
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Nora Lien Røneid

Model-Based Estimation for
Latency Guarantees

Master’s thesis in Communication Technology and Digital Security
Supervisor: Yuming Jiang
June 2023

Nora Lien Røneid

Model-Based Estimation for
Latency Guarantees

Master’s thesis in Communication Technology and Digital Security
Supervisor: Yuming Jiang
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: Model-Based Estimation for Latency Guarantees
Student: Nora Lien Røneid

Problem description:

According to ITU-T, one key requirement for communication networks in the year
2030 is the guarantee and assurance of services, where timeliness of data delivery
will be central to enabling time-sensitive applications such as extended reality (XR)
and Tactile Internet (TI). The character of such time-sensitive applications is defined
by latency guarantees, which, for example, could be delivered within 1ms with
a probability of 99.99%. To ensure this, methods that can be used to estimate
guarantees are needed. For instance, when a new service request is received, for
admission control decision, the system needs a method to estimate if its latency
guarantee requirement can be met and if the existing customers’ such guarantees
can still be ensured.

The objective of this project is to review analytical models for latency guarantee
estimation and investigate their validity or applicability. Examples of such models
include those from the classical queueing theory under steady states. Through analysis
of data collected from simulations, the validity or applicability of the reviewed models
will be investigated. Insights will also be generated. Different models will be
considered. The considered setups include Poisson and periodic arrivals for arrival
processes, exponentially distributed, deterministic and upper-bounded service times
for service processes, and FIFO and priority for queueing.

The specific tasks include: (1) Review of analytical models that have been
proposed for latency guarantee estimation. (2) Construct a simulation platform that
enables the collection of related data for latency guarantee analysis, and conduct the
analysis. (3) Compare model-based results with simulation results and discuss the
findings.

Approved on: 2023-01-23
Supervisor: Professor Yuming Jiang, IIK (NTNU)

Abstract

Many new technologies within communication networks have strict re-
quirements when it comes to the latency of the communication within the
network. There are latency requirements that have to be guaranteed to
make sure that the technologies can work as intended. This is important
to be able to avoid situations such as self-driving cars ending up in a
crash, having remote surgeries go wrong, and having video calls being
experienced as choppy and slow. This Master’s thesis investigates whether
or not analytical models can be used for guaranteeing and predicting the
latency within a network through comparisons to results generated by a
simulation of the network. There has not been a lot of research in recent
years on whether or not these models are still applicable.

There is a need to do a literature study to be able to investigate if the
analytical models can be used for guaranteeing latency requirements or
not. A simulation platform also has to be developed to be able to create
results that the model’s results can be compared to. Lastly, graphical
tools are needed to be able to compare the results of the two.

Through this study, it was discovered that most of the results of the
analytical models compare well to the results generated by the simulator.
Some models deviate more from the simulated results than others and
appear too optimistic about how much latency will be present in the
system. The models can consist of both exact and approximated results,
but in general this is not what decides how well the results are lining up.
It is necessary to be aware of if the load level on the system is changing
over time as this will affect the results, especially in the phase between
two load levels.

Sammendrag

Mange nye teknologier innen kommuniserende nettverk setter strenge
krav til forsinkelsen på kommunikasjonen. Det kreves garantier på at
forsinkelseskravene kan holdes for at teknologiene skal kunne fungere
slik de er tenkt. Dette er viktig for å kunne unngå situasjoner som at
selvkjørende biler krasjer, at fjernkirurgi går galt og at videosamtaler
oppleves hakkete og trege. Denne masteravhandlingen undersøker hvorvidt
analytiske modeller kan benyttes for å garantere og forutse forsinkelsene
i et nettverk gjennom sammenlikning med resultater generert ved hjelp
av simuleringer av nettverket. I nyere tid er det gjort lite forskning på
om disse modellene fremdeles er gjeldende.

For å kunne undersøke om de analytiske modellene kan brukes for å
garantere forsinkelseskrav må først en litteraturstudie av modellene bli
gjort. Videre må en simuleringsplattform utvikles for å kunne generere
resultatene modellenes resultater skal sammenliknes med. Til slutt må
resultatene sammenliknes ved hjelp av grafiske verktøy.

Gjennom denne studien er det funnet ut at de fleste resultater fra de
analytiske modellene stemmer godt overens med resultatene generert av
simulatoren. Noen modeller avviker mer fra de simulerte resultatene enn
andre og er for optimistiske om hvor mye forsinkelser som vil oppstå i
systemet. Modellene kan bestå av både eksakte og tilnærmede resultater,
men det er generelt ikke dette som avgjør hvor godt resultatene stemmer
overens. Det er nødvendig å være obs på om belastningsnivået på systemet
endres over tid da dette vil påvirke resultatene, spesielt i overgangsfaser
mellom ulike belastningsnivåer.

Preface

This thesis is written as the final contribution to the 5-year Master
of Science in Communication Technology and Digital Security at the
Norwegian University of Science and Technology (NTNU). The supervisor
for the thesis has been Professor Yuming Jiang at the Department of
Information Security and Communication Technology.

Acknowledgements

I would like to thank my supervisor Professor Yuming Jiang for all the
help and guidance throughout the writing of this thesis and also the
specialisation project last semester. I would also like to give a big thank
you to my family and friends for all the help and support throughout my
five years here in Trondheim.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xv

1 Introduction 1
1.1 Motivation . 1

1.1.1 Related work . 2
1.2 Objectives . 3
1.3 Outline . 3

2 Background 5
2.1 System model and notation . 5

2.1.1 System model . 5
2.1.2 Notation . 7

2.2 Single class . 7
2.2.1 M/M/1 . 7
2.2.2 M/G/1 . 8
2.2.3 M/D/1 . 8
2.2.4 G/G/1 . 8
2.2.5 D/D/1 . 9

2.3 Multiple classes . 9
2.3.1 G/G/1 − priority . 10
2.3.2 M/G/1 − priority . 10

3 Methodology 11
3.1 Literature study . 11
3.2 Simulation . 11

3.2.1 Simulator setup . 11
3.2.2 Simple simulator inputs . 13
3.2.3 Simulate with multiple parts 14
3.2.4 Simulate with multiple sources 14

ix

3.2.5 Output of simulator . 17
3.3 Plotting of theoretical results . 17

3.3.1 Calculation of theoretical parameters 17
3.4 Plotting of simulated results . 18

4 Results 21
4.1 Summary of results . 22
4.2 M/M/1 . 24

4.2.1 Single source . 24
4.2.2 Single source with multiple parts 25
4.2.3 Multiple sources . 28

4.3 M/G/1 . 29
4.4 M/D/1 . 30

4.4.1 Single source . 30
4.4.2 Multiple sources . 31

4.5 G/G/1 . 32
4.5.1 Uniform arrival process and uniform service time distribution

with one source . 32
4.6 D/D/1 . 32
4.7 G/G/1 − priority . 34

4.7.1 One source per class . 34
4.7.2 Multiple sources per class . 35

4.8 M/G/1 − priority . 38
4.8.1 One source per class . 38

5 Discussion 41
5.1 Summary of findings . 41
5.2 M/M/1 . 41
5.3 M/G/1 . 42
5.4 M/D/1 . 43
5.5 G/G/1 . 43
5.6 D/D/1 . 44
5.7 G/G/1 − priority . 44
5.8 M/G/1 − priority . 45
5.9 Limitations and finding variables of real systems 45

6 Conclusion and future work 47
6.1 Conclusion . 47
6.2 Future work . 48

References 51

List of Figures

2.1 System outline with one source . 5
2.2 System outline with multiple classes . 6
2.3 System outline with multiple sources . 6

3.1 Activity diagram for simulator . 12

4.1 M/M/1 model with one source . 24
4.2 M/M/1 model with changning parameters for each part of a run 25
4.3 Theoretical M/M/1 model with changing parameters 25
4.4 M/M/1 model with changing λ . 26
4.5 M/M/1 model with changing λ and µ 27
4.6 Waiting time CCDFs for M/M/1 cases with multiple sources 29
4.7 Simulated M/G/1 waiting time distribution 30
4.8 M/D/1 single source waiting time CCDF 30
4.9 Waiting time CCDF for M/D/1 cases with multiple sources 31
4.10 G/G/1 approximated waiting time CCDF with one source 32
4.11 Simulated delay CCDF for D/D/1 . 33
4.12 G/G/1 − priority single source waiting time CCDF 35
4.13 Waiting time CCDF for G/G/1 − priority cases with multiple sources

with generalised arrival process and exponentially distributed service time 37
4.14 Waiting time CCDF for G/G/1 − priority cases with multiple sources

with generalized arrival process and generalised distributed service time 38
4.15 M/G/1 − priority single source waiting time CCDF 39

xi

List of Tables

2.1 Notation . 7

3.1 Calculation of σ2
a . 18

3.2 Calculation of σ2
s . 18

4.1 Summary of all use cases shown . 22
4.2 M/M/1 with multiple sources simulation cases 28
4.3 Input and output for algorithm 3.1 for cases with multiple sources . . . 28
4.4 M/G/1 case with one source . 29
4.5 M/D/1 with multiple sources simulation cases 32
4.6 D/D/1 simulation cases . 33
4.7 G/G/1 − priority parameters for single source per class case 34
4.8 Input and output for algorithm 3.1 with 10 sources 35
4.9 Input and output for algorithm 3.2 with 10 sources 36
4.10 Input and output for algorithm 3.1 with 100 sources 36
4.11 Input and output for algorithm 3.2 with 100 sources 36
4.12 λi intensities for G/G/1 − priority cases with multiple sources per class 36
4.13 µi intensities for G/G/1 − priority cases with multiple sources per class 37
4.14 Calculated W i for G/G/1 − priority cases 37
4.15 M/G/1 − priority . 38

xiii

List of Algorithms

3.1 Generation of inter-arrival times . 16
3.2 Generation of packet sizes . 16

xv

Chapter1Introduction

This chapter provides an introduction to the thesis. It first motivates the task by
mentioning application fields where the results of this task could be useful. Then
some related work is presented. The objectives and the research questions of the
thesis are presented and lastly, an outline of the rest of this thesis is given.

