.2. These concepts are necessary to
discuss in section 2.2.3what it means for a collation implementation to be
semantically stable and to be semantically equivalent to another collation
implementation.

2.2.1 Set theory

As stated by Cormen et al., a binary relationR on setsA andB is a subset
of the Cartesian product A × B [10]. Similarly, a binary relation R on a
setA is a subset of the Cartesian productA×A. In other words, a binary
relationR onA is the set of all possible pairs of items fromA related byR.
Thus, the claim “a is related to b by R” can be written as (a, b) ∈ R or aRb.
For example, the relation “greater than” is deϐined on the set of integersZ
as the set of all pairs (a, b)where a > b.

The following properties of a relationR on a setA are relevant here:

Reϐlexivity: aRa for all a ∈ A.

Symmetry: aRb =⇒ bRa for all a, b ∈ A.

Antisymmetry: aRb ∧ bRa =⇒ a = b for all a, b ∈ A.

Transitivity: aRb ∧ bRc =⇒ aRc for all a, b, c ∈ A.

In other words, if the relation is reϐlexive, then every item is related to
itself. If it is symmetrical, then a being related to b means that b is also
related to a. Conversely, if it is antisymmetrical, then the relation is never
symmetrical for different elements. Finally, if it is transitive, then if a is
related to b and b is related to c, then a is also related to c.

If a relation R on A is reϐlexive, antisymmetrical, and transitive, then
it is called a partial order and the set it deϐines a partially ordered set [10].
When this relation holds for all elements inA, it is called a total order, and

the set is called a totally ordered set. For example, the relation “greater
than or equal to” is a total order on the set of integersZ, because for every
possible pair of integers, at least one of them is greater than or equal to
the other. On the other hand, the relation “greater than” is a partial order
on Z because it is not reϐlexive.

Two relations are equivalent if they relate the same pairs of items, i.e.,
they produce the same result for all possible inputs. Formally, this can be
deϐined as follows:

Domain For a relationR on a setA, the domain ofR is the set of all a ∈ A
such that (a, b) ∈ R for some b ∈ A [11].

Range For a relation R on a set A, the range of R is the set of all b ∈ A
such that (a, b) ∈ R for some a ∈ A [11].

Equivalence of relations Two relations R and S on a set A are equiva‑
lent if they have the same domain and range, and for all a, b ∈ A,
aRb ⇐⇒ aSb [10].

2.2.2 What is collation?

As mentioned in the introduction, the term collation has several related
meanings. The intended meaning can usually be inferred from the con‑
text, but it is important to be aware of the different concepts. According
to the Merriam‑Webster dictionary, the word collation refers to the “act,
process or result of collating”. In turn, collating can mean either “to com‑
pare critically” or “to assemble in proper order” [1]. Other deϐinitions, in
the context of computer science, include “the process and function of de‑
termining the sorting order of strings of characters” [12] and “language‑
sensitive string comparison” [13]. Collation is deϐined more precisely in
the SQL standard [14], which states that:

A collation is deϐinedby [ISO14651] as “aprocessbywhich
two strings are determined to be in exactly one of the relation‑
ships of less than, greater than, or equal to one another”.

However, in practical usage, the term is used to refer to both the sort‑
ing order itself, i.e., the abstract rules that deϐine the order, as well as the
implementation of these rules. When necessary to avoid confusion, it is

possible to differentiate between the process, the rules, and the imple‑
mentation by referring to them as collation process, collation order, and
collation implementation, respectively. By extension, something perform‑
ing collation is called a collator.

Keyphrases in thedeϐinitions above includeproper order and language‑
sensitive. The proper order depends on the context and the language,
which is usually called a locale in this context. A locale identiϐies a speciϐic
user community, i.e., a group of users who share a similar language and
culture [15]. User communities range from entire countries or regions to
smaller groups and subsets of other communities. For example, we can
consider the USmilitary a separate locale from the US civilian population,
as they have different conventions for writing dates and times. This re‑
port will generally refer to locales by their locale ID in the format used by
ICU. This is a string consisting of one or more pieces of ordered informa‑
tion, including language code, country code, script code, and variant code.
Variant codes can represent things such as currency formats, dialects, and
collation orders. The language and country codes are deϐined by the ISO
standards ISO‑639 and ISO‑3166 [15]. For example, these are valid locale
IDs and their meanings:

en_US English as used in the United States

sr_RS@latin Serbian as used in Serbia with a Latin script

es_TRADITIONAL Spanish with traditional collation rules

The deϐinitions above differ somewhat, but they refer to the same con‑
cept and generally describe the same thing. However, in this thesis, it will
prove useful to be able to determine whether two collation implementa‑
tions are equivalent. While two collations might be implemented differ‑
ently, they should still be considered equivalent if they produce the same
result for all possible inputs. Implementation details of collations can still
affect performance, but they should not affect the correctness of the re‑
sult. We will therefore attempt to deϐine a collation order more precisely,
using the deϐinition in the SQL standard as a starting point. This deϐinition
does not describe three separate relationships but rather the three possi‑
ble outcomes of a single relationship. We can deϐine this relationship as a
binary relationR on a set of strings S. For any two strings a, b ∈ S, aRb if

and only if a is less than, greater than, or equal to b. Because the relation‑
ship places all strings in precisely one of the three categories, it is a total
order on the set of strings.

An important caveat here is that a total order does not deϐine the or‑
der of items that are equal to each other. For instance, a case‑insensitive
collation order might deϐine “aardvark” and “Aardvark” to be equal, but
it does not deϐine which one should come ϐirst in a sorted list. The order
of two equal items is, therefore, not deϐined by the collation order but by
the sorting algorithmused [12], whichmay ormay not implement a stable
sort that will produce the same order on every repetition of a query.

2.2.3 Semantic stability and equivalence

This thesis aims to preserve semantic stability across different versions
of the same collation implementation. However, for this discussion, it
does not matter whether these collation implementations are different
versions of the same implementationwithminor changes footnoteI.e., ICU
70.1 versus ICU 70.2, or completely different implementations. The key
point is whether or not two implementations produce the same collation
order. If they do, we will consider them to be semantically equivalent. Se‑
mantic equivalence refers to the concept of two functions having the same
meaning or producing the same result for all possible inputs, regardless
of how they are implemented. Using the fact that a collation order can be
deϐined as a relation imposing a total order on the set of all strings, we can
deϐine this more formally as follows:

Semantic equivalence Two collation implementations are semantically
equivalent if their respective collation orders are equivalent rela‑
tions.

Semantic stability A collation library is semantically stable if every ver‑
sion of its collation implementation is semantically equivalent to its
predecessor.

2.3 Unicode

The Universal Coded Character Set (UCS or Unicode) is a standardmethod
for representing text. It seeks to specify a set of characters covering all hu‑
man languages, using a shared encoding scheme [13]. As of version15.0.0,
the Unicode standard deϐines 149,186 characters and 161 scripts [16].
This speciϐicationprovides a unique, unambiguous value for every charac‑
ter, regardless of language or platform. A universal speciϐication for char‑
acters is necessary to store and transmit text consistently and safely, pre‑
serving the meaning of the content. Historically, conϐlicting standards for
representing text have made exchanging text between different systems
challenging 1. When a system attempts to read text encoded in a different
format, the characters can bemisinterpreted, resulting in corrupted data.
This is often seen by characters being replaced with question marks or
other unintended characters, such as MÃ¼nchen instead of München.

For historical reasons, Unicode and ISO 10646 are separate and dis‑
tinct means, which stems from the fact that different organizations pro‑
posed these standards separately in the 1980s and later uniϐied. They are
effectively identical, however, due to efforts to keep them in sync. The
Unicode Consortium and ISO/IEC JTC1/SC2/WG2 are the two separate or‑
ganizations maintaining these standards. However, when the text refers
to Unicode, it generally means either the Unicode standard or the consor‑
tiumwhich manages it, as the details of how this relates to ISO 10646 are
irrelevant to the discussion.

However, some key terms relating to Unicode are worth considering
when discussing text. For example, the Unicode standard distinguishes
between characters and glyphs. Unicode is concerned primarily with the
semantic meaning of characters and not their visual representation. A
character is a semantic concept, such as the Latin letter A, while a glyph is
a visual representation of a character 2. Unicode further separates these
concerns with a ϐive‑layer model [13]:

Abstract character repertoire A set of characters, such as the Latin al‑
phabet.

1This is why we sometimes see a question mark instead of the intended character.
2Visual representations are the domain of fonts, which are luckily beyond the scope of

this thesis.

Coded character set A mapping from the abstract character repertoire
to a set of code points, e.g., the mapping from the Latin alphabet to
the code points U+0041 to U+005A. Code points are the positions of
characters in a table.

Character encoding form The storage format, mapping code point val‑
ues to integers, also known as code units.

Character encoding scheme Serialization format, mapping code units
to bytes. Here code units more than a byte long are converted to
a sequence of bytes. UTF‑8 and UTF‑16 are examples of character
encoding schemes.

Transfer encoding syntax Optional transformation to encode the bytes
in a more constrained syntax, such as Base64.

2.3.1 CLDR and DUCET

Common Locale Data Repository (CLDR) is a Unicode project to provide
locale‑speciϐic data for use in applications. Among other things, it con‑
tains number formats, date formats, and time formats. More importantly
for this thesis, CLDR also contains collation orders. Default Unicode Colla‑
tion Element Table (DUCET) is the default collation order for all Unicode
characters and is deϐined in the Unicode standard 3. It is impossible for
a single collation order to satisfy all languages, but DUCET is designed to
be a reasonable default for most languages. This is then used as a start‑
ing point for other collation orders, whichmodify or override the order of
speciϐic characters or ranges of characters in DUCET. The ICU library uses
a root collation order which is based on DUCET but which may contain
additional modiϐications or extensions. For instance, almost all currency
characters are grouped in DUCET except for two characters. These are
the characters ₨ (RUPEE SIGN) and ریال (RIAL SIGN), which the ICU root
collation moves into the currency group [17].

However, collation orders derive from human language and regional
conventions,whichmakes them inherentlyunstable and subject to change.
To quote the Unicode Consortium [12]:

3The table itself is available at https://www.unicode.org/Public/UCA/latest/allkeys.txt.

https://www.unicode.org/Public/UCA/latest/allkeys.txt

Over time, collation orderwill vary: theremaybe ϐixes needed
asmore informationbecomesavailable about languages; there
may be new government or industry standards for the lan‑
guage that require changes; and ϐinally, new characters added
to the Unicode Standard will interleave with the previously‑
deϐined ones. This means that collations must be carefully
versioned.

One example of this is the addition of the character㋿ (U+32FF) in 2019,
which was added to the Unicode standard in version 12.1 [18]. On the
ascension of the new Japanese emperor, a new era was declared in the
Japanese calendar, and this character was added to the standard to rep‑
resent this era. It is a combination of two existing kanji,令和, which can
be romanized as Reiwa. This character was then assigned to a previously
unused code point and inserted into the collation order at the appropri‑
ate position. This is an example of how the collation order is subject to
change and why it is important to keep it up to date. The addition of new
symbols is not a rare occurrence, with 4,489 characters added in version
15.0 of the Unicode standard alone. While the addition of new charac‑
ters is one reason for changes to the collation order, it is not the only one.
For instance, it can and does happen that the collation order of existing
characters is changed. This can happen for a variety of reasons, such as
changing standards for the language or an error in the previous collation
order.

2.3.2 Practical considerations: An example

In the introduction, we mentioned some practical differences between
collations for different locales, using an example familiar to the author.
We will now explain this example in more detail and use it to illustrate
some of the challenges of enforcing rules derived from the conventions
of natural language. The Norwegian alphabet extends the Latin alphabet
with three additional letters: æ/Æ, ø/Ø, and å/Å. Because they are more
recent additions, they are placed last in the alphabet, after z/Z. However,
historically the sounds represented by these letters were written using
other symbols, such as the digraph aa instead of å 4. When used to repre‑

4The circle in Å represents a tiny A stacked on top of the main A [19].

sent this sound, this digraph is considered equivalent to the letter å and
should be sorted as such [20]. Thismeans that the collation order for Nor‑
wegian is not as simple as just adding three letters to the end of the alpha‑
bet.

Note that the rule is based on how the word is pronounced, not how it
is written. This cannot easily be generalized to a clear and universal rule
digestible by a collation system. Ahumanmight understand thatafrikaans
should sort before afrikaner, while Aasmund is equal to Åsmund, but this
cannot be expressed in a simple rule. It is possible to handle the most
common cases using a dictionary of exceptions or to manually sort a list
of words, but this is not a suitable solution for a general‑purpose collation
library. This is a common problem with natural language, and it is not
limited to Norwegian. In this speciϐic case, the CLDR rules for Norwegian
handle it by treating the digraph aa as an accented version of Å [21]. A col‑
lation based on these rules will therefore sort afrikaner before afrikaans,
which is incorrect. This is an example of how the rules for a collation or‑
der can be difϐicult to implement in practice and that the end result is not
always consistent with the conventions of natural language.

2.4 ICU

As the introduction mentions, the ICU project is a widely used toolkit for
handling text. It comprises many different modules for handling differ‑
ent aspects of text, such as collation, date formatting, character set con‑
versions, and more. The project was initially released in 1999 under the
name IBM Classes for Unicode. It was later renamed to International Com‑
ponents for Unicode to reϐlect the fact that it was no longer an IBM‑only
project [22]5. There are separate sub‑libraries for Java (ICU4J) and C/C++
(ICU4C), and the C/C++ library is the one we are concerned with in this
thesis. The C/C++ library has separate interfaces for C and C++, but the
functionality is essentially the same. Whether we refer to ICU as a library
or a set of libraries is a matter of perspective and the level of detail re‑
quired. However, for simplicity, we will generally refer to it as a library.
In this thesis, we are primarily concerned with the collation module of

5With the new name chosen speciϐically to avoid changing the abbreviation.

ICU4C, and references to ICU will refer to this unless otherwise speciϐied.

2.4.1 Tailoring and comparison levels

Collation orders in ICU are speciϐied as modiϐications, or tailoring rules,
of the root collation order. This modiϐication uses tailoring rules applied
on top of the root collation order. These rules specify the relationship
between characters and strings, which is used to determine the collation
order. This relationship is either a equal relationship, specifying that the
two strings are equal, or one of four levels of difference. ICU provides a
complex syntax for specifying tailoring rules 6, which is beyond the scope
of this thesis. By specifying the different levels of difference in the rules,
the same rule set can be used to generate different collation orders. Col‑
lators can be sensitive to either primary (base letter), secondary (accent),
tertiary (case), or quaternary (kana) differences. Generating different col‑
lation orders from the same set of rules is done by simply changing the
collator’s comparison level or strength. For instance, the only difference
between a case‑sensitive and case‑insensitive collation for the same locale
in ICU is the strength level set on the collator.

2.4.2 Usage

Two main ways to perform collation with ICU are relevant to this thesis.
The ϐirst is directly comparing two strings, i.e., a comparison operation.
Comparison means using a Collator object to compare the two strings,
which returns the integers ‑1, 0, or 1, depending on whether the ϐirst
string is considered less than, equal to, or greater than the other. The
second way is to generate a sort key for a string. Sort keys are also gener‑
ated with a Collator object, but instead of comparing the strings directly,
the Collator transforms the string into a sequence of bytes, which is the
sort key. This sort key can then be compared to the sort key of another
string to determine the collation order. While this is a signiϐicantly more
expensive operation upfront than a direct comparison, it is much faster to
compare two sort keys than two strings [23]. This is because the sort keys
are just a sequence of bytes and can be compared byte by byte, whereas

6https://unicode‑org.github.io/icu/userguide/collation/customization/

https://unicode-org.github.io/icu/userguide/collation/customization/

the strings need to be parsed and compared according to the collation
rules. For this reason, sort keys are often used in databases that need
to sort large amounts of data. However, ICU recommends against using
sort keys unless absolutely necessary, as direct comparisons are generally
much faster [24]. Another difference between the twomethods is that ICU
offers both UTF‑8 and UTF‑16 interfaces for the comparison operator but
only aUTF‑16 interface for sort key generation. ICUgenerally usesUTF‑16
internally, and only some of the collation methods have UTF‑8 interfaces.
In this case, the strings need to be converted to UTF‑16 before generating
the sort keys, which adds additional overhead to the operation.

2.4.3 Changes across versions

Collations in ICU are not guaranteed to be stable across versions. They are
instead constantly updated to reϐlect changes in the Unicode standard, as
well as to ϐix bugs and improveperformance. Thismeans that the collation
order of a string might change between versions of ICU. ICU offers a ver‑
sioning scheme for collators, which indicates whether or not the collation
order has changed between versions. This can be used to quickly deter‑
mine if there have been breaking changes, but it does not provide any in‑
formation about what has changed. One important caveat with sort keys
is that they are not guaranteed to be stable across different versions of
ICU. Their generation is an implementation detail of ICU, and it is recom‑
mended to regenerate themwhen upgrading to a new version of ICU [23].
This means that it is unwise to store sort keys in a database unless regen‑
erating them on every upgrade is acceptable. However, the actual order
of the strings should be stable unless deliberate changes have been made
to the collation rules.

