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Abstract

Ensuring safety and efficiency is the most critical agenda for the maritime industry. It is
essential to have a good understanding of ship dynamics and make accurate predictions
of ship motion. This enables us to properly evaluate risks such as collision and excessive
motion. The bedrock to do so is to develop advanced ship dynamic models for mak-
ing accurate motion predictions. Ships are complex systems composed of multi-scale
and multi-disciplinary sub-systems, such as a hull, thrusters, engines, etc. They are
exposed to external disturbances such as wind, waves, and ocean currents in real-world
sea conditions. These complexity and non-linearity lead to strong uncertainties in dy-
namic models, making it difficult to achieve high performance. The maritime industry
has faced increasingly rigorous cost requirements, leading to a demand for a more agile
framework for delivering dynamic models. To address this, this dissertation proposes a
framework that makes a synergy of two modeling principles.

Physics-based modeling has played a dominant role, emphasizing a mechanical un-
derstanding of ship motion. The resulting model is accompanied by physical interpreta-
tions and is trusted by experts for their knowledge foundation and reliability. The flip
side of its physics-based inspiration is that it tends to perform poorly on the full-scale
dataset of interest. Moreover, it requires much expertise and meticulous experiments,
resulting in high costs in both time and resources. On the other hand, data-driven
modeling aims to learn inductively hidden patterns from full-scale data. It excels at
handling strong non-linearity and complexity. With the use of cutting-edge machine
learning models that are robust to noise and disturbances, it is possible to effectively
utilize onboard data for better ship dynamic models. However, due to their poor inter-
pretability, replacing the strong aspects of physics-based models with them would not
be a good idea.

Two modeling principles play different roles and cannot be replaced by each other.
Instead, in the agile framework, they need to leverage each other’s strengths for com-
plementing each other’s weaknesses. To this end, this dissertation develops a framework
in which data-driven models enhance the performance of the physics-based model while
receiving sufficient knowledge transfer and continuity from the physics-based model.
New techniques are presented in four case studies for various pragmatic problems where
full-scale data needs to rapidly benefit the performance of the physics-based model. The
comprehensive experimental study addresses how the physics-based model and data ben-
efit the enhanced performance in such a framework. A novel method is also presented
to bridge the dynamics of similar ships and ease model development. This dissertation
proposes specific enablers of such a framework that enhances physics-based models with
data-driven methods and demonstrates its promising effectiveness through simulation
and real-world validation experiments.
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1
Introduction

The safety and efficiency during ship operations have been the primary agenda in the
maritime industry [1]. Situation awareness (SA) is the practice to evaluate "what will
happen in the future" and make use of it for better decision making to ensure such
operations. The bedrock in obtaining helpful SA is to make an accurate ship motion
prediction [2] with a better understanding of ship dynamics, which is the focus of this
dissertation.

Figure 1.1: Illustration of ship motion prediction by the physics-based foundation model and
data-driven model.

For more accurate motion prediction, building ship dynamic models has been a
key topic. As shown in the top panel in Fig. 1.1, however, it is not a straightforward
task. Ships are comprehensive systems that involve multiple subsystems, such as a
hull, engines, thrusters, cranes, and so on. They are multi-scale and multi-disciplinary
subsystems communicating with each other. Fortunately, we can model ship dynamics
through knowledge-driven approaches that emphasize our expertise, project experiences,
and model-scale experiments. Such a modeling practice is known as physics-based mod-
eling strongly derived from mechanistic principles, offering instructive insights acting as
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a knowledge foundation. Since our knowledge of the interaction between subsystems
and complex environment is limited, it always comes with a challenge in achieving a
good accuracy of the entire-ship model. At the same time, we should not overlook the
fact that modern ships are equipped with various onboard sensors [3], such as the global
navigation satellite system (GNSS), motion sensors, anemometers, and so on. Thanks
to the recent advancements in machine learning (ML), they become powerful tools that
provide us with valuable feedback from the real world, being rapidly applied to the
maritime domain [4] recently. These two genres of modeling are based on distinguished
principles, namely physics-based and data-driven. The former is where we place our
understanding and reliability, while the latter respects inductive learning for better per-
formance. Both elements are necessary for representing comprehensive and complex
systems in the real world. However, if one tries to replace the other’s role, it becomes
costly and time-consuming.

In this dissertation, instead of that, we explore the collaboration between them who
play their respective roles for maximizing their own values. Assuming specific physics-
based models are available acting as a knowledge foundation, the author’s core idea is to
enhance its performance with state-of-the-art data-driven models powered by onboard
sensor measurements. This dissertation is tasked with proposing and investigating en-
ablers to do so for reconciling the data-driven insights with such a knowledge foundation.

1.1 Background and motivation

In this dissertation, ship motion prediction refers to forecasting the ship’s future states
based on an understanding of its dynamics. The international maritime organization
(IMO) requires compliance with Standards for Ship Maneuverability for ships built after
2004 [5], highlighting the importance of understanding ship dynamics and predicting
ship motion for ensuring safety at sea. More specifically, ship motion prediction is one
of the pillars for assessing collision risk with marine obstacles during maneuvering [2].
Ships may lose their position information due to GNSS malfunction. In such cases,
predicting their position by using models is known as dead-reckoning tasks [6]. For
optimizing ship control commands, the model predictive control (MPC) has also gained
attention utilizing ship motion prediction [7,8]. Ship motion prediction is also important
for ensuring safety during Dynamic Positioning (DP) operations, where ships maintain
their position and heading by using actuators. Accurately predicting ship motion under
waves enables emergency actions when large motion is expected [9]. Hence, ship dynamic
models for motion prediction are essential for ensuring operational efficiency and safety.
This section describes two principles in modeling, leading to the motivation of this work
using the data-driven model for enhancing the physics-based model acting as a knowledge
foundation.

1.1.1 Physics-based models as knowledge foundation

A physics-based model is a parametric model inspired by mechanistic principles. It
aims to represent ship dynamics by constructing its parametric representations and
determining the parameters. Over the years, various physics-based models have been
proposed for various application [10], such as one degree of freedom (DoF) Nomoto model
[11], three DoF Abkowitz maneuvering model [12], the dynamic-positioning model, the
vectorial representation [13], and the mathematical modeling group (MMG) model [14].
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Figure 1.2: A schematic overview of the traditional framework for identifying ship dynamic
models for different tasks.

The term "physics-based" is used to describe these models as they place a great emphasis
on a mechanical understanding of the phenomenon. Fig. 1.2 illustrates the procedure of
the development of a physics-based model for ship dynamics. Although the physics-based
model prioritizes physics laws, it does not directly solve the governing Navier-Stokes
equations but rather be a statistical surrogate model. Therefore, it is not fully data-free
and requires numerical and model-scale experiments to be calibrated. The international
towing tank conference (ITTC) recommends that hydrodynamic coefficients of a physics-
based model should be validated by benchmark data from model-scale experiments [15].
Free-sailing data from full-scale tests is usually not regarded as a reliable source for
model identification due to the lack of force measurements. It is well-known that the
design of experiments and models greatly influences performance and robustness of the
model. In the 1970s, a model development project for the VLCC "Esso Osaka" was
launched [16]. They conducted a blind test with numerous research institutions for
letting them build their own maneuvering model for Esso Osaka. The results showed
that the developed models varied depending on the development procedure and research
institution. Thus, the uncertainties in physics-based models cannot be avoided even by
experienced professionals. In addition, physics-based models are surrogate models which
are not globally but locally available. They are derived through many simplifications and
assumptions. Thereby, the applicability domain of the developed model is determined
by operational, environmental, loading, and geographical conditions. This is the "task"
that the model targets. As shown in Fig. 1.2, different models need to be built for
different tasks.

In this way, physics-based models play a guiding role in showing us the path to
understanding phenomena. They serve as a knowledge foundation where we place our
understanding and reliability, however, their performance suffers from model uncertainty.
In this dissertation, a physics-based model is referred to as the foundation model when
we focus on its role as a knowledge foundation. The former term focuses on the form of
the model while the latter term focuses more on the characteristic of the model.

1.1.2 Data-driven models

A counterpart to the physics-based model is a data-driven model, which models hidden
patterns inductively by analyzing and learning from data. It is enabled by data-driven
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models being able to learn nonlinear and complex input-output relationships without
requiring rigorous understanding of the underlying phenomena. They readily capture
nonlinear and complex phenomena of ship dynamics where physics-based models require
great effort to do so. In addition, in recent years, onboard data collection has become
more practical due to advancements in sensing and communication technologies. For
instance, Kongsberg Maritime offers an easy-access platform for sharing onboard data1.
ShipDC offers an open platform where stakeholders collect and distribute their data2.
Such data collection and utilization are a crucial focus area in the maritime industry,
and this trend makes data-driven models more popular in this field [4]. For supervised
learning, popular data-driven models include neural network (NN) [17], decision tree
(DT) [18], Gaussian process regressions [19], Autoregressive models [20], support vector
machine (SVM) [21], etc.

The benefits of using data-driven models come with drawbacks. Data-driven models
prioritize achieving high performance in the given dataset, thereby, its internal mecha-
nism is usually not clear [22]. They may behave in a way that we do not accept from
a domain-knowledge perspective. It is highly demanding for us to make any decisions
based on such models by placing our understanding and reliability. Moreover, it does
not strike us as a smart idea to learn the fundamental part of the phenomena, where
physics-based models may prevail, in an inductive manner. Therefore, in practical appli-
cations, data-driven models without any benefits from the knowledge foundation would
not be sufficient to fulfill the role of ship dynamic models although they may achieve
excellent performances in academic papers.

1.1.3 Data-driven enhancement to foundation models

Figure 1.3: A schematic overview of the proposed framework.

1Kongsberg digital "Vessel Insight", https://kongsbergdigital.com/products/vessel-insight/, Data ac-
cessed 30-March-2023

2ShipDC, https://www.shipdatacenter.com/, Data accessed 30-March-2023
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Practically, data-driven models may be not considered to be eligible for serving as
ship dynamic models on their own, as they do not aim to respect our domain knowledge.
However, given that the maritime industry is entering "the era of digitalization" [23],
it still seems increasingly important to quickly benefit from full-scale operational data
obtained from state-of-the-art sensing and monitoring technologies. To offer dynamic
models for ship motion prediction, it is key for data-driven models to support the foun-
dation model to achieve better performance, while still forwarding knowledge from the
foundation model. This approach expects a supportive role from data-driven models to
maximize the value of the available foundation model as a knowledge foundation.

When building a ship dynamic model in a traditional way as shown in Fig. 1.2,
weak knowledge connections between tasks are seen. In fact, fundamental knowledge
may be able to be shared between various models for various tasks. Not doing so would
require rebuilding that part from scratch, leading to additional costs and risks. Instead,
humans usually emphasize knowledge connection. We enhance our understanding by
concentrating our efforts into learning essential differences between tasks while making
use of existing foundations as they are. In this dissertation, for delivering models in
a more agile manner towards various tasks, we emphasize such a process of humans
adapting to a new task.

To this end, this dissertation presents a new framework: the data-driven enhance-
ment to the foundation model, which is referred to as the DE framework throughout
this dissertation. Fig. 1.3 shows a schematic overview of the DE framework. The DE
framework assumes that we have a foundation model and a newly-obtained dataset for
a targeting task. Given that maritime stakeholders embody their experience and knowl-
edge in the form of validated physics-based models, this assumption is highly pragmatic.
For example, taking a physics-based model for ship A as the foundation model, we might
want to enhance its performance:

• towards operations which have not been well-trained for.

• with a full-scale dataset.

• towards a similar-but-different ship B.

Instead of newly building a model from scratch, the DE framework aims at modifying,
converting, or expanding the foundation model by applying data-driven models with the
newly-obtained dataset. This framework enables models to benefit from newly-obtained
data, while being anchored to the foundation model. The DE framework is expected to
bring the following benefits, but not limited to these, and promote more agile develop-
ment of ship dynamic models than the traditional framework:

Knowledge transfer; In the DE framework, the foundation model offers a knowledge
foundation. This part does not need to be re-discussed and re-learned although the
foundation model does not present satisfactory performance for the targeting task. Hav-
ing a knowledge foundation allows us to transfer useful knowledge and concentrate our
efforts on the aspects in which we are interested. This is expected to contribute to better
performance that can be easily and consistently produced.

Knowledge continuity; The development of the foundation model and its enhancement
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are a chain of the process. We can keep expertise devoted to building the foundation
model accessible and useful during the development of the new model. For example,
if a strong enhancement seems to be necessary, a team familiar with the foundation
model can examine if such enhancement is reasonable by discussing the reason why the
foundation model cannot represent such aspects.

Reduce the risk of low performance; When building a new model, there exists no guar-
antee that it outperforms the existing models. By using such models as a foundation, we
might have less risk of deteriorating it as we put much effort into improving it instead
of learning it from scratch.

Easy validation & deployment; An enhanced model is built upon a foundation model,
which has been validated and widely used. A team engages in a deep discussion of the
changes introduced by the data-driven enhancement. Thereby, we can verify the changes
and agree on the validity of such changes more easily compared to discussing without
any certain baselines.

1.1.4 Research questions

The focus of this dissertation is to shape, explore, and validate the DE framework for
building ship dynamic models in a more agile and efficient manner. To this end, the
problem awareness needs to be clarified. It prompts the first research question (RQ):

RQ1 What are challenges when building a ship dynamic model without having
a foundation model?

By reviewing and summarizing the state-of-the-art practices of modeling techniques, this
dissertation must answer this research question. The principles of traditional physics-
based models must be revisited. This research question leads to the next research ques-
tion:

RQ2 How can the DE framework be realized?

As discussed earlier, the DE framework is expected to bring some benefits, but there
would be various ways to achieve it and the expected benefit is achieved to various ex-
tents. Principles of data-driven models enabling such enhancement must be discussed.
The way we realize the DE framework is likely to be constrained by the project’s assump-
tions and how we value each expected benefit. This dissertation offers their overview.
Some previous studies may be related to or even be a part of the DE framework, which
must be properly incorporated in this overview. The characteristic of each enabler should
also be well-captured. In this dissertation, it should be noted that our focus is not on
comprehensively validating such enablers, but rather (1) proposing methods for over-
coming high-priority problem settings, and (2) addressing important research questions
when implementing the DE framework. It raises the next research question stemming
from the high-priority problem settings:

RQ3 How does the DE framework benefit building a model from a full-scale
dataset?
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We are interested not in the model-scale but in the full-scale ship motions. If full-scale
data can be effectively reflected in model performance, we can avoid scale effects and
significantly reduce the labor-intensive model-scale and numerical experiments, which
could be seen as a great benefit. However, in practice, the following challenges are known
to do so:

• Full-scale data may be taken under the great influence of external disturbances,
which may ruin the identified model.

• Such as docking operations, there exist situations where our domain knowledge does
not sufficiently represent the real-world complex ship dynamics in the parametric
model.

• Forces and moments cannot be measured directly in the full-scale experiments,
thus the quality of measurements is low.

• Limited cases are conducted in full-scale experiments due to time and safety rea-
sons.

• If using existing operational data, the imbalanced distribution of data can have a
negative impact on the identified model.

Overcoming these challenges, it is a high-priority task that the DE framework must
address to deliver a rigorous model in a timely manner towards full-scale operations
where we focus on.

The DE framework may not only bridge the model-scale and full-scale dynamics,
but it could also bridge the dynamics of similar ships. It leads to the next research
question:

RQ4 How does the DE framework build a knowledge connection between
similar ships? How does it benefit?

If data cannot be obtained in satisfactory quality and quantity, new ship models may fail
or be greatly impacted by perturbations in the dataset, making it difficult to evaluate
its validity. In such cases, we might want to introduce a foundation model from similar-
but-different ships, thus bringing better performance and stability. By sharing the same
foundation model among similar ships, it may be possible to create a "family of ship
models" which would bring knowledge connections between tasks.

The next research question naturally arises when considering how the DE framework
works in practice:

RQ5 How do the foundation model and data benefit the performance of the
enhanced model? Can we compromise on either of them?

The DE framework discussed in this dissertation is not simply a fusion of physical
knowledge and data-driven models for achieving high performance. Rather, it is for
enhancing a particular foundation model using a particular dataset, while still taking
advantage of knowledge transfer and continuity from the foundation model. Then, can
any model be eligible for being a foundation model for any task? Can any combination
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of the foundation model and dataset produce promising results for any task? "Yes" to
these questions is highly counterintuitive. This research question needs to be addressed
to investigate the basic mechanism of the DE framework.

1.2 Scope of work

1.2.1 Research objectives

To answer the research questions discussed above, this dissertation concentrates on the
following Research Objectives (ROs):

RO1 Investigate how the DE framework, which enhances a foundation model
with a data-driven model, can be realized. Clarify how such enablers
solve problems that the traditional framework has.

The goal of this dissertation is to form and validate the DE framework that bridges
the foundation model towards a target task by bringing a data-driven enhancement. To
achieve this, we need to understand how the DE framework can be realized (correspond-
ing to RQ2) and how they can solve the challenges now we have (corresponding to RQ1).
Chapter 2 is devoted to satisfying RO1. Each aspect of the overall picture is discussed in
the publications that comprise this dissertation. Associated publications paper i and iii
explore the state-of-the-art of existing non-DE framework. This may be relevant to RO1
as it would highlight the challenges that the DE framework can contribute to.

RO2 Propose techniques that agilely reflect a full-scale dataset into model
performance in the DE framework.

It is the primary interest of the DE framework to readily benefit the model performance
from a full-scale dataset, while avoiding challenges in the full-scale dataset as discussed
in RQ3. In Paper II and III, the DE framework for full-scale maneuvering is presented.
In Paper VI, we shift the focus from maneuvering to seakeeping ship motion with an
imbalanced full-scale dataset. In Paper I, the author tackles a more pragmatic problem
setting in full-scale real-life maneuvers. In the full-scale dataset, thruster commands
could be complexly changing. Paper I presents a new DE architecture that effectively
handles such a change both during the training and inference phases, while highly seg-
regating the contributions of the foundation model and data. This is a key solution that
accommodates both effectively learning from real-life data and such segregation in the
DE framework.

RO3 Propose a technique that bridges the dynamics of two ships. Explore
how one model benefits model identification of the other.

As pointed out in RQ4, the available foundation models may be often for similar-but-
different ships. In such cases, we want to quickly, easily, and reliably identify a model
for the targeting ship using such foundation models. Alongside RO3, this must be the
primary interest of the DE framework. Paper iv proposes the knowledge transfer strategy
using NNs bridging two ships’ dynamics. Paper V explores their impact on enhanced
performance more comprehensively with numerical and full-scale experiments.
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RO4 Examine how the foundation model and data benefit enhanced perfor-
mance of the enhanced model.

The twin pillars of the DE framework are the foundation model and data. When con-
sidering the DE framework, we usually aim to compromise on both. If the foundation
model must present rigorous performance to the target task, the DE framework is not
feasible as such a model is rarely found. Otherwise, the modeling effort can be signifi-
cantly reduced by using a compromised model fulfilling a role as the foundation model.
When it comes to data, it is extremely difficult to obtain a large amount of onboard
experimental data. Thereby, it is key to be well aware of how the foundation model and
data impact enhanced performance of the enhanced model. Paper ii shows an initial
case study that examines the contribution of the foundation model and data to perfor-
mance. Subsequently, this issue is profoundly discussed in Paper IV with large-scale
experiments.

1.2.2 Interconnection between the research objectives

The interconnection between the ROs and the published papers are shown in Fig. 1.4.
Paper i and iii are associated publications that the author contributed as a co-author.
They investigate physics-based and data-driven principles, which highlights the necessity
of the DE framework. All publications contribute to achieving RO1 in a way that
investigates and realizes the DE framework on different experimental platforms. RO4
addresses a key question about the mechanism of the DE framework. Paper ii presents
a preliminary work where physics-based, data-driven, and enhanced models compete
and are compared. In Paper IV, employing the enhanced model inspired by the work
in paper I, extensive experimental works is presented to investigate how the foundation
model and data benefit enhanced performance.

The rest of the published and associated papers is dedicated for proposing new tech-
niques for enabling the DE framework, focusing on pragmatic problem settings. Related
to RO2, four case studies, paper I, II, III, and VI, showcase how the DE framework
benefits the foundation model from full-scale data, presenting its novel architectures.
Related to RO3, paper V presents a Bayesian framework that bridges dynamics of simi-
lar ships for obtaining a new model for a new ship in a more efficient and stable manner.
In paper iv, neural networks are employed for addressing RO3 for bridging two ships’
dynamics.

1.3 Contributions of the dissertation

The major contributions of this dissertation are as follows, which correspond to the ROs
above:

• Present a framework to use data-driven models for enhancing the physics-based
model serving as a knowledge foundation. Clarify its overview and possible en-
ablers. It is related to RO1.

• Implement techniques of the DE framework for rapidly reflecting the full-scale
data to the better performance while utilizing a knowledge foundation from the
foundation model. It is related to RO2.
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• Propose a novel method for bridging similar ships’ dynamics for identifying model
parameters more easily and stably while establishing a knowledge connection. It
is related to RO3.

• Investigate how the foundation model and data benefit enhanced performance in
the DE framework. Extensive experimental study is presented, related to RO4.

1.4 Structure of the dissertation

This introductory chapter described the background and motivation for this disserta-
tion, clarifying its research goals through research questions. The rest of this dissertation
unfolds as follows. Chapter 2 introduces the principles of building the foundation model
and data-driven models, which are pillars of the DE framework. Related to RO1, an
overview of its enablers will also be discussed. In addition, Chapter 2 presents experi-
mental platforms for simulation and full-scale experiments in this dissertation. Chapter
3 presents techniques for realizing the DE framework with reflecting full-scale dataset,
including research results from paper I, II, III, and VI. Their applications are ship mo-
tion prediction for maneuvering and seakeeping operations. Chapter 4 experimentally
investigates how the foundation model and data benefit enhanced performance through
extensive simulation and full-scale experiments. Chapter 5 directs a spotlight towards
bridging dynamics of similar ships related to RO4, including research results from pa-
per V. Chapter 6 concludes this dissertation, summarizing the contributions and possible
future works.
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Figure 1.4: Overview of the interconnections between the research objectives and publications.
Papers notated with the capital Roman number indicate publications that this dissertation is
mainly based on. Those with the lower Roman number indicate associated publications the
author contributed as a co-author.
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2
Data-driven enhancement to the physics-based model

This chapter explores the overview of enablers of the framework: the data-driven en-
hancement to the foundation model (the DE framework). They are enabled in various
ways, resulting in appreciating the expected benefits of the DE framework to different
extents. Fig. 2.1 illustrates how the DE framework readily offers ship dynamic models
for ship motion prediction, which is the bedrock for making SA and onboard decision
makings.

Figure 2.1: Illustration of the data-driven enhancement of the foundation model.

The motivation of the DE framework is to rapidly benefit the existing knowledge
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asset from a newly-obtained dataset for better predictive performance. Section 2.1 pro-
poses an overview of enablers of the DE framework. In Section 2.2, the principles of
developing the foundation model in a physics-based way is discussed. The author sum-
marises the principles of data-driven models for enhancing the foundation model in
Section 2.3. Simulation and real-world experiment platforms are described in Section
2.4.

2.1 Data-driven enhancement to the foundation model

As discussed, a ship is a comprehensive system involving multi-scale and multi-disciplinary
sub-systems such as surrounding water, a hull, engines, and thrusters. Moreover, cap-
turing ship dynamics becomes more difficult due to the fact that such a comprehensive
system is exposed to complex disturbances, such as waves, ocean current, and wind. In
such settings, we need two different principles to be emphasized for rapidly delivering a
dynamic model. One is a solid knowledge foundation, shown in the blue panel in Fig. 2.1,
where experts have a good understanding and place their reliability. It is represented by
the physics-based model developed through performing careful experiments and appreci-
ating domain knowledge, which serves as the foundation model in the present framework.
The other is data-driven branches stemming from and based on the foundation model,
which enables rapidly adapting to the newly-obtained dataset, shown in the orange pan-
els in Fig. 2.1. This branch concentrates on being rapidly built up by learning from
datasets collected by modern ships equipped with diverse sensors. Multiple branches
can be developed for various tasks while sharing the same foundation model, which en-
ables knowledge transfer and continuity. The advantages and disadvantages of the two
principles are shown in Tab. 2.1. In this section, we focus on capturing the functional
differences between possible enablers and over-viewing them through categorization.

2.1.1 Related works in interdisciplinary fields

As a higher-level concept including the DE framework, the synergy of scientific knowl-
edge and data-driven modeling can be considered. Through interdisciplinary fields, such
efforts have been widely popular. Rueden et al. [24] called some of such efforts the
informed ML that incorporates not only scientific knowledge, but also general knowl-
edge of learning systems. They organized realization methods with three perspectives:
knowledge source, knowledge representation, and knowledge integration. Karpatne et
al. [25] more focused on the synergy of scientific knowledge and data, which is called
theory-guided data science. They believe that model performance should be evaluated
in a way:

Model performance ∝ Model accuracy+Model simplicity+Physical consistency (2.1)

This belief seems reasonable as hypotheses should be taken from a physically reasonable
hypothesis space. They proposed five categories for implementation:

• Deciding the model structure based on scientific knowledge.

• Learning the model with the help of scientific knowledge.

• Refining the model outputs based on scientific knowledge.

• Building hybrid models of scientific theory and data science.
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Table 2.1: Advantages and disadvantages of physics-based and data-driven modeling principles.

Principle Advantages Limitations

Physics-based

• derived from physics principles.

• presents high extrapolation per-
formance, if modeling assump-
tions are valid.

• compromised models may be
easily derived.

• experts place good understand-
ing and reliability on how real-
world phenomena are described
in the model.

• requires much expertise.

• requires extensive cost & time to
build high-performance model.

• does not handle highly complex
and nonlinear phenomena.

Data-driven

• requires less expertise.

• can quickly adapt to a dataset
with high performance.

• access to state-of-the-art ML
models.

• robust to noise and distur-
bances.

• lack of interpretability.

• does not necessarily respect
physics principles.

• requires large datasets.

• Data augmentation based on scientific theory.

[26, 27] extensively reviewed the physics-informed ML, which integrates physics prin-
ciples into ML. These methods have been particularly successful in chemical engineer-
ing [28], biology [29], and fluid dynamics [30]. Transfer learning" [31, 32] is a more
general concept of transferring knowledge from a source to a target domain, which may
partly cover such a synergy from an implementation perspective.

These concepts explore the synergy of scientific knowledge and data-driven methods.
The level of their cooperation and methodology vary. In contrast, the focus of this
dissertation is to enhance the performance of the foundation model, that is packaged
holistic knowledge, rather than incorporating incomplete knowledge into data-driven
models. The DE framework for obtaining a ship dynamic model could be inspired
by such concepts from the implementation perspective. However, there is no domain-
agnostic method that works best for any application in any field. It is because both
scientific knowledge and data are something domain-specific, at the same time, their
synergy always needs to take domain-specific constraints into account. This argument
motivates us to conduct a domain-specific investigation of enabling the DE framework
in the field of ship dynamics. As a first step, in this chapter, we categorize the possible
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enabler of the DE framework into four modes for this domain.

2.1.2 Four modes of enabling the DE framework

This subsection defines four modes which determines how the foundation model relates
to its data-driven branch.

The update mode

Figure 2.2: The update mode.

The update mode shown in Fig. 2.2 is the most straightforward way to incorporate
insights from a newly-obtained data into the foundation model. In this mode, we update
the parameters of the foundation model by using the newly-obtained dataset such that
it better fits the dataset. The enhanced model is described as:

y = f(x|θ +∆θ) (2.2)

where x is the input vector, y is the output vector, and f is the nonlinear function of ship
dynamics. θ is a set of parameters of the foundation model and ∆θ is its data-driven up-
date. It corresponds to the Bayesian inference, which estimates a posterior distribution
by updating a prior distribution with upcoming data. The update mode is clearly dis-
tinguished from the other modes since it does not involve any data-driven model in the
enhanced model, which can be used in exactly the same way as the foundation model.
Such Bayesian frameworks are seen in some previous works for building a ship dynamic
model. The Kalman filter (KF) is the Bayesian approach leveraging knowledge repre-
sented by a dynamic model and data coming from observation [33–35]. Non-informative
or knowledge-driven distribution is taken as an initial estimate of a prior distribution.
Alexandersson et al. [36] proposed a novel approach to interweave knowledge and data
towards identifying a dynamic model with noisy data. They denoised signals with a pre-
liminary maneuvering model by KF, and then used that denoised signals for identifying
a more sophisticated model. Repeating this procedure, they build up a new model by
lifting up the preliminary model by using data.

Hence, the update mode would be perfect for finding a robust-and-accurate model
by parsimoniously updating the foundation model. Experts can introduce their domain
knowledge into decision makings if updates in parameters are justified and acceptable.
On the other hand, the update mode is not preferable for adapting to highly complex
operations. It is parameter-identification problem of the parametric model, which does
not efficiently adapt to complex phenomena. Updating the foundation model must
be carried out by experts in a delicate manner, otherwise, the update may ruin the
foundation model easily as [37] showcased the failure of the development of physics-
based models. In this dissertation, the update mode is explored in paper V for bridging
dynamics of two similar ships, transferring knowledge and building mutual connections.
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The convert mode

Figure 2.3: The convert mode.

Only the convert mode does not directly embed the foundation model into the enhanced
model. There are situations where a designer who develops the enhanced model has
no direct access to the foundation model. For instance, a shipping company may need
the enhanced model for their SA during their operation, while the foundation model is
owned by shipyards or research institutions. Additionally, the foundation model may
run only on specific simulation platforms, such as a co-simulation platform or in-house
simulator, and may not be easily extracted for embedding purposes. In such cases,
simulation results need to be used offline instead of directly embedding the foundation
model into the enhanced model. The popular method is to modify the loss function of
the learning algorithm such that it regularizes the learning with simulation results or
physics constraints. For instance, the loss function can be defined as:

L = Lt + λLs (2.3)

L is the modified loss function. Lt is the loss function for the discrepancy between the
output and target vector. Ls is the loss function for the discrepancy between the output
vectors from the data-driven model and the physics-based model on the simulator. λ
is a hyperparameter that balances these two losses. The other way for achieving the
convert mode is to augment the dataset with simulators:

Da = D ∪Ds (2.4)

where D, Da, and Ds are the original dataset taken in the real world, the augmented
dataset, and the dataset generated on simulators. Both methods aim to incorporate
simulation results into the learning process, rather than solely using real-world data to
train the data-driven model. The enhanced model in the convert mode is described as:

y = g(x) (2.5)

where g is a data-driven function learned from datasets, of which training is facilitated
by simulation results. Although the flexibility of the convert mode without requiring
embedding the foundation model into the enhanced model is a great advantage, it may
become a concern that the foundation model plays an implicit role.

The serial mode

In the serial and parallel modes, the enhanced model has the foundation and data-driven
models for data-driven enhancement in its architecture. Such a hybrid architecture
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Figure 2.4: The serial mode.

are widely-known as a semi-parametric model [38], a gray-box model [18], or a hybrid
model [38]. The serial and parallel modes are structurally different from the update and
convert modes, which do not have such two architectures in the enhanced model. In the
serial mode, the data-driven enhancement is conducted in a way that the data-driven
model is trained such that it maps the output of the foundation model towards the true
output:

y = g(f(x|θ), x) (2.6)

In [38], it is pointed out that the serial mode has an advantage over the parallel mode
when the structure of the foundation model is rather accurate. As the serial mode only
maps outputs of the foundation model in a data-driven way, the foundation model plays
a more significant role in enhanced performance. In the field of ship dynamics, ensuring
the structural fidelity of the foundation model may be difficult, thereby, the advantage
of the serial mode over the parallel mode may not be highlighted from the performance
perspective. Wang et al. [39] adapted this mode for mapping the dynamics of a ship
before the renovation towards that after the renovation. Its interpretability is the biggest
advantage since it lifts up the performance of the foundation model only by mapping it.
The serial mode can also be defined by reversing the order of the foundation model and
the data-driven model:

y = f(g(x), x|θ) (2.7)

For instance, Ven et al. [40] used NNs to replace the damping term in the physics-
based model of an underwater vehicle. The concept of the reverse serial mode may
also include data-driven sensitivity analysis [41] to simplify the foundation model. This
reverse mode would fundamentally change the foundation model which is utilized as a
packaged knowledge foundation where we place our knowledge and reliability. Thereby,
in this dissertation, the reverse mode is not mainly discussed as one of the enablers of
the DE framework.

The parallel mode

Figure 2.5: The parallel mode.
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In the parallel mode, data-driven models are trained such that they compensate for
errors made by the foundation model, thus making better prediction in a cooperative
way:

y = f(x|θ) + g(x) (2.8)

[38] pointed out the parallel mode can outperform the serial mode when the foundation
model has a structural mismatch. The parallel mode improves the overall performance
of the enhanced model by compromising a part of it as unexplained while keeping the
foundation model. It can adapt to the structural mismatch of the foundation model in
a more flexible way than the serial mode does. The assumption that the foundation
model always has an accurate structure may not always be correct. The structure of the
foundation model is determined through simplifications based on our domain knowledge,
and there should be some degree of inaccuracy involved. The parallel mode has been
popular in plant engineering [42, 43]. In the field of ship dynamics, Mei et al. [18]
have made pioneering attempts for the parallel mode. They have used random forest
models to correct the acceleration estimation of a physics-based model, and performed
a validation study in a simulation environment. Skulstad et al. [44] proposed a method
using NN to correct the future trajectory estimated by the physics-based model.

2.1.3 One-shot or iterative

In 2.1.2, the focus is directed on the relationship between the foundation model and
data-driven models, and categorized them into four categories. Here, the author empha-
sizes another key consideration in realizing the DE framework: if the enhanced model
is repeatedly used for obtaining the final prediction. This perspective is particularly
important when predicting ship motions in the time domain as pointed out in [38, 45].
In the time domain, the final prediction we need is a multiple-step-ahead prediction of
ship states in the future.

The iterative approach is more intuitive. The output of the enhanced model is recur-
sively used as the new input to the enhanced model in the next iteration. The enhanced
model performs a single-step-ahead prediction repeatedly to obtain the necessary multi-
step-ahead prediction over the prediction horizon, in an autoregressive manner. The
strength of the iterative approach is that the data-driven branch is learned at a level
close to the physical principles, making the learning problem rather simple. It leads to
a high learning efficiency for obtaining the data-driven branch, enabling to deal with
complex phenomena. Given that the data-driven branch does not work well for input
outside the learning range, it becomes a challenge to give sufficient consideration if such
conditions are met over the entire prediction horizon in practice. The foundation model
and data work in a more interwoven way over the prediction horizon, making them com-
municate with each other more intensively and efficiently than the one-shot approach
does.

On the other hand, in the one-shot approach, the enhanced model runs only once to
obtain multiple-step-ahead prediction over the prediction horizon. For example, in the
parallel mode, the data-driven model could compensate for multiple-step-ahead errors in
trajectories predicted by the foundation model. The advantage of the one-shot approach
is that the data-driven branch is strongly separated from the foundation model. It runs
only once, so there is less concern for ensuring the data-driven branch runs inside the
learning range over the prediction horizon. But, there are also disadvantages. The one-
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shot approach requires learning complex problems. Control commands may change over
the prediction horizon, thereby, in the one-shot approach, we need to include such high-
dimensional command vectors as inputs of data-driven models. These factors result in
poor learning efficiency compared to the iterative approach. The two approaches run on
different mechanisms and each has its own strength and drawbacks. It is not about one
being superior to the other, but rather understanding the drawbacks while focusing on
the strengths when using them.

2.2 The principles of physics-based models

A physics-based model can be defined in the time and frequency domains. Although
there are various models for various applications, this section presents the time-domain
maneuvering model and frequency-domain linear response model employed in this dis-
sertation. The other models can be found in [10]. When a physics-based model serves as
a knowledge foundation, this dissertation refers to it as a foundation model. The former
is named based on the type of the model, and the latter is named based on the role of
the model.

2.2.1 Maneuvering model

The maneuvering model is a ship dynamic model which represents a 3DoF behavior of
the ship on the North-East plane. The behavior is described in the surge, sway, and yaw
directions. For the rigid-body kinetics, it is formulated as:

η̇ = R(ψ)ν

MRB ν̇ + CRB(ν)ν +MAν̇r + CA(νr)νr +D(νr) +Dn(νr)νr = τc + τwind + τwave

(2.9)

where η = [x, y, ψ]T is the ship position vector, which includes north, east positions, and
heading in the Earth-tangential North-East-Down (NED) frame. ν = [u, v, r]T is the
ship velocity vector, which includes the surge, sway, and yaw velocities in the body-fixed
frame. R(ψ) is the rotation matrix on the horizontal plane, which relates the NED and
body-fixed frame:

R(ψ) =



cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 (2.10)

MRB ∈ R3×3 and MA ∈ R3×3 denotes the rigid-body and added mass matrices, respec-
tively. CRB(ν) ∈ R3×3 and CA(νr) ∈ R3×3 represent the rigid-body and added Coriolis
and centripetal matrices, respectively. νr = ν− νc is the relative velocity vector through
the water with consideration for the generalized ocean current velocity of an irrotational
fluid νc = [uc, vc, 0]

T .
In (2.9), the right-hand side of the second equation for ship kinetics describes ex-

ternal forces and moments acting on the ship. It is composed of the control vector
τc ∈ R3, which is produced by the actuator systems, the wind vector τwind ∈ R3, which
is produced by wind acting at a certain angle relative to the ship, and τwave ∈ R3,
which is produced by waves. The control vector of forces and moment is calculated by
using hydrodynamic surrogate models for actuators. They are usually provided by the
manufacturer of actuators or identified through experiments.
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During ship maneuvering, the accurate estimation of wave forces and moments
acting on the ship is highly challenging due to the lack of sufficient modeling knowl-
edge and measurements. Thereby, throughout this study, it is assumed to be unknown
τwave = [0, 0, 0]T . Similarly, the accurate onboard measurement of ocean current is
mostly not available, resulting in assuming νr = ν throughout this study. This means
that the onboard wind measurement is often the only way to obtain information about
external disturbances. Based on the tunnel or numerical experiment results, the wind
vector of forces and moment can be expressed as follows:

τw =
1

2
ρaV

2
rw




CX(γrw)AFW

CY (γrw)ALW

CN(γrw)ALWLoa


 (2.11)

where the relative wind speed is notated as Vrw =
√
u2rw + v2rw, its attack angle is

γrw = −atan2(vrw, urw). urw = u − Vw cos (βw − ψ) and vrw = v − Vw sin (βw − ψ) are
the longitudinal and lateral components of the relative wind speed. Vw and βw denote
the wind speed and its direction, respectively. CX ,CY , and CN are wind coefficients,
which are specifically determined for superstructure shape exposed to the wind. AFW

and ALW are frontal and lateral projected areas and Loa is the overall length of the ship.