1.1 Motivation

The communication networks of the future will contain many time-sensitive appli-
cations. There are many fields where these applications can be taken advantage of,
some include industry, robotics and telepresence, virtual reality and healthcare. For
the industry case, sensors and automation are very important. The sensor controller
has to communicate with the sensors with low latency and reliable data transfers.
As for robotics and telepresence, the same type of remote-controlled behaviour is
a prerequisite for most scenarios. For virtual reality, having multiple users commu-
nicate while using the technology, low latency communication is required as well.
Tele-surgery is an application within the healthcare field that also requires extremely
low latency [1]. All these time-sensitive applications need a way to guarantee that
their latency requirements can be kept.

For the 5th generation of mobile networks (5G), one of the three main identified
usage scenarios is Ultra Reliable Low Latency Communication (URLLC). There
are strict latency requirements in URLLC scenarios and it is among other things
required that the end-to-end latency in the network is less than one millisecond
[2]. Some specific use case scenarios in need of URLLC are industry automation,
mission-critical applications and self-driving cars [3]. To have industry automation
run smoothly, the time factor is significant. This means it is dependent on time-
engineered communication where on-time delivery of information is a necessity, hence
keeping the latency at a given time no matter what else is happening [4]. For
mission-critical applications, the latency requirements are important to be kept to

1

2 1. INTRODUCTION

ensure feedback is received fast enough [5]. For the last case mentioned before, with
self-driving cars, to keep the passengers of the vehicles safe, there is a need to respond
to unpredictable events in the span of a few milliseconds [4]. In all of these cases,
there is once again a need to guarantee that the latency requirements are kept.

Another area of technology where there is a lot of progress happening is in the field
of Augmented Reality and Virtual reality (AR/VR), or Extended Reality (XR), this
field includes holographic media and AR glasses. Holographic-Type Communications
(HTC) is a technology where a person in one location can be shown as a hologram
in another location with the information being sent through the network. One
set of extensions to this is to have the hologram be able to be "touched" and this
requires ultra-low delay to work (have the touch feedback feel accurate) [4]. Apple’s
AR glasses have been expected for some years and recently Apple Vision Pro was
announced1. AR glasses add a layer of sight to the user, this could be seeing a city
through the eyes of an architect, discovering the history of a place or creating more
interactive learning experiences for students [6]. Both AR glasses and other AR
technologies require low latency between doing an action and seeing it happen on
the AR display [7].

Consider an example scenario where a customer is using an access point as their
entry point to the network. They are having a video call and require low latency
to be satisfied with the service. Another user is wanting to start a video call using
this same access point, meaning the traffic going through this point would increase.
There needs to be made an admission control decision to decide whether or not this
user can be admitted to the access point for their video call. The decision will be
made based on whether or not the latency guarantees can be held with this added
traffic through the access point. This means there has to be a way to predict what
the new latency with the two users would be. One way to make this prediction
could be to use analytical models of the system, which is why this thesis focuses on
reviewing such models.

In newer times, analysis of these analytical models has not been discovered
through the work on this thesis. That is hence why this Masters’s thesis aims to
review analytical models for latency guarantee estimation and also investigate their
validity or applicability to tomorrow’s communication networks.

1.1.1 Related work

There is not a lot of related work for this that has been discovered while researching
this topic. There are for instance results validating the queueing model M/M/1

1Apple press release: "Introducing Apple Vision Pro: Apple’s first spatial computer", link:
https://www.apple.com/newsroom/2023/06/introducing-apple-vision-pro/ (last visited: Jun. 9,
2023)

https://www.apple.com/newsroom/2023/06/introducing-apple-vision-pro/

1.2. OBJECTIVES 3

dating over 100 years back and other models have also been verified throughout the
years, discovering all of this work goes beyond the scope of this thesis.

In [8], approximated results for the tail in a multiclass system are proposed.
Simulation is then used to decide how accurate the approximations are. This thesis
will use simulation in a similar way by evaluating the applicability of analytical
models.

1.2 Objectives

The objective of this Master’s thesis is to review analytical models for latency
guarantee estimation and investigate their validity or applicability. The investigation
of the analytical models is done by comparing them to simulation results. This
provides insights into whether such models are applicable or what may be needed
to make them applicable. The specific models that will be investigated are M/M/1,
M/G/1, M/D/1, G/G/1, D/D/1, G/G/1 − priority and M/G/1 − priority. The
research question for this thesis is:

RQ: How are analytical models applicable for latency prediction and guarantees, if
at all?

1.3 Outline

Chapter 2 gives the background information needed for the rest of the thesis. This
is done by presenting the formulas needed for finding the results later. Chapter 3
provides the methodology used to create the results needed for answering the research
questions. Chapter 4 presents the results obtained throughout the work with the
objective that is needed for answering the research question. Chapter 5 discusses the
results presented earlier and how these results answer the research question. Chapter
6 gives a conclusion to the results and what they say and gives future work to be
done on this topic.

Chapter2Background

The following chapter contains an introduction to different queueing models investi-
gated in the thesis.

2.1 System model and notation

2.1.1 System model

All queueing models described in this chapter are considered single-server systems
with an infinite queue size. The queue is either consisting of a single class or more
classes with different priority levels. If there is only a single class, packets are handled
in a First In First Out (FIFO) manner to decide which packet to serve next. Figure
2.1 provides an overview of the system described. The cloud shows where the packets
are being generated from with rate λ, the packets arrive in the queue/buffer before
being processed with rate µ [9]. The model time is normalised with the unit being
the expected service time of a packet in a system. The packet size is normalised with
the unit being the expected packet size in bits.

μλ

Figure 2.1: System outline with one source

If there are multiple classes and hence multiple priority levels, a non-preemptive
scheduling algorithm like strict priority is used to decide the next packet to be served.
Figure 2.2 shows how this system will look with multiple clouds generating packets
with rate λi instead of just one and the strict priority being shown by having the

5

6 2. BACKGROUND

different classes enter different queues where the highest priority, λ1, always jumps
the queue by being handled before the packets arriving in the other queues. The
processing part of the system is still the same.

μ

λ1

λ2

λ3

Figure 2.2: System outline with multiple classes

A third system model outline is shown in figure 2.3. This model is showing what
happens if there are multiple sources generating packets for the queue instead of just
one. This case can happen with priority queueing added as well.

μ

λ1

λ2

λi

.
.
.

Figure 2.3: System outline with multiple sources

For all models, the stability condition λ < µ has to be fulfilled for the system to
be able to reach steady state. This means the arrival rate of packets has to be lower
than the service rate of the packets. The formulas presented in this chapter are only
valid as long as the system is stable.

2.2. SINGLE CLASS 7

Table 2.1: Notation

Symbol Description
λ Average arrival rate
σ2

a Variance of interarrival time
µ Average service rate
σ2

s Variance of service time
ρ Server utilization, ρ = λ

µ

δ Average service time
W Waiting time in queue
W Expected waiting time in queue
D System delay
D Expected system delay

2.1.2 Notation

Table 2.1 shows the notation used for the single queue single server system. When
there are multiple classes present, a corresponding subscript is added.

2.2 Single class

With all packets belonging to a single class there is only one priority level with
packets arriving based on the same process and their size is also based on the same
process.

2.2.1 M/M/1

An M/M/1 model means the inter-arrival time of packets follows a Poisson process,
hence are independent and exponentially distributed with parameter λ (memoryless).
The packet sizes are also independent and exponentially distributed meaning service
time is exponentially distributed with parameter µ. This gives the system utilization
of ρ = λ

µ [10].

The M/M/1 model has many exact results from classical queueing theory. The
expected waiting time is shown in equation 2.1, the waiting time distribution, the
Complementary Cumulative Distribution Function (CCDF), is shown in equation
2.2, expected system delay is shown in equation 2.3 and the system delay CCDF is
shown in equation 2.4, all from [11].

8 2. BACKGROUND

W = ρ

µ − λ
(2.1)

P{W > t} = ρe−(µ−λ)t (2.2)

D = 1
µ − λ

(2.3)

P{D > t} = e−(µ−λ)t (2.4)

2.2.2 M/G/1

With M/G/1, packet inter-arrival time is exponentially distributed with parameter
λ. Packets size, and hence service time, does not follow a specified pattern and is
generalised. Parameters are µ and σ2

s . Service time could for instance be uniformally
distributed. Formulas for M/G/1 are hence more generic than for M/M/1. The
expected waiting time shown in [11] is reproduced in equation 2.5.

W = ρ2 + λ2σ2
s

2λ(1 − ρ) (2.5)

2.2.3 M/D/1

An M/D/1 model means the packet’s inter-arrival time follows a Poisson process,
hence is exponentially distributed with parameter λ. The packet sizes are determin-
istic, hence is service time deterministic with parameter µ and service time δ = 1

µ is
constant [11]. Expected waiting time and system delay are given in [11] and shown
in equation 2.6 and 2.7. The expected waiting time distribution is given in equation
2.8.

W = ρ

2(µ − λ) (2.6)

D = ρ

2(µ − λ) + 1
µ

(2.7)

P{W > t} = 1 − (1 − ρ)
⌊t⌋∑

k=0

(ρk − λt)k

k! e−(ρk−λt) (2.8)

2.2.4 G/G/1

With G/G/1, no specific pattern is followed for packet inter-arrival time with pa-
rameters λ and σ2

a. Packets size, and hence service time, does not follow a specified
pattern either, parameters µ and σ2

s . Both processes are hence generalised. [11]

2.3. MULTIPLE CLASSES 9

shows an approximation for the expected waiting time, an upper bound for the ex-
pected waiting time and an approximation for the waiting time distributions CCDF,
reproduced in equation 2.9, 2.10 and 2.11.

W ≈ λ(ρ2 + λ2σ2
s)(σ2

a + σ2
s)

2(1 − ρ)(1 + λ2σ2
s) (2.9)

W ≤ λ(σ2
a + σ2

s)
2(1 − ρ) (2.10)

P{W > t} ≈ ρe−ρt/W (2.11)

2.2.5 D/D/1

With a D/D/1 model, the inter-arrival time of packets is deterministic, this could be
periodic or another pre-determined pattern. The service time is also deterministic;
fixed or other. Parameters used are λ for inter-arrival time and µ for service time.
The system is stable as long as λ < µ [10]. Network calculus can be used to find an
upper bound for the system delay, D. In [11] it is shown how this can be done in
general. Below follows the specific bounds for one source and multiple sources.

