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Abstract

Biometric characteristics can be used to identify individuals due to their
uniqueness and user-friendliness. Despite these benefits, there are privacy
risks associated with biometric data that need to be managed. In addition,
the computational workload of biometric identification systems needs to
be improved to prevent the search in large-scale databases from becoming
infeasible.

In this master’s thesis, a biometric identification system is proposed
where a preselection method is introduced to improve the computation
workload. To this end, similar subjects are grouped in clusters by using
the k-means clustering technique. To provide additional security, Fully
Homomorphic Encryption is used on the reference templates to protect the
sensitive information of the biometric data. Despite the high computation
cost associated with this encryption scheme, the benefits outweigh the
drawbacks because of the potential attacks with quantum computers and
thus achieving long-term protection.

An experimental evaluation is performed for the proposed system,
showing that the system is reduced to 2.8% of the workload effort of the
baseline system performing an exhaustive search on the entire reference
database. For evaluating the biometric performance, the proposed system
achieves false positive identification rates around 0.001% and false negative
identification rates from 1% to 0.001%. This indicates good accuracy.
Therefore, the biometric identification system presented in this thesis can
be considered efficient, accurate, and secure at the same time, improving
upon the state-of-the-art.





Sammendrag

Biometriske kjennetegn kan brukes til å identifisere individer på grunn
av deres særpreg og brukervennlighet. Til tross for disse fordelene så er
det personvernrisiko knyttet med biometriske data som må håndteres. I
tillegg må den beregningsmessige arbeidsmengden av biometriske identi-
fiseringssytemer forbedres for å hindre at søk i store databaser skal bli
umulige.

I denne masteroppgaven blir det presentert et biometrisk identifise-
ringssystem hvor en forhåndsvalgmetode er introdusert for å forbedre
den beregnignsmessige arbeidsmengden. Til dette formålet grupperes like
personer sammen i grupper ved å bruke k-means grupperingsalgoritme.
For å introdusere mer sikkerhet er fullstendig homomorft kryptering brukt
på referanse malene for å beskytte den sensitive informasjonen av den
biometriske dataen. Til tross for de høye beregningskostadene som er
knyttet til denne krypteringsmetoden, så vil fordelene overveie ulempene
på grunn av de potensielle angrepene med kvantedatamaskiner og dermed
oppnås langsidig beskyttelse.

En eksperimentell evaluering er gjennomført for det foreslåtte syste-
met, som viser at systemet er redusert ned til 2.8% av arbeidsmengden av
grunnlinjesystemet som utfører fullstendig søk på hele referansedatabasen.
Ved å evaluere den biometriske prestasjonen oppnår systemet falske positi-
ve identifiseringsrater rundt 0.001% og falske negative identifiseringsrater
fra 1% til 0.001%. Dette indikerer god nøyaktighet. Dermed kan det
biometriske identifiseringssystemet som presenteres i denne oppgaven bli
betraktet som effektiv, nøyaktig og sikker på samme tid, og forbedre
state-of-the-art.
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Chapter1Introduction

This Chapter introduces the topic of this thesis, describing the motivation, use cases,
and challenges associated with biometric identification systems. To introduce the
different tasks the thesis will focus on, research questions are also described. Lastly,
this Chapter describes the remaining structure of this thesis.

1.1 Motivation and Challenges

The relevance of biometric data has emerged over the last century, with biometric
characteristics such as facial features or fingerprint patterns used to identify and
recognize persons [1]. This increasing usage can be associated with the fact that
biometric data is both unique and user-friendly [2]. Every person has certain
characteristics that are special and unique to themselves, and in addition, their
biometric data can be applied for different use cases in the digital world [1]. For
instance, using our facial image, we can unlock our phones, and using our fingerprint,
we can receive a unique identifying document such as a passport. Unlocking a phone
or going through passport control are examples of biometric verification, where a
one-to-one comparison is computed against a known probe subject.

The more challenging case is biometric identification, where the identity of an
unknown probe is to be determined through a search of a large biometric database.
To this end, the system compares an unidentified probe against a reference database
to find a mated reference [1]. The Indian National ID Programm Aadhaar [3] is one
use case of biometric identification, where citizens are assigned unique identification
numbers. As each citizen can only receive one identification number, the citizens are
enrolled into the Aadhaar database when they receive their identification numbers [4].
For a new citizen, a biometric identification process is performed to check if the
citizen is already enrolled in the database. For this purpose, an exhaustive search
is performed, where the new citizen is compared to every citizen in the Aadhaar
database [4].

1



2 1. INTRODUCTION

Despite the user-friendliness of biometric data in identification systems, there
are risks associated with its application. This is due to the fact that biometric data
are considered sensitive and need to be protected accordingly [5]. If unauthorized
persons process the biometric data, this can have major consequences [5]. Potential
risks include impersonation attacks, disclosure of medical information that can be
deduced from biometric data, and disclosure of sensitive personal information such
as ethnicity [5]. To provide the appropriate security for the biometric data, different
security standards are provided by the International Organization for Standardization
(ISO) and the International Electrotechnical Commission (IEC), which need to be
fulfilled when dealing with biometric data [6]. The following three main requirements
for storing and processing biometric information securely are defined in ISO/IEC
24745 standard on biometric information protection [6]:

– Unlinkability: It should not be possible to link any protected references to their
corresponding biometric sample or any other protected reference.

– Renewability: It should be possible that any protected reference of a biometric
sample can be re-created without being linked to each other or without the
need to re-enroll the corresponding biometric sample.

– Irreversibility: It should not be possible that knowledge of a protected biometric
reference will result in knowledge of the original biometric sample.

Therefore, the main focus of this thesis will be ensuring that the security challenge is
addressed in accordance with the ISO/IEC 24745 requirements introduced above.
Several recent approaches to ensuring the appropriate level of security utilize Fully
Homomorphic Encryption (FHE). Modern FHE schemes belong to the class of lattice-
based cryptography and are assumed to be secure against attacks implemented on a
quantum computer. If the correct parameter sets are chosen, this gives long-term
protection. The use of biometric identification through exhaustive search on a
database encrypted with FHE will be considered the baseline system in this thesis.

Although the security is the most important challenge when considering biometric
data and biometric identification systems, a secondary problem for biometric systems
is ensuring we maintain efficiency. For instance, using FHE comes with a significant
computational overhead, especially regarding biometric identification searches over
large-scale databases, which affects the efficiency. This is also reflected in the
biometric identification of the Aadhaar database, which currently enrolls more than
1.3 billion Indian citizens [3]. With an exhaustive search on such a large number of
references, a protected search would become infeasible [7].

To improve the efficiency of biometric identification, a preselection method can
be introduced to reduce the search space [4]. For this thesis, two research approaches
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of biometric identification with preselection on protected reference databases have
been studied and analyzed. These two approaches are Stable Hashing [8] and the
Public-Key Encryption with Keyword Search (PEKS)-based identification with soft-
biometric keywords [7]. Both approaches aim to reduce the number of samples that
are considered for the final comparison, while the reference database continues to
be encrypted using FHE. While the stable hashing approach experiences security
drawbacks, the PEKS-based identification has accuracy drawbacks, and this will be
shown in this thesis.

The goal of this thesis is to combine the stable hashing [8] and PEKS-based [7]
approach in a way that combines their benefits, but mitigates their respective
drawbacks. With this, we can construct a proposed system that aims at being secure,
accurate, and efficient.

1.2 Research Questions

The research questions formulated in the pre-project course TTM4502 [9] are main-
tained for this thesis.

RQ1. What are the main challenges in using cryptography for soft-biometrics-based
preselection?

RQ2. What alternatives to soft-biometrics can be utilized for encrypted preselection?

RQ3. How will the performance be affected by combining PEKS with stable hashes?

RQ4. Will it be necessary to use a binning method on the database in advance of an
identification search?

1.3 Outline

The remaining Chapters of this thesis are structured in the following way:

Chapter 2: Background and Preliminaries describes the necessary biometric
terminology, equations, template protection, and preselection approaches used in the
proposed system.

Chapter 3: Related Work presents similar and existing approaches for biometric
identification and preselection approaches within the same research field as the thesis,
but not further used.

Chapter 4: Methodology introduces the different work packages of this thesis.



4 1. INTRODUCTION

Chapter 5: Proposed System describes the proposed biometric identification
system for this thesis. This is separated into an enrollment and identification phase
with associated figures and algorithms to illustrate these two transactions.

Chapter 6: Experimental Evaluation presents the implementation and evaluation
of the proposed system. A description of the testing environment and the execution
metrics are provided before the Chapter describes the results of the experiments in
detail.

Chapter 7: Discussion includes an analysis and discussion of the proposed system
and its results from the experimental evaluation. This Chapter also addresses the
research questions and details how they have been solved throughout this thesis.

Chapter 8: Conclusion summarizes this thesis by highlighting the most significant
features of the proposed system, its provided results, and if the system works as
expected to achieve the thesis goal. Lastly, this Chapter introduces further work.



Chapter2Background and Preliminaries

The following Chapter describes different concepts and building blocks essential for
understanding the proposed system for this thesis. Section 2.1 introduces biometric
identification with related terminology. Section 2.2 introduces the baseline system
for biometric identification and describes how the security of biometric templates can
be improved. Lastly, Section 2.3 and Section 2.4 describe two different approaches to
speed up the baseline system through preselection. These approaches are the basis
of the work in this thesis and aim at efficient and secure preselection for biometric
identification. Even though there are certain drawbacks related to the concepts
introduced in Section 2.3 and Section 2.4, these drawbacks will be discussed in
Chapter 5.

2.1 Biometric Identification

The ISO and the IEC provide several standards for unified biometric vocabulary
and security requirements that need to be considered when working with biometric
data. According to the ISO/IEC 2382 standard [10], biometric characteristics of
an individual include their behavioral and biological characteristics such as face
topography, facial skin texture, or finger topography, which often are used as entry
fields in automated biometric recognition systems. These automated biometric
recognition systems aim to compare biometric features against stored biometric
references [10].

A biometric system can operate in two modes, either verification or identifica-
tion [1]. This is illustrated in Figure 2.1, which also shows the enrollment process of
references into a biometric enrollment database. When a biometric system operates
in verification mode, the system validates a person’s identity by performing a 1 : 1
comparison between the person’s biometric features and its corresponding reference
template enrolled in the database [1]. The focus of this thesis is however on biometric
systems operating in identification mode, where the system performs a 1 : N com-

5



6 2. BACKGROUND AND PRELIMINARIES

Figure 2.1: Figure from [13] showing the ISO standard for biometric system.

parison [1]. The idea behind biometric identification is to compare an unidentified
biometric probe reference against a biometric enrollment database in order to find a
mated reference [1]. Finding a mated reference means finding a reference where the
biometric probe and one biometric reference from the enrollment database are from
the same biometric subject [10].

As illustrated in Figure 2.1, during the enrollment, feature vectors are extracted
from a biometric sample. For example, fixed-length vectors with floating point values
are extracted from face images by using deep convolutional neural networks [11].
These feature vectors are stored in the enrollment database. During identification,
a fresh probe sample (e.g., face image) is captured and the features are extracted
in the same manner as during enrollment. These probe features are then compared
to all reference feature vectors through the use of a single distance metric, e.g., the
Euclidean distance [12]. The distance scores are ranked and the reference subject
associated with the lowest distance score is returned as the identification outcome.

2.1.1 General Data Protection Regulation

In addition to the standards from the ISO and the IEC discussed in Chapter 1,
additional regulations must be carefully followed when dealing with biometric data.
One such regulation is the General Data Protection Regulation (GDPR) [5], which
describes restrictions on protecting personal data and emphasizes that everyone has



2.2. HOMOMORPHIC ENCRYPTION 7

the legal right to protect their personal data concerning themselves.

As defined by the GDPR [5], biometric data contain physical, physiological, or
biometric characteristics that can be categorized as personal data used to confirm
the unique identification of an individual, for instance, with a facial image. With this
definition, the GDPR [5] further classifies biometric data as sensitive due to data
processing risks. It is especially the soft-biometric characteristics such as ethnicity
that are characterized as sensitive by the GDPR and hence need to be hidden from
unauthorized persons [5]. This is because ethnicity can be deduced from the biometric
characteristics. Every individual has the fundamental right that only authorized
persons should be allowed to process their biometric data, e.g., for identification
purposes. If an unauthorized person, e.g., an attacker, obtains access to the sensitive
data of an individual, the attacker may use the individual’s personal information
for impersonation attacks [5]. Such attacks may cause a loss of confidence in the
biometric recognition system’s reliability [9]. As a result, the GDPR [5] emphasizes
that the processing of biometric data should only be allowed for certain cases specified
by the Regulation.

Equivalent to biometric data, the GDPR [5] also defines health data as personal
data. This data includes an individual’s physical or mental health that may reveal
information about the overall health status of the individual. From Amerifar et
al. [14], it can be seen that through analyzing characteristics of the iris image of
a person, i.e., the structure of the eye, abnormalities in the iris may be revealed.
With these abnormalities, medical information could be revealed from the biometric
template [14]. Because of the potential risks of leaking sensitive data such as health
information, the GDPR [5] introduces conditions and limitations regarding processing
data concerning health. Similar to biometric data, this should only be processed for
specific cases defined by the Regulation.