ICU does not follow semantic versioning explicitly, but the basic prin‑
ciple is similar [25]. The versioning scheme used by ICU is more complex
than semantic versioning, as it is used formanydifferent components, and
each component has a separate version number. For example, the ICU li‑
brary itself has a version number, but so does the ICU data, ICU4C and
ICU4J libraries, and the collation code. Because of this, there are inter‑
faces for checking the version of each component at runtime, which can
be helpful for applications that need to support multiple versions of ICU.
As ICU still follows the general principles behind semantic versioning, it

1 #include <unicode/uvernum.h>
2
3 if (U_ICU_VERSION_MAJOR_NUM > 75) {
4 // Handle logic for ICU version > 75
5 } else if (U_ICU_VERSION_MAJOR_NUM > 70) {
6 // Handle logic for ICU version > 70
7 } else if (U_ICU_VERSION_MAJOR_NUM > 66) {
8 if (U_ICU_VERSION_MINOR_NUM > 1) {
9 // Handle logic for ICU version > 66.1

10 } else {
11 // Handle logic for ICU version > 66
12 }
13 } else {
14 // Handle logic for ICU version <= 66
15 }
16

Example 2.1: Example demonstrating handling different versions of ICU
in C++

is still possible to use their version numbers to indicate compatibility. For
example, an application could specify that it supports ICU versions 66 to
75 but internally handle ranges of versions differently (as shown in ϐig‑
ure 2.1). Such a range might then be speciϐied as “>=65.0.0, <76” in the
application’s conϐiguration ϐile 7, which would indicate that any ICU ver‑
sion from 65.0.0 up to (but not including) 76.0.0 is supported. Specifying
a range of versions would allow users to use the application with any ver‑
sion of ICU in the given range. However, the application could still take
advantage of improvements in newer versions if they are available.

A caveat here, asmentioned in the ICUdocumentation [25], is that only
the C interface is compatible across versions. Because of technical limita‑
tions in C++, an application using the C++ interface needs to be compiled
for a speciϐic version of ICU and cannot be used with other versions. An
application that accepts a range of ICU versions should instead use the C
interface. Because C++ is a superset of C, this is not a signiϐicant problem,
as the C interface can be used from C++ code.

7The syntax will vary, but the principles are generally the same.

2.5 Databases and collation

A database management system (DBMS) is a sophisticated piece of soft‑
ware that is used to store and manage data. Many popular DBMSs have
been around for decades and have been continuously updated and im‑
provedover theyears. MySQL isnoexception, as itwas released in1995 [26]
and is still widely used today. Many design choices made in the early days
of DBMSs are still present in modern systems, even if their original rea‑
soning is no longer valid. For example, when MySQL was ϐirst developed,
ICU had not yet been released. Given that ICU is now the de facto standard
for Unicode support, it is likely that a new DBMS developed today would
use it for collation. However, as we have discussed previously, there are
disadvantages to using ICU for collation in a DBMS. Chieϐly, the fact that
ICU collations are not guaranteed stable across versions is problematic for
indexes relying on the collation order.

2.5.1 What is an index?

Indexes are secondary data structures that in databases are used primar‑
ily to speed up queries. They provide a short and direct path to relevant
data, often much faster than scanning the entire table. Because indexes
are separate data structures, they can be optimized for the speciϐic use
case. Indexes are also much smaller than the table they are derived from
and can often be kept entirely in memory. Reading data from disk is a
slow operation, so minimizing the amount of data that needs to be read
is essential for performance. Even reading frommemory has a cost, so an
index typically aims to minimize the number of distinct read operations
required.

There are many types of indexes, but a common type we will discuss
here is the B‑tree. B‑trees are self‑balancing, sorted tree data structures
that allow for efϐicient search, insertion, and deletion of data [27]. This
a type of search tree where each node contains one or more keys and a
pointer to either another node in the tree or a data record. The keys in
each node are sorted and guide us to the next relevant node. Following
the pointers from the root node to the leaf node, we restrict the search
space at every level to a subtree that contains the desired data. Most im‑
plementations of B‑tree indexing use a variation called a B+‑tree, which

we will use for our examples. Unless otherwise speciϐied, references to
B‑trees here refer to this variation.

2.5.2 Practical examples

Figure 2.1: Simpliϐied B‑tree example. Keys are sorted by their Norwe‑
gian collation order.

In order to illustrate the issue,wewill use an example of aB‑tree index.
Assume a table named users, with the three columns Name, E‐mail, and
Country. We create an index on the Name column to allow us to quickly
ϐind the associated E‐mail and Country for a givenname. We further specify
that this index should be sorted using the Norwegian collation order, as
we know that the users of our system will be Norwegian. Recall that in
Norwegian, a name starting with Aa is considered the same as starting
with Å, and both are sorted after Z. Figure 2.1 shows a simpliϐied example

of this scenario. Here we see two levels of internal nodes (dotted lines)
with one level of leaf nodes at the bottom. Each node can containmultiple
keys, and each key is associated with a pointer to either another node or
a data record. Note that we have left out some of the pointers from the
leaf nodes to disk for readability. The dotted lines between the leaf nodes
indicate they can be traversed like a linked list, allowing efϐicient range
queries. A rangequery is a query that returns all datawithin a given range,
for example, all names starting with D to E. In this example, such a query
would need to scan at most two intermediate nodes and three leaf nodes
because it would only need to ϐind the start of the range and traverse the
leaf nodes until the end of the desired range.

It would be equally possible to create a separate index on one of the
other columns or a combination of multiple columns. In a database, hav‑
ingmultiple indexes on the same table is common, as this allows for more
ϐlexibility when querying the data. While the issue of how to store data
on disk is an essential consideration in a DBMS, it is not relevant to this
thesis. Assume for the sake of argument that the data is stored in a heap
ϐile, which means that it is stored as a sequence of bytes in the order it
was inserted. The index contains pointers to the exact position of the row
associated with each key, allowing the DBMS to look up the desired data
directly. Without an index, the data would have to be stored and sorted in
a speciϐic way (perhaps on a single column) to allow for efϐicient lookup.
Relying on how the data is stored in sorted orderwouldmean that queries
on other columns would be much slower, as the entire table would have
to be scanned to ϐind the relevant data.

Let us examine what happens when the DBMS executes this query:
1 SELECT 'email ' FROM 'users' WHERE 'name' = 'Aasmund ';

Assuming that theDBMS chooses to use the index on theName column 8, it
will start at the root node and follow the pointers to the leaf node contain‑
ing the key Aasmund as illustrated by ϐig. 2.2. For instance, after reading
the ϐirst node containing the keys [Charles, Eve], it will compare each of
them to the search key Aasmund. Since Aasmund is sorted after Eve, it will

8In a real scenariowith such a small table, the DBMSwould realize a table scan is faster
and do that instead.

Figure 2.2: Searching for Aasmund in B‑tree. Red circles and arrows in‑
dicate data read from disk or memory.

follow the pointer to the next node after Eve. This process continues until
the DBMS ϐinds the leaf node containing the key Aasmund, or it has deter‑
mined that the key does not exist in the index. By checking in each inter‑
mediate node whether the search key is less than or greater than the keys
in the node, the DBMS can determine which subtree to follow. It does not
know whether or not the key exists in the index until it reaches the leaf
node, only that it cannot exist in any of the other subtrees. If the DBMS
traverses the index down to the leaf nodes without ϐinding the key, it as‑
sumes the key does not exist in the index and returns an empty result set.

Note the fact thatweareperforminga comparisonoperationon strings
here. As we have discussed, the collation determines the result of a com‑
parison operation on a pair of strings. This means that we must use the
same collation when we search through the index, as was used in creat‑
ing and updating the index. Here, a Norwegian collation 9 was used both
for creating the index and for searching through it. According to this, Aas‐
mund is sorted after all the other keys in the index andwill be found in the
last leaf node.

However, what would happen if we used a different collation when
searching through the index? Let us repeat the same operation, but this
time using an English collation 10. This collation has no special rules for
Aa and will simply consider them as two separate letters which precede
B. Again, the DBMS will read the root note and compare the search key
Aasmund to the keys in the node. However, this time the DBMS will ϐind
that Aasmund is sorted before Charles and will follow the pointer to the
left subtree. In the next node, it will ϐind that Aasmund is sorted before
Bob and will follow the pointer to the left, which points to the leaf node
containing Alice. Upon scanning this, it determines that all the keys in this
node are sorted after Aasmund, which should mean that the key does not
exist in the index. As we can see illustrated in ϐig. 2.3, the DBMS will not
ϐind the key Aasmund in the index, even though it exists. Instead, it will
return an empty result set.

This example illustrates the importance of using the same collation
when searching through an index aswas usedwhen creating it. The actual
scenario is contrived, as it is unlikely that a DBMS would use a different

9For example, utf8mb4_nb_0900_ai_ci in MySQL.
10For example utf8mb4_0900_ai_ci in MySQL.

Figure 2.3: Searching for Aasmund in B‑tree using the wrong collation.
Red dotted lines indicate data read from disk or memory.

collation when searching through an index than the one used when creat‑
ing it. However, it does apply directly to the scenariowe are considering in
this thesis. As we have discussed previously, a collation implementation
with any kind of change applied to the collation order is effectively a dif‑
ferent collation. If this new collation changes the relative order of any two
strings that are currently stored in the index, the DBMSwill most likely be
unable to ϐind them. This is because the DBMS will follow the pointers to
the next node based on the result of the comparison operation. Whether
this causes the DBMS to return an empty result set, an invalid result set,
or an error depends on the implementation of the DBMS and the speciϐic
scenario.

If the collation changes in such a way that only applies to strings not
currently stored in the index, the DBMS should still be able to use it with‑
out any issues. For example, this could be due to adding a new character
to the collation order, as discussed in section 2.3.1. However, it is hypo‑
thetically possible that the database could somehow contain a row with
a previously unassigned code point inside it and that this could still cause
issues. Collation changes affecting the relative order of strings currently
stored in the index are the most likely to cause issues and are the most
interesting to consider. If such changes occur, the index should be con‑
sidered corrupted or invalid, as it is no longer possible to be sure that it is
retrieving the correct data. It should then be repaired or rebuilt to ensure
consistencywith the newcollation. While this is perhaps aminor problem
for a DBMS aware of the collation changes, it is a more signiϐicant prob‑
lem if the DBMS does not detect the changes. Rebuilding an index can
also be time‑consuming, especially for large indexes. In the worst‑case
scenario, such changes can lead to signiϐicant downtime for the users of
the database or even data loss due to invalid results. We can conclude
that semantic stability is advantageous for collation implementation, as it
avoids these issues.

CHAPTER3
RELATEDWORK AND STATE OF THE ART

In this chapter, we cover relevant related work in the area of collation and
collation support in DBMSs. We ϐirst cover how collation is currently im‑
plemented inMySQL,which is theDBMSwewill be using in our prototype.
This serves as a useful comparison to our prototype and will also give the
necessary context to understand the changes we make in our prototype.
We then discuss recent changes in PostgreSQL, which is a similar DBMS
to MySQL, and how they have added support for collation using ICU. This
gives us an idea of how ICU is typically used and will also explain why
this solution is not suitable for all applications. Finally, we brieϐly dis‑
cuss other DBMSs which use ICU for collation and how they use it. This
is meant to give an overview of how common it is to use ICU for collation
and to list applications that could potentially beneϐit from the solutionwe
will be proposing.

3.1 Collation in MySQL

As MySQL was released in the mid‑1990s, it predates the release of ICU
and the current maturity of the Unicode standard. Collation support for
various locales is a basic requirement for a DBMS, whichwould have been
implemented early on. Given that this predates the release of ICU, it is not

35

surprising that MySQL does not currently use ICU for collation. However,
as ICU has steadily become more mature, stable, and popular in recent
years, there have been calls for MySQL tomigrate to ICU for collation sup‑
port [28]. Many of the original reasons for not choosing ICU are no longer
valid, and the current implementation of collation inMySQL is notwithout
its issues.

3.1.1 Background andmotivation

Currently, themainobstacle tomigrating to ICU lies in the fact that changes
to collation order can break indexes, which can be a serious issue for pro‑
duction systems. This is not a hypothetical scenario, as it has happened to
MySQL in the past. In 2007,MySQL changed the collation order of the Ger‑
man sharp S character (ß) in the utf8_general_ci collation, which caused
indexes to be invalidated and searches to fail [29, 30]. After this, one
MySQL developer made the following remark to explain why they were
unwilling to make other changes to collation order [31]:

Whydon’twe just change the rules for utf8_general_ci, instead
of introducing new collations with new rules? Well, as a mat‑
ter of fact, that happened for another rule affecting German
Sharp S in our version 5.1. The results were catastrophic, be‑
cause collation affects order of keys in an index, and when
index keys are out of the expected order then searches fail
(Bug#37046 etc.). The only solution is to rebuild the index
andwhenwehave customerswithmultiple billion rows that’s
hugely inconvenient. This change was a stupid error, we have
sworn not to repeat it.

With this in mind, it is understandable that MySQL is reluctant to risk
making changes to collation orders. They wish to maintain semantic sta‑
bility for all their collation implementations because the consequences
for their customerswould be unacceptable. Requiring users to rebuild in‑
dexes during an upgrade process would be problematic, as it could cause
unpredictable downtime. Deliberate changes to collation order are, there‑
fore, not introduced to existing collation implementations. Instead, they
create new collation implementations with the desired changes and then
slowly deprecate the old ones. While this does not remove the issue of

rebuilding indexes, it makes it a choice for individual users which can be
planned for rather than an unexpected consequence of an upgrade.

For reasons of security and established practice, it is also not viable
forMySQL to pin a speciϐic version of ICU. Version pinningwould solve the
problem of semantic stability, but it would make it impossible to update
ICU to ϐix security issues, which is unacceptable. Regardless of whether
this version is bundled with MySQL or not, the problem would be the
same. There is no practical way to pick and choose which updates to ICU
to include either, as this would require forking ICU andmaintaining a sep‑
arate version. If MySQL were to use ICU for collation, they would need to
ϐind a way to solve this issue. They need to preserve semantic stability
while at the same time allowing for internal changes to how ICU is imple‑
mented that could affect the collation order.

3.1.2 Implementation details

Given its age and wide use, MySQL has a large number of collation im‑
plementations covering a range of locales and use cases. These are im‑
plemented in a variety of ways, and the details of each implementation
are beyond the scope of this thesis. We will primarily focus on their most
modern collations, which are based on UTF‑8, the Unicode Collation Al‑
gorithm (UCA), and Unicode 9.0. However, there are some commonalities
between the implementations which are worth discussing.

A quirk of how collations are implemented in MySQL is the tight cou‑
pling between collation and character set. By character set, we here refer
to a set of valid characters and the encoding used to represent them, such
as UTF‑8, UTF‑16, or cp1252 1. Each supported character set in MySQL
has a set of compatible collations. These are not shared between charac‑
ter sets but are implemented separately for each character set. The con‑
sequence is that users must specify both the character set and collation
implementation if the default options are not suitable. There is also no
guarantee that they will ϐind a suitable collation for their character set, as
not all character sets support the same collation orders.

This coupling is not an inherent requirement of collation but rather
a design choice and implementation detail in MySQL. Any character set

1Also known as latin1.

compatible with Unicode could use the same collation implementation,
with a conversion layer applied as necessary. We will do this in our pro‑
totype, as ICU uses UTF‑16 internally while MySQL uses UTF‑8.

Another implementation detail in MySQLworth explaining here is the
naming scheme for their collation implementations. This scheme is cov‑
ered in greater detail in the MySQL documentation [32], but we will pro‑
vide a brief overviewhere. The naming scheme is relevant becausewe, for
practical reasons, have kept to the same naming scheme in our collation
implementations. Collationnames inMySQLcontain thenameof the char‑
acter set used, the locale (if applicable), and other collation properties.
For instance, utf8mb4_0900_ai_ci is a collation for the utf8mb4 character
set, basedonUnicode9.0,which is accent‑ and case‑insensitive. This is the
current default collation and is suitable for most use cases, having a simi‑
lar role as the root collation order in ICU. As an aside, the default character
set in MySQL is currently utf8mb4, and the associated collations are pre‑
ϐixedwith utf8mb4 rather than utf8 or utf8mb3. This is due to issues in the
original UTF‑8 implementation in MySQL, which only supported 3 bytes
per character rather than the full 4 bytes speciϐied by the UTF‑8 standard.

3.1.3 Previous debate

The debate over whether MySQL should migrate to ICU has been ongo‑
ing for several years now. In 2017, a blog post was published by a former
MySQL developer discussing the possibility of migrating to ICU [28]. His
conclusion was that the reasons against doing so were either no longer
valid or did not outweigh the beneϐits of migrating. The main point left
against using ICU was still the risk of changes to collation order breaking
indexes 2. This issue is still unresolved, but the author points out that ICU
has been more stable in recent years, and changes are likely to occur less
often. Another issue is that some Linux distributions exercise more con‑
trol overwhich versions of ICUare available, and this has causedproblems
for other users in the past. However, as ICU is nowmore stable, this is less
likely to be a concern.