When there is one source generating packets for the queue with all packets having
packet size L and the server rate is constant and equal to R the service rate µ is
equal to R

L . This means the upper bound for the system delay is given by

D ≤ L

R
.

When there are multiple sources generating packets for the system where all
packet sizes are equal to L. The number of sources generating packets is equal to I

and the server rate is still constant and equal to R. The upper bound for the system
delay is given by

D ≤ I · L

R
.

2.3 Multiple classes

Each class i can have its own arrival process, packet size distribution and priority
level i. The highest priority level is 1 and the class number i is always equal to the
priority level of the class i. There are few exact results [11].

10 2. BACKGROUND

2.3.1 G/G/1 − priority

For G/G/1 − priority, with the assumption that the expected waiting time for each
class i, W i, is known, the following waiting time distribution from [11] follows:

P{W i > t} ≈ ρe−ρt/W i (2.12)

where the system utilization ρ =
∑

i ρi.

2.3.2 M/G/1 − priority

With M/G/1 − priority all classes have packets arrive by a Poisson process and
inter-arrival times of each class i are exponentially distributed with parameter λi,
hence the combined arrival process is also an exponential distribution. Classes will
have different priority levels, meaning the queueing time for a packet is dependent
on its priority class. Each class service time could be exponentially distributed or
follow another distribution like the uniform distribution, parameters µi and σ2

s,j .
The expected waiting time for each class shown in [11] is:

W i = R

(1 −
∑i−1

j=1 ρj)(1 −
∑i

j=1 ρj)
(2.13)

with
R =

∑
j

ρ2
j + λ2

jσ2
s,j

2λj

To obtain the waiting time distribution for M/G/1 − priority, equation 2.12 can
be used, but now without the assumption that W i is known. The equation will hence
look the same:

P{W i > t} ≈ ρe−ρt/W i (2.14)

Chapter3Methodology

The methodology chapter provides an overview of the methods and procedures used
in this project. It is split into multiple parts and starts with the literature study.
The simulation process is then described and how the simulator works. Lastly, it is
shown how both the theoretical and simulated results can be plotted.

3.1 Literature study

A literature study was done to find theoretical formulas for use and comparison with
simulated results. The result of the literature study is shown in chapter 2.

3.2 Simulation

Creating, using and verifying the simulator is a big part of this thesis. Below follows
the steps made in this process. Firstly, the setup of the simulator is presented. Then,
how to generate a dataset from simple inputs and use this for verification purposes
is shown. Extensions of the simulator are then presented. Lastly, algorithms needed
for the generation of different needed inputs for the simulator are described.

The full code for the simulator created for this project can be found on GitHub1.
It consists of files used for generating input to the simulator, running the simulator
and plotting the results of the simulator. It also has files for running specific use
cases with corresponding folders where inputs and results are saved.

3.2.1 Simulator setup

The simulator is implemented in Python using SimPy [12] for simulation-specific
purposes and NumPy [13] for randomized number pulling. The simulator is set up in
such a way that it can handle many different cases based on what inputs are given
to it.

1Full GitHub project: https://github.com/noralir/TTM4905

11

https://github.com/noralir/TTM4905

12 3. METHODOLOGY

Figure 3.1 provides an overview of how the simulator is working. When the
simulator is started a generator starts as many packet generators as sources wanted
for the simulation. The packet generator then creates packets with the inter-arrival
time of the generation of the packets based on what distribution it is following. The
generated packets then go through the system before saving their data.

The simulator takes multiple inputs to decide how it will work for specific runs. To
keep track of the specific parameters and values used for each simulation, a JSON file
is used. This file is added as an input variable to the simulator as input_variables.
How this JSON file can look is shown in section 3.2.2, 3.2.3 and 3.2.4. Another field
that is added to the simulator is the filename_data field. It can either take the
boolean value False if the full output dataset of the simulator should not be saved,
or, if it is going to be saved, filename_data takes the name of the CSV file the data
should be saved in as input. The input field folder_nth follows a similar pattern as
it decides if packet #n (#0, #10, #100, #1000 and #10000) should be saved by
either getting the boolean False or the folder where the data should be saved.

generator(num)

packet_generator(num)

i == num?

True

False

i = 0

i = 0

timeout for
t time

i += 1

i == num?

True

False

i += 1

pro
ces

s

pro
ces

s

packet()

1timeout for
t time

server

save data

Figure 3.1: Activity diagram for simulator

3.2. SIMULATION 13

In addition to just running the simulator as is, there is also the option to decide
how many times it should be run by using another function on top. For this function,
the same inputs as for the simulator needs to be provided as well as a number for
how many times it should be run. This function is especially needed if there is a
want to collect packet #n from each run, as one run would only provide one packet
for this collection.

Further in this section follows a more in-depth description of how the inputs and
outputs of the simulator look and are created. First a simple simulator, then some
extensions to the simulator and lastly some helper algorithms to be used for input
variable generation.

3.2.2 Simple simulator inputs

The simulator generates packets based on inputs given to the function via a JSON
file. Below are the inputs used by the simulator with example values. The λ for
the system becomes the inverse of the average inter-arrival time, avg_pkt_ia_time.
Note that when capacity is set to 1, the expected service time equals the packet size
avg_pkt_len_bits, meaning µ becomes the inverse of the packet size. The example
input values would generate a simulation following an M/M/1 distribution with
λ = 1/15 and µ = 1/10.

{
"avg_pkt_ia_time": 15, # Average inter-arrival time for packets
"dist_type_pkt_ia_time": "M",# Arrival process distribution
"avg_pkt_len_bits": 10, # Average packet size
"dist_type_pkt_len": "M", # Packet size distribution
"capacity": 1, # Capacity of server
"num_pkts": 1000 # Number of packets to be generated
}

The dist_type_pkt_ia_time field determines the arrival process distribution. The
value can be "M", "D" or "G_uniform", resulting in respectively exponential, deter-
ministic (periodic) or uniform distribution of packet arrivals. Similarly, the field
dist_type_pkt_len takes input values "M", "D" or "G_uniform" resulting in respec-
tively exponential, deterministic (fixed) or uniform distribution of packet sizes and
hence service time.

14 3. METHODOLOGY

Verification of simple simulator

The initial simple simulator has to be verified. After verifying that it is working as
intended, it can be extended to handle more complex data and hence create more
complex and interesting datasets to compare theoretical results with. The simulator
can be verified by comparing it with theoretical queueing models lining up with what
should be generated.

3.2.3 Simulate with multiple parts

If there is a want to change variables over time, the values of the initial inputs shown
in section 3.2.2 can be extended to be lists instead. The different indexes of the
list will then represent the different parts of the run. Below is an example of the
extended inputs, having a run with two parts.

{
"avg_pkt_ia_time": [15, 10], # Change inter-arrival time
"dist_type_pkt_ia_time": ["M", "M"],# Keep same arrival process
"avg_pkt_len_bits": [10, 10], # Keep same packet size
"dist_type_pkt_len": ["M", "D"], # Change packet size distribution
"capacity": 1, # Capacity is always constant
"num_pkts": [1000, 1000] # Number of packets per part
}

When simulating with multiple parts, the output of interest is packet #n after
changing the parameters. The resulting plots are hence a statistical distribution for
packet #n.

3.2.4 Simulate with multiple sources

Both of the above examples show when there is only one source generating packets.
If there is a want for multiple sources generating packets per part, the values at the
different indexes are swapped for lists and a variable stating the different sources’
priority level is added; num_sources. If all sources have the same priority level (e.g.
[1, 1]), there will still be only one class of packets present in the simulation. If the
sources have different priority levels (e.g. [1, 2, 3]), there will be multiple classes
of packets present in the simulation. It is still possible to add more parts to the run
by adding more indexes.

3.2. SIMULATION 15

{
"avg_pkt_ia_time": [[15, 25]], # Different inter-arrival time
"dist_type_pkt_ia_time": [["M", "D"]],# Different arrival processes
"avg_pkt_len_bits": [[10, 10]], # Same packet size
"dist_type_pkt_len": [["M", "M"]], # Same packet size distribution
"capacity": 1, # Capacity is constant
"num_pkts": [[1000, 1000]], # Number of packets per source
"num_sources": [[1, 1]] # Same priority
}

When generating a dataset based on a simulation with multiple sources and
no priority, the wanted dataset is the combined output of all sources. If there are
multiple priorities, and hence classes, i, present, the dataset should be split with
one dataset per class i, meaning sources with the same priority level should still be
combined.

Generation of inter-arrival times and packet sizes

When multiple sources are present, there is sometimes a need to generate different
expected inter-arrival times and packet sizes to ensure sources are not identical.
Especially if the arrival process is deterministic. Below follows the algorithms used
for achieving this in this project.

For the inter-arrival times, a list with different values is needed. Algorithm 3.1
shows pseudo-code of how a list of unique inter-arrival times is generated, based on
given wanted average avg and the number of sources n. To keep the average of the
list equal to avg, the average of the generated inter-arrival times has to be equal to
avg · n. This implementation assumes n is an even number.

By having n = 4 and avg = 20, the list becomes [70, 90, 50, 110]. This list
is often sorted in ascending order before being used in simulation.

Note that avg will not be equal to the expected inter-arrival time of the system.
The expected inter-arrival time will be the weighted average value of the generated
list. This is because the lower inter-arrival times will generate more packets than the
highest ones in any given longer time period. For exact calculations of λ, see section
3.3.1.

For the packet sizes, another list with different values is needed. Algorithm 3.2
shows pseudo-code of how a list with packet sizes is generated, based on the given
expected average avg and the number of sources n.