2.2 Homomorphic Encryption

To be in compliance with the GDPR [5] and the security requirements from the
ISO/IEC 24745 [6], biometric templates can be protected using Homomorphic En-
cryption (HE) [15]. For the purpose of this thesis, we consider the use of HE as the
baseline system for biometric identification. Before describing HE and the baseline
system, the following Section describes the most common architecture for biometric
identification systems.

2.2.1 Biometric Architecture

Protected biometric identification systems often use an architecture based on the
security assumptions presented in [16]. Through utilizing a two-server architecture
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consisting of a Computation Server (CS) and an Authentication Server (AS), a secure
biometric identification process can be achieved. In addition, the CS can communicate
with a third entity, a Client (C), which provides the biometric templates. An insecure
communication channel is assumed between the different entities, meaning an attacker
can eavesdrop on the communication. Further details on the communication channel
are not described since this is beyond the scope of this thesis.

The goal of this architecture is to divide different responsibilities between different
servers and also to ensure that the privacy aspect is provided. While the C and the
CS have access to the public key information of the system, only AS controls the
secret key [16]. In addition, the CS will also have access to a protected reference
database. A public-key infrastructure can be used for the key management between
the different entities, but this is outside the scope of this thesis.

With separate servers, we assume that the AS only needs to be connected to a local
network since it can communicate with the outside world through communication
with the CS. On the other hand, we assume that the CS is connected to the network
and thereby is accessible to an attacker over the Internet. These separations hence
give additional protection to the protocol. With this architecture, most biometric
systems assume the servers will behave according to the protocol, thereby assuming
a semi-honest model [17].

2.2.2 Homomorphic Encryption

HE schemes are often applied to biometric data because of their advantage in
ensuring privacy [18]. As explained by Drozdowski et al. [19], HE enables the
possibility of more functionality in the encrypted domain. Thereby, it is possible to
perform operations in the encrypted domain and still obtain the same results without
performing decryption [19]. With biometric data, HE can be used to compare two
encrypted references and obtain the same comparison score as if the comparison was
performed with unprotected plaintext references.

The characteristic property associated of HE scheme is the homomorphic property.
This property is defined in the following way [15]:

E(m1)⊙ E(m2) = E(m1 ⊙m2). (2.1)

The operation ⊙ indicates a specific operation used in the encrypted domain, such as
multiplication or addition. If this property is true for the specified operation ⊙, and
for every message m1 and m2 in the set M consisting of all the possible messages,
then the homomorphic property is present [19].
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HE schemes can be classified into three main types, where each type depends on
the supported operations and how many times each operation can be used for the
encryption scheme [20]. Partially Homomorphic Encryption (PHE) supports only
one single operation, either addition or multiplication, that can be used an unlimited
number of times. Somewhat Homomorphic Encryption (SHE) supports using, for
instance, multiplication and addition, but only for a limited number of times. Lastly,
FHE supports an unlimited number of operations that can be used an unlimited
number of times [20].

2.2.3 Fully Homomorphic Encryption

The first FHE scheme was presented by Gentry in 2009 [18]. This scheme was
introduced as a solution to the drawbacks of the concept of privacy homomorphisms
introduced by Rivest et al. [15] in 1978. The problem with privacy homomorphisms
was the ability to ensure security with a large set of operations and limited applicabil-
ity [15]. Despite many proposals for a viable construction for FHE, Gentry [18] first
managed to construct a general FHE blueprint using ideal lattices. Such schemes add
noise to ciphertexts, and using operations like multiplication makes the noise grow.
This is what has limited the number of operations before Gentry [18], as the growing
noise leads to incorrect decryption. The essential part of Gentry’s FHE scheme was
the bootstrapping operation. According to Gentry [18], a scheme is bootstrappable if
it is possible to evaluate its own decryption circuit. If a ciphertext can be decrypted
under a layer of encryption, it can also be refreshed [18]. Through bootstrapping, the
idea is to refresh ciphertexts from the same plaintext, such that the new and fresh
ciphertext obtains a shorter error vector [18]. Gentry [18] only managed to enable
bootstrapping using a technique called squashing. The bootstrapping procedure
was only possible if the decryption depth was reduced, and the squashing technique
henced allowed for a reduction of the complexity of Gentry’s decryption circuit [20].

Even though the construction of the first successful FHE scheme was promising,
the complexity of Gentry’s scheme [18] was relatively high because of the compu-
tational costs associated with the bootstrapping mechanism [20]. Acar et al. [20]
describe that, due to this complexity, new optimizations of FHE schemes have been
introduced based on Gentry’s first FHE proposal [18].

Another variant of FHE optimization is related to Learning with Errors (LWE)-
based FHE schemes [20]. As a solution to the complex bootstrapping technique
by Gentry [18], Brakerski et al. [21] proposed the Brakerski-Gentry-Vercauteren
(BGV) scheme as a FHE scheme without the bootstrapping procedure. This BGV
scheme is based on the Ring-Learning with Errors (R-LWE) problem. LWE was
first introduced by Regev [22] in 2009, showing that a quantum algorithm could be
constructed by reducing worst-case lattice problems, e.g., the Gap Shortest Vector
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Problem (GapSVP) [22]. While LWE uses the ring of integers modulo q, R-LWE
uses a polynomial ring [21]. The hardness of R-LWE is reduced to the hardness of
the LWE, and we can thus assume a post-quantum hardness. On the other hand,
Fan and Vercauteren [23] proposed the Brakerski-Fan-Vercauteren (BFV) scheme
in 2012. This BFV scheme is based on improving the LWE-based FHE scheme by
Brakerski [24] into a R-LWE-based FHE scheme. The benefit of this BFV scheme [23]
is using a simplified bootstrapping technique and faster computations. Another
improvement for FHE is the Fast Fully Homomorphic Encryption Over the Torus
(TFHE) approach proposed by Chillotti et al. [25], which also utilizes the LWE
problem. Lastly, Cheon et al. [26] proposed the Cheon-Kim-Kim-Song (CKKS)
scheme in 2017. In contrast to the aforementioned optimization of FHE, the CKKS
scheme [26] introduced a variant of FHE using approximation arithmetic which
enables the use of FHE over floating point values which are approximated to a certain
level of precision. The security of this CKKS scheme is also based on the R-LWE
problem [26].

2.2.4 Baseline System

FHE can be considered to construct a baseline system for protected biometric
identification using an exhaustive search over the entire enrollment database, which
will be described in the following [19]. For the enrollment phase, a reference template
represented as a FHE plaintext r is encrypted to cr ← Enc(pk, r) and stored in
the reference database together with an identifier ID (e.g., a personal identification
number). For an unidentified probe feature vector, an associated protected ciphertext
cp is produced through FHE encryption with the following algorithm.

cp ← Enc(pk, p). (2.2)

The pk is the public key of the FHE scheme, while p is the plaintext of the probe
template. The baseline system using FHE will then compare the protected ciphertext
of the probe against every protected reference in a protected reference database in
order to decide if there is a mated reference for the probe.

Several homomorphic operations are used for one FHE comparison between the
probe and one database reference, as described in [12]. Firstly, a subtraction operation,
∆pr = Sub(cp, cr), is performed between the probe ciphertext cp and a reference
ciphertext cr stored in the database. Secondly, the square of the subtraction result,
∆pr, is computed, i.e., multiplying the result by itself, multpr = Mult(∆pr, ∆pr).
Thirdly, a number of rotation operations, rotpr = Rot(multpr, 1), are performed
where the multiplication result is shifted one position to the left. These are combined
with iterative additions addpr = Add(multpr, rotpr) where the multiplication result
is added with the rotation result. With d as the dimension of the probe and the
database reference, d − 1 executions of the rotation and addition operations are
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performed [12]. The computational workload of this baseline system is heavily based
on the number of rotation operations, defined by Engelsma et al. [27] as the most
expensive homomorphic operations.

2.2.5 Packing Data in FHE

Despite the benefits of using FHE, the computational overhead is high [28]. This is
because the ciphertexts are expected to be larger than the biometric plaintext data to
be encrypted, and thereby this reduces the efficiency of the system [28]. One solution
to this problem is ciphertext packing, where multiple plaintexts are encrypted into
one ciphertext [28]. As also described by Wu et al. [29], ciphertext packing allows
for parallel computation, which improves the overall efficiency. One application
of ciphertext packing is coefficient packing. This was used in [30] to rescue the
workload of the baseline biometric identification system. As described by Bauspieß
et al. [30], coefficient packing can improve the biometric identification comparisons
and thereby decrease the relative computational complexity of FHE. Coefficient
packing was also used in the biometric identification process in [7], which is one of the
two preselection schemes that are the basis of this thesis. With coefficient packing,
multiple plaintexts can be concatenated and encrypted into one ciphertext [30]. This
means that with s available ciphertext slots and d as the dimension for every template,
it is possible to concatenate k = ⌊ s

d⌋ plaintext into one [30]. As described by Bauspieß
et al. [30], coefficient packing uses only one comparison computation for every k

comparisons in the baseline system. With this approach, the coefficient packing
technique utilized the concept of feature transformation, which aims to reduce the
cost of each comparison [4]. At the same time, the approach is also an exhaustive
search comparison because every combination needs to be compared and evaluated.
This technique uses all available template slots, and the biometric identification can
experience a significant computational workload reduction [30].

2.2.6 Other Biometric Template Protection Schemes

As described in Section 2.2, the benefit of HE schemes is the ability to perform
biometric comparisons in the encrypted domain. This property is often associated
with Biometric Template Protection (BTP) schemes [31]. Other categories of BTP
schemes are biometric cryptosystems and cancelable biometrics [31]. As defined
by Rathgeb and Uhl [31], biometric cryptosystems associate a digital key with
the biometric data, whereas cancelable biometrics append transformations to the
biometric data such that comparisons can be performed in a secure domain.

With biometric cryptosystems, the added security makes the process of forging,
copying, and sharing biometric data significantly more advanced and difficult than
previously password-based key approaches [31]. An important characteristic of this
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BTP scheme is the helper data. This is defined in [31] as the public information of
the biometric data that is needed to generate or retrieve the associated digital key.
The helper data are an essential part of the key reconstruction, and therefore, they
should not reveal significant information about their associated original biometric
template [31]. Since the biometric cryptosystem approach involves digital keys,
biometric comparisons are not performed directly on the biometric templates. Instead,
with biometric comparisons, the digital keys are verified [31]. Either the key is
returned if the same biometric template is being compared, or an error message is
returned otherwise [31]. Despite the benefits of using this BTP scheme, Rathgeb
and Uhl [31] explain the drawback of biometric cryptosystems often experiencing a
significant decrease in recognition performance. In addition, the digital keys must be
of sufficient size to prevent an attacker from guessing the corresponding keys from a
biometric template [31].

The security property of the cancelable biometric scheme is that recovering the
original biometric data should be computationally hard [31]. As explained in [31],
the biometric data are being distorted by applying different transformations, but
it is nevertheless essential that this is not reducing the corresponding biometric
characteristics. In addition, different transformations are applied to various appli-
cations to make it harder for an attacker to link similar subjects [31]. According
to Rathgeb and Uhl [31], the cancelable biometric schemes can be divided into
two categories depending on their functionality. The first category, non-invertible
transforms, applies non-invertible functions to prevent an attacker from being able to
reconstruct the biometric data. The second category, biometric salting, applies invert-
ible transformations on the biometric template with the transformation parameters
as a hidden secrecy [31]. Both the biometric salting approach and the non-invertible
transform approach often lead to a decrease in the biometric performance, i.e., the
accuracy [31].

2.3 Stable Hashes

Recently, Osorio-Roig et al. [8] presented an approach to efficient face identification
based on FHE using a stable hash generation for the purpose of preselection. This is
one of the two works that are the basis of this thesis and will now be described in more
detail in this Section. The process used so-called stable hash codes and a hash lookup
table to group facial references based on similarity. The approach in [8] can be divided
into an enrollment and identification Step, as illustrated in Figure 2.2. During the
enrollment Step, N enrollment references are enrolled in the system. A corresponding
stable hash code is produced for every enrollment reference through the stable hash
generation procedure. This stable hash code is based on the input features from
the face image of the given enrollment reference. In addition, a protected template
of the enrollment reference is produced through FHE encryption. The associated
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Figure 2.2: Figure from [8] showing the enrollment and identification (retrieval)
process for the biometric identification system using stable hash generation.

stable hash code is then stored as a key index in a hash lookup table together with
its corresponding protected reference template. During the enrollment of reference
samples, two different options can be expected. The first option is creating a new
stable hash code, resulting in a new entry in the hash lookup table. On the other
hand, the second option is creating an already existing stable hash code, thereby
resulting in a new collision where the protected reference is associated with other
references from the same stable hash code [8].