Other issues discussed in the blog post are less relevant today than in
the past. These include the size of the ICU library, the license required to

2Coincidentally, the blog author is also the one quoted in section 3.1.1.

use it, thedifference in collationorderbetweenglibc and ICU, andwhether
ICU had acceptable performance. As the author points out, the size of the
ICU library is no longer an issue with modern hardware, and the license
has changed to one that is more permissive. The difference in collation
order between glibc and ICU is also unlikely to be a concern, and it is only
an issue of users getting different results than what they are used to from
a completely different implementation. It requires benchmarking to de‑
termine how the performance of ICU compares to the current implemen‑
tation in MySQL. However, as the author also points out, it need only be
comparable to be acceptable.

3.2 Collation in PostgreSQL

PostgreSQL is anotherpopular open‑source relationalDBMS,which serves
a similar role to MySQL and is often mentioned in the same context due
to their similarities. Beginning in 2017, with version 10, PostgreSQL has
gradually introduced support for ICU collations. With the release of ver‑
sion 15 in 2022, ICU collations can now be set as the default collation for
a database. Several articles have been published by the PostgreSQL team
discussing the migration to ICU [33, 34], and the reasons for doing so are
similar to those we have discussed for MySQL.

There are some differences in howPostgreSQL andMySQL handle col‑
lation, however,whichmade the transition less challenging forPostgreSQL.
Chief among these is that PostgreSQL previously used libc as their colla‑
tion implementation rather than maintaining their own. This means that
the main problem we are concerned with in this thesis is one they had
already lived with for many years and which had been a constant source
of problems for their users [35]. By using ICU instead, they have a more
stable implementation than they previously had, although it is still not
guaranteed to be completely stable.

Another disadvantage of using libc is that it is a large and complex li‑
brary, which is not designed speciϐically for collation. This means that
keeping it updated is even more crucial than in the case of ICU because it
is likely used bymany other applications on the system. Therewas also no
easy way to detect changes in collation order with libc, which meant that
users could not be warned about potential issues with indexes. This is al‑

leviated by using ICU, which provides a version number for the collation
which can be checked against the version number of the collation used to
create the index. Example 3.1 shows an example of this in action, where
the user is warned that the collation used to create the index is older than
the current version of the collation 3. This is not a perfect solution, but
still a clear improvement over the previous situation.

1 postgres=# select * from city where name between 'Aarhus ' and
'Antioch ';

2 WARNING: index "city_pkey" depends on collation "default"
version "34.0", but the current version is "36.0"

3 DETAIL: The index may be corrupted due to changes in sort
order.

4 HINT: REINDEX to avoid the risk of corruption.
5

Example 3.1: Error from PostgreSQL indicating changes in collation
order may have occurred [34].

3.3 Other DBMSs using ICU

There are a number of other DBMSs that use ICU for collation now, either
as their main collation implementation or as an alternative. Because not
all of these are open‑source, it is not always possible to determine pre‑
cisely how they use ICU. In table 3.1, we have attempted to summarize
the available information about ICU usage in these DBMSs 4. We have at‑
tempted to indicate in the table where the information comes from and
whether the DBMS uses a bundled version of ICU or the system version.
This information is relevant because it indicates that there are a number
of other applications which could beneϐit from the solution proposed in
this thesis. Indexes being corrupted by changes in collation order is not
a problem unique to MySQL, as the general principles of indexing are the
same across DBMSs.

3Example reused verbatim from [34].
4Table reused from pre‑study [5].

DBMS Uses ICU Bundles ICU Source of
information

Source
code
available

ArangoDB Yes Yes Source code [36] Yes

BigTable Unknown N/A N/A No

Cassandra No N/A Issue tracker [37] Yes

CouchDB Yes No Documentation [38] Yes

DB2 Yes Unknown Documentation [39] No

EnterpriseDB Yes Unknown Documentation [40] Yes

Firebird Yes Partially Unofϐicial [28] Yes

MongoDB Yes Yes Source code [41] Yes

MS SQL No N/A Documentation [42] No

Oracle Unknown N/A N/A No

PostgreSQL Yes (opt‑in) No Documentation
[33][43]

Yes

SQLite Yes (opt‑in) No Documentation [44] Yes

SAP SQL Anywhere Yes No Documentation [45] No

Table 3.1: Overview of DBMSs investigated and their respective usage of
ICU [5].

CHAPTER4
IMPLEMENTATION

In this chapter, wewill describe howwe have implemented a semantically
stable collation systemusing ICU. This implementation is based on adjust‑
ing the collation order used by ICU using tailoring rules, as described in
section2.4.1. Wegive abrief overviewofwhat that entails andwhyMySQL
was a suitable starting point for the prototype. Next, we describe relevant
implementation details and how the prototype interacts withMySQL’s ex‑
isting architecture. Finally, we discuss some of the trade‑offs and limita‑
tions of the prototype and how these might affect performance and us‑
ability.

4.1 Overview of the prototype

The prototype consists of a modiϐied version of the MySQL server code‑
base, where the existing collation implementation has been augmented
with several special collations using ICU. MySQL collations are essentially
implemented as a set of structs containing a set of function pointers and
othermetadata about the collation, which form the pool of available colla‑
tions for the server. Each new collation is based on a speciϐic ICU collation
with a given comparison level 1 and is implemented as a wrapper around

1See section 2.4.1.

43

an ICU collator object. These wrappers allow the server to call ICU func‑
tions using the same interface as the existing collation implementation.
The prototype is based on the MySQL 8.0.32 source code and is available
on GitHub [46].

It is not intendedas a complete solutionbut rather as aproof‑of‑concept
of how ICU can be used while avoiding the issues described in chapter 2.
However, it should serve as a starting point for further discussion and de‑
velopment and as a basis for further experiments. The primary goal is to
demonstrate that ICU can be used in applications that require semantic
stability. A secondary goal is to show that replacing the existing collation
implementation in MySQL with ICU is feasible without requiring major
modiϐication or incurring signiϐicant performance penalties.

4.2 Why use MySQL?

The underlying principles of this prototype are not speciϐic toMySQL, and
it should be possible to adapt it to other applications. Implementing the
prototype as a standalone application or in a different DBMS would also
have been possible. There were several reasons for choosing MySQL as a
starting point for this prototype. Firstly, MySQL is a widely used, open‑
source DBMS written in C++. This makes it relatively easy to modify and
research. Because it is written in C++, it can also use either the C or C++
interface in ICU. Secondly, MySQL currently uses a custom collation im‑
plementation. This custom implementation provided both a motivation
for this thesis and a suitable comparison for the prototype. Because each
locale must be implemented separately, MySQL currently only supports a
limited number of locales compared to ICU. Based on this and the other
reasons we discussed in section 3.1.3, it may be desirable to replace the
existing implementation with ICU if possible. Finally, the collation system
in MySQL is written in such a way that swapping out the existing imple‑
mentation with ICU is relatively straightforward.

4.3 Collators and how they are made

In this section, we will present some simpliϐied pseudo‑code examples of
how ICU might be used for collation. We will ϐirst present a simple exam‑
ple of how ICU is normally used for collation and then an example of how
this is adapted for the prototype. The examples use the C++ API for sim‑
plicity and readability, but the same principles apply to the C API. This is
meant to give the reader an idea of how ICU is used in the prototype and
how it differs from how ICU is intended to be used.

Example 4.1 shows a highly simpliϐied example of how ICU is normally
used for collation. In this example, a Collator object is created for the spec‑
iϐied locale (nb_NO) and then used to compare two strings. This relies on
ϐirst creating a Locale object from the locale string, which contains the
data needed to perform the collation operation. The key point here is that
the collation data is taken directly from the ICU library rather than being
stored in the application. This means that the collation data is outside of
the application’s control.

Example 4.2 shows a simpliϐied example of how ICU is used in the
prototype. In this example, a RuleBasedCollator object is created from a
string containing the collation rules for the speciϐied locale (nb_NO). Note
that for brevity, only an excerpt of these rules is shown.

We ϐirst generate a preϐix for our rules, compensating for changes in
the root collation order. This example shows a fabricated scenario where
version 67 of ICU introduced a change in the root collation order, which
was to sort the cat emoji (U+1F431) after the dog emoji (U+1F436). We ϐix
this “bug” by adding a preϐix to the collation rules, which instead sorts the
cat emoji before the dog emoji 2.

Note also that thehex codes, i.e., codepoints, for the cat anddog emojis
are used here rather than the actual emojis. ICU accepts both 3, albeit in a
different format. The code point U+1F431 (or U0001F431) represents the
character named Cat Face, and one possible glyph representing that is the
emoji .

We then retrieve the “frozen” collation rules for the speciϐied locale,
which we have stored as a static string. Next, we concatenate it with our

2Because cats would insist on going ϐirst.
3This is because the font used does not support the emojis.

preϐix and instantiate a new RuleBasedCollator object with the resulting
string.

4.4 Collation operations

Our prototype essentially implements support for two collation opera‑
tions, namely comparison and sort key generation. This is done by cre‑

1 #include "icu_header.h" // Dummy header file to hide includes
2
3 // Each thread (connection) has its own STATUS variable.
4 thread_local icu:: ErrorCode STATUS = icu:: ErrorCode ();
5
6 icu:: Collator *get_collator(char *locale_string) {
7 icu:: Locale locale = icu:: Locale(locale_string);
8 icu:: Collator *collator = icu:: Collator :: createInstance(

locale , STATUS);
9

10 return collator;
11 }
12
13 int compare_with_icu(char *s1 , char *s2) {
14 // Returns 0 if s1 == s2
15 // Returns -1 if s1 < s2
16 // Returns 1 if s1 > s2
17
18 icu:: Collator *collator = get_collator("nb_NO");
19
20 return collator ->compare(icu:: UnicodeString(s1), icu::

UnicodeString(s2), STATUS);
21 }
22
23 int main() {
24 char *s1 = "hello";
25 char *s2 = "world";
26 int result = compare_with_icu(s1 , s2);
27 printf("result: %d\n", result); // result: -1
28 return 0;
29 }

Example 4.1: Using ICU as intended by the library

ating a separate function for each operation which wraps a call to an ICU
collator, instantiated as described above. When MySQL attempts to per‑
form one of these collation operations, it references the corresponding
struct containing related functions for that collation and calls thewrapper
function for the operation it wishes to perform. These wrapper functions
can be seen inmysql‐server/strings/ctype‐icu.cc.

As mentioned in section 2.4.2, ICU offers a UTF‑8 interface for some
operations. This interface includes comparison operations but not sort
key generation. We use this interface for comparison operations and the
UTF‑16 interface for sort key generation. Our wrapper function for sort
key generation must ϐirst convert the input string from UTF‑8 to UTF‑16
before calling the corresponding ICU function in the UTF‑16 interface.

4.5 Implemented collations

Table 4.1 shows the collations that have been implemented in the proto‑
type. As we will discuss in more detail in section 5.2.1, these were cho‑
sen because they were well‑suited for the comparative experiments we
wished to conduct. Each of them had a similar collation in MySQL, which
we could use as a comparison. The similar MySQL collation was one with
the same comparison strength and the same locale. The naming scheme
used here is an artifact of how MySQL couples collation to character sets
and is irrelevant to the prototype. The preϐix utf8mb4 is used to make the
collation available for the utf8mb4 character set, which is the character set
used throughout our experiments. The sufϐix icu indicates that the colla‑
tion is implemented using ICU, while the rest of the name indicates the
locale and the strength of the collation.

4.6 Development ϐlow

As we discussed in section 2.1.1, it is hypothetically possible for a devel‑
oper to conϐigure their application to support future versions of a library.
However, this is not a viable option for an application like a DBMS as it
would require them to support something without testing it ϐirst. This
testing is essential for a DBMS like MySQL, which is used in a wide variety

Name Locale Strength

utf8mb4_icu_en_US_ai_ci en_US Primary
utf8mb4_icu_en_US_as_cs en_US Tertiary
utf8mb4_icu_nb_NO_ai_ci nb_NO Primary
utf8mb4_icu_fr_FR_ai_ci fr_FR Primary
utf8mb4_icu_zh_Hans_as_cs zh_Hans Tertiary
utf8mb4_icu_ja_JP_as_cs ja_JP Tertiary
utf8mb4_icu_ja_JP_as_cs_ks ja_JP Quaternary

Table 4.1: ICU collations implemented, with locale and comparison
strength.

of applications and environments. Because of this, when any new version
of ICU is released, it would be necessary to test it and then release a new
version of MySQL that ofϐicially supports it.

We, therefore, propose the development ϐlow shown in ϐig. 4.1. This
ϐigure is meant to illustrate that users would not be able to upgrade to
new versions of ICU without also upgrading to a new version of MySQL.
However, when they upgrade, they can do so without rebuilding indexes.

If the application instead used ICU as it was intended to be used, it
would still be necessary to go through a similar process. The difference
would be that the check to verify index integrity would be moved to the
users. Moving this work to the users means that after they upgrade to the
new version of the application, they would then need to verify that the
new ICU version is compatible with their existing indexes. Such a process
could be automated, but it would still cause unexpected downtime for the
users if a change in collation order were detected.

4.7 Limitations and simpliϐications

Because the implementation here is intended only as a proof‑of‑concept,
several limitations and simpliϐications should be noted. We will discuss
these brieϐly here and explain how they might be addressed in a more
complete implementation. They do not affect the validity of the proto‑
type or our results, but they should be considered if the prototype is to be

used as a basis for further development.
Firstly, the prototype is made to ϐit into the existing architecture of

MySQL. MySQL implements collation in a way that is very different from
how ICU is intended to be used, and we havemade as few changes as pos‑
sible to the existing code. This means that the prototype is not a pure im‑
plementation of ICU and that some of the beneϐits of ICU are not fully re‑
alized. One example is that we create an entirely separate collation struct
for each combination of case‑, accent‑ and kana‑sensitivity for a given lo‑
cale. ICU is designed to allow for a single collator to be used for all of these,
with these combinations set by the comparison level of the collator 4. Du‑
plicating the collator for each tested combination is a simpliϐication that
does not affect performance, but it does make for a less elegant and less
easily extendable solution.

Secondly, the prototypeuses a simpliϐiedmethod for storing the tailor‑
ing data. This is provided indirectly in the form of XML ϐiles in the CLDR 5,
but the prototype instead deϐines these as constant strings in a header ϐile.
These strings were generated by instantiating a RuleBasedCollator object
with the desired Locale and then calling the getRulesmethod to extract the
tailoring data. See appendix B.1 for an example of this. The reason for us‑
ing this method is that parsing the XML ϐiles is complicated and that this
simpliϐication could be made without sacriϐicing the validity of the proto‑
type. In a complete implementation, it would be preferable to parse the
XML ϐiles directly or store the tailoring data in another appropriate for‑
mat. This additional work would allow storing the data in a structured
way, similar to how it is stored in the CLDR. It would be more complex to
implement, but it wouldmakeworkingwith the datamoremanageable in
the future.

As we discussed in section 2.4.3, the C++ API is not suited for appli‑
cations that need to handle a range of ICU versions. The choice to use
C++ was made before realizing this limitation, but it was a deliberate de‑
cision to keep it for the prototype. The reasons for this include time con‑
straints, the fact that the C++ API is easier to use, and that the prototype
did not need to be compatible with multiple versions of ICU. The two in‑
terfaces are otherwise equivalent, however, and the same principles apply

4See section section 2.4.1.
5As discussed in section 2.3.1, ICU customizes this data slightly.

to both. Converting the prototype or implementing similar ideas in the C
API should be relatively straightforward and does not require any major
changes to the architecture. For a more detailed description of the ICU
C/C++ APIs, see the ICU documentation 6.

One minor issue in terms of performance is how we choose to instan‑
tiate collator objects. This is done once for each collation implementa‑
tion used in thread, i.e., per client connection, and only done when the
ϐirst query using that collation is executed. The effect of this is that the
ϐirst query using a given collationmay be slightly slower than subsequent
queries. However, the effect of thiswas notmeasurable in our tests, which
is whywe chose to keep this implementation. If this is found to be a prob‑
lem in the future, it would be possible to instantiate the collator objects
when the server starts and then reuse them for each client connection.
Proϐiling to ensure that this affects performance would be advisable be‑
fore making this change, however.