16 3. METHODOLOGY

Algorithm 3.1 Generation of inter-arrival times

function generate_inter_arrival_times(n, avg):
average = avg * n
increment_number = avg
number1 = integer(average - increment_number/2)
number2 = integer(average + increment_number/2)
inter_arrival_times = [number1, number2]
current_increment = increment_number
while the length of inter_arrival_times is less than n:

append (number1 - current_increment) to inter_arrival_times
append (number2 + current_increment) to inter_arrival_times
set current_increment to current_increment + increment_number

return inter_arrival_times

Algorithm 3.2 Generation of packet sizes

function generate_packet_sizes(n, avg):
average = avg
start = average-4.5
packet_sizes = [integer(start+1), integer(start+2), ...,

integer(start+10)]
if n is equal to 10:

return packet_sizes
else if n is equal to 100:

update packet_sizes to repeat the original list 10 times
return packet_sizes

else if n is equal to 1000:
update packet_sizes to repeat the original list 100 times
return packet_sizes

3.3. PLOTTING OF THEORETICAL RESULTS 17

3.2.5 Output of simulator

The simulator produces a CSV file as output. The file contains headers and one row
for each packet with values gathered during the run. An example of how the file can
look follows below:

number, t_generated, t_buffer, t_processing, pkt_size_bits, n_in_queue
001, 0, 0, 3, 3, 0
023, 1, 3, 2, 2, 0
012, 2, 1, 1, 1, 1
101, 5, 1, 1, 1, 0
...

The file’s headers are set and always the same. The number field gives each packet
a number, where the last digit gives the packet’s priority level and the second to last
digit gives which source generated the packet and the remaining digits give the packet
number from this source. The number 001 gives packet 0 for source 0 with priority
1, and 1232 gives packet 12 from source 3 with priority 2. t_generated is the time
the packet was generated, t_buffer is the time the packet spent in the queue before
being processed. t_processing is the service time of the packet, pkt_size_bits is
the packet size and n_in_queue is the number of packets observed in the queue as
this packet arrived in the system.

3.3 Plotting of theoretical results

For plotting the theoretical results of the formulas given in chapter 2 with values
based on the simulation input parameters, Python with Matplotlib [14] is used.

3.3.1 Calculation of theoretical parameters

For plotting, there is a need to calculate the expected λ and µ from the inputs
given to the simulation. When there is only one source, this is straightforward, but
when there are multiple sources j belonging to the same class i, there is a bit more
calculation needed.

Calculation of λ

Where λj is the inverse of the expected inter-arrival time of source j and λi is the
expected inter-arrival rate of packets of class i. And λ is the expected inter-arrival

18 3. METHODOLOGY

time of all packets.

λi =
∑

j

λj

λ =
∑

i

λi

Calculation of σ2
a

Some theoretical formulas require the calculation of σ2
a. This is done based on what

distribution type is used. See table 3.1 with variance values as given in [9].

Table 3.1: Calculation of σ2
a

Distribution type σ2
a

Exponential 1
λ2

Uniform 1
12 · (2

λ)2

Deterministic 0

Calculation of µ

µj is the expected packet size of class j. µi is the expected packet size of class i.

µi = λi∑
j

λj

µj

Calculation of σ2
s

Some theoretical formulas require the calculation of σ2
s . This is done based on what

distribution type is used. See table 3.2 [9].

Table 3.2: Calculation of σ2
s

Distribution type σ2
a

Exponential 1
µ2

Uniform 1
12 · (2

µ)2

Deterministic 0

3.4 Plotting of simulated results

The plotting of the simulated results is also done in Python using Matplotlib [14]. This
assures that comparing the theoretical and simulated results is a simple procedure.

3.4. PLOTTING OF SIMULATED RESULTS 19

There is a need to remove parts of the dataset before plotting if there are multiple
sources with different arrival intensities generating packets. This is because there,
in general, is said that each source should generate the same amount of packets,
the highest intensity sources will hence be done generating packets before the lower
intensity sources are done. The tail of the dataset must then be removed to ensure
the correct parts are kept. This can be done by identifying the last packet of the
source with the highest intensity and disregarding packets that were generated after
this point.

There is some post-processing needed to obtain the results wanted for the plotting.
The simulator produces CSV files with one line of information per packet as output.
This cannot be used directly to create a CCDF of the generated dataset.

For finding the simulation’s CCDF for the waiting time, the values for the
t_buffer field are plotted as a histogram. By having the histogram ranges short
enough, the resulting plot will take the form of a CCDF and hence the same form
as the theoretical results. The CCDF for the system time can be found similarly,
but using the sum of the t_buffer and t_processing fields as the input values for
creating the histogram.

Chapter4Results

This chapter contains the results of the simulated use cases with the theoretical
distributions that go along with them, using appropriate numbers for the parameters
to have them line up as well as possible.

There are three use cases that could be investigated for the different analytical
models; single source, single source with multiple parts and multiple sources. The
single source cases are the most straightforward cases with one source generating
traffic. This results in one plot to compare to the theoretical distribution. This
use case is needed to provide a basic comparison between theoretical and simulated
results. The next use case still has one source, but multiple parts where the input
parameters are changing. This is interesting to look at as the load on a network can
vary over time. The results of interest are packet #n after changing the parameters
and all these packet #n distributions are compared to the theoretically corresponding
plot. The last use case has multiple sources generating traffic. The reason for looking
into this use case is as there can be multiple users using the same access point and
the traffic will hence come from different sources. It is interesting to see how the
combined output of the sources compares to the theoretical plots.

The chapter first shows the results for the single-class cases; M/M/1, M/G/1,
G/G/1 and D/D/1. The queue discipline is FIFO. The first results are from cases
relating to the M/M/1 model, beginning with one source, then one source with
multiple parts and lastly multiple sources. Similarly follows the cases related to
the M/G/1 model. Then some cases related to the G/G/1 and D/D/1 models are
shown.

The results for the cases containing multiple classes and priorities are then
presented. The two specific cases are G/G/1 − priority and M/G/1 − priority.
The queueing discipline implemented is strict priority. For G/G/1 − priority, the
investigated cases are with one source per class and multiple classes per class. For
M/G/1 − priority, a case with one source per class is investigated.

21

22 4. RESULTS

4.1 Summary of results

All use cases shown in this chapter are summarised in table 4.1. The table states in
what figure or table the results of the specific use case can be found, what analytical
model was investigated in the use case (theoretical distribution) and the different
values that were used as inputs to the simulation and for the theoretical formulas.

Table 4.1: Summary of all use cases shown

R
es

ul
ti

ng
fig

ur
e

T
he

or
et

ic
al

di
st

ri
bu

ti
on

P
ri

or
it

y
i

#
so

ur
ce

s

A
rr

iv
al

di
st

ri
bu

ti
on

of
so

ur
ce

λ
i Se

rv
ic

e
ti

m
e

di
st

ri
bu

ti
on

of
so

ur
ce

µ
i

Figure
4.1

M/M/1 1 1 Exponential 0.067 Exponential 0.1

Figure
4.4

M/M/1 1 1 Exponential

0.015,
0.025,
0.045,
0.015,
0.025

Exponential

0.083,
0.083,
0.083,
0.083,
0.083

Figure
4.5

M/M/1 1 1 Exponential

0.015,
0.025,
0.045,
0.015,
0.025

Exponential

0.167,
0.1,
0.063,
0.167,
0.1

Figure
4.6a

M/M/1 1 10 Exponential 0.073 Exponential 0.1

Figure
4.6b

M/M/1 1 100 Exponential 0.073 Exponential 0.1

Figure
4.6c

M/M/1 1 10
Deterministic
(periodic)

0.073 Exponential 0.1

Figure
4.6d

M/M/1 1 100
Deterministic
(periodic)

0.073 Exponential 0.1

Figure
4.7

M/G/1 1 1 Exponential 0.05 Uniform 0.083

4.1. SUMMARY OF RESULTS 23

Figure
4.8

M/D/1 1 1 Exponential 0.067
Deterministic
(fixed)

0.1

Figure
4.9a

M/D/1 1 10 Exponential 0.073
Deterministic
(fixed)

0.1

Figure
4.9b

M/D/1 1 100 Exponential 0.073
Deterministic
(fixed)

0.1

Figure
4.9c

M/D/1 1 10
Deterministic
(periodic)

0.073
Deterministic
(fixed)

0.1

Figure
4.9d

M/D/1 1 100
Deterministic
(periodic)

0.073
Deterministic
(fixed)

0.1

Figure
4.7

G/G/1 1 1 Uniform 0.1 Uniform 0.167

Table
4.6

D/D/1 1 1
Deterministic
(periodic)

0.1
Deterministic
(fixed)

0.1

Table
4.6

D/D/1 1 10
Deterministic
(periodic)

0.073
Deterministic
(fixed)

0.1

Figure
4.12

G/G/1−
priority

1 1
Deterministic
(periodic)

0.033
Deterministic
(fixed)

0.100

2 1 Exponential 0.033 Exponential 0.200
3 1 Exponential 0.033 Exponential 0.143

Figure
4.13a

G/G/1−
priority

1 10
Deterministic
(periodic)

0.0137 Exponential 0.0571

2 10 Exponential 0.00685 Exponential 0.0571
3 10 Uniform 0.00914 Exponential 0.0571

Figure
4.13b

G/G/1−
priority

1 100
Deterministic
(periodic)

0.0137 Exponential 0.0571

2 100 Exponential 0.00686 Exponential 0.0571
3 100 Uniform 0.00915 Exponential 0.0571

Figure
4.14a

G/G/1−
priority

1 10
Deterministic
(periodic)

0.0137
Deterministic
(periodic)

0.0571

2 10 Exponential 0.00685 Exponential 0.0571
3 10 Uniform 0.00914 Uniform 0.0571

24 4. RESULTS

Figure
4.14b

G/G/1−
priority

1 100
Deterministic
(periodic)

0.0137
Deterministic
(periodic)

0.0571

2 100 Exponential 0.00686 Exponential 0.0571
3 100 Uniform 0.00915 Uniform 0.0571

Figure
4.12

M/G/1−
priority

1 1 Exponential 0.043
Deterministic
(fixed)

0.100

2 1 Exponential 0.043 Uniform 0.200
3 1 Exponential 0.043 Exponential 0.143

4.2 M/M/1

An M/M/1 model has an exponential arrival process and exponentially distributed
service times. Below follows the results of the simulation with M/M/1 parameters
with comparisons to the theoretical results of the same model. First a case with a
single source, then two cases with a single source with multiple parts and lastly cases
with multiple sources.