The hash lookup table is further used during the identification Step. For a given
unidentified probe sample, the corresponding stable hash code is produced through
stable hash generation based on the probe feature vector. By utilizing the hash
lookup table, the system will use the stable hash code of the probe as a key index to
retrieve all the protected references from the enrollment Step that have the same
stable hash code as the probe. The advantage of using this stable hash generation
scheme is its efficiency that has computational complexity of O(1), meaning that
returning a candidate list of similar references can easily be carried out from an exact
match by only processing the stable hash code from the hash lookup table [8]. All the
references in the returning candidate list are retrieved from the same stable hash code.
At the end of the identification Step, the reduced candidate list is compared with
the probe template, as described in the baseline system described in Section 2.2.4, to
derive if there is a mated reference in the candidate list for the given probe.

2.3.1 Product Quantization

The aforementioned stable hash generation used in [8] uses Product Quantization
(PQ) in order to reduce the total representation space of vectors without affecting
the dimensionality [32]. The process of generating the stable hash codes is illustrated
in Figure 2.3. From the enrollment of a subject S, its feature representation can
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Figure 2.3: Figure from [8] showing the mapping of features to the nearest cluster.

be divided into P equal sub-vectors called sub-spaces, S = {E1, ..., EP } [8]. Each
sub-space Ej , for 1 ≤ j ≤ p, has a corresponding codebook of size K, i.e., consisting of
K clusters, C = {c1, ..., cK}, where each sub-space is mapped to its nearest cluster [8].
The index of the nearest cluster is then represented as a binary hash code Q(Ej)
consisting of log2(K) bits [8]. Finally, by concatenating the binary hash code Q(Ej)
for each sub-space Ej , the resulting stable hash code H(S) is generated of the size
P log2(K) bits [8].

2.3.2 K-Means Clustering Algorithm

The stable hash generation scheme using PQ in [8] used different clustering techniques
to associate each sub-space with its nearest cluster. Even though Osorio-Roig et
al. [8] evaluated four different clustering algorithms, this thesis will only focus on
the k-means clustering algorithm further because of its accuracy and performance
derived from the experimental evaluation in [8] and its computationally economical
benefits explained in [33].

MacQueen [33] describes the k-means algorithm in the following way: Initially,
the k-means algorithm will predefine k random center locations. In an iterative
process, the algorithm will group the entire population (i.e., the set of reference
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feature vectors) into k clusters based on the predefined centers. Each element is
associated with its nearest cluster by comparing the minimal distance to all the
centers. For each iteration, the centers will be updated to the mean of the elements
in each cluster. With this procedure, the k-means clustering is a suitable technique
for processing large sample sets, and some practical applications are, for instance,
similarity grouping [33]. Based on this, the k-means approach is a helpful technique
in biometric identification to group subjects based on their similarities.

The k-means algorithm uses a distance measure to compute a similarity score to
associate a biometric sample with its nearest cluster [33]. One example of a suitable
distance measure often used to compute similarity scores in different clustering
techniques is the Euclidean distance [34]. The Euclidean distance between two points,
x and y, is defined in the following way [34]:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2. (2.3)

Even though the Euclidean distance measure is suitable for computing a similarity
score, the complexity and efficiency can be improved by not computing the squared
root. The squared Euclidean distance can also be applied as a distance measure to
the k-means algorithm, improving the clustering distribution. This is defined in the
following way [34]:

d(x, y)2 =
n∑

i=1
(xi − yi)2. (2.4)

2.4 Public-Key Encryption With Keyword Search

The following Sections describe the second approach to preselection on FHE protected
data that is the basis to this thesis, which is based on PEKS. In 2004, Boneh et
al. [35] introduced the mechanism of PEKS. PEKS is similar to standard public-key
encryption schemes where a sender encrypts a message using the sender’s public key,
and the receiver decrypts the message using its private key. The only difference is the
improved functionality of testing in the encrypted domain whether keyword-specific
content is appended to the message without applying decryption [35]. To implement
this functionality, the sender creates a ciphertext of each specified keyword with the
receiver’s public key, PEKS(pk, keyword), and appends this to the original encrypted
message, E(pk, M) [35]. This process is illustrated in [35] with the following Equation
for n specified keywords:

E(pk, M) || PEKS(pk, keyword1) || ... || PEKS(pk, keywordn). (2.5)

For each specified keyword, there exists a corresponding counterpart called trapdoor.
These trapdoors enable the functionality of comparing the ciphertext of a keyword
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with its corresponding trapdoor to test whether they contain the same keyword [35].
If an external part performs this comparison functionality, for instance, a gateway, the
external part will learn nothing about the keywords, thereby ensuring the mechanism’s
security [35].

2.4.1 PEKS Definition

A definition of a PEKS scheme is defined in detail in [36], where a PEKS scheme is a
tuple of four algorithms PEKS = (KeyGen, PEKS, Trapdoor, Test):

– With the security parameter k as the input parameter, the public and secret
key pair (pk, sk) is computed in the following way:

(pk, sk)← KeyGen(1k). (2.6)

– With the user’s public key pk and a keyword w ∈ {0, 1}∗ as the input parameters,
the searchable ciphertext sw is computed in the following way:

sw ← PEKS(pk, w). (2.7)

– With the user’s secret key sk and a keyword w ∈ {0, 1}∗ as input parameters,
the trapdoor tw is computed in the following way:

tw ← Trapdoor(sk, w). (2.8)

– With a trapdoor tw = Trapdoor(sk, w′) and a searchable ciphertext sw =
PEKS(pk, w) as input parameters, a bit b is produced in the following way,
where b = 1 if w = w′, and b = 0 otherwise:

b← Test(tw, sw). (2.9)

2.4.2 Identity-Based Encryption

Boneh et al. [35] describe that the defined PEKS scheme is closely related to Identity-
Based Encryption (IBE) and describe that PEKS can be constructed from IBE
and inherits its security properties. Similar to PEKS, the IBE is also based on a
public-key encryption scheme. As explained by Boneh and Franklin [37], the purpose
of IBE is to encrypt a message using some identifying information of the receiver,
e.g., the email address. The receiver can then contact a third party, Private Key
Generator (PKG), to authenticate themselves. From the PKG, the receiver will
obtain its private key and is then able to decrypt the message [37].

A definition of an IBE scheme is defined in detail in [36], where an IBE scheme is
a tuple of four algorithms IBE = (Setup, Extract, Enc, Dec):
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– (mpk, msk) ← Setup(1k): With the security parameter k as input param-
eter, this algorithm generates the master public and master secret key pair
(mpk, msk).

– sk ← Extract(id, msk, mpk): With the user’s identity id ∈ {0, 1}∗, mpk, and
msk as input parameters, this algorithm generates the user’s secret key sk.

– c← Enc(m, id, mpk): With the message m ∈ {0, 1}∗, identity id, and mpk as
input parameters, this algorithm produces a ciphertext c.

– m← Dec(c, sk): With the ciphertext c, the receiver’s secret key sk, and mpk,
this algorithm produces the original message m from the ciphertext c.

2.4.3 Lattice-Based PEKS

Even though the original PEKS scheme introduced by Boneh et al. [35] led to
significant efficiency with its ability to compare encrypted messages and keywords
in the encrypted domain, this concept also came with drawbacks. As described by
Behnia et al. [36], the combination of extensive use of pairing computation and the
costly Test() algorithm, Equation (2.9), introduces considerable heavy cryptographic
delays. In addition, [36] also explains the lack of post-quantum security, which often
is required for applications handling sensitive user data. In order to provide a certain
level of security, cryptographic key sizes will continuously be increased because of
the powerful computations and breakthroughs in today’s society [36]. Current PEKS
schemes will therefore not be cryptographically secure in the long-term because they
are based on cryptographic tools, e.g., Elliptic-Curve Cryptography (ECC), that may
become infeasible with heavily increased key sizes [36].

In order to solve these aforementioned problems, Behnia et al. [36] proposed the
first lattice-based PEKS scheme using N -th Degree Truncated Polynomial Ring Units
(NTRU) in 2017. This NTRU-PEKS scheme utilizes the IBE scheme and requirements
presented in [38]. By applying the progress in lattice-based cryptography with the
use of R-LWE [39], the NTRU-PEKS scheme is considered to offer post-quantum
security because of the security guarantees from R-LWE [36]. In addition, exploiting
fast arithmetic operations over polynomial rings with R-LWE makes the NTRU-
PEKS scheme more efficient than the previous PEKS scheme operating on pairwise
computation [36].

2.4.4 PEKS With Soft-Biometric Keywords

In 2022, Bauspieß et al. [7] presented an approach introducing the use of biometrics
to the already established approach of PEKS presented by Boneh et al. [35] and
Behnia et al. [36]. The process from Bauspieß et al. [7] used PEKS with soft-biometric
keywords. From Dantcheva et al. [40], soft-biometrics can be defined as biometric
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Figure 2.4: Figure from [7] showing the reverse PEKS search to retrieve the trapdoor
associated with the probe template.

characteristics such as gender, age, or ethnicity, which can be associated with several
persons. During an identification search, the idea is to reduce the search space to a
smaller candidate list consisting of only the protected references from an enrollment
database with the same soft-biometric keywords as the identifying probe template [7].

The PEKS concept using soft-biometrics used the two-server architecture pre-
sented in Section 2.2.1. With this model, there is a need for a mechanism called
reverse PEKS search in order to produce the corresponding trapdoor to an identifying
probe keyword vector [7], as illustrated in Figure 2.4. Since only the AS has access
to the secret key sk, this is the only place where the Trapdoor() function, Equa-
tion (2.8), can be performed. The AS is initially given a list of trapdoors associated
with every possible keyword vector. With these trapdoors, the AS will then use the
Test() function, Equation (2.9), to find the associated trapdoor to the searchable
ciphertext from the PEKS() function, Equation (2.7), sent from the CS [7].

In addition, Bauspieß et al. [7] also used the concept of a binning method to
restrict the CS from keeping track of which protected references have the same
soft-biometric keywords if the candidate list is small. With this mechanism, the
reference templates are initially divided into equal bins. The distribution of the
subjects and the bin size depend on the soft-biometric keyword distribution [7]. After
the reverse PEKS search, the AS compares the associated trapdoor with each bin to
find the associated bin holding the soft-biometric keywords for the identifying probe
template [7]. This bin number is then transferred to the CS, which can perform
the identification search only on the protected references in this bin [7]. With this
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process, the CS cannot deduce whether the references in one bin all share the same
soft-biometric characteristics, or have mixed soft-biometric characteristics. [7].





Chapter3Related Work

The following Chapter presents related material regarding workload reduction meth-
ods and indexing schemes. These topics are relevant to the concept for this thesis
and thereby show a different usage of the relevant concepts.

3.1 Workload Reduction Methods

Different workload reduction approaches have been utilized to improve the efficiency
of automated biometric recognition systems. In 2019, Drozdowski et al. [4] pub-
lished an article where various workload reduction methods were discussed. These
methods are separated into two main categories. The first category is the feature
transformation approach, aiming to reduce the computational cost associated with
each comparison [4]. According to Drozdowski et al. [4], this cost reduction can
be achieved by creating more efficient representations of the biometric templates,
for instance, by reducing the dimensionality. The other category is the preselection
approach, which is the focus of this thesis. In contrast to reducing the cost of each
comparison, this approach aims to reduce the number of biometric comparisons such
that the search space is significantly reduced [4]. The approaches with the stable
hash clustering and the PEKS, described in Section 2.3 and Section 2.4, respectively,
are both examples of preselection approaches. Other related material approaches
using preselection are described further in Section 3.1.1.

3.1.1 Preselection

Feature Fusion

One way of reducing the search space for a biometric identification search is by
utilizing the concept of multi-biometric systems, which combines multiple references
to reduce the workload [41]. Drozdowski et al. [41] illustrate this concept using
feature fusion to reduce the number of template comparisons. The authors explain
that a search tree can be constructed by fusing the enrollment references to create a

21
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pre-filtering approach [41]. For identification of a probe template, the probe is at
each tree level compared against the fused templates to find all the candidates most
similar to the probe [41].

The selection of the feature vector pairs plays an important part in obtaining
a significant workload reduction and improving the biometric performance. Simi-
lar references should be fused together to increase the discriminative power of the
preselection procedure, i.e., increase the capability to distinguish references [41].
In addition to influencing the workload, selecting the feature vector pairs signifi-
cantly impacts the comparison scores against a probe template [41]. Because of
the discriminative power for the resulting fused template pairs, the probe template
will achieve better comparison scores against mated fused templates, i.e., similar
templates, than non-mated fused templates, i.e., other distinct templates [41]. This
feature fusion method reduces the workload for biometric identification but suffers
from significant storage space and the complexity of only being optimized for a given
enrollment database [41]. If a new reference is appended, the search tree and the
fusion of the enrollment references need to be reconstructed, which increases the
overall complexity [41].

Cascading Database Filtering

On the contrary to reducing the biometric comparisons by combining several features
from similar references, Drozdowski et al. [42] describe another approach to multi-
biometric identification by utilizing a filtering technique with multiple biometric
modalities, i.e., different biometric characteristics such as face image, fingerprint,
and iris code. According to Drozdowski et al. [42], a cascading filtering system is
produced in the following way: In the first phase, for a given probe template, the
corresponding features of each specified biometric modality are extracted. Secondly,
the first modality feature of the probe is compared against the enrollment database
to find a candidate list with the best comparison scores. In the third phase, a new
modality feature of the probe is compared against the resulting candidate list from
the previous phase. This process is recursively followed until all the specified modality
features of the probe have been compared against a candidate list of the prior phase.
For the last phase, when all modality features have been used for filtering, a resulting
candidate list is achieved and used for the final identification decision [42].