6https://unicode-org.github.io/icu-docs/apidoc/released/icu4c/

https://unicode-org.github.io/icu-docs/apidoc/released/icu4c/

1 #include "icu_header.h" // Dummy header file to hide includes
2
3 // Each thread (connection) has its own STATUS variable.
4 thread_local icu:: ErrorCode STATUS = icu:: ErrorCode ();
5
6 // Tailoring rules for "nb_NO"
7 static const char *ICU_NB_NO = "&å<<<Å<<aa<<<Aa<<<AA";
8
9 icu:: UnicodeString get_rules(char *locale_string) {

10 if (strcmp(locale_string , "nb_NO") == 0) {
11 return icu:: UnicodeString(ICU_NB_NO);
12 } else {
13 return icu:: UnicodeString("");
14 }
15 }
16
17 icu:: UnicodeString get_rule_prefix () {
18 if (U_ICU_VERSION_MAJOR_NUM > 67) {
19 return icu:: UnicodeString("&\ U0001F431 < \U0001F436")
20 } else {
21 return icu:: UnicodeString ()
22 }
23 }
24
25 icu:: RuleBasedCollator *get_collator(char *locale_string) {
26 auto prefix = get_rule_prefix ();
27 auto rules = get_rules(cs);
28 auto tailoring = prefix + rules;
29 return new icu:: RuleBasedCollator(tailoring , STATUS);
30 }
31
32 int compare_with_icu(char *s1 , char *s2) {
33 icu:: Collator *collator = get_collator("nb_NO");
34 return collator ->compare(icu:: UnicodeString(s1), icu::

UnicodeString(s2), STATUS);
35 }
36
37 int main() {
38 char *s1 = "hello";
39 char *s2 = "world";
40 int result = compare_with_icu(s1 , s2);
41 printf("result: %d\n", result); // result: -1
42 return 0;
43 }

Example 4.2: Using ICU with frozen collations applied as tailoring

Figure 4.1: Proposed development ϐlow with ICU

CHAPTER5
EXPERIMENTS AND RESULTS

In this chapter, we will present the experiments we have performed to
evaluate our prototype. The experiments are intended to show whether
the prototype is a viable alternative to the intended way of using ICU and
whether it is a viable alternative to the current implementation inMySQL.
First, we will describe the experimental setup, i.e., the hardware and soft‑
ware used in the experiments. Wewill then present three separate exper‑
iments, each with their own goal. For each experiment, we will describe
any setup speciϐic to that experiment, present the results of the experi‑
ment, and then discuss the results and their implications. When appropri‑
ate, we will present relevant parts of the experiments as simpliϐied pseu‑
docode to make it easier to understand what was done. The code itself is
available on GitHub, which should also make it possible to reproduce the
results gathered here. Finally, we will discuss the general limitations of
the experiments carried out here, followed by a summary of the chapter
and the conclusions we can draw from the results.

5.1 Experimental setup

For the results used in this report, the two performance experiments are
carried out on a dedicated computer to minimize the risk of other pro‑

53

cesses and setup quirks interfering with the results. This computer was
a Lenovo ThinkCentre M920t, with an Intel i7‑8700 CPU1 and 32 GiB of
RAM. The operating system used is Ubuntu 22.04.2 with kernel version
5.19.0–43‑generic. We use the default version of ICU available from the
packagemanager, which in this case is version 70.1‑2 of libicu‑dev. As dis‑
cussed in section 4.1, the builds of MySQL used in our tests are based on
MySQL 8.0.32 source code. The source code was compiled using version
11.3.0 of gcc/g++, with the ‐O3 optimization ϐlag enabled.

A small suite of Python tools was written to orchestrate the experi‑
ments [47]. This suite includes a command‑line interface (CLI) to connect
to the running MySQL server, prepare the database, run the queries, and
collect the results. Collected results arewritten to a local SQLite database,
which is used to generate graphs and tables.

5.1.1 Building MySQL

A custom bash script was created to build MySQL 2 to simplify the pro‑
cess of re‑running the experiments. With this script, we ensured the same
conϐiguration was used for each run. This script sets up the correct folder
structure and generates the necessary CMake command to build MySQL
from the source code. While this is not overly complex, having a script
to ensure that the same build conϐiguration was used for all experiments
was helpful. This was especially useful when developing and testing the
project with multiple computers.

Someof the experiments carried out here aredesigned to test different
conϐigurations of the prototype. Three conϐigurations are being evaluated
here for both the performance benchmarks and the validity tests. For the
sake of simplicity, these conϐigurations are hard coded in the prototype
as boolean constants, and the prototype is built three times with differ‑
ent conϐigurations. The values of these variables do not affect the existing
MySQL collation code, only the ICU‑based collations added by the proto‑
type. These conϐigurations are set in the ϐile mysql‐server/strings/ctype‐
icu.h, and the values of the constants are listed in table 5.1.

The ϐirst conϐiguration is the default conϐiguration, where the proto‑
16 cores, 12 threads, and 3.2 GHz base clock speed.
2https://github.com/LarsV123/master‑util/blob/master/build.sh

https://github.com/LarsV123/master-util/blob/master/build.sh

type uses the default ICU Collator class, and collation data is loaded from
a Locale object. This means the prototype is performing collation more or
less the same way as ICU is intended to be used. Notably, this means that
the collation implementation is not semantically stable across versions of
ICU, as discussed in section 2.4.3. It is included to compare performance
and collation order with the other conϐigurations.

The second conϐiguration is the frozen conϐiguration, where the proto‑
type uses a RuleBasedCollator, and the collation data is loaded from static
strings. These strings are generated by extracting the collation rules from
a Locale‑based collator instantiated with the desired locale. As discussed
in section 4.3, this should result in a collator with the same behavior as a
Locale‑based collator. The difference is that this version can bemade to be
semantically stable across versions of ICU by adjusting the collation rules
to compensate for changes in ICU behavior.

The ϐinal conϐiguration is the tailored conϐiguration. This is the same
as the frozen conϐiguration, except that the collation rules are modiϐied
to move 100 characters to the end of the collation order. The purpose
of these is to simulate the effect of adding additional rules, such as those
discussed in section 2.4.3. This conϐiguration is included to test the per‑
formance of the prototype with additional rules applied.

Conϐiguration ICU_FROZEN ICU_EXTRA_TAILORING

Default false false
Frozen true false
Tailored true true

Table 5.1: Three different conϐigurations of MySQL built for the experi‑
ments

5.2 Experiment 1: Performance benchmarks

This experiment is intended to look at performance differences, if any, be‑
tween our prototype implementations and the current implementation in
MySQL. The benchmark is designed to test performance in a worst‑case

scenario, i.e. in a situation where the effect of collation performance is
maximized. By performance, we here mean the time it takes to perform
the collation operations, without regard for memory usage or other re‑
sources. This is here measured by the total time taken from the start of a
query until the result is returned to the client. The scenarios being tested
are queries that force the use of collation on a large number of unindexed
rows. This should be the worst‑case scenario for collation performance,
i.e. the case where the effect of collation performance is maximized.

The intention is to test whether our prototype is signiϐicantly slower
than the current implementation inMySQLandwhether it is a viable alter‑
native. The prototype will be tested in the three different conϐigurations
listed above, as well as the current implementation in MySQL, and the re‑
sults compared to each other. This should indicate whether the use of the
ICU library itself or the alternative way it is being used in the prototype is
the cause of any performance differences.

5.2.1 Setup

The experiments done in the pre‑study indicated that there could be sig‑
niϐicant performance differences in collation, depending on the locale of
both the collator being used and the data being collated. Because of this,
it was decided to test each non‑English collation on data in both its native
language and in English. Also, a set of collations were chosen to repre‑
sent a variety of different languages and scripts, eachwith unique features
which could potentially affect performance.

One complicating factor was that each ICU‑based collation should be
tested against a semantically equivalent MySQL collation to have compa‑
rable results. Because the performance of a collation is affected by the
complexity of the rules it uses, and there is no guarantee that the rules
used by ICU and MySQL are identical, differences here could potentially
affect the results. However, we foundmany caseswhere both an ICU and a
MySQL collation purported to be for the same locale and to have the same
case‑ and accent sensitivity. A set of such pairs were chosen for this ex‑
periment, as these should have similar performance characteristics, while
collations where we could ϐind no such pair were excluded. For example,
Thai (th_TH) is not supported by any MySQL collation, so we were unable
to test it. In other cases, there were either case‑ and accent‑sensitive or

case‑ and accent‑insensitive collations for a locale inMySQL,while the ICU
collations support both. Lack of collation support in MySQL is part of the
motivation for wanting to use ICU in the ϐirst place, and this problem is
therefore not unexpected.

In the end, a set of 7 ICU collationswere chosen for this experiment, as
presented in table 5.2. Which language each locale ID represents is shown
in table 5.3, but for brevity, this report will generally refer to the locales
by their IDs. Reasons for including this speciϐic set of collations include
both suspected performance differences and the desire to test a variety of
different languages and scripts. For instance, Chinese and Japanese were
chosen in part because they require more bytes per character than most
other languages, and this could potentially affect performance. Japanese
is also unusual in that it has a quaternary level of collation, i.e. a level
of collation which is kana sensitive 3. This is supported by MySQL, but
the additional complexity could also potentially affect performance. Also,
several of the tested collations are included as controls, because there
is no reason to expect any signiϐicant performance differences between
them. For en_US, two versions are tested, one case‑ and accent‑sensitive
and one case‑ and accent‑insensitive, to test the effect of the case‑ and
accent‑sensitivity. Also, a collation for fr_FR is included as a control, be‑
cause it should in theory be identical to en_US. Both of these should be
identical to the root collation in the ICU library, which is expected to have
the best performance of all the collations tested as other collations build
on this. Finally, nb_NO is included because it is similar to en_US, but with
minor changes to the alphabet and collation rules.

The data set forming the basis for this experiment is a collection of
249 location names in various languages [48]. This was chosen to have
a set of real‑world data with equivalents in each language we were inter‑
ested in testing. For example, when testing Japanese collation, it is more
realistic to have a set of Japanese location names than a set of random
strings. It was also important to have a large enough data set to make
the benchmarkmeaningful, so the data set was synthetically expanded by
adding a number to each name. By doing this, three separate data sets
were formed for each locale, containing 500K, 1000K, and 2500K names
respectively. The size of each generated data set is shown in table 5.4. It

3See section 2.4.1.

ICU collation MySQL collation Locale

utf8mb4_icu_en_US_ai_ci utf8mb4_0900_ai_ci en_US
utf8mb4_icu_en_US_as_cs utf8mb4_0900_as_cs en_US
utf8mb4_icu_nb_NO_ai_ci utf8mb4_nb_0900_ai_ci en_US
utf8mb4_icu_nb_NO_ai_ci utf8mb4_nb_0900_ai_ci nb_NO
utf8mb4_icu_fr_FR_ai_ci utf8mb4_0900_ai_ci en_US
utf8mb4_icu_fr_FR_ai_ci utf8mb4_0900_ai_ci fr_FR
utf8mb4_icu_zh_Hans_as_cs utf8mb4_zh_0900_as_cs en_US
utf8mb4_icu_zh_Hans_as_cs utf8mb4_zh_0900_as_cs zh_Hans
utf8mb4_icu_ja_JP_as_cs utf8mb4_ja_0900_as_cs en_US
utf8mb4_icu_ja_JP_as_cs utf8mb4_ja_0900_as_cs ja_JP
utf8mb4_icu_ja_JP_as_cs_ks utf8mb4_ja_0900_as_cs_ks en_US
utf8mb4_icu_ja_JP_as_cs_ks utf8mb4_ja_0900_as_cs_ks ja_JP

Table 5.2: Combinations of ICU collation, MySQL collation, and data locale
tested.

is worth noting that these differ signiϐicantly from language to language,
with the Japanese data set being the largest by far. This should not affect
the results, as the collations being compared against each other will be
tested on the same data set.

Each test case runs three queries, testing different aspects of colla‑
tion performance. These test both the comparison operation (equality),
as well as theORDER BY clause in both ASCENDING and DESCENDING order.
There is no obvious reason why there should be a meaningful difference
in performance between the two orderings, but it was included because
preliminary tests indicated that theremight be. The benchmark tests both
comparison and sorting because these are fundamentally different oper‑
ations, which are implemented differently 4. Example 5.1 shows an ex‑
ample of the queries tested. The queries are fairly simple, but they are
designed with the single purpose of forcing the MySQL server to perform
a full table scan, iterating over every row in the table, and performing a
collation operation for each row. Because there is no index created on the
column being sorted, the only way to execute the queries is to iterate over

4See section 4.4.

Locale Language

en_US English (US)
nb_NO Norwegian (Bokmål)
fr_FR French
zh_Hans Chinese (simpliϐied)
ja_JP Japanese

Table 5.3: Locale IDs with the corresponding language.

the entire table.

1 -- Test case: ORDER BY , ascending order , 1M rows , en_US locale
2 SELECT *
3 FROM test_en_US_1000000
4 ORDER BY `value `
5 COLLATE utf8mb4_icu_en_US_ai_ci ASC
6 LIMIT 1;
7
8 -- Test case: Compar ison , 2.5M rows , nb_NO locale
9 SELECT * FROM test_nb_NO_25000000

10 WHERE `value ` = 'Norge123 '
11 COLLATE utf8mb4_icu_nb_NO_ai_ci;

Example 5.1: Example of queries used in performance benchmark

To summarize, we are testing 7 different ICU collations under 3 differ‑
ent build conϐigurations, as listed in table 5.1. Each of these is compared
with their closest equivalent in MySQL, for a further 6 collations 5. The
non‑English collations are also tested on both data from their native lo‑
cale and from the en_US locale. Each combination is tested on each of the
3 data sets described above. This gives us a total of ((7+5)∗3+6+5) = 47
different test cases, which are generated programmatically 6.

5The same MySQL collation covers both en_US and fr_FR.
6https://github.com/LarsV123/master‑util/blob/master/src/benchmarks.py

https://github.com/LarsV123/master-util/blob/master/src/benchmarks.py

Table Size in MiB

test_ja_JP_2500000 246.81
test_fr_FR_2500000 222.77
test_zh_Hans_2500000 220.8
test_en_US_2500000 208.77
test_nb_NO_2500000 200.77
test_ja_JP_1000000 107.64
test_zh_Hans_1000000 102.64
test_fr_FR_1000000 98.64
test_nb_NO_1000000 96.64
test_en_US_1000000 94.64
test_ja_JP_500000 68.58
test_fr_FR_500000 64.58
test_zh_Hans_500000 61.59
test_en_US_500000 58.58
test_nb_NO_500000 58.58

Table 5.4: Data sets used in experiment 1, sorted by size.

5.2.2 Data collection and processing

Each test case in our benchmark suite is 11 times in sequence. The ϐirst
run is used as a warm‑up and the results are discarded. This is done to
ensure consistent effects from caching and to avoid the ϐirst run being an
outlier. Therefore, we get 10 recorded results for each test case from each
run of the benchmark. In total, this produces 47∗10∗3∗3 = 4230 rows of
data, which are then processed and analyzed using a Python script 7. The
raw results from this experiment are also available on GitHub 8.

The actual metric used for these results is the median execution time
across all runs. In this experiment we repeat a deterministic operation
multiple times, where the DBMS is forced to execute a table scan and per‑
form the same collation operations every time. It is therefore reasonable
to assume that any variation in the results is caused by external factors,
such as other processes running on the machine, or the operating system
scheduling threads differently. For this reason, we have chosen to use the
median as themetric for the results, as this is less affected by outliers than
the mean. We also calculate the standard deviation, to get an idea of the
variance in the results. Both the median and standard deviation are pre‑
sented in seconds.

Finally, we have selected one of the MySQL test cases as a baseline, to
have a basis for comparison for the other combinations. This difference is
calculated as the difference between themedians of the current measure‑
ment and the baseline, dividedby themedian of the baseline. The baseline
collation, utf8mb4_0900_ai_ci, was selected because it is the default colla‑
tion in MySQL. This was tested using the en_US locale data, i.e. the list of
location names in English. The difference is presented in the tables as∆
baseline, as a percentage relative to the baseline. For all three measures,
lower numbers are better and indicate improved performance.

5.2.3 Results

The results of this experiment have been processed and aggregated to
make them easier to interpret. Given the number of different test cases, it
is not feasible to present all the results in this section. We will therefore

7https://github.com/LarsV123/master‑util/blob/master/src/experiment2.py
8https://github.com/LarsV123/master‑util/blob/master/experiments.db

https://github.com/LarsV123/master-util/blob/master/src/experiment2.py
https://github.com/LarsV123/master-util/blob/master/experiments.db

present an overview of the results, and refer to appendix A.1 for the full
results. Instead, we will present excerpts from the results, showing a set
of tables that are representative of the results as a whole. We will also
present a set of graphs that show the results visually, before discussing
the results in more detail.

In ϐig. 5.1 we see the median execution time per 100 000 rows for the
ORDER BY ASC operation across all data set sizes. Themedian is calculated
across all test cases (collation, data locale and conϐiguration), and only
split on the size of the data set used. This shows that the size of the data
set has nomeaningful effect on the performance of the operation. Because
of this, all further results presented here are based on the medium‑sized
data set.

Figure 5.1: Execution time for the ORDER BY ASC operation across all
measurements split by data set size. Lower execution time is better. Error
bars show standard deviation.