2.2.2 Stochastic model for linear ship response

During DP operations, ships maintain their positions and heading on the two-dimensional
plane by using thrusters. Ship’s wave-frequency responses in the heave, pitch, and roll
during DP operations gain particular interest in ensuring the onboard safety. For such
a task, it is common to see a ship as a buoy exposed to waves. Assuming the linear rela-
tionship between waves and ship motions, the wave buoy analogy method is popular [46]
to relate the energy spectrum of ship motion Si(ω) and directional wave spectrum as:

Si(ω) =

∫ π

−π

|RAOi(ω, θw)|2Sw(ω, θw)dθw (2.12)

where ω is the angular frequency, θw is the relative direction of waves with respect to
the ship’s heading, RAOi(ω, θw) is the Response Amplitude Operator (RAO) of the ship
for the i-th direction, and Sw(ω, θw) is the directional wave spectrum. Note that the
encounter wave frequency is assumed to be identical to the wave frequency since we
focus on DP operations. Sw(ω, θw) is measured by the onboard wave radar. RAOi is
calculated through hydrodynamic workbenches based on the ship’s specifications and
geometries, in this study, ShipX1 is employed. The zeroth-order moment of the ship
motion spectrum is:

mi =

∫
Si(ω)dω (2.13)

Then, σ̂m
i =

√
mi is the stochastic estimation of ship motion, which is a standard

deviation of ship response.

1ShipX, https://www.sintef.no/en/software/shipx/, Data accessed 30-March-2023
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2.3 The principles of data-driven models

Nowadays, various data-driven models are being widely used for different purposes,
and they are also known as ML models. In this dissertation, the author believes that
data-driven models alone do not fulfill the role of a ship dynamic model since it is
difficult to introduce a physical interpretation, as shown in Tab. 2.1. Therefore, this
dissertation utilizes data-driven models as support to enhance the performance of the
foundation model. In this section, the author explains the data-driven models used in
this dissertation and the method for optimizing their hyperparameters.

2.3.1 Data-driven models

Linear regression

The linear regression model has been a cornerstone of statistics and ML. It describes a
linear relationship between explanatory and response variables. Given a vector of inputs
XT = (X1, ..., Xp), then the linear regression model predicts the response variable Y via:

Ŷ = ŵ0 +

p∑

j=1

Xjŵj (2.14)

It is convenient to include the constant variable 1 in X such that we include the intercept
ŵ0 in the coefficient vector ŵ. Then, the linear regression model is written:

Ŷ = XT ŵ (2.15)

ŵ is identified such that it maximizes model performance in the given dataset, which
is pairs of an input matrix XN×p with each row an input vector and N -vector of the
response variable y. Here, N is the number of samples in the training dataset. Then,
it is known that the optimum ŵ is analytically determined such that it minimizes the
mean squared error (MSE):

ŵ = (XTX)−1XTy (2.16)

Ridge regression

When the number of explanatory variables is large and the linear regression model shows
multicollinearity, the inverse matrix in (5.11) is hardly calculated. In such cases, the
coefficients can be significantly unstable and large due to perturbations in the train-
ing dataset, leading to poor accuracy for new samples. This phenomenon is referred
to as overfitting the training dataset. One way to avoid overfitting is to use the L2
regularization in ridge regression, where the loss function is to be minimized as:

ŵ = arg min
w

N∑

i=1

(yi − w0 −
p∑

j=1

xijwj)
2 + λ

p∑

j=1

w2
j (2.17)

which can be solved analytically:

ŵ = (XTX + αI)−1XTy (2.18)

where λ is a hyperparameter determined by the analyst and I is an identity matrix.
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Figure 2.6: An example structure of MLPs.

Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is the fully-connected feed-forward artificial NN, which
is the most classic architecture of NNs. Fig. 2.6 shows an example architecture of MLP.
It is composed of a minimum of three layers with nodes in each layer, namely, an input
layer, hidden layer(s), and an output layer. The number of nodes in the input layer
corresponds to the number of input features. The input layer receives input features
and propagates them towards deeper layers. In the hidden and output layers, nodes
represent neurons that forward signals from the previous to the next layer:

y = a(
n−1∑

i=0

wixi + b) (2.19)

where y is the output signal from the neuron, a is the activation function, xi is the
input signal from the i-th neuron, wi is the weight of the i-th neuron, and b is the
bias. In the hidden layers, non-linear functions (such as sigmoid, tanh, ReLu, and
softmax functions) usually used, thus enabling a non-linear mapping from inputs to
outputs. The architecture of MLPs is determined by some hyperparameters including the
number of layers, the number of neurons in each layer, and the activation function. They
must be properly chosen by designers or optimized by the hyperparameter optimization
framework.

During training MLPs, we monitor the loss function that indicates the discrepancy
between the output and target vectors. The weights and biases in layers are updated by
using the backpropagation such that updated MLPs produce a smaller loss.

Long short-term memory (LSTM)

A recurrent neural network (RNN) is a family of NNs, of which output signals from their
neurons flow into themselves in a recurrent manner. RNNs focus on better performance
for time-series tasks where memory from the past run must be inherited and used in the
subsequent run. In particular, Long short-term memory (LSTM) is a type of RNNs [47],
which has achieved great success and become the gold standard of RNNs. The highlight
of LSTM is that it features in remembering long-term information in time series, while
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effectively avoiding the vanishing gradient problem during training. Fig. 2.7 shows an
illustration of an LSTM cell.

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxi + bif +Whfht−1 + bhf )

gt = tanh(Wigxi + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt
ht = ot ⊙ tanh(ct)

(2.20)

where it is the input gate, ft is the forget gate, gt is the cell input function, ot is the
output gate, b terms are bias vectors, W terms are weight matrices, ct is the cell state
at time t, ht−1 is the hidden state at time t − 1, xt is the input at time t, tanh is the
hyperbolic tangent function, σ is the sigmoid function σ(x) = 1/(1 + e−x), and ⊙ is the
element-wise product of vectors.

Figure 2.7: Illustration of an LSTM cell.

2.3.2 Hyperparameter optimization

In data-driven models, hyperparameters play an integral role in determining the model
architecture and training. They need to be set by the designer instead of being auto-
matically learned from data. For example, neural networks have hyperparameters such
as the number of layers, the number of neurons in each layer, and so on. Hyperparame-
ters have a great influence on how data-driven models learn, thus they must be always
determined with due consideration.

It is not a good idea to choose hyperparameters such that the data-driven model
performs the best in the training dataset. The more complex model can achieve higher
performance in the training dataset since it can almost memorize the training dataset,
rather than generalizing the underlying phenomena. Such a model may lack generaliza-
tion performance, and their predictive performance on new samples is low. This pitfall
is known as overfitting the training dataset. Thereby, for determining hyperparameters,
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we usually keep a part of the training dataset untouched during training. We call this
untouched dataset the validation dataset, in which model performance is monitored for
choosing hyperparameters. The drawback is the fact that the size of the training dataset
is reduced due to keeping the validation dataset from it. To remedy such a drawback,
cross-validation is a popular technique. In cross-validation, we split the training dataset
into several subsets, where one of them is used for the validation and the others are
used for the training. This is repeated by switching the subset for the validation, thus
making it possible to make use of the whole training dataset while effectively avoiding
overfitting it.

Optuna framework

Optuna [48]2 is an open-source hyperparameter optimization framework, which enables
us to efficiently search a set of hyperparameters that maximizes model performance.
Optuna is a library-agnostic framework, so it can run with any ML libraries such as scikit-
learn3, tensorflow4, keras5 , and PyTorch6. In some publications in this dissertation,
an optimum set of hyperparameters is searched by using the Tree-structured Parzen
Estimator (TPE) sampler [49, 50] in optuna. The TPE sampler is one of the Bayesian
optimization methods, which has been widely used for the hyperparameter tuning thanks
to its great performance and small computational time.

2.4 Experimental platforms

The focus of this dissertation is building a ship dynamic model for motion prediction.
Data on ship motion needs to be taken from experimental platforms for conducting
case studies. In this dissertation, the author employs three experimental platforms.
The R/V Gunnerus is a real-world ship, which provides a full-scale dataset with diverse
onboard sensors. Co-simulation platform and MSS toolbox are well-validated simulation
platforms, which enable to conduct high-quality virtual experiments.

2.4.1 The R/V Gunnerus

Figure 2.8: A snapshot of the starboard view of the R/V Gunnerus.

The Research Vessel (R/V) Gunnerus is a multipurpose research vessel operated
by the NTNU. She has been mainly used for research and educational purposes. Her

2Optuna, https://github.com/optuna/optuna, Data accessed 30-March-2023
3Scikit-learn, https://scikit-learn.org/stable/, Data accessed 30-March-2023
4Tensorflow, https://www.tensorflow.org/, Data accessed 30-March-2023
5keras, https://keras.io/, Data accessed 30-March-2023
6PyTorch, https://pytorch.org/, Data accessed 30-March-2023
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Table 2.2: Basic specifications of the R/V Gunnerus for the short and elongated versions.

Specification Short Elongated
Length overall (m) 31.25 36.25
Length between perpendiculars (m) 28.9 33.9
Breadth middle (m) 9.6 9.6
Draught (m) 2.7 2.7

Table 2.3: Onboard data channels of the R/V Gunnerus.

Sensor Channels Unit

GNSS

Latitude ddmm.mmmm
Longitude ddmm.mmmm
Surge velocity knots
Sway velocity knots
Course angle deg
Speed over ground knots

MRU

Heading angle deg
Heading rate deg/s
Roll angle deg
Pitch angle deg
Heave displacement m
Roll rate deg/s
Pitch rate deg/s
Heave rate m/s

Thruster

Port thruster rotational speed %
Port thruster angle deg
Starboard thruster rotational speed %
Starboard thruster angle deg
Tunnel thruster rotational speed %

Anemometer Wind direction deg
Wind speed knots

starboard snapshot is shown in Fig. 2.87. She was put into operation in 2009 with
31.25m length overall. In 2019, she was elongated from the original length to 36.25m
length overall. Her basic specifications are shown in Tab. 2.2 8. It should be noted that
there are short and elongated versions of the R/V Gunnerus. Both of them are used as
experimental platforms in this dissertation.

The diesel-electric propulsion system powers the R/V Gunnerus. She is equipped
with two Rolls-Royce 500kW Azimuth thrusters and one Brunvoll 200kW tunnel thruster.
She presents an excellent DP performance with Kongsberg SDP-11 system enabled by
rotating her Azimuth thrusters 360◦.

There are diverse onboard sensor channels on the R/V Gunnerus as shown in
Tab. 2.3, which are data sources of real-world data in this dissertation. They pro-
vide real-time access to her current status. Moreover, sensor measurements are always
logged in 1Hz, which enables us to easily replay her history operations. For building a
ship dynamic model, measurements coming from a GNSS reviewer, a motion reference
unit (MRU), wind sensors, gyros, and sensors for thruster revolution are used. It is

7The R/V Gunnerus, https://www.ntnu.edu/oceans/gunnerus, Data accessed 30-March-2023
8For further details: The R/V Gunnerus, https://www.ntnu.edu/gunnerus, Data accessed 30-March-2023
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interesting to find that the Miros Wavex radar9 is installed on her X-band navigational
radar. It is a virtual wave radar that can be installed on the existing navigational radar
without physically installing a new radar. It provides information about surrounding
waves in real-time, such as the wave directional spectrum.

2.4.2 Co-simulation

As mentioned, ships are comprehensive systems composed of multi-scale and multi-
disciplinary sub-systems. Co-simulation is an enabler for jointly building up a global
simulator only by connecting sub-simulators [51]. Sub-simulators are expected to be
black-box and independent of each other between communications, thus making it easier
for stakeholders to share their sub-simulators without disclosing how it works. Sub-
simulators are to be provided by project partners in a format of a functional mock-
up unit (FMU), which is based on a commonly-used standard the functional mock-
up interface (FMI), for co-simulation. In the maritime industry, The open simulation
platform (OSP)10 provides an initiative for sharing sub-systems FMUs. The entire ship
model can be built after easily assembling them, which runs on an entity-component-
system (ECS) based co-simulation framework Vico [53]11.

Figure 2.9: A diagram of FMUs and their connections for the entire R/V Gunnerus on Vico.

In this dissertation, we employ a virtual ship of the R/V Gunnerus on co-simulation
platform Vico for generating realistic simulation experiments for case studies. In Fig. 2.9,
an example diagram of the virtual R/V Gunnerus is shown. Each block represents an
FMU for making up the entire ship. The Zig-zag controller is a user-defined controller,
which is developed by the author. The controller can be developed in a flexible way
by using PythonFMU [54]12 in Python. The Vessel Model is an FMU of a 6DoF ship
dynamic model developed by SINTEF Ocean through the SimVal project [55], calculating
ship motion under the specified environmental conditions. The Vessel Model is connected

9Miros Wavex radar, https://miros-group.com/products/wavex-virtual-sensor/, Data accessed 30-
March-2023

10The Open Simulation Platform, https://opensimulationplatform.com/ [52], Data accessed 30-March-
2023

11Vico, https://github.com/NTNU-IHB/Vico, Data accessed 30-March-2023
12PythonFMU, https://github.com/NTNU-IHB/PythonFMU, Data accessed 30-March-2023
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to two FMUs for Azimuth Thrusters, which are provided by the thruster manufacturer
Kongsbergs Maritime. The simulation performance of this virtual R/V Gunnerus has
been validated [53].

2.4.3 MSS toolbox

The marine systems simulator (MSS)13 toolbox is a Matlab-based library for marine
systems. Ships, underwater vehicles, and floating structures are available on the MSS
toolbox. The MSS toolbox also provides guidance, navigation, and control (GNC) tools.
Thereby, users can easily run simulations for different ships on the reliable virtual plat-
form. In this dissertation, two models for two cargo ships (Mariner and SR108) are
used for examining knowledge transfer between similar ships in Paper V. Their basic
specifications are shown in Tab. 5.1.

2.5 Chapter summary

In this chapter, the author provided an overview of the implementation of the DE frame-
work for developing ship dynamic models. Focusing on the relationship between the
foundation model and the data-driven model, we presented four modes enabling the DE
framework: namely, the update, convert, serial, and parallel modes. Furthermore, in
the time domain, a key perspective to be emphasized is whether to repeatedly use the
enhanced model in an auto-regressive manner. The principles of the physics-based and
data-driven models was revisited. Finally, we described the three experimental platforms
employed in this study.

Tab. 2.4 shows how each paper comprising this dissertation corresponds to these
methods and experimental platforms. Through these papers, all four modes are covered.
The author prioritizes the one-shot approach over the iterative approach in this disser-
tation. The former strongly separates the foundation model and data-driven branches,
fully respecting the stability of the foundation model. This feature should be widely
attractive. In paper III, the iterative approach is taken as it focuses on highly complex
docking operations. The update mode runs only in the iterative approach in paper V.
Except for paper VI, maneuvering operations are discussed. The R/V Gunnerus in the
real world is used as the primary experiment platform.

Table 2.4: Methodologies and experimental platforms in publications in this dissertation.

Paper Mode Iterative
or One-shot

Foundation
model

Data-driven
method

Experiment
platform

I Parallel One-shot

Maneuvering
model

LSTM Co-simulation

II Convert One-shot MLP Co-simulation and
the R/V Gunnerus

III Parallel Iterative MLP The R/V Gunnerus

IV Parallel One-shot MLP Co-simulation and
the R/V Gunnerus

V Update Iterative Ridge regression MSS

VI Serial One-shot Linear
response model Linear regression The R/V Gunnerus

13The Marine Systems Simulator, https://github.com/cybergalactic/MSS, Data accessed 30-March-2023
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3
Case study: Enhancement to full-scale operations

The foundation model is a physics-based model that is created based on deep expertise
and careful numerical/model-scale experiments. It provides a knowledge foundation that
shows the path to understand the phenomenon profoundly, but often, the performance
of the model is not satisfactory in the full-scale dataset of interest. This is thought to be
due to poor calibration of the foundation model to the dataset and the limitation of the
foundation model to fully accommodate the complexity of the full-scale phenomenon.
By using such a newly-available full-scale dataset, this chapter presents new methods of
enhancing the foundation model with data-driven methods, which is a smarter approach
than creating a completely new model or using the foundation model as it is. In this
chapter, four case studies are presented to address different realistic problem settings
under various constraints. The first three case studies deal with predicting maneuvering
motion in the time domain, while the last case study predicts wave-frequency motions in
the frequency domain. It covers the contents of paper I, II, III, and VI. Please refer to
Tab. 2.4 for methodologies and experimental platforms covered by each paper. Schematic
overviews for four case studies are shown in Fig. 3.1, Fig. 3.6, Fig. 3.12, and Fig. 3.17.
The enhanced model in each case study is built on two pillars: the foundation model
and the data-driven branch. These generate different synergies for different purposes,
depending on the case study. For more details on each case study, the appendix could
be referred to.

3.1 One-shot enhancement with consideration for command assumption

This section presents research results from paper I. In the proposed method, the foun-
dation model communicates with the data-driven model on the level of the geometry of
predicted trajectories. It first uses the foundation model to draw multiple-step-ahead fu-
ture trajectories and then uses an LSTM, which is good at handling time-series data, for
the data-driven compensation of the trajectories. This is the parallel-mode DE frame-
work in the one-shot approach according to the definition in Chapter 2. The key in
the proposed method is how to consider command changes over the multiple-step-ahead
prediction horizon. In full-scale operation data, there is no guarantee that control com-
mands remain constant over the prediction horizon. Therefore, for both learning and
inference, it is important to efficiently consider it. The proposed method demonstrates
an efficient way to handle such high-dimensional vectors of command change over the
prediction horizon using the foundation model. The validation study was conducted by a
virtual ship of the R/V Gunnerus on the co-simulation platform. The virtual operations
were exposed to wind, waves, and ocean current with various intensities coming from
various directions. Note that in this section, the author uses terminologies that corre-
spond to paper I. Therefore, different terms may be used from those used in Chapter 2
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as:

• The model-based predictor corresponds to the foundation model in Chapter 2.

• LSTMs correspond to the data-driven branches in Chapter 2.

• The hybrid predictor corresponds to the enhanced model in Chapter 2.

3.1.1 Methodology

Figure 3.1: A schematic structure of the proposed ship motion predictor with consideration for
future command assumption.

Fig. 3.1 shows the proposed structure of the one-shot data-driven enhancement. It
is a hybrid architecture of the model-based predictor and the NN which compensates
for errors in multiple-step-ahead positions made by the foundation model. This study
evaluates 30s prediction performance. The predictor makes 30s North-East position
prediction [N̂1, ..., N̂k, ..., N̂30] and [Ê1, ..., Êk, ..., Ê30] where N̂k and Êk are predicted
North and East positions made by the hybrid predictor at ks future, respectively.

At each time step, the relative wind speed at the current time Vrw, the relative
wind angle from bow at the current time γrw, thruster revolution n0 and angle δ0 at
the current time, a thruster revolution vector n = [n1, n2, ..., n29] and an angle vec-
tor δ = [δ1, δ2, ..., δ29] for 29s future, and vessel state [N0, E0, ψ0, u0, v0, r0]

T at the
current time are provided to the foundation model where nk is thruster revolution,
δk is thruster angle at ks future. In the application of this study, [N̂1, ..., N̂30] and
[Ê1, ..., Ê30] are calculated to evaluate the decision making [n0, ..., n29] and [δ0, ..., δ29].

30



CHAPTER 3. CASE STUDY: ENHANCEMENT TO FULL-SCALE OPERATIONS

η̂mk = [N̂mk, Êmk, ψ̂mk]
T is a model-based predicted position vector of North, East, and

heading at ks future. ν̂mk = [ûmk, v̂mk, r̂mk]
T is a model-based predicted velocity vec-

tor of surge, sway, and yaw velocities at ks future. η0 is a true position vector and
ν0 is a true velocity vector at the current time. The foundation model fm produces
[η̂m1, ..., η̂m30, ν̂m1, ..., ν̂m30] = fm(η0,ν0, Vrw, γrw, n0,n, δ0, δ). A trajectory predicted by
the foundation model deviates from a true trajectory due to its low fidelity, the ignorance
of the measurement of wave and ocean current, and wave-frequency motion in [η0, ν0]

T .
Therefore, LSTM fn aims to compensate the error in North and East positions made
by the foundation model. The error compensation is described as [∆N̂n1, ...,∆N̂n30]

and [∆Ên1, ...,∆Ên30] in North and East positions, respectively. A function of the error
compensation is approximated by the LSTM fn as [∆N̂n1, ...,∆N̂n30,∆Ên1, ...,∆Ên30] =

fn(sinψ0, cosψ0,ν0, Vgw, βgw, n0, δ0,∆η̂m30, ν̂m30) where ∆η̂m30 = [N̂m30 − N0, Êm30 −
E0, ψ̂m30 − ψ0]

T with consideration for future command assumption, Vgw is the global
wind speed at the current time, and βgw is the global wind direction at the current time.
ψ0 is mapped to sinψ0 and cosψ0 in order to avoid a jumping phenomenon of ψ0 around
0◦. The number of inputs of the NN is 15 and that of outputs is 60. Finally, predicted
North position N̂k = N̂mk + ∆N̂nk and East position Êk = Êmk + ∆Ênk are calculated
in the prediction phase. The training dataset is split into five folds for cross validation
and hyperparameters are tuned.

The proposed structure makes model-based prediction with consideration for a 29s
time series of future command assumption. Subsequently, a model-predicted state only
at 30s future [∆η̂m30, ν̂m30]

T and sensor inputs at the current time are given to the LSTM.
Being different from a straightforward formulation of error compensation by the LSTM
[∆N̂n1, ...,∆N̂n30,∆Ên1, ...,∆Ên30] = fn(sinψ0, cosψ0,ν0, Vgw, βgw, n0,n, δ0, δ), an ap-
proximation fn in this study can incorporate the effect of the future command assump-
tion without expanding the number of input variables of the LSTM drastically by making
use of model-based predicted future vessel state. By avoiding the curse of dimensionality,
it contributes to the high training efficiency.

3.1.2 Validation experiment

Experiment setup

Figure 3.2: Time series of thruster revolution and angle for validation study.

A validation study was conducted by employing a virtual ship of the R/V Gunnerus
on co-simulation platform Vico, which enables the generation of virtual full-scale data
under environmental disturbances. To reconstruct the deviation of true and model-

31



CHAPTER 3. CASE STUDY: ENHANCEMENT TO FULL-SCALE OPERATIONS

based predicted trajectories in the simulation environment, the physics-based model in
the model-based predictor was built by introducing uncertainties into the ground-truth
model in the simulator. An original scenario is a 215s time history. A 160s time history
from 55s to 215s is extracted for an experiment in this study. Hereinafter, the beginning
of the extracted scenario is defined as t = 0s. As each time step requires a 30s trajectory
in the future in the training process, 130s from t = 0s to t = 130s is defined as one
scenario. The virtual R/V Gunnerus is equipped with two azimuth thrusters. The same
thruster revolution and angle are given to them in this study. Thruster revolution is
set to nmax until t = Tn, and then turned back to 0.5nmax with the maximum change
rate. Thruster angle is set to δmax until t = Tδ, and then turned back to zero with the
maximum change rate. In the prediction phase, a time series of future command values
are given to a predictor. Each scenario is parameterized by a scenario parameter vector
P = [Beaufort wind force scale, nmax, δmax, θd, Tn, Tδ]. Tn ∈ [20s, 50s], Tδ ∈ [80s, 110s],
nmax ∈ [50RPM, 130RPM], δmax ∈ [−20◦, 20◦], and θd ∈ [0◦, 360◦) are randomly selected
for each scenario; then, nall = 200 unique scenarios are generated. The vessel in the
scenario is exposed to wind, wave, and ocean current. A calculation of the first-order
wave force, the second-order wave force, wind force, and the effect of ocean current
are done in the vessel model simulated in Vico by defining the type of wave and wind
spectrum, mean wind speed Uw, significant wave height Hs, significant wave period Ts
of the spectrum, ocean current speed Uc, and the global direction of environmental
disturbances θd to the north. JONSWAP spectrum [56] is chosen for the type of wave
spectrum. The static wind is applied to the vessel. We generate scenarios under two
levels of environmental disturbances based on Beaufort wind force scale1. Beaufort
wind force scale is level 3: Gentle breeze or level 4: Moderate breeze and defines the
combination of (Hs, Ts, Uw, Uc) of the scenario. For the sake of simplicity, θd of wind and
ocean current is the same as that of the wave. Note that θd does not change over time in
one scenario. Half of 200 scenarios are under Gentle breeze disturbances and the others
are under Moderate breeze disturbances.

Evaluation metrics

We introduce some metrics for plausible evaluations of prediction performance. We have
ntest = 60 scenarios in the test dataset, which is 30% of nall. We define the prediction

error lijk =
√
(Nijk − N̂ijk)2 − (Eijk − Êijk)2 for the scenario i, at a js time step, and

at k-step-ahead future. where Nijk is a true North position, N̂ijk is a predicted North
position, Eijk is a true East position, and Êijk is a predicted East position. We introduce
mean prediction error for the prediction horizon lk as lk = 1

ntest

1
T

∑ntest
i=1

∑T−1
j=0 lijk where

T = 130s is the length of a scenario. We look into how a summation of prediction error
for 30s changes over time of scenario i as Sij =

∑30
k=1 lijk.

Results

Fig. 3.3 - Fig. 3.4 show results of a scenario P = [Beaufort wind force scale = 4, nmax =
102.2RPM, δmax = −9.0◦, Tδ = 38s, Tn = 96s, θd = 14.4◦]. Time histories of Sij of present
hybrid, model-based, and data-driven predictors are shown in Fig. 3.3. In Fig. 3.3, we
can see that the prediction performance of the present hybrid predictor outperforms

1Met Office, https://www.metoffice.gov.uk/weather/guides/coast-and-sea/beaufort-scale
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Figure 3.3: Time series of prediction errors Sij made by (orange) the proposed hybrid predictor,
(gray) the foundation model, and (blue) the pure data-driven predictor without using the
foundation model.

Figure 3.4: Snapshots of the predicted and true trajectories at (A) and (B) shown in the time
series in Fig. 3.3.

that of the model-based and data-driven predictors. The model-based prediction stays
unstable due to the low fidelity of the model and wave-frequency components in [η0, ν0].
In order to remove the wave-frequency components from the model-based prediction, one
can implement a low-pass filter. However, the tuning of the low-pass filter takes effort
and the time delay of the processed signal is inevitable. In the beginning of the scenario,
the performances of the hybrid and data-driven predictors are not as good as that of
the hybrid predictor after t = 30s as they have no sufficient recurrent information.
The present hybrid predictor maintains its prediction error at low levels whereas the
data-driven predictor produces more error. It should be noted that we do not see the
increment of prediction error of the present study around t = Tδ and t = Tn. It indicates
that the present hybrid predictor successfully handles a time series of future command
assumption while reducing the error made by the low-fidelity model-based predictor.

Snapshots of predictions at (A) t = 35s and (B) t = 91s are shown in Fig. 3.4. At
(A), the vessel turns back the thruster angle from δ = −9.0◦ when making prediction to
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Figure 3.5: Mean and 90% boundary value of prediction error over the 30s prediction horizon
in the test dataset.

δ = 0◦ at t = Tδ after making prediction. The dotted line, which is a true trajectory for
30s, shows that the vessel turns clockwise in the beginning of the prediction, however, it
gradually goes straight in the last half of the 30s prediction horizon. One can see that the
present hybrid predictor captures this behavior and its prediction is more accurate than
the other predictors. At (B), the vessel decelerates at t = Tn after making prediction.
The model-based prediction ends up with a longer trajectory than the true trajectory,
whereas the prediction performance of the present hybrid predictor is very good.

The overall prediction performance in the test dataset is investigated herein. Fig. 3.5
shows the mean prediction error lk in the left panel and the 90% boundary value of
prediction error l90%k in the right panel over 30s prediction horizon. Solid lines show
the prediction performance under lower disturbance (Beaufort wind force scale: 3) and
dotted lines show that under higher disturbances (Beaufort wind force scale: 4). In the
left figure, LSTM-based predictors (the data-driven and hybrid predictors) outperform
the model-based predictor. In particular, the prediction performance of the model-
based predictor under the higher disturbance deteriorates significantly whereas its effect
on LSTM-based predictors are marginal. In addition, it is discerned that the present
hybrid predictor outperforms the data-driven predictor notably especially at the longer
prediction horizon. In terms of l90%k , we see the same trend in the right figure. It indicates
that the present hybrid predictor contributes to reducing not only mean prediction error
but also the frequency of the large prediction error.

3.2 Enhancement to full-scale docking operations

This section presents the research results from paper III. In this section, we focus on full-
scale docking operations where ship dynamics is highly complex and nonlinear transiting
from high-speed to low-speed maneuvers. For such operations, the foundation model
may not perform satisfactorily as it would not fully capture the complex and nonlinear
phenomena in its parametric formulation. In this section, we present the data-driven
enhancement to the foundation model by NNs calibrating the single-step-ahead velocity
prediction made by the foundation model, thus delivering a ship dynamic model for
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docking operations agilely. The proposed method is the parallel mode in the iterative
approach. Note that in this section, the author uses terminologies that correspond to
paper III. The physics-data cooperative model corresponds to the enhanced model in
Chapter 2.

3.2.1 Methodology

Figure 3.6: A schematic overview of the data-driven enhancement to the foundation model for
docking operations.

The schematic overview of the proposed co-operative model is shown in Fig. 3.6.
ν0 = [u0, v0, r0]

T is three-dimensional velocity vector and η0 = [N0, E0, ψ0]
T is three-

dimensional position vector when making prediction. The co-operative model consists
of a physics foundation model and supportive data-driven models. Based on onboard
sensor measurements from the anemometer, thruster meters, and ship motion sensors,
the physics foundation model makes a single-step-ahead prediction of 3DOF velocities.
By using onboard sensor data, supportive data-driven models in the surge, sway, and yaw
directions serve to compensate prediction errors made by the physics foundation model
in each direction. The objective of having supportive data-driven models is to improve
the model’s poor performance, in the data-driven non-parametric manner, on the kinetic
level. To this end, in this study, we employ an MLP, which is one of the representative
architecture of ML models, in the supportive data-driven models. Supportive data-
driven models in three directions are constructed separately. Hereinafter, suffix d denotes
the discrete variables in the surge (d = 0), sway (d = 1), and yaw (d = 2) directions.
Suffix k denotes the variables at the time step k (k = 0 at the current time). For
example, ν0,k represents the surge velocity at k-step prediction horizon. At k step, the co-
operative model makes a single-step-ahead prediction in velocity ν̂d,k+1 = ν̂md,k+1+∆ν̂d,k+1
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where ν̂md,k+1 is a single-step-ahead prediction made by the physics foundation model and
∆ν̂d,k+1 is an output of the supportive data-driven model. A single-step-ahead prediction
is iterated in the autoregressive manner by taking a predicted vessel state at k + 1 step
as a new input of the physics foundation model and supportive data-driven models.
Namely, νk+1 ← ν̂k+1 and ηk+1 ← η̂k+1. The Euler integration method is used for
numerical integration.

Input variables of NNs fNN are selected based on the theory of ship dynamics. In
the theory of 3DOF ship motion, the velocity of the ship in the next time step is deter-
mined by the inertial and hydrodynamic parameters of the ship, the three-dimensional
velocities of the ship at the current time, thruster feedback values (revolution and an-
gle) at the current time, and environmental disturbances. In this study, NNs are trained
for a specific loading condition of a specific ship, thus the inertial and hydrodynamic
parameters of a ship are not included in the input variables. This procedure of feature
selection yields:

∆ν̂d,k+1 = fNN(νk, n
p
0, δ

p
0 , n

s
0, δ

s
0, n

b
0, urw,k, vrw,k) (3.1)

urw,k and vrw,k are discrete values of urw and vrw at time step k. The number of in-
put variables of supportive data-driven models is 10. Input and target variables are
z-normalized by their mean and standard deviation in the training dataset. The same
statistic values are applied to the validation and test datasets. Target variables are nor-
malized since normalization contributes to better prediction accuracy in the experiment.
In the case study, we further conducted an ablation study of input features. Based on
the results of the ablation study, please note that wind information urw,k and vrw,k are
removed from input features in the case study. Hyperparameter tuning is done by hy-
perparameter tuning framework optuna [48], of which details are found in Appendix.C.

3.2.2 Validation experiment

Experiment setting

The case study employed the R/V Gunnerus’s historical data of 88 docking maneuvers
acquired from August 2016 to June 2017. 1000s time histories until the truncated
time point were saved. 88 docking maneuvers were randomly grouped into the training
dataset (56 operations), the validation dataset (14 operations), and the test dataset (18
operations).

Ablation study

For the ablation study, four models with different input features of supportive data-
driven models were constructed as follows:

• (A) No data-driven models : the physics foundation model makes prediction without
the help of supportive data-driven models.

• (B) Only velocities : input features of supportive data-driven models include only
velocity measurements. Namely, it is formulated as:

∆ν̂d,k+1 = fNN(νk) (3.2)
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Figure 3.7: Results of ablation studies of input features of supportive data-driven models.

• (C) Only velocities and thruster feedback values : input features of supportive data-
driven models include only velocity measurements and thruster feedback values.
Namely, it is formulated as:

∆ν̂d,k+1 = fNN(νk, n
p
0, δ

p
0 , n

s
0, δ

s
0, n

b
0) (3.3)

• (D) Full features : supportive data-driven models have a full-form of input features
presented in (3.1).

Fig. 3.7 show MSEs of a single-step-ahead velocity prediction in the surge, sway, and
yaw directions in the validation dataset. It is clearly seen that, only by having the
ship velocities in input features (B), prediction errors made by the physics foundation
model (A) were significantly reduced in three directions. It shows the effectiveness of
supportive data-driven models for compensating prediction error made by nonlinear and
complex hydrodynamic forces that were poorly modeled in the physics foundation model
(A). In addition, by having thruster feedback values in input features (C), a moderate
improvement of prediction performance in the surge direction was seen. Thereby, in
the surge direction, to some extent, supportive data-driven models might contribute to
compensate prediction error made by a poor fidelity of thruster deterministic models in
this dataset. On the other hand, the improvement of prediction performance was not
seen by having wind information (D) as shown in the blue bars in Fig. 3.7. Thereby,
in the case study, we removed wind information from input features of supportive data-
driven models. Hereinafter, the formulation of supportive data-driven models follows
(3.3). Mostly, we maneuver the R/V Gunnerus under the moderate environmental
disturbances due to safety reasons. Thereby, it is reasonable that wind measurement is
not informative to improve prediction performance in this dataset.

Prediction for one example operation

Fig. 3.9 and Fig. 3.10 show results of one operation in the test dataset. Time histories
of the surge, sway, and yaw velocities of this operation are shown in Fig. 3.8. At
the beginning of this operation, the R/V Gunnerus maneuvered straight at high surge
velocity. At 400s, she started to turn clockwise and decelerate smoothly. We define
the error reduction rate re by having supportive data-driven models in the co-operative
model as:

er = (lp − lc)/lp (3.4)
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Figure 3.8: Time histories of the surge, sway, and yaw velocities of the example operation in
the test dataset.

Figure 3.9: Time histories of prediction errors of the example operation in the test dataset at
30s future made by the foundation model and the enhanced model.

where lp and lc is a distance error made by the physics foundation model and the co-
operative model at 30s future, respectively. In this operation, at time step A (t = 815s),
the error reduction rate er was the highest. Time step B (t = 530s), is right after
when the yaw velocity was the highest in this operation. At time step C (t = 390s),
the error reduction rate er was the lowest in this operation. In Fig. 3.10, 30s true and
predicted trajectories are shown for the time step A, B, and C. At time step A, the R/V
Gunnerus maneuvered almost straight for 30s. Whereas the trajectory predicted by the
co-operative model traced the true trajectory, that predicted by the physics foundation
model was longer and diverged from the true trajectory. It indicates that, at time step
A, supportive data-driven models contributed to improving prediction performance, in
particular, in the surge and yaw directions. At time step B, the contribution of the
yaw-direction supportive data-driven model was clearly seen. The physics foundation
model failed at accurately capturing the ship dynamics in the yaw direction, thus ending
up with a large deviation from the true trajectory at 30s future. On the other hand, the
co-operative model succeeded in tracing the true trajectory precisely and ended up with
the almost same location as the true trajectory at 30s future. The intrinsic limitation of
data-driven models is that it is inevitable from the aleatoric and epistemic uncertainties.
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Figure 3.10: 30s true and predicted trajectories at time step (A), (B), and (C) of the example
operation in the test dataset shown in Fig. 3.9.

Therefore, supportive data-driven models do not ensure that it always improves the
prediction performance of the physics foundation model. At time step C, the predicted
trajectory made by the co-operative model deviated from the true trajectory, whereas
the physics foundation model predicted 30s trajectory accurately. Fig. 3.9 shows a time
history of prediction errors in the distance at 30s future made by the physics foundation
model and the co-operative model. Although supportive data-driven models do not
always ensure the improvement of prediction performance, it is clearly seen that the
overall prediction performance of the co-operative model is much better than that of the
physics foundation model.

Overall performance

Table 3.1: A summary of prediction errors in the distance in the case study.

Mean 90% percentile
15s 30s 15s 30s

The physics foundation model 2.19m 7.12m 4.42m 14.7m
The co-operative model 1.09m 4.66m 2.27m 10.03m

Error reduction rate 50.2% 34.6% 48.6% 29.9%

In Fig. 3.11, the mean and 90% percentile of prediction errors in the distance over
30s prediction horizon are shown for the physics foundation model and the co-operative
model, respectively. Since we have much aleatoric uncertainty in the distant future,
prediction error became larger as the prediction horizon became longer. We see that the
co-operative model contributed to reducing prediction error in a position significantly,
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Figure 3.11: Mean and 90% percentile of prediction errors over the 30s prediction horizon.

in particular, in the distant future. It implies that the physics-data cooperation is more
important for making a long trajectory prediction, which is the main interest of the
situation awareness. In addition to reducing the mean prediction error in a position, the
90% percentile of prediction error in a position is notably reduced. The occurrence of
large prediction errors could induce a fatal mistake in the decision making in the ship
intelligence. Therefore, the improvement of 90% percentile of prediction error is one of
the key contributions of the present co-operative approach. The summary of the results
of the case study is shown in Tab. 3.1. At 30s future, the co-operative model reduced
mean prediction error by 34.6% and 90% percentile error by 29.9% compared to that
made by the physics foundation model.

3.3 Pre-training method for data-driven enhancement

This section presents research results from paper II. In other papers in this dissertation,
the author assumes that the foundation model can be directly embedded as a part of
the enhanced model. However, this assumption may not hold when the owners of the
foundation model and those who need the enhanced model are different. For example,
while the foundation model often belongs to shipbuilding companies or research insti-
tutes, shipping companies own operation data and are the ones who need to use the
enhanced model. In such cases, it may be impossible to embed the foundation model
into the enhanced model due to rights and technical reasons.

