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H I G H L I G H T S  

• Integrating Collective intelligence (CI) and Reinforcement Learning (RL) to form a novel energy management (EM) system called CIRLEM. 
• Two levels of control and decision making are tested at the edge node and cluster levels. 
• Novel approaches are developed for defining flexibility signals and the agent’s policy. 
• CIRLEM becomes a lightweight algorithm that converges quickly. 
• CIRLEM improves the autonomy in absorbing shocks effectively through distributed intelligence.  
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A B S T R A C T   

A novel energy management (EM) approach is introduced, integrating core elements of collective intelligence 
(CI) and reinforcement learning (RL) and called CIRLEM. It operates by distributing a flexibility signal from the 
energy supplier to agents within the grid, prompting their responsive actions. The flexibility signal reflects upon 
the collective behaviour of the agents in the grid and agents learn and decide using a value-based model-free RL 
engine. Two ways of running CIRLEM are defined, based on doing all the decision making only at the edge node 
(Edge Node Control or ENC) or together with the cluster (Edge node and Cluster Control or ECC). CIRLEM’s 
performance is thoroughly investigated in an elderly building situated in Ålesund, Norway, specifically during 
extreme warm and cold seasons in the future climate. The building is divided into 20 thermal zones, each acting 
as an agent with three control strategies. CIRLEM undergoes comprehensive testing, evaluating policies with 24 
and 48 sets of actions (referred to as L24 and L48) and six different randomness levels. The results demonstrate 
that CIRLEM swiftly converges to an optimal solution (the optimum set of policies), offering both enhanced 
indoor comfort and significant energy savings. Among the CIRLEM algorithms, ENC-L24, the fastest and simplest 
one, showcased outstanding performance. Overall, CIRLEM offers a remarkable improvement in energy flexi
bility and climate resilience for a group of grid-connected agents, ensuring energy savings without compromising 
indoor comfort.   

1. Introduction 

Climate change intensifies climate variations which can result in 

stronger and more frequent extreme events [1]. The Scandinavian cities 
have been recently experiencing more extreme climate events, e.g. 
frequent warm summers with excessive heatwaves since 2018 [2], 
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increased morbidity and mortality rates [3], and cold snaps such as 2021 
with a record breaking cold December during the last fifty years, leading 
to a dramatic rise in energy prices and transport system disruption [4]. 
Experiencing other extreme events such as COVID-19 and Ukraine crisis, 
explains how fragile the situation can become and how rapid the impacts 
can propagate in different sectors and at different scales. 

Given the significance of human comfort and health, the impacts of 
climate change at the building scale are likely to gain increasing 
importance in the future. This is particularly true for countries where 
buildings are not adequately designed to withstand extreme weather 
events. For example, there is a considerable relationship between 
extreme hot and cold weather events in Sweden, associated with car
diovascular and respiratory hospitalizations [5]. Heat waves can 
significantly increase all-cause mortality and mortality caused by coro
nary heart disease, by approximately 10% and 15%, respectively [6]. In 
Norway, data were collected on hospital visits and general practitioners 
by elderly (<70 years) in Oslo, indicating a significant correlation be
tween increased patient admissions during summer months with 
extreme warm conditions [7]. Different studies point to the increased 
consequences and death rates among vulnerable groups such as elderly 
and people with pre-existing medical conditions and lack of mobility 
[8–10]. Climate change also impacts the release of biological airborne 
allergens, such fungal spores and plant pollen which will likely have a 
significant impact on the prevalence of allergic respiratory diseases, 
such as asthma [11]. The significance of indoor comfort has been 
underscored in the wake of the COVID-19 crisis, sparking discussions 
about the necessity for improved standards and ventilation strategies 
[12,13]. This becomes even more critical in conjunction with climate 
change, as extreme weather events can exacerbate indoor comfort issues 
[14], heighten the risk of mould growth [15], and lead to increased 
hospitalizations [5]. It is expected that the role of energy and HVAC 
systems in providing indoor comfort and good air quality becomes more 
important in the future since extreme events force people to stay longer 
inside buildings with controlled indoor environments [16]. Conse
quently there will be a bigger need for active energy-consuming solu
tions in the future, leading to higher energy demand. 

Proper climate change adaptation of urban areas is crucial, and the 
role of buildings and energy systems are very important in this regard. In 
combination with increased urbanization, extreme climate events put 
larger loads on urban energy systems, meanwhile increasing the failure 
risk of energy systems and critical infrastructures [17,18], which can 
also result in cascading failures [19]. Conditions can get worse when 
energy supply is largely dependent on renewable generation, due to its 
intermittent characteristics [20]. Resilient energy solutions are needed, 
not only to cope with extreme climate events, but also to support the 
transition towards carbon neutrality [18]. They should account for 
multi-sectoral impacts and cascading failures, considering users, their 
preferences and comfort [21]. 

Although the scientific community have developed several methods 
and models to design and control energy systems, there exist major gaps 
to evaluate and enhance the climate resilience and flexibility of energy 
systems, especially in connection to complex urban environments and 
uncertainties. As discussed in a review work [18], the topic of climate 
resilience of energy solutions is quite immature and suffers from its loose 
connection to climate change modelling and not accounting for urban 
complexities. In our previous works, we have contributed to the field by 
introducing new approaches to account for thermal comfort [22], 
microclimate [23], energy price and CO2 mitigation [24], inter
connected infrastructures [17], and resilient energy system design [25] 
in connection to climate change. When moving towards a finer temporal 
and spatial resolution in the analysis, e.g. assessing hourly energy de
mand and indoor thermal comfort in single buildings, the role of 
building control strategies become stronger. In this regard, topics of 
energy management (EM), demand response (DR) and