4.2.1 Single source

The first case that was investigated was an M/M/1 model with λ = 0.067 and
µ = 0.1. The capacity of the server was 1 and 100 000 packets were generated. The
resulting CCDF for the waiting time and the sojourn time (system delay) of the
simulation and the theoretical formula are shown in figure 4.1.

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0

P{
W

>
t}

Part0, = 0.067, = 0.1
Theoretical, = 0.067, = 0.1

(a) CCDF for waiting time

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0

P{
D

>
t}

Part0, = 0.067, = 0.1
Theoretical, = 0.067, = 0.1

(b) CCDF for sojourn time

Figure 4.1: M/M/1 model with one source

4.2. M/M/1 25

4.2.2 Single source with multiple parts

Consider an M/M/1 model with parameters changing over time, it is then interesting
to investigate packet #n after changing parameters.

0 10000 20000 30000 40000 50000
Packet

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Pa
ra

m
et

er

(a) Changing λ

0 10000 20000 30000 40000 50000
Packet

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Pa
ra

m
et

er

(b) Changing λ and µ

Figure 4.2: M/M/1 model with changning parameters for each part of a run

0 20 40 60 80 100 120 140
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P{
W

>
t}

Theoretical, = 0.015, = 0.083
Theoretical, = 0.025, = 0.083
Theoretical, = 0.045, = 0.083

(a) Changing λ

0 20 40 60 80 100 120 140
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P{
W

>
t}

Theoretical, = 0.015, = 0.167
Theoretical, = 0.025, = 0.1
Theoretical, = 0.045, = 0.062

(b) Changing λ and µ

Figure 4.3: Theoretical M/M/1 model with changing parameters

First, consider changing λ after 10000 packets, having 5 parts in the run. λ is
changing between 0.015, 0.025 and 0.045 while µ is kept constant at 0.083. Figure
4.2a shows this and how the parameters vary for this case. This results in the system
starting out with a low load, going up to a medium load, then a high load, and back
down to a low load before ending with a medium load. This means there are three
theoretical curves forming for the five parts, the CCDF for the waiting time of these
are shown in figure 4.3a. While only changing λ, the simulator was run 48 101 times
with the 5 parts with 10 000 packets per part while collecting packet #0, #10, #100,

26 4. RESULTS

#1000 and #10000 of each part of each run. The resulting CCDF for the waiting
time of packet #n is shown in figure 4.4. Note that in figure 4.4a, the very first
simulated line is not visible as every first packet generated has 0 buffer time. Packet
#10000 of each part is not shown in the figure.

0 20 40 60 80 100 120 140
t

0.0

0.1

0.2

0.3

0.4

0.5

P{
W

>
t}

Theoretical, = 0.015, = 0.083
Theoretical, = 0.025, = 0.083
Theoretical, = 0.045, = 0.083
Part0, = 0.015, = 0.083
Part1, = 0.025, = 0.083
Part2, = 0.045, = 0.083
Part3, = 0.015, = 0.083
Part4, = 0.025, = 0.083

(a) Packet #0

0 20 40 60 80 100 120 140
t

0.0

0.1

0.2

0.3

0.4

0.5

P{
W

>
t}

Theoretical, = 0.015, = 0.083
Theoretical, = 0.025, = 0.083
Theoretical, = 0.045, = 0.083
Part0, = 0.015, = 0.083
Part1, = 0.025, = 0.083
Part2, = 0.045, = 0.083
Part3, = 0.015, = 0.083
Part4, = 0.025, = 0.083

(b) Packet #10

0 20 40 60 80 100 120 140
t

0.0

0.1

0.2

0.3

0.4

0.5

P{
W

>
t}

Theoretical, = 0.015, = 0.083
Theoretical, = 0.025, = 0.083
Theoretical, = 0.045, = 0.083
Part0, = 0.015, = 0.083
Part1, = 0.025, = 0.083
Part2, = 0.045, = 0.083
Part3, = 0.015, = 0.083
Part4, = 0.025, = 0.083

(c) Packet #100

0 20 40 60 80 100 120 140
t

0.0

0.1

0.2

0.3

0.4

0.5

P{
W

>
t}

Theoretical, = 0.015, = 0.083
Theoretical, = 0.025, = 0.083
Theoretical, = 0.045, = 0.083
Part0, = 0.015, = 0.083
Part1, = 0.025, = 0.083
Part2, = 0.045, = 0.083
Part3, = 0.015, = 0.083
Part4, = 0.025, = 0.083

(d) Packet #1000

Figure 4.4: M/M/1 model with changing λ

The other investigated case for an M/M/1 model with multiple parts is changing
both λ and µ as shown in figure 4.2a. λ is still varying between 0.015, 0.025 and
0.045, µ now varies between 0.167, 0.1 and 0.063. The system still has the load
varying as low-medium-high-low-medium, but by changing µ as well, the differences
in the loads are greater than for the latter case. The theoretical plots are shown in
figure 4.3b. For this case, the simulator was run 46 601 times with 20 000 packets
per part per run while recording packet #0, #10, #100, #1000 and #10000 of each
part of each run. The resulting CCDF for the waiting time of packet #n is shown in
figure 4.5, again is packet #10000 of each part recorded but not shown.

4.2. M/M/1 27

0 20 40 60 80 100 120 140
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P{
W

>
t}

Theoretical, = 0.015, = 0.167
Theoretical, = 0.025, = 0.1
Theoretical, = 0.045, = 0.062
Part0, = 0.015, = 0.167
Part1, = 0.025, = 0.1
Part2, = 0.045, = 0.062
Part3, = 0.015, = 0.167
Part4, = 0.025, = 0.1

(a) Packet #0

0 20 40 60 80 100 120 140
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P{
W

>
t}

Theoretical, = 0.015, = 0.167
Theoretical, = 0.025, = 0.1
Theoretical, = 0.045, = 0.062
Part0, = 0.015, = 0.167
Part1, = 0.025, = 0.1
Part2, = 0.045, = 0.062
Part3, = 0.015, = 0.167
Part4, = 0.025, = 0.1

(b) Packet #10

0 20 40 60 80 100 120 140
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P{
W

>
t}

Theoretical, = 0.015, = 0.167
Theoretical, = 0.025, = 0.1
Theoretical, = 0.045, = 0.062
Part0, = 0.015, = 0.167
Part1, = 0.025, = 0.1
Part2, = 0.045, = 0.062
Part3, = 0.015, = 0.167
Part4, = 0.025, = 0.1

(c) Packet #100

0 20 40 60 80 100 120 140
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P{

W
>

t}
Theoretical, = 0.015, = 0.167
Theoretical, = 0.025, = 0.1
Theoretical, = 0.045, = 0.062
Part0, = 0.015, = 0.167
Part1, = 0.025, = 0.1
Part2, = 0.045, = 0.062
Part3, = 0.015, = 0.167
Part4, = 0.025, = 0.1

(d) Packet #1000

Figure 4.5: M/M/1 model with changing λ and µ

28 4. RESULTS

4.2.3 Multiple sources

It can be interesting to see what happens when multiple independent sources generate
packets. The reason for this is that for one access point, there is most likely more
than one user. It is then important to understand how the traffic is acting if there
are multiple sources and if it will still be comparable to analytical models.

Table 4.2: M/M/1 with multiple sources simulation cases

#sources Inter-arrival time distribution
per source

Service time distribution
per source

10 Exponential Exponential
100 Exponential Exponential
10 Deterministic (Periodic) Exponential
100 Deterministic (Periodic) Exponential

Multiple cases were investigated and are summarised in table 4.2. The first two
cases all have sources that have an exponential arrival distribution and an exponential
service time distribution. Firstly this combination is simulated with 10 sources and
then with 100 sources. The last two cases have all sources have a deterministic
(periodic) arrival process and an exponential service time distribution. Once again,
it is first simulated with 10 sources and then with 100 sources. Algorithm 3.1 with n
equal to 10 or 100 depending on the case and avg equal to 15 was used for generating
different arrival intensities for the different sources. Table 4.3 summarises the results
of this algorithm. The resulting λ for the system is 0.071. The packet size for all
sources is 10 resulting in the µ for the system becoming 0.1. When there are 10
sources generating packets, there are 10000 packets per source, while when there
are 100 sources, there are 1000 packets per source, resulting in 1 000 000 packets
generated per simulation.

Table 4.3: Input and output for algorithm 3.1 for cases with multiple sources

#sources n avg generate_inter_arrival_times(n, avg)

10 10 15
[82, 97, 112, 127, 142,
157, 172, 187, 202, 217]

100 100 15
[757, 772, 787, 802, 817, ...
2182, 2197, 2212, 2227, 2242]

All sources generate packets arriving in the same system and queue, the dataset
is the output of all sources aggregated to one. The resulting CCDFs for the waiting
times of the different cases are shown in figure 4.6.

4.3. M/G/1 29

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0

P{
D

>
t}

Part0, = 0.073, = 0.1
Theoretical, = 0.073, = 0.1

(a) 10 sources with exponential arrival pro-
cess and exponential service time

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0

P{
D

>
t}

Part0, = 0.073, = 0.1
Theoretical, = 0.073, = 0.1

(b) 100 sources with exponential arrival pro-
cess and exponential service time

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0

P{
D

>
t}

Part0, = 0.073, = 0.1
Theoretical, = 0.073, = 0.1

(c) 10 sources with deterministic (periodic)
arrival process and exponential service time

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0
P{

D
>

t}
Part0, = 0.073, = 0.1
Theoretical, = 0.073, = 0.1

(d) 100 sources with deterministic (periodic)
arrival process and exponential service time

Figure 4.6: Waiting time CCDFs for M/M/1 cases with multiple sources

4.3 M/G/1

M/G/1 models have an exponential arrival process, but generalized service time. The
case investigated for this model has an exponential arrival process with λ = 0.05 and
a uniform distribution of service time with µ = 0.083 and σ2

s = 48. The simulation
was run with 1 000 000 packets. Table 4.4 gives the resulting theoretical expected
waiting time and the average waiting time of the simulation. Figure 4.7 gives the
CCDF of the simulation.