In evaluating this approach, the biometric performance and the workload reduction
experience acceptable results for using two and three modalities [42]. Despite this,
the defined approach is sensitive regarding the ordering of the modalities and which
samples are used [42]. For instance, if a poor-quality sample is filtered out and used
in the initial phase of the cascading filtering, the identification errors of the proposed
system will most likely increase [42].
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3.2 Indexing Schemes

In addition to being categorized as a preselection approach, the stable hash technique,
described in Section 2.3, can also be defined as an indexing approach. The idea
with an indexing approach is to produce an index for each biometric template in the
database and then use a distance measure on these indexes to find a corresponding
biometric reference for a given biometric probe.

Murakami et al. [43] describe a related indexing scheme for biometric identification.
A key element to produce these indexes is some defined biometric features, called
pivots. These pivots are either generated from artificial features or remaining features
from the biometric subjects not considered for the enrollment database [43]. Another
key element of this approach is that the indexing scheme is based on the permutation-
based indexing technique introduced by Chavez et al. [44] in 2008. With some
modifications, Murakami et al. [43] describe the idea of this permutation-based
indexing in the following way: Firstly, with a distance measure, the system computes
the distance between the defined pivots and the biometric templates. Secondly, a
permutation of each template is defined where the pivots are sorted in ascending order
according to the associated distance to the template. Thirdly, given an unidentified
probe template, a corresponding permutation is constructed showing the ordering of
the pivots from the lowest to the highest distance measured to the probe. Lastly,
for each biometric template, an approximation score can be computed between the
permutation of the probe template and the permutation of the given biometric
template [43].

In order to make the indexes more secure, several changes are implemented to the
permutation-based indexes. The proposed system in [43] further takes the inverse
of the permutation. It uses a transformation to secure the indexes against leaking
information about the original biometric template [43]. With this inverse permutation,
the system computes the inner product between the probe index and each template
index to measure an approximate distance [43]. By sorting the distances, the system
computes an exact score and compares this against a pre-defined threshold to make a
final decision for the biometric identification [43]. According to Murakami et al. [43],
this indexing scheme outperforms existing indexing approaches. The size of the
stored transformed indexes is relatively small, and the average computations are also
significantly reduced [43]. Because of this, the proposed indexing scheme in [43] can
be classified as both significantly efficient and secure.

Another related indexing scheme for biometric identification was recently proposed
by Dong et al. [45]. Instead of the permutation-based indexing scheme in [43],
Dong et al. [45] presented the concept of Learning-Based Index-of-Maximum (LIoM)
hashing, which is based on projections and transformations. The LIoM hashing
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is an improvement of the ordinary Index-of-Maximum (IoM) hashing technique
from [46], which both utilized the concept of the Locality Sensitive Hashing (LSH)
technique [45]. Based on a maximized probability that two items are similar, the
purpose of LSH is to group similar items into the same “bucket” [47]. Since the
ordinary IoM hashing was not optimized for utilizing the feature characteristics, the
improved LIoM hashing replaced the use of random transformations with utilizing
the feature values [45]. Due to this improvement, more compact hash codes could
be produced for each feature vector, and hence, faster similarity matching using the
Hamming distance could be achieved for two biometric features [45]. Despite the
improvement, the LIoM hashing suffers from performance degradation due to the
non-invertible transformation approach [45].



Chapter4Methodology

This Chapter describes the methodology of this thesis. The following Sections
introduce the different phases the workload was divided into, while the following
Chapters go into detail for each phase.

4.1 Literature Review

The initial work of the thesis consisted of acquiring knowledge about biometric
identification and FHE through a literature review. This was necessary in order to
study related information and concepts that were useful for the remaining workload
of this thesis. The previous Chapters covered the presented result of the literature
review, where the building blocks that comprise the different parts of the thesis
field were presented in Chapter 2, and other related technologies were presented
in Chapter 3. With this process, a literature search was performed through the
relevant scientific dissemination channels for the research fields of biometrics and
cryptography.

The remaining workload of the thesis consisted of transferring the information
and knowledge that were acquired to achieve the goal of the thesis and answer
the research questions presented in Section 1.2. This workload was divided into
four phases: vulnerability analysis, construction and design, implementation and
evaluation, and comparison and discussion. These phases are individually described
in the following Sections.

4.2 Phase 1: Vulnerability Analysis

The initial phase consisted of observing vulnerabilities in the two existing systems
in the focus of this thesis, stable hashing and PEKS-based preselection. It can
be considered that almost every biometric system will present a trade-off between
advantages and drawbacks that are specific to the presented approach. Therefore, it
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was necessary to understand where the bottleneck was in order to be able to solve
and understand the problem. The discoveries and the details of this vulnerability
analysis are explained in Section 5.1.

4.3 Phase 2: Construction and Design

By studying the vulnerabilities in the previous phase, we constructed a picture of
what needed to be improved. However, besides the potential drawbacks, the existing
systems also had some potential benefits that we wanted to maintain to utilize and
build on. Therefore, by utilizing a combination of the two existing systems and
combining their benefits, we proposed and constructed a new system that desired to
improve and remove the associated previous vulnerabilities. This was the focus of
the construction and design phase, which is further explained in Section 5.2.

4.4 Phase 3: Implementation and Evaluation

With a new system, it was necessary to test and evaluate it to check if the previous
vulnerabilities were removed and if the system fulfilled the desired goal of this thesis.
The proposed system was implemented and evaluated with regard to computational ef-
ficiency, biometric performance, and security. To evaluate the biometric performance,
we measured the accuracy of the proposed system. The details of the experiment
and the evaluation outcome are further presented in Chapter 6.

4.5 Phase 4: Comparison and Discussion

In addition to performing an experimental evaluation of the proposed system, we also
needed to provide arguments and discussion as to why the system worked and the
reason behind its building blocks. For this purpose, it was also necessary to compare
the proposed system with a baseline system. In addition to the baseline system, the
proposed system was compared against the existing systems to see if there was an
improvement based on the observed vulnerabilities presented in the initial phase.
While the baseline system is presented in Section 2.2.4, the details of the comparison
phase are further described and discussed in Chapter 7. The research questions are
addressed in Chapter 7 as well.



Chapter5Proposed System

This Chapter introduces the proposed system for this thesis, describing a preselection
method for biometric identification. Section 5.1 presents the motivation for the pro-
posed system by describing observations and vulnerabilities in existing systems that
we want to improve and eliminate with our proposed system. These vulnerabilities
will be mitigated in the proposed system, which is described in Section 5.2.

5.1 Observations and Vulnerabilities From Existing Systems

The following Section describes the observed vulnerabilities from the two approaches,
stable hashing [8] and PEKS-based identififcation [7], that this thesis is based on.
For the proposed system for this thesis, these vulnerabilities have been addressed
and attempted to solve through a combination of the benefits of both works. The
following Section will show that the stable hashing approach [8] ensures the efficiency
aspect, while the PEKS-based identification approach [7] ensures the privacy aspects.
However, each of the two approaches is lacking the benefit of the other.

5.1.1 Stable Hash Vulnerabilities

Even though the biometric identification process using the stable hash generation
approach from [8] is efficient, it needs to be more secure to ensure the appropriate
level of privacy when dealing with biometric information. This Section will analyze
and show why there are security concerns. This insecurity is associated explicitly
with missing security properties and a deterministic approach.

Security Properties

Stable hash codes can be perceived at first sight as having relatively similar be-
havior to cryptographic hash functions. Both produce a fixed-length output that
is deterministic, i.e., stable for each input. A stable hash code key is stored in a
hash lookup table to retrieve the corresponding protected reference templates from
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the same stable hash code [8]. On the other hand, given an input message x, a
cryptographic hash function will retrieve the corresponding message digest H(x) [48].
Despite this similar usage, the two approaches are relatively different regarding their
security properties. As described by Sobti and Geetha [48], an essential property of
a cryptographic hash function is the strong avalanche effect describing that similar
input messages should result in significantly different output message digests [49].
This property is not present for the stable hash codes as similar input keys in the
hash lookup table should result in similar output reference templates [8]. This is
because of the clustering technique with the k-means approach, which groups similar
objects. From an efficiency standpoint, it is therefore beneficial for the stable hash
codes that a slight variation in input features will not cause a considerable variation
in the resulting cluster center.

However, since the stable hash codes do not satisfy the same security properties
as cryptographic hash functions, they may exhibit privacy concerns because they
are not considered cryptographically secure. For instance, if the returning references
from the candidate list are relatively small, there are potential risks of violating the
unlinkability requirement, described in Section 1.1, since it may be possible to keep
track of similar references. With this behavior, there may also be concerns regarding
the possibility of revealing the original template from the stable hash code, which
may indicate the actual person. The pre-project also elaborated on these issues with
corresponding references [9].

Deterministic Approach

In order to store the stable hash codes more securely in a hash lookup table, Osorio-
Roig et al. [8] proposed to use a cryptographic hash layer, e.g., SHA256, around
the existing stable hash code. This was to prevent an attacker from being able to
reconstruct the original facial image if any information from the stable hash codes is
leaked [8]. Despite the attempt to produce more secure hash codes, the proposed
scheme continues to experience vulnerabilities, as the scheme is still deterministic. A
vulnerability with the deterministic scheme is that the same output is generated each
time the same input value is used [50]. This behavior can cause problems regarding
privacy and security if the input space is small [50], as is the case with the stable
hash codes. The stable hash codes from [8] and the proposed use of the cryptographic
hash function SHA256 behave according to the deterministic approach.

In order to ensure a privacy-preserving procedure for biometric identification, it
will be necessary to eliminate the deterministic approach and instead add a non-
deterministic scheme. A non-deterministic behavior produces a new outcome when
the same input is provided [50]. This can be categorized as randomized encryption
and is necessary in order to give the appropriate level of security, in particular with
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regard to the unlinkability requirement of ISO/IEC 24745 [6].

5.1.2 Soft-Biometrics Vulnerabilities

Even though soft-biometrics can be used as a suitable preselection method to reduce
the total search space for an identification process, they also introduce drawbacks.
Firstly, there are problems with noise due to preselection errors. One reason for this
is the identification errors arising from age estimation. As described by Dantcheva
et al. [40], age estimation is challenging for humans and machines because of un-
known features such as health and genetics. These unknown features may vary
from individual to individual, making it harder to estimate the age [40]. Secondly,
automated soft-biometric estimators can introduce unwanted bias to the biometric
system. Friedman and Nissenbaum [51] define the term algorithmic bias as algorith-
mic system errors causing unfair outcomes for one or several individuals. Terhörst
et al. [52] further point out that bias associated with sensitive attributes, such as
soft-biometrics, can lead to different recognition performances and unfair impact for
certain smaller population subgroups. This associated bias is due to the unequally
distributed classes used for training purposes of recognition models [52]. Lastly,
soft-biometrics can be a sensitive preselection method when the reference database is
unbalanced. As discussed in the pre-project [9], the identification model experiences
better performance when the probe template is associated with a few similar refer-
ences in the enrollment database. This is also elaborated upon by Rathgeb et al. [53],
who explain that a reason behind an unfair biometric system is often associated with
biased training due to unbalanced data sets with regard to demographics.

5.2 Proposed System

This Section describes the proposed system for this thesis. In order to achieve an
efficient and privacy-preserving preselection approach for biometric identification, the
following proposed system focuses on replacing soft-biometrics with stable hash codes.
This means that instead of using soft-biometric keywords as the PEKS keywords,
the stable hash codes, i.e., cluster centers, are used as the keywords in the PEKS
approach. The proposed system aims to remove the aforementioned vulnerabilities
described in Section 5.1 and thereby be in compliance with the security requirements
from the ISO/IEC 24745 standard on biometric information protection [6].

5.2.1 Architecture

For the architecture of the proposed system, we use a two-server model, as explained
in Section 2.2.1, consisting of a computation server CS and an authentication server
AS, where the CS communicates with a client C which provides the biometric data,
such as the biometric features. While the C and the CS have access to the public



30 5. PROPOSED SYSTEM

5

Public-key 
encryption with 
keyword search 𝑠!

Fully 
homomorphic 

encryption 𝑐!

Ciphertexts computation

Enroll samples
C CS

AS

𝑤!

1

3

4

K-means 
clustering

2

Keyword 
vectors

𝑤!

Trapdoor 
generation

𝑡"

Figure 5.1: Figure showing the enrollment phase of the proposed system given N
enroll samples.

key information, the AS only has access to the secret key. In addition, the CS has
access to a protected reference database. We assume that a semi-honest model will
be applied as the involved entities are expected to follow the protocol correctly [17].