In this section, the author focuses on transfer learning for ML models, which trans-
ferring knowledge from source to target domains [31, 32]. Applying the idea of transfer
learning into the field of ship dynamics, the author proposes the convert-mode method
that enables knowledge transfer from the foundation model. The proposed method con-
siders practical situations where the foundation model is available on the co-simulation
platform, but its performance in a full-scale dataset is not satisfactory. On the other
hand, there are challenges in developing a new data-driven model trained for the full-
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scale dataset such as (1) the full-scale dataset is not sufficient for data-driven models to
perform satisfactorily and (2) such models lack knowledge transfer from the foundation
model, resulting in reduced reliability.

The proposed method creates a virtual dataset using the foundation model on the
co-simulation platform. NNs are first trained with this dataset, and then they are
fine-tuned using a limited full-scale dataset taken in the real-world, enabling knowledge
transfer from the foundation model in an implicit manner.

3.3.1 Methodology

Pre-trianing of a trajectory prediction

Figure 3.12: The framework of co-simulation-based development of a ship trajectory predictor.

East

N
o

rt
h









30
s p

re
di

ct
io

n













30s tr
ue tra

jectory

Predicted

ks future position

True

ks future position

Figure 3.13: The diagram of the definition of the North-East-Down frame and the body-fixed
frame when making prediction.

If we mix up the augmented and real-world data in one training phase, it may

41



CHAPTER 3. CASE STUDY: ENHANCEMENT TO FULL-SCALE OPERATIONS

induce a problem of how to balance those two datasets for better prediction accuracy
since the fidelity of virtual simulation might not be satisfactory in most cases of ship
trajectory prediction. Therefore, the main training using real-world data is conducted
after the pre-training using simulation data is completed. The predictor in this study
makes the trajectory prediction for 30s. Fig. 3.12 shows the overview of the present
framework through co-simulation-based pre-training. In a pre-training phase shown in
the right top panel in Fig. 3.12, virtual scenarios Dpre that mimic a target operation
(e.g., zig-zag maneuvers in the case study) are generated in Vico. Fig. 3.13 shows the
definition of the North-East-Down (NED) frame and the body-fixed xb − yb − zb frame
when making prediction. xbk and ybk represent the true ks future xb and yb positions in
the body-fixed frame when making prediction. ψ is the heading of the vessel to North
when making prediction. x̂bk and ŷbk represent the predicted ks future xb and yb positions
in the body-fixed frame when making prediction. An FNN fv is pre-trained using Dpre.
fv produces 30s future trajectory prediction [x̂b1, ..., x̂

b
30, ŷ

b
1, ..., ŷ

b
30] = fv(ν0,n, δ) where

ν0 is the velocity vector when making prediction, n = [n0, .., nk, ..., n29] is the vector
of thruster revolution, n0 is the thruster revolution when making prediction, nk is the
assumption of the thruster revolution at ks future, δ = [δ0, .., δk, ..., δ29] is the vector
of thruster revolution, δ0 is the thruster angle when making prediction, and δk is the
assumption of the thruster angle at ks future. In the application of this study, the
prediction [x̂b1, ..., x̂

b
30, ŷ

b
1, ..., ŷ

b
30] is used for evaluating the decision making n and δ.

Therefore, one should note that n and δ are given by a controller. As illustrated in the
right bottom panel in Fig. 3.12, the pre-trained NN is transferred to the main training
phase. In the main training phase shown in the bottom panel in Fig. 3.12, the weights
and biases of fv are finetuned using a limited number of real-world data Dtrain.

An FNN-based predictor

In this study, we use a fully-connected FNN (= MLP) as an architecture of a predictor
as it is one of the simplest and well-known ML models that is widely used in the context
of transfer learning. The FNN-based predictor consists of the input layer, hidden layers,
and output layer. The activation function is the hyperbolic tangent function for the
hidden layers and the linear function for the output layer. ν0, n, and δ are selected
as input features through feature selection as explained hereinafter. The output of the
predictor is a vector [x̂b1, ..., x̂

b
30, ŷ

b
1, ..., ŷ

b
30] with a length of 60. The weights and biases

of the FNN are updated so that it minimizes the Mean Squared Error (MSE) metric L
between the true and predicted position vectors:

L =
1

H

H∑

k=1

(x̂bk − xbk)2 + (ŷbk − ybk)2 (3.5)

Input features are standardized with their mean and standard deviation in a training
dataset in a pre-training phase.

[xb1, ..., x
b
30, y

b
1, ..., y

b
30] = f(P, ν0,n, δ)+w in theory of ship dynamics where P is a set

of hydrodynamic and inertial parameters and w is environmental disturbances caused
by wind, wave, and ocean current. In this study, we introduce following assumptions.

• A predictor is trained for a specific loading condition of a specific ship. Therefore,
P is ruled out from input features of the NN.
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• In most cases, a ship has no accurate measurement of waves and currents. There-
fore, environmental forces due to wave and current are not modeled in the predictor.

• In Dtarget, the effect of wind on the vessel motion is marginal. For the sake of
simplicity of the validation study, it is not included in the input features of the
NN.

These assumptions yield the predictor [x̂1, ..., x̂30, ŷ1, ..., ŷ30] = f(ν0,n, δ). Hyperparam-
eter tuning was conducted by using hyperparameter tuning framework optuna [48], of
which details are found in B.

3.3.2 Validation experiment

Pre-training

Figure 3.14: Pre-defined time series of thruster angle given by a zig-zag controller.

In a pre-training phase, npre = 300 virtual scenarios are generated by the virtual
R/V Gunnerus in Vico. These two thrusters receive the same commands of thruster
angle and revolution from a zig-zag controller. The wave, wind, and ocean current are
not applied to the virtual vessel. An example of the pre-defined time series of thruster
angle is shown in Fig. 3.14. Each scenario is a 235s time series. Thruster angle and
revolution are set to zero before 50s. The vessel state is reset to the initial state at
50s. In order to avoid having impact load due to the reset, a Tpre = 150s time series
from 55s (t = 0) to 205s (t = 150) is saved in 1Hz for the experiment with its 30s
future true positions [xb1, ..., x

b
30, y

b
1, ..., y

b
30] and corresponding controller commands at

each time step. Thruster angle is δmax until t = Tδ; then, it is changed to −δmax until
t = T ′

δ = 2Tδ with the maximum change rate. At t = T ′
δ, it is turned back to zero with

the maximum change rate. Thruster revolution is set to nmax from 50s to 235s. Each
scenario is parameterized by a vector of parameters S = [δmax, Tδ, nmax, ut=0] where
δmax ∈ [−35◦, 35◦], Tδ ∈ [t = 50s, t = 75s], nmax ∼ N (µ = 130RPM, σ = 10RPM)
and the initial surge velocity ut=0 ∼ N (µ = 4.0m/s, σ = 1.0m/s) are randomly given
to each scenario. N (µ, σ) indicates the Gaussian distribution with the mean value µ
and the standard deviation σ. The probability distribution of parameters of S can
be assumed based on the general understanding of a target operation Dtarget, however,
the discrepancy of the probability distribution of input features in Dpre and Dtarget is
inevitable. The initial North and East positions, heading, sway velocity, and yaw velocity
are set to zero.
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npre = 300 scenarios are divided into ntrain,pre = 192 scenarios in the training dataset,
nval,pre = 48 scenarios in the validation dataset, and ntest,virtual = 60 scenarios in the test
dataset. The test dataset is used only for checking the performance of the pre-trained
predictor in the pre-training phase as shown in Fig. 3.15. The NN is trained only by
using scenarios in the training dataset. To avoid overfitting the training dataset, the
prediction performance of the trained NN in the validation dataset is monitored during
the training.

Main training

The zig-zag maneuvers experiments of the R/V Gunnerus are conducted in November
2019 in Trondheim, Norway. Its port-side and starboard-side azimuth thrusters move
simultaneously with the same commands of the thruster angle and revolution. Its tunnel
thruster is turned off during the experiments. The experiment is a 1600s time history.
We split this time history into ntarget = 16 operations of which length is 100s. As we need
30s future positions and commands at each time step in the operation for the training
and evaluation purposes, first Ttarget = 70s of each operation is saved as one operation
with 30s true future positions [xb1, ..., x

b
30, y

b
1, ..., y

b
30] at each time step. Equation (4.1)

converts positions in the NED frame into [xb1, ..., x
b
30, y

b
1, ..., y

b
30] in the body-fixed frame:

(
xbk
ybk

)
=

(
cosψ sinψ
− sinψ cosψ

)(
Nk −N0

Ek − E0

)
(3.6)

where Nk and Ek are the true ks future North and East positions in the NED frame.
N0 and E0 are North and East positions when making prediction in the NED frame.
At each time step, future command assumptions n and δ are given by the dataset as
we examine the prediction performance provided that they are assumed by a controller.
As we assume limited real-world data of a target operation are available, we use only
ntrainval,target = 12 operations in the main training and keep the other ntest,target = 4 op-
erations, that are used only for the evaluation of the prediction performance, untouched
in the training process. ntrainval,target = 12 operations are divided into ntrain,target = 9
operations in the training dataset and nval,target = 3 operations in the validation dataset.
The NN is trained only by using the training dataset and its performance in the vali-
dation dataset is monitored using the validation dataset. If the validation loss does not
improve over ne = 200 epochs, the training is automatically stopped; then, the best
model is loaded as explained in the previous subsection. By switching the validation
dataset four times, four independent NNs are trained (cross-validation). The final pre-
diction to the untouched test dataset is the average of predictions made by these four
NNs. In order to examine the contribution of the pre-training, three different strategies
of training are investigated as follows.

(A) without pre-training.

The training of this predictor is conducted without a pre-training phase. Virtual sce-
narios generated in Vico are kept untouched and only limited real-world data of a target
operation ntrain,target is used in the training. It provides a baseline of the comparison
study.
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(B) without finetuning.

This predictor is pre-trained with ntrain,pre virtual scenarios, however, the main training
is not performed. The prediction performance of this predictor in Dtarget reveals the
effect of the discrepancy between Dpre and Dtarget.

(C) present study.

This is a predictor that is trained in the manner of the present framework. The main
training of this predictor is carried out with real-world data ntrain,target after the pre-
training with virtual scenarios ntrain,pre.

Results

Figure 3.15: Mean prediction errors in the test dataset.

Through the optuna hyperparameter optimization in the pre-training phase, nlayer =
1 and midunits = 420 are selected. Apart from the pre-training phase, (A) without
pre-training is trained only by using real-world data ntrainval, target. nlayer = 1 and
midunits = 300 are selected through optuna hyperparameter optimization. After the
pre-training phase, the main training is conducted. With a set of optimized hyperpa-
rameters,

Fig. 3.15 shows the mean prediction error in the test dataset in the pre-training
phase Sijk,pre and that in the main training phase Sijk,target. By comparing the bars
in the top and the third from the top in Fig. 3.15, one can see that the prediction
performance of the pre-trained NN deteriorates much in Dtarget if it is not finetuned in
the main training phase due to the difference between Dpre and Dtarget. The bar (A) in
the second from the top in Fig. 3.15 reveals that the training without the pre-training
phase produces the largest prediction error in (A), (B), and (C). (C) trained in the
present framework with pre-training and main training phases reduces prediction error
notably; by 60.8% compared to (A) without pre-training.

The left panel of Fig. 3.16 shows snapshots of 30s prediction at t = 0s, t = 30s,
and t = 60s of one operation in the test dataset of real-world data in the main training
phase. The right panel of Fig. 3.16 shows time histories of vessel state and commands
of the operation. (A) the NN without the pre-training phase deviates significantly from
the true trajectories at t = 0s and t = 30s. (B) the NN without fine-tuning after the
pre-training phase succeeded at capturing the trend of the 30s true trajectory at t = 0s,
t = 30s, and t = 60s in the short prediction horizon, however, it ends up with the
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Figure 3.16: (left) Snapshots of 30s prediction at t = 0s, t = 30s, and t = 60s of one scenario
in the test dataset (right) Time histories of vessel state and commands.

large prediction error in the distant prediction horizon. (C) present study with the pre-
training and main training phases traces the true trajectories more accurately than (A)
and (B) at t = 0s, t = 30s, and t = 60s.

3.4 Enhancement to the full-scale DP operation

This section presents research results from paper VI. So far, the author’s discussion
was directed towards maneuvering operations. In contrast, this chapter explores a new
method for the full-scale DP operations, where ships maintain her positions and heading
by using thrusters. For ensuring operational safety, it is important to evaluate the
risk of deck operations as ships are exposed to waves. The deck operations must be
immediately stopped if a large wave-frequency motion is expected in the heave, pitch,
and roll directions. Wave radars have been known as an option to directly measure
waves surrounding a ship from onboard. It is believed that it plays a key role in a
future framework of onboard decision support [57]. However, installing wave radars
is usually an expensive solution. Thereby, wave-frequency motion prediction without
using wave radars has been dominant [58–61]. In recent years, virtual wave radars have
emerged, which are virtually installed on existing navigational radars. It makes wave
radars more accessible. In fact, research has been highly limited in the field of ship
motion during DP operations by using wave radars [62–66]. They conducted limited
experiments using carefully tuned physics-based models. But, in practice, it is not easy
to develop such models. On the contrary, in [67], neural networks were built such that
they map a wave-radar observation into ship motion instead of building physics-based
models, validating their work with simulation experiments. However, as discussed, pure
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black-box models fully relying on data would be hardly accepted due to hurdles in
training efficiency, reliability, and interpretability. Instead, this section first develops a
simple physics-based model without any extensive tuning, and its data-driven mapping is
introduced to improve the performance. By using a linear regression model as a mapping
model, the performance of the foundation model is rapidly calibrated without losing
its interpretability too much. This section employs 104 samples taken from one-year
operation history of the R/V Gunnerus, which are mostly samples with small oscillation.
To mitigate the negative impact of this imbalance in the dataset, this section introduces
a method to improve the balance.

3.4.1 Methodology

Overview

Figure 3.17: A schematic overview of the proposed approach.

A schematic overview of the proposed approach is shown in Fig. 3.17. A dataset
is constructed by collecting measurements from the onboard wave radar and ship mo-
tion sensors. Taking clutter images of the sea surface, the wave radar outputs a two-
dimensional wave spectrum, which is a matrix of wave energy for different wave fre-
quencies and directions. Given that this study employs a commercial virtual wave-radar
system2, this section does not explain their technology in detail. In this study, a target
of prediction is a standard deviation of ship motions σi, which has been used for repre-
senting how harsh ship motion is [68]. This study assumes wind and current forces have
marginal impacts on this value. First, raw data are pre-processed. In this step, from
long-history data, we extract samples composed of two-dimensional wave spectrum and
ship motion, which satisfy criteria for data extraction. Extracted samples are grouped
into training and test datasets. The test dataset is used not for model development
but only for model evaluation. Subsequently, data balancing is performed to remedy
a negative impact of having a poorly-balanced training dataset on the prediction per-
formance. By using a physics-based ship linear response model, standard deviations of
heave, pitch, and roll motions σ̂m

i are predicted. A suffix i in variables represents the

2Miros, https://miros-group.com/
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variable is defined for the ith DoF of the ship motion; namely, i = 3, 4, and 5 are for
the heave, pitch, and roll motions, respectively. In this study, such physics-based pre-
dictions provide a baseline estimation. In the case study, true values and physics-based
predictions showed a qualitative agreement, however, they had room to be calibrated.
Physics-based prediction is an open-loop estimation, thereby, it accumulates errors com-
ing from measurements, a physics model, and nonlinear ship dynamics. It takes much
effort to identify multiple sources of errors and calibrate all the components properly.
Moreover, it seems difficult to interfere with a data-processing system of commercial
wave radars with upcoming data. Thereby, in this study, we develop a simple linear-
mapping function of physics-based prediction into true values to calibrate such errors
since it was found to be effective in the training dataset in the case study. Target values
σi are given by history ship motion in the collected dataset. Once the linear function
is estimated, it makes physics-data cooperative prediction for a new sample in the test
dataset.

Data extraction

A raw onboard dataset gives a long time history of ship motion and two-dimensional
wave spectrum taken by a virtual wave radar. The radar was not always used for the
purpose of monitoring waves but for navigation, thereby, we firstly make combinations
of the wave-radar observation and five-minute time series of ship motions right after
the observation. Hereinafter, we call these combination samples. We remove samples
of which time series have an overlap with that of the previous sample. As we focus on
making ship motion prediction during DP operations, samples are further removed if the
ship maneuver is not stationary. Samples with a warning of poor accuracy of wave-radar
observation are also removed in this step. The remaining samples are eligible for being
involved in modeling. Samples are grouped into the training and test datasets. The
training dataset is used for model development. The test dataset is used only for model
evaluation. When dividing samples into two datasets, they are not shuffled.

Data balancing

There exist different approaches to deal with the imbalance in a dataset. In particular,
undersampling has been offering a great performance only by removing some samples
from the original dataset [69]. Undersampling technique draws a line to group samples
in the original dataset into rare and nominal groups. In this study, the 90% percentile
of target values in the training dataset is the line dividing two groups. To balance the
number of samples in two groups, undersampling technique randomly picks out samples
from samples in the nominal group such that the size of the selected samples is equal
to that of the rare group. Thus, undersampling improves prediction performance for
samples in the rare group. It was implemented in the resreg package [70] in Python in
this study.

Physics-based prediction

Based on the measured two-directional wave spectrum, σ̂m
i is predicted based on the

understanding of ship dynamics. Assuming the linear relationship between waves and
ship motions, the wave buoy analogy method is popular [46]. Note that the encounter
wave frequency is assumed to be identical to the wave frequency since we focus on DP
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Figure 3.18: Sub datasets for the case study.

operations. In the wave buoy analogy, the relationship between the directional wave
spectrum and ship motion specturm is described as (2.12). In this study, Sw(ω, θ)
measured by the wave radar is a discretized 36 × 32 matrix where it has 36 different
wave directions with 10◦ interval and Nω = 32 different wave frequencies with 0.01Hz
interval from 0Hz to 0.32Hz. Corresponding discretized RAOi is calculated through a
hydrodynamic workbench ShipX based on the ship’s specifications and geometries. It
yields a vector of energy spectrum of ship motion Si(ω) in the discretized form. Its
zeroth-order moment of mi is:

mi = ∆ω
Nω∑

k=1

Si(ω) (3.7)

Then, σ̂m
i =

√
mi is derived for the heave, pitch, and roll motions.

Ship motion

The target of the proposed ship motion predictor is the standard deviation of the heave,
pitch, and roll motions. This prediction provides stochastic insights of future ship mo-
tions for us so that we can make a decision if offshore operations can be conducted with
such a sea state during DP operations. In the model training phase, these target values
are given as:

σi =

√√√√ 1

Nt

Nt∑

t=1

(ηti − ηi) (3.8)

where ηi = [η1i , ..., η
Nt
i ] is the time history of the ship motion in five minutes after the

wave-radar observation, ηi is its average, and Nt is the length of the time history.

Linear mapping of physics-based prediction

σ̂m
i =

√
mi are mapped into the physics-data cooperative prediction by using a linear

regression function:
σ̂i = ασ̂m

i (3.9)

α is a coefficient of this linear-mapping function. σ̂m
i becomes zero if the wave energy

observed by the wave radar is zero. Thereby, the zero intercept of the linear mapping is
estimated.
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(a) Heave

(b) Pitch

(c) Roll

Figure 3.19: True versus predicted values in the (a) heave, (b) pitch, and (c) roll directions
in the test datasets for all case studies. (green: Physics) predictions only with the physics-
based model. (red: Physics-data) predictions with the physics-based model and its data-driven
mapping by using the original training datasets. (blue: Physics-data-US) predictions with the
physics-based model and its data-driven mapping by using the UnderSampled (US) training
datasets.

3.4.2 Validation experiment

Data collection

Data collections were carried out from January 2021 to May 2022 by 33.9m-length
RV Gunnerus. During data collection, onboard measurement of two-dimensional wave
spectrum was provided by miros Wavex radar system [71]. Wavex is a commercial
wave radar system virtually installed on the conventional X-band navigation radar. In
the case study, it was installed on a Furuno 2xx7 series X-band navigation radar. It
enables present work to be easily applied to ships with smaller costs without physically
installing a new radar. Wavex provides two-directional spectrum based on sea clutter
images taken by an X-band radar. It is connected to ship motion sensors and the impact
of ship motions on sea clutter images is automatically compensated for.
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Data extraction

In the collected dataset, only samples that satisfy the following criteria were extracted
for the case study.

• Data quality: The quality of wave-radar measurements can be degraded due
to factors such as wind drops and heavy precipitations. Wavex is equipped with
automatic data quality control. Samples with unacceptable quality were removed.

• Surge speed limit: Samples with surge speed > 2.0 knots were removed since
maneuvering operations are not the scope of this case study.

• Steady heading: If the heading changes over 15◦ within five minutes after the
wave-radar observation, the samples were removed.

• Heave motion: The scope of the case study is the ship motion under wave ex-
citation. If the standard deviation of the five-minute time history of the heave
displacement was smaller than 0.025m, the samples were removed.

These criteria yielded 104 samples without overlaps. They were taken from diverse
locations mainly off the coast of Trondheim and Ålesund. As shown in Fig. 3.18, 104
samples were grouped into six sub datasets for the case study. To avoid data leakage
between sub datasets, samples in different subsets were taken on different dates or 20-min
time intervals were taken between subsets.

In this section, six case studies from Case Study (CS) 1 to CS6 were conducted. For
the CSk, the sub dataset k was employed as a test dataset used only for the model eval-
uation. The other five sub datasets were used for developing linear mapping functions.

Results

In Fig. 3.19, scatter plots of true and predicted ship motions in the test dataset in
heave, pitch, and roll directions for six case studies are shown. Green, red, and blue
dots represent results made by the physics-based response model, its linear mapping
with original training datasets, and its linear mapping with under-sampled datasets.
The diagonal lines in the figures show true lines where predicted values are equal to true
values. If a dot is above the line, prediction is larger than the true value, and vice versa.

In the heave direction, the physics-based model showed a qualitative agreement with
true values in all case studies, however, it was found to be mostly larger than true values.
Prediction by the physics-based model is open-loop, thereby, a quantitative agreement
was hardly accomplished. On the other hand, with a linear mapping trained with a
corresponding training dataset, such error was notably reduced for most samples. In
the CS3, the linear mapping worsened the prediction performance of the physics-based
model for two samples with motion σ3 > 0.3. It is seemingly because the training dataset
of the CS3 did not have samples with such large motions. In the pitch direction, the
same trend as shown for the heave direction is seen. For both heave and pitch motions,
a positive impact of undersampling the training datasets was found to be marginal. By
removing samples with small motions from the training datasets, prediction performance
for large motions was slightly improved in return for having a slightly worse performance
for small motions.
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For the roll motion, it seems that the prediction performance of the physics-based
model was rather limited although it captured a rough trend of true values. Linear
mappings with the original training datasets notably reduced such error only for small
motions. For large motion, with the original training datasets, linear mappings of the
physics-based predictions underestimated the motion. It is because the original datasets
are dominated by small motions, thereby, linear mapping did not efficiently learn the
trend for large motions. By undersampling the training dataset, the prediction perfor-
mance of linear mappings were found to be significantly improved for large motions as
shown in the CS3, 4, and 5.

3.5 Chapter summary

This chapter showcased techniques for enhancing the performance of the foundation
model using full-scale data taken under environmental disturbances. Three case studies
were presented on maneuvering motion, and one case study was on the seakeeping mo-
tion. In these case studies, the foundation model captured the basic principles of the
ship’s motion and presented decent qualitative performance. However, there still ex-
isted much room for improvement in light of quantitative accuracy when it was applied
to the provided datasets. The foundation model highly respects a physics consistency
with experts’ good understanding, thereby, building up a new branch to further lifting
its performance is necessary for being benefited from the full-scale dataset. The key
aspects covered in this chapter include:

• A method for correcting multiple-step-ahead prediction of the foundation model in
a one-shot manner by using NNs. In particular, this chapter addressed how to han-
dle long vectors of future command assumptions effectively in such a model. The
presented method allows for learning how to improve the performance of the foun-
dation model from the dataset while separating the contributions of the foundation
model and its data-driven enhancement.

• A method for improving the performance of the foundation model closed to a layer
of its basic mechanism instead of correcting the geometry of predicted trajecto-
ries. This chapter targets docking operations, where the foundation model does
not satisfactorily perform due to high complexity and non-linearity. The present
technique corrects the structural incompleteness of the foundation model by using
a full-scale dataset.

• A method for pre-training NNs using the foundation models on simulators. This
method assists in obtaining accurate models from a limited full-scale dataset by
using the foundation model more implicitly. It is practical in the industry since
it is not always possible to embed the foundation model directory in the system,
especially for shipping companies that may not have the right to do so.

• A method for improving the accuracy of the foundation model for complex systems
using full-scale monitoring data during DP operations. Ships are comprehensive
systems, and the foundation model may not meet the required accuracy due to
uncertainty coming from various sub-systems. In such cases, as presented, it would
be an option to deliver a rapid calibration to the performance of the foundation
model by using a highly interpretable data-driven model.
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Hence, there is no universally best way to realize the DE framework. It is important
to flexibly choose the appropriate enabler depending on pragmatic constraints and the
aspects to be emphasized. In this chapter, rather than comprehensively trying out
different approaches, we demonstrated the usefulness of the DE framework by targeting
on priority problem settings.
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4
Case study: Investigating the role of foundation models and

data in enhanced performance

This section presents research results related to investigations into how the foundation
model and data benefit enhanced performance, covering the contents from paper IV. In
the DE framework, the foundation model and dataset are the two pillars. The problem
awareness in this dissertation is the fact that we do not always have a highly-accurate
foundation model and a sufficient amount of dataset. As discussed earlier, it is difficult
to prepare a foundation model with satisfactory performance for the target task due
to a high cost, time, and expertise. If the DE framework allows us to compromise the
accuracy of the foundation model, it would be good news for the industry. On the other
hand, data never cover possible operating conditions comprehensively. It is necessary
to understand how the DE framework can overcome this problem. These two elements
may be related to each other.

Such a key question in the DE framework has never been addressed in previous
works, to the best of the author’s knowledge. The DE framework can be realized in
various ways as the author presented. Moreover, there are countless combinations of
possible foundation models and datasets. Thereby, the author believes it would be
difficult to provide a theoretical or universal answer to this research question. Rather,
in this chapter, we attempt to experimentally provide one answer to this question by
focusing on the most prioritized enabler of the DE framework with pragmatic problem
settings.

4.1 Experimental investigation

In this section, the experimental investigations from paper IV are presented. Note that
in this section, the author uses terminologies that correspond to paper IV. Therefore,
different terms may be used from those used in Chapter 2 as:

• The physics-based model corresponds to the foundation model in Chapter 2.

• The data-driven compensator corresponds to the data-driven branches in Chapter
2.

• The cooperative model corresponds to the enhanced model in Chapter 2.

4.1.1 Cooperative ship model

In this study, we employ a geometry-based cooperative model, that makes a data-driven
compensation for multiple-step-ahead position errors made by the foundation model.
This model is an extension of the cooperative model presented in paper I.
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Figure 4.1: An overview of the cooperative model. Sensor data (current ship’s states, thruster
command values, and wind information) are given to the physics-based model and data-driven
compensator. The physics-based model is a 3DOF maneuvering model outputting a trajectory
prediction. The data-driven compensator, of which input-output relationship is shown in (4.3),
compensates multiple-step-ahead position errors made by the physics-based model.
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Figure 4.2: A schematic relationship between the body-fixed coordinate when making a predic-
tion and the inertial coordinate. The data-driven compensator compensates for position errors
made by the physics-based model in the body-fixed coordinate when making a prediction.
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The focus of this section is to investigate the benefits of the foundation model and
dataset to the cooperative performance. Thereby, it should be noted that a simpler
cooperative model is introduced in this section:

• The robustness of the cooperative model against environmental disturbances is
not the main theme of this section. A plain MLP is used for the data-driven
compensator instead of an LSTM used in paper I.

• Unlike paper I, constant command over the prediction horizon is assumed in this
study. This assumption is acceptable by carefully designing experiments in this
section, thus clarifying the focus of this section.

In this subsection, the architecture of the cooperative ship model is briefly explained.

Overview

In the experiments of this study, we employed a cooperative model of ship dynamics
as shown in Fig. 4.1. The cooperative model is composed of a physics-based model
highlighted in orange and a data-driven compensator highlighted in green. The physics-
based model makes T s prediction of a future trajectory based on the initial state of
the ship, environmental disturbances, and commands to actuators. On the other hand,
based on onboard measurement data, the data-driven compensator compensates for
errors in the position made by the physics-based model, Thus, a multiple-step-ahead
position prediction vector made by the physics-based model is calibrated in a data-
driven manner. By adding outputs of both of them, the cooperative model makes T s
prediction of the future trajectory in a data-driven manner while having a stable and
reliable model-based prediction made by the physics-based model as its foundation.

Data-driven compensator

As shown in Fig. 4.2, this study expresses trajectories in the x-y coordinate of which
origin is located at the center of gravity of the ship when making a prediction. The
positive directions of the x and y axes are the longitudinal and lateral directions of the
ship. Thereby, future positions in the x-y and N -E coordinates are interconvertible as:

(
x
y

)
=

(
cosψ0 sinψ0

− sinψ0 cosψ0

)(
N −N0

E − E0

)
(4.1)

where N0, E0, and ψ0 represent the north, east positions and heading when making a
prediction. Hence, the model-based predicted trajectory [N̂m

1 , ..., N̂
m
nT
, Êm

1 , ..., Ê
m
nT
] in the

N -E coordinate is converted to [x̂m1 , ..., x̂
m
nT
, ŷm1 , ..., ŷ

m
nT
] in the x-y coordinate to provide

target vectors of the data-driven compensator.
The data-driven compensator makes prediction of [∆x̂m1 , ...,∆x̂

m
nT
,∆ŷm1 , ...,∆ŷ

m
nT
]

where ∆x̂mi = xi − x̂mi and ∆ŷmi = yi − ŷmi , respectively, based on onboard sensor
measurements. xi and yi are the true position at the i-step future. This target vector is
given not in the model deployment but in the model training.

Input features; This study selects input features based on the theory of ship dynam-
ics that future trajectories are determined by inertial and hydrodynamic parameters
of the ship, the initial state of the ship, commands to thrusters, and environmental
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disturbances. As we develop data-driven compensators for the specific loading condi-
tion of the specific ship, the inertial and hydrodynamic parameters are assumed to be
constant. Wave and ocean current data are not included in input features as they are
mostly not measured in real time. We assume commands to thrusters, the true wind
velocity, and the true wind direction are kept unchanged over the prediction horizon.
These assumptions yield the formulation of the data-driven compensator fN :

[∆x̂m1 , ...,∆x̂
m
nT
,∆ŷm1 , ...,∆ŷ

m
nT
]

= fN(ν0, n
p
0, δ

p
0 , n

s
0, δ

s
0, urw,0, vrw,0) (4.2)

The suffix 0 represents the values when making a prediction. The input vector is z-score
normalized with the statistic values in the training dataset. The same values are applied
to the normalization in the validation and test datasets. In the experiments of this
study, two azimuth thrusters are manipulated with the same commands. Thereby, (4.2)
is reduced to:

[∆x̂m1 , ...,∆x̂
m
nT
,∆ŷm1 , ...,∆ŷ

m
nT
]

= fN(ν0, n0, δ0, urw,0, vrw,0) (4.3)
where n0 = np

0 = ns
0 and δ0 = δp0 = δs0.

Model training; This study employs an MLP, which uses tanh and linear functions for
the hidden layer(s) and the output layer, respectively. During training, we separate some
maneuvers from a training-validation dataset and keep them as a validation dataset. The
validation loss is monitored to avoid overfitting the training dataset. If the validation
loss does not improve over 200 epochs, the training is automatically terminated, and the
best model is used for the prediction (early stopping).

Hyperparameter tuning; Hyperparameters are parameters to be fixed in advance
to determine ML model’s architecture and training setting. Hyperparameter tuning is
important to achieve a good performance of ML models. In this study, the number of
hidden layers ∈ [1, 3], the number of units in hidden layer(s) ∈ [10, 500], the drop-out
rate in the input layer ∈ [0.0, 1.0], the drop-out rate in hidden layer(s) ∈ [0.0, 1.0], and
the learning rate of the optimizer ∈ [10−5, 10−1] are optimized. The number of trials for
the parameter search is 50 as further drastic improvement of the validation loss was not
found with the larger number of trials than 50. After 50 trials of the hyperparameter
search, a set of hyperparameters with the best performance in the validation dataset was
selected as a set of optimum hyperparameters. Hyperparameter tuning was conducted
independently for having different physics-based models and dataset.

Model deployment; In the model deployment, the data-driven compensator makes
prediction [∆x̂m1 , ...,∆x̂

m
nT
,∆ŷm1 , ...,∆ŷ

m
nT
] based on input vectors provided by onboard

sensors. By adding the model-based predicted position vector [x̂m1 , ..., x̂
m
nT
, ŷm1 , ..., ŷ

m
nT
],

the cooperative prediction yields [x̂1, ..., x̂nT
, ŷ1, ..., ŷnT

] where x̂i = ∆x̂mi + x̂mi and ŷi =
∆ŷmi + ŷmi .

Evaluation metrics; The accuracy of the physics-based model A is evaluated with
the Root Mean Squared Error (RMSE) of the geometrical similarity between true and
predicted trajectories in the test dataset.

A =
1

S

S∑

k=1

√
(Nk − N̂m

k )2 + (Ek − Êm
k )2 (4.4)
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Figure 4.3: Experimental setting.

Nk and Ek represent the true north and east positions of the k-th sample. N̂m
k , and Êm

k

are the north and east positions of the k-th sample predicted by the physics-based model.
S is the number of data samples. ND represents the number of maneuvers in the dataset
used for the training. The larger the ND is, the larger the dataset is. Hence, cooperative
models are characterized by the combination (A,ND) in this study. It should be noted
that the ship dynamics is highly complex and nonlinear, thereby, a single metric A does
not fully represent the characteristic of the physics-based model.

The errors made by the cooperative model H of (A,ND) is evaluated with the RMSE
of the geometrical similarity between the true and predicted trajectories made by the
cooperative model:

H =
1

S

S∑

k=1

√
(Nk − N̂k)2 + (Ek − Êk)2 (4.5)

where N̂k and Êk are the north and east positions of the k-th sample, predicted by the
cooperative model. It should be noted that A is not used for selecting a good physics-
based model for better cooperative performance since it is defined in the test dataset.
A is only employed for presenting the relationship between H and (A,ND) in the test
dataset to develop a better understanding of the contribution of the physics-based model
and data to the cooperative performance. If ND = 0, we substitute N̂m

k and Êm
k for N̂k

and Êk in graphs since the cooperative model without using any data is regarded as the
physics-based model. If the pure data-driven model is used, N̂k and Êk are calculated
without the help of the physics-based model.

4.1.2 Simulation experiment

Before performing full-scale experiments, we examine the contribution of the physics-
based model and data to the cooperative performance in the simulation environment.
The cooperative model was trained and evaluated for making T = 30s trajectory pre-
diction.
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Overview

The overview of simulation experiments in this study is illustrated in Fig. 4.3. 18 dif-
ferent physics-based models were used in the cooperative models. A dataset with 120
maneuvers was prepared in this study. 20 maneuvers in the dataset were randomly
selected for the test dataset and kept untouched during training and validation of the
cooperative models. By selecting ND maneuvers from the remaining 100 maneuvers, we
built the training and validation sub dataset DND

with the different number of maneu-
vers. Please note that DND=a ⊂ DND=b if a < b. In this study, ten sub datasets from
DND=10 to DND=100 were prepared. We trained the cooperative models with different
physics-based models and sub datasets; thus examining the impact of the accuracy of
the physics-based model and dataset on the cooperative performance. For the different
combinations of the physics-based models and sub datasets, hyperparameter tuning was
conducted independently. In DND

, 80% of maneuvers were used for the training and the
remaining 20% were used for the validation. The performance of the trained cooperative
model was examined by using 20 maneuvers in the test dataset. The test dataset was
always identical regardless of which sub dataset was used during training.

Dataset

A simulation dataset was generated by a virtual ship of the R/V Gunnerus on co-
simulation platform Vico. 120 unique turning maneuvers were generated by randomly
selecting thruster revolution n ∈ [50, 200] Revolution Per Minute (RPM), and thruster
angle δ ∈ [−50, 50]◦. The ship’s motion was disturbed by the constant wind and irregular
waves in the simulation. The true wind direction βw ∈ [0, 360)◦, the true wind speed
Vw ∈ [0, 6] m/s, and the global wave direction ∈ [0, 360)◦ are randomly chosen for each
maneuver. The wave spectrum was JONSWAP spectrum [56] with 1.0m significant wave
height and 5.0s significant wave period. 50s time series were saved in 1Hz with 30s future
trajectory at each time step for each maneuver. Future trajectories were used only for
training and evaluation purposes.

Physics-based models

In this experiment, cooperative models were trained with different physics-based models.
They were developed by shifting parameters of the ground-truth model used in the
simulation environment. This procedure introduced the model’s uncertainty that we
had in reality due to poorly identified parameters. We randomly produced 18 physics-
based models with parameter uncertainty to examine the impact of the accuracy of
the physics-based model on the cooperative performance. 18 models were grouped into
moderately- and highly-uncertain models. It should be noted that none of them were
identical to the ground-truth model used in the simulation. They produced prediction
errors at different levels due to different reasons.

Moderately-uncertain models; We prepared ten physics-based models by randomly
shifting parameters of the ground-truth model in D(νr). They were grouped into
moderately-uncertain models in this paper. The ground-truth model has 32 hydrody-
namic derivatives θ1-θ32 in D(νr) (such as XL

uu, see [72] for details). A set of disturbed
parameters θ′i,j the i-th hydrodynamic derivative of the j-th moderately-uncertain model
was introduced as:

θ′i,j = ∆i,jθi (4.6)
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0.4 < ∆i,j < 1.6 was randomly selected for the i-th hydrodynamic derivative of the j-th
moderately-uncertain model. Although they made prediction errors due to poorly iden-
tified parameters, predicted trajectories they made could represent the basic character-
istics of the true dynamics of the targeting ship. The mass, inertia moment, added-mass
coefficients, and thruster models were kept unchanged from the ground-truth model.
This situation could occur if we copy and paste hydrodynamic parameters of similar
ships, we have a physics-based model adjusted to the different operational conditions,
and so on.

Highly-uncertain models; We prepared another eight physics-based models by ran-
domly shifting the mass, inertia moment, added-mass coefficients, and propeller diame-
ter of the thruster model up to 40%, in the same procedure as (4.6), in addition to the
parameter shift introduced in the moderately-uncertain models. The trajectories they
predicted had very different characteristics from the true trajectories since the basic
parameters of the model were shifted. This situation could occur if we copy and paste
parameters of very different ships or actuator models have large uncertainty.