Table 4.4: M/G/1 case with one source

λ µ σ2
s W Simulated average waiting time

0.05 0.083 48 12.00 12.10

30 4. RESULTS

0 25 50 75 100 125 150 175 200
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P{
W

>
t}

Part0, = 0.05, = 0.083

Figure 4.7: Simulated M/G/1 waiting time distribution

4.4 M/D/1

For the M/D/1 model, arrivals are exponentially distributed while service time is
deterministic and fixed. Below follows the results for the cases with a single source
and with multiple sources.

4.4.1 Single source

This case with one source has packet arrival rate λ equal to 0.067 and service time µ

equal to 0.1. The simulation was run with generating 100 000 packets. Figure 4.8
shows the simulations waiting time CCDF and corresponding theoretical distribution
using equation 2.8.

0 20 40 60 80 100
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P{
W

>
t}

Part0, = 0.067, = 0.1
Theoretical, = 0.067, = 0.1

Figure 4.8: M/D/1 single source waiting time CCDF

4.4. M/D/1 31

4.4.2 Multiple sources

Four different cases with multiple sources generating packets were investigated. Table
4.5 summarises the cases. For the first two sources, the arrival process is exponential
while for the latter two, it is deterministic and periodic. Algorithm 3.1 was used for
generating the different rates with n equal to 10 or 100 depending on the case and
avg equal to 15, table 4.3 once again shows the output of these cases. This means
λ is equal to 0.073. The service time is deterministic and fixed for all cases with
µ = 0.1. All cases were run with a total of 1 000 000 packets. The resulting plots are
shown in figure 4.9.

0 20 40 60 80 100
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P{
W

>
t}

Part0, = 0.073, = 0.1
Theoretical, = 0.073, = 0.1

(a) 10 sources with exponential arrival pro-
cess and deterministic (fixed) service time

0 20 40 60 80 100
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P{
W

>
t}

Part0, = 0.073, = 0.1
Theoretical, = 0.073, = 0.1

(b) 100 sources with exponential arrival pro-
cess and deterministic (fixed) service time

0 20 40 60 80 100
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P{
W

>
t}

Part0, = 0.073, = 0.1
Theoretical, = 0.073, = 0.1

(c) 10 sources with deterministic (periodic)
arrival process and deterministic (fixed) ser-
vice time

0 20 40 60 80 100
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P{
W

>
t}

Part0, = 0.073, = 0.1
Theoretical, = 0.073, = 0.1

(d) 100 sources with deterministic (periodic)
arrival process and deterministic (fixed) ser-
vice time

Figure 4.9: Waiting time CCDF for M/D/1 cases with multiple sources

32 4. RESULTS

Table 4.5: M/D/1 with multiple sources simulation cases

#sources Inter-arrival time distribution
per source

Service time distribution
per source

10 Exponential Deterministic (Fixed)
100 Exponential Deterministic (Fixed)
10 Deterministic (Periodic) Deterministic (Fixed)
100 Deterministic (Periodic) Deterministic (Fixed)

4.5 G/G/1

For G/G/1, the arrival process is generalised and so is the service time. Below follows
the investigated case for the G/G/1 model.

4.5.1 Uniform arrival process and uniform service time
distribution with one source

Simulating with λ = 0.1, σ2
a = 33.333, µ = 0.167, σ2

s = 12 and 100 000 packets
with uniform arrival process and uniform service time distribution results in the
approximated CCDF for the waiting time shown in figure 4.10.

0 5 10 15 20 25 30 35 40
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P{
W

>
t}

Part0, = 0.1, = 0.167
Theoretical, = 0.1, = 0.167

Figure 4.10: G/G/1 approximated waiting time CCDF with one source

4.6 D/D/1

The next cases that were investigated were ones that can be compared to the network
calculus bounds of D/D/1 models. The first case was with one source and the other

4.6. D/D/1 33

case was with 10 sources. The D/D/1 systems have a deterministic (periodic) arrival
process and deterministic (fixed) service time. Table 4.6 summarises the results.

Table 4.6: D/D/1 simulation cases

Case
Network
calculus
bound

Theoretical
maximum
delay value

Maximum
measured
delay

Single source L
R 10 10

Multiple sources I·L
R 100 63

When simulating with one source, the inter-arrival time used was 10, meaning
λ = 0.1. The packet size was L = 10 and server rate was R = 1, and the service
time µ is equal to 0.1. The simulation was run with 100 000 packets and the max
measured delay was 10. The simulated delay time distribution for this case is shown
in figure 4.11a.

When the simulation was run with 10 sources, the inter-arrival times were gener-
ated using algorithm 3.1, generate_inter_arrival_times(n, avg), with n = 10
and avg = 15. These inputs result in the inter-arrival times of the sources becom-
ing [82, 97, 112, 127, 142, 157, 172, 187, 202, 217]. The λ then becomes
0.073. Packet size L is still 10 and server rate R is still 1, µ is then still 0.1. The
simulation was run with 10 000 packets per source, meaning 100 000 packets in total.
The max measured delay of the system was 64. The simulated delay time distribution
for this case is shown in figure 4.11b.

0 2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

P{
D

>
t}

Part0, = 0.1, = 0.1

(a) 1 source

0 10 20 30 40 50 60
t

0.0

0.2

0.4

0.6

0.8

1.0

P{
D

>
t}

Part0, = 0.073, = 0.1

(b) 10 sources

Figure 4.11: Simulated delay CCDF for D/D/1

34 4. RESULTS

4.7 G/G/1 − priority

For the G/G/1 − priority model, both the arrival process and service time are
generalised processes. There are multiple classes i present, for the following cases
there will be three classes; 1, 2 and 3, present. First, a case with one source per class
is investigated and then cases with multiple sources per class after this.

For G/G/1 − priority, there is no formula shown for finding W i and it was
assumed known in section 2.3.1. To be able to use the waiting time distribution
introduced in equation 2.12, the average waiting time for each class is decided by the
resulting average waiting time of each class i from the simulation.

4.7.1 One source per class

The first case investigated was with three classes and one source per class in the
system. Table 4.7 shows the specific parameters per class. The packet sizes vary,
the highest priority class consists of small packets, the next highest priority has
big packets while the lowest priority level has a medium size. This type of priority
could be implemented in a network by having small control message packets have
the highest priority, big video call packets with latency requirements have the second
highest priority and the remaining packets have the lowest priority.

Table 4.7: G/G/1 − priority parameters for single source per class case

Class i
Inter-arrival time dis-
tribution λi

Service time distribu-
tion µi

1 Deterministic (Periodic) 0.033 Deterministic (Fixed) 0.100
2 Exponential 0.033 Exponential 0.200
3 Exponential 0.033 Exponential 0.143

The simulation was done with 1 000 000 packets per source, resulting in 3 000
000 packets. Simulating with the values in table 4.7 give the plot in figure 4.12 for
the waiting time CCDF. The simulation calculated the following values for W i:

W 1 = 2.23

W 2 = 8.36

W 3 = 19.97.

4.7. G/G/1 − priority 35

0 20 40 60 80 100 120 140
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P{
W

i>
t}

Theoretical, priority = 1
Theoretical, priority = 2
Theoretical, priority = 3
Simulated, part0, priority = 1
Simulated, part0, priority = 2
Simulated, part0, priority = 3

Figure 4.12: G/G/1 − priority single source waiting time CCDF

4.7.2 Multiple sources per class

There are four different cases investigated for G/G/1−priority with multiple sources
j per class i. All cases have three classes. All sources j for class i have the same
arrival process and service time distribution, but parameters λj and µj may vary.
There is a need to generate input parameters for both arrival and service time using
algorithm 3.1 and 3.2. Table 4.8, 4.9, 4.10 and 4.11 give the inputs and the outputs
for the cases investigated. The resulting lists of these tables are used as inputs to the
simulator. The theoretical intensities can then be found using the formulas presented
in section 3.3.1. The resulting intesities for all four cases are presented in table 4.12
(λi intensities) and 4.13 (µi intensities) with the arrival and service time distribution
for the given class as well.

Table 4.8: Input and output for algorithm 3.1 with 10 sources

Class n avg generate_inter_arrival_times(n, avg)

1 10 80
[440, 520, 600, 680, 760,
840, 920, 1000, 1080, 1160]

2 10 160
[880, 1040, 1200, 1360, 1520,
1680, 1840, 2000, 2160, 2320]

3 10 120
[660, 780, 900, 1020, 1140,
1260, 1380, 1500, 1620, 1740]

36 4. RESULTS

Table 4.9: Input and output for algorithm 3.2 with 10 sources

Class n avg generate_packet_sizes(n, avg)
1 10 17.5 [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
2 10 17.5 [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
3 10 17.5 [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]

Table 4.10: Input and output for algorithm 3.1 with 100 sources

Class n avg generate_inter_arrival_times(n, avg)

1 100 80
[4040, 4120, 4200, 4280, 4360, ...,
11640, 11720, 11800, 11880, 11960]

2 100 160
[8080, 8240, 8400, 8560, 8720, ...,
23280, 23440, 23600, 23760, 23920]

3 100 120
[6060, 6180, 6300, 6420, 6540, ...,
17460, 17580, 17700, 17820, 17940]

Table 4.11: Input and output for algorithm 3.2 with 100 sources

Class n avg generate_packet_sizes(n, avg)
1 100 17.5 [13, 14, ..., 21, 22, 13, 14, ..., 22, 13, ...]
2 100 17.5 [13, 14, ..., 21, 22, 13, 14, ..., 22, 13, ...]
3 100 17.5 [13, 14, ..., 21, 22, 13, 14, ..., 22, 13, ...]

Table 4.12: λi intensities for G/G/1−priority cases with multiple sources per class

Case Class 1 λ1 Class 2 λ2 Class 3 λ3

1 Deterministic
(Periodic) 0.0137 Exponential 0.00685 Uniform 0.00914

2 Deterministic
(Periodic) 0.0137 Exponential 0.00686 Uniform 0.00915

3 Deterministic
(Periodic) 0.0137 Exponential 0.00685 Uniform 0.00914

4 Deterministic
(Periodic) 0.0137 Exponential 0.00686 Uniform 0.00915

4.7. G/G/1 − priority 37

Table 4.13: µi intensities for G/G/1−priority cases with multiple sources per class

Case Class 1 µ1 Class 2 µ2 Class 3 µ3

1 Exponential 0.0571 Exponential 0.0571 Exponential 0.0571
2 Exponential 0.0571 Exponential 0.0571 Exponential 0.0571

3 Deterministic
(Periodic) 0.0571 Exponential 0.0571 Uniform 0.0571

4 Deterministic
(Periodic) 0.0571 Exponential 0.0571 Uniform 0.0571

The resulting plots of the simulations are given in figure 4.13 and 4.14. The
simulations were run with 10 000 packets per source when there was 10 sources
per class and 1000 packets per source when there was 100 sources per class. The
calculated W i for all classes of all cases are listed in table 4.14.