5.2.2 Enrollment Phase

The enrollment phase is the initial phase before the identification process occurs and
consists of different setup procedures. Figure 5.1 illustrates the enrollment phase,
which can be divided into five Steps. In Step 1 , C receives the enroll samples.
These enrollment references are used in the k-means clustering technique in Step
2 . The C will then, in Step 3 , compute the keyword vector wi associated with

the k clusters. In addition, the C produces the searchable ciphertext si and the
protected ciphertext ci for each enrollment reference. The keyword vectors, wi, and
the ciphertexts, si and ci, are sent to the CS. In Step 4 , the k different keyword
vectors wi will be provided to the AS. Lastly, in Step 5 , the AS will produce the
trapdoors associated with the k different keyword vectors, i.e., based on the k clusters
from the k-means clustering algorithm.

To further show the technical details behind the enrollment phase, Algorithm 5.1
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Algorithm 5.1 Enrollment Phase
Input: N enrollment references: enroll samples
Output: k clusters: cl, k keyword vectors: w, N protected ciphertexts: c,
N protected ciphertexts: s, k trapdoors: t

1: cl← KMeans(k).fit(enroll samples)
2: for i in {0, .., k − 1} do
3: wi ← RandomV ector(i);
4: end for
5: for i in {0, ..., N − 1} do
6: ci ← Enc(pkF HE , i);
7: si ← PEKS(pkP EKS , wi);
8: end for
9: for i in {0, ..., k − 1} do

10: ti ← Trapdoor(sk, wi);
11: end for

shows the pseudocode of the technical functionality, where the input and output of
the enrollment phase are indicated. In this phase, we enroll N references, referred
to as enroll samples, into an enrollment database. In addition, we specify k as the
number of clusters used for the preselection method. With the enroll samples dataset,
the k-means clustering algorithm will be applied to train the dataset to define k

clusters, called cl, as shown in Line 1. Each of the k clusters will consist of similar
enrollment references, and the cluster indexes will be defined as an integer in the
range 0 to k − 1. To use the k cluster indexes as the PEKS keywords in the PEKS
scheme, k fixed, random vectors w1, ..., wk, are created that are associated with each
of the k clusters, as shown in Line 3. In Line 6 and Line 7, the enrollment phase
produces protected and searchable ciphertext for each of the N enrollment references
in the enroll samples. Using the plaintext template of an enrollment reference, a
corresponding protected ciphertext can be produced using Equation (2.2) of the FHE
scheme, as shown in Line 6. On the other hand, using the associated keyword of the
enrollment reference, i.e., the associated cluster index from the k-means algorithm, a
corresponding searchable ciphertext can be produced using the PEKS algorithm,
Equation (2.7), from the PEKS scheme, as shown in Line 7. Lastly, using these k

PEKS keyword vectors wi, the enrollment phase produces k trapdoors based on the
k clusters. For this purpose, the k trapdoors are computed using the Trapdoor
algorithm, Equation (2.8), of the PEKS scheme, as shown in Line 10.

5.2.3 Identification Phase

At the time of the identification phase, the objective of the system is to decide
whether a mated reference exists in the enrollment database for a given unidentified
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Figure 5.2: Figure showing the keyword vector retrieval process of the proposed
system for a given probe sample p.

probe sample p. This process can be divided into two main Steps for our proposed
system: i) keyword vector retrieval and ii) PEKS with FHE comparison. In the
following Section, Steps i) and ii) are described with two overview Figures, Figure 5.2
and Figure 5.3, before a more comprehensive technical description of the entire
identification phase is given in Algorithm 5.2.

Keyword Vector Retrieval

The first Step of the identification phase is the keyword vector retrieval, illustrated
in Figure 5.2. This process is divided into three Steps. In Step 1 , the C receives
the given probe sample p. Then, in Step 2 , the probe’s corresponding cluster index,
cip, is computed using the k-means clustering approach. Lastly, in Step 3 , we
utilize a public mapping between cluster centers and keyword vectors to obtain the
corresponding PEKS keyword vector wp of the probe p.

PEKS and FHE Comparison

The second Step of the identification phase is performing the PEKS and the FHE
comparison to obtain a final identification decision of the given probe sample p,
illustrated in Figure 5.3. This process is divided into eight Steps. In Step 1 , the C
receives the probe sample p to be identified along with its corresponding keyword
vector wp, which was the outcome of the keyword vector retrieval process. Using
the probe p, the C will, in Step 2 , use FHE to compute a protected ciphertext
cp of the probe p. At the same time, the C will also use the keyword vector wp to
compute the searchable ciphertext sp of the probe p. With these ciphertexts, the
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Figure 5.3: Figure showing the identification process with PEKS search and FHE
comparison for a given probe sample p and its corresponding keyword vector wp.

C will then forward the protected ciphertext cp and the searchable ciphertext sp to
the CS. After obtaining the sp, the CS will, in Step 3 , forward the sp to the AS.
In Step 4, the AS will perform the reverse PEKS search, described in Section 2.4.4.
This process is necessary to obtain the corresponding trapdoor tp of the probe p.

After finding the probe trapdoor tp, the AS will then, in Step 5 , forward the
probe trapdoor tp back to the CS. With access to the probe trapdoor tp, the CS will,
in Step 6 , obtain a candidate list consisting of the enrollment references with the
same PEKS keyword vector as the probe p, i.e., have the same cluster index. In Step
7 , the CS will then compare the protected ciphertext cp of the probe p against

the protected references in the candidate list in order to make a final identification
decision if there is a mated reference for the probe p. Lastly, in Step 8 , the CS
will then forward the final identification decision back to the C and completes the
identification phase.

Technical Description

To further show the technical details behind the identification phase, Algorithm 5.2
shows the pseudocode of the technical functionality, where the input and output of
the entire identification phase are indicated. Lines 1–2 summarizes the functionality
behind the keyword vector retrieval process from Figure 5.2. In Line 1, the associated
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Algorithm 5.2 Identification Phase
Input: Probe sample: p
Output: Identification decision: ID

1: cip ← min
dist

Euc_dist(cl, p)
2: wp ← RandomV ector(cip)
3: cp ← Enc(pkF HE , p)
4: sp ← PEKS(pkP EKS , wp)
5: for i in {0, .., k − 1} do
6: Find tp = ti: tp ← Test(ti, sp) = 1;
7: end for
8: for i in {0, .., N − 1} do
9: Find candidatelist: Test(tp, si) = 1;

10: end for
11: for i in {0, .., M − 1} do ▷ M is the length of candidatelist
12: disti ← Euc_dist(cp, ci);
13: if disti > δ then
14: threshold_list[i] = (i, disti);
15: end if
16: end for
17: ID ← min

dist
threshold_list;

cluster index cip of a given probe sample p is computed by measuring the squared
Euclidean distance, Equation (2.4), between the probe sample and all the defined
cluster centers, cl, from the k-means algorithm of the enrollment Step (Line 1,
Algorithm 5.1). The associated cluster index of the probe cip is the cluster with
the minimal distance. To define the corresponding PEKS keyword vector of the
probe, Line 2 extracts out one of the k random, fixed vectors from the enrollment
Step (Line 3, Algorithm 5.1) associated with the same cluster index as the probe p.

The following Lines 3–17 summarize the functionality of the PEKS and FHE
comparison from Figure 5.3. Using the probe sample template p and the public key
pkF HE , Line 3 computes the protected ciphertext cp of the probe using Equation (2.2)
from the FHE scheme. On the other hand, using the PEKS keyword vector wp of the
probe and the public key pkP EKS , Line 4 computes the searchable ciphertext sp of
the probe using the PEKS algorithm, Equation (2.7), from the PEKS scheme. Based
on the searchable ciphertext sp of the probe, Line 6 runs the reverse PEKS scheme to
find the corresponding probe trapdoor index tp. For this probe trapdoor computation,
the Test algorithm, Equation (2.9), of the PEKS scheme is used. In this process, the
searchable ciphertext sp is compared against each of the precomputed k trapdoors,
ti, from the enrollment Step (Line 10, Algorithm 5.1). The probe trapdoor tp will
be the given trapdoor where the Test algorithm outputs true. Having the probe
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trapdoor index tp, Line 9 also utilized the Test algorithm to obtain a candidate
list. The candidate list is obtained by comparing the probe trapdoor tp with all the
searchable ciphertexts, si, from the enrollment Step (Line 7, Algorithm 5.1). In this
way, the Test algorithm can find those subject references with the same keyword
vector as the probe, i.e., are assigned to the same cluster as the given probe. The
candidate list will then consist of the M subject references where the Test algorithm
outputs true.

For each of the M subject references in the candidate list, Line 12 computes
the Euclidean distance between the protected ciphertext cp of the probe and the
protected ciphertext ci of the subject reference in the candidate list. The M pro-
tected ciphertexts ci are extracted from the protected enrollment database that was
computed during the enrollment Step (Line 6, Algorithm 5.1). Lastly, to find the
resulting subject most similar to the probe, Line 13 evaluate the Euclidean distances
from Line 12 against a threshold value, δ. If the Euclidean distance is below δ, the
candidate subject and the corresponding Euclidean distance to the probe are added
to a threshold list, as indicated in Line 14. The threshold value, δ, is used as an
upper bound to characterize two samples as mated or non-mated references based
on their comparison score, i.e., their Euclidean distance. After iterating through all
the candidate subjects, Line 17 extracts the subject id, referred to as ID, with the
minimal Euclidean distance from the threshold list. If this ID from the threshold
list is identical to the subject id of the probe sample, a mated reference is found,
and the identification is successful. Otherwise, the proposed system has incorrectly
identified the probe, i.e., the identification process could not find a mated reference
of the probe with the given candidate list.

5.2.4 Binning Method and Coefficient Packing

The proposed system can be further improved by utilizing two approaches. The
first approach is a binning method, which will improve the candidate list retrieval in
Line 9, Algorithm 5.2. The first time a probe reference with a new keyword vector is
used as input in the proposed system, the CS will perform the ordinary candidate
list search by searching through all the N enrollment references having the same
keyword vector as the probe. The protected references of these candidate subjects
will then be stored in a separate and fixed bin. The next time the CS receives a probe
reference with a known keyword vector that has been used before, it will remember
the candidate references and use the same bin. This will improve the preselection
process and can be considered an engineering decision. As discussed in Section 2.4.4,
Bauspieß et al. [7] also used a binning method on the enrollment references before
the identification search. Instead of using this complex binning approach to sort the
references into equal bins according to the keyword vector distribution, the proposed
binning method utilizes the clusters from the k-means clustering technique to group
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similar subjects. Each cluster is then treated as a separate bin. With k possible
clusters, k fixed bins will be iteratively constructed as a new keyword vector is used
as the input keyword for an unidentified probe reference.

The second approach for improving the computational efficiency of the proposed
system is utilizing coefficient packing, as described in Section 2.2.5. This method
is used in the implementation and will improve the comparison time between the
probe reference and each candidate subject. When the protected reference templates
are fixed in the bins, coefficient packing can be used to concatenate the templates
to reduce the number of comparisons. In addition, when producing the protected
ciphertext of the probe, the probe reference can be concatenated with itself several
times in order to fit the entire template slots. This is necessary in order to compare
the concatenated candidate templates with the concatenated probe reference. This
procedure has been established and evaluated in [30].



Chapter6Experimental Evaluation

This Chapter describes the experimental evaluation of the proposed system. Section 6.1
and Section 6.2 give an introduction to the databases and different metrics that were
used in the experiments. Section 6.3 describes the structure of the implementation
code. Lastly, Section 6.4 shows the results of the experiments.

6.1 Databases

For the experimental evaluation of the proposed system presented in Section 5.2, two
databases have been used. These are the Face Recognition Technology (FERET)
database [54] and the Face Recognition Grand Challenge version 2 (FRGCv2)
database [55].

6.1.1 FERET Database

The FERET database [54] that was used in the experimental evaluation consisted
of 1413 facial images from 529 subjects. For each subject, multiple samples were
taken covering their frontal views, quarter profile, and different backgrounds [54].
The number of samples per subject varied from two to four samples.

6.1.2 FRGCv2 Database

The FRGCv2 database [55] was larger than the FERET database, consisting of 3165
facial images from 533 subjects. The different images contained samples of facial
images with different expressions under various lighting conditions [55]. Overall, the
number of samples per subject was also higher than in the FERET database and
varied from two to nine samples. This gave more samples to associate with each
subject for the proposed system evaluation.
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6.2 Metrics

For later use in the experimental evaluation, this Section describes relevant metrics
in accordance with the ISO/IEC 19795-1 [13] standard on biometric performance
testing:

– Penetration Rate: Indicates the average number of candidates in the preselection
list, i.e., in the candidate list.

– Preselection Error Rate: Indicates the percentage of the database where the
preselection candidates do not include the corresponding subject identifier.

– False Positive Identification Rates (FPIR): Indicates the percentage of the
database where subject references not enrolled in the database nevertheless get
returned a reference identifier after identification. This implies a false positive
result where the system proposes that the given subject has a mated reference
in the database, despite this not being the case.

– False Negative Identification Rates (FNIR): Indicates the percentage of the
database where subject references are enrolled but are not receiving a reference
identifier after the identification process. This implies a false negative result
where the system cannot propose a mated reference for the corresponding
subject, despite this not being the case.

– True Positive Identification Rate (TPIR): Indicates the percentage of the
database where subject references enrolled in the database receive the correct
reference identifier after the identification process. This will illustrate the
accuracy of the identification process, i.e., how many subject references are
correctly identified.