No model; If no model was assigned to the physics-based model, a pure data-driven
model was built in the experiment. It was trained in the same manner as the cooperative
model, however, the target vector was not the residual vector [∆x̂m1 , ...,∆x̂mnT

,∆ŷm1 , ...,∆ŷ
m
nT
]

but the future position vector [x̂1, ..., x̂nT
, ŷ1, ..., ŷnT

] without the help of any model-based
guides.

Results

(a) with no model (b) with one of the moderately-uncertain
physics-based models

(c) with one of the highly-uncertain
physics-based models

East (m) East (m) East (m)

N
or

th
 (m

)

True Physics-based With With With

Figure 4.4: Snapshots of trajectory predictions made by (a) the pure data-driven model, (b)
the cooperative model with one of the moderately-uncertain physics-based models, and (c) the
cooperative model with one of the highly uncertain physics-based models with sub dataset D10,
D30, and D100.

Snapshots in Fig. 4.4 show predictions with different physics-based models with dif-
ferent sub datasets at one of the example prediction time instance in the test dataset.
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Figure 4.5: The effect of the errors of the physics-based model A and the data amount ND on
the errors made by the cooperative model H in the test dataset.

Black dotted lines show the 30s true trajectories, which are the same in the three sub-
figures. In Fig. 4.4 (a), predicted trajectories made by pure data-driven models trained
with D10, D30, and D100 are shown. Since they were not supported by any prior knowl-
edge of ship dynamics, it is seen that they needed a large dataset to make predictions
accurately. Models trained with D10 and D30 ended up making discontinuous trajectories
with less similarity to the true trajectory. In Fig. 4.4 (b), predicted trajectories made by
cooperative models with one of the moderately uncertain physics-based models with D10,
D30, and D100 are shown. Although physics-based models made prediction error in (b),
it was rather small and captured the basic geometry of the true trajectory. It is seen that
data-driven compensators compensated for such errors well only by using a small dataset
D10. As the pure data-driven model with D10 failed at making an accurate prediction
in (a), it implies that the physics-based model successfully supported the cooperative
performance. In Fig. 4.4 (c), predicted trajectories made by cooperative models with
one of the highly-uncertain physics-based models with D10, D30, and D100 are shown. In
(c), a trajectory predicted by the physics-based model notably diverges from the true
trajectory. The poor performance of the physics-based model was induced by its param-
eters with higher uncertainty. We see it deteriorated the cooperative performance with
D10 and D30 significantly while the performances in (b) were very good with the same
datasets. Moreover, although the large prediction error was mitigated by having a large
sub dataset D100, the cooperative performance with D100 in (b) outperforms that in (c).

An overview of results is illustrated in Fig. 4.5. This figure shows the relationship
between the errors made by the cooperative model H as a height of bars and its (A,ND)
as a position of bars on the bottom plane, where A denotes the errors made by the
physics-based model and ND denotes the number of maneuvers in the training dataset.
For instance, the height of the bar located at the small A and large ND on the bottom
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Figure 4.6: A projected 2D graph of the effect of the accuracy of the physics-based model A
and the data amount ND on the errors made by the cooperative model H in the test dataset.

plane shows the errors made by the cooperative model with a combination of such an
accurate physics-based model and a large dataset for the training. Bars at ND = 0
shows the original performance of the physics-based model without using any data for
the training. We see that most cooperative models with highly-uncertain physics-based
models made larger errors than cooperative models with moderately-uncertain physics-
based models with the same amount of data for training. In addition, a trend was seen
that the higher cooperative performance was achieved with a larger dataset and a more
accurate physics-based model. A good cooperative performance was achieved by either
having an accurate physics-based model or having a large dataset; thereby, they are
complementary to each other to some extent.

Fig. 4.6 is a projected graph of Fig. 4.5 on the ND-H plane for better visibility of
absolute values of the cooperative performance. In Fig. 4.6, a trend is seen that the higher
the accuracy of the physics-based model was, the higher the cooperative performance
was, especially when the dataset was small. At the same time, cooperative models with
a wide range of physics-based models, including some highly-uncertain models with
relatively better performance, were found to outperform the pure data-driven model. It
implies the possibility of the cooperative framework of building an accurate model with
a compromised physics-based model and a small dataset. However, it does not mean any
physics-based models are acceptable as a foundation of cooperative models. It is clearly
seen that some cooperative models with highly-uncertain physics-based models ended
up with poorer performance than the pure data-driven models. In such cases, physics-
based models seem to not introduce prior knowledge of ship dynamics but introduce
disturbances in the training. Thereby, the negative impact of having such physics-based
models with the poor performance on the cooperative performance remained even if we
had a large dataset. In particular, the performance of the cooperative model with the
most inaccurate physics-based model fluctuated much depending on the sub dataset used
for the training. It is seemingly caused by its high data dependency with a physics-based
model introducing disturbance to the training.
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4.1.3 Full-scale experiment

Hereinafter, we further explore the reasonable range of the physics-based model’s ac-
curacy on the cooperative performance in the real-life project by employing a small
dataset of a full-scale experiment in the open sea. This full-scale experiment validates
that we can build an accurate ship dynamic model in the practical project by combining
a compromised physics-based model and a small dataset rather than relying on either
of them.

We made T = 15s trajectory predictions in the full-scale experiment. In the full-scale
experiment, we investigated the cooperative performances with different physics-based
models and a small dataset to examine the framework building an accurate model with
a compromised physics-based model and a small dataset.

Dataset

We conducted full-scale experiments in the open sea on November 21st, 2019 in Trond-
heim, Norway. The 33.9m-length R/V Gunnerus was employed. Under the mild weather
condition, We conducted 10◦/10◦, 15◦/15◦, 20◦/20◦, 25◦/25◦, and 30◦/30◦ zigzag maneu-
vers with high (n ≈ 145RPM) and low (n ≈ 125RPM) surge velocities. Each maneuver
was saved in 1Hz and cut into 85s time series with 15s future positions at each time
step. The number of sampled maneuvers was 16. A 20◦/20◦ zigzag maneuver with the
high surge velocity was kept untouched for the test dataset. This maneuver was not
included in the other maneuvers in the training-validation dataset. During maneuvers,
same commands were given to the two azimuth thrusters and the bow thruster was
turned off. Except for the maneuver in the test dataset, 15 maneuvers were used for the
training. The three-fold cross validation was conducted by using 15 maneuvers in the
training and validation dataset.

Physics-based models

In the full-scale experiment, we employed two physics-based models; namely, accurate
and inaccurate physics-based models to examine the impact of having different physics-
based models on the cooperative performance with a real-life small dataset.

Accurate physics-based model; Before the full-scale experiment, the R/V Gunnerus
was elongated from 28.9m to 33.9m. However, the corresponding ship dynamic model has
not been fully developed. In this study, we employ a ship dynamic model of the 28.9m
R/V Gunnerus before the elongation as a physics-based model since it well captures
the dynamic behavior of the elongated R/V Gunnerus as well. It is referred to as the
accurate physics-based model in this experiment. It represents an optimistic assumption
that an accurate physics-based model is available in the project.

Inaccurate physics-based model; In an inaccurate physics-based model, we shifted
dominant damping coefficients in addition to removing higher-order damping coefficients
in D(νr). The inaccurate physics-based model represents a pessimistic assumption that
the available physics-based model performs poorly due to different reasons.

No model; If no physics-based model was given, as we did in the simulation ex-
periment, a pure data-driven model was built without the help of the physics-based
model.
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Figure 4.7: Snapshots of trajectory predictions at (a) 20s, (b) 40s, and (c) 60s of the maneuver
in the test dataset.
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Figure 4.8: A time series of thruster angle δ and revolution n in the example maneuvers in the
test dataset shown in Fig. 4.7.

In Fig. 4.7, snapshots of 15s trajectory predictions of the maneuver in the test
dataset at t = 20s in (a), t = 40s in (b), and t = 60s in (c) are shown. Time histories of
the thruster revolution and angle of this maneuver are shown in Fig. 4.8. In Fig. 4.7 (a),
although the cooperative model with the accurate physics-based model made smaller
errors compared to the other models, all models deviated from the true trajectory no-
tably. In the full-scale experiment, as the dataset used for training was limited, it was
seen that cooperative models did not always make a good prediction seemingly due to
the lack of experience during training. On the other hand, in (b) and (c), coopera-
tive models notably reduced prediction errors made by the corresponding physics-based
models and significantly outperformed the pure data-driven model. In (b), the coopera-
tive model with the inaccurate physics-based model performed better than the accurate
physics-based model. In (c), its performance was comparable to the accurate physics-
based model. Hence, although the cooperative model with the inaccurate physics-based
model did not outperform that with the accurate physics-based model, the contribution
of having such a compromised physics-based model was clearly discerned. This finding
corresponds to the results presented in the simulation experiment.
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Figure 4.9: The prediction error H over the prediction horizon made by pure data-driven, pure
physics-based, and cooperative models.

Fig. 4.9 shows the average prediction error H in the 15s prediction horizon at each
prediction instance made by the pure data-driven, pure physics-based, and cooperative
models. The prediction error becomes larger in the distant horizon as we have much un-
certainty in the distant future. The pure data-driven model made larger prediction errors
than the other models over the prediction horizon. It highlights the benefit of having
the physics-based model in terms of prediction performance. Although the inaccurate
physics-based model did not perform well in the experiment over the prediction horizon,
its prediction error was well compensated for by using the small dataset. Its overall
performance is comparable to that of the accurate physics-based model, which requires
much time & effort to be developed. In addition, in Fig. 4.9, the discrepancy of the
prediction error H made by the accurate and inaccurate physics-based model was found
to be large. On the other hand, by using the small dataset, the discrepancy between
corresponding cooperative performances becomes smaller. It implies the robustness of
the cooperative model to the poor accuracy of the physics-based model.

4.2 Chapter summary

This chapter addressed a key research question in the DE framework, which is how
the foundation model and data benefit enhanced performance. The goal is to build
an enhanced model that shows high performance by combining these two pillars while
compromising both of them to some extent. The theoretical investigation of this question
is challenging since the DE framework can be enabled through various methods with
numerous combinations of the foundation model and data. Therefore, this chapter
presented one solution to this question in an experimental manner on realistic problem
settings. In simulation experiments, we comprehensively investigated the impact of
various combinations of foundation models and datasets of different sizes on enhanced
performances. In the full-scale experiment, we demonstrated the possibility of enhanced
models that use compromised foundation models and a limited amount of full-scale data.
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This chapter experimentally revealed that the foundation model and data comple-
ment each other to enhanced performance. It is shown that we would have no such
thing as a general ship model that serves as a foundation model of any ships. The
presented results suggest that it is more important to balance these pillars rather than
being overly attached to building accurate physics-based models or collecting massive
amounts of data. This is a key experimental finding that demonstrates the promise of
the present DE framework.
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5
Case study: Knowledge transfer between similar ships

So far, the DE framework has been directed towards readily reflecting the full-scale
dataset to model performance. From a different perspective, this chapter explores a
method to bridge similar ships’ dynamics, covering the contents from Paper V.

Recently, the system identification (SI) method has gained attention for developing
physics-based models for ship maneuvering. Traditionally, it has been relying on numer-
ical or model-scale captive model tests (CMT), which were regarded as the most reliable
data sources with measurements of forces and moments. However, these experiments
require advanced expertise and significant costs. Instead, the SI method statistically
determines the parameters of physics-based models by directly using the full-scale ship
operation data. It requires less cost and avoids scale effect on model performance. On
the other hand, it also comes with drawbacks. In the SI method, the identified model
can be easily affected by perturbations in the dataset. This is well-known as the pa-
rameter drift problem. To address this issue, measures such as (1) optimizing excitation
signals [73] and experiment design [74], (2) simplifying model structures [75–77], and (3)
using robust identification algorithms [78, 79] have been taken.

To offer one solution to this issue, this study proposes a new framework called model
refinement in the SI approach by bridging two similar ships. The proposed technique
belongs to the update mode in this dissertation. When building a maneuvering model for
a new ship with its free-running data, a model built in the CMT approach for a similar
ship may be available. In this study, the former ship is referred to as a source ship acting
as a knowledge safeguard. The latter ship is referred to as a target ship being a target of
the PI. In such a case, designers would need to prioritize the model for the similar ship
into building the new model for the new ship for having consistency between models for
two similar ships. Otherwise, parameters are searched globally highly depending on the
collected dataset. In addition, it is hard for designers and stakeholders to have sufficient
confidence in model’s validity if a new model is detached from connections between
models. To prioritize such a connection in modeling and bridge dynamics of similar
ships, this study employs parameters of the similar ship as a l2 constraint in the ridge
regression algorithm when identifying parameters for the new ship with free-running
data of the new ship. It aims at refusing to update parameters into the range where
designers do not justify such an update. Parameters of the similar ship are introduced
as a safeguard in the data-driven calibration for controlling the degree of contribution
of data infused into such a knowledge foundation. It helps designers find a robust-and-
accurate model within the safe zone. The proposed framework gives models of similar
ships the value as a knowledge asset bringing such benefits into building a new model
for a new ship.
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5.1 Knowledge transfer between similar ships

In the traditional approach, experts involve their knowledge mostly in the design of
experiments, models, and identification algorithms. It requires much cost, time, and
expertise to conduct them carefully. Then, the hyperparameters of the identification al-
gorithm are tuned. The PI is performed by using data. Experts and stakeholders at this
moment judge the model’s validity and check its performance for the selected maneu-
vers [80]. Such evaluations are rather passive. It may result in carefully investigating,
improving, or redoing some processes if they are less confident in the model’s valid-
ity. This iteration seems inefficient when we have confidence in the similarity between
resulting models of two similar ships.

On the contrary, by building up models on top of the source parameters, the pro-
posed framework actively employs knowledge coming from past experience for similar
ships as a modeling foundation. Firstly, experts and stakeholders need to agree that
it is reasonable that the target model is derived by refining the source model in light
of their domain knowledge and experience. This agreement allows the source model to
act as a source of modeling confidence. Then, we highly constrain parameters towards
the source parameters by defining conservative ranges of hyperparameters to do so. It
could occur that we do not find parameters satisfying improvement criteria with defined
ranges of hyperparameters. Then, the ranges are broadened in the next iteration lead-
ing to less prioritized the source parameters and more dependency on data. Hence, the
proposed framework parsimoniously finds a model by gradually expanding the tuning
ranges starting from the source parameters in a parameter space.

5.1.1 Methodology

Ship maneuvering model

The non-dimensional forms of hydrodynamic forces and moments in the 3DoF Abkowitz
model are descrived as:

∆f ′
1 =X

′
u∆u

′ +X ′
uu∆u

′2 +X ′
uuu∆u

′3 +X ′
vv∆v

′2 +X ′
rr∆r

′2

+X ′
δδ∆δ

′2 +X ′
δδu∆δ

′2∆u′ +X ′
vr∆v

′∆r′

+X ′
vδ∆v

′∆δ′ +X ′
vδu∆v

′∆δ′∆u′ +X ′
uvv∆u

′∆v′2

+X ′
urr∆u

′∆r′2 +X ′
uvr∆u

′∆v′∆r′ +X ′
rδ∆r

′∆δ′

+X ′
urδ∆u

′∆r′∆δ′ +X ′
0 (5.1)

∆f ′
2 =Y

′
0u∆u

′ + Y ′
0uu∆u

′2 + Y ′
v∆v

′ + Y ′
r∆r

′ + Y ′
δ∆δ

′

+ Y ′
vvv∆v

′3 + Y ′
δδδ∆δ

′3 + Y ′
vvr∆v

′2∆r′

+ Y ′
vvδ∆v
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vδδ∆v

′∆δ′2 + Y ′
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+ Y ′
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′∆u′ + Y ′
δuu∆δ

′∆u′2 + Y ′
rrr∆r

′3

+ Y ′
vrr∆v

′∆r′2 + Y ′
vuu∆v

′∆u′2 + Y ′
ruu∆r

′∆u′2

+ Y ′
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′2∆δ′ + Y ′
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′2∆δ′ + Y ′
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0 (5.2)
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∆f ′
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δ∆δ

′

+N ′
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δδδ∆δ
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′∆u′
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vu∆v
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′∆u′2 +N ′
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0 (5.3)

where {X ′
(·), Y

′
(·), N

′
(·)} are hydrodynamic derivatives to be identified. ∆u′, ∆v′, and

∆r′ are non-dimensional surge, sway, and yaw velocities. Five zero-frequency added-
mass derivatives X ′

u̇, Y ′
v̇ , Y ′

ṙ , N ′
v̇, and N ′

ṙ are usually calculated precisely by using semi-
empirical formulas or a strip-theory calculation, thereby, they are always estimated
before the PI of the other derivatives [76].

Regression model

The identification of {X ′
(·), Y

′
(·), N

′
(·)} is seen as the identification of linear regression mod-

els. The linear regression models in the surge, sway, and yaw directions are formulated
in the discrete forms with the interval of the sampling time h as:

∆u(k + 1)−∆u(k) = AX (5.4)

∆v(k + 1)−∆v(k) = BY (5.5)

∆r(k + 1)−∆r(k) = CN (5.6)

(k) and (k+1) denote velocities at the certain time step and those at the one-step ahead.
A = [a1, ..., a16]1×16, B = [b1, ...., b22]1×22, and C = [c1, ...., c22]1×22 are the parameter
vectors to be identified. The input vectors of the linear regression models X, Y , and N
are given as:

X = [∆u(k)U(k),∆u2(k),∆u3(k)/U(k),∆v2(k),

∆r2(k)L2,∆δ2(k)U(k)2,∆δ2(k)∆u(k)U(k),

∆v(k)∆r(k)L,∆v(k)∆δ(k)U(k),∆v(k)∆δ(k)∆u(k),

∆u(k)∆v(k)2/U(k),∆r2(k)L2/U(k),

∆u(k)∆v(k)∆r(k)L/U(k),∆r(k)∆δ(k)LU(k),

∆u(k)∆r(k)∆δ(k)L,U2(k)]T1×16 (5.7)
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Y = N =[U2(k),∆u(k)U(k),∆u2(k),∆v(k)U(k),∆r(k)U(k)L,

∆δ(k)U2(k),∆v3(k)/U(k),∆δ3(k)U2(k),

∆v2(k)∆r(k)L/U(k),∆v2(k)∆δ(k),∆v(k)∆δ2(k)U(k),

∆δ(k)∆u(k)U(k),∆v(k)∆u(k),∆r(k)∆u(k)L,

∆δ(k)∆u2(k),∆r3(k)L3/U(k),∆v(k)∆r2(k)L2/U(k),

∆v(k)∆u2(k)/U(k),∆r(k)∆u2(k)L/U(k),

∆r(k)∆δ2(k)LU(k),∆r2(k)∆δ(k)L2,

∆r(k)∆v(k)∆δ(k)L]T1×22 (5.8)

In the PI, the left sides of (5.4) - (5.6) and input vectors are given. The PI algorithm
finds the optimum A, B, and C so that they satisfy (5.4) - (5.6) well. Once they are
identified, 16, 22, and 22 hydrodynamic derivatives for three directions {X ′

(·), Y
′
(·), N

′
(·)}

are further derived as:
X ′

(·) =
L(m′ −X ′

u̇)

h
A (5.9)

[
Y ′
(·)

N ′
(·)

]
=




(I ′z −N ′
ṙ)h

SL
−(m′x′G − Y ′

ṙ )h

SL

−(m′x′G −N ′
v̇)h

SL2

(m′ − Y ′
v̇)h

SL2




−1 [
B
C

]
(5.10)

where S = (m′−Y ′
v̇)(I

′
z −N ′

ṙ)− (m′x′G−Y ′
ṙ )(m

′x′G−N ′
v̇). m′ and x′G represent the non-

dimensional mass and longitudinal position of the ship’s center of gravity, respectively.

5.1.2 Model refinement

Here, the integral part of the proposed framework is introduced; the source ship (where
do we transfer knowledge from? ) and the algorithm (how do we transfer knowledge? )

Source ship; The proposed framework employs source parameters as a knowledge
foundation and safeguard in data-driven calibration. Thereby, a ship is eligible for being
a source ship based on an agreement of designers and stakeholders. Such an agreement
is derived from their domain knowledge, experience, and how much risk they take in
the project. Traditionally, the following factors support stakeholders to have sufficient
confidence in the eligibility of the source ship.

• Two ships must belong to the same ship category.

• The similarity of two ships must be checked based on a ship characteristic vector
as [18] did.

• Designers must check the performance of the source parameters when being applied
to the collected dataset of the target ship.

Algorithm; The linear regression model has a general form:

ŷ = β̂0 +

p∑

j=1

β̂jxj (5.11)
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where ŷ1×m denotes the output vector, X = [x1, ...,xp]p×m is the input matrix, β̂0 is the
intercept, β̂ = [β̂1, ..., β̂p]1×p is the parameter vector of the regression model, m is the
number of data samples, and p is the number of the input dimension. We assume the
parameter vector of the source model β′s (the source parameters) is available and that
for the target ship β̂′ (the target parameters) needs to be identified. If some parameters
are removed from (5.1)-(5.3) in the source model, such parameters are not included in
the knowledge transfer. Usually, the input variable xj is z-score normalized so that the
penalization of β̂ is applied in the same scaling over the input variables as:

x′
j =

xj − µj

σj
(5.12)

where µj and σj are the mean and standard deviation of the input variable in the
training dataset. Then, we define X ′ = [x′

1, ...,x
′
j, ...,x

′
p]p×m = [x′

1, ...,x
′
i, ...,x

′
m]

T
m×p as

the z-score normalized input matrix. A linear regression model is written as:

ŷ = β̂′
0 +

p∑

j=1

β̂′
jx

′
j (5.13)

where we define:
β̂′
j ≡ β̂jσj (5.14)

β̂′
0 ≡

p∑

j=1

β̂jµj + β̂0 (5.15)

We estimate β̂′
0 =

∑m
i=1 yi in the training dataset, where y = [y1, ..., ym] is the target

vector in the training dataset. Under the assumption that the residuals between the
target vector y and ŷ are normally distributed in addition to β̂0 = 0 in (5.4) - (5.6), this
estimation is equivalent to the definition (5.15). The source parameters are converted
as β′s

j ≡ βs
jσj to fit this z-score normalization. Then, by using β̂′s

j as a knowledge
foundation, the refined parameter vector β̂′

j for the target ship is formulated as:

β̂′ =arg min
β′

1

m

m∑

i=1

(β′Tx′
i −∆yi)

2

+ λ(α||β′||22 + (1− α)||β′ − β′s||22) (5.16)

where λ ≥ 0 is a hyperparameter for determining the regularization strength and 0 ≤
α ≤ 1 is a hyperparameter that balances the source-parameter vector β′s and the zero
vector in the regularization. ∆y = y − β̂′

0. α = 1 and λ = 0 correspond to the plain
ridge regression and linear regression, respectively. (5.16) is equivalent to:

β̂′ = (X ′TX ′ +mλI)−1(X ′T∆y +mλ(1− α)βs′) (5.17)

thereby, β̂′ is derived analytically. In (5.16), α and λ are hyperparameters that char-
acterize the l2 regression terms. As mentioned, ranges of hyperparameter tuning are
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Table 5.1: Specifications of two ships.

Source ship Target ship
Ship name Mariner ( [81]) SR108 ( [82])

Length between perpendiculars 160.9 m 175.0 m
Breadth 23.2 m 25.4 m

Design draft 8.2 m 8.5 m
Design displacement 18541 m3 21222 m3

Propeller diameter 6.706 m 6.533 m
The number of propellers 1 1

The number of blades 4 5

defined by experts to balance their confidence in knowledge against data-driven calibra-
tion. In (5.16), α and λ are hyperparameters that characterize the l2 regression terms.
As mentioned, ranges of hyperparameter tuning are defined by experts to balance their
confidence in knowledge against data-driven calibration. In such ranges, they are tuned
so that it minimizes the Root Mean Squared Error (RMSE) in the validation dataset,
which stays away from the training dataset.

5.1.3 Validation experiment

In the case study, a simulation experiment transferring knowledge between two ships
was conducted to present an example case where the source model was helpful to find
a robust-and-accurate model for the target ship. The case study performed the model
refinement of the Abkowitz model of a 161m-length container Mariner class vessel [81],
which was referred to as a source ship, for better fitting maneuverings of a 175m-length
container ship SR108 [82], which was referred to as a target ship. For the source ship,
an Abkowitz model has been widely-used and validated. It is a source model and its
parameters are source parameters in the case study. For the target ship, we assumed
only a limited dataset was available. The source and target ships were highly similar,
however, we found that the source parameters had room to be calibrated for maneuvers
of the target ship. In the case study, we aimed to reduce 50% of the single-step-ahead
velocity prediction error in the validation dataset in three directions. In practice, such
criteria need to be carefully agreed upon with stakeholders.

Experiment setting

Source and target ships; A comparison of basic specifications of source and target ships
are shown in Tab. 5.1. The source model for the source ship was for the operation speed
of 15.0 knots. A characteristic vector l is defined based on domain understanding of ship
design:

l = [Cb, Lpp/B,B/T, Lpp/∆
1/3, Ar/(LppT ), Dp/T ] (5.18)

where Cb is the block coefficient, Lpp is the length between perpendiculars, B is the
breadth, T is the draught, ∆ is the displacement, Ar is the rudder area, and Dp is
the diameter of the propeller. ls = [0.59, 6.94, 2.82, 6.08, 0.023, 0.81] was for the source
ship and lt = [0.56, 6.89, 2.99, 6.32, 0.022, 0.77] was for the target ship. Hence, two ships,
which were categorized in the same ship type, have very similar characteristic vectors. In
fact, using the source parameters for maneuvers of the target ship reproduced the trend
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of the target ship’s response well, however, a data-driven calibration was still necessary
for better performance.

Dataset; On the MSS simulator [83], multiple maneuvers of the target ship were
conducted for refining the source parameters in the case study. A zigzag maneuver,
12.5◦ and -12.5◦ turning circle maneuvers were generated. Each maneuver had a 650s
time series of positions, heading, velocities, and rudder angles saved in 2Hz with the
artificial measurement noise. To check if the proposed framework finds a robust-and-
accurate model for different types of maneuvers of the target ship, three different case
studies were conducted by taking three operation speeds U0 = 16.3, 20.4, and 24.7 knots
for low, middle, and high-speed maneuvering case studies, respectively. To evaluate
the sensitivity of performances against having different training datasets, five training
datasets were prepared for each case study by preparing five different zigzag maneuvers.
for the case study with low-speed maneuverings. In total, three case studies (high,
middle, low-speed maneuvers of the target ship) were conducted, and each case study
had five different datasets for training and validation. The final evaluation was performed
in a test dataset, which included 7.5◦ and -7.5◦ turning circle maneuvers. Maneuvers
with 7.5◦ and -7.5◦ rudder angles were conducted only in the test dataset. Maneuvers
in the test dataset were conducted at the corresponding high, middle, and low speeds
for each case study. During the hyperparameter tuning, 70% of samples were employed
for the training and the remaining samples were kept untouched for validation.

Results

To evaluate the benefit of the proposed method, four baseline algorithms were imple-
mented in addition to prediction made by using the source parameters without data-
driven calibration.

• Model refinement (MR): Results made by the present study.

• Source parameters (SP): Results with the source parameters of the source ship
without any data-driven calibration.

• Ridge regression (RR): Results made by the ridge regression algorithm.

• Lasso regression (LR): Results made by the lasso regression algorithm.

• Elastic net (EN): Results made by the elastic-net algorithm.

• Support vector regression (SVR): Results made by the support vector regression
algorithm.

Hyperparameter tuning for baselines was done by hyperparameter tuning framework
optuna [48], of which details are found in Appendix.E.
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CHAPTER 5. CASE STUDY: KNOWLEDGE TRANSFER BETWEEN SIMILAR SHIPS

Figure 5.1: RMSEs in the single-step-ahead velocity prediction in the surge, sway, and yaw
directions made by the present MR, SP, and four baseline algorithms. Results here are for
the low-speed case study with one of the five training datasets. Note that five lines with five
different training datasets for MR highly overlap.

For three directions, firstly, tuning ranges of hyperparameters were set to α ∈
[0.0, 0.1] and λ ∈ [10, 1010] that highly constrain parameters towards the main param-
eters. Results with the tuned hyperparameters are shown hereinafter. Fig. 5.1 show
RMSEs of single-step-ahead velocity prediction in the surge, sway, and yaw directions in
the validation dataset. In Fig. 5.1, results using one of the training datasets of low-speed
maneuverings are shown. In the surge direction, having a knowledge foundation in MR
was found to be powerful in reducing validation loss. As shown in Fig. 5.1, whereas MR
performed the best in the validation dataset with highly constrained parameter change
from SP, data-based frameworks (RR, SVR, LR, and EN) resulted in much poorer per-
formances with notably deviated parameters from SP. This result presented a challenge
in solely relying on data in the case study since the dataset had limited excitation in
the surge direction. In the sway direction, MR achieved an equivalent performance with
the much less number of parameters, of which change was highly constrained towards
SP, than that identified by the data-based frameworks. It can be seen as a big advan-
tage since a simpler model is more robust than more complex models with equivalent
performance. In the yaw direction, Fig. 5.1 shows a different trend from results in the
other directions. MR calibrated SP well, however, models with very different parame-
ters from the source parameters, which were built in data-based frameworks, performed
better in the validation dataset than MR. Thereby, by broadening ranges of hyperpa-
rameter tuning and less prioritizing a knowledge foundation, the validation loss of MR
could be reduced. Here is where experts introduce their confidence in knowledge against
data-driven calibration. Given that a dataset was rather limited in this case study and
MR achieved an improvement criterion of 50%, this case study did not allow models
to further be calibrated by data by broadening ranges of hyperparameter tuning. As
sufficient improvements were achieved by adjusting the source parameters, the same
ranges of hyperparameter tuning were applied to all case studies. Hence, the proposed
framework offered such a conservative option within the confidence range around the
source parameters rather than forgetting it and building up a new model solely relying
on data.

A summary of results is listed in Tab. 5.2. In the test maneuvers, this table compares
prediction errors in four metrics defined by the ITTC for the turning-circle maneuvers:
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Steady Turning Radius (STR), Maximum Transfer (MT), Maximum Advance (MA),
and Velocity Loss On Steady turn (VLS). For each metric, the error rate e (%) was
calculated for all predictions.

e = |mtrue −mpred

mtrue
| × 100 (5.19)

where mtrue and mpred are true and predicted values for each metric. For each case
study, five different training datasets were used. In Tab. 5.2, values in the columns for
the average absolute error show µ for each metric:

µ =
1

K
ΣK

i=1ei (5.20)

where K = 5 is the number of the training datasets and ei is e for prediction made
by the i-th training dataset. Please note that µ = e for SP since it does not use any
dataset. Values in the columns for the standard deviation of absolute error show σ for
each metric:

σ =

√
1

K
ΣK

i=1(ei − µ)2 (5.21)

Note that σ = 0 for SP since it does not use any dataset, thereby, it is not shown in the
table. Small µ and σ show that corresponding algorithms achieve the average good per-
formance over experiments using five different training datasets and such a performance
is stably accomplished. "N/A" indicates that one or more models in the five models
identified by using five training datasets ended up with physically unreasonable trajec-
tories. If the heading does not either monotonically decrease or increase, the trajectory
was considered physically unreasonable. First, we focus on the average absolute errors.
In terms of almost all metrics of almost all test maneuvers, SP made much prediction
error. In particular, when the target maneuver was high-speed, their prediction errors
were found to be large since the source parameters were not well-adjusted to it. On the
other hand, such large prediction errors were notably mitigated in the present MR. As
RR and SVR did not perform a feature selection, the identified models were not robust.
LR and EN selected only informative features with the l1 loss function, thereby, the iden-
tified models were robust and stable without having redundant features in the regression
models. However, the present MR outperformed SP and four baseline algorithms in al-
most all metrics of almost all test maneuvers. In light of the standard deviation of the
absolute errors, the robustness of the performance of the present MR against having
different training datasets were clearly shown. It is reasonable since MR appreciates the
source model and parsimoniously exploits the target datasets. Four baseline algorithms
were found to be very sensitive to the selection of training datasets as they were fully
dependent on data without having the confidence range around the source parameters.

5.1.4 Discussion

In the case study, the PI of the Abkowitz model for the target ship was conducted.
Due to the high similarity between the ship characteristic vectors of the two ships, their
resulting models were expected to be highly relevant. However, data-driven refinement
of the source parameters was necessary to satisfy the performance criteria for maneuvers
of the target ship. In the case study, the proposed framework was found to be powerful in
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easily finding a refined model with good robustness and generalization performance, by
prioritizing a safe zone of calibration derived by experts’ confidence in parameter transfer
from the source ship. We prepared five different training datasets in the case study.
The proposed framework found a robust-and-accurate model and stably accomplished
a great performance against having five different training datasets. On the contrary,
without having the parameters of the source ship, model performance was found to
highly fluctuate.

In the case study, the proposed framework showed better performance in the test
dataset than traditional data-based frameworks. This result presented an example case
where the proposed framework was powerful in easily finding a robust-and-accurate
model within a safe zone drawn based on the source parameters without being sensitive
to the experiment design. Nevertheless, it does not show an absolute limitation of data-
based frameworks. Their performance could be improved by devoting more effort for the
data design, model design, PI algorithm design. However, this study focuses on cases
where we have less room to do so and need to efficiently deliver the target model. It
would perform a complementary role to data-based frameworks in such cases rather than
always replacing them. Especially for delivering models integrated into safety-critical
systems, data-based frameworks remain important since collecting much data is the only
way to get closer to the global optimum parameters.

Typically, shipyards build many ships with similar specifications, so it is expected
that similar ship models may be found. Moreover, when constructing models for differ-
ent loading and water-depth conditions, it is possible to consider a standard-condition
model as a similar-ship model. Therefore, the scope of application for this framework
is considered to be wide. On the other hand, it does not fully replace the traditional
framework. When there is no reliable similar-ship model, the proposed framework can-
not be used. To construct accurate and reliable models, either a knowledge foundation
or data collected through careful experiments is required.

In this field, a validation study can not be conducted comprehensively. The ITTC
29th Manoeuvring Committee ( [84]) asked different institutes how they validate simula-
tion models. A majority of answers were validations based on previous experience with
other ships or benchmark data, expert judgment, and comparing the trajectories with
free-running tests. Any of them does not have unified criteria. In practice, experts make
an agreement so that they satisfy their confidence in the model’s validity. Thereby, it is
reasonable that the proposed framework introduces their decision into selecting a final
model from rival models based on their understanding of the relevance of similar ships’
dynamics. This study helps such a practice be efficiently conducted. As a matter of
fact, it contributed to building a robust-and-accurate model for the target ship. Such a
decision is not randomly made but based on experts’ experience and how much risk the
project takes.

In this study, we addressed the risk of conducting a global parameter search without
any knowledge anchor. By using a reliable similar ship model to locally update the
model, the knowledge connection between ships can be established and the risk can be
reduced. To demonstrate this concept, this study dealt with a 3DoF maneuvering model
in calm water. However, nowadays, models that include external-force models such as
waves are considered more practical. The applicability of the proposed framework to
such advanced models has not been demonstrated in this paper. However, given that the
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external force term is a parametric model that relates to a ship’s mechanical performance,
this framework is also expected to contribute to reducing the number of experiments
and risks associated with creating an external-force model. On the other hand, defining
similarities between ships becomes more complicated in models that consider external
forces. For example, even if the maneuvering characteristic is similar, there may be a
significant deviation in the dynamic positioning characteristic. Regarding the specific
definition of similarity, further discussion will be necessary in our future study.

5.2 Chapter summary

In this chapter, the author proposed a method for finding a robust-and-accurate model
for a target ship by using a model of a similar ship that experts and stakeholders believe
in their similarities. In this field, data collection is challenging and time-consuming.
In particular, when quickly obtaining a model, data is often insufficient and exposed
to noises, as is the case in this dissertation. In such cases, as the author presented, it
seems a wise framework to take the foundation model from a similar ship and select an
updated model with acceptable accuracy from those that are close to the foundation
model. This framework is proven to be helpful to make the model development easier
and stabler for achieving high accuracy. This chapter shows the promising direction of
the DE framework towards building a network of various ship models stemming from
one foundation model, which could be seen as "a family of ship models".
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6
Conclusion and further work

This dissertation explored agile methods for delivering dynamic models for ship motion
prediction. The author proposed a new framework: the DE framework which enhances
the physics-based model in a data-driven manner for better performance. The framework
involves the foundation model, where experts locate their understanding and reliabil-
ity, and the data-driven branch, which utilizes advanced machine learning models to
inductively fit datasets. They stem from distinguished modeling principles, with the
former being physics-driven and the latter being data-driven. Ships are complex multi-
scale and multi-disciplinary systems, and it is not possible to quickly deliver accurate
dynamic models by relying upon either of these principles. The present framework at-
tempts to maximize performance by respecting the roles of both modeling principles
rather than attempting to replace one with the other. In this dissertation, we proposed
new techniques to do so and demonstrated the promise of such a framework respecting
knowledge connection when delivering ship dynamic models.

6.1 Summary of contributions

The goal of this dissertation is to explore the enabler of the DE framework, as out-
lined in RO1, and to offer accurate ship dynamic models in a more agile manner. In
Section 2, possible methods for achieving this goal were over-viewed through relating
to multi-disciplinary previous works. Additionally, the papers in this dissertation con-
tribute to satisfying RO1 by proposing and investigating different techniques to realize
the DE framework from various perspectives. Chapter 3 presents four case studies to
accomplish RO2. They demonstrate that the DE framework can be realized in various
forms depending on pragmatic constraints and its application contexts. In all cases,
the successful enhancement of the foundation model resulted in readily offering a more
accurate model. Chapter 4 investigates how the foundation model and data benefit en-
hanced performance in an experimental way. Knowledge transfer between similar ships
is investigated in Chapter 5 with simulation case studies.

The main contributions of this dissertation are as follows:

• Present a framework to use data-driven models for enhancing the physics-based
model serving as a knowledge foundation. Clarify its overview and possible en-
ablers. It is related to RO1.

• Implement techniques of the DE framework for rapidly reflecting the full-scale data
to better performance while utilizing a knowledge foundation from the foundation
model. It is related to RO2.

• Propose a novel method for bridging similar ships’ dynamics for identifying model
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parameters more easily and stably while establishing a knowledge connection. It
is related to RO3.

• Investigate how the foundation model and data benefit enhanced performance in
the DE framework. Extensive experimental studies are presented, related to RO4.

6.2 Summary of publications

The summary of publications is as follows:
Paper I presents a method for the DE framework that uses the foundation model

to predict a trajectory and correct it in a data-driven manner with a neural network.
The assumption of constant commands over the prediction horizon has been previously
used. However, it is not always valid for real-life data. In paper I, the proposed model
efficiently handles future command changes without sacrificing the training efficiency
much. In the simulation environment, it was proven to work under different environ-
mental disturbances, demonstrating its performance and robustness. This allows for
efficient learning in a way that highly isolates the foundation model and data with con-
sideration for future command assumptions over the prediction horizon.