0 25 50 75 100 125 150 175 200
t

0.0

0.1

0.2

0.3

0.4

0.5

P{
W

>
t}

Theoretical, priority = 1
Theoretical, priority = 2
Theoretical, priority = 3
Simulated, part0, priority = 1
Simulated, part0, priority = 2
Simulated, part0, priority = 3

(a) 10 sources per class

0 25 50 75 100 125 150 175 200
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P{
W

>
t}

Theoretical, priority = 1
Theoretical, priority = 2
Theoretical, priority = 3
Simulated, part0, priority = 1
Simulated, part0, priority = 2
Simulated, part0, priority = 3

(b) 100 sources per class

Figure 4.13: Waiting time CCDF for G/G/1 − priority cases with multiple sources
with generalised arrival process and exponentially distributed service time

Table 4.14: Calculated W i for G/G/1 − priority cases

Case W 1 W 2 W 3

1 12.74 15.54 22.84
2 17.92 19.35 30.41
3 10.06 10.56 15.49
4 14.63 13.51 21.14

38 4. RESULTS

0 25 50 75 100 125 150 175 200
t

0.0

0.1

0.2

0.3

0.4

0.5

P{
W

>
t}

Theoretical, priority = 1
Theoretical, priority = 2
Theoretical, priority = 3
Simulated, part0, priority = 1
Simulated, part0, priority = 2
Simulated, part0, priority = 3

(a) 10 sources per class

0 25 50 75 100 125 150 175 200
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P{
W

>
t}

Theoretical, priority = 1
Theoretical, priority = 2
Theoretical, priority = 3
Simulated, part0, priority = 1
Simulated, part0, priority = 2
Simulated, part0, priority = 3

(b) 100 sources per class

Figure 4.14: Waiting time CCDF for G/G/1 − priority cases with multiple sources
with generalized arrival process and generalised distributed service time

4.8 M/G/1 − priority

The M/G/1 − priority model has an exponential arrival process and a generalised
service time process. A case with one source per class and three classes in total is
presented.

4.8.1 One source per class

The M/G/1 − priority case that was investigated was with one source per class and
three classes. Table 4.15 summarises the information about the different classes and
they roughly compare to the classes used for the case in section 4.7.1 with the same
argument. Figure 4.15 shows the resulting CCDF for the waiting time distribution
for this case.

Table 4.15: M/G/1 − priority

Class i
Inter-arrival time
distribution λi

Service time distri-
bution µi σ2

s,i

1 Exponential 0.043 Deterministic (Fixed) 0.100 0
2 Exponential 0.043 Uniform 0.200 8.333
3 Exponential 0.043 Exponential 0.143 49

4.8. M/G/1 − priority 39

0 50 100 150 200 250 300 350
t

0.0

0.2

0.4

0.6

0.8

1.0

P{
W

i>
t}

Theoretical, priority = 1
Theoretical, priority = 2
Theoretical, priority = 3
Simulated, part0, priority = 1
Simulated, part0, priority = 2
Simulated, part0, priority = 3

Figure 4.15: M/G/1 − priority single source waiting time CCDF

Chapter5Discussion

The discussion chapter goes through the results of the models presented earlier and
tries to discuss what the results are saying and how they can be used to decide the
model’s applicability to latency prediction.

5.1 Summary of findings

In general, there are two main findings to highlight from the results. The first is that
when the input parameters to the system are changing, it takes some time before the
simulated distributions line up with the theoretical distributions. The other main
finding is that when there are multiple sources generating packets, the simulated
distributions still line up with the theoretical ones.

5.2 M/M/1

The first cases that were investigated were the ones related to the M/M/1 model.
When looking at the single source case seen in figure 4.1, there is an almost perfect
alignment between the theoretical curve and the simulated resulting curve. This
verifies that the simulator is working as intended as it is lining up with one of the
most known theoretical models there are.

When adding multiple parts to the run and comparing packet #n of each run
with the theoretical distribution for this, shown in figures 4.4 and 4.5, it is very clear
that it takes some time before the simulated distribution line up with the theoretical
distribution.

When only changing λ, the simulated curves are lining up with the theoretical
ones at packet #100, but already very close at packet #10. The curve of part 2 of
the run - when the system went from a medium load to a high load, is the curve that
has the hardest time adjusting to the new theoretical distribution. However, for the

41

42 5. DISCUSSION

distributions of packet #0, no curves are lining up with the theoretical distributions.
The curves are either "on their way up or down" to their supposed distribution.

When changing both λ and µ, the results in general appear similar to the results
when only changing λ. By packet #100, the results are lining up well and part 2
of the run is taking the longest to adjust to the new load. Part 3 of the packet #0
distribution is also showcasing that when going from a high load to a low load, the
packet distribution is closer to that of the high load than the low load. Both part
1 and part 2 are also much closer to the previous lower distribution than the new
higher one.

To summarise what is observed when there are multiple parts to a run, the initial
state of the system after changing parameters does not line up with any of the
theoretical distributions. This is because reaching the steady state for the system
takes some time.

The last investigated cases were having multiple sources generate packets, results
shown in figure 4.6. For the first two cases with both exponentially distributed arrival
and service time and results of the simulations are in both cases very similar in shape
to the theoretical distribution. For the latter two, with deterministic (periodic) arrival
processes for all sources and exponential service time, the results of the simulations
are lining up less with the theoretical results than with exponential arrival processes
for the sources. The simulation curve lines up better with 100 sources than with
10. The reason 10 sources are not lining up perfectly could be that 10 sources
are not enough to create a Poisoon process and hence making the arrival process
exponentially distributed. With 100 sources, the curves are lining up even better and
the deterministic sources’ arrival process can be approximated as a Poisson process
with the same distribution as the theoretical M/M/1 models distribution.

Considering the theoretical formulas for the M/M/1 model presented in section
2.2.1 are exact results and not approximations there is an expectation that the results
should line up well with simulated results and others, as have been seen in this work.
The exception seen in this work is when the system still has not reached its steady
state, which is reasonable based on what is known about the initial states of a system.

If there is reason to believe a system can be looked at as an M/M/1 system and
there is a way to find the value for λ and µ, the M/M/1 model could be used for
latency prediction.

5.3 M/G/1

There is only one theoretical formula related to the M/G/1 model presented in
section 2.2.2. Since this is only the formula for the expected waiting time and

5.4. M/D/1 43

no distribution, the comparison that can be made between theoretical results and
simulated results is limited to one number per case. This gives less ground to discuss
upon. Table 4.4 shows that the theoretical expected waiting time is equal to 12.00
while the simulated average waiting time is 12.10. This means the results are lining
up quite well with almost the same expected waiting time, but the theoretical result
is a bit optimistic.

Since there is no theoretical curve to compare the simulation’s waiting time
distribution to (shown in figure 4.7), there is no real point in discussing its shape. It
does however follow a similar curve as all other simulated plots presented which at
least verifies the simulation is most likely working as intended in this case as well.

5.4 M/D/1

For the M/D/1 model, the investigated cases were having one source and multiple
sources. For the single source case (figure 4.8), the theoretical curve is more optimistic
than the simulated results. This is also the case when multiple sources are present in
the system (figure 4.9). The best correlating results are surprisingly when there are
10 sources with deterministic arrival processes (figure 4.9c). As was seen from the
M/M/1 case with 10 sources and deterministic arrival, this is not acting as a Poisson
process (not enough sources) and should then in theory not be a good match.

The waiting time distribution function for M/D/1 (equation 2.8) is too optimistic
compared to the simulated results, meaning the theoretical results predict less waiting
time in the system than what is actually appearing in the simulated system.

Considering the equations used for the theoretical curve, which is not an ap-
proximated result, it is surprising that the results are not closer in correlation. As
the same difference in results is seen in all but one result, it is fair to assume that
with the given values used for this, the correlation is not as well as would have been
needed to be able to use this model for latency prediction.

5.5 G/G/1

For the case related to the G/G/1 model shown in figure 4.10, the results of the
simulation and the theoretical formula are lining up to some extent. The curves of
the two are shaped differently. Considering that both the arrival process and the
service time distribution are considered generalised, the correlation is better than
what could have been feared since there are close to no rules for what the simulator
could use as inputs. Another case could give a worse correlation between the two.

44 5. DISCUSSION

The theoretical formulas for the G/G/1 model presented in section 2.2.4 are
approximated results. This means there should not be an expectation that the results
correlate perfectly with actual or simulated results. The reason for the simulated
results correlating as well as they do in figure 4.10 could be as both the arrival and
service time distribution are uniformly distributed. This is a well-known distribution
and quite a predictable one. Perhaps changing the arrival process and service time
distribution to other distributions or changing the distribution per packet or after
a given period in the simulator would give a more unpredictable behaviour. This
would also make it harder to know the theoretical values for λ, σ2

a, µ and σ2
s and

hence find the theoretical approximations for the system for comparison.

5.6 D/D/1

There were two cases that were investigated for the D/D/1 model; single source and
multiple sources. The results were shown in table 4.6. The bounds of both cases are
held, the single source hitting the max while the multiple sources case did not. The
only way the max of the multiple sources bound could have been hit is if all sources
generated a packet at the exact same time, meaning the last packet would have had
to wait for the max time possible. Since algorithm 3.1 was used to create different
inter-arrival times, this was not the case for this case.

As discussed earlier, when there are enough deterministic (periodic) arrival
processes, the arrival process may be approximated as a Poisson process with
exponentially distributed inter-arrival time. This means that the case with multiple
sources could also be compared to that of the M/D/1 model’s theoretical results.

5.7 G/G/1 − priority

The first cases with multiple classes present that were investigated were the cases
that line up with the G/G/1 − priority formula. Firstly the case with one source
per class was looked into with the results in figure 4.12. The resulting curves of the
simulation line up well with the theoretical results with some slight curve differences,
especially for the lowest priority class.

The two next cases investigated were with multiple sources per class with gener-
alised arrival and exponentially distributed service times seen in figure 4.13. The
curves of the results are lining up well with some slight differences in shape.

Moving on to the last two cases with generalised arrival and service times seen
in figure 4.14, the results are lining up less than for the latter cases. This could be
because the processes are even more generalised in these cases as the service time
distributions also differ between the classes.

5.8. M/G/1 − priority 45

Considering that equation 2.12 assumes W i to be known and this value is pulled
from the simulation, there should be a reason to believe the results should line up.
This also means that the theoretical results cannot be viewed as fully theoretical. It
is also an approximated result. Using this value directly from the simulation should
increase the odds of getting two plots that look similar, as they in general do.

The G/G/1 − priority model seems to be applicable for latency guarantee esti-
mation as long as there is a possibility to gather the theoretical values.

5.8 M/G/1 − priority

For the single source per class case of the M/G/1 − priority model (with results
shown in 4.15), the results are lining up well with similar curves. The two highest-
priority classes are lining up better than the lowest-priority one. The results are
lining up better than for the G/G/1 − priority cases. A reason for this could be that
there are stricter rules when it comes to the arrival process and hence this is easier
to predict than for the previous case.

Equation 2.14 gave an approximation for the waiting time distribution. Since it
is an approximation and not an exact result for the theoretical results, the results
will never be perfect. The theoretical formula is the same as for G/G/1 − priority

other than calculating W i based on parameters instead of pulling the values from
the simulation. This means that if this model was presumed to be a good fit for a
system, more parameters would have to be known to find the theoretical distribution
of the system.

In general, the M/G/1 − priority system is providing results that makes it seem
applicable for latency guarantee estimation.

5.9 Limitations and finding variables of real systems

There are some limitations related to the results of this thesis. Since the simulator
was verified using some of the formulas from the analytical models and no other form
of verification, there is no way to fully prove the simulator is working as a real part
of a network. Simulated results are in general good and close to real results, but will
never catch every side and everything that could happen in a real system.

Because of this, the results and comparisons can never be used completely by
themselves for deciding if the models are applicable for latency guarantee estimation.
Some other form of verification of these results should be added. Like testing on
an actual network and on even more versions of the models. Section 6.2 gives some
further comments on this.

46 5. DISCUSSION

A problem that has been touched upon in earlier sections of this chapter is the
fact that there is a need to find the parameters of the real systems where the latency
guarantee is needed. As this thesis has been using simulation results, the expected
values of the parameters for the theoretical results have not been a problem to
determine. It will however in other more realistic cases become a problem and if
there is no way of finding the values of the parameters, there is no point in using
analytical models for latency prediction and for ensuring guarantees are kept.

Chapter6Conclusion and future work

This chapter provides a conclusion to the thesis and presents further work that could
be done in the future to provide more insights on this topic.

6.1 Conclusion

This thesis first reviewed analytical models through a literature study to gather
exact and approximated results that would later be compared to the results of the
constructed simulator.

The constructed simulator and how it is set up were then presented. The focus
of the presentation was on showing what types of inputs the simulator can handle
and how the resulting output of the simulator is constructed.

There are two main findings of this work. The first is that when the load on the
system is changing there is a need to be careful with using analytical models for
latency predictions as it will take some time before the system is stable and hence
act as the theoretical model is predicting. The second finding is that when there are
multiple sources generating packets, the arrival process may be approximated as a
Poisson process with exponentially distributed inter-arrival time. This means it is
still able to be compared to the analytical models as long as there are enough sources
creating packets if the sources themselves do not have an exponential arrival process.

A lot of the analytical models investigated provides results that are comparing
well to the results of the simulations. This gives the impression that analytical models
can be used for latency prediction and guarantees and are still applicable. There are
however some analytical models that are giving too optimistic results; M/D/1 and
G/G/1. Based on the cases studied in this thesis, these would not be applicable for
providing latency prediction and guarantees.

Even though the other analytical models have results that line up well, and hence

47

48 6. CONCLUSION AND FUTURE WORK

they are usable for latency prediction and guarantee, there is still a need to act with
caution as the arrival rates and packet sizes may change over time. If the parameters
suddenly have a big shift, neither the latter nor new intensities provide a correct
comparison. It is hard to decide the distribution of the waiting time and delay when
the system is in this transient stage. The bigger the differences in load, the longer
time it takes before the new distribution of the waiting time and delay are valid.

When there is priority queueing happening in the system, there are multiple plots
that all have to match up well for the models to be considered applicable for latency
prediction. Both priority models investigated are doing well for all classes of the
system meaning they are applicable for latency prediction and guarantees. When
there are some differences, the models appear a bit pessimistic, so if these were to
hold the system should still keep the requirements.

This thesis aimed to review analytical models for latency guarantee estimation
and compare these results to the result of a constructed simulator. It concludes that
most models investigated are applicable for latency guarantee estimation.

6.2 Future work

When it comes to future work, multiple groups of use cases could be investigated.
All use cases are applicable for all analytical models investigated in this thesis and
others that were not considered in this thesis, for instance, other analytical models
based on network calculus, queueing theory or others.

One case that could be investigated is to look into non-stationary results (transient
solution) and if approximations of these can be used when the system is in a state of
changing the load.

It could also be interesting to compare analytical models to other results like real
data instead of simulated data. This could also help confirm if the simulator results
are good and further provide another argument for why analytical models can or
cannot be used for latency guarantee estimation.

Another use case that can be investigated could be having multiple sources per
run and the run having multiple parts. This could lead to other results that can
either confirm what is already discovered or highlight either the good or bad sides of
the models.

This thesis has not considered having multiple parts to a run with priority
queueing, this use case would be useful to see if the classes are affected in the same
or different way. The intensities could either all change at the same time or just for
one class or source at a time.

6.2. FUTURE WORK 49

It could also be interesting to see if the cases with multiple classes would be
affected by the number of classes present in the system. Investigating with for
instance 5, 10 and 20 sources could be interesting to see if a pattern is occurring.

For most use cases, there has only been one set of input parameters used. Another
use case that would be interesting to see the results of is if the amount of load on
the system will affect how well the results are lining up.

References

[1] ITU, «The Tactile Internet. ITU-T Technology Watch Report», Aug. 2014.
[2] R. Ali, Y. B. Zikria, et al., «URLLC for 5G and Beyond: Requirements, Enabling

Incumbent Technologies and Network Intelligence», IEEE Access, vol. 9, pp. 67 064–
67 095, 2021.

[3] J. Navarro-Ortiz, P. Romero-Diaz, et al., «A Survey on 5G Usage Scenarios and Traffic
Models», IEEE Communications Surveys Tutorials, vol. 22, no. 2, pp. 905–929, 2020.

[4] FG-NET-2030, «White Paper: Network 2030: A Blueprint of Technology, Applications,
and Market Drivers Toward the Year 2030», Nov. 2019.

[5] Q. Zhang and F. H. P. Fitzek, «Mission Critical IoT Communication in 5G», in Future
Access Enablers for Ubiquitous and Intelligent Infrastructures, V. Atanasovski and
A. Leon-Garcia, Eds., Cham: Springer International Publishing, 2015, pp. 35–41.

[6] T. S. Perry, «Look Out for Apple’s AR Glasses: With head-up displays, cameras,
inertial sensors, and lidar on board, Apple’s augmented-reality glasses could redefine
wearables», IEEE Spectrum, vol. 58, no. 1, pp. 26–54, 2021.

[7] K. Kim, M. Billinghurst, et al., «Revisiting Trends in Augmented Reality Research:
A Review of the 2nd Decade of ISMAR (2008–2017)», IEEE Transactions on Visual-
ization and Computer Graphics, vol. 24, no. 11, pp. 2947–2962, 2018.

[8] Y. Jiang, C.-K. Tham, and C.-C. Ko, «An approximation for waiting time tail
probabilities in multiclass systems», IEEE Communications Letters, vol. 5, no. 4,
pp. 175–177, 2001.

[9] P. J. Emstad, P. E. Heegaard, et al., Dependability and performance in information
and communication systems. Fundamentals. Department of Telematics, 2016.

[10] M. Zukerman, Introduction to Queueing Theory and Stochastic Teletraffic Models,
2020.

[11] Y. Jiang, «Queueing Delay Models», May 2023.
[12] Team SimPy. «SimPy, Discrete event simulation for Python». (2020), [Online]. Avail-

able: https://simpy.readthedocs.io (last visited: Jun. 7, 2023).
[13] NumPy. «NumPy, The fundamental package for scientific computing with Python».

(2023), [Online]. Available: https://numpy.org/ (last visited: Jun. 7, 2023).
[14] The Matplotlib development team. «Matplotlib, Visualization with Python». (2023),

[Online]. Available: https://matplotlib.org/ (last visited: Jun. 7, 2023).

51

https://simpy.readthedocs.io
https://numpy.org/
https://matplotlib.org/

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Related work

	Objectives
	Outline

	Background
	System model and notation
	System model
	Notation

	Single class
	
	
	
	
	

	Multiple classes
	
	

	Methodology
	Literature study
	Simulation
	Simulator setup
	Simple simulator inputs
	Simulate with multiple parts
	Simulate with multiple sources
	Output of simulator

	Plotting of theoretical results
	Calculation of theoretical parameters

	Plotting of simulated results

	Results
	Summary of results
	M/M/1
	Single source
	Single source with multiple parts
	Multiple sources

	
	
	Single source
	Multiple sources

	
	Uniform arrival process and uniform service time distribution with one source

	
	
	One source per class
	Multiple sources per class

	
	One source per class

	Discussion
	Summary of findings
	M/M/1
	M/G/1
	M/D/1
	G/G/1
	D/D/1
	G/G/1 - priority
	M/G/1 - priority
	Limitations and finding variables of real systems

	Conclusion and future work
	Conclusion
	Future work

	References