– True Negative Identification Rate (TNIR): Indicates the percentage of the
database where subject references not enrolled in the database do not receive a
reference identifier after the identification process.

– Detection Error Trade-off (DET): Indicates the connection between FPIR on
the horizontal axis and FNIR on the vertical axis.

6.3 Structure of the Code

For the experimental evaluation, three code bases have been used to implement the
proposed scheme in Section 5.2. The code written for this thesis can be found in
the following repository: https://github.com/ceciliefo/Master_thesis. This Section
presents each code base and which additional libraries were used.

https://github.com/ceciliefo/Master_thesis
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6.3.1 Stable Hash Generation Code

The code for the stable hash generation was based on the original code used in [8].
For executing the code, Visual Studio Code1 was used. The implementation was
performed in Python and used the KMeans function from the machine learning
package Scikit-Learn [56]. This KMeans function was used for the k-means algorithm
to produce the stable hash codes, i.e., the cluster centers of all the references in the
given databases described in Section 6.1. The stable hash generation code was used
in Line 1 in Algorithm 5.1 for the enrollment phase and in Line 1 in Algorithm 5.2
for the identification phase.

6.3.2 PEKS Code

The code for performing the PEKS with the stable hash codes was based on the
original code used in [7] and the available C++ code for PEKS on GitHub2. For
executing the code, the CodeLite IDE3 was used. The PEKS code was used in Line 3,
Line 7 and Line 10 in Algorithm 5.1 for the enrollment phase, and in Line 2 and
Lines 4–10 in Algorithm 5.2 for the identification phase.

6.3.3 FHE Comparison Code

Like the PEKS code, the last code regarding the FHE comparison and the final
identification decision also used the CodeLite IDE and was written in C++. For
the FHE comparisons, the Open-Source Fully Homomorphic Encryption (OpenFHE)
Library [57] has been used. The FHE code was used in Line 6 in Algorithm 5.1
for the enrollment phase and in Line 3 and Lines 11–17 in Algorithm 5.2 for the
identification phase.

6.4 Results

The following Section presents the execution parameters and the experimental
evaluation results. The execution times for the proposed system were measured with
the following specifications:

– Operating System: macOS Monterey.

– Version: 12.4.

– CPU: Apple M2 @ 3.50 GHz.

– RAM: 8 GB.
1Visual Studio Code: https://code.visualstudio.com/
2GitHub repository for PEKS scheme: https://github.com/Rbehnia/NTRUPEKS
3CodeLite IDE: https://codelite.org/
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Regarding the biometric data, floating point feature representations extracted through
the open-source face recognition ArcFace [11] were used. The performance evaluation
was tested in a closed-set scenario, meaning every probe reference had a corresponding
mated reference in the enrollment database.

6.4.1 Execution Parameters

For the experimental evaluation, the following parameters have been used:

– Sub-Spaces, P : Defines the number of equal sub-spaces that one feature
representation set is divided into [8]. This is necessary for the stable hash
generation scheme. For the experiments, P = 1 has been used.

– K-Means Clusters, k: Defines the number of clusters created through the
k-means clustering technique. For the experiments, k = 64 has been used.

– Feature Space Dimensionality, D: Defines the number of dimensions for repre-
senting the biometric data for one feature representation, i.e., for one biometric
subject sample. For the experiments, D = 512 has been used.

– FHE scheme, fheScheme: Defines the following FHE scheme for the experi-
mental evaluation. For the experiments, fheScheme = CKKS has been used.
The CKKS scheme was used for the FHE computation as the biometric data
was represented with floating point values. In addition, the CKKS scheme was
implemented with a variant of Residue Number System (RNS) to improve the
efficiency of the FHE operations [57].

– CryptoContext: With OpenFHE, a CryptoContext environment needs to be
created before the FHE computations. The CryptContext manages all the
OpenFHE objects, for instance, the key pair generation [57]. The CryptoContext
was implemented with the CKKS schemes and was specified with the following
parameters for the experiments: multDepth, scaleFactorBits, batchSize, and
securityLevel.

– Multiplicative Depth, multDepth: Defines the maximum multiplication depth.
This is not the same as the maximum number of multiplications that are
supported for the entire scheme [57]. The multiplication depth is only defined for
one given multiplication [57]. As explained in [57], a shorter multiplicative depth
is often preferable for better performance. Because of this, the experiments
used multDepth = 1. The computation of the squared Euclidean distance only
required one multiplication, so multDepth = 1 is the lowest possible choice.

– Scaling Factor Bits, scaleFactorBits: Defines the scaling factor in bit-length
from encoding real numbers into integers with the CKKS computation [57]. The
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scaling factor will affect the accuracy of the computations. With a lower scaling
factor, the execution time will enhance, but only until a certain point. The
aim is to achieve a valid accuracy for a low execution time without increasing
the approximation errors [57]. For the experiments, scaleFactorBits = 30 has
been used.

– Plaintexts Slots in the Ciphertext, batchSize: Defines the number of plaintexts
that are combined into one ciphertext [57]. For the experiments, batchSize =
4096 has been used. That means that with each feature representation with the
dimensionality of 512, the available number of plaintext slots in one ciphertext
is 4096

512 = 8.

– Security Level, securityLevel: Defines the security level for the FHE scheme.
The most commonly used security values are 128-bit, 192-bit, and 256-bit. For
the experiments, securityLevel = 128-bit has been used.

6.4.2 Computational Cost of the Baseline System

Before evaluating the proposed system, we examined the computational cost of the
baseline system, performing an exhaustive search over the entire protected reference
database, as presented in Section 2.2.4. For measuring the computational cost, we
used the concept of coefficient packing and the CKKS parameters as presented in
Section 6.4.1. With the batch size of the ciphertext set to 4096, we can concatenate
eight ciphertexts of dimension 512 into one “full” ciphertext. This is because 4096

512 = 8.
Since we can concatenate eight reference ciphertexts, we only needed 67 ciphertexts
to represent the FRGCv2 enrollment database with 533 subjects. This is because
533

8 = 66.63. As described in Section 2.2.2, we performed one subtraction, one
multiplication, 511 rotations, and 511 addition operations for the homomorphic
encryption comparison. This was performed for each of the 67 packed ciphertext
vectors. The 511 rotations and additions are due to the feature dimensionality of
D = 512 and D − 1 rotations and additions are required for the computation of
the squared Euclidean distance [30]. By measuring this computational cost, it took
354, 845ms to perform the biometric identification process of the baseline system.

6.4.3 Keyword Vector Distribution

Preselection is now introduced on top of the baseline system, as described in the
proposed system in Chapter 5. Figure 6.1 illustrates the distribution of subjects
in each cluster for the FRGCv2 database. The number of subjects varied from a
minimum of three to a maximum of 15 subjects, where the average number of subjects
in a cluster was 533

64 = 8.33. For the FERET database, the distribution of subjects to
clusters is not shown in this thesis, but the number of subjects in each cluster varied
from a minimum of two to a maximum of 17 subjects.
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Figure 6.1: Figure showing the keyword vector distribution for the number of
subjects in each cluster for the FRGCv2 database [55].

Table 6.1: A Table showing the accuracy of the k-means clustering with k = 64
clusters for each database.

Database Enroll Search False True Accuracy
Samples Samples Negative Positive

FERET [54] 529 884 19 865 0.9785

FRGCv2 [55] 533 2632 207 2425 0.9214

6.4.4 Accuracy of the Stable Hash Generation

The results for the k-means clustering accuracy of the stable hash generation are
illustrated in Table 6.1 for the databases FERET and FRGCv2.

For each database, the reference samples were divided into two parts: enroll
samples consisting of the first sample of every subject in the database and search
samples containing the remaining samples of every subject. While the enroll samples
was used to train the k-means model during the enrollment phase to define k cluster
centers, as explained in Section 5.2.2, the search samples was used to evaluate the
accuracy of the stable hash generation procedures, i.e., the clustering technique.
With the dataset from the search samples, the stable hash generation code computed
the corresponding cluster index for each reference sample in the search samples.
These cluster indexes were obtained by computing the Euclidean distance between
the search samples and the cluster centers. For each search sample, the distances to
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the cluster centers were stored in a separate list, referred to as the distance list. By
appending an index value to every distance value in the distance list, we could keep
track of which distance was associated with which cluster center. After sorting this
distance list, the minimal distance value could be extracted. The search sample’s
corresponding cluster index was the original index associated with the minimal
distance value from the distance list. In order to evaluate the accuracy of the cluster
technique, the code compared if the subject samples in search samples were mapped
to the same cluster index as the corresponding subject in enroll samples.

Based on this, we can use the following Equation to compute the accuracy:

Accuracy = Search samples− False negative

Search sample
. (6.1)

For the FERET database, 19 subject samples from the search samples were not
associated with the same cluster as their corresponding subject identifier in enroll
samples. Hence, the measured accuracy of clustering with the FERET database is
884 − 19

884 = 0.9785. For the FRGCv2 database, this accuracy is lower because the
number of false negatives and search samples is higher than for FERET: 2632 − 207

2632 =
0.9214. With more search references to test the clustering mechanism, as in the
case of the FRGCv2 database, there is a higher probability that some subjects are
classified to a different cluster than the enrollment references are associated with,
thereby indicating lower accuracy.

From the defined accuracy for FERET and FRGCv2 databases, we can measure
the number of preselection error rates in the following way:

Preselection error rate = 1−Accuracy = False negative

Search sample
. (6.2)

For the FRGCv2 database, the preselection error rate is 207
2632 = 0.0786, meaning

that 7.86% of the database were not included in the preselection candidate list. On
the other hand, there were only 19

884 = 0.0215 preselection errors for the FERET
database.

6.4.5 Execution Time for the Stable Hash Generation

In order to measure the efficiency of the clustering technique, we measured the time
for the stable hash generation, as shown in Table 6.2. After k clusters were created
from the enrollment references, in 1182.00ms, we measured the time to compute
the corresponding stable hash code, i.e., the cluster index of a given probe sample.
After running 1000 executions, the median time for computing the cluster index of a
random probe sample was 0.28ms.
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Table 6.2: A Table showing the execution times in milliseconds for the stable hash
generation process.

Functionality Execution Times (ms)

Enrollment features stable hash generation 1182.00

Probe stable hash generation 0.28

6.4.6 Execution Times for the PEKS Search

For the remaining execution times, only the clusters from the FRGCv2 database
have been used. This is because the cluster sizes between FERET and FRGCv2
databases are relatively similar and will therefore not affect the execution times for
the PEKS and FHE comparison.

For measuring the execution of the PEKS search, different functionalities were
measured, as illustrated in Table 6.3. With k = 64 clusters from the k-means
clustering technique, we initially needed to compute 64 trapdoors, one per keyword
cluster. After running 1000 executions of the trapdoor generation function (Line 10,
Algorithm 5.1), the median time for one execution was 2.74ms. This means the
initial phase of performing 64 trapdoors takes approximately 2.74 × 64 = 175ms.
In addition to the trapdoor generation, the initial phase of the PEKS search also
consisted of constructing one searchable ciphertext for each enrollment reference in
the database. While it took 0.27ms to compute one searchable ciphertext, the total
execution time of computing searchable ciphertexts for 533 subjects for FRGCv2 is
approximate 0.27× 533 = 144ms. Lastly, the median execution time for performing
the functionality of the reverse PEKS search took 7.69ms in order to compare the
searchable ciphertext of the probe with k = 64 cluster trapdoors. In addition to
these different functionalities of the PEKS scheme, it was also interesting to measure
the execution time for finding the candidates with the same keyword as the given
probe. Using the FRGCv2 database and the worst-case cluster with 15 subjects, the
candidate list retrieval took 62.30ms. The CS uses 62.30ms the first time a new probe
keyword vector is used in the identification system to find the associated candidates.
This execution time will not be performed for every identification because of the
binning method described in Section 5.2.4. The CS will remember the associated bin
for a known keyword vector and will therefore save this candidate list retrieval time.

6.4.7 Execution Times for the FHE Comparison

With the FHE comparison, we want to measure the execution time for the worst-case
candidate list. This means we only measure the execution time for one of the candidate
lists from the PEKS search having the most candidates in one cluster. The execution



6.4. RESULTS 45

Table 6.3: A Table showing the execution times in milliseconds for different
functionalities of the PEKS search.

PEKS Functionalities Execution Times (ms)

Trapdoor generation 2.74

Searchable ciphertext encryption 0.27

Reverse PEKS search 7.69

Candidate list retrieval 62.30

Table 6.4: A Table showing the execution times in milliseconds for different
functionalities of the FHE comparison and identification decision for the worst-case
scenario with 15 candidates.