Paper II presents a novel "pre-training" method for the DE framework using the
foundation model and dataset for predicting ship maneuvering motion. In the DE frame-
work, as in other papers included in this dissertation, the straightforward method is to
directly embed or modify the foundation model by using a newly-available dataset. How-
ever, there exist situations where we may not be able to do so due to rights or technical
challenges. In such cases, as proposed in Paper II, the foundation model on a simula-
tor can be used for data augmentation. After sufficiently transferring knowledge from
the foundation model, the full-scale dataset can further benefit the model for better
performance. In the validation study, an augmented dataset was created by using the
foundation model on the co-simulation platform. By warming up the neural-network
ship motion predictor with the dataset, better accuracy was achieved by further using a
limited full-scale dataset.

Paper III presents a new method of the DE framework for ship maneuvering pre-
diction during docking operations. Docking operations are known as one of the most
complex and nonlinear operations in which ships make a sharp deceleration while rapidly
turning. It has been challenging to build a highly-accurate foundation model in a para-
metric manner for such dynamics. In Paper III, a method was proposed to calibrate
the velocity-prediction performance of the foundation model with neural networks. This
allows for building a non-parametric data-driven branch for docking operations on top of
the foundation model. Validation experiments were conducted using a full-scale dataset
of docking operations, confirming the high performance of the proposed method.

Paper IV investigates the benefit of the foundation model and dataset, which are
two key pillars in the DE framework, on enhanced performance. The problem awareness
of this dissertation is the fact that both of these pillars are not often satisfactory in
terms of quality and quantity. Therefore, it is crucial to understand the impact of these
factors on enhanced performance. This may allow us to compromise on the performance
of the foundation model or data quantity for providing models more quickly. Paper IV
employed a DE framework, which is an extended work from Paper I, to provide one
solution to this question through comprehensive simulation and full-scale experiments.
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The results showed that the performance of the foundation model and the quantity of
the dataset support complementary enhanced performance.

Paper V proposes a method for the DE framework to bridge the dynamics of similar
ships. In the proposed method, the parameter set of a physics-based model for a new
ship is obtained from the vicinity of that for a similar ship. It aims at gaining the benefit
from a dataset of the new ship while anchoring the knowledge foundation transferred
from the similar ship. The validation study was conducted by employing two cargo ships
on the simulation platform. The proposed Bayesian method showed that by carefully
selecting similar ships based domain knowledge, it found a robust-and-accurate model
easily and stably. With the proposed method, it may be possible to build a family
of ship models that collaborate on the same knowledge foundation by sharing a single
foundation model among multiple ship models.

Paper VI presents a method to apply the DE framework to predict ship motion
during DP operations using an onsite wave radar. To the best of the author’s knowledge,
real-world experiments for such a task are very limited in previous works and have relied
on physics-based models. However, it is an arduous process to develop such an accurate
foundation model. Therefore, in paper VI, the author corrected the imbalance of the
full-scale operation datasets and enhanced the foundation model by mapping it using a
linear regression model. This demonstrates that the DE framework is useful not only
for maneuvering but also for wave-frequency motions.

6.3 Future work

This dissertation conceptualized the data-driven enhancement to the ship dynamic model
for motion prediction. The author focused on proposing new techniques for priority
problem settings and investigating important research questions in the DE framework.
It demonstrated the promising direction of the DE framework, however, it is not a
complete elucidation of it. The below bullet points provide suggestions for how the
presented research may be extended.

• The pillars of the proposed DE framework are the foundation model and its data-
driven branches. As introduced in paper IV, they can work complementarily to
quickly develop a satisfactory enhanced model by compromising both of them to
some extent. In future work, it would be key research topics (1) how to rapidly
obtain the foundation model with decent accuracy and (2) how to collect high-
quality data at a low cost. Such topics may become as crucial as how we realize
the DE framework itself.

• This dissertation did not address a topic of continuous learning, where new data is
continuously available and the model is updated online. However, ship dynamics
may perpetually change due to external disturbances or loading conditions. In such
cases, separating the foundation model and its data-driven branches may enable
more effective continuous learning.

• When there are many foundation models available, it may be better to select ap-
propriate models or ensembling from them, rather than enhancing them through
data-driven methods. Such a data-driven model selection or ensemble remains to
be investigated.
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• In this dissertation, the contribution of data to enhanced performance has been
mainly discussed from the viewpoint of ’data volume’. On the other hand, real-life
data often present issues related to ’data quality’, such as noises and anomalies
in datasets. This dissertation indirectly and practically addressed such issues by
using real-world datasets. To reach more practical conclusions for the proposed
framework, in the future, more focused research on this ’data quality’ would be
necessary.
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Abstract. A ship trajectory predictor plays a key role in the predictive
decision making of intelligent marine transportation. For better predic-
tion performance, the biggest technical challenge is how we incorporate
prior knowledge, acquired during the design-stage experiments, into a
data-driven predictor if the number of available real-world data is lim-
ited. This study proposes a new framework under co-simulation platform
Vico for the development of a neural-network-based trajectory predictor
with a pre-training phase. Vico enables a simplified vessel model to be
constructed by merging a hull model, thruster models, and a controller
using a co-simulation standard. Furthermore, it allows virtual scenarios,
which describe what will happen during the simulation, to be generated
in a flexible way. The fully-connected feedforward neural network is pre-
trained with the generated virtual scenarios; then, its weights and biases
are finetuned using a limited number of real-world datasets obtained from
a target operation. In the case study, we aim to make a 30 s trajectory
prediction of real-world zig-zag maneuvers of a 33.9m-length research
vessel. Diverse virtual scenarios of zig-zag maneuvers are generated in
Vico and used for the pre-training. The pre-trained neural network is
further finetuned using a limited number of real-world data of zig-zag
maneuvers. The present framework reduced the mean prediction error
in the test dataset of the real-world zig-zag maneuvers by 60.8% com-
pared to the neural network without the pre-training phase. This result
indicates the validity of virtual scenario generation on the co-simulation
platform for the purpose of the pre-training of trajectory predictors.

Keywords: Co-simulation · Trajectory prediction · Informed machine
learning

Supported by a grant from NRF, IKTPLUSS project No. 309323 “Remote Control
Center for Autonomous Ship Support” in Norway.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Cerone et al. (Eds.): SEFM 2021 Workshops, LNCS 13230, pp. 173–188, 2022.
https://doi.org/10.1007/978-3-031-12429-7_13



174 M. Kanazawa et al.

1 Introduction

Autonomous ship maneuvering hinges on better understanding of ship dynamics.
A ship is regarded as a system that consists of many dynamic components, such
as a hull model, thruster models, and a controller. In most cases, a simulator of
each component is given by its manufacturers and project partners in the format
of a black-box model. Therefore, it is of great interest to designers to construct a
simplified vessel model easily by connecting black-box sub-models. Vico, which is
a high-level co-simulation framework [3], enables a simplified vessel model to be
constructed by merging a hull model, thruster models, and a controller using the
co-simulation standard. Furthermore, it allows virtual scenarios, which describe
what will happen during the simulation, to be generated in a flexible way. In the
Intelligent Systems Lab [6] at Norwegian University of Science and Technology
(NTNU) Ålesund, it has been playing an important role as a cyber testbed of
research activity.

In the predictive decision making of autonomous maneuvering, a controller
of an autonomous ship makes predictions of its own ship’s trajectory based on
the current vessel state and future command assumption. Then, a controller can
evaluate and manipulate the future command assumption based on the predicted
consequences. Hence, accurate motion prediction is the basis of collision avoid-
ance algorithms [5]. According to the definition in [11], the prediction task can be
explained as follows. A dataset D consists of a feature space X and a marginal
probability distribution P (X) where X = {x1, .., xn} ∈ X . In the supervised
learning, a set of pairs {xi, yi} of inputs (the current vessel state, commands,
and environmental disturbances) xi ∈ X and outputs (predicted trajectories)
yi ∈ Y are given in the dataset D. The prediction task of the own ship’s trajec-
tory T is defined as T = {Y, P (Y |X)} where Y = {y1, ..., yn}. We aim to find
an objective predictive function f = P (Y |X) in the development of a predictor.

Ship dynamics is highly nonlinear and complex. In order to comprehend
its dynamic characteristics, experiments in the ocean basin and full-scale sea
trials are conducted in the design procedure. These data build a dataset Dm =
{Xm, P (Xm)} which is utilized for developing a white-box vessel model fm using
parameter identification algorithm [19]. Its biggest challenge is dataset of a target
operation Dtarget = {Xtarget, P (Xtarget)} is not identical to Dm in most cases.
Due to such factors as the shallow water effect and P (Xtarget) �= P (Xm), a white-
box-model-based prediction can be inaccurate in Dtarget [16]. A standard idea of
dealing with this problem is to sample Dtrain ⊂ Dtarget and develop a black-box
model trained using Dtrain. However, it might be an optimistic expectation that
we have |Dtrain| that is enough for the training of the black-box model since we
would develop a predictor of a ship with less experience in Dtarget. According to
the definition in [18], this challenge is categorized into few-shot learning problem.

This study proposes the framework of co-simulation-based development of
a ship trajectory predictor shown in Fig. 1. In a present framework, few-shot
learning, which has a limited number of real-world data of a target operation,
is informed of prior knowledge by many virtual operations in Vico. A simplified
vessel model constructed at a small cost in Vico and real-world small data of a
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Fig. 1. Co-simulation-based development of a ship trajectory predictor.

target operation compose an accurate ship trajectory predictor only with small
cost & data. One should note that we do not re-build a simplified vessel model in
Vico by employing parameter identification algorithms and Dtrain since it may
ruin the advantage of using the co-simulation technology, which is an easy con-
struction of a model by merging black-box sub-models. In addition, the present
approach is more attractive than a re-construction of a simplified vessel model
as a formulation based on physics can not capture highly nonlinear and complex
phenomena that lies behind real-world ship dynamics. We use a fully-connected
Feedforward Neural Network (FNN) as an architecture of the predictor. The
NN is pre-trained using diverse virtual scenarios of a target operation in Vico
before the NN is trained by a limited number of Dtrain real-world data in the
Dtarget. This pre-training informs the NN of prior knowledge fm that facilitates
the training using real-world data of a target operation. A present study is a new
approach that is different from any informed-machine-learning-based predictors
in previous studies [9,15–17] in this field. The advantage of the proposed frame-
work is (1) its simple structure of the predictor and (2) the NN can experience
diverse virtual scenarios in the pre-training. One should note that a quantitative
comparison of prediction performances between predictors is very challenging
since the quantitative result could be on the case-by-case basis depending on
the fidelity of prior knowledge, real-world dataset of a target operation, and
the practical limitation of the implementation of the predictor. Therefore, this
study focuses not on a comparison of the performances but on showing the valid-
ity of the proposed new framework. In the case study of the present framework,
Dtarget is real-world data of zig-zag maneuvers of the R/V Gunnerus which is a
33.9m-length research vessel of NTNU. To generate virtual scenarios of zig-zag
maneuvers in a pre-training phase, we develop a virtual R/V Gunnerus in Vico
by merging a hull model provided by SINTEF Ocean, thruster models provided
by thruster manufacturers, and a zig-zag controller developed by the authors.
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By using the virtual scenarios, an NN-based 30 s future trajectory predictor
is pre-trained without using real-world data. After the pre-training, the weights
and biases are further updated using real-world data of zig-zag maneuvers Dtrain.
The contributions of the present study are summarized as follows.

– This study introduces a framework of co-simulation-based development of a
ship trajectory predictor. A vessel model in co-simulation platform is eas-
ily constructed only by merging sub-models. Virtual scenarios facilitate the
training of a NN-based trajectory predictor provided that limited real-world
data of a target operation is available.

– The proposed framework contributes to reducing the mean prediction error
by 60.9% compared to the NN-based trajectory predictor without a co-
simulation-based pre-training phase.

2 Related Works

Previous studies aiming at developing accurate ship trajectory predictors are
articulated in this section. Trajectory predictors are grouped into two categories;
namely, white-box and black-box models. The most concise white-box model is
the holonomic [20] and kinematic models [13]. They are widely used in collision
avoidance algorithms because of their simple implementation, however, their pre-
diction accuracy is much poorer than that of kinetic dynamic models due to their
unrealistic assumptions. Kinetic models are categorized into response models, the
Abkowitz model, the Maneuvering Modeling Group (MMG), and vectorial rep-
resentations. Through experiments in the ocean basin and full-scale sea trials,
hydrodynamic parameters of the kinetic models are identified using parameter
identification algorithms [19]. The biggest advantage of white-box models is that
they require less data to calibrate than their black-box counterparts by virtue
of its formulation based on physics. On the other hand, it is a major draw-
back that tailored experiments take cost & effort. Black-box models exploit a
large amount of onboard sensor data using Machine Learning (ML) algorithms.
With the rapid development in computational resources and advanced ML algo-
rithms, black-box models are becoming more and more popular recently in this
field [7,14].

As we explained in the previous section, a general prediction problem suf-
fers from prediction error due to P (Xtarget) �= P (Xm) and a limited number of
Dtrain ⊂ Dtarget. With the aim of introducing prior knowledge fm to a black-
box model trained with Dtrain, there is a large body of research integrating a
mathematical vessel model into a black-box model. In [9], they utilize a reference
mathematical vessel model of which dynamic characteristic is similar to the ves-
sel that is subject to the trajectory prediction from the database. The random
forest algorithm is trained so that it compensates the error in the model-based
predicted acceleration. NN-based error compensation in the model-based accel-
eration is seen in [15]. Skulstad et al. [16] proposes a multiple-step-ahead trajec-
tory predictor by combining a mathematical vessel model and a Long Short-Term
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Memory (LSTM). An LSTM compensates 30 s North and East position errors
made by the mathematical vessel model using onboard sensor measurements.
Wang et al. [17] develop an NN-based data-driven calibrator that maps trajec-
tory prediction made by a reference vessel model into that of the targeting vessel.
In these previous studies, prior knowledge is integrated into the predictor in the
form of a mathematical vessel model and the training is conducted using lim-
ited real-world data of a target operation. On the other hand, the present study
pre-trains an NN-based predictor using diverse virtual scenarios of a target oper-
ation. This idea enables the NN to experience the diverse virtual scenarios and
acquire prior knowledge before the main training rather than having a complex
structure in the predictor with a black-box model and a vessel model.

3 Methodology

The methodology of the present framework is described in this section by taking
an example of making trajectory prediction of zig-zag maneuvers of the R/V
Gunnerus. It should be noted that the present framework works for any type of
operation of any vessels as long as sub-models in Vico and real-world data of a
target operation Dtrain are available.

3.1 Pre-training of a Trajectory Predictor

Fig. 2. The framework of co-simulation-based development of a ship trajectory
predictor.

If we mix up the augmented and real-world data in one training phase, it may
induce a problem of how to balance those two datasets for better prediction accu-
racy since the fidelity of virtual simulation might not be satisfactory in most cases
of ship trajectory prediction. Therefore, the main training using real-world data
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Fig. 3. The diagram of the definition of the North-East-Down frame and the body-fixed
frame when making prediction.

is conducted after the pre-training using simulation data is completed. Since tra-
jectory prediction is utilized for the predictive decision making, a vessel needs
to have enough time to make a change of course and speed after making predic-
tion. The predictor in this study makes the trajectory prediction for 30 s that is
enough for making a change of course and speed of the R/V Gunnerus so that
the evaluation of prediction performance is informative in the light of the prac-
tical application. Figure 2 shows the overview of the present framework through
co-simulation-based pre-training. RPM in Fig. 2 is the abbreviation of the Revo-
lution Per Minute. In a pre-training phase shown in the right top panel in Fig. 2,
virtual scenariosDpre thatmimic a target operation (e.g., zig-zagmaneuvers in the
case study) are generated inVico. Figure 3 shows the definition of the North-East-
Down (NED) frame and the body-fixed xb−yb−zb frame whenmaking prediction.
xb
k and ybk represent the true ks future xb and yb positions in the body-fixed frame

when making prediction. ψ is the heading of the vessel to North when making
prediction. x̂b

k and ŷbk represent the predicted ks future xb and yb positions in the
body-fixed frame when making prediction. An FNN fv is pre-trained using Dpre.
fv produces 30 s future trajectory prediction [x̂b

1, ..., x̂
b
30, ŷ

b
1, ..., ŷ

b
30] = fv(ν0,n, δ)

where ν0 is the velocity vector when making prediction, n = [n0, .., nk, ..., n29]
is the vector of thruster revolution, n0 is the thruster revolution when making
prediction, nk is the assumption of the thruster revolution at ks future, δ =
[δ0, .., δk, ..., δ29] is the vector of thruster revolution, δ0 is the thruster angle when
making prediction, and δk is the assumption of the thruster angle at ks future. In
the application of this study, the prediction [x̂b

1, ..., x̂
b
30, ŷ

b
1, ..., ŷ

b
30] is used for eval-

uating the decision making n and δ. Therefore, one should note that n and δ are
given by a controller. As illustrated in the right bottom panel in Fig. 2, the pre-
trained NN is transferred to the main training phase. In the main training phase
shown in the bottom panel in Fig. 2, the weights and biases of fv are finetuned
using a limited number of real-world data Dtrain.
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3.2 A Virtual Vessel Model in VICO

The left panel in Fig. 2 shows the structure of a virtual R/V Gunnerus in Vico. It
consists of four components; namely, a hull model, a port-side azimuth thruster
model, a starboard-side azimuth thruster, and a zig-zag controller. They are
packaged into Functional Mock-up Units (FMUs; FMU1.0 for hull and thruster
models and FMU2.0 for the controller). The hull model is developed by SIN-
TEF Ocean in the SimVal project [2] through experiments in the ocean basin
and full-scale sea trials. It is a 6 Degrees Of Freedom (DOF) maneuvering and
seakeeping model. Port and starboard-side azimuth thruster models are provided
by thruster manufactures. In order to reproduce a target operations in Vico, a
zig-zag controller is coded in Python by the authors. It provides a pre-defined
time series of thruster commands (revolution and angle) to thruster FMUs. An
example of the pre-defined time series of thruster angle is shown in Fig. 5. The
controller is packaged into a FMU using PythonFMU [4].

3.3 An FNN-Based Predictor

Many architectures of ML models have been used for ship trajectory prediction;
such as Support Vector Regression (SVR) [7], LSTM [15] and fully-connected
FNN [16]. In this study, we use a fully-connected FNN as an architecture of a
predictor as it is one of the simplest and well-known ML models that is widely
used in the context of transfer learning. The FNN-based predictor consists of
the input layer, hidden layers, and output layer. The activation function is
the hyperbolic tangent function for the hidden layers and the linear function
for the output layer. ν0, n, and δ are selected as input features through fea-
ture selection as explained hereinafter. The output of the predictor is a vector
[x̂b

1, ..., x̂
b
30, ŷ

b
1, ..., ŷ

b
30] with a length of 60. The weights and biases of the FNN are

updated so that it minimizes the Mean Squared Error (MSE) metric L between
the true and predicted position vectors using the Adam [8] optimizer.

L =
1

H

H∑

k=1

(x̂b
k − xb

k)
2 + (ŷbk − ybk)

2 (1)

Input features are standardized with their mean and standard deviation in a
training dataset in a pre-training phase. The FNN is implemented in Pytorch
[12] in Python.

Feature Selection. [xb
1, ..., x

b
30, y

b
1, ..., y

b
30] = f(P, ν0,n, δ)+w in theory of ship

dynamics where P is a set of hydrodynamic and inertial parameters and w is
environmental disturbances caused by wind, wave, and ocean current. In this
study, we introduce following assumptions.

– A predictor is trained for a specific loading condition of a specific ship. There-
fore, P is ruled out from input features of the NN.
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– In most cases, a ship has no accurate measurement of waves and currents.
Therefore, environmental forces due to wave and current are not modeled in
the predictor.

– In Dtarget, the effect of wind on the vessel motion is marginal. For the sake
of simplicity of the validation study, it is not included in the input features
of the NN.

These assumptions yield the predictor [x̂1, ..., x̂30, ŷ1, ..., ŷ30] = f(ν0,n, δ). If
accurate measurement and mathematical models of environmental disturbances
in Vico are available, the proposed framework is valid even if the effect of environ-
mental disturbances on ship motion is significant. One might be able to enhance
prediction performances by using wind sensor and real-time acceleration data in
the future work, however, the scope of this study is not to investigate the best
architecture of NN models but to present the validity of present framework.

Hyperparameter Tuning. Hyperparameters are a set of parameters that need
to be set prior to the training. It is well known that they have a significant impact
on the performance of NNs. In a pre-training phase, the number of hidden layers
nlayers ∈ [1, 8], the number of units in the hidden layers midunits ∈ [10, 500],
learning rate lr ∈ [1.0 × 10−4, 1.0 × 10−1], dropout rate in the input layer
dropin ∈ [0.0, 1.0], and dropout rate in the hidden layer drophd ∈ [0.0, 1.0] are
tuned using hyperparameter tuning framework optuna [1] that employs Tree-
structured Parzen Estimator as an optimization algorithm. As the range of search
of lr is wide, it is searched in the log domain. 50 optuna trials are conducted.
We check further trials contribute to marginal improvement of the validation
loss. In a main training phase, nlayers and midunits are fixed as the NN in
the pre-training phase is transfered to the main training phase; then, lr, dropin,
and drophd are tuned. When a NN is trained without a pre-training phase for
comparison purposes apart from the NN trained in pre-training and main train-
ing phases, 50 optuna trials search an optimal set of hyperparameters nlayers,
midunits, lr, dropin and drophd.

4 Case Study

Fig. 4. The starboard view of the R/V Gunnerus employed in the case study [10].
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In a case study, we aim to make a 30 s trajectory prediction of real-world zig-zag
maneuvers of the R/V Gunnerus. The starboard view of the R/V Gunnerus is
shown in Fig. 4.

4.1 Pre-training

Fig. 5. Pre-defined time series of thruster angle given by a zig-zag controller.

In a pre-training phase, npre = 300 virtual scenarios are generated by merg-
ing a hull model, thruster models, and a zig-zag controller of the R/V Gun-
nerus in Vico. A fixed-step algorithm is used and coupling between sub-models
are not considered in Vico. The virtual R/V Gunnerus is equipped with two
azimuth thrusters in the port and starboard sides. These two thrusters receive
the same commands of thruster angle and revolution from a zig-zag controller.
Commands are simultaneously applied to thruster models since the difference
between command and feedback values of the R/V Gunnerus is very small.
The wave, wind, and ocean current are not applied to the virtual vessel. An
example of the pre-defined time series of thruster angle is shown in Fig. 5. Each
scenario is a 235 s time series. Thruster angle and revolution are set to zero
before 50 s. The vessel state is reset to the initial state at 50 s. In order to
avoid having impact load due to the reset, a Tpre = 150 s time series from 55 s
(t = 0) to 205 s (t = 150) is saved in 1Hz for the experiment with its 30 s
future true positions [xb

1, ..., x
b
30, y

b
1, ..., y

b
30] and corresponding controller com-

mands at each time step. Thruster angle is δmax until t = Tδ; then, it is
changed to −δmax until t = T ′

δ = 2Tδ with the maximum change rate. At
t = T ′

δ, it is turned back to zero with the maximum change rate. Thruster
revolution is set to nmax from 50 s to 235 s. Each scenario is parameterized
by a vector of parameters S = [δmax, Tδ, nmax, ut=0] where δmax ∈ [−35◦, 35◦],
Tδ ∈ [t = 50 s, t = 75 s], nmax ∼ N (μ = 130RPM, σ = 10RPM) and the initial
surge velocity ut=0 ∼ N (μ = 4.0m/s, σ = 1.0m/s) are randomly given to each
scenario. N (μ, σ) indicates the Gaussian distribution with the mean value μ and
the standard deviation σ. The probability distribution of parameters of S can
be assumed based on the general understanding of a target operation Dtarget,
however, the discrepancy of the probability distribution of input features in Dpre
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Fig. 6. Probability distributions of input features in the pre-training virtual dataset
P (Xpre) and in the target real-world dataset P (Xtarget).

and Dtarget is inevitable as shown in Fig. 6. The initial North and East positions,
heading, sway velocity, and yaw velocity are set to zero.

npre = 300 scenarios are divided into ntrain,pre = 192 scenarios in the training
dataset, nval,pre = 48 scenarios in the validation dataset, and ntest,virtual = 60
scenarios in the test dataset. The test dataset is used only for checking the
performance of the pre-trained predictor in the pre-training phase as shown in
Fig. 9. The NN is trained only by using scenarios in the training dataset. To avoid
overfitting the training dataset, the prediction performance of the trained NN
in the validation dataset is monitored during the training. If the validation loss
does not improve over ne = 200 epochs, the training is automatically stopped;
then, the best model is loaded. We checked ne > 200 does not contribute to
further improvement of the validation loss.

4.2 Main Training

The zig-zag maneuvers experiments of the R/V Gunnerus are conducted in
November 2019 in Trondheim, Norway. Its port-side and starboard-side azimuth
thrusters move simultaneously with the same commands of the thruster angle
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and revolution. Its tunnel thruster is turned off during the experiments. The
experiment is a 1600 s time history. We split this time history into ntarget = 16
operations of which length is 100 s. As we need 30 s future positions and com-
mands at each time step in the operation for the training and evaluation pur-
poses, first Ttarget = 70 s of each operation is saved as one operation with 30 s true
future positions [xb

1, ..., x
b
30, y

b
1, ..., y

b
30] at each time step. The R/V Gunnerus is

equipped with 13 onboard sensors sampling ship motion in real time. During the
experiment, positions in the NED frame (North, East, and heading) and veloc-
ities in the body-fixed frame (surge, sway, and yaw speed) are saved in 1Hz.
Equation (2) converts positions in the NED frame into [xb

1, ..., x
b
30, y

b
1, ..., y

b
30] in

the body-fixed frame:

(
xb
k

ybk

)
=

(
cosψ sinψ
− sinψ cosψ

)(
Nk −N0

Ek − E0

)
(2)

where Nk and Ek are the true ks future North and East positions in the NED
frame. N0 and E0 are North and East positions when making prediction in the
NED frame. At each time step, future command assumptions n and δ are given
by the dataset as we examine the prediction performance provided that they
are assumed by a controller. As we assume limited real-world data of a target
operation are available, we use only ntrainval,target = 12 operations in the main
training and keep the other ntest,target = 4 operations, that are used only for
the evaluation of the prediction performance, untouched in the training process.
ntrainval,target = 12 operations are divided into ntrain,target = 9 operations in the
training dataset and nval,target = 3 operations in the validation dataset. The NN
is trained only by using the training dataset and its performance in the valida-
tion dataset is monitored using the validation dataset. If the validation loss does
not improve over ne = 200 epochs, the training is automatically stopped; then,
the best model is loaded as explained in the previous subsection. By switch-
ing the validation dataset four times, four independent NNs are trained (cross-
validation). The final prediction to the untouched test dataset is the average of
predictions made by these four NNs. In order to examine the contribution of the
pre-training, three different strategies of training are investigated as follows.

(A) Without Pre-training. The training of this predictor is conducted with-
out a pre-training phase. Virtual scenarios generated in Vico are kept untouched
and only limited real-world data of a target operation ntrain,target is used in the
training. It provides a baseline of the comparison study.

(B) Without Finetuning. This predictor is pre-trained with ntrain,pre virtual
scenarios, however, the main training is not performed. The prediction perfor-
mance of this predictor in Dtarget reveals the effect of the discrepancy between
Dpre and Dtarget.



184 M. Kanazawa et al.

(C) Present Study. This is a predictor that is trained in the manner of the
present framework. The main training of this predictor is carried out with real-
world data ntrain,target after the pre-training with virtual scenarios ntrain,pre.

4.3 Evaluation Metric

This study introduces an evaluation metric Sijk,target that indicates the mean
prediction error over the 30 s prediction horizon in the test dataset of a main
training phase.

Sijk,target =
1

ntest,targetTtargetH

ntest,target∑

i=0

Ttarget−1∑

j=0

H∑

k=1

Sijk,target (3)

where Sijk,target is the distance between the predicted and true positions at ks
prediction horizon of time step js prediction of ith scenario in the test dataset
of a main training phase. In order to examine the prediction performance in a
pre-training phase, we use an evaluation metric Sijk,pre as follows.

Sijk,pre =
1

ntest,preTpreH

ntest,pre∑

i=0

Tpre−1∑

j=0

H∑

k=1

Sijk,pre (4)

where Sijk,pre is the distance between the predicted and true positions at ks
prediction horizon of time step js prediction of ith scenario in the test dataset
in a pre-training phase.

4.4 Results

Fig. 7. Trajectories of virtual scenarios in Dpre.
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Fig. 8. Histories of the training and validation loss of the first fold of (A) the NN
without pre-training and (C) the finetuned NN with pre-training. The training is ter-
minated when the validation loss does not improve over ne = 200 epochs. (Color figure
online)

Fig. 9. Mean prediction errors in the test dataset.

Trajectories of npre = 300 virtual scenarios generated in Vico are shown in Fig. 7.
It is seen that diverse scenarios are generated thanks to the setting of scenario
generation in the pre-training phase. Through the optuna hyperparameter opti-
mization in the pre-training phase, nlayer = 1 and midunits = 420 are selected.
Apart from the pre-training phase, (A) without pre-training is trained only by
using real-world data ntrainval, target. nlayer = 1 and midunits = 300 are selected
through optuna hyperparameter optimization. After the pre-training phase, the
main training is conducted. With a set of optimized hyperparameters, Fig. 8
shows histories of the training and validation losses of the first fold of the cross-
validation of (A: blue lines) the NN without the pre-training phase and (C: green
lines) the present study with the pre-training phase. The vertical axis displays
loss values along a logarithmic scale. It should be noted that the training is
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Fig. 10. (left) Snapshots of 30 s prediction at t = 0 s, t = 30 s, and t = 60 s of one
scenario in the test dataset (right) Time histories of vessel state and commands.

automatically terminated if the validation loss does not improve over ne = 200
epochs. Since (A) is not pre-trained by virtual scenarios, its training starts with
notably higher loss values than that of (C). Accordingly, the validation loss of
(A) ends up with higher values than that of (C). This result indicates the pre-
training phase based on virtual scenarios facilitates not only the initial stage of
the training but also the overall training efficiency in the main training.

Figure 9 shows the mean prediction error in the test dataset in the pre-
training phase Sijk,pre and that in the main training phase Sijk,target. By com-
paring the bars in the top and the third from the top in Fig. 9, one can see that
the prediction performance of the pre-trained NN deteriorates much in Dtarget if
it is not finetuned in the main training phase due to the difference between Dpre

and Dtarget. The bar (A) in the second from the top in Fig. 9 reveals that the
training without the pre-training phase produces the largest prediction error in
(A), (B), and (C). (C) trained in the present framework with pre-training and
main training phases reduces prediction error notably; by 60.8% compared to
(A) without pre-training.

The left panel of Fig. 10 shows snapshots of 30 s prediction at t = 0 s, t = 30 s,
and t = 60 s of one operation in the test dataset of real-world data in the main
training phase. The right panel of Fig. 10 shows time histories of vessel state
and commands of the operation. (A) the NN without the pre-training phase
deviates significantly from the true trajectories at t = 0 s and t = 30 s. (B) the
NN without finetuning after the pre-training phase succeeded at capturing the
trend of the 30 s true trajectory at t = 0 s, t = 30 s, and t = 60 s in the short
prediction horizon, however, it ends up with the large prediction error in the
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distant prediction horizon. (C) present study with the pre-training and main
training phases traces the true trajectories more accurately than (A) and (B) at
t = 0 s, t = 30 s, and t = 60 s.

5 Conclusion

This study proposed a new framework for co-simulation-based development of
a ship trajectory predictor provided that limited real-world dataset of a target
operation is available. We integrated prior knowledge, which is virtual scenar-
ios generated by a simplified vessel model in co-simulation platform Vico, into
training of the neural-network-based trajectory predictor. The neural network is
pre-trained using many virtual scenarios generated in Vico before it is finetuned
using limited real-world dataset of a target operation. In the case study, we
employed real-world operations of zig-zag maneuvers of a 33.9m-length research
vessel. For pre-training, 300 virtual scenarios of zig-zag maneuvers were gener-
ated in Vico only by merging sub-models provided by different project partners.
The pre-trained neural network was further finetuned using 12 real-world opera-
tions of zig-zag maneuvers. The present framework reduces the mean prediction
error by 60.8% in the test dataset of real-work operation compared to the neu-
ral network without pre-training. Hence, the present framework enables a ship
trajectory predictor to be constructed only by using a simplified vessel model in
co-simulation platform at a small cost and limited real-world data of a target
operation.
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A B S T R A C T

A ship automation will be a key to the future maritime. In particular, ship dynamic models play an integral
role. However, it is challenging to develop an accurate model readily. Recent studies proposed a physics-data
cooperative model that predicts a future trajectory by compensating for position errors made by the physics-
based model by using a machine learning model, which learns such a multiple-step-ahead compensation based
on onboard sensor measurements. It seems to be promising to reduce effort in model development by exploiting
observation data while having physics knowledge and a stable foundation in the model. However, it has been
an open question ‘‘how much does the cooperative model benefit from physics knowledge and observation
data?’’. We tackled this key question experimentally. To investigate the benefit of the physics-based model and
the data amount, by changing the accuracy of the physics-based model and the size of observation dataset,
simulation and full-scale experiments were conducted. Results show that the accuracy of the physics-based
model and the data amount were complementary to each other to some extent. A wide range of physics-based
models worked as prior knowledge, however, too inaccurate models disturbed the training.

1. Introduction

Recently, ship autonomy has gained an increasing attention from
the research and industrial communities for ensuring operational safety
and efficiency in the busy marine traffic, such as narrow channels and
ports. They are expected to open new vistas in supporting or even
substituting human onboard decision making to avoid human errors
and make more efficient decisions (Norwegian Shipowners Association,
2019). Although we have seen the rapid success of the autonomous field
robots and cars, that for autonomous ships remains topical. One of the
reasons is the fact that an autonomous ship is a more comprehensive
system composed of versatile marine robotics, automation, and sensing
technologies.

In particular, it is of great importance to have a good situation
awareness understanding what is happening now and will happen in
the future surrounding a ship (e.g., Xiao et al. (2020) and Zhang
et al. (2022)). A ship is a dynamic system with poor maneuverabil-
ity, thereby, poor situation awareness may easily lead to fatal conse-
quences, such as colliding with obstacles or stranding. In this context,
for decades, researchers have been devoting their research effort to
building an accurate ship dynamic model so that it predicts a future
trajectory used for the early warning & prediction of the future colli-
sion risk. Fig. 1 illustrates the relationship between the ship dynamic

∗ Corresponding author.
E-mail address: motoyasu.kanazawa@ntnu.no (M. Kanazawa).

model identification and the early warning & prediction in the versatile
technologies for the ship autonomy in the future maritime transport.

Research communities have grouped approaches of ship dynamics
modeling into three categories; namely, model-based, data-driven, and
cooperative approaches. Model-based approaches formulate a linear
regression model based on the understanding of physics. This study
refers to such models as physics-based models. Model’s parameters are
identified by employing numerical simulations and model/full-scale
experimental data (e.g., Wang et al. (2019)). The biggest advantage lies
in the fact that they can be easily calibrated with a small dataset finding
an optimal function parsimoniously in a parametric manner. Moreover,
we can easily check the model’s validity by looking into identified
parameters. They have been playing a dominant role in applications
by providing a stable and reliable foundation of the understanding
of ship dynamics. However, the practice of parameter identification
is rather sensitive revolving around a good-quality, sufficient, and
balanced dataset in addition to the explicit understanding of real-
world phenomena. Thereby, mostly, it ends up with poor performance
although it takes prohibitive time & cost to be built with physically
reasonable parameters. On the other hand, data-driven approaches of-
fer parsimonious non-parametric models to achieve better performance
by finding patterns in the dataset without depending on scientific

https://doi.org/10.1016/j.oceaneng.2022.112998
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Fig. 1. A schematic overview of ship dynamic model identification and the early
warning & prediction of the future collision risk in versatile technologies for ship
autonomy in future maritime transport.

knowledge, although it may require more data to be calibrated than
the physics-based model. Since the wake of the so-called third wave
of artificial intelligence since the 1990s, data-driven approaches have
been applied to challenging tasks in the maritime domain (e.g., the
evaluation of ship pollutant emissions (Xiao et al., 2022) and the ship
detection from videos (Chen et al., 2021)). Ship dynamics modeling is
no exception to this trend (e.g., Kawan et al. (2017) and Schirmann
et al. (2022)). However, pure data-driven models have no scientific
interpretability. It becomes more of an issue in the application since
the maritime industry is highly conservative in safety-critical systems.
In addition, it is not a wise step for data-driven models to discard our
domain knowledge packaged into the physics-based model.

A cooperative approach combines model-based and data-driven ap-
proaches. Recently, the maritime applications are not exceptions in a
trend of making a synergy of scientific knowledge and data (e.g., Fon-
seca and Gaspar (2021)). Skulstad et al. (2021a) and Wang et al. (2021)
presented breakthrough ideas that compensate/map trajectories made
by the available physics-based model into true trajectories in a data-
driven manner. Such data-driven geometrical compensation/mapping
achieved a good performance while keeping the stability of the physics-
based model untouched as a stable foundation of the model. Moreover,
in their approaches, we can clearly distinguish the contributions of the
physics-based and data-driven models on the prediction performance as
they play different roles in the model, thus having good interpretability
and maintainability of the model with a good performance. It seems
to be promising to overcome time & cost challenges the maritime
industry faces since it would lower rigorous hurdles of model-based or
data-driven approaches by combining two approaches.

An open question about such cooperative approaches is ‘‘how much
does the cooperative model benefit from physics knowledge and ob-
servation data?’’ to achieve a good performance in a physics-data
cooperative way (referred to as the cooperative performance, here-
inafter). In not only the academic but also the industrial views, this
question is important from the two perspectives. On the one hand, the
accuracy of the available physics-based model is diverse. It could be
degraded, for instance, due to the poor conduct of the parameter iden-
tification, parameters identified in a compromised manner (e.g., copy
& paste parameters of similar ships), low-fidelity actuator models, and
being tuned to the other operations. On the other hand, available data
are mostly limited. Real-world ship maneuvers are required for the
data collection, however, it is money- and time-consuming. Thereby,
a better understanding of the impact of these two components on the
cooperative performance is of great interest to our industrial partners.
To the best of the authors’ knowledge, so far, this open question has
not been addressed in any literature, albeit its importance in industrial
applications. In this study, we validate a cooperative framework, which
builds an accurate ship dynamic model by combining a compromised
physics-based model and limited observation data.