The tables we have chosen to present here show how our main ICU
implementation compares to the current MySQL implementation. Perfor‑
mance for theORDER BY clause in ASCENDING order are shown in table 5.6
and table 5.5, for the ICU and MySQL implementations respectively. As

discussed in section 4.4, this is implemented by generating a sort key for
each row, and then sorting the rows based on the sort key. Sorting ta‑
bles based on a string column is a common use case for collation, and is
therefore important to optimize. The performance effect of collation op‑
erations can make a signiϐicant impact when used on large data sets, and
the results show that there is a meaningful difference between the imple‑
mentations. These results indicate that the MySQL and ICU implemen‑
tations perform differently based on the complexity of the collation. For
more complex collations, such as those for Japanese and Chinese, the ICU
implementation is consistently faster than the equivalent MySQL imple‑
mentation. For the simpler collations, such as nb_NO_ai_ci, the difference
is negligible.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_0900_ai_ci en_US 4.76 0.05 0
utf8mb4_0900_as_cs en_US 5.36 0.04 12.67
utf8mb4_ja_0900_as_cs en_US 7.16 0.05 50.43
utf8mb4_ja_0900_as_cs_ks en_US 7.31 0.27 53.6
utf8mb4_nb_0900_ai_ci en_US 5.44 0.07 14.23
utf8mb4_zh_0900_as_cs en_US 7.66 0.17 61
utf8mb4_0900_ai_ci fr_FR 5.33 0.15 11.97
utf8mb4_ja_0900_as_cs ja_JP 7.25 0.21 52.27
utf8mb4_ja_0900_as_cs_ks ja_JP 7.69 0.17 61.67
utf8mb4_nb_0900_ai_ci nb_NO 5.44 0.1 14.38
utf8mb4_zh_0900_as_cs zh_Hans 6.34 0.19 33.28

Table 5.5: ORDER BY ASC for all MySQL collations.

In table 5.8 and table 5.7 we show the performance for the compari‑
son operation, i.e. the scenario where two values are compared directly
for equality. While there is some variation in the results, the performance
is generally very similar between equivalent collations in the two imple‑
mentations. As we mentioned in section 2.4.2, this operation is imple‑
mented with the UTF‑8 API in ICU. This means that the ICU implementa‑
tion is not at the disadvantage of having to convert to UTF‑16 like it must

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_icu_en_US_ai_ci en_US 5.06 0.08 6.32
utf8mb4_icu_en_US_as_cs en_US 5.03 0.09 5.64
utf8mb4_icu_fr_FR_ai_ci en_US 5.5 0.16 15.54
utf8mb4_icu_ja_JP_as_cs en_US 5.71 0.09 20.08
utf8mb4_icu_ja_JP_as_cs_ks en_US 6.26 0.08 31.48
utf8mb4_icu_nb_NO_ai_ci en_US 5.24 0.14 10.11
utf8mb4_icu_zh_Hans_as_cs en_US 5.58 0.1 17.18
utf8mb4_icu_fr_FR_ai_ci fr_FR 5.36 0.13 12.53
utf8mb4_icu_ja_JP_as_cs ja_JP 6.09 0.21 28.06
utf8mb4_icu_ja_JP_as_cs_ks ja_JP 6.32 0.24 32.89
utf8mb4_icu_nb_NO_ai_ci nb_NO 5.21 0.12 9.5
utf8mb4_icu_zh_Hans_as_cs zh_Hans 5.65 0.2 18.63

Table 5.6: ORDER BY ASC for all ICU_frozen collations.

for the ordering operation. Before the experiments were run, this was
hypothesized to potentially be a signiϐicant factor in the performance dif‑
ference between the two implementations. However, as we will see in
section 5.3, this does not appear to be the case.

While the tables we have discussed so far show execution time for all
test cases for the ICU_frozen and MySQL conϐigurations, we have not yet
discussed the results for the ICU_default and ICU_tailored conϐigurations.
As discussed in section section 4.3, these represent both the intendedway
of using the ICU library, as well as the way our prototype is likely to be
used in practice if there aremajor changes to ICU collation. Figure 5.2 and
ϐig. 5.2 show a subset of the tested collation and data locales for all four
conϐigurations. Here we present the results for the ordering operation in
ascending order. Similarly, in ϐig. 5.4 and ϐig. 5.5 we see the same subset
of collation and data locales, but for the equality comparison. The sub‑
set of locales shown here is selected to represent both the simplest case
(English), a slightly more complex case (Norwegian), and the two most
complex cases (Japanese and Chinese). These collations are all accent‑,
case‑ and (where applicable) kana‑insensitive.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_0900_ai_ci en_US 4.64 0.04 0
utf8mb4_0900_as_cs en_US 4.51 0.04 ‑2.87
utf8mb4_ja_0900_as_cs en_US 5.74 0.04 23.58
utf8mb4_ja_0900_as_cs_ks en_US 5.73 0.27 23.4
utf8mb4_nb_0900_ai_ci en_US 4.81 0.03 3.52
utf8mb4_zh_0900_as_cs en_US 5.69 0.04 22.54
utf8mb4_0900_ai_ci fr_FR 5.05 0.13 8.62
utf8mb4_ja_0900_as_cs ja_JP 5.77 0.17 24.32
utf8mb4_ja_0900_as_cs_ks ja_JP 5.76 0.22 24.04
utf8mb4_nb_0900_ai_ci nb_NO 4.77 0.11 2.74
utf8mb4_zh_0900_as_cs zh_Hans 5.64 0.19 21.35

Table 5.7: Equality comparison for all MySQL collations.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_icu_en_US_ai_ci en_US 4.4 0.02 ‑5.29
utf8mb4_icu_en_US_as_cs en_US 4.62 0.02 ‑0.55
utf8mb4_icu_fr_FR_ai_ci en_US 5.01 0.03 7.86
utf8mb4_icu_ja_JP_as_cs en_US 5.65 0.02 21.61
utf8mb4_icu_ja_JP_as_cs_ks en_US 5.66 0.02 21.75
utf8mb4_icu_nb_NO_ai_ci en_US 4.73 0.02 1.78
utf8mb4_icu_zh_Hans_as_cs en_US 5.32 0.02 14.6
utf8mb4_icu_fr_FR_ai_ci fr_FR 4.82 0.12 3.79
utf8mb4_icu_ja_JP_as_cs ja_JP 5.51 0.18 18.58
utf8mb4_icu_ja_JP_as_cs_ks ja_JP 5.71 0.16 22.87
utf8mb4_icu_nb_NO_ai_ci nb_NO 4.66 0.02 0.29
utf8mb4_icu_zh_Hans_as_cs zh_Hans 5.17 0.11 11.4

Table 5.8: Equality comparison for all ICU_frozen collations.

(a) English (en_US)

(b) Norwegian Bokmål (nb_NO)

Figure 5.2: Execution time for the ORDER BY ASC operation across se‑
lected collations. Lower execution time is better. Error bars show stan‑
dard deviation.

(a) Simpliϐied Chinese (zh_Hans)

(b) Japanese (ja_JP)

Figure 5.3: Execution time for the ORDER BY ASC operation across se‑
lected collations. Lower execution time is better. Error bars show stan‑
dard deviation.

These results show that all three variations of the ICU implementation
have similar performance for both the equality comparison and the or‑
dering operation. The ICU_default conϐiguration performs slightly worse
than the other two variations, which is unexpected and difϐicult to explain
based on the implementation. However, the difference is small and it is
difϐicult to draw any conclusions from this.

5.2.4 Summary

The main goals of this experiment were to determine whether the proto‑
type implementationwas signiϐicantly slower than the current implemen‑
tation in MySQL and whether making our implementation semantically
stable incurred a performance penalty. Before running this experiment,
we had several assumptions and expectations about the results. On the
one hand, therewas reason to think ICU could performbetter thanMySQL
because it is a specialized library for collation. On the other hand, using
ICU required an extra conversion step, whichmight be costly 9. Our proto‑
type implementation might also be ϐlawed in some way, which could lead
to worse performance. There was also reason to think that the ORDER BY
operations could be slower because the ICU documentation speciϐically
recommends against using sort keys if performance is a concern.

However, our results do not indicate a signiϐicant performance penalty
for our semantically stable prototype implementations. They have similar
performance to the default ICU implementations they are based on and,
in some cases, perform signiϐicantly better than the currentMySQL imple‑
mentations. The results indicate that ICU‑based collations have an even
performance proϐile and are less affected by the complexity of the colla‑
tion rules than those in MySQL. For the most complex collations, such as
Japanese, the performance of the ICU‑based collations is signiϐicantly bet‑
ter than the MySQL‑based collations. Adding additional tailoring rules to
ICU collations also does not seem to impact performance.

9More on this in section 5.3

(a) English (en_US)

(b) Norwegian Bokmål (nb_NO)

Figure 5.4: Execution time for the equality comparison operation across
selected collations. Lower execution time is better. Error bars show stan‑
dard deviation.

(a) Simpliϐied Chinese (zh_Hans)

(b) Japanese (ja_JP)

Figure 5.5: Execution time for the equality comparison operation across
selected collations. Lower execution time is better. Error bars show stan‑
dard deviation.

5.3 Experiment 2: Flame graph comparison

The goal of this experiment is to compare the performance of the ICU and
MySQL implementations in a more ϐine‑grained way than the benchmark
above. The benchmark above only measures the time it takes to perform
the collation operations, but does not provide any insight intowhat is hap‑
pening during that time. In particular, it does not provide any insight into
how much time is spent in the ICU library itself, and how much time is
spent in the MySQL code. This experiment is intended to provide that
insight, by recording activity during execution with the perf utility and
visualizing it. This is done by generating so‑called ϐlame graphs, which
are visualizations of the activity of the CPU during execution. The ϐlame
graphs are then compared to each other, to determine whether there are
any signiϐicant differences in the execution of the ICU and MySQL imple‑
mentations. Rather than a comparison of total execution time, this will
allow us to see how the time is spent, and whether there are any signiϐi‑
cant differences here.

One particular concern raised in the pre‑study was that MySQL stores
and processes data in UTF‑8, while the ICU library uses UTF‑16 internally
and only has UTF‑8 support for certain operations. Notably, the genera‑
tion of sort keys requires conversion from UTF‑8 to UTF‑16, and this con‑
version was feared to be expensive. To measure the impact of this, the
actual conversion is split into a separate function in the prototype, which
is then called in the parent collation function. The ϐlame graphs therefore,
should allow us to see whether conversion is an expensive operation and
whether it is a signiϐicant part of the execution time.

5.3.1 Setup

The basic idea behind ϐlame graphs is to record the activity of the CPU
during execution, and then visualize this activity as a graph where each
block represents the portion of CPU time spent within a given function.
This is achieved here by using the perf utility to record the activity of the
CPU and then using the FlameGraph tool to visualize the results. The perf
utility is a Linux tool forperformanceanalysis,which canbeused to record
a variety of different events.

Example 5.2 shows the actual query executed, which is a simpliϐied

version of theORDER BY query used in the benchmark in the previous sec‑
tion. This is run three times in a row for each conϐiguration (with the ap‑
propriate collation inserted), which with this hardware and setup causes
theMySQL server to work for roughly 15‑20 seconds. The reason for run‑
ning the query three times is to ensure that the results are consistent, to
limit the effect of caching, and to ensure that the query is run for a long
enough time to be able to record a sufϐicient amount of activity. Also, the
same query is run once before the actual test and start of the recording, to
ensure that the collation data is loaded into memory and that the collator
is instantiated.

1 SELECT *
2 FROM test_en_US_1000000
3 ORDER BY value COLLATE %s
4 LIMIT 1;

Example 5.2: Example of query used in ϐlame graph experiment

This process is orchestrated using a bash script, to simplify the pro‑
cess and make it easy to reproduce consistent results. First, it calls on
perf to record the activity of the CPU for a speciϐied number of seconds.
This listens only to events related to the MySQL process and records the
activity in a ϐile. Then, in a separate thread, it calls on a Python script to
execute a speciϐic SQL query against the MySQL server. This script exe‑
cutes a short series of SQL queries, which are intended to be representa‑
tive of the type of real‑world query which would heavily depend on colla‑
tion performance. While this is a contrived scenario to focus on collation
performance, it is also not entirely unrealistic, as queries on unindexed
text columns are not uncommon in real‑world applications.

Given the number of different collations and data sets, only a subset of
the conϐigurations from the previous experiment are used here. Because
the goal is to compare the performance of our prototype to MySQL, the
ICU conϐiguration used here is the same as the one used in the benchmark
in the previous section, i.e. ICU_frozen. Also, each collation is only tested
with the data set native to that locale and only with the medium‑sized
versions of the data sets (1000K rows). Given the results fromexperiment
1, this should be sufϐicient to provide a representative comparison of the

performance of the two implementations.

Collation Data set

utf8mb4_icu_en_US_ai_ci en_US (1000K)
utf8mb4_0900_ai_ci en_US (1000K)
utf8mb4_icu_ja_JP_as_cs_ks ja_JP (1000K)
utf8mb4_ja_0900_as_cs_ks ja_JP (1000K)

Table 5.9: Collations and data sets used for generating ϐlame graphs.

The raw results from this experiment consist of 14 different ϐlame
graphs, in the Scalable Vector Graphics (SVG) format. These are interac‑
tive and can be viewed in a web browser where reading them is signiϐi‑
cantly easier. Here a search feature is also available, which can be used to
highlight speciϐic functions by name. Because of this, the full set of ϐlame
graphs are attached to the report and are also available on GitHub 10. A
subset of these will be presented here, to illustrate the results of the ex‑
periment. This subset is chosen to show the most interesting results and
to show the difference between the ICU andMySQL implementations. The
subset consists of the two pairs of collation and data locale shown in ta‑
ble 5.9, which are respectively the simplest and most complex test cases
available. Other conϐigurations are omitted because they are either very
similar to one of these or fall in between them in terms of time spent on
collation. For the sake of readability in printed format, the included ϐlame
graphs are annotated with boxes, arrows, and text to indicate which por‑
tion of the graph is collation‑speciϐic code. The recorded data includes all
CPU activity in the server during the execution of the queries, which is not
all speciϐic to collation performance.

5.3.2 Results

The results of this experiment are shown in ϐig. 5.6 and ϐig. 5.7. Here we
can see that the ICU implementation spends signiϐicantly more time on
collation functions than the MySQL implementation using the default col‑
lation, indicating that the ICU implementation is less performant in this

10https://github.com/LarsV123/master‑util/tree/master/results/experiment2

https://github.com/LarsV123/master-util/tree/master/results/experiment2

(a) ICU (utf8mb4_icu_en_US_ai_ci)

(b)MySQL (utf8mb4_0900_ai_ci)

Figure 5.6: Flame graphs comparing execution of ORDER BY queries for
en_US collations. Annotations indicate collation‑speciϐic functions.

(a) ICU (utf8mb4_icu_ja_JP_as_cs_ks)

(b)MySQL ‑ Japanese (ja_JP)

Figure 5.7: Flame graphs comparing execution of ORDER BY queries for
ja_JP collations. Annotations indicate collation‑speciϐic functions.

case. This contradicts the results from the previous experiment, where
the ICU collation was only slightly slower in the same scenario. It is difϐi‑
cult to speculate as to the exact reason for this difference, as these exper‑
iments measure slightly different performance metrics. While the pre‑
vious experiment measure the total execution time for a query (what is
sometimes called wall‑clock time), this experiment measures time spent
on computation by the CPU. Also, while the experimentswere done on the
same computer and with the same data, the measurements were done at
different times, and there may have been other processes running on the
computer which could have affected the results. Some degree of variation
here is therefore to be expected.

However, theMySQL implementationusing the Japanese collation spends
signiϐicantly more time on collation functions than the ICU implementa‑
tion using the same collation. Here we can seemore clearly that while the
ICU implementation is consistent in its total use of CPU time, the MySQL
implementation spends signiϐicantlymore computational resourceson Japanese
collation. In this speciϐic scenario, the slowestMySQLcollation spent roughly
three times as much CPU time on collation as the fastest MySQL colla‑
tion. This could indicate that the ICU implementation is more generic
andwill generally have similar performance regardless of the speciϐic col‑
lation used, while the MySQL collations vary more in their performance
characteristics. This is consistent with the results from experiment 1,
where the ICU implementation was generally faster than the MySQL im‑
plementation for more complex collations.

Aswe can see in the ϐlamegraphs for the ICU collations, or rather what
we cannot see, is that the conversion fromUTF‑8 toUTF‑16 is not a signiϐi‑
cant part of the execution time. It is such a small portion of total execution
time that is not visible in the graph, generally taking up less than 0.2% of
the total 11. Regardless of other results, this at least shows that having
to convert between these formats should not cause any signiϐicant per‑
formance issues. This resolves one of the questions we had at the start
of the project, namely whether the need to convert to UTF‑16 would be
problematic in an application based on UTF‑8.

11Search for convert_utf8_to_utf16 in the SVG ϐile to ϐind it.