FHE Functionalities Execution Times (ms)

Encrypted database setup (without coefficient packing) 3037.00

Encrypted database setup (with coefficient packing) 383.00

Probe encryption 2.00

Identification decision 9996.00

times using the FRGCv2 database and the worst-case scenario with 15 candidates
are illustrated in Table 6.4. By utilizing the coefficient packing technique with the
given parameters for the dimensionality and the batch size, we can concatenate
eight ciphertexts. For a combined database of FERET and FRGCv2, the total
size is 1062 subjects. Without using the coefficient packing technique, the setup of
the protected database, i.e., creating protected ciphertexts using the FHE scheme
for each of the 1062 subjects, took 3037ms. On the other hand, by utilizing the
advantages of the coefficient packing technique, we can concatenate eight protected
ciphertexts and hence only need 133 ciphertexts. This is because 1062

8 = 132.75.
With only 133 ciphertexts, we could set up the protected database after 383ms. This
is approximately eight times faster than the setup time for the protected database
without using the coefficient packing technique. In addition to the database setup, it
took 2ms to produce a protected ciphertext for one probe reference.

By performing the FHE comparison for 1000 executions, the median time for
performing the final identification decision, i.e., comparing the protected ciphertext of
a probe against the protected ciphertexts of the candidates in the candidate list, took
9996ms, using coefficient packing on both the probe and the candidate references.
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Table 6.5: A Table showing the execution times in milliseconds for identifying a
probe sample p compared with the execution time for the baseline system.

Functionality Execution Times (ms)

Probe stable hash generation 0.28

Probe encryption 2.27

Reverse PEKS search 7.69

FHE comparisons 9996.00

Total 10,006.24

Baseline (exhaustive search) 354,845.00

6.4.8 Total Execution Time for the Identification Process

Based on the aforementioned execution times of the proposed system’s different
functionalities and building blocks, Table 6.5 shows only the necessary execution times
for identifying a probe reference, without the setup times. The different functionalities
and execution times are based on the keyword vector retrieval process, Figure 5.2,
and the PEKS and FHE comparison, Figure 5.3. The probe encryption execution
time of 2.27ms was the combined time of the probe encryption using FHE and the
searchable ciphertext encryption of the probe using PEKS. From Table 6.5, the total
execution time for running the proposed system for biometric identification of a given
probe sample, i.e., finding a mated reference, was 10, 006.24ms.

6.4.9 Comparison Scores

To evaluate the biometric performance, i.e., accuracy, we computed comparison scores
for mated and non-mated sample references in the database. A mated comparison
score between two samples means that the samples are from the same subject,
while a non-mated comparison score means that the samples are from two different
subjects [13]. To compute the comparison score, the Euclidean distance function,
Equation (2.3), has been used between every database sample. Table 6.6 shows the
number of observations, maximum and minimum, and average comparison scores for
mated and non-mated pairs of the FERET and FRGCv2 databases.

Table 6.6 can be visualized into a histogram plot showing the distribution of
mated and non-mated comparison scores, as illustrated in Figure 6.2 for the FERET
database and Figure 6.3 for the FRGCv2 database. The histogram plots in Figure 6.2
and Figure 6.3 were normalized because the number of observations of non-mated
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Table 6.6: A Table showing different statistics of the comparison score values for
each database.

FERET [54] FRGCv2 [55]

Statistics Mated Non-Mated Mated Non-Mated

Observations 2656 1,992,500 17,766 9,996,294

Minimum 0.06 1.01 0.12 0.68

Maximum 0.86 1.65 1.02 1.66

Mean 0.47 1.40 0.63 1.40

Standard deviation 0.13 0.06 0.14 0.07

Figure 6.2: Figure showing the comparison scores for mated and non-mated
reference samples with a threshold value set at 0.87 for the FERET database [54].

comparisons was significantly higher than the number of mated comparisons [13],
as illustrated in Table 6.6. When using the Euclidean distance to compute the
comparison scores, this can be characterized as a “dissimilarity” score type since we
are interested in the distance between two samples, i.e., their dissimilarity [13]. This
means mated comparison scores are closer to 0, while non-mated comparison scores
are higher, as shown in Figure 6.2 and Figure 6.3.
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Figure 6.3: Figure showing the comparison scores for mated and non-mated
reference samples with a threshold value set at 1.02 for the FRGCv2 database [55].

Table 6.7: A Table showing the errors of false positive and false negative for a
specified threshold value of each database.

FERET [54] FRGCv2 [55]

Threhold = 0.87 Threshold = 1.02

Predicted/Actual Mated Non-Mated Predicted/Actual Mated Non-Mated

Mated 100% 0% Mated 100% 0.00297%

Non-mated 0% 100% Non-mated 0% 99.997%

Using the histogram plots of the comparison scores, we could identify a threshold
value to distinguish two samples as either a mated or a non-mated pair only based
on their comparison score value. This threshold value will be the δ parameter
from Line 13, Algorithm 5.2. Figure 6.2 and Figure 6.3 show the lowest threshold
value for FERET and FRGCv2 databases resulting in a minimal amount of false
positives and false negatives. Table 6.7 illustrates the number of prediction errors and
correctness for the given threshold value of FERET and FRGCv2 databases. The
FERET database was assigned a threshold value of 0.87, while the FRGCv2 database
was assigned a threshold value of 1.02. A mated comparison score above the threshold
value is considered a non-mated comparison score, increasing the FNIR. On the other
hand, a non-mated comparison score below the threshold value is considered a mated
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comparison score and hence increases the FPIR. True positive and true negative
comparison scores indicate that the mated and non-mated comparison scores do not
appear as a different comparison score type. From Table 6.7, using the threshold
of 1.02 for the FRGCv2 database, the FPIR was 0.00297%, while the FNIR was
0%. On the other hand, the TPIR was 100%, while the TNIR was 99.997%. For the
FERET database using the threshold of 0.87, the FNIR and FPIR was 0%, while
the TPIR and TNIR was 100%.

6.4.10 DET Curve

The comparison score distribution in Figure 6.2 and Figure 6.3 only indicated the
prediction errors, i.e., the FPIR and FNIR, for one threshold value. To indicate
the prediction errors for the entire database, we could use a DET curve to evaluate
the biometric performance [13]. Figure 6.4 shows the DET curve for biometric
identification using the FRGCv2 and FERET database with the baseline system
with no preselection approach, as described in Section 2.2.4. We only used the
baseline system because the biometric performance of the biometric identification on
the database was not expected to be significantly improved by using the proposed
system with a preselection approach. The proposed system was used to improve the
workload effort and the security and privacy aspects. As illustrated in Figure 6.4, the
DET plot for the FERET database is empty. This will be discussed and explained in
Chapter 7.

From Figure 6.4, we could compare the FPIR and FNIR in the databases. The
DET curve has been constructed by utilizing every comparison score of the database
as a threshold value and then measuring the FPIR and FNIR to illustrate the
accuracy. The FPIR is the most critical aspect of the system, as it expresses the
percentage of false positives or zero-effort imposters. Therefore, a lower FPIR rate
implies a better biometric performance. For instance, if we consider an airport control
example, the airport database consists of subjects permitted to enter the country.
For a subject not enrolled in this database, we do not want the identification process
to identify the subject as another person enrolled in the airport database, thereby
giving illegitimate permission to enter the country. Figure 6.4 shows that the FPIR
for the FRGCv2 database was very low, at 0.001%, indicating good system accuracy.
For false positive values around 0.001%, the FNIR was also low, from 1% to 0.001%.
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Figure 6.4: Figure showing the DET curve for the baseline system of the biometric
identification using the FRGCv2 database [55] and the FERET database [54].



Chapter7Discussion

This Chapter presents arguments behind the proposed system and its building blocks,
in combination with answering the initial research questions. Lastly, this Chapter
discusses the results of the experimental evaluation.

7.1 Argumentation on the Proposed System

In Section 1.2, RQ1 and RQ2 were described concerning the challenges of soft-
biometrics and if any alternatives could replace its usage. These issues have been
addressed by looking at the described vulnerabilities in Section 5.1.2 and the proposed
system presented in Section 5.2. The benefit of the proposed system is that by
replacing soft-biometrics with stable hash codes, the challenges of bias and unfair
identification outcomes can be decreased. In addition, by using the stable hash
codes in combination with PEKS, the system will exploit the efficiency aspect of
the stable hashing approach and solve the problem with the deterministic approach.
By utilizing a non-deterministic approach with PEKS and FHE, the security of the
proposed system has been increased. This is because both PEKS and FHE satisfy the
requirements for a non-deterministic behavior due to their use of a randomized factor
added to their scheme, which enables randomized encryption. For instance, using
the PEKS algorithm, Equation (2.7), a new searchable ciphertext is produced each
time, even though the same keyword is provided as input. The non-deterministic
quality of PEKS and FHE also ensures unlinkability and renewability, and therefore
fulfills ISO/IEC 24745 [6]. In addition, PEKS and FHE utilize the R-LWE problem,
and thereby, we achieve irreversibility with post-quantum security.

Another benefit of the proposed system is that it can be argued that the system
uses a generic framework to enable privacy-preserving biometric identification. This
means that any efficient but insecure clustering approach can be combined with the
security of PEKS and FHE to secure the framework.

51
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7.1.1 Trade-Offs in Biometric Clustering

With any clustering technique, it is likely that the problem of clusters leaking
information about the references occurs. This could be a problem if the clusters
are small and relatively different in their size. There could also be a problem with
roughly expecting that a percentage of the population will be expected in the given
clusters, primarily because of their sizes. For instance, if a small percentage of the
population is of Asian ethnicity, there is a high probability that one of the smallest
clusters will consist of references of Asian ethnicity.

By using the k-means clustering technique, this process also inherits the bias of
the underlying feature extraction algorithm [11]. The ideal approach is that every
cluster has the same distribution as the database distribution. This means that if
the database consists of 20% Asian ethnicity and 80% Caucasian ethnicity, then this
is expected to be reflected in the clustering distribution with the k-means algorithm.
A balanced database is rarely the case when considering biometric systems; therefore,
some clusters will be larger than others.

7.1.2 Binning Method Argumentation

Regarding RQ4 (Section 1.2), there was uncertainty concerning if a binning method
was necessary for the proposed method of this thesis. Because our proposed system
replaced soft-biometrics with stable hash codes, the defined binning method for soft-
biometric purposes [7] was no longer necessary. However, as described in Section 5.2.4,
a different binning method could be applied. Even though the proposed system has
removed the use of soft-biometric keywords, a binning method was still necessary for
the proposed system because we wanted to ensure that the CS did not violate the
unlinkability requirement, i.e., the same reason as presented by Bauspieß et al. [7].
The goal of the binning method was to make it harder for the CS to recognize a
pattern for similar subjects. Without a binning method, the CS would most likely
recognize a clustering pattern after, e.g., 1000 executions of the proposed system.
Since this was not desirable behavior, we wanted to hide which subjects were similar
from the CS and use a binning method.

Even though each of the k clusters was viewed as k separate bins, we could not
entirely hide the unlinkability from the CS. After many iterations, the CS would
be able to know which subjects were grouped together, even though we viewed the
clusters as separate bins. Because of this, we could initially give the CS the cluster
distribution since it would recognize the clustering pattern in the end. Despite this
behavior, the CS would not learn in which way the subjects are similar. The CS
would learn that the same subjects are recursively grouped together because of their
similarities. Still, it would not know if the subjects are from the same soft-biometrics,
e.g., the same gender, ethnicity, or age group. This was because we used encryption
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on the references, i.e., only the protected ciphertext of each reference was stored in
the different bins.

With our proposed clustering technique and binning method, the clusters will
no longer leak information because of the added encryption. By using plaintext
references in the different clusters, there are potential problems that the clusters will
leak some soft-biometrics away, as explained above in Section 7.1.1. For instance,
one plaintext cluster could only contain female subjects, while another only contains
male subjects. However, when we use encryption, we use randomized ciphertexts
and hence receive randomized clusters from the given clustering technique. Once we
use encryption, we know that some particular subjects are similar, but we cannot
distinguish their similar characteristics. In addition, the relative sizes will also keep
information private because of the use of randomized ciphertexts. A possible solution
to smaller clusters, even for added encryption, would be to add the clusters and the
bins with random data, i.e., random feature vectors. In this way, the clusters and the
bins will be roughly the same size. With this argumentation, we would not observe
any statistics on the population that would be reflected in the clusters and their
sizes. Therefore, by using encryption and adding random data in the clusters, the
problems discussed in Section 7.1.1 can be prevented. Adding more random data
to some clusters could add extra cost to the identification process. Still, it can be
argued that this will overall increase security, and the added extra cost will most
likely not be significant.

By looking at security attacks, it can be argued that it would not decrease security
if an attacker learns that, e.g., eight subjects in a bin are grouped based on the
similarity of their feature vectors. This is because the attacker will not know in
which way the subjects are similar; hence, the approach can still be argued that it is
privacy-preserving. Here we have considered eight subjects in one bin because this is
the average expected number of subjects, since 533

64 ≈ 8. On the other hand, eight
subjects might be too small of known similar references. With this point of view,
combining, e.g., two clusters would be necessary to increase the number of similar
references. An attacker would then know that 16 references are similar, which is not
a problem since the similar soft-biometric characteristics will be kept secret. If we
combine two bins into one, the execution times would double, but this will not be
considered a problem because the increased computational workload would likely not
be too large, as illustrated in Section 6.4. Based on this, we can make our proposed
system and binning method more accurate with fewer references in each bin and
secure simultaneously. Alternatively, we could scale the efficiency down with more
references in each bin and achieve better preselection errors. A final point to note
regarding this argumentation is that the second alternative, combining two clusters
into one, will not be necessary if the clusters are relatively large. From Section 6.4.3,
the largest cluster size of FERET was 17, while FRGCv2 had 15 subjects. This
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means that if the smallest clusters are padded with random data, as discussed above,
all clusters will have the same size as the largest cluster, and there is no need to
combine two clusters to increase the number of similar subjects.