To offer one solution to the open question ‘‘how much does the
cooperative model benefit from physics knowledge and observation
data?’’, this study conducted experimental investigations, which are
divided into two parts. First, simulation experiments enabled us to
investigate the impact of the accuracy of the physics-based model and
the data amount on the cooperative performance. Second, in the full-
scale experiment where only limited observation data are available,
we further explore the reasonable range of the physics-based model’s
accuracy on the cooperative performance. The full-scale experiment
was conducted by the 33.9m-length research vessel Gunnerus. The
results showed that we could achieve a good performance by using
the combination of the compromised physics-based model and a small
dataset. The cooperative performance was equivalent to the perfor-
mance of the accurate physics-based model, which takes much more
time & cost to be built. Contributions of this study are summarized as
follows:

• It was found that the balance of the accuracy of the physics-based
model and the data amount was key to achieve a good perfor-
mance of the physics-data cooperative model rather than relying
on either of them. In addition, the full-scale experiment presented
the validity of building a cooperative model with a compromised
physics-based model and a small observation dataset. These find-
ings make the cooperative model more promising for reducing
effort dedicated for the model development by using physics
knowledge and observation data.

• Although a wide range of physics-based models successfully facil-
itated the model identification, however, it disturbed the training
if it was too inaccurate. This finding highlights the importance
of technologies that develop a simplified physics-based model
readily without compromising its performance drastically.

Hereinafter, this paper unfolds as follows. Section 2 illustrates re-
lated works aiming at the synergy of the scientific knowledge and
data in different applications. In Section 3, we explain the cooper-
ative ship dynamic model employed in this study. An experimental
study in the simulation environment is presented in Section 4. A full-
scale experiment is illustrated in Section 5. Conclusions are given in
Section 7.

2. Related works

In many applications, it is seen to leverage scientific knowledge and
data for better performance and reliability. In Karpatne et al. (2016),
Karpatne et al. named such approaches Theory-Guided Data Science
(TGDS), and grouped diverse approaches into five categories; namely,
theory-guided design of data science models, theory-guided learning of
data science models, theory-guided refinement of data science outputs,
hybrid models of data science and theory, and augmenting theory-
based models using data science. Besides TGDS, different terminologies
(e.g., transfer learning (Panigrahi et al., 2021), physics-informed Ma-
chine Learning (ML) (Karniadakis et al., 2021), informed ML (Vonrue-
den et al., 2021), and gray-box/semi-parametric modeling (von Stosch
et al., 2014)) fully/partly cover ideas of the cooperative approach in
the field of ship dynamics. There is no domain-agnostic ‘‘best practice’’
of the cooperative approach, thereby, it is necessary to carry out a
domain-specific investigation to achieve the good harmony of scientific
knowledge and data.

In this study, we assume we have a physics-based model and a
new dataset of the ship maneuver. The physics-based model could be
derived in the compromised manner and the new dataset is not satis-
factory in terms of its amount, quality, or distribution. In such settings,
the most straightforward and classic way to model ship dynamics is to
re-identify parameters of the physics-based model so that it performs
well in the prepared dataset by using ML algorithms (e.g., support
vector machine (Wang et al., 2019; Luo and Li, 2017), a Bayesian
approach (Xue et al., 2020)). This approach belongs to ‘‘theory-guided
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Fig. 2. Snapshots of (a) simulation experiments in Section 4 and (b) full-scale experiments in Section 5. (b) was taken on November 21st, 2019 in the west coast of Norway.

design of data science models’’ in the TGDS’s categorization. If the
identification succeeds, it provides a highly interpretable model. How-
ever, it has been a challenging task since our understanding of ship
dynamics mostly does not fully capture real-world phenomena. This
challenge brought us to use non-parametric models in this domain.
Since the maritime industry highly values the reliability of physics-
based models, previous research in this field has devoted its effort
to building a cooperative architecture of the physics-based and data-
driven models. It corresponds to ‘‘hybrid models of data science and
theory’’ in the TDGS’s categorization. Ven et al. employed a neural net-
work for representing damping terms of the physics-based model (van
de Ven et al., 2007). In Skulstad et al. (2021b) and Kanazawa et al.
(2022), neural networks were used for compensating for the single-step-
ahead prediction error made by physics-based models. Mei et al. (2019)
employed a random forest to map the estimation of the acceleration
made by the similar ship’s dynamic model into that of the targeting
ship by using a dataset of the targeting ship. Those approaches directly
intervene in the performance of the physics-based model by data-
driven models, thus making one unified trajectory in the physics-data
cooperative manner. Their cooperative approaches are efficient thanks
to their simple architecture, however, their stability in the numerical
iteration is hardly validated. Moreover, once trajectories are generated,
it is impossible to isolate the contribution of the physics-based and
data-driven models from the generated trajectory. Thereby, in practice,
they can be used only when we have a relatively-accurate physics-based
model due to reliability reasons.

On the other hand, Skulstad et al. (2021a) trained a neural network
with onboard sensor measurements so that it compensates for the
multiple-step-ahead position error made by the physics-based model.
In Wang et al. (2021), Wang et al. proposed a data-driven model
that maps the future position calculated by the similar ship’s dynamic
model into that of the targeting ship. In their approaches, the roles
of the physics-based and data-driven models are clearly distinguished,
thus contributing to better interpretability and maintainability of the
cooperative architecture. Moreover, in their approaches, the physics-
based model serves not only as prior knowledge of ship dynamics but
also as a stable foundation of the prediction.

3. Cooperative ship model

As explained in Section 2, in the field of ship dynamics, previous
studies have presented different types of cooperative models combining
physics-based and data-driven models. In this study, we employ a
geometry-based cooperative model, that makes a data-driven compen-
sation for multiple-step-ahead position errors made by the physics-
based model, based on the idea presented in Skulstad et al. (2021a)
and Kanazawa et al. (2021).

3.1. Overview

In the experiments of this study, we employed a cooperative model
of ship dynamics as shown in Fig. 3. The cooperative model is com-
posed of a physics-based model highlighted in orange and a data-driven

compensator highlighted in green. The physics-based model makes 𝑇 s
prediction of a future trajectory based on the initial state of the ship,
environmental disturbances, and commands to actuators. On the other
hand, based on onboard measurement data, the data-driven compen-
sator compensates for errors in the position made by the physics-based
model, Thus, a multiple-step-ahead position prediction vector made
by the physics-based model is calibrated in a data-driven manner.
By adding outputs of both of them, the cooperative model makes 𝑇 s
prediction of the future trajectory in a data-driven manner while having
a stable and reliable model-based prediction made by the physics-
based model as its foundation. Details of the physics-based model and
data-driven compensator will be explained hereinafter.

3.2. Physics-based model

In the maneuvering theory of ship dynamics, the ship kinematics is
expressed as:

�̇� = 𝑹(𝜓)𝝂 (1)

where 𝜼 is the vector of the ship’s positions in the inertial coordinate, 𝑹
is the rotation matrix between the inertial and body-fixed coordinate,
𝜓 is the ship’s heading, and 𝝂 is the vector of the ship’s velocities in
the body-fixed coordinate. We define 𝑹 as:

𝑹(𝜓) =
⎡⎢⎢⎣

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

⎤⎥⎥⎦
(2)

The ship kinetics is expressed as:

𝑴𝑹𝑩 �̇� +𝑴𝑨𝝂𝒓 + 𝑪𝑹𝑩(𝝂)𝝂 + 𝑪𝑨(𝝂𝒓)𝝂𝒓 +𝑫(𝝂𝒓) = 𝒒 (3)

𝒒 = 𝒒wind + 𝒒wave + 𝒒thr (4)

where 𝑴𝑹𝑩 is the rigid-body mass matrix, 𝑴𝑨 is the added-mass
matrix, 𝑪𝑹𝑩(𝝂) is the rigid-body coriolis-centripetal matrix, 𝑪𝑨(𝝂𝒓)
is the added-mass coriolis-centripetal matrix, 𝑫(𝝂𝒓) is the damping
matrix, 𝝂𝒓 = 𝝂 − 𝝂𝒄 is the relative velocity vector, 𝝂𝒄 is the current
velocity vector, 𝒒wind is the wind-force vector, 𝒒wave is the wave-force
vector, and 𝒒thr is the thruster force vector. In this study, we assume
the effects of the ocean current and waves on the ship motion are
marginal due to the limitation that ships are not equipped with sensors
measuring ocean currents and waves in real time. This assumption is
acceptable under mild environmental disturbances. Thereby, this study
introduces 𝝂𝒓 = 𝝂 and 𝒒wave = 𝟎. The wind-force model is constructed
by dedicated numerical simulation and experiments as:

𝒒wind = 1
2
𝜌𝑎𝑉

2
𝑟𝑤

⎡⎢⎢⎣

𝐶𝑋 (𝛾𝑟𝑤)𝐴𝐹𝑊
𝐶𝑌 (𝛾𝑟𝑤)𝐴𝐿𝑊

𝐶𝑁 (𝛾𝑟𝑤)𝐴𝐿𝑊 𝐿𝑜𝑎

⎤⎥⎥⎦
(5)

where 𝐶𝑋 , 𝐶𝑌 , and 𝐶𝑍 are the wind coefficients identified for the
surge, sway, and yaw directions. 𝐴𝐹𝑊 and 𝐴𝐿𝑊 are the frontal and
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Fig. 3. An overview of the cooperative model. Sensor data (current ship’s states, thruster command values, and wind information) are given to the physics-based model and data-
driven compensator. The physics-based model is a 3DOF maneuvering model outputting a trajectory prediction. The data-driven compensator, of which input–output relationship
is shown in (13), compensates for multiple-step-ahead position errors made by the physics-based model.

Fig. 4. A schematic relationship between the body-fixed coordinate when making a
prediction and the inertial coordinate. The data-driven compensator compensates for
position errors made by the physics-based model in the body-fixed coordinate when
making a prediction.

lateral projected areas, respectively. 𝐿𝑜𝑎 represents the ship length. The
relative wind velocity 𝑉𝑟𝑤 and direction 𝛾𝑟𝑤 are given as:

𝑉𝑟𝑤 =
√
𝑢2𝑟𝑤 + 𝑣2𝑟𝑤 (6)

𝛾𝑟𝑤 = −atan2(𝑣𝑟𝑤, 𝑢𝑟𝑤) (7)

where:

𝑢𝑟𝑤 = 𝑢 − 𝑉𝑤 cos (𝛽𝑤 − 𝜓) (8)

𝑣𝑟𝑤 = 𝑣 − 𝑉𝑤 sin (𝛽𝑤 − 𝜓) (9)

𝑉𝑤 and 𝛽𝑤 are the true wind velocity and direction in the inertial
coordinate. The thruster-force vector 𝒒thr is calculated based on thruster

commands and 𝝂 by the mathematical model 𝑓𝑡ℎ𝑟 provided by manufac-
turers of thrusters. In this study, the ship is equipped with two azimuth
thrusters and one bow thruster. The bow thruster was turned off in the
experiments. Namely:

𝒒thr = 𝑓𝑡ℎ𝑟(𝝂, 𝑛𝑝, 𝛿𝑝, 𝑛𝑠, 𝛿𝑠) (10)

where 𝑛𝑝 and 𝑛𝑠 represent thruster revolutions of the port- and starboard-
side azimuth thrusters. 𝛿𝑝 and 𝛿𝑠 are thruster angles of the port-
and starboard-side thrusters. Hence, by using wind, thruster, and hull
models, total forces and moment acting on the hull are calculated. By
multiplying𝑴−1 = (𝑴𝑹𝑩+𝑴𝑨)−1, the acceleration vector is estimated.
We numerically integrate the estimated acceleration vector into the
velocity vector in the body-fixed coordinate. The numerical integration
of this velocity vector over the prediction horizon yields the model-
based predicted trajectory [�̂�𝑚

1 ,… , �̂�𝑚
𝑖 ,… , �̂�𝑚

𝑛𝑇
, �̂�𝑚1 ,… , �̂�𝑚𝑖 ,… , �̂�𝑚𝑛𝑇 ] in

the future, where �̂�𝑚
𝑖 and �̂�𝑚𝑖 represent model-based predicted ship’s

north and east positions at 𝑖th step future, respectively. 𝑛𝑇 denotes the
number of time steps of the prediction horizon. In this study, the Euler
method is employed for the numerical integration with 1s time step;
namely, 𝑛𝑇 = 𝑇 .

As shown in Fig. 4, this study expresses trajectories in the 𝑥 − 𝑦
coordinate of which origin is located at the center of gravity of the ship
when making a prediction. The positive directions of the 𝑥 and 𝑦 axes
are the longitudinal and lateral directions of the ship. Thereby, future
positions in the 𝑥 − 𝑦 and 𝑁 − 𝐸 coordinates are interconvertible as:
(
𝑥
𝑦

)
=
(

cos𝜓0 sin𝜓0
− sin𝜓0 cos𝜓0

)(
𝑁 −𝑁0
𝐸 − 𝐸0

)
(11)

where 𝑁0, 𝐸0, and 𝜓0 represent the north, east positions and heading
when making a prediction. Hence, the model-based predicted trajectory
[�̂�𝑚

1 ,… , �̂�𝑚
𝑛𝑇
, �̂�𝑚1 ,… , �̂�𝑚𝑛𝑇 ] in the 𝑁 − 𝐸 coordinate is converted to

[�̂�𝑚1 ,… , �̂�𝑚𝑛𝑇 , �̂�
𝑚
1 ,… , �̂�𝑚𝑛𝑇 ] in the 𝑥−𝑦 coordinate to provide target vectors

of the data-driven compensator.

3.3. Data-driven compensator

The data-driven compensator makes prediction of [𝛥�̂�𝑚1 ,… , 𝛥�̂�𝑚𝑛𝑇 ,
𝛥�̂�𝑚1 ,… , 𝛥�̂�𝑚𝑛𝑇 ] where 𝛥�̂�

𝑚
𝑖 = 𝑥𝑖−�̂�𝑚𝑖 and 𝛥�̂�

𝑚
𝑖 = 𝑦𝑖−�̂�𝑚𝑖 , respectively, based

on onboard sensor measurements. 𝑥𝑖 and 𝑦𝑖 are the true position at the
𝑖-step future. This target vector is given not in the model deployment
but in the model training.
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3.3.1. Input features
Input features of any ML models must be carefully selected. Oth-

erwise, ML models would suffer from missing important information.
In such settings, ML models fail to be efficiently trained. This study
selects input features based on the theory of ship dynamics that future
trajectories are determined by inertial and hydrodynamic parameters
of the ship, the initial state of the ship, commands to thrusters, and
environmental disturbances. As we develop data-driven compensators
for the specific loading condition of the specific ship, the inertial and
hydrodynamic parameters are assumed to be constant. Wave and ocean
current data are not included in input features as they are mostly not
measured in real time. We assume commands to thrusters, the true
wind velocity, and the true wind direction are kept unchanged over
the prediction horizon. These assumptions yield the formulation of the
data-driven compensator 𝑓𝑁 :

[𝛥�̂�𝑚1 ,… , 𝛥�̂�𝑚𝑛𝑇 ,𝛥�̂�
𝑚
1 ,… , 𝛥�̂�𝑚𝑛𝑇 ]

= 𝑓𝑁 (𝝂𝟎, 𝑛
𝑝
0, 𝛿

𝑝
0 , 𝑛

𝑠
0, 𝛿

𝑠
0, 𝑢𝑟𝑤,0, 𝑣𝑟𝑤,0) (12)

The suffix 0 represents the values when making a prediction. The
input vector is z-score normalized with the statistic values in the
training dataset. The same values are applied to the normalization in
the validation and test datasets. In the experiments of this study, two
azimuth thrusters are manipulated with the same commands. Thereby,
(12) is reduced to:

[𝛥�̂�𝑚1 ,… , 𝛥�̂�𝑚𝑛𝑇 ,𝛥�̂�
𝑚
1 ,… , 𝛥�̂�𝑚𝑛𝑇 ]

= 𝑓𝑁 (𝝂𝟎, 𝑛0, 𝛿0, 𝑢𝑟𝑤,0, 𝑣𝑟𝑤,0) (13)

where 𝑛0 = 𝑛𝑝0 = 𝑛𝑠0 and 𝛿0 = 𝛿𝑝0 = 𝛿𝑠0.

3.3.2. Model training
This study employs a MultiLayer Perceptron (MLP), a fully-

connected feedforward neural network, which is one of the most classic
architectures of neural networks. It consists of an input layer, hidden
layer(s), and an output layer. tanh and linear functions are used for
the hidden layer(s) and the output layer, respectively. Weights and
biases are updated in the manner of the backpropagation by using
Adam (Kingma and Ba, 2015) optimizer so that it minimizes the mean
squared error between MLP’s output and target vectors. During train-
ing, we separate some maneuvers from a training–validation dataset
and keep them as a validation dataset. The validation loss is monitored
to avoid overfitting the training dataset. If the validation loss does not
improve over 200 epochs, the training is automatically terminated, and
the best model is used for the prediction (early stopping). In this study,
we build an MLP in the Pytorch (Paszke et al., 2019) framework in
Python.

3.3.3. Hyperparameter tuning
Hyperparameters are parameters to be fixed in advance to deter-

mine ML model’s architecture and training setting. A hyperparameter
tuning is important to achieve a good performance of ML models. In this
study, the number of hidden layers ∈ [1, 3], the number of units in hid-
den layer(s) ∈ [10, 500], the drop-out rate in the input layer ∈ [0.0, 1.0],
the drop-out rate in hidden layer(s) ∈ [0.0, 1.0], and the learning rate of
the optimizer ∈ [10−5, 10−1] are optimized. The hyperparameter tuning
is an optimization problem finding the best set of hyperparameters
that performs the best in the validation dataset. In this study, such an
optimum set is searched by using the Tree-structured Parzen Estimator
(TPE) optimizer in the optuna (Akiba et al., 2019) framework. The TPE
optimizer is one of the Bayesian optimization methods. It has been
widely used for the hyperparameter tuning with a great performance
and small computational time. Thereby, in the optuna, the TPE is
selected as a default algorithm. In this section, details of the TPE
algorithm are not revisited as it is not the focus of this study. For further
information, original articles (Bergstra et al., 2013, 2011) for the TPE
can be referred. The number of trials for the parameter search is 50 as

further drastic improvement of the validation loss was not found with
the larger number of trials than 50. The learning rate is searched in
the log domain. After 50 trials of the hyperparameter search, a set of
hyperparameters with the best performance in the validation dataset
was selected as a set of optimum hyperparameters. Hyperparameter
tuning was conducted independently for having different physics-based
models and dataset.

3.3.4. Model deployment
In the model deployment, the data-driven compensator makes pre-

diction [𝛥�̂�𝑚1 ,… , 𝛥�̂�𝑚𝑛𝑇 , 𝛥�̂�
𝑚
1 ,… , 𝛥�̂�𝑚𝑛𝑇 ] based on input vectors provided

by onboard sensors. By adding the model-based predicted position vec-
tor [�̂�𝑚1 ,… , �̂�𝑚𝑛𝑇 , �̂�

𝑚
1 ,… , �̂�𝑚𝑛𝑇 ], the cooperative prediction yields [�̂�1,… ,

�̂�𝑛𝑇 , �̂�1,… , �̂�𝑛𝑇 ] where �̂�𝑖 = 𝛥�̂�𝑚𝑖 +�̂�
𝑚
𝑖 and �̂�𝑖 = 𝛥�̂�𝑚𝑖 +�̂�

𝑚
𝑖 . It is re-converted

to the position vector in the 𝑁 − 𝐸 coordinate by (11).

3.4. Evaluation metrics

The accuracy of the physics-based model 𝐴 is evaluated with the
Root Mean Squared Error (RMSE) of the geometrical similarity between
true and predicted trajectories in the test dataset.

𝐴 = 1
𝑆

𝑆∑
𝑘=1

√
(𝑁𝑘 − �̂�𝑚

𝑘 )2 + (𝐸𝑘 − �̂�𝑚𝑘 )2 (14)

𝑁𝑘 and 𝐸𝑘 represent the true north and east positions of the 𝑘th
sample. �̂�𝑚

𝑘 , and �̂�𝑚𝑘 are the north and east positions of the 𝑘th
sample predicted by the physics-based model. 𝑆 is the number of data
samples. 𝑁𝐷 represents the number of maneuvers in the dataset used
for the training. The larger the 𝑁𝐷 is, the larger the dataset is. Hence,
cooperative models are characterized by the combination (𝐴,𝑁𝐷) in
this study. It should be noted that the ship dynamics is highly complex
and nonlinear, thereby, a single metric 𝐴 does not fully represent the
characteristic of the physics-based model.

The errors made by the cooperative model 𝐻 of (𝐴,𝑁𝐷) is evaluated
with the RMSE of the geometrical similarity between the true and
predicted trajectories made by the cooperative model:

𝐻 = 1
𝑆

𝑆∑
𝑘=1

√
(𝑁𝑘 − �̂�𝑘)2 + (𝐸𝑘 − �̂�𝑘)2 (15)

where �̂�𝑘 and �̂�𝑘 are the north and east positions of the 𝑘th sample,
predicted by the cooperative model. It should be noted that 𝐴 is not
used for selecting a good physics-based model for better cooperative
performance since it is defined in the test dataset. 𝐴 is only employed
for presenting the relationship between 𝐻 and (𝐴,𝑁𝐷) in the test
dataset to develop a better understanding of the contribution of the
physics-based model and data to the cooperative performance. If 𝑁𝐷 =
0, we substitute �̂�𝑚

𝑘 and �̂�𝑚𝑘 for �̂�𝑘 and �̂�𝑘 in graphs since the coop-
erative model without using any data is regarded as the physics-based
model. If the pure data-driven model is used, �̂�𝑘 and �̂�𝑘 are calculated
without the help of the physics-based model. In the application, large
prediction errors become an issue since they could negatively affect our
decision making ending up with fatal consequences. Thereby, we define
the 90% of percentile of

√
(𝑁𝑘 − �̂�𝑘)2 + (𝐸𝑘 − �̂�𝑘)2 as 𝐻90 to examine

the occurrence of large prediction errors.

4. Simulation experiment

Before performing full-scale experiments in Section 5, we examine
the contribution of the physics-based model and data to the cooperative
performance in the simulation environment. In the simulation environ-
ment, we can build physics-based models with different accuracy in a
flexible manner since the ground-truth model is known. In addition, we
can efficiently investigate the impact of data amount on the cooperative
performance as we can generate virtual maneuvers as much as we
need. Since trajectory predictions are used for the purpose of the early
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Fig. 5. Experimental setting.

Fig. 6. Trajectories of maneuvers employed in the simulation experiment. Black
trajectories show maneuvers grouped into the training–validation dataset and red
trajectories show maneuvers grouped into the test dataset. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

warning of the collision risk, 𝑇 , which is longer than the time that the
ship can take evasive actions, is preferable for the evaluation of ship
dynamic models. In the simulation experiment, the cooperative model
was trained and evaluated for making 𝑇 = 30s trajectory prediction.

4.1. Overview

The overview of simulation experiments in this study is illustrated in
Fig. 5. 18 different physics-based models were used in the cooperative
models. A dataset with 120 maneuvers was prepared in this study.
They are explained in detail in the following subsections. 20 maneuvers
in the dataset were randomly selected for the test dataset and kept
untouched during training and validation of the cooperative models. By
selecting 𝑁𝐷 maneuvers from the remaining 100 maneuvers, we built
the training and validation sub dataset 𝑁𝐷 with the different number
of maneuvers. Please note that 𝑁𝐷=𝑎 ⊂ 𝑁𝐷=𝑏 if 𝑎 < 𝑏. In this study,
ten sub datasets from 𝑁𝐷=10 to 𝑁𝐷=100 were prepared. We trained
the cooperative models with different physics-based models and sub

datasets; thus examining the impact of the accuracy of the physics-
based model and dataset on the cooperative performance. For the
different combinations of the physics-based models and sub datasets,
hyperparameter tuning was conducted independently. In 𝑁𝐷 , 80% of
maneuvers were used for the training and the remaining 20% were
used for the validation. The performance of the trained cooperative
model was examined by using 20 maneuvers in the test dataset. The
test dataset was always identical regardless of which sub dataset was
used during training.

4.2. Dataset

A simulation dataset was generated by using a six Degrees of
Freedom (DoF) seakeeping and maneuvering model of the R/V Gun-
nerus, which is a 28.9m-length Norwegian University of Science and
Technology (NTNU)’s research ship. It is a high-fidelity ship dynamic
model provided in the Open Simulation Platform project, which is a
joint project with Kongsberg Maritime, DNV, SINTEF, and NTNU. It
is composed of a hull model (Ross, 2008; Hassani et al., 2015) and
thruster models running on the simulation platform Vico (Hatledal
et al., 2021). Two azimuth thrusters were manipulated simultaneously.
120 unique turning maneuvers were generated by randomly selecting
thruster revolution 𝑛 ∈ [50, 200] Revolution Per Minute (RPM), and
thruster angle 𝛿 ∈ [−50, 50]◦. The ship’s motion was disturbed by the
constant wind and irregular waves in the simulation. The true wind
direction 𝛽𝑤 ∈ [0, 360)◦, the true wind speed 𝑉𝑤 ∈ [0, 6] m∕s, and the
global wave direction ∈ [0, 360)◦ are randomly chosen for each maneu-
ver. The wave spectrum was JONSWAP spectrum (Hasselmann et al.,
1973) with 1.0 m significant wave height and 5.0s significant wave
period. The time step of the simulation environment was 0.05s. 50 s
time series were saved in 1 Hz with 30 s future trajectory at each time
step for each maneuver. Future trajectories were used only for training
and evaluation purposes. Generated trajectories are shown in Fig. 6. A
snapshot of a simulation experiment is shown in Fig. 2(a). Minimum,
mean, and maximum input values of the data-driven compensator in
datasets are shown in Table 1.

4.3. Physics-based models

In this experiment, cooperative models were trained with different
physics-based models. They were developed by shifting parameters
of the ground-truth model used in the simulation environment. This
procedure introduced the model’s uncertainty that we had in reality
due to poorly identified parameters. We randomly produced 18 physics-
based models with parameter uncertainty to examine the impact of the
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Table 1
Minimum, mean, and maximum input values in the sub datasets for the training and validation and the test dataset in the simulation experiment.

10 20 30 40 50 60 70 80 90 100 Test

𝑢0 (m/s)
min 0.3 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1
mean 2.2 2.3 2.2 2.2 2.2 2.2 2.3 2.4 2.4 2.4 1.9
max 5.4 5.4 5.4 5.4 5.8 5.8 5.8 6.0 6.0 6.0 5.3

𝑣0 (m/s)
min −0.9 −0.9 −0.9 −1.1 −1.1 −1.1 −1.1 −1.1 −1.1 −1.1 −0.8
mean 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 0.8

𝑟0 (◦/s)
min −8.2 −8.2 −8.2 −8.2 −8.2 −8.2 −8.2 −8.2 −8.2 −8.2 −3.9
mean −0.5 −0.3 −0.4 −0.1 −0.1 −0.1 0.0 0.1 −0.1 0.0 0.2
max 6.4 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 5.2

𝑛0 (RPM)
min 62.8 62.8 55.9 50.4 50.4 50.4 50.4 50.4 50.4 50.4 50.0
mean 133.4 133.3 126.9 126.2 122.7 123.6 125.2 128.9 130.1 129.4 103.9
max 191.7 192.4 192.4 192.4 199.6 199.6 199.6 199.6 199.6 199.6 189.1

𝛿0 (◦)
min −37.3 −45.8 −45.8 −47.4 −47.4 −47.4 −47.4 −48.7 −48.7 −48.7 −38.7
mean 1.7 0.8 1.9 −0.4 −0.7 −2.3 −2.6 −3.6 −2.1 −2.7 0.7
max 48.3 48.3 48.3 48.3 48.3 48.3 48.3 48.3 49.4 49.4 41.4

𝑢𝑟𝑤,0 (m/s)
min −4.0 −4.0 −4.0 −4.0 −4.2 −4.2 −4.4 −4.4 −4.4 −4.4 −3.0
mean 2.9 3.1 3.1 2.7 2.5 2.5 2.6 2.7 2.8 2.8 2.5
max 7.5 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.4 10.4 7.4

𝑣𝑟𝑤,0 (m/s)
min −5.1 −5.4 −6.0 −6.0 −6.0 −6.0 −6.0 −6.0 −6.0 −6.0 −6.4
mean 0.3 0.1 −0.1 −0.1 0.0 0.0 −0.2 −0.1 0.1 0.0 −0.4
max 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 6.3 6.3 5.8

accuracy of the physics-based model on the cooperative performance.
18 models were grouped into moderately- and highly-uncertain models.
It should be noted that none of them were identical to the ground-
truth model used in the simulation. They produced prediction errors
at different levels due to different reasons.

4.3.1. Moderately-uncertain models
We prepared ten physics-based models by randomly shifting pa-

rameters of the ground-truth model in 𝑫(𝝂𝒓). They were grouped into
moderately-uncertain models in this paper. The ground-truth model has
32 hydrodynamic derivatives 𝜃1 − 𝜃32 in 𝑫(𝝂𝒓) (such as 𝑋𝐿

𝑢𝑢, see Ross
et al. (2015) for details). A set of disturbed parameters 𝜃′𝑖,𝑗 the 𝑖th
hydrodynamic derivative of the 𝑗th moderately-uncertain model was
introduced as:

𝜃′𝑖,𝑗 = 𝛥𝑖,𝑗𝜃𝑖 (16)

0.4 < 𝛥𝑖,𝑗 < 1.6 was randomly selected for the 𝑖th hydrodynamic
derivative of the 𝑗th moderately-uncertain model. Although they made
prediction errors due to poorly identified parameters, predicted tra-
jectories they made could represent the basic characteristics of the
true dynamics of the targeting ship. The mass, inertia moment, added-
mass coefficients, and thruster models were kept unchanged from the
ground-truth model. This situation could occur if we copy and paste
hydrodynamic parameters of similar ships, we have a physics-based
model adjusted to the different operational conditions, and so on.

4.3.2. Highly-uncertain models
We prepared another eight physics-based models by randomly shift-

ing the mass, inertia moment, added-mass coefficients, and propeller
diameter of the thruster model up to 40%, in the same procedure as
(16), in addition to the parameter shift introduced in the moderately-
uncertain models. The trajectories they predicted had very different
characteristics from the true trajectories since the basic parameters
of the model were shifted. This situation could occur if we copy and
paste parameters of very different ships or actuator models have large
uncertainty.

4.3.3. No model
If no model was assigned to the physics-based model, a pure data-

driven model was built in the experiment. It was trained in the same
manner as the cooperative model, however, the target vector was not
the residual vector [𝛥�̂�𝑚1 ,… , 𝛥�̂�𝑚𝑛𝑇 , 𝛥�̂�

𝑚
1 ,… , 𝛥�̂�𝑚𝑛𝑇 ] but the future position

vector [�̂�1,… , �̂�𝑛𝑇 , �̂�1,… , �̂�𝑛𝑇 ] without the help of any model-based
guides.

4.4. Results

Snapshots in Fig. 7 show predictions with different physics-based
models with different sub datasets at one of the example prediction
time instance in the test dataset. Black dotted lines show the 30 s true
trajectories, which are the same in the three subfigures. In Fig. 7(a),
predicted trajectories made by pure data-driven models trained with
10, 30, and 100 are shown. Since they were not supported by
any prior knowledge of ship dynamics, it is seen that they needed
a large dataset to make predictions accurately. Models trained with
10 and 30 ended up making discontinuous trajectories with less
similarity to the true trajectory. In Fig. 7(b), predicted trajectories
made by cooperative models with one of the moderately uncertain
physics-based models with 10, 30, and 100 are shown. Although
physics-based models made prediction error in (b), it was rather small
and captured the basic geometry of the true trajectory. It is seen that
data-driven compensators compensated for such errors well only by
using a small dataset 10. As the pure data-driven model with 10 failed
at making an accurate prediction in (a), it implies that the physics-
based model successfully supported the cooperative performance. In
Fig. 7(c), predicted trajectories made by cooperative models with one
of the highly-uncertain physics-based models with 10, 30, and 100
are shown. In (c), a trajectory predicted by the physics-based model
notably diverges from the true trajectory. The poor performance of
the physics-based model was induced by its parameters with higher
uncertainty. We see it deteriorated the cooperative performance with
10 and 30 significantly while the performances in (b) were very
good with the same datasets. Moreover, although the large prediction
error was mitigated by having a large sub dataset 100, the cooperative
performance with 100 in (b) outperforms that in (c).

An overview of results is illustrated in Fig. 8. As addressed in
Section 3.4, this figure shows the relationship between the errors made
by the cooperative model 𝐻 as a height of bars and its (𝐴,𝑁𝐷) as a
position of bars on the bottom plane, where 𝐴 denotes the errors made
by the physics-based model and 𝑁𝐷 denotes the number of maneuvers
in the training dataset. For instance, the height of the bar located at the
small 𝐴 and large 𝑁𝐷 on the bottom plane shows the errors made by
the cooperative model with a combination of such an accurate physics-
based model and a large dataset for the training. Bars at 𝑁𝐷 = 0 shows
the original performance of the physics-based model without using any
data for the training. We see that most cooperative models with highly-
uncertain physics-based models made larger errors than cooperative
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Fig. 7. Snapshots of trajectory predictions made by (a) the pure data-driven model, (b) the cooperative model with one of the moderately-uncertain physics-based models, and
(c) the cooperative model with one of the highly uncertain physics-based models with sub dataset 10, 30, and 100.

Fig. 8. The effect of the errors of the physics-based model 𝐴 and the data amount 𝑁𝐷
on the errors made by the cooperative model 𝐻 in the test dataset.

models with moderately-uncertain physics-based models with the same
amount of data for training. In addition, a trend was seen that the
higher cooperative performance was achieved with a larger dataset and
a more accurate physics-based model. A good cooperative performance
was achieved by either having an accurate physics-based model or
having a large dataset; thereby, they are complementary to each other
to some extent.

Fig. 9 is a projected graph of Fig. 8 on the 𝑁𝐷 − 𝐻 plane for
better visibility of absolute values of the cooperative performance. In
Fig. 9, a trend is seen that the higher the accuracy of the physics-based
model was, the higher the cooperative performance was, especially
when the dataset was small. At the same time, cooperative models with
a wide range of physics-based models, including some highly-uncertain

Fig. 9. A projected 2D graph of the effect of the accuracy of the physics-based model
𝐴 and the data amount 𝑁𝐷 on the errors made by the cooperative model 𝐻 in the
test dataset.

models with relatively better performance, were found to outperform
the pure data-driven model. It implies the possibility of the cooperative
framework of building an accurate model with a compromised physics-
based model and a small dataset. However, it does not mean any
physics-based models are acceptable as a foundation of cooperative
models. It is clearly seen that some cooperative models with highly-
uncertain physics-based models ended up with poorer performance
than the pure data-driven models. In such cases, physics-based models
seem to not introduce prior knowledge of ship dynamics but introduce
disturbances in the training. Thereby, the negative impact of having
such physics-based models with the poor performance on the coopera-
tive performance remained even if we had a large dataset. In particular,
the performance of the cooperative model with the most inaccurate
physics-based model fluctuated much depending on the sub dataset
used for the training. It is seemingly caused by its high data dependency
with a physics-based model introducing disturbance to the training.

Fig. 10 shows the relationship between 𝑁𝐷 and 𝐻90 of models. Its
trend is similar to that in Fig. 9. That means findings in Fig. 10 are
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Fig. 10. A projected 2D graph of the effect of the accuracy of the physics-based model
𝐴 and the data amount 𝑁𝐷 on the 90% percentile cooperative performance 𝐻90 in the
test dataset.

also applied to the strategy of how we reduce the occurrence of large
prediction errors by using the physics-based model and data in this
experiment.

5. Full-scale experiment

Hereinafter, we further explore the reasonable range of the physics-
based model’s accuracy on the cooperative performance in the real-life
project by employing a small dataset of a full-scale experiment in the
open sea. This full-scale experiment validates that we can build an
accurate ship dynamic model in the practical project by combining
a compromised physics-based model and a small dataset rather than
relying on either of them. A snapshot of the experiment is shown in
Fig. 2(b).

5.1. Overview

We made 𝑇 = 15s trajectory predictions in the full-scale experi-
ment since thruster commands changed drastically over the prediction
horizon longer than 𝑇 = 15s in a full-scale zigzag maneuvers. In
addition, in the full-scale experiment, having too much uncertainty
from unexpectable environmental disturbances in the longer prediction
horizon makes a fair comparison between dynamic models challenging.
Due to this limitation, errors over the prediction horizon from 15 s to
30 s have been widely used as a metrics of the accuracy of ship dynamic
models in the full-scale experiment (see Skulstad et al. (2021a) and
Wang et al. (2021)). The zigzag maneuver is one of the maneuvers that
the International Towing Tank Conference (the ITTC) recommends as
a full-scale maneuvering trials procedure. During the zigzag maneuver,
ship’s heading swings from side to side. The detailed definition of the
zigzag maneuver can be referred to The International Towing Tank
Conference (2002). In the full-scale experiment, we investigated the
cooperative performances with different physics-based models and a
small dataset to examine the framework building an accurate model
with a compromised physics-based model and a small dataset.

5.2. Dataset

We conducted full-scale experiments in the open sea on Novem-
ber 21st, 2019 in Trondheim, Norway. The 33.9m-length R/V Gun-
nerus was employed. Under the mild weather condition, we conducted
10◦/10◦, 15◦/15◦, 20◦/20◦, 25◦/25◦, and 30◦/30◦ zigzag maneuvers

with high (𝑛 ≈ 145RPM) and low (𝑛 ≈ 125RPM) surge velocities.
Each maneuver was saved in 1 Hz and cut into 85 s time series
with 15 s future positions at each time step. The number of sampled
maneuvers was 16. A 20◦/20◦ zigzag maneuver with the high surge
velocity was kept untouched for the test dataset. This maneuver was not
included in the other maneuvers in the training–validation dataset. Dur-
ing the full-scale experiment, onboard sensors provided the following
measurements:

• Positions: North and East positions in the NED coordinate in
addition to the heading.

• Velocities: The surge, sway, and yaw velocities.
• Commands: Thruster revolution and angle of the port- and
starboard-azimuth thrusters.

• Wind: The true wind direction and velocity.
During maneuvers, same commands were given to the two azimuth
thrusters and the bow thruster was turned off. Except for the maneuver
in the test dataset, 15 maneuvers were used for the training. The three-
fold cross validation was conducted by using 15 maneuvers in the
training and validation dataset. Minimum, mean, and maximum input
values of the data-driven compensator in datasets are shown in Table 2.

5.3. Physics-based models

In the full-scale experiment, we employed two physics-based mod-
els; namely, accurate and inaccurate physics-based models to examine
the impact of having different physics-based models on the cooperative
performance with a real-life small dataset.

5.3.1. Accurate physics-based model
Before the full-scale experiment, the R/V Gunnerus was elongated

from 28.9 m to 33.9 m. However, the corresponding ship dynamic
model has not been fully developed. In this study, we employ a ship
dynamic model of the 28.9 m R/V Gunnerus before the elongation as
a physics-based model since it well captures the dynamic behavior of
the elongated R/V Gunnerus as well. It is referred to as the accurate
physics-based model in this experiment. It represents an optimistic
assumption that an accurate physics-based model is available in the
project.