5.3.3 Summary

The key takeaways from this experiment are that the ICU implementation
is less affected by the speciϐic collation used than theMySQL implementa‑
tion and that the conversion fromUTF‑8 to UTF‑16 is not a signiϐicant part
of the execution time. For complex collations, the difference in perfor‑
mance can be signiϐicant, while for simpler collations the difference is less
pronounced and not always in favor of ICU. This is consistent with the re‑
sults from the previous experiment and indicates that the ICU implemen‑
tation is generally preferable to the MySQL implementation for complex
collations. Another interesting point is that collation‑speciϐic work can
take up a signiϐicant amount of CPU resources for certain queries. Queries
that require ordering a large number of unindexed string values accord‑
ing to a complex collation can therefore beneϐit signiϐicantly from using a
more performant collation implementation 12.

5.4 Experiment 3: Validity checks

This experiment has two main goals, which partially overlap in their aim
and which we hope to solve with a single experimental setup. First, we
need a method to detect changes in collation order, which we can use to
verify that the ICU root collation has not changed between different ver‑
sions of the ICU library. As discussed in section 2.4.3, such changes are
one of the main concerns with this project, and we need a way to detect
them. Such changes primarily occur when new characters are assigned
to previously unassigned code points and inserted into the collation or‑
der. These changes should only affect individual characters, which would
simplify our task signiϐicantly.

However, the secondary goal of this experiment is to verify that the
default ICU collations are semantically equivalent to the frozen collations
wehave implemented. If they are semantically equivalent, thatmeans that
they produce the same results in every case regardless of any implemen‑
tation details which might differ 13. These versions of our ICU‑based col‑
lations are available in the ϐirst and second build conϐigurations listed in

12This is admittedly less than ideal, and something to avoid in real‑world applications.
13See section 2.2.3.

table 5.1 respectively. Aswe discussed in section 4.3, the frozen collations
are created by exporting the rule set from a normal ICU Collator object
(which is created based on a locale identiϐier) and then creating a new
RuleBasedCollator object from this rule set. If this is done correctly, the
two collators should be semantically equivalent, and should produce the
same results when used for collation. However, these collations can con‑
tain special rules for multi‑character strings, which complicates matters.
For example, the collation rules for the nb_NO locale (Norwegian Bokmål)
include special rules for the characters å and Å, which are considered to
be the same base letter as the strings aa, Aa and AA 14. Therefore these
multi‑character strings must be tested as well, in order to detect errors
which could affect them.

While it does complicate the task somewhat, we have chosen to create
a test suitewhich should be able to achieve both of our goals. It is designed
to compare the results of two collators and fail if it detects any differences
between them. The data set used contains all valid Unicode code points
and a set of relevant multi‑character strings, chosen to cover the most
likely cases. While this is not guaranteed to catch all differences in colla‑
tion order, it is also not feasible to test all possiblemulti‑character strings.
We therefore consider this a reasonable compromisewhich should sufϐice
to verify that our implementation is both correct and semantically stable.

5.4.1 Deϐining and limiting scope

Validating that two collations are semantically equivalent is not a straight‑
forward task, as the rules in a collation can be quite complex. A common
way to ϐind differences between two collations is to compare all possi‑
ble strings against each other. Even with the reasonable limitation of only
comparing single, validUnicode characters 15, this is still a very largenum‑
ber of comparisons. The number of comparisons required would grow
quadratically with the size of the input, i.e. with a time complexity of
O(n2). Example 5.3 presents a simpliϐied example of this algorithm.

While this algorithm is simple to implement, the number of compar‑
isons requiredmakes it impractical to use. Each test of a pair of collations

14They are considered to differ only on a case or accent level. A case‑ and accent‑
insensitive collation would consider them identical.

15As of Unicode 15.0, this amounts to 149,186 characters.

1 # Create a connection to the DBMS
2 db = create_database_connection ()
3
4 # Create a list of all Unicode characters
5 def get_all_unicode_characters () -> list[str]:
6 query = "SELECT character FROM unicode;"
7 return [row [0] for row in db.cursor.execute(query).

fetchall ()]
8 characters = get_all_unicode_characters ()
9 count: int = len(characters) # ~100 -150k characters , depending

on Unicode version
10
11
12 def compare(collation: str , s1: str , s2: str) -> tuple[int ,

int]:
13 query = f""" SELECT
14 %s = %s COLLATE {collation} AS equal ,
15 %s < %s COLLATE {collation} AS less_than;
16 """
17 return db.cursor.execute(query , (s1 , s2 , s1 , s2)).fetchone

()
18
19 # For each pair of characters , check if they are different
20 differences: list[tuple[str , str]] = []
21 for i in range(0, count - 1):
22 s1 = characters[i]
23 for j in range(i + 1, count):
24 s2 = characters[j]
25 result1 = compare("collation1", s1 , s2)
26 result2 = compare("collation2", s1 , s2)
27 if result1 != result2:
28 differences.append ((s1 , s2))

Example 5.3: Example of n2 test to ϐind collation differences

would take hours or perhaps days to complete. However, the goal of this
experiment is simply to determine if the two collations are semantically
equivalent, not to ϐind all differences between them. This allowsus to limit
the scope of the experiment signiϐicantly, as we only need to ϐind a single
difference between the two collations in order to determine that they are
not semantically equivalent. Also, we do not need to ϐind the actual differ‑
ence, only conϐirm whether or not one exists.

With this in mind, we can use a simpler algorithm which only needs
to determine if two collation implementations produce the same total or‑
der for a given set of strings. This can be done by taking advantage of the
fact that when a set of items is sorted, any elements which are considered
equal will be placed adjacent to each other in the sorted list. They are not
guaranteed to be arranged in any particular order, but the nth element in
the list must be less than or equal to the nth element in a list must be less
than or equal to the (n+1)th item 16. First of all, two collations which are
semantically equivalent will agree on whether the two items are equal or
not. If two collations disagree on whether two items are equal, they can‑
not be semantically equivalent. Also, if the second collation considers the
nth element to be greater than the (n+ 1)th element, it cannot be seman‑
tically equivalent to the ϐirst collation. Example 5.4 presents a simpliϐied
example of this algorithm, whichwewill refer to as the fast test. It is called
the fast test because it is signiϐicantly faster than the n2 test, as it only
needs to compare each item in the list to its immediate successor. The
algorithm is therefore linear in the size of the input, i.e. with a time com‑
plexity of O(n) 17. Because of the improved time complexity, it is viable
to expand the data set being tested signiϐicantlywith onlyminor penalties
to total run time.

The purpose of this test is to conϐirm that two collations which are ex‑
pected to be semantically equivalent, are in fact semantically equivalent.
If the proposed prototype is to be used in a real‑world scenario, this test
should be run regularly whenever a new version of ICU is released. This
would be necessary to conϐirm that no changes in collation order have
been introduced. It is reasonable to assume that such changes will hap‑
pen extremely rarely, but it is still important to be able to detect them
when they do occur. This means that it is a signiϐicant advantage if the
test can be run quickly, as it will be run frequently and on a large number
of collations. In the rare cases where a difference is detected, the n2 test
can be used to ϐind the actual difference, but this is not necessary for the
purposes of this experiment.

Given the simplicity of the fast test, it is also viable to extend the pool

16Assuming the list is sorted in ascending order.
17While it also requires a sorting step, this can take advantage of an index and is not a

signiϐicant factor.

1 db = create_database_connection ()
2
3 # Create a sorted list of all Unicode characters
4 def get_all_unicode_characters(collation: str) -> list[str]:
5 query = f""" SELECT character FROM unicode
6 ORDER BY character COLLATE {collation };
7 """
8 return [row [0] for row in db.cursor.execute(query).

fetchall ()]
9

10 def compare(collation: str , s1: str , s2: str) -> tuple[int ,
int]:

11 query = f""" SELECT
12 %s = %s COLLATE {collation} AS equal ,
13 %s < %s COLLATE {collation} AS less_than;
14 """
15 return db.cursor.execute(query , (s1 , s2 , s1 , s2)).fetchone

()
16
17 characters = get_all_unicode_characters("collation1")
18 count: int = len(characters)
19
20 for i in range(0, count):
21 s1 = characters[i]
22 s2 = characters[i + 1]
23 result1 = compare("collation1", s1 , s2)
24 result2 = compare("collation2", s1 , s2)
25
26 # Check that the second collation agrees on the order of

the characters
27 less_than_or_equal = result2 [0] or result2 [1]
28 if not less_than_or_equal:
29 print("Difference found!")
30 break
31
32 # Check that the two collations agree on the equality of

the characters
33 if result1 != result2:
34 print("Difference found!")
35 break

Example 5.4: Simpliϐied version of fast test to detect collation differences

of test data to include multi‑character strings. This could potentially be
useful if one has reason to suspect that a particular multi‑character string
might be affected by a change in collation rules.

It is alsoworthnoting that the actual implementationof the fast test al‑
lows testing against two separate database connections, even though this
experiment only tests MySQL. In this experiment, this is done in order to
test against different builds of MySQL, but it would be trivial to rewrite
it to support any other interface which supports comparison operations.
The only requirement is that one interface needs to be able to sort the test
data, while both interfaces need to support a comparison operation. This
could be used to verify that the collation order is consistent across differ‑
ent DBMSs, which could be useful in some scenarios. For example, if one
is migrating from one DBMS to another, it might be useful to be able to
verify that the collation order is consistent across the two DBMSs.

5.4.2 Test data

The test data used in this experiment consist of two separate tables, each
containing a selection of strings. The ϐirst table, unicode_characters, con‑
tains all code points in the Unicode range (U+0000 to U+10FFFF) 18. The
full Unicode range, mostly consisting of unassigned code points, is used
here instead of only using valid Unicode characters. By checking the col‑
lation order of all code points, we can detect changes in the collation order
of previously unassigned code points. This typically happens when new
characters are added to Unicode.

In the second table, sample_strings, we have inserted all two‑character
permutations of the Latin alphabet and all multi‑character strings used in
the tailoring rules. The two‑character strings are added as an example,
to illustrate that the test can handle adding arbitrary strings to the test
data. Two‑character strings are also commonly used in tailoring rules (as
they represent ligatures), so it is reasonable to assume that they aremore
likely to be affected by changes in the collation rules compared to more
complex strings. The remaining strings are added to cover strings used
in the applied tailoring rules. They are extracted from the tailoring rules

182048 surrogate code points are excluded, as these cannot represent characters on
their own. This should not affect the validity of the test.

using a Python script, which is included in the source code for this project.
We cannot guarantee that this data set will be sufϐicient to ϐind all pos‑

sible differences in collation order, but it should be sufϐicient for the pur‑
poses of this experiment. The main concern with our implementation is
that the root collation order in ICU is not guaranteed to be stable, andmay
change between different versions of ICU. However, even if this changes,
there is no reason to believe that the changes will add special rules for
multi‑character strings. For example, if ICU added a special rule for the
string Hello, this would not be detected by our test suite. However, it is
unlikely that such a rule would be added and detecting such changes is
beyond the scope of this project. In order to detect such changes, it would
be necessary to manually add the strings to the test data and re‑run this
experiment. This is a cheap and simple operation, as the test suite is rel‑
atively fast to run, but it does require knowledge of which strings might
potentially be affected by the change.

5.4.3 Test process

The test setup consists of two separate database connections, each con‑
nected to a MySQL server. For this test, we have built two versions of our
prototype, in order to compare their collation orders. These are therefore
run separately, running on ports 3306 and 3307 respectively. The ϐirst
version uses the default ICU collation rules and the second version uses
the frozen collation rules, as described in section 5.1.1. This means that
we are comparing the collation order of the default ICU collation rules,
taken from a Locale object, with our implementation using static tailoring
strings. If these are equivalent, this would indicate that our implementa‑
tion is correct and semantically equivalent to the default way of using ICU
collations.

We use the fast test to compare the collation order of the two versions,
running the test for every ICU‑based collation. The data for the test is gen‑
erated by running a query against the ϐirst connection, selecting all strings
from the two tables described above, and ordering themwith the collation
wewant to test. We then iterate through this sorted list with both connec‑
tions, comparing each string with its preceding string in the list. In other
words, both versions of the collation are given queries like SELECT a = b,
a < b;, SELECT b = c, b < c; et cetera. The result itself does not matter, only

that both collations give the same result for each pair of strings tested. If
they at any point disagree, the collations are not equivalent and the test
fails. This process is automated using a Bash script and the results output
directly to the terminal 19.

5.4.4 Results

Collation Result

utf8mb4_icu_en_US_ai_ci Success
utf8mb4_icu_en_US_as_cs Success
utf8mb4_icu_fr_FR_ai_ci Success
utf8mb4_icu_ja_JP_as_cs Success
utf8mb4_icu_ja_JP_as_cs_ks Success
utf8mb4_icu_nb_NO_ai_ci Success
utf8mb4_icu_zh_Hans_as_cs Success

Table 5.10: Collations validated by the fast test, comparing the frozen col‑
lations with their equivalent Collator+Locale versions.

5.4.5 Summary

In table 5.10 we see the results from running the fast validation test on
all of the ICU based collations we have implemented. As we expected, the
test was successful for every tested collation. This shows that we have
detected no differences between our frozen collations, implemented with
static strings and RuleBasedCollator, and the equivalent collations using
the Collator class with a Locale object. This is a strong indication that the
frozen collations are semantically equivalent to the current collations in
ICU, which wouldmean that our implementation is correct. However, this
is not a guarantee, as there may be other differences between the two
implementations that are not detected by this test. Given the time con‑
straints of this project, we have not been able to perform amore thorough
analysis of the differences between the two implementations.

19https://github.com/LarsV123/master‑util/blob/master/src/experiment3.sh

https://github.com/LarsV123/master-util/blob/master/src/experiment3.sh

CHAPTER6
CONCLUSION

This thesis started with four related research questions, which we will
revisit to explain how we answered them:

RQ1 How can applications that require semantic stability use ICU for col‑
lation without requiring a static library version?

RQ2 Given that ICU is a specialized library, does it perform better than
the current collation implementation in MySQL?

RQ3 Does it harm performance to enforce semantic stability in ICU?

RQ4 How can we detect changes to a collation order?

RQ1, our primary research question, concerned whether it was pos‑
sible to enforce semantic stability in the ICU library without requiring a
static version of the library. We show this is possible by implementing a
proof‑of‑concept prototype that satisϐies both requirements. The results
in section 5.4 verify the validity of the approach. By integrating our pro‑
totype into MySQL, we also show that it is possible to use ICU as a drop‑in
replacement for existing collations. From this, we see that using themeth‑
ods outlined here, MySQL and other applications with similar require‑
ments can take advantage of the ICU library without sacriϐicing semantic
stability.

85

The benchmarks in section 5.2 show that the performance of our pro‑
totype is at least comparable to the existing implementations and, inmany
cases, outperforms them. The results indicate that collations implemented
using ICU have similar performance regardless of the collation rules used,
while the different MySQL implementations vary in performance. This
variance is also visible in the results of section 5.3, where we measured
the amount of CPU time used by collation‑speciϐic functions rather than
total execution time. While the impact on total execution time was less
pronounced, these results show that the slowest MySQL collations use
roughly three times as much CPU time as the fastest ones. These two ex‑
periments demonstrate the advantage of using ICU for collation, as it can
provide consistent performance regardless of the collation rules. There‑
fore, the answer to RQ2 is inconclusive in the case of the default collation
but positive for the other collations tested.

We also created a prototype variant with additional collation rules
added, imitating the situation where we must compensate for unwanted
changes in the underlying rules. This variantwas tested in section 5.2, and
the results show that the performance of this prototype is comparable to
the original prototype. Therefore we conclude that the answer to RQ3 is
negative, as the results indicate that enforcing semantic stability does not
impact performance.

RQ4, our ϐinal research question, concerned the ability to detect such
changes in the underlying rules and the practicality of doing so. We dis‑
cuss a knownmethod for ϐinding differences in collation orders and a util‑
ity that implements a faster test to detect whether changes exist. This test
conϐirmswhether or not two collations (or versions of the same collation)
are semantically equivalent. The utility is not dependent on ICU orMySQL
and could be used independently of both with minor modiϐications. For
this reason, it could be helpful to anyone who wishes to detect changes in
collation rules. Because of the improved run time of this test, it could be
practical to use it as part of automated testing, which would allow appli‑
cations to detect changes in the underlying rules as soon as they occur.

6.1 Future work

The core problemwhich inspired this thesiswas that the ICU library is not
semantically stable and that this is a problem for applications that require
semantic stability. Crucially, this is a problem for indexes in DBMSs, which
become corrupted by changes in the underlying collation rules. Alternate
solutions to this problem could be investigated, such as repairing indexes
more efϐiciently after a collation change. The naive solution to this would
entail traversing the leaf nodes of the index and checkingwhether they are
in collation order, scaling linearly with the number of indexed records.

An alternative andmore general approachwould be to rewrite the ICU
library in such away as to guarantee semantic stability or at leastwarn the
user when it is not possible. This approach would be a signiϐicant under‑
taking requiring much work. However, with the increasing use of ICU in
applications such as PostgreSQL, it may be worth considering. It would
be worthwhile investigating whether the ICU library could be versioned
in such a way as to guarantee semantic stability and whether this would
be a practical solution.

Finally, if MySQL or other applications wish to use the ideas discussed
in this thesis, it is advisable to perform further testing. The performance
benchmarks carriedout in this thesiswere limited in scopeandonly tested
on a single platform. AsMySQL is a cross‑platformapplication, itwould be
advisable to conduct more extensive testing. This testing should include
a broader set of collations and all platforms ofϐicially supported.

TABLE OF ABBREVIATIONS

Term Deϐinition
API Application Programming Interface
CLDR Common Locale Data Repository
DBMS Database Management System
DUCET Default Unicode Collation Element Table
ICU International Components for Unicode
OSS Open Source Software
SQL Structured Query Language
UCA Unicode Collation Algorithm
XML Extensible Markup Language

Table 1: List of abbreviations used in the text.

89

APPENDIXA
APPENDIX A

This appendix contains the results of the experiments described in chap‑
ter 5. See that chapter for a more detailed explanation of the results.

A.1 Experiment 1 ‑ Performance benchmark

This section presents the full, aggregated results from section 5.2 for the
medium‑sized data set. As discussed in section 5.2.3, the results for the
other data sets are similar enough that they are not included here.

This experiment consists of threemeasurements (comparison, andor‑
dering in both directions) for various combinations of collation and data
locale. The ICU collations were tested in three different conϐigurations,
while the MySQL collations were tested once. These conϐigurations are
described in section 5.2. We will refer to section 5.2.3 for a more detailed
explanation of what these tables show, as they are identical to those pre‑
sented there.

The locale column speciϐies the locale of the data set being tested. For
example, the data set for the en_US locale contains English names, while
the data set for the ja_JP locale contains Japanese names. Because of the
size of the tables, they are split on both conϐigurations (ICU variation or
MySQL) and the operation being measured.

91

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_0900_ai_ci en_US 4.76 0.05 0
utf8mb4_0900_as_cs en_US 5.36 0.04 12.67
utf8mb4_ja_0900_as_cs en_US 7.16 0.05 50.43
utf8mb4_ja_0900_as_cs_ks en_US 7.31 0.27 53.6
utf8mb4_nb_0900_ai_ci en_US 5.44 0.07 14.23
utf8mb4_zh_0900_as_cs en_US 7.66 0.17 61
utf8mb4_0900_ai_ci fr_FR 5.33 0.15 11.97
utf8mb4_ja_0900_as_cs ja_JP 7.25 0.21 52.27
utf8mb4_ja_0900_as_cs_ks ja_JP 7.69 0.17 61.67
utf8mb4_nb_0900_ai_ci nb_NO 5.44 0.1 14.38
utf8mb4_zh_0900_as_cs zh_Hans 6.34 0.19 33.28

Table A.1: ORDER BY ASC for all MySQL collations.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_0900_ai_ci en_US 4.99 0.05 0
utf8mb4_0900_as_cs en_US 5.45 0.05 9.31
utf8mb4_ja_0900_as_cs en_US 6.75 0.05 35.35
utf8mb4_ja_0900_as_cs_ks en_US 7.46 0.05 49.56
utf8mb4_nb_0900_ai_ci en_US 5.68 0.07 13.81
utf8mb4_zh_0900_as_cs en_US 8.16 0.17 63.56
utf8mb4_0900_ai_ci fr_FR 5.42 0.13 8.72
utf8mb4_ja_0900_as_cs ja_JP 7.33 0.16 46.96
utf8mb4_ja_0900_as_cs_ks ja_JP 7.81 0.17 56.61
utf8mb4_nb_0900_ai_ci nb_NO 5.68 0.04 13.78
utf8mb4_zh_0900_as_cs zh_Hans 6.41 0.17 28.43

Table A.2: ORDER BY DESC for all MySQL collations.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_0900_ai_ci en_US 4.64 0.04 0
utf8mb4_0900_as_cs en_US 4.51 0.04 ‑2.87
utf8mb4_ja_0900_as_cs en_US 5.74 0.04 23.58
utf8mb4_ja_0900_as_cs_ks en_US 5.73 0.27 23.4
utf8mb4_nb_0900_ai_ci en_US 4.81 0.03 3.52
utf8mb4_zh_0900_as_cs en_US 5.69 0.04 22.54
utf8mb4_0900_ai_ci fr_FR 5.05 0.13 8.62
utf8mb4_ja_0900_as_cs ja_JP 5.77 0.17 24.32
utf8mb4_ja_0900_as_cs_ks ja_JP 5.76 0.22 24.04
utf8mb4_nb_0900_ai_ci nb_NO 4.77 0.11 2.74
utf8mb4_zh_0900_as_cs zh_Hans 5.64 0.19 21.35

Table A.3: Equality comparison for all MySQL collations.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_icu_en_US_ai_ci en_US 5.35 0.07 12.51
utf8mb4_icu_en_US_as_cs en_US 5.45 0.1 14.51
utf8mb4_icu_fr_FR_ai_ci en_US 5.5 0.16 15.52
utf8mb4_icu_ja_JP_as_cs en_US 6.51 0.07 36.72
utf8mb4_icu_ja_JP_as_cs_ks en_US 5.98 0.07 25.72
utf8mb4_icu_nb_NO_ai_ci en_US 5.59 0.06 17.57
utf8mb4_icu_zh_Hans_as_cs en_US 6.2 0.04 30.35
utf8mb4_icu_fr_FR_ai_ci fr_FR 5.6 0.12 17.72
utf8mb4_icu_ja_JP_as_cs ja_JP 6.33 0.15 32.99
utf8mb4_icu_ja_JP_as_cs_ks ja_JP 6.58 0.22 38.16
utf8mb4_icu_nb_NO_ai_ci nb_NO 5.53 0.14 16.17
utf8mb4_icu_zh_Hans_as_cs zh_Hans 5.81 0.19 22.03

Table A.4: ORDER BY ASC for all ICU_default collations.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_icu_en_US_ai_ci en_US 5.36 0.07 7.47
utf8mb4_icu_en_US_as_cs en_US 5.48 0.06 9.94
utf8mb4_icu_fr_FR_ai_ci en_US 5.7 0.16 14.31
utf8mb4_icu_ja_JP_as_cs en_US 6.42 0.25 28.6
utf8mb4_icu_ja_JP_as_cs_ks en_US 6.54 0.07 31.02
utf8mb4_icu_nb_NO_ai_ci en_US 5.4 0.06 8.27
utf8mb4_icu_zh_Hans_as_cs en_US 5.82 0.04 16.62
utf8mb4_icu_fr_FR_ai_ci fr_FR 5.57 0.13 11.59
utf8mb4_icu_ja_JP_as_cs ja_JP 6.35 0.15 27.37
utf8mb4_icu_ja_JP_as_cs_ks ja_JP 6.62 0.06 32.67
utf8mb4_icu_nb_NO_ai_ci nb_NO 5.55 0.07 11.24
utf8mb4_icu_zh_Hans_as_cs zh_Hans 5.9 0.15 18.28

Table A.5: ORDER BY DESC for all ICU_default collations.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_icu_en_US_ai_ci en_US 4.58 0.03 ‑1.3
utf8mb4_icu_en_US_as_cs en_US 4.67 0.09 0.54
utf8mb4_icu_fr_FR_ai_ci en_US 5.2 0.03 11.84
utf8mb4_icu_ja_JP_as_cs en_US 5.36 0.25 15.34
utf8mb4_icu_ja_JP_as_cs_ks en_US 5.82 0.04 25.29
utf8mb4_icu_nb_NO_ai_ci en_US 4.92 0.03 5.84
utf8mb4_icu_zh_Hans_as_cs en_US 5.5 0.03 18.48
utf8mb4_icu_fr_FR_ai_ci fr_FR 5 0.12 7.7
utf8mb4_icu_ja_JP_as_cs ja_JP 5.7 0.19 22.62
utf8mb4_icu_ja_JP_as_cs_ks ja_JP 5.89 0.22 26.88
utf8mb4_icu_nb_NO_ai_ci nb_NO 4.65 0.03 0.2
utf8mb4_icu_zh_Hans_as_cs zh_Hans 5.38 0.15 15.78

Table A.6: Equality comparison for all ICU_default collations.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_icu_en_US_ai_ci en_US 5.06 0.08 6.32
utf8mb4_icu_en_US_as_cs en_US 5.03 0.09 5.64
utf8mb4_icu_fr_FR_ai_ci en_US 5.5 0.16 15.54
utf8mb4_icu_ja_JP_as_cs en_US 5.71 0.09 20.08
utf8mb4_icu_ja_JP_as_cs_ks en_US 6.26 0.08 31.48
utf8mb4_icu_nb_NO_ai_ci en_US 5.24 0.14 10.11
utf8mb4_icu_zh_Hans_as_cs en_US 5.58 0.1 17.18
utf8mb4_icu_fr_FR_ai_ci fr_FR 5.36 0.13 12.53
utf8mb4_icu_ja_JP_as_cs ja_JP 6.09 0.21 28.06
utf8mb4_icu_ja_JP_as_cs_ks ja_JP 6.32 0.24 32.89
utf8mb4_icu_nb_NO_ai_ci nb_NO 5.21 0.12 9.5
utf8mb4_icu_zh_Hans_as_cs zh_Hans 5.65 0.2 18.63

Table A.7: ORDER BY ASC for all ICU_frozen collations.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_icu_en_US_ai_ci en_US 5.09 0.07 1.98
utf8mb4_icu_en_US_as_cs en_US 5.22 0.09 4.72
utf8mb4_icu_fr_FR_ai_ci en_US 5.23 0.15 4.86
utf8mb4_icu_ja_JP_as_cs en_US 6.26 0.08 25.45
utf8mb4_icu_ja_JP_as_cs_ks en_US 5.76 0.08 15.39
utf8mb4_icu_nb_NO_ai_ci en_US 5.33 0.12 6.84
utf8mb4_icu_zh_Hans_as_cs en_US 6 0.09 20.27
utf8mb4_icu_fr_FR_ai_ci fr_FR 5.38 0.17 7.77
utf8mb4_icu_ja_JP_as_cs ja_JP 6.13 0.09 22.85
utf8mb4_icu_ja_JP_as_cs_ks ja_JP 6.35 0.23 27.22
utf8mb4_icu_nb_NO_ai_ci nb_NO 5.27 0.12 5.68
utf8mb4_icu_zh_Hans_as_cs zh_Hans 5.67 0.19 13.58

Table A.8: ORDER BY DESC for all ICU_frozen collations.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_icu_en_US_ai_ci en_US 4.4 0.02 ‑5.29
utf8mb4_icu_en_US_as_cs en_US 4.62 0.02 ‑0.55
utf8mb4_icu_fr_FR_ai_ci en_US 5.01 0.03 7.86
utf8mb4_icu_ja_JP_as_cs en_US 5.65 0.02 21.61
utf8mb4_icu_ja_JP_as_cs_ks en_US 5.66 0.02 21.75
utf8mb4_icu_nb_NO_ai_ci en_US 4.73 0.02 1.78
utf8mb4_icu_zh_Hans_as_cs en_US 5.32 0.02 14.6
utf8mb4_icu_fr_FR_ai_ci fr_FR 4.82 0.12 3.79
utf8mb4_icu_ja_JP_as_cs ja_JP 5.51 0.18 18.58
utf8mb4_icu_ja_JP_as_cs_ks ja_JP 5.71 0.16 22.87
utf8mb4_icu_nb_NO_ai_ci nb_NO 4.66 0.02 0.29
utf8mb4_icu_zh_Hans_as_cs zh_Hans 5.17 0.11 11.4

Table A.9: Equality comparison for all ICU_frozen collations.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_icu_en_US_ai_ci en_US 5.12 0.13 7.69
utf8mb4_icu_en_US_as_cs en_US 5.07 0.19 6.64
utf8mb4_icu_fr_FR_ai_ci en_US 5.57 0.15 16.97
utf8mb4_icu_ja_JP_as_cs en_US 5.76 0.36 21.13
utf8mb4_icu_ja_JP_as_cs_ks en_US 6.31 0.15 32.69
utf8mb4_icu_nb_NO_ai_ci en_US 5.37 0.2 12.8
utf8mb4_icu_zh_Hans_as_cs en_US 5.63 0.31 18.3
utf8mb4_icu_fr_FR_ai_ci fr_FR 5.42 0.14 13.89
utf8mb4_icu_ja_JP_as_cs ja_JP 6.15 0.21 29.19
utf8mb4_icu_ja_JP_as_cs_ks ja_JP 6.42 0.24 34.86
utf8mb4_icu_nb_NO_ai_ci nb_NO 5.31 0.19 11.57
utf8mb4_icu_zh_Hans_as_cs zh_Hans 5.7 0.22 19.79

Table A.10: ORDER BY ASC for all ICU_tailored collations.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_icu_en_US_ai_ci en_US 5.13 0.14 2.84
utf8mb4_icu_en_US_as_cs en_US 5.28 0.09 5.82
utf8mb4_icu_fr_FR_ai_ci en_US 5.28 0.27 5.85
utf8mb4_icu_ja_JP_as_cs en_US 6.31 0.11 26.4
utf8mb4_icu_ja_JP_as_cs_ks en_US 5.83 0.36 16.81
utf8mb4_icu_nb_NO_ai_ci en_US 5.4 0.17 8.21
utf8mb4_icu_zh_Hans_as_cs en_US 6.06 0.12 21.39
utf8mb4_icu_fr_FR_ai_ci fr_FR 5.44 0.15 9.05
utf8mb4_icu_ja_JP_as_cs ja_JP 6.18 0.11 23.84
utf8mb4_icu_ja_JP_as_cs_ks ja_JP 6.43 0.24 28.94
utf8mb4_icu_nb_NO_ai_ci nb_NO 5.33 0.15 6.89
utf8mb4_icu_zh_Hans_as_cs zh_Hans 5.73 0.2 14.89

Table A.11: ORDER BY DESC for all ICU_tailored collations.

Collation Locale Time
(s)

Std. dev
(s)

∆ baseline
(%)

utf8mb4_icu_en_US_ai_ci en_US 4.43 0.04 ‑4.6
utf8mb4_icu_en_US_as_cs en_US 4.65 0.06 0.02
utf8mb4_icu_fr_FR_ai_ci en_US 5.04 0.32 8.41
utf8mb4_icu_ja_JP_as_cs en_US 5.66 0.23 21.89
utf8mb4_icu_ja_JP_as_cs_ks en_US 5.68 0.17 22.24
utf8mb4_icu_nb_NO_ai_ci en_US 4.74 0.08 2.11
utf8mb4_icu_zh_Hans_as_cs en_US 5.34 0.17 14.92
utf8mb4_icu_fr_FR_ai_ci fr_FR 4.88 0.12 4.99
utf8mb4_icu_ja_JP_as_cs ja_JP 5.54 0.18 19.31
utf8mb4_icu_ja_JP_as_cs_ks ja_JP 5.74 0.18 23.54
utf8mb4_icu_nb_NO_ai_ci nb_NO 4.68 0.07 0.83
utf8mb4_icu_zh_Hans_as_cs zh_Hans 5.21 0.13 12.27

Table A.12: Equality comparison for all ICU_tailored collations.

APPENDIXB
APPENDIX B

This appendix contains code examples that are either too long to ϐit in the
main text or are not essential to the understanding of the thesis. The code
examples are listed in the order of their appearance in the text.

B.1 Implementation

The following code snippet demonstrates how the frozen tailoring strings
used in the implementation are generated.