With the use of clustering techniques, it can be argued that any clustering based
on similarity will most likely reveal some privacy-sensitive information in the form of
the soft-biometric characteristics of the references. Therefore, we have presented a
generic solution that can resolve these problems.

7.2 Experimental Evaluation Argumentation

This Section discusses some of the results from the experimental evaluation in
Section 6.4, mainly the biometric performance, the comparison scores, the DET
curve, and the efficiency of the proposed system.

7.2.1 Biometric Performance

To answer RQ3, we must discuss and look at the results presented in Section 6.4.
For the proposed system, a candidate list consisting of enrollment references with
the same PEKS keyword would be obtained, i.e., having the same cluster as an
unidentified probe reference. This candidate list would be a bin of one of the k = 64
clusters, illustrated in Figure 6.1 for the FRGCv2 keyword vector distribution. After
padding the smallest clusters with random feature vectors, the penetration rate, i.e.,
the average percentage of retrieved references relative to the size of the complete
reference database, using the FRGCv2 database, would be 2.8%. This is because a
maximum of 15 subjects would be similar to the probe and hence would be compared
using FHE to decide if there was a mated reference. For the FERET database, the
penetration rate would be 3.2% because there would be a maximum of 17 subjects in
one cluster. Both of these penetration rates would be significantly reduced compared
to the baseline system. For the baseline system, the penetration rate would be 100%
as the preselected subset is equal to the number of subjects in the database because
there was no use of preselection, i.e., no additional approach to reducing the biometric
search space. By utilizing larger values of the number of clusters, i.e., k = 128 or
k = 256, the number of subjects in each cluster would be significantly reduced, and
hence also the penetration rate. A larger value than k = 256 would not be useful since
this corresponds to the fact that some clusters only consist of one subject. When
using a clustering technique to group subjects based on their similarities, having
at least two subjects in each cluster is necessary to achieve a workload reduction
through preselection. This is to prevent the distribution of subjects to clusters not
only based on a random procedure but also on some similar characteristics between
the objects in the clusters.
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Comparing the biometric performance of the proposed system with the baseline
system, the biometric performance is not significantly affected, as illustrated by the
DET curve in Figure 6.4. The proposed system was not introduced to decrease the
prediction errors but, on the contrary, to reduce the penetration rate and the workload
effort, thereby improving the efficiency of the biometric identification process. As
described above, using the stable hashing approach in the preselection approach
significantly reduces the penetration rate. In addition, the combination of stable
hash codes, i.e., cluster centers, with PEKS removed critical vulnerabilities. These
vulnerabilities include the security issues and deterministic approach of the original
stable hashing approach [8] and the bias and estimation problems in the PEKS-based
identification approach [7]. In addition, the performance of the proposed system was
still privacy-preserving because of the security impact of using PEKS and FHE.

Since the proposed system for this thesis used the same stable hash generation
as the original work in [8], and both used the FERET database, we can compare
the preselection error rates. Compared to the original work in [8], the preselection
error rate of the proposed system was significantly higher. From Table V in [8],
the FERET database’s preselection error rate was 0%. This was from utilizing the
k-means clustering technique and k = 64 clusters and P = 1 sub-spaces. In contrast,
the preselection error rate of the proposed system was 2.15% for the FERET database,
as presented in Section 6.4.3. There are several reasons for this difference. One
reason is that the original work [8] used a different and larger FERET database than
in the experiment of this thesis. Another reason is that the training process was
different in [8] than in the proposed system. The original paper [8] used the same
samples for the enrollment and the training samples, which could have affected the
preselection error rate to be 0%. Because of these arguments, it was not possible
to reproduce the same accuracies and preselection error rates as the original stable
hash paper.

7.2.2 Comparison Scores

By studying the histogram plots of the comparison scores for the FERET and the
FRGCv2 databases, Figure 6.2 and Figure 6.3, and looking at Table 6.6 of the
comparison score statistics, we can see that the separation between mated and
non-mated comparison scores is higher and better for the FERET database than the
FRGCv2 database. This is because the minimum comparison score for non-mated
pairs was higher than the maximum for mated pairs for the FERET database. Since
the FRGCv2 database had a lower separation between comparison scores, some
mated pairs obtained a significantly high comparison score, and some non-mated
pairs obtained a significantly low one. One reason why a non-mated pair, i.e.,
samples from two separate subjects, obtained a significantly low comparison score
could be that the two samples are from two subjects with relatively similar biometric
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characteristics and appearance. For instance, the subjects are siblings with similar
face structures, hair, and eye colors. On the other hand, one reason why a mated
pair, i.e., two samples of the same subjects, received a poor and high comparison
score could be that there was a poor quality of the samples. This could make it
harder to measure the Euclidean distance of the sample vectors. With the FRGCv2
database, different samples were taken with different lighting conditions, which might
impact the quality and affect the computation of the comparison scores.

7.2.3 DET Curve

In Section 6.4.10, Figure 6.4 only showed the DET curve for the FRGCv2 database,
while the DET curve for the FERET database was empty. This was due to the
perfect separation between mated and non-mated comparison scores for the FERET
database, as presented above. When there is no overlap between mated and non-
mated comparison scores, the DET plot will be empty. If we choose a threshold
value below 0.87 in Figure 6.2, we can see that the FNIR will increase because some
mated comparison scores will be above the threshold and classified as non-mated.
Nevertheless, the FPIR will never increase. It will always be zero as long as we choose
a comparison score threshold below the minimum value of non-mated comparison
scores. Because of this separation of the FERET database, the accuracy of the
biometric identification will be good.

On the other hand, since there was an overlap between mated and non-mated
comparison scores for the FRGCv2 database, a DET curve could be illustrated. The
DET curve for the FRGCv2 database was also remarkably good because of the low
false positive scores, as indicated with FPIR around 0.001% and lower.

7.2.4 Efficiency and Workload Reduction

From Table 6.5, it took 10, 006.24ms to identify a probe reference using this proposed
preselection approach for biometric identification. Out of the different functionalities,
the FHE comparisons were the most time-consuming process, comprising 9996.00

10,006.24 =
99.90% of the entire execution time of the proposed biometric identification process.
This was again due to the computational cost associated with FHE and the number
of rotation operations that were used, as described in Section 2.2.3 and Section 2.2.4.
On the other hand, the preselection approach was the least time-consuming task
of the entire execution time. This comprised the time for producing the stable
hash generation of the probe, creating the searchable ciphertext of the probe, and
running the reverse PEKS search, all in the time of 0.28 + 0.27 + 7.69 = 8.24ms.
The preselection approach thereby only took 8.24

10,006.24 = 0.082% time of the entire
execution time of the proposed system for the biometric identification process.
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By comparing the execution time of the proposed system with the execution time
of the baseline system, we have reduced the workload down to 10,006.24

354,845.00 = 2.8% of
the baseline system. This is a good reduction of execution time and hence shows
remarkable efficiency.

Since the proposed system used similar building blocks like PEKS and FHE
comparison as the original work in [7], with PEKS with soft-biometric preselection,
we could compare the execution times. Compared to the original work [7], the identifi-
cation time of the proposed system was lower. From Table II in [7], the identification
time was 19.52s, including the preselection approach. This was from using float tem-
plates and a dimensionality size of 512, i.e., identical to our experiment. In contrast,
the identification time of the proposed system was 10.006s, as presented in Table 6.5.
There are multiple reasons for this improvement. Firstly, the proposed system
used the updated library OpenFHE instead of the PALISADE library used in [7].
OpenFHE is the successor of PALISADE and was released at the end of 2022 [57].
Secondly, our experiment has used a lower value for scaleFactorBits, thereby achiev-
ing faster execution times. The original work in [7] used scaleFactorBits = 50,
while our experiment used scaleFactorBits = 30, as presented in Section 6.4.1.
The scaleFacorBits parameter of the proposed system was chosen to improve the
efficiency but not affect the accuracy. In addition, the proposed system has reduced
the number of subjects in each candidate list. The experiment in [7] has 88 subjects
in each bin, while the proposed system only has 15 or 17 subjects, depending on
the database. This will thereby speed up the execution time. Lastly, as specified in
Section 6.4, our experiment was run on a new M2 CPU with a clock frequency of
3.50 GHz. In contrast, the experiment in [7] was run on an Ubuntu 20.04 operating
system with an Intel i7-10750H CPU using a clock frequency of 2.60 GHz. The
use of an M2 CPU could therefore have improved the execution times [58]. These
arguments are also reflected in the case that our experiment was reduced down to
2.8% of the baseline system instead of the 8.4% from [7].

Compared to the original work in [7], there is also a distance regarding the number
of trapdoors needed for the identification process. The original work [7] needed 155
trapdoors, while our experiment only needed 64. This indicates that the setup time
for computing the necessary trapdoors is reduced for our experiment, in addition to
reducing the execution time for the reverse PEKS search.

7.3 Ethics

Ethical concerns have been elaborated upon in the pre-project [9], and they will
be briefly reiterated. Since the GDPR [5] characterizes biometric data as sensitive,
as described in Section 2.1.1, some ethical considerations have been taken care
of regarding the experimental evaluation of this thesis. This was to ensure that
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the subjects received sufficient protection to which they were entitled. Firstly, the
biometric data of the database subject for FERET and FRGCv2 has only been stored
locally and not in any cloud environments. Secondly, the biometric data have only
been used for the implemented experiment and not used in other cases. Thirdly,
our experiment has used subject samples where the subjects have signed consent for
using their facial images and biometric features for testing purposes. This was the
case for both FERET and FRGCv2 databases. Lastly, the subject samples of the
two databases were taken in a controlled environment.
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Constructing a secure and efficient biometric identification system is a challenging
task. On the one hand, the security must be maintained by protecting the sensitive
biometric information. However, on the other hand, the efficiency must be maintained
such that the identification search does not become infeasible. Throughout this
thesis, a proposed system has been constructed that respects both considerations. By
combining stable hash codes, i.e., cluster centers, with the two approaches, Public-
Key Encryption with Keyword Search and Fully Homomorphic Encryption, we have
ensured that efficiency, security, and accuracy are provided. Thereby accomplishing
the initial goal of this thesis. Since the proposed system uses a generic framework to
enable privacy-preserving, the proposed system is also applicable to other indexing
approaches.

The proposed biometric identification system was tested on two databases, the
FERET database with 529 subjects and 1413 samples and the FRGCv2 database
with 533 subjects and 3165 samples. Using the stable hash generation and grouping
subjects in different clusters through the k-means clustering technique, a preselection
method was introduced to ensure the efficiency. For this preselection approach, an
accuracy and efficiency evaluation were tested for both databases. The FERET
database received an accuracy of 97.85%, while the FRGCv2 database obtained
92.14%. For this evaluation, 64 clusters were used. While the FERET database had a
maximum of 17 subjects in one cluster, the FRGCv2 had 15 subjects. Regarding the
efficiency evaluation, it took 0.28ms for one probe sample to perform the stable hash
generation, i.e., computing the corresponding cluster index. On the other hand, it
took 10,006.24ms to complete the entire identification search for one probe reference.
Compared to the workload of the initial baseline system, the identification time was
reduced down to 2.8%.

Regarding the security protection, several considerations were elaborated. Firstly,
only the protected ciphertexts from the Fully Homomorphic Encryption approach
were stored in the clusters. If an attacker received the knowledge of which subjects
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were grouped in which clusters, the attacker would only know which references were
grouped together but would not know on which basis. This means the attacker would
not know if the subjects were grouped based on the same gender, ethnicity, or age
group. Secondly, a solution to add random data to the smallest clusters was also
presented such that all clusters were of the same size and thereby not revealing any
information only based on their cluster sizes. Lastly, it has been shown that long-term
protection can be achieved through Public-Key Encryption with Keyword Search
and Fully Homomorphic Encryption. This is due to the advances in lattice-based
cryptography, and using the security guarantees of the Ring-Learning with Errors
problem.

Lastly, the biometric performance of the proposed system was evaluated by using
comparison scores and detection error trade-off curves. By evaluating comparison
scores for mated and non-mated pairs, the FERET database received a better
separation than the FRGCv2 database. Due to this remarkable separation of mated
and non-mated comparison scores, the detection error trade-off curve was empty
for the FERET database. On the other, for the FRGCv2 database, the connection
between false positives and false negatives could be illustrated through the detection
error trade-off curve. The FRGCv2 database showed low values of false positives
around 0.001%, while the false negatives varied from 1% to 0.001%.

8.1 Further Work

For further work, additional research tasks can be considered for the proposed system.
Firstly, due to the high cost of FHE computations and comparisons, it can be
interesting to look into other approaches for template protection than FHE. This
is to reduce the comparison cost but still ensure that the same level of security is
ensured. Secondly, instead of testing on two separate databases, a larger database
can be tested with the proposed system to see the impact on the accuracy, efficiency,
and comparison scores.
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