5.3.2. Inaccurate physics-based model
In an inaccurate physics-based model, we shifted dominant damping

coefficients in addition to removing higher-order damping coefficients
in 𝑫(𝝂𝒓). The inaccurate physics-based model represents a pessimistic
assumption that the available physics-based model performs poorly due
to different reasons.

5.3.3. No model
If no physics-based model was given, as we did in the simulation

experiment, a pure data-driven model was built without the help of
the inaccurate physics-based model.

5.4. Results

In Fig. 11, snapshots of 15 s trajectory predictions of the maneuver
in the test dataset at 𝑡 = 20s in (a), 𝑡 = 40s in (b), and 𝑡 = 60s
in (c) are shown. Time histories of the thruster revolution and angle
of this maneuver are shown in Fig. 12. In Fig. 11(a), although the
cooperative model with the accurate physics-based model made smaller
errors compared to the other models, all models deviated from the true
trajectory notably. In the full-scale experiment, as the dataset used for
training was limited, it was seen that cooperative models did not always
make a good prediction seemingly due to the lack of experience during
training. On the other hand, in (b) and (c), cooperative models notably
reduced prediction errors made by the corresponding physics-based
models and significantly outperformed the pure data-driven model. In
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Fig. 11. Snapshots of trajectory predictions at (a) 20 s, (b) 40 s, and (c) 60 s of the maneuver in the test dataset.

Fig. 12. A time series of thruster angle 𝛿 and revolution 𝑛 in the example maneuvers in the test dataset shown in Fig. 11.

Fig. 13. Time series of the average prediction error 𝐻 in the 15 s prediction horizon at each prediction instance of the maneuver in the test dataset.

(b), the cooperative model with the inaccurate physics-based model
performed better than the accurate physics-based model. In (c), its
performance was comparable to the accurate physics-based model.
Hence, although the cooperative model with the inaccurate physics-
based model did not outperform that with the accurate physics-based
model, the contribution of having such a compromised physics-based
model was clearly discerned. This finding corresponds to the results
presented in the simulation experiment.

Time histories of the prediction error 𝐻 for pure data-driven, pure
physics-based, and cooperative models are shown in Fig. 13. The
prediction performance fluctuated as time advanced due to having
epistemic and aleatoric uncertainties. Thereby, it is seen that models
did not make accurate predictions at some time steps, as shown in
Fig. 11(a), however, the overall prediction performance of the coop-
erative model outperformed the pure data-driven and corresponding
physics-based models. The performance of the cooperative model with

the inaccurate physics-based model was mostly comparable with that
of the accurate physics-based model.

Fig. 14 shows the average prediction error 𝐻 in the 15 s prediction
horizon at each prediction instance made by the pure data-driven, pure
physics-based, and cooperative models. The prediction error becomes
larger in the distant horizon as we have much uncertainty in the
distant future. The pure data-driven model made larger prediction
errors than the other models over the prediction horizon. It highlights
the benefit of having the physics-based model in terms of prediction
performance. Although the inaccurate physics-based model did not
perform well in the experiment over the prediction horizon, its pre-
diction error was well compensated for by using the small dataset.
Its overall performance is comparable to that of the accurate physics-
based model, which requires much time & effort to be developed. In
addition, in Fig. 14, the discrepancy of the prediction error 𝐻 made
by the accurate and inaccurate physics-based model was found to be
large. On the other hand, by using the small dataset, the discrepancy
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Fig. 14. The prediction error 𝐻 over the prediction horizon made by pure data-driven, pure physics-based, and cooperative models.

Table 2
Maximum and Minimum input values in the training and validation
dataset and the test dataset in the full-scale experiment.

Training–validation Test

𝑢0 (m/s)
min 2.4 3.5
mean 4.1 3.8
max 5.0 4.7

𝑣0 (m/s)
min −0.6 −0.3
mean 0.2 0.2
max 0.8 0.7

𝑟0 (◦/s)
min −3.9 −3.9
mean −0.1 −0.1
max 4.0 3.8

𝑛0 (RPM)
min 115.2 123.8
mean 136.5 144.6
max 145.1 146.1

𝛿0 (◦)
min −29.7 −23.9
mean 0.8 1.2
max 29.8 25.9

𝑢𝑟𝑤,0 (m/s)
min −3.3 −0.8
mean 0.6 0.8
max 7.5 2.8

𝑣𝑟𝑤,0 (m/s)
min −5.8 −4.3
mean −0.8 −2.9
max 6.0 −0.2

between corresponding cooperative performances becomes smaller. It
implies the robustness of the cooperative model to the poor accuracy
of the physics-based model.

6. Discussion

In this section, key findings in the simulation and full-scale exper-
iments related to the open question ‘‘how do a physics-based model
and data cooperate with each other in the cooperative model?’’ are
summarized. In addition, this section clearly presents our suggestions
for industrial applications based on the key findings. In the end, the
limitations of this work and future works are discussed.

6.1. Key findings

In the simulation and full-scale experiments, cooperative models
were found to work better with a wide range of physics-based
models than the pure data-driven models. It indicates the coop-
erative model effectively introduced prior knowledge packaged in a
wide range of physics-based models into the training in addition to
acting as a stable foundation for making a prediction. The cooperative
performance was notably improved by having larger datasets, thereby,
the cooperative model was found to be robust to the poor accuracy of
the physics-based model. On the other hand, the contribution of the
physics-based model was critical when the dataset was small. If large
datasets are available, the low accuracy of the physics-based model can
be compensated to some extent.

In the cooperative models, the most important perspective was to
balance the physics-based model and data rather than solely rely-
ing on either of them. In the experiments, in some cases, it was seen
that the combination of a moderately-accurate physics-based model and
a relatively-small dataset outperformed pure data-driven models with
larger datasets or more highly-accurate physics-based models.

Although cooperative models were found to be robust to the poor
accuracy of the physics-based model by being trained in a data-driven
manner, we have no such thing as a general ship model that
serves as a fundamental physics-based model of any ships. Simula-
tion experiments in this study showed that a significantly inaccurate
physics-based model may disturb the training of cooperative models
instead of facilitating it with prior knowledge of ship dynamics. Its
negative impact was found to remain even with a large dataset and it
induced the instability of the performance due to them heavily relying
on data with a disturbing foundation. Such models are not acceptable
as a foundation and we should pay much attention to avoid using them.

Unlike the simulation experiment in Section 4, the full-scale exper-
iment in Section 5 represents a real-life problem setting including the
impact of real-world environmental disturbances and dataset. Thereby,
the result in Section 5 validated the practical application of the frame-
work of building an accurate model with a compromised physics-based
model and a small dataset.
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6.2. Suggestions for industrial applications

Findings in this study bring us to some suggestions for indus-
trial applications. First, we should devote more effort to develop-
ing methodologies that more easily and efficiently find highly-
accurate physics-based models from the database. It is expected for
shipyards to accumulate results of numerical simulations, model/full-
scale experiments, and hopefully identified parameters of the physics-
based model of similar ships in their database. We could find a physics-
based model of similar ships in the database in a more time- and cost-
effective manner compared to the data collection; thereby, it would be
a first priority in the model development. Having an accurate physics-
based model makes the cooperative performance better, especially
when a dataset is small. However, only a few studies (e.g., Mei et al.
(2019)) have focused on the importance of this practice.

Second, a key technology in the future would be how to build
a simplified physics-based model easily. Probably, we would not be
able to find a physics-based model of similar ships from the database,
especially when the project is carried out by small stakeholders without
diverse experiences. In such settings, it is important to develop a
physics-based model of which performance is in the acceptable range.
With such a compromised model, we can improve the performance by
collecting a limited amount of data as we showed in Section 5. It needs
to be mentioned that we have criteria to be eligible for being a founda-
tion model, although a wide range of physics-based models was found
to be helpful. If the performance is too poor, it ruins the cooperative
performance instead of helping. The co-simulation technology (e.g., Ha-
tledal et al. (2021)) would be useful to build a simplified physics-based
model only by assembling sub models. Such technology has not been
fully applied to the maritime industry, however, it has great potential
to provide a physics-based model with acceptable performance easily
and readily.

6.3. Limitations

This study conducted experimental investigations by using different
case studies in the simulation and full-scale experiments. Thereby, it
is plausible to say that the findings in this study would provide basic
insights for the practical applications of cooperative models. However,
in future work, we must check how general our findings are in the
theoretical, experimental, and practical manners involving more case
studies.

This study employed a data-driven model without a physics-based
model as a baseline. It does not represent a definite limitation of the
data-driven approach itself. By using state-of-the-art ML architectures,
pure data-driven models might perform better than we presented in this
paper. However, in this field, the maritime industry does not apply such
complex ML models without a physics foundation in their industrial
applications due to the lack of the model’s interpretability. In addition,
such models would require great effort in their tuning and training.
Thereby, good performance with a simple ML architecture could be
seen as a practical benefit of having a physics-based model.

In the future, our research effort should be paid to developing
methodologies how to balance our effort dedicated to having a physics-
based model and collecting data. This study presented its basic un-
derstandings, however, it has not been revealed how to balance two
methodologies in industrial practices and how it reduces the time &
cost dedicated to the model development.

Cooperative models offer the development of the ship dynamic
model in a timely and easy fashion for some applications including the
situation awareness and onboard decision support. It can be also used
as an initial-stage model of the project. However, it does not intend
to substitute conventional ship dynamic models in all applications. For
example, they would face a challenge in ensuring stability when they
are fully implemented in the control system.

This study focused on challenges in building a ship dynamic model.
Such a model is useful for a short-term prediction, estimating maneu-
verability, and building a simulator for training purposes. Dynamic
models do not have information about the surrounding geography,
traffic, and future environmental disturbances. Thereby, it should be
noted that it is not suitable for making a long-term trajectory prediction
such as 30 min.

7. Conclusion

In the era of ship automation in the future, precise ship dynamic
models play an integral role in making the early warning of the future
collision risks. In practice, it has been a great challenge how we develop
such a model while minimizing the time & cost dedicated to the model
development. A cooperative ship dynamic model, which employs a
data-driven model for compensating for the position error made by
the physics-based model, was presented in recent studies. It develops
a ship dynamic model in a non-parametric manner exploiting data
while having an interpretable and stable foundation of the physics-
based model. Although it seems to be a promising direction to combine
two approaches to overcome the time & cost challenges in industrial
practices, it has been an open question ‘‘how much does the cooperative
model benefit from physics knowledge and observation data?’’. This
study conducted simulation and full-scale experiments to offer one
solution through case studies and explore a safe zone of cooperative
models in the physics-based model’s accuracy and the data amount
dimensions. In the simulation experiments, the performances of the
cooperative models with different physics-based models and different
datasets were examined. In addition, in the full-scale experiment, the
impact of having different physics-based models on the cooperative
performance with a real-life small dataset was investigated. Findings
in the experiments showed that the balance of the accuracy of the
physics-based model and the data amount is key to achieve a good
performance of the cooperative model rather than relying on either
of them. Although a wide range of physics-based models successfully
facilitated the model identification, however, it disturbed the training
if it was too inaccurate. In the full-scale experiment, a framework of
building an accurate model with a compromised physics-based model
and a small dataset was validated. Hence, for reducing the time & cost
challenges in the cooperative framework, it would be pivotal to find
an accurate physics-based model from database or build a simplified
physics-based model with acceptable performance efficiently.
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A B S T R A C T

System identification (SI) approach identifies ship maneuvering models using data from free-running maneu-
vers. As it is impossible to comprehensively validate model performance, a reliable model must be built within
a consistent range with similar ships’ models. However, in the SI approach, models are greatly influenced by the
dataset design and feature selection, leading to the instability of model identification and the failure to ensure
such consistency. To address this issue, our new idea introduces similar ship’s model into model identification
as knowledge foundation. First, we select a similar ship with three-step procedure, then build a new model by
refining model parameters for a similar ship. Such a refinement is conducted with additional l2 regularization
term in ridge regression, which balances knowledge and data-driven refinement. Designing the safe range of
such refinement with hyperparameters, this study helps designers find a robust-and-accurate model within
designed safe zones. In simulation experiments, we built knowledge connection between 161 m and 175 m
container ships. By using the well-validated model of the former, a robust-and-accurate model for the latter
was easily built by using a limited dataset, resulting in excellent model performance. This study makes the SI
approach more promising by incorporating knowledge connections between similar ships.

1. Introduction

Marine accidents lead to human, economical, and environmental
damages. To avoid such losses, the maritime industry has been giving
marine officers adequate training and performing sufficient validation
of control algorithms. Having critical scenarios is key for such training
and validation, however, we hardly conduct real-world experiments
due to safety and cost reasons. Thereby, simulators have provided a
cyber world where we can experience an illusion of maneuvering. In
the field of the aviation (Myers et al., 2018) and automobile (Martín-
delosReyes et al., 2019), in simulators, novice officers conduct basic
training, and validation works of systems are performed. The maritime
industry is no exception in this trend (Perez and Fossen, 2009).

For ensuring the quality of virtual maneuvering experiences, a
fundamental element of marine simulators is ship maneuvering models.
They describe hydrodynamic forces and moments acting on a ship in
the form of polynomials with states of ship motion (velocities and
accelerations) and control inputs. A complex interaction between a hull,
propeller, and rudder is represented in coefficients of the polynomi-
als. Mostly, maneuvering models have a large number of coefficients,
which act as model parameters surrogating such complexity. Model

∗ Corresponding author.
E-mail address: motoyasu.kanazawa@ntnu.no (M. Kanazawa).

parameters are dependent on multiple factors that include, but not
limited to, hull shape, water depth, and ship draft. It is hard work for
designers to identify parameters for a robust-and-accurate model for
every ship for every condition, one by one, by conducting experiments.
Two approaches are known for experimentally identifying the param-
eters; namely, Captive Model Test (CMT) and System Identification
(SI) approaches (The International Towing Tank Conference, 2014).
The CMT approach groups one Parameter Identification (PI) problem
into several sub-PI problems composed of corresponding sub regression
models and sub experiments. Although it has been regarded as the
most reliable data source, it requires much expertise, effort, time,
and special facilities. Thereby, for delivering models for many ships
on simulators promptly, the SI approach gains attention recently. It
identifies a large number of parameters all at once only with using a
few trajectories of free-running maneuvers such as turning-circle and
zigzag maneuvers without fixing a ship to a platform. Unlike the CMT
approach, it delivers maneuvering models readily and at low cost. In
addition, it is helpful to avoid scale-effect, which is a difference in
model performance due to differences between model- and full-scale
phenomena, by employing full-scale data in the SI approach.
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However, there exists a practical challenge that such an all-at-once
PI of the SI approach leads to parameters having deceptive values
due to multicollinearity between parameters. This challenge is known
as parameter drift (Luo and Li, 2017). Once it happens, identified
models lack robustness and accuracy. To avoid parameter drift, in the SI
approach, designers have devoted significant effort in (1) data design:
such as the optimization of excitation signals (Wang et al., 2020) and
smoothing of experiment data (Wang et al., 2021b), (2) model design:
optimizing a maneuvering model based on domain knowledge (Luo and
Li, 2017) and feature-selection technique (Luo and Zou, 2009), and
(3) PI algorithm design: selection and optimization of machine-learning
algorithms for PI (Wang et al., 2021b). Unlike the CMT approach that
highly restricts impacts of (1)–(3) within sub regression models, poor
conduct of (1)–(3) in the SI approach could have catastrophic effects
on model performance and robustness. In this field, models cannot be
validated in a way that checks their performance all over the domain
due to the prohibitive cost of data collection. Therefore, experts need
to play active roles in certifying models based on whether they have
sufficient confidence in model’s validity (Sargent, 2010). A source of
such confidence comes from the fact that models are built within a safe
zone: the range where experts believe they are reasonable in light of the
consistency between models for similar ships. Introducing the safe zone
brings a stability to the PI while reducing risk that poor conduct of (1)–
(3) easily leads to a catastrophic failure of modeling. The SI approach
has been overlooking this perspective.

To offer one solution to this issue, this study proposes a new
framework called model refinement in the SI approach by bridging
two similar ships. When building a maneuvering model for a new ship
with its free-running data, a model built in the CMT approach for a
similar ship may be available. In this study, the former ship is referred
to as a target ship being a target of the PI. The latter ship is referred
to as a source ship acting as a knowledge safeguard. In such a case,
designers would need to prioritize the model for the similar ship into
building the new model for the new ship for having consistency be-
tween models for two similar ships. Otherwise, parameters are searched
globally highly depending on the collected dataset. In addition, it is
hard for experts to have sufficient confidence in model’s validity if a
new model is detached from connections between models. To prioritize
such a connection in modeling and bridge dynamics of similar ships,
this study employs parameters of the similar ship as a 𝑙2 constraint
in the ridge regression algorithm when identifying parameters for the
new ship with free-running data of the new ship. It aims at refusing to
update parameters into the range where designers do not justify such an
update. Parameters of the similar ship are introduced as a safeguard in
the data-driven calibration for controlling the degree of contribution
of data infused into such a knowledge foundation. It helps designers
find a robust-and-accurate model within the safe zone. The proposed
framework gives models of similar ships the value as a knowledge asset
bringing such benefits into building a new model for a new ship.

To validate the present framework, we conducted a case study on
the widely-used Marine Systems Simulator (MSS) developed by Perez
and Fossen (2009). We took an Abkowitz model (M.A., 1964) of a
Mariner class ship, which is a 161m-length container ship, as a source
ship. The Abkowitz model for the source ship has been developed
with CMTs and widely-used. A target ship was a 175m-length SR108
container ship. Contributions of the present work are summarized as
follows:

• Proposing a new framework that introduces parameters of a
maneuvering model for a similar ship into building a new model
for a new ship with free-running data. By using such a knowledge
foundation, designers introduce a knowledge safeguard in the
data-driven calibration for controlling the degree of contribution
of data infused into such a knowledge foundation.

• Helping them easily find a robust-and-accurate model within
the range defined by such a knowledge safeguard. It remedies
effort dedicated to carefully designing experiments, models, and
identification algorithms.

• Verifying the proposed approach in the simulation case study,
which conducted a knowledge transfer between maneuvers of
similar ships.

This paper unfolds as follows. In Section 2, previous works related to
the PI and knowledge transfer of ship maneuvering models will be
revisited. Section 3 illustrates the proposed framework. The case study
will be presented in Section 4. Conclusions are given in Section 5.

2. Related works

In this section, previous works related to the PI with free-running
data are revisited to clarify the novelty of the proposed framework
bridging two ships’ dynamics. As mentioned, the biggest challenge
of the SI approach is parameter drift. This section briefly describes
traditional approaches for the data design, model design, and PI algo-
rithm design to alleviate it. In addition, this section also recapitulates
recent works making a synergy of knowledge and data for building ship
maneuvering models.

2.1. Traditional approaches for avoiding parameter drift

2.1.1. Data design
Since the SI approach highly relies on a collected dataset, it is of

great importance to carefully design the dataset. Wang et al. (2020)
optimized excitation signals during experiments such that collected
datasets have rich information about ship dynamics. Ljungberg et al.
(2022) discussed how to design experiments for identification of marine
models. It should be noted that the experiment design is restricted
by physical (e.g., width and length of experiment tanks) and time
(e.g., experiment schedule) constraints in practice. Besides experiment
designs, it is popular to denoise signals in the collected dataset by
applying filtering techniques such as the Savitzky–Golay filter (Wang
et al., 2021b) or the singular value decomposition (Xu et al., 2020).

2.1.2. Model design
To enhance the accuracy and robustness of maneuvering models, it

is key to have only informative features for avoiding parameter drift.
It has been conducted by removing redundant features by feature-
selection techniques (Luo and Zou, 2009) and introducing modifica-
tions into models based on designers’ knowledge (Luo and Li, 2017;
Mucha and El Moctar, 2015).

2.1.3. PI algorithm design
By employing identification algorithms that are robust to noise, it

is known that parameter drift can be alleviated to some extent. In
particular, using Support Vector Machine (SVM) has been a popular
approach thanks to its robustness against measurement noise (Wang
et al., 2021b; Zhu et al., 2019). Researchers have also paid attention
to properly tuning hyperparameters of identification algorithms (Luo
et al., 2016).

2.2. Knowledge-data cooperative approach

Recently, it becomes popular to make a synergy of knowledge and
observation data for modeling ship dynamics. A Bayesian framework
updates a prior distribution by using data. The Kalman filter (KF)
has been a popular approach based on the Bayes’ theorem balancing
knowledge represented by a dynamic model and data coming from
measurements. Alexandersson et al. (2022) firstly denoised signals with
a preliminary maneuvering model by the KF, and then employed the de-
noised signals for identifying a more sophisticated maneuvering model.
By iterating this procedure, they built up a maneuvering model in a
knowledge-data cooperative manner. For autonomous underwater vehi-
cles, Cardenas and De Barros (2020) put extensive effort in developing
analytical estimations for hydrodynamic derivatives. They were further
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updated online by having the upcoming data by the KF. An objective of
their approaches was to denoise signals and regularize the PI. In their
study, newly-identified parameters could be drifted away from their
prior estimations without introducing feedback from experts. However,
given that data collection is never conducted comprehensively in this
field, it seems not a wise step to overlook the role of knowledge for
experts as a source of modeling confidence. For the CMT approach,
the ITTC’s guideline (The International Towing Tank Conference, 2014)
suggests that designers should adjust model’s parameters inside the
range compatible with their uncertainty if the model does not perform
satisfactorily during their validation. It is common to adjust parameters
related to propellers and rudders. It aims at refusing manually updating
parameters into the range where knowledge does not justify such an
update. When bridging two ships’ dynamics, we need to introduce
this idea of safeguarding into the SI approach by using parameters for
similar ships as a safeguard and controlling the degree of contribution
of data being infused into such a knowledge foundation.

Among knowledge-data cooperative approaches, bridging dynamics
of two ships have gained much attention. Designers invest a large
amount of cost, time, and effort to develop a maneuvering model for
one ship. Thereby, they would want to make use of such existing models
for building a new model for a new ship. If models for similar ships have
no relations, it would be hard for experts to have sufficient confidence
in it. A connection between models for similar ships and conditions
would be helpful for designers to have sufficient confidence in their va-
lidity. Cooperative models composed of a reliable mathematical model
and a black-box model have acted as a harbinger of bridging two ships’
dynamics. Mei et al. (2019) employed a random forest to calibrate
the acceleration estimation made by a dynamic model of a similar
ship. Wang et al. (2021a) bridged estimations of future positions of two
ships by using a maneuvering model of the one ship and observation
data of the other ship with a neural network. Cooperative models have
achieved a great performance, however, their interpretability is still
limited due to black-box models being involved as a part of them. This
study aims at refining parameters of maneuvering models using data,
thereby, it aligns with a traditional procedure of modeling without
having black-box models in the model.

3. Knowledge transfer between similar ships

A schematic overview of the proposed framework is shown in Fig. 2.
In the first subsection, we start with a general introduction of the
Abkowitz model (M.A., 1964), which is one of the most widely-used
maneuvering models in this field. Subsequently, the second subsection
explains how we identify its parameters. Then, an integral part of the
proposed framework: the model refinement will be explained. Here
specifically the Abkowitz model and ridge regression are employed,
however, this framework can be used for any types of maneuvering
models and regularizations.

3.1. Ship maneuvering model

Assuming the propeller revolution is constant, the maneuvering
theory of ship dynamics in 3DoF formulates the maneuvering motion
in the surge, sway, and yaw directions as (Luo and Zou, 2009):

(𝑚 −𝑋�̇�)�̇� = 𝑓1(𝑢, 𝑣, 𝑟, 𝛿)
(𝑚 − 𝑌�̇�)�̇� + (𝑚𝑥𝐺 − 𝑌�̇�)�̇� = 𝑓2(𝑢, 𝑣, 𝑟, 𝛿)

(𝑚𝑥𝐺 −𝑁�̇�)�̇� + (𝐼𝑧 −𝑁�̇�)�̇� = 𝑓3(𝑢, 𝑣, 𝑟, 𝛿) (1)

where 𝑚 is the ship mass, 𝑥𝐺 is the longitudinal position of the ship’s
center of gravity, and 𝐼𝑧 is the inertia moment about the vertical axis.
𝑢, 𝑣, and 𝑟 denote the surge, sway, and yaw velocities in the body-fixed
coordinate. 𝛿 represents the rudder angle. 𝑋�̇�, 𝑌�̇�, 𝑌�̇�, 𝑁�̇�, and 𝑁�̇� are
the added-mass coefficients. 𝑓1, 𝑓2, and 𝑓3 are functions of forces and
moment acting on the ship. The small perturbations of the velocities

and rudder angle are expressed as 𝛥𝑢 = 𝑢−𝑈0, 𝛥𝑣 = 𝑣− 𝑣0, 𝛥𝑟 = 𝑟− 𝑟0,
and 𝛥𝛿 = 𝛿 − 𝛿0 where the subscript 0 represents variables at the initial
instant. 𝑈0 is the initial surge speed. In this study, the straightforward
motion is given as an initial state; namely, 𝑣0 = 0, 𝑟0 = 0, and 𝛿0 = 0.
Variables in Eq. (1) are converted into nondimensional variables as the
prime system (Fossen, 2011):

𝛥𝑢′ = 𝛥𝑢
𝑈
, 𝛥𝑣′ = 𝛥𝑣

𝑈
, 𝛥𝑟′ = 𝐿𝛥𝑟

𝑈
, 𝛥𝛿′ = 𝛥𝛿

𝛥�̇�′ = 𝐿𝛥�̇�
𝑈2 , 𝛥�̇�

′ = 𝐿𝛥�̇�
𝑈2 , 𝛥�̇�

′ = 𝐿2𝛥�̇�
𝑈2 (2)

where 𝑈 =
√
(𝑈0 + 𝛥𝑢)2 + 𝛥𝑣2 is the resultant speed and 𝐿 is the ship

length. Then, the Abkowitz model is introduced as:

⎡⎢⎢⎣

𝑚′ −𝑋′
�̇� 0 0

0 𝑚′ − 𝑌 ′
�̇� 𝑚′𝑥𝐺 ′ − 𝑌 ′

�̇�
0 𝑚′𝑥𝐺 ′ −𝑁 ′

�̇� 𝐼 ′𝑧 −𝑁
′
�̇�

⎤⎥⎥⎦

⎡⎢⎢⎣

𝛥�̇�′

𝛥�̇�′

𝛥�̇�′

⎤⎥⎥⎦
=
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𝛥𝑓 ′
1
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2

𝛥𝑓 ′
3

⎤⎥⎥⎦
(3)

where the superscript ′ denotes the nondimensional variables. The
Abkowitz model gives functions of nondimensional forces and moment
𝛥𝑓 ′

1, 𝛥𝑓
′
2, and 𝛥𝑓 ′

3 based on the form of the 3rd-order Taylor series
expansion under the simplification employed in Fossen (2011):

𝛥𝑓 ′
1 =𝑋

′
𝑢𝛥𝑢

′ +𝑋′
𝑢𝑢𝛥𝑢

′2 +𝑋′
𝑢𝑢𝑢𝛥𝑢

′3 +𝑋′
𝑣𝑣𝛥𝑣

′2 +𝑋′
𝑟𝑟𝛥𝑟

′2

+ 𝑋′
𝛿𝛿𝛥𝛿

′2 +𝑋′
𝛿𝛿𝑢𝛥𝛿

′2𝛥𝑢′ +𝑋′
𝑣𝑟𝛥𝑣

′𝛥𝑟′

+ 𝑋′
𝑣𝛿𝛥𝑣

′𝛥𝛿′ +𝑋′
𝑣𝛿𝑢𝛥𝑣

′𝛥𝛿′𝛥𝑢′ +𝑋′
𝑢𝑣𝑣𝛥𝑢

′𝛥𝑣′2

+ 𝑋′
𝑢𝑟𝑟𝛥𝑢

′𝛥𝑟′2 +𝑋′
𝑢𝑣𝑟𝛥𝑢

′𝛥𝑣′𝛥𝑟′ +𝑋′
𝑟𝛿𝛥𝑟

′𝛥𝛿′

+ 𝑋′
𝑢𝑟𝛿𝛥𝑢

′𝛥𝑟′𝛥𝛿′ +𝑋′
0 (4)

𝛥𝑓 ′
2 =𝑌

′
0𝑢𝛥𝑢

′ + 𝑌 ′
0𝑢𝑢𝛥𝑢

′2 + 𝑌 ′
𝑣𝛥𝑣

′ + 𝑌 ′
𝑟 𝛥𝑟

′ + 𝑌 ′
𝛿𝛥𝛿

′

+ 𝑌 ′
𝑣𝑣𝑣𝛥𝑣

′3 + 𝑌 ′
𝛿𝛿𝛿𝛥𝛿

′3 + 𝑌 ′
𝑣𝑣𝑟𝛥𝑣

′2𝛥𝑟′

+ 𝑌 ′
𝑣𝑣𝛿𝛥𝑣

′2𝛥𝛿′ + 𝑌 ′
𝑣𝛿𝛿𝛥𝑣

′𝛥𝛿′2 + 𝑌 ′
𝛿𝑢𝛥𝛿

′𝛥𝑢′

+ 𝑌 ′
𝑣𝑢𝛥𝑣

′𝑢′ + 𝑌 ′
𝑟𝑢𝛥𝑟

′𝛥𝑢′ + 𝑌 ′
𝛿𝑢𝑢𝛥𝛿

′𝛥𝑢′2 + 𝑌 ′
𝑟𝑟𝑟𝛥𝑟

′3

+ 𝑌 ′
𝑣𝑟𝑟𝛥𝑣

′𝛥𝑟′2 + 𝑌 ′
𝑣𝑢𝑢𝛥𝑣

′𝛥𝑢′2 + 𝑌 ′
𝑟𝑢𝑢𝛥𝑟

′𝛥𝑢′2

+ 𝑌 ′
𝑟𝛿𝛿𝛥𝑟

′2𝛥𝛿′ + 𝑌 ′
𝑟𝑟𝛿𝛥𝑟

′2𝛥𝛿′ + 𝑌 ′
𝑟𝑣𝛿𝛥𝑟

′𝛥𝑣′𝛥𝛿′ + 𝑌 ′
0 (5)

𝛥𝑓 ′
3 =𝑁

′
0𝑢𝛥𝑢

′ +𝑁 ′
0𝑢𝑢𝛥𝑢

′2 +𝑁 ′
𝑣𝛥𝑣

′ +𝑁 ′
𝑟𝛥𝑟

′ +𝑁 ′
𝛿𝛥𝛿

′

+ 𝑁 ′
𝑣𝑣𝑣𝛥𝑣

′3 +𝑁 ′
𝛿𝛿𝛿𝛥𝛿

′3 +𝑁 ′
𝑣𝑣𝑟𝛥𝑣

′2𝛥𝑟′

+ 𝑁 ′
𝑣𝑣𝛿𝛥𝑣

′2𝛥𝛿′ +𝑁 ′
𝑣𝛿𝛿𝛥𝑣

′𝛥𝛿′2 +𝑁 ′
𝛿𝑢𝛥𝛿

′𝛥𝑢′

+ 𝑁 ′
𝑣𝑢𝛥𝑣

′𝑢′ +𝑁 ′
𝑟𝑢𝛥𝑟

′𝛥𝑢′ +𝑁 ′
𝛿𝑢𝑢𝛥𝛿

′𝛥𝑢′2 +𝑁 ′
𝑟𝑟𝑟𝛥𝑟

′3

+ 𝑁 ′
𝑣𝑟𝑟𝛥𝑣

′𝛥𝑟′2 +𝑁 ′
𝑣𝑢𝑢𝛥𝑣

′𝛥𝑢′2 +𝑁 ′
𝑟𝑢𝑢𝛥𝑟

′𝛥𝑢′2

+ 𝑁 ′
𝑟𝛿𝛿𝛥𝑟

′2𝛥𝛿′ +𝑁 ′
𝑟𝑟𝛿𝛥𝑟

′2𝛥𝛿′ +𝑁 ′
𝑟𝑣𝛿𝛥𝑟

′𝛥𝑣′𝛥𝛿′ +𝑁 ′
0 (6)

Five zero-frequency added-mass derivatives 𝑋′
�̇�, 𝑌

′
�̇� , 𝑌

′
�̇� , 𝑁

′
�̇�, and 𝑁 ′

�̇�
are usually calculated precisely by using semi-empirical formulas or
a strip-theory calculation, thereby, they are always estimated before
the PI of the other derivatives (Luo and Zou, 2009). 16, 22, and 22
hydrodynamic derivatives in {𝑋′

(⋅), 𝑌
′
(⋅), 𝑁

′
(⋅)} are identified.

3.2. Regression model

The linear regression models in the surge, sway, and yaw directions
are formulated in the discrete forms with the interval of the sampling
time ℎ as:

𝛥𝑢(𝑘 + 1) − 𝛥𝑢(𝑘) = 𝐴𝑋 (7)

𝛥𝑣(𝑘 + 1) − 𝛥𝑣(𝑘) = 𝐵𝑌 (8)

𝛥𝑟(𝑘 + 1) − 𝛥𝑟(𝑘) = 𝐶𝑁 (9)

(𝑘) and (𝑘 + 1) denote velocities at the certain time step and those
at the one-step ahead. 𝐴 = [𝑎1,… , 𝑎16]1×16, 𝐵 = [𝑏1,… ., 𝑏22]1×22, and
𝐶 = [𝑐1,… ., 𝑐22]1×22 are the parameter vectors to be identified. The
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Fig. 1. An overview of a traditional data-based framework.

input vectors of the linear regression models 𝑋, 𝑌 , and 𝑁 are given
as:

𝑋 = [𝛥𝑢(𝑘)𝑈 (𝑘), 𝛥𝑢2(𝑘), 𝛥𝑢3(𝑘)∕𝑈 (𝑘), 𝛥𝑣2(𝑘),
𝛥𝑟2(𝑘)𝐿2, 𝛥𝛿2(𝑘)𝑈 (𝑘)2, 𝛥𝛿2(𝑘)𝛥𝑢(𝑘)𝑈 (𝑘),

𝛥𝑣(𝑘)𝛥𝑟(𝑘)𝐿, 𝛥𝑣(𝑘)𝛥𝛿(𝑘)𝑈 (𝑘), 𝛥𝑣(𝑘)𝛥𝛿(𝑘)𝛥𝑢(𝑘),
𝛥𝑢(𝑘)𝛥𝑣(𝑘)2∕𝑈 (𝑘), 𝛥𝑟2(𝑘)𝐿2∕𝑈 (𝑘),

𝛥𝑢(𝑘)𝛥𝑣(𝑘)𝛥𝑟(𝑘)𝐿∕𝑈 (𝑘), 𝛥𝑟(𝑘)𝛥𝛿(𝑘)𝐿𝑈 (𝑘),

𝛥𝑢(𝑘)𝛥𝑟(𝑘)𝛥𝛿(𝑘)𝐿,𝑈2(𝑘)]𝑇1×16 (10)

𝑌 = 𝑁 =[𝑈2(𝑘), 𝛥𝑢(𝑘)𝑈 (𝑘), 𝛥𝑢2(𝑘), 𝛥𝑣(𝑘)𝑈 (𝑘), 𝛥𝑟(𝑘)𝑈 (𝑘)𝐿,
𝛥𝛿(𝑘)𝑈2(𝑘), 𝛥𝑣3(𝑘)∕𝑈 (𝑘), 𝛥𝛿3(𝑘)𝑈2(𝑘),
𝛥𝑣2(𝑘)𝛥𝑟(𝑘)𝐿∕𝑈 (𝑘), 𝛥𝑣2(𝑘)𝛥𝛿(𝑘), 𝛥𝑣(𝑘)𝛥𝛿2(𝑘)𝑈 (𝑘),

𝛥𝛿(𝑘)𝛥𝑢(𝑘)𝑈 (𝑘), 𝛥𝑣(𝑘)𝛥𝑢(𝑘), 𝛥𝑟(𝑘)𝛥𝑢(𝑘)𝐿,
𝛥𝛿(𝑘)𝛥𝑢2(𝑘), 𝛥𝑟3(𝑘)𝐿3∕𝑈 (𝑘), 𝛥𝑣(𝑘)𝛥𝑟2(𝑘)𝐿2∕𝑈 (𝑘),
𝛥𝑣(𝑘)𝛥𝑢2(𝑘)∕𝑈 (𝑘), 𝛥𝑟(𝑘)𝛥𝑢2(𝑘)𝐿∕𝑈 (𝑘),
𝛥𝑟(𝑘)𝛥𝛿2(𝑘)𝐿𝑈 (𝑘), 𝛥𝑟2(𝑘)𝛥𝛿(𝑘)𝐿2,

𝛥𝑟(𝑘)𝛥𝑣(𝑘)𝛥𝛿(𝑘)𝐿]𝑇1×22 (11)

In the PI, the left sides of (7)–(9) and input vectors are given. The PI
algorithm finds the optimum 𝐴, 𝐵, and 𝐶 so that they satisfy (7)–(9)
well. Once they are identified, 16, 22, and 22 hydrodynamic derivatives
for three directions {𝑋′

(⋅), 𝑌
′
(⋅), 𝑁

′
(⋅)} are further derived as:

𝑋′
(⋅) =

𝐿(𝑚′ −𝑋′
�̇�)

ℎ
𝐴 (12)

[
𝑌 ′
(⋅)

𝑁 ′
(⋅)

]
=

⎡⎢⎢⎢⎢⎣

(𝐼 ′𝑧 −𝑁
′
�̇� )ℎ

𝑆𝐿
−
(𝑚′𝑥′𝐺 − 𝑌 ′

�̇� )ℎ
𝑆𝐿

−
(𝑚′𝑥′𝐺 −𝑁 ′

�̇�)ℎ
𝑆𝐿2

(𝑚′ − 𝑌 ′
�̇� )ℎ

𝑆𝐿2

⎤⎥⎥⎥⎥⎦

−1

[
𝐵
𝐶

]
(13)

where 𝑆 = (𝑚′ − 𝑌 ′
�̇� )(𝐼

′
𝑧 −𝑁

′
�̇� ) − (𝑚′𝑥′𝐺 − 𝑌 ′

�̇� )(𝑚
′𝑥′𝐺 −𝑁 ′

�̇�).

3.3. Model refinement

3.3.1. Overview
A maneuvering model is not automatically built by providing data.

For any approach, it is integral to involve experts. Especially in this

Fig. 2. An overview of the proposed framework.

field, only a limited dataset is available for model development and val-
idation due to the prohibitive cost of the data collection. Thereby, ex-
perts have been playing key roles to certify models based on their con-
fidence in its performance (Berg, 2015). Their experience and knowl-
edge characterize such confidence. Figs. 1 and 2 show a schematic
comparison of the traditional data-based and proposed frameworks.