1 #include <unicode/coll.h>
2 #include <unicode/errorcode.h>
3 #include <unicode/locid.h>
4 #include <unicode/regex.h>
5 #include <unicode/uchar.h>
6 #include <unicode/ucol.h>
7 #include <unicode/unistr.h>
8 #include <unicode/unorm2.h>
9 #include <unicode/usearch.h>

10 #include <unicode/ustream.h>
11 #include <unicode/ustring.h>
12 #include <unicode/utypes.h>
13
14 #include <iostream >
15 #include <vector >

99

16
17 #include "unicode/coll.h"
18 #include "utils.hpp"
19
20 // Create a collator with a given locale ID and extract the

tailoring rules
21 void get_tailoring(COLLATION collation) {
22 // Create collator
23 UErrorCode status = U_ZERO_ERROR;
24 icu:: Locale locale = icu:: Locale :: createFromName(collation.

name.c_str ());
25 icu:: Collator* collator = icu:: Collator :: createInstance(

locale , status);
26
27 // Get size of ruleset
28 UCollator* ucollator = collator ->toUCollator ();
29 int32_t rulesLength = ucol_getRulesEx(ucollator ,

UCOL_TAILORING_ONLY , NULL , 0);
30
31 // Allocate buffer for ruleset
32 UChar* rules = new UChar[rulesLength];
33 ucol_getRulesEx(ucollator , UCOL_TAILORING_ONLY , rules ,

rulesLength);
34
35 // Create string from ruleset
36 UnicodeString rules_string(rules , rulesLength);
37
38 // Write ruleset to a file with the given locale name
39 string filename = "rules/" + collation.name + ".txt";
40 cout << "Writing ruleset to " << filename << endl;
41 ofstream file;
42 file.open(filename , ios::out | ios:: trunc);
43 file << rules_string;
44 file.close ();
45 }
46
47 // Extract the tailoring rules from the root collation
48 void get_root_collation_tailoring () {
49 // Create collator
50 UErrorCode status = U_ZERO_ERROR;
51 icu:: Locale locale = icu:: Locale :: createFromName("en_US");
52 icu:: Collator* collator = icu:: Collator :: createInstance(

locale , status);
53
54 // Get size of ruleset

55 UCollator* ucollator = collator ->toUCollator ();
56 int32_t rulesLength = ucol_getRulesEx(ucollator ,

UCOL_FULL_RULES , NULL , 0);
57
58 // Allocate buffer for ruleset
59 UChar* rules = new UChar[rulesLength];
60 ucol_getRulesEx(ucollator , UCOL_FULL_RULES , rules ,

rulesLength);
61
62 // Create string from ruleset
63 UnicodeString rules_string(rules , rulesLength);
64
65 // Write ruleset to a file with the given locale name
66 string filename = "rules/root.txt";
67 cout << "Writing ruleset to " << filename << endl;
68 ofstream file;
69 file.open(filename , ios::out | ios:: trunc);
70 file << rules_string;
71 file.close ();
72 }
73
74 int main(int argc , char** argv) {
75 // All locales used in the experiment
76 vector <string > locales = {"nb_NO", "en_US", "uk_UA", "th_TH"

, "zh_Hans"};
77
78 // Get tailoring for all locales
79 for (auto locale : locales) {
80 cout << "Locale: " << locale.name << endl;
81 get_tailoring(locale);
82 }
83
84 // Get tailoring for root collation
85 get_root_collation_tailoring ();
86 }

Example B.1: Method used for extracting tailoring rules from ICU Collator
object.

BIBLIOGRAPHY

[1] Incorporated Merriam‑Webster. Merriam‑Webster Dictionary.
2023. URL: https://www.merriam-webster.com/ (visited on
2023‑06‑08).

[2] ICU Project. ICU on GitHub. 2022. URL:
https://github.com/unicode-org/icu (visited on 2022‑10‑18).

[3] Inc. Unicode. About Unicode. 2023. URL:
https://home.unicode.org/about-unicode/ (visited on
2023‑06‑13).

[4] Terry A. Halpin. Conceptual Queries. URL:
http://www.orm.net/pdf/conceptqueries.pdf (visited on
2022‑12‑13).

[5] Lars‑Olav Vågene. “Using the ICU library for collations in MySQL”.
Preparatory project. 2022.

[6] D Feitosa et al. “CODE reuse in practice: Beneϐiting or harming
technical debt”. In: The Journal of Systems and Software 167
(2020).

[7] S Haeϐliger, G von Krogh, and S Spaeth. “Code Reuse in Open
Source Software”. In: Management science 1 (2007), pp. 180–193.
ISSN: 0025‑1909.

103

https://www.merriam-webster.com/
https://github.com/unicode-org/icu
https://home.unicode.org/about-unicode/
http://www.orm.net/pdf/conceptqueries.pdf

[8] Semver.org. Semantic Versioning 2.0.0. 2023. URL:
https://semver.org/ (visited on 2023‑05‑18).

[9] Fedora Project. Fedora Packaging Guidelines. 2022. URL: https:
//docs.fedoraproject.org/en-US/packaging-guidelines/
(visited on 2022‑10‑18).

[10] Thomas H. Cormen et al. Introduction to Algorithms. 3rd ed. MIT
press, 2009. ISBN: 978‑0262033848.

[11] Ralph Grimaldi. Discrete and Combinatorial Mathematics: An
Applied Introduction. 5th ed. Pearson, 2014. ISBN:
978‑1‑292‑02279‑6.

[12] Unicode Consortium. Unicode Collation Algorithm. 2022. URL:
https://unicode.org/reports/tr10/ (visited on 2022‑11‑21).

[13] Richard Gillam. Unicode Demystiϔied: A Practical Programmer’s
Guide to the Encoding Standard. Addison Wesley, 2002. ISBN:
0‑201‑70052‑2.

[14] ISO/IEC 9075‑2:2016: Information technology—Database
languages—SQL—Part 2: Foundation (SQL/Foundation). Standard.
International Organization for Standardization, 2016‑12.

[15] Unicode Consortium. ICU Documentation: Locale. 2023. URL:
https://unicode-org.github.io/icu/userguide/locale/
(visited on 2023‑06‑10).

[16] Unicode Consortium. Unicode® 15.0.0. 2022. URL:
https://www.unicode.org/versions/Unicode15.0.0/ (visited
on 2023‑06‑10).

[17] International Components for Unicode. ICU ‑ International
Components for Unicode ‑ ICU 4.6 Changes.
https://icu.unicode.org/download/46. 2010. (Visited on
2023‑06‑12).

[18] Unicode Consortium. New Japanese Era. 2018. URL:
http://blog.unicode.org/2018/09/new-japanese-era.html
(visited on 2023‑06‑10).

https://semver.org/
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://unicode.org/reports/tr10/
https://unicode-org.github.io/icu/userguide/locale/
https://www.unicode.org/versions/Unicode15.0.0/
https://icu.unicode.org/download/46
http://blog.unicode.org/2018/09/new-japanese-era.html

[19] Arne Torp. Skandinaviske «særbokstaver». Språknytt. 2002. URL:
https://www.sprakradet.no/Vi-og-
vart/Publikasjoner/Spraaknytt/Arkivet/Spraaknytt_2002/
Spraaknytt_2002_1/Skandinaviske_saerbokstaver/ (visited on
2023‑06‑12).

[20] Dag Gundersen. aa. Ed. by Erik Bolstad. Store norske leksikon,
2023. URL: https://snl.no/aa (visited on 2023‑06‑12).

[21] Unicode Consortium. CLDR. 2023. URL:
https://github.com/unicode-
org/cldr/blob/main/common/collation/no.xml (visited on
2023‑06‑12).

[22] Markus Scherer. Unicode Mail List Archive: ICU library changes
name. 2000‑01. URL: https://unicode.org/mail-arch/unicode-
ml/Archives-Old/UML021/0409.html (visited on 2023‑06‑11).

[23] ICU Project. Collation Service Architecture. 2023. URL:
https://unicode-
org.github.io/icu/userguide/collation/architecture.html
(visited on 2023‑06‑11).

[24] ICU Project. Collation Concepts. 2023. URL: https://unicode-
org.github.io/icu/userguide/collation/concepts.html
(visited on 2023‑06‑11).

[25] ICU Project. ICU Architectural Design. 2023. URL:
https://unicode-org.github.io/icu/userguide/icu/design
(visited on 2023‑05‑18).

[26] Tech Fry. History and Versions of MySQL. 2023. URL:
https://www.techfry.com/programming-tutorial/history-
and-versions-of-mysql (visited on 2023‑06‑11).

[27] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
Database Systems. Pearson, 2015. ISBN: 0‑13‑397077‑9.

[28] Peter Gulutzan. MySQL, MariaDB, International Components for
Unicode. 2017. URL:
https://ocelot.ca/blog/blog/2017/04/11/mysql-mariadb-
international-components-for-unicode/ (visited on
2022‑10‑23).

https://www.sprakradet.no/Vi-og-vart/Publikasjoner/Spraaknytt/Arkivet/Spraaknytt_2002/Spraaknytt_2002_1/Skandinaviske_saerbokstaver/
https://www.sprakradet.no/Vi-og-vart/Publikasjoner/Spraaknytt/Arkivet/Spraaknytt_2002/Spraaknytt_2002_1/Skandinaviske_saerbokstaver/
https://www.sprakradet.no/Vi-og-vart/Publikasjoner/Spraaknytt/Arkivet/Spraaknytt_2002/Spraaknytt_2002_1/Skandinaviske_saerbokstaver/
https://snl.no/aa
https://github.com/unicode-org/cldr/blob/main/common/collation/no.xml
https://github.com/unicode-org/cldr/blob/main/common/collation/no.xml
https://unicode.org/mail-arch/unicode-ml/Archives-Old/UML021/0409.html
https://unicode.org/mail-arch/unicode-ml/Archives-Old/UML021/0409.html
https://unicode-org.github.io/icu/userguide/collation/architecture.html
https://unicode-org.github.io/icu/userguide/collation/architecture.html
https://unicode-org.github.io/icu/userguide/collation/concepts.html
https://unicode-org.github.io/icu/userguide/collation/concepts.html
https://unicode-org.github.io/icu/userguide/icu/design
https://www.techfry.com/programming-tutorial/history-and-versions-of-mysql
https://www.techfry.com/programming-tutorial/history-and-versions-of-mysql
https://ocelot.ca/blog/blog/2017/04/11/mysql-mariadb-international-components-for-unicode/
https://ocelot.ca/blog/blog/2017/04/11/mysql-mariadb-international-components-for-unicode/

[29] MySQL. Bug #27877. 2007. URL:
https://bugs.mysql.com/bug.php?id=27877 (visited on
2023‑06‑13).

[30] MySQL. Bug #40053. 2008. URL:
https://bugs.mysql.com/bug.php?id=40053 (visited on
2023‑06‑13).

[31] MySQL. Bug #9604. 2005. URL:
https://bugs.mysql.com/bug.php?id=9604 (visited on
2023‑06‑13).

[32] MySQL 8.0 Reference Manual :: 10.3.1 Collation Naming
Conventions. 2023. URL:
https://dev.mysql.com/doc/refman/8.0/en/charset-
collation-names.html (visited on 2023‑06‑13).

[33] Peter Eisentraut. More robust collations with ICU support in
PostgreSQL 10. 2017. URL:
https://www.2ndquadrant.com/en/blog/icu-support-
postgresql-10/ (visited on 2022‑10‑06).

[34] Thomas Munro. Don’t Let Collation Versions Corrupt Your
PostgreSQL Indexes. 2022. URL:
https://techcommunity.microsoft.com/t5/azure-database-
for-postgresql/don-t-let-collation-versions-corrupt-
your-postgresql-indexes/ba-p/1978394 (visited on
2023‑06‑13).

[35] PostgreSQL. Collations. 2021. URL:
https://wiki.postgresql.org/wiki/Collations (visited on
2022‑11‑21).

[36] ArangoDB GmbH. ArangoDB ‑ GitHub. 2020. URL:
https://github.com/arangodb/arangodb/tree/devel/
3rdParty/V8/v7.9.317/third_party/icu (visited on
2022‑10‑23).

[37] Apache Software Foundation. Provide a locale/collation‑aware text
comparator. 2012. URL:
https://issues.apache.org/jira/browse/CASSANDRA-4245
(visited on 2022‑10‑23).

https://bugs.mysql.com/bug.php?id=27877
https://bugs.mysql.com/bug.php?id=40053
https://bugs.mysql.com/bug.php?id=9604
https://dev.mysql.com/doc/refman/8.0/en/charset-collation-names.html
https://dev.mysql.com/doc/refman/8.0/en/charset-collation-names.html
https://www.2ndquadrant.com/en/blog/icu-support-postgresql-10/
https://www.2ndquadrant.com/en/blog/icu-support-postgresql-10/
https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/don-t-let-collation-versions-corrupt-your-postgresql-indexes/ba-p/1978394
https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/don-t-let-collation-versions-corrupt-your-postgresql-indexes/ba-p/1978394
https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/don-t-let-collation-versions-corrupt-your-postgresql-indexes/ba-p/1978394
https://wiki.postgresql.org/wiki/Collations
https://github.com/arangodb/arangodb/tree/devel/3rdParty/V8/v7.9.317/third_party/icu
https://github.com/arangodb/arangodb/tree/devel/3rdParty/V8/v7.9.317/third_party/icu
https://issues.apache.org/jira/browse/CASSANDRA-4245

[38] Apache Software Foundation. Installation. 2022. URL:
https://docs.couchdb.org/en/3.2.2-docs/install/unix.html
(visited on 2022‑10‑23).

[39] IBM. Collating sequence. 2021. URL:
https://www.ibm.com/docs/en/i/7.2?topic=concepts-
collating-sequence (visited on 2022‑10‑23).

[40] EnterpriseDB. Unicode collation algorithm. 2022. URL: https:
//www.enterprisedb.com/docs/epas/latest/epas_guide/03_
database_administration/06_unicode_collation_algorithm/
(visited on 2022‑10‑23).

[41] MongoDB Inc. MongoDB ‑ GitHub. 2022. URL: https://github.
com/mongodb/mongo/tree/master/src/third_party/icu4c-57.1
(visited on 2022‑10‑23).

[42] Microsoft Corporation. Collation and Unicode Support. 2022. URL:
https://learn.microsoft.com/en-us/sql/relational-
databases/collations/collation-and-unicode-
support?view=sql-server-ver16 (visited on 2022‑10‑23).

[43] PostgreSQL. PostgreSQL 15.1 Documentation ‑ Appendix E. Release
Notes. 2022. URL:
https://www.postgresql.org/docs/15/release-15.html
(visited on 2022‑11‑21).

[44] D. Richard Hipp. SQLite Documentation. 2022. URL:
https://www.sqlite.org/src/doc/trunk/ext/icu/README.txt
(visited on 2022‑10‑23).

[45] SAP SE. What is ICU, and when is it needed? 2022. URL:
https://infocenter.sybase.com/help/index.jsp?topic=/com.
sybase.help.sqlanywhere.12.0.0/dbadmin/natlang-s-
7944836.html (visited on 2022‑10‑23).

[46] Lars‑Olav Vågene. Using the ICU library for collations in MySQL.
Prototype implementation. 2023. URL:
https://github.com/LarsV123/mysql-server/pull/3/files
(visited on 2023‑06‑13).

https://docs.couchdb.org/en/3.2.2-docs/install/unix.html
https://www.ibm.com/docs/en/i/7.2?topic=concepts-collating-sequence
https://www.ibm.com/docs/en/i/7.2?topic=concepts-collating-sequence
https://www.enterprisedb.com/docs/epas/latest/epas_guide/03_database_administration/06_unicode_collation_algorithm/
https://www.enterprisedb.com/docs/epas/latest/epas_guide/03_database_administration/06_unicode_collation_algorithm/
https://www.enterprisedb.com/docs/epas/latest/epas_guide/03_database_administration/06_unicode_collation_algorithm/
https://github.com/mongodb/mongo/tree/master/src/third_party/icu4c-57.1
https://github.com/mongodb/mongo/tree/master/src/third_party/icu4c-57.1
https://learn.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver16
https://www.postgresql.org/docs/15/release-15.html
https://www.sqlite.org/src/doc/trunk/ext/icu/README.txt
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.12.0.0/dbadmin/natlang-s-7944836.html
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.12.0.0/dbadmin/natlang-s-7944836.html
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.12.0.0/dbadmin/natlang-s-7944836.html
https://github.com/LarsV123/mysql-server/pull/3/files

[47] Lars‑Olav Vågene. Using the ICU library for collations in MySQL.
Utility repository. 2023. URL:
https://github.com/LarsV123/master-util (visited on
2023‑06‑13).

[48] Saša Stamenković. Country List. 2021. URL:
https://github.com/umpirsky/country-list/ (visited on
2022‑12‑08).

https://github.com/LarsV123/master-util
https://github.com/umpirsky/country-list/

	Abstract
	Sammendrag
	Acknowledgements
	Introduction
	Background and motivation
	Problem statement
	Contribution and significance
	Objectives and scope
	Structure of the thesis

	Background and motivation
	Code reuse
	Versioning
	Dependency management

	Collation
	Set theory
	What is collation?
	Semantic stability and equivalence

	Unicode
	CLDR and DUCET
	Practical considerations: An example

	ICU
	Tailoring and comparison levels
	Usage
	Changes across versions

	Databases and collation
	What is an index?
	Practical examples

	Related work and state of the art
	Collation in MySQL
	Background and motivation
	Implementation details
	Previous debate

	Collation in PostgreSQL
	Other DBMSs using ICU

	Implementation
	Overview of the prototype
	Why use MySQL?
	Collators and how they are made
	Collation operations
	Implemented collations
	Development flow
	Limitations and simplifications

	Experiments and results
	Experimental setup
	Building MySQL

	Experiment 1: Performance benchmarks
	Setup
	Data collection and processing
	Results
	Summary

	Experiment 2: Flame graph comparison
	Setup
	Results
	Summary

	Experiment 3: Validity checks
	Defining and limiting scope
	Test data
	Test process
	Results
	Summary

	Conclusion
	Future work

	Appendix A
	Experiment 1 - Performance benchmark

	Appendix B
	Implementation