In the traditional approach, experts involve their knowledge mostly
in the design of experiments, models, and identification algorithms.
It requires much cost, time, and expertise to conduct them carefully.
Then, hyperparameters of the identification algorithm are tuned. The
PI is performed by using data. Experts at this moment judge the model’s
validity and check its performance for the selected maneuvers (The
International Towing Tank Conference, 2002). Such evaluations are
rather passive. It may result in carefully investigating, improving,
or redoing some processes if they are less confident in the model’s
validity. This iteration seems inefficient when we have confidence in
the similarity between resulting models of two similar ships.

On the contrary, by building up models on top of the source
parameters, the proposed framework actively employs knowledge com-
ing from past experience for similar ships as a modeling foundation.
Firstly, experts need to agree that it is reasonable that the target
model is derived by refining the source model in light of their domain
knowledge and experience. This agreement allows the source model
to act as a source of modeling confidence. Then, we highly constrain
parameters towards the source parameters by defining conservative
ranges of hyperparameters to do so. It could occur that we do not
find parameters satisfying improvement criteria with defined ranges of
hyperparameters. Then, the ranges are broadened in the next iteration
leading to less prioritized the source parameters and more dependency
on data. Hence, the proposed framework parsimoniously finds a model
by gradually expanding the tuning ranges starting from the source
parameters in a parameter space.

Such a practice has practical advantages. Through the proposed
framework, we clearly understand the impact of updating the source
parameters on reducing the empirical risk in the validation dataset. For
example, in the first iteration, a model slightly adjusted from the source
model but with moderate empirical risk could be found. In the next
iteration, by less prioritizing the source parameters, we could find a
model with very different parameters from the source parameters and
small empirical risk. It is impossible to ensure which model has better
generalization performance mathematically. This framework does not
aim to do so. Rather, this study supports decisionmakers in selecting
a model from a cloud of models by offering both options. Although
it is not guaranteed there exist parameters satisfying the performance
criteria within such a safe zone, this framework helps designers find
them if they exist without being too sensitive to the data design, model
design, and PI algorithm design by having a knowledge safeguard.
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3.3.2. Source ship
In this study, we focus on the risk of global parameter search

without a specific knowledge anchor in the traditional framework.
The proposed framework, in contrast, performs local parameter search
using a reliable similar-ship model as a knowledge foundation. As
it is not practical to comprehensively verify model performance, we
must select a high-performing model that can be justified from the
perspective of domain knowledge. Introducing a reliable knowledge
foundation into modeling can reduce the side effects of being extremely
dependent on data in the traditional framework. On the other hand,
using a dissimilar ship as a knowledge foundation and refining it to fit
the target ship’s maneuver cannot be justified from the perspective of
domain knowledge. As this can lead to a loss of model reliability, it
is necessary that the selection of the source ship needs to be justified
and agreed upon by experts. Such an agreement is derived from their
domain knowledge, experience, and how much risk they take in the
project. In this study, we propose a three-step procedure to check the
eligibility of the source ship such that experts have sufficient confidence
in the similarity of maneuverability of the two ships.

• First, two ships must belong to the same ship category. A large
body of previous works has built regression models for estimating
hydrodynamic parameters from ship specifications. Such a sim-
ilarity is defined only for ships within the same category. For
instance, high-speed passenger ships and oil tankers have very
different systems. The similarity in maneuverability between such
highly divergent ships is rarely discussed.

• Second, the similarity of the two ships’ maneuverability needs to
be examined in light of domain knowledge in ship design. Kose
et al. (1992) focused on the MPR-series ships and considered 𝐶𝑏,
𝐿∕𝐵, 𝐵∕𝑑, 𝑙𝑐𝑏, stern type, rudder type, and bow type as the main
parameters characterizing such ships. Yoshimura and Masumoto
(2012) investigated the maneuverability of high-speed merchant
ships and fishing vessels. They revealed that hydrodynamic coef-
ficients related to a ship hull were highly determined by trim∕𝑑,
𝐶𝑏, 𝐿∕𝐵, and 𝑑∕𝐿. Mei et al. (2019) defined a similarity vector
using ship specifications based on such knowledge in ship design.
They can be criteria for checking the similarity of maneuverability
between two ships. In this study, inspired by Mei et al. (2019), the
similarity is examined by evaluating the similarity vector of ship
maneuverability in (21).

• Third, designers must check the performance of source parame-
ters when being applied to the collected dataset of maneuvers of
the target ship. Predicted trajectories must capture a trend of true
trajectories of the target ship in the collected dataset. Otherwise,
it is hard for experts to have sufficient confidence in developing
a target model only by adjusting source parameters.

where 𝐶𝑏 is the block coefficient, 𝐿 is the ship length, 𝐵 is the ship
breadth, 𝑑 is the ship draft, and 𝑙𝑐𝑏 is the position of the center of
buoyancy.

3.3.3. Algorithm
The linear regression model has a general form:

�̂� = 𝛽0 +
𝑝∑
𝑗=1

𝛽𝑗𝒙𝑗 (14)

where �̂�1×𝑚 denotes the output vector, 𝑿 = [𝒙1,… ,𝒙𝑝]𝑝×𝑚 is the input
matrix, 𝛽0 is the intercept, �̂� = [𝛽1,… , 𝛽𝑝]1×𝑝 is the parameter vector
of the regression model, 𝑚 is the number of data samples, and 𝑝 is the
number of the input dimension. We assume the parameter vector of
the source model 𝜷𝑠′ (the source parameters) is available and that for
the target ship �̂�′ (the target parameters) needs to be identified. Note
that the Abkowitz model takes 𝛽0 = 0. If some parameters are removed
from (4)–(6) in the source model, such parameters are not included
in (14). Usually, the input variable 𝒙𝑗 is z-score normalized so that the

Fig. 3. An illustration for the procedure of model refinement.

penalization of �̂� is applied in the same scaling over the input variables
as:

𝒙′𝑗 =
𝒙𝑗 − 𝜇𝑗
𝜎𝑗

(15)

where 𝜇𝑗 and 𝜎𝑗 are the mean and standard deviation of the input vari-
able in the training dataset. Then, we define 𝑿′ = [𝒙′1,… ,𝒙′𝑗 ,… ,𝒙′𝑝]𝑝×𝑚
= [𝒙′1,… ,𝒙′𝑖 ,… ,𝒙′𝑚]

𝑇
𝑚×𝑝 as the z-score normalized input matrix. (14) is

rewritten as:

�̂� = 𝛽′0 +
𝑝∑
𝑗=1

𝛽′𝑗𝒙
′
𝑗 (16)

where we define:

𝛽′𝑗 ≡ 𝛽𝑗𝜎𝑗 (17)

𝛽′0 ≡
𝑝∑
𝑗=1

𝛽𝑗𝜇𝑗 + 𝛽0 (18)

We estimate 𝛽′0 =
∑𝑚
𝑖=1 𝑦𝑖 in the training dataset, where 𝒚 = [𝑦1,… , 𝑦𝑚]

is the target vector in the training dataset. Under the assumption that
the residuals between the target vector 𝒚 and �̂� are normally distributed
in addition to 𝛽0 = 0 in (7)–(9), this estimation is equivalent to the
definition (18). The source parameters are converted as 𝛽𝑠𝑗

′ ≡ 𝛽𝑠𝑗 𝜎𝑗
to fit this z-score normalization. Then, by using 𝛽𝑠𝑗

′ as a knowledge
foundation, the refined parameter vector 𝛽′𝑗 for the target ship is
formulated as:

�̂�′ = argmin
𝜷′

1
𝑚

𝑚∑
𝑖=1

(𝜷′𝑇 𝒙′𝑖 − 𝛥𝑦𝑖)
2

+ 𝜆(𝛼‖𝜷′‖22 + (1 − 𝛼)‖𝜷′ − 𝜷𝑠′‖22) (19)

where 𝜆 ≥ 0 is a hyperparameter for determining the regularization
strength and 0 ≤ 𝛼 ≤ 1 is a hyperparameter that balances the source-
parameter vector 𝜷𝑠′ and the zero vector in the regularization. 𝛥𝒚 =
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𝒚 − 𝛽′0. A similar formulation for the 𝑙1 regularization was presented
in Takada and Fujisawa (2020) to handle continuously-changing envi-
ronments without being too sensitive to noises and disturbances in the
upcoming data. In this study, the source model represents a different
system from that of the target ship, thereby, it is counterintuitive to
constrain parameters towards the exact same values as the source pa-
rameters with the 𝑙1 regularization. Thereby, inspired by a knowledge
transfer with the 𝑙2 regularization in Tommasi et al. (2010), this study
expands it into the 𝑙2 regularization. 𝛼 = 1 and 𝜆 = 0 correspond
to the plain ridge regression and linear regression, respectively. Sec-
tion 3.3.4 will explain how to determine these hyperparameters. (19)
is equivalent to:

�̂�′ = (𝑿′𝑇𝑿′ + 𝑚𝜆𝑰)−1(𝑿′𝑇𝜟𝒚 + 𝑚𝜆(1 − 𝛼)𝜷𝑠′) (20)

thereby, �̂�′ is derived analytically. Based on the procedure shown in
Fig. 3, this study forwards source parameters {𝑋𝑠

(⋅)
′, 𝑌 𝑠(⋅)

′, 𝑁𝑠
(⋅)

′} into the
target model. The non-dimensional hydrodynamic derivatives
{𝑋𝑠

(⋅)
′, 𝑌 𝑠(⋅)

′, 𝑁𝑠
(⋅)

′} are converted into {𝐴𝑠, 𝐵𝑠, 𝐶𝑠} corresponding to the
regression forms in (7)–(9) by using (12) and (13). They are normalized
with (17). Then, (20) derives refined parameters for the target ship.
Finally, non-dimensional hydrodynamic derivatives for the target ship
{𝑋′

(⋅), 𝑌
′
(⋅), 𝑁

′
(⋅)} is derived by reconverting refined parameters through

(12) and (13).

3.3.4. Hyperparameter tuning
In (19), 𝛼 and 𝜆 are hyperparameters that characterize the 𝑙2 re-

gression terms. As mentioned, ranges of hyperparameter tuning are
defined by experts to balance their confidence in knowledge against
data-driven calibration. In such ranges, they are tuned so that it mini-
mizes the Root Mean Squared Error (RMSE) in the validation dataset,
which stays away from the training dataset. The Tree-structured Parzen
Estimator optimizer (Bergstra et al., 2011), which is one of the Bayesian
optimization methods, is employed in the hyperparameter optimization
framework optuna (Akiba et al., 2019). After determining hyperparam-
eters, the model refinement is performed for a whole dataset with those
hyperparameters.

4. Case study

In the case study, a simulation experiment transferring knowledge
between two ships was conducted to present an example case where
the source model was helpful to find a robust-and-accurate model for
the target ship. The case study performed the model refinement of
the Abkowitz model of a 161m-length container Mariner class ves-
sel (Chislett and Strom-Tejsen, 1965), which was referred to as a source
ship, for better fitting maneuverings of a 175m-length container ship
SR108 (Son and Nomoto, 1981), which was referred to as a target
ship. For the source ship, an Abkowitz model has been widely-used
and validated. It is a source model and its parameters are source
parameters in the case study. For the target ship, we assumed only a
limited dataset was available. The source and target ships were highly
similar, however, we found that the source parameters had room to be
calibrated for maneuvers of the target ship. In the case study, we aimed
to reduce 50% of the single-step-ahead velocity prediction error in the
validation dataset in three directions. In practice, such criteria need to
be carefully agreed upon with experts.

4.1. Source and target ships

A comparison of basic specifications of source and target ships are
shown in Table 1. The source model for the source ship was for the
operation speed of 15.0 knots. To evaluate the similarity between the
two ships, inspired by Mei et al. (2019), a characteristic vector 𝑙 is
defined based on domain understanding of ship design:

𝑙 = [𝐶𝑏, 𝐿𝑝𝑝∕𝐵,𝐵∕𝑇 , 𝐿𝑝𝑝∕𝛥1∕3, 𝐴𝑟∕(𝐿𝑝𝑝𝑇 ), 𝐷𝑝∕𝑇 ] (21)

Fig. 4. Time series of the rudder angle during zigzag maneuverings for five training
datasets in the case study with low-speed maneuverings of the target ship.

Table 1
Specifications of two ships.

Source ship Target ship

Ship name Mariner (Chislett
and Strom-Tejsen,
1965)

SR108 (Son and
Nomoto, 1981)

Length between perpendiculars 160.9 m 175.0 m
Breadth 23.2 m 25.4 m
Design draft 8.2 m 8.5 m
Design displacement 18541 m3 21222 m3

Propeller diameter 6.706 m 6.533 m
The number of propellers 1 1
The number of blades 4 5

where 𝐶𝑏 is the block coefficient, 𝐿𝑝𝑝 is the length between perpendicu-
lars, 𝑇 is the draught, 𝛥 is the displacement, 𝐴𝑟 is the rudder area, and
𝐷𝑝 is the diameter of the propeller. 𝑙𝑠 = [0.59, 6.94, 2.82, 6.08, 0.023, 0.81]
was for the source ship and 𝑙𝑡 = [0.56, 6.89, 2.99, 6.32, 0.022, 0.77] was for
the target ship. Hence, two ships, which were categorized in the same
ship type, have very similar characteristic vectors. Based on domain
knowledge, quite similar parameters are to be estimated for the source
and target ships. In fact, using the source parameters for maneuvers
of the target ship reproduced the trend of the target ship’s response
well, however, a data-driven calibration was still necessary for better
performance.

4.2. Dataset

On the MSS simulator (Perez and Fossen, 2009), multiple maneuvers
of the target ship were conducted for refining the source parameters
in the case study. The MSS is a widely-used open-source simulator
developed by the Norwegian University of Science and Technology.
The mathematical model of the target ship on the MSS simulator was
a 4DoF nonlinear model (Son and Nomoto, 1981). A zigzag maneu-
ver, 12.5◦ and −12.5◦ turning circle maneuvers were generated. They
are standard maneuvers in the International Towing Tank Conference
(ITTC) full-scale experiment (The International Towing Tank Confer-
ence, 2002). Each maneuver had a 650 s time series of positions,
heading, velocities, and rudder angles saved in 2 Hz. To check if the
proposed framework finds a robust-and-accurate model for different
types of maneuvers of the target ship, three different case studies were
conducted by taking three operation speeds 𝑈0 = 16.3, 20.4, and
24.7 knots for low, middle, and high-speed maneuvering case studies,
respectively. To evaluate the sensitivity of performances against having
different training datasets, five training datasets were prepared for each
case study by preparing five different zigzag maneuvers, of which time
series of rudder angles are shown in Fig. 4 for the case study with
low-speed maneuverings. In total, three case studies (high, middle, low-
speed maneuvers of the target ship) were conducted, and each case
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study had five different datasets for training and validation. The final
evaluation was performed in a test dataset, which included 7.5◦ and
−7.5◦ turning circle maneuvers. Maneuvers with 7.5◦ and −7.5◦ rudder
angles were conducted only in the test dataset. Maneuvers in the test
dataset were conducted at the corresponding high, middle, and low
speeds for each case study. During the hyperparameter tuning, 70%
of samples were employed for the training and the remaining samples
were kept untouched for validation. The PI was performed in three
directions independently. They were used only for the final evaluation.

4.2.1. Disturbance set up
Saved signals of the surge, sway, and yaw velocities were contam-

inated with the process noise 𝒘𝒊 to represent the measurement noise
in the real-world experiment. Inspired by Sutulo and Guedes Soares
(2014), it was defined as:

𝒘𝒊 = 𝐴𝑖𝑘
0𝑘𝑖𝝃 (22)

where 𝐴𝑖 is the reference amplitude of noises (8.0 m/s, 1.0 m/s, and
1.0 ◦/s for the surge, sway, and yaw velocities, respectively), 𝑘𝑖 is a
response-specific reduction factor (0.1, 1.0, and 1.0 for the surge, sway,
and yaw velocities, respectively), 𝑘0 = 0.3% is the general reduction
factor. 𝝃 denotes a raw signal. The Savitzky–Golay filter was applied to
smooth contaminated signals before the PI. Then, 1160 time steps right
after turning the rudder were extracted for the case study.

4.3. Baseline algorithms

To evaluate the benefit of the proposed method, four baseline PI
algorithms were implemented. In addition, a prediction made with
the source parameters without data-driven calibration was also con-
ducted. They were implemented in the scikit-learn library (Pedregosa
et al., 2011) in Python. Hyperparameter optimization was conducted
for all baselines so that it minimized the empirical risk as much as
possible. Regularization strengths were tuned in the log domain. The
same abbreviations for algorithms were used in tables and figures
in this section. Results for the present framework are represented by
the abbreviation ‘‘MR’’ hereinafter. Note that RR, SVR, LR, and EN
are baselines that do not employ a knowledge foundation, which are
referred to as data-based frameworks in this section.

4.3.1. Source parameters (SP)
SP indicates the predictions for maneuvers of the target ship only

by copying source parameters without any data-driven updates.

4.3.2. Ridge regression (RR)
RR is a linear regression with the 𝑙2 regularization to avoid iden-

tifying parameters overfitting the training dataset. 𝑙2 regularization
strength 𝛼 ∈ [10−10, 1010] was tuned.

4.3.3. Linear support vector regression (SVR)
SVR minimizes the loss function with the epsilon-insensitive zone,

thus being robust to noise. The linear SVR is one of the most widely-
used algorithms for the PI of ship dynamic models. The loss function
with the 𝑙2 loss was selected. The epsilon parameter was set to zero.
The regularization parameter 𝐶 ∈ [10−10, 104] was tuned.

4.3.4. Lasso regression (LR)
A feature selection is important to enhance the model’s robustness.

LR is a linear regression with 𝑙1 regularization, which performs a
regularization and feature selection. 𝑙1 regularization strength 𝛼 ∈
[10−10, 1010] was tuned.

4.3.5. Elastic net (EN)
EN is a linear regression with a combination of 𝑙1 and 𝑙2 regular-

izations. The penalty term 𝛼 ∈ [10−10, 1010] and the ratio of the 𝑙1
reguralization 𝑙1 ∈ [0.0, 1.0] were tuned.

Table 2
Parameters identified by the present MR, SP, and four baseline algorithms for the
surge direction (×10−5) by using one of the five training datasets. Results here
are for the same case as Fig. 5 shows.

SP MR RR LR EN SVR

𝑋′
𝑢 −184 −177 −9 0 0 −14

𝑋′
𝑢𝑢 −110 −82 22 0 0 35

𝑋′
𝑢𝑢𝑢 −215 −264 −62 0 0 −108

𝑋′
𝑣𝑣 −899 −977 −157 0 0 −236

𝑋′
𝑟𝑟 18 −38 −50 −99 −78 −73

𝑋′
𝛿𝛿 −95 −143 −31 0 0 −50

𝑋′
𝑢𝛿𝛿 −190 −100 −52 0 0 −81

𝑋′
𝑟𝑣 798 826 88 0 0 129

𝑋′
𝑣𝛿 −93 −20 73 0 0 100

𝑋′
𝑢𝑣𝛿 −93 −51 22 0 0 61

𝑋′
𝑢𝑣𝑣 0 0 −102 0 0 −164

𝑋′
𝑢𝑟𝑟 0 0 −16 0 0 −31

𝑋′
𝑢𝑣𝑟 0 0 36 0 0 64

𝑋′
𝑟𝛿 0 0 −42 0 0 −58

𝑋′
𝑢𝑟𝛿 0 0 −23 0 0 −51

𝑋′
0 0 0 −4 0 0 −6

Table 3
Parameters identified by the present MR, SP, and four baseline algorithms for the sway
direction (×10−5) by using one of the five training datasets. Results here are for the
same case as Fig. 5 shows.

SP MR RR LR EN SVR

𝑌 ′
𝑣 −1160 −1128 −253 −1300 −1300 −311
𝑌 ′
𝑟 −499 −507 −131 −570 −570 −129
𝑌 ′
𝑣𝑣𝑣 −8078 −5866 −12294 −21246 −21233 −14506
𝑌 ′
𝑣𝑣𝑟 15356 14491 3925 484 494 3807
𝑌 ′
𝑣𝑢 −1160 −1294 649 120 119 722
𝑌 ′
𝑟𝑢 −499 −412 −21 192 191 46
𝑌 ′
𝛿 −278 −309 −296 −292 −292 −351
𝑌 ′
𝛿𝛿𝛿 90 −251 −1044 1118 1117 −414
𝑌 ′
𝑢𝛿 −556 −427 432 −70 −68 416
𝑌 ′
𝑢𝑢𝛿 −278 −713 −358 −185 −184 −510
𝑌 ′
𝑣𝛿𝛿 −4 286 −1536 −7079 −7074 −2515
𝑌 ′
𝑣𝑣𝛿 −1190 −2852 3611 −11034 −11000 5294
𝑌 ′
0𝑢 −8 −2 26 −8 −8 17
𝑌 ′
0𝑢𝑢 −4 −13 97 −9 −9 77
𝑌 ′
0 −4 −2 12 1 1 10
𝑌 ′
𝑟𝑟𝑟 0 0 −116 225 221 −597
𝑌 ′
𝑣𝑟𝑟 0 0 −727 −2355 −2353 −366
𝑌 ′
𝑣𝑢𝑢 0 0 −383 220 221 −615
𝑌 ′
𝑟𝑢𝑢 0 0 −181 0 0 −291
𝑌 ′
𝑟𝛿𝛿 0 0 −226 −3117 −3114 −659
𝑌 ′
𝑟𝑟𝛿 0 0 174 390 394 96
𝑌 ′
𝑟𝑣𝛿 0 0 −1072 −494 −481 −1932

4.4. Results

For three directions, firstly, tuning ranges of hyperparameters were
set to 𝛼 ∈ [0.0, 0.1] and 𝜆 ∈ [10, 1010] that highly constrain parameters
towards the main parameters. Results with the tuned hyperparameters
are shown hereinafter. Fig. 5 show RMSEs of single-step-ahead velocity
prediction in the surge, sway, and yaw directions in the validation
dataset. In Fig. 5, results using one of the training datasets of low-
speed maneuverings are shown. Tables 2–4 show parameters refined
by the present MR in three directions with SP and those made by four
baseline algorithms. Abbreviations in figures and tables are defined in
Section 4.3. In the surge direction, having a knowledge foundation in
MR was found to be powerful in reducing validation loss. As shown in
Fig. 5, whereas MR performed the best in the validation dataset with
highly constrained parameter change from SP, data-based frameworks
(RR, SVR, LR, and EN) resulted in much poorer performances with
notably deviated parameters from SP. This result presented a challenge
in solely relying on data in the case study since the dataset had
limited excitation in the surge direction. In the sway direction, MR
achieved an equivalent performance with the much less number of
parameters, of which change was highly constrained towards SP, than
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Fig. 5. RMSEs in the single-step-ahead velocity prediction in the surge, sway, and yaw directions made by the present MR, SP, and four baseline algorithms. Results here are for
the low-speed case study with one of the five training datasets. Note that five lines with five different training datasets for MR highly overlap.

Table 4
Parameters identified by the present MR, SP, and four baseline algorithms for the yaw
direction (×10−5) by using one of the five training datasets. Results here are for the
same case as Fig. 5 shows.

SP MR RR LR EN SVR

𝑁 ′
𝑣 −264 −243 −111 −88 −88 2

𝑁 ′
𝑟 −166 −150 −117 −100 −100 −48

𝑁 ′
𝑣𝑣𝑣 1636 667 −791 −682 −682 −2015

𝑁 ′
𝑣𝑣𝑟 −5483 −4545 −512 −1374 −1374 −797

𝑁 ′
𝑣𝑢 −264 −187 300 229 230 188

𝑁 ′
𝑟𝑢 −166 −176 −23 45 45 31

𝑁 ′
𝛿 139 127 112 101 101 80

𝑁 ′
𝛿𝛿𝛿 −45 −15 −516 −473 −473 −416

𝑁 ′
𝑢𝛿 278 207 135 17 17 42

𝑁 ′
𝑢𝑢𝛿 139 279 618 29 30 266

𝑁 ′
𝑣𝛿𝛿 13 −20 2866 2670 2670 2399

𝑁 ′
𝑣𝑣𝛿 489 1031 2060 2883 2885 2724

𝑁 ′
0𝑢 6 2 −2 2 2 5

𝑁 ′
0𝑢𝑢 3 8 9 11 11 26

𝑁 ′
0 3 1 4 3 3 3

𝑁 ′
𝑟𝑟𝑟 0 0 −465 −885 −885 −739

𝑁 ′
𝑣𝑟𝑟 0 0 1256 61 61 1319

𝑁 ′
𝑣𝑢𝑢 0 0 492 65 65 16

𝑁 ′
𝑟𝑢𝑢 0 0 −267 0 0 −154

𝑁 ′
𝑟𝛿𝛿 0 0 809 689 689 574

𝑁 ′
𝑟𝛿𝛿 0 0 1039 1335 1335 1021

𝑁 ′
𝑟𝑣𝛿 0 0 −56 692 693 −797

that identified by the data-based frameworks. It can be seen as a big
advantage since a simpler model is more robust than more complex
models with equivalent performance. In the yaw direction, Fig. 5 shows
a different trend from results in the other directions. MR calibrated SP
well, however, models with very different parameters from the source
parameters, which were built in data-based frameworks, performed
better in the validation dataset than MR. Thereby, by broadening
ranges of hyperparameter tuning and less prioritizing a knowledge
foundation, the validation loss of MR could be reduced. Here is where
experts introduce their confidence in knowledge against data-driven
calibration. Given that a dataset was rather limited in this case study
and MR achieved an improvement criterion of 50%, this case study did
not allow models to further be calibrated by data by broadening ranges
of hyperparameter tuning. As sufficient improvements were achieved
by adjusting the source parameters, the same ranges of hyperparameter
tuning were applied to all case studies. Hence, the proposed framework
offered such a conservative option within the confidence range around
the source parameters rather than forgetting it and building up a new
model solely relying on data.

In Fig. 6, true and predicted trajectories for the −7.5◦ turning
maneuver in the test dataset of the low-speed case study are shown.
It should be noted that the test dataset was used only for the final
evaluation. For better visibility, trajectories predicted by EN and SVR
are not shown as they had a similar trend to those by LR and RR. Their

Fig. 6. True and predicted trajectories for the −7.5◦ turning maneuver in the test
dataset. Trajectories made by EN and SVR are not shown for better visibility. Results
here are for the same case as Fig. 5 shows. Note that five lines with five different
training datasets for MR highly overlap.

performances will be listed in Table 5. A single prediction is shown for
SP as it performs always the same without using any data. Five lines
of predictions are shown for MR, LR, and RR since their performances
fluctuate depending on which training dataset was employed. Fig. 7
shows true and predicted time histories of velocities of that maneuver.
The two ships had similar characteristic vectors, thereby, it is discerned
that the prediction made by SP captured the trend of the true trajectory
and velocities’ time histories although it had room for being refined for
better performance. We see that data-based frameworks (LR and RR)
resulted in poor performances, moreover, their performances highly
fluctuated. It implies that data-based frameworks without a knowledge
foundation have much risk of being trapped into deceptive models
due to a jump between rival models in the clouds of almost-equally-
accurate models. On the other hand, the present MR with a knowledge
foundation performed more stably and accurately. It resulted in five
predictions, shown in green, highly overlapping.

A summary of results is listed in Table 5. In the test maneuvers, this
table compares prediction errors in four metrics defined by the ITTC for
the turning-circle maneuvers: Steady Turning Radius (STR), Maximum
Transfer (MT), Maximum Advance (MA), and Velocity Loss On Steady
turn (VLS). For each metric, the error rate 𝑒 (%) was calculated for all
predictions.

𝑒 = |𝑚true − 𝑚pred
𝑚true

| × 100 (23)
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Table 5
A comparison of performances of the present model refinement (MR) and five baseline algorithms for two turning circle maneuvers in the test dataset. Steady Turning Radius
(STR), Maximum Transfer (MT), Maximum Advance (MA), and Velocity Loss on Steady turn (VLS) defined by the ITTC are compared. The average absolute error is that made by
five different training datasets. The standard deviation of absolute error is its standard deviation. N/A indicates one or more trajectories made by five training datasets result in
physically unreasonable trajectories. The red numbers show the best performance against the other frameworks for each metric of each maneuver.

True Average absolute error 𝜇 (%) Standard deviation of absolute error 𝜎 (%)

SP MR LR RR EN SVR MR LR RR EN SVR

Case 1
Low speed

7.5◦
turning

STR (m) 824.9 10.3 3.6 12.7

N/A

11.8

N/A

0.4 6.3

N/A

6.5

N/AMT (m) 1683.2 6.1 4.5 5.4 5.6 0.4 5.4 5.0
MA (m) 1099.2 6.5 9.6 6.2 6.3 0.3 3.2 3.1
VLS (m/s) 1.3 38.2 0.9 51.1 56.2 0.6 19.1 10.0

−7.5◦
turning

STR (m) 817.1 28.0 5.4 16.5 10.7 16.5 17.6 0.2 5.1 7.5 5.9 7.1
MT (m) 1683.2 22.9 2.9 10.3 21.9 10.9 12.3 0.2 8.6 17.2 8.5 9.3
MA (m) 1099.2 9.3 2.6 9.4 16.9 9.6 14.0 0.2 5.7 10.0 5.7 9.6
VLS (m/s) 1.3 49.5 9.0 56.7 45.9 60.9 64.8 0.8 9.9 4.4 5.2 7.3

Case 2
Middle speed

7.5◦
turning

STR (m) 760.7 19.6 1.0 25.8 32.1 24.8

N/A

0.3 15.2 14.2 13.1

N/AMT (m) 1558.5 14.6 1.8 19.2 30.7 18.8 0.3 6.4 14.0 5.7
MA (m) 1039.8 1.9 8.3 10.3 16.4 10.2 0.2 7.8 7.4 7.4
VLS (m/s) 1.8 43.8 2.3 43.2 26.0 29.6 0.6 35.0 11.1 12.8

−7.5◦
turning

STR (m) 755.3 38.5 7.0 14.5

N/A

13.6 27.1 0.4 4.7

N/A

4.1 18.1
MT (m) 1558.5 32.8 4.7 15.1 14.9 25.3 0.5 4.2 4.2 29.6
MA (m) 1039.8 14.4 2.5 9.2 9.0 22.4 0.5 2.6 2.5 15.5
VLS (m/s) 1.8 54.1 10.4 51.3 34.1 55.3 0.9 31.7 15.0 12.2

Case 3
High speed

7.5◦
turning

STR (m) 680.0 33.8 1.1 14.0 77.9 14.0

N/A

0.3 6.3 60.6 5.1

N/AMT (m) 1375.3 29.8 2.4 11.9 39.1 11.8 0.3 6.9 29.8 7.2
MA (m) 962.3 5.1 7.3 6.5 8.1 6.3 0.2 2.5 5.2 2.1
VLS (m/s) 2.5 50.9 3.3 65.3 24.9 56.5 0.8 22.2 17.2 12.1

−7.5◦
turning

STR (m) 676.3 54.6 9.0 12.4 41.9 12.9

N/A

0.4 6.0 25.9 5.5

N/AMT (m) 1375.3 50.4 8.8 11.3 34.0 11.8 0.4 7.3 20.8 6.8
MA (m) 962.3 22.6 1.8 5.3 11.6 5.5 0.3 2.5 6.1 2.6
VLS (m/s) 2.5 60.0 10.6 64.5 27.8 56.0 0.9 22.8 13.9 12.1

Fig. 7. True and predicted time histories of velocities for the −7.5◦ turning maneuver
in the test dataset.Time histories made by EN and SVR are not shown for better
visibility. Results here are for the same case as Fig. 5 shows.

where 𝑚true and 𝑚pred are true and predicted values for each metric. For
each case study, five different training datasets were used. In Table 5,
values in the columns for the average absolute error show 𝜇 for each
metric:

𝜇 = 1
𝐾
𝛴𝐾
𝑖=1𝑒𝑖 (24)

where 𝐾 = 5 is the number of the training datasets and 𝑒𝑖 is 𝑒 for
prediction made by the 𝑖th training dataset. Please note that 𝜇 = 𝑒
for SP since it does not use any dataset. Values in the columns for the

standard deviation of absolute error show 𝜎 for each metric:

𝜎 =
√

1
𝐾
𝛴𝐾
𝑖=1(𝑒𝑖 − 𝜇)

2 (25)

Note that 𝜎 = 0 for SP since it does not use any dataset, thereby, it is not
shown in the table. Small 𝜇 and 𝜎 show that corresponding algorithms
achieve the average good performance over experiments using five dif-
ferent training dataset and such a performance is stably accomplished.
‘‘N/A’’ indicates that one or more models in the five models identified
by using five training datasets ended up with physically unreasonable
trajectories. If the heading does not either monotonically decrease
or increase, the trajectory was considered physically unreasonable.
First, we focus on the average absolute errors. In terms of almost all
metrics of almost all test maneuvers, SP made much prediction error. In
particular, when the target maneuver was high-speed, their prediction
errors were found to be large since the source parameters were not
well-adjusted to it. On the other hand, such large prediction errors
were notably mitigated in the present MR. As RR and SVR did not
perform a feature selection, the identified models were not robust. LR
and EN selected only informative features with the 𝑙1 loss function,
thereby, the identified models were robust and stable without having
redundant features in the regression models. However, the present MR
outperformed SP and four baseline algorithms in almost all metrics
of almost all test maneuvers. In light of the standard deviation of
the absolute errors, the robustness of the performance of the present
MR against having different training datasets were clearly shown. It is
reasonable since MR appreciates the source model and parsimoniously
exploits the target datasets. Four baseline algorithms were found to be
very sensitive to the selection of training datasets as they were fully
dependent on data without having the confidence range around the
source parameters.

4.5. Discussion

In the case study, the PI of the Abkowitz model for the target
ship was conducted. Due to the high similarity between the ship
characteristic vectors of the two ships, their resulting models were
expected to be highly relevant. However, data-driven refinement of the
source parameters was necessary to satisfy the performance criteria for
maneuvers of the target ship. In the case study, the proposed framework
was found to be powerful in easily finding a refined model with good
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robustness and generalization performance, by prioritizing a safe zone
of calibration derived by experts’ confidence in parameter transfer from
the source ship. We prepared five different training datasets in the case
study. The proposed framework found a robust-and-accurate model and
stably accomplished a great performance against having five different
training datasets. On the contrary, without having the parameters of
the source ship, model performance was found to highly fluctuate.

In the case study, the proposed framework showed better perfor-
mance in the test dataset than traditional data-based frameworks. This
result presented an example case where the proposed framework was
powerful in easily finding a robust-and-accurate model within a safe
zone drawn based on the source parameters without being sensitive
to the experiment design. Nevertheless, it does not show an absolute
limitation of data-based frameworks. Their performance could be im-
proved by devoting more effort for the data design, model design, PI
algorithm design. However, this study focuses on cases where we have
less room to do so and need to efficiently deliver the target model.
It would perform a complementary role to data-based frameworks in
such cases rather than always replacing them. Especially for delivering
models integrated into safety-critical systems, data-based frameworks
remain important since collecting much data is the only way to get
closer to the global optimum parameters.

Typically, shipyards build many ships with similar specifications, so
it is expected that similar ship models may be found. Moreover, when
constructing models for different loading and water-depth conditions,
it is possible to consider a standard-condition model as a similar-
ship model. Therefore, the scope of application for this framework is
considered to be wide. On the other hand, it does not fully replace the
traditional framework. When there is no reliable similar-ship model,
the proposed framework cannot be used. To construct accurate and re-
liable models, either a knowledge foundation or data collected through
careful experiments is required.

In this field, a validation study cannot be conducted comprehen-
sively. The ITTC 29th Manoeuvring Committee (The International Tow-
ing Tank Conference, 2014) asked different institutes how they validate
simulation models. A majority of answers were validations based on
previous experience with other ships or benchmark data, expert judg-
ment, and comparing the trajectories with free-running tests. Any of
them does not have unified criteria. In practice, experts make an
agreement so that they satisfy their confidence in the model’s validity.
Thereby, it is reasonable that the proposed framework introduces their
decision into selecting a final model from rival models based on their
understanding of the relevance of similar ships’ dynamics. This study
helps such a practice be efficiently conducted. As a matter of fact, it
contributed to building a robust-and-accurate model for the target ship.
Such a decision is not randomly made but based on experts’ experience
and how much risk the project takes.

In practice, we may have further knowledge that some parameters
are not to be constrained towards the source parameters. For example,
if a ship experiences a renovation of a propulsion system, related pa-
rameters need to be less penalized to be changed. Our future work will
be devoted to investigating a positive impact of having such knowledge
in the regularization term to better transferring knowledge between
tasks.

In this study, we addressed the risk of conducting a global parameter
search without any knowledge anchor. By using a reliable similar ship
model to locally update the model, the knowledge connection between
ships can be established and the risk can be reduced. To demonstrate
this concept, this study dealt with a 3DoF maneuvering model in calm
water. However, nowadays, models that include external-force models
such as waves (e.g., Yasukawa et al., 2021) are considered more prac-
tical. The applicability of the proposed framework to such advanced
models has not been demonstrated in this paper. However, given that
the external force term is a parametric model that relates to a ship’s
mechanical performance, this framework is also expected to contribute

to reducing the number of experiments and risks associated with creat-
ing an external-force model. On the other hand, defining similarities
between ships becomes more complicated in models that consider
external forces. For example, even if the maneuvering characteristic is
similar, there may be a significant deviation in the dynamic positioning
characteristic. Regarding the specific definition of similarity, further
discussion will be necessary in our future study.

5. Conclusion

When building a new maneuvering model for a new ship, this article
proposed a new framework that employs parameters of a maneuvering
model for a similar ship as a safeguard in the system identification
approach. The proposed framework introduces parameters of such a
model as the l2 regularization in the ridge regression for identifying
model parameters for the new ship. Its hyperparameters represent a
regularization strength towards the knowledge foundation. By limiting
ranges of hyperparameter tuning, experts introduce their confidence in
such a knowledge foundation into a data-driven calibration. It helps
designers deliver a robust-and-accurate model within the confidence
range of data-driven calibration efficiently, without being too sensi-
tive to the design of experiments. The proposed framework bridges
dynamics of two similar ships. It is effective for experts to comprehend
its relevance and discrepancy for having sufficient confidence in the
validity of the new model. In a simulation case study, a knowledge
transfer between the Abkowitz models from 161 m to 175 m container
ships was conducted. By using the model parameters of the former
ship, a robust-and-accurate model for the latter ship was built only
by adjusting the parameters of the former ship. It was achieved stably
for having different training datasets. In the field of ship maneuvering,
comprehensive data collection is unfeasible. Thereby, as the proposed
framework introduced, it is of great importance for experts to actively
introduce their confidence in the similarity of models for similar ships
into data-driven calibration, thus enhancing the consistency with do-
main knowledge and data-driven calibration. It is helpful to readily
deliver robust-and-accurate maneuvering models for similar ships in
simulators. In practice, it becomes important to incorporate more ex-
perts’ knowledge and experience into defining such a confident range.
It must be discussed on a case-by-base basis, thereby, next research
direction must include more case studies bridging real-life tasks.
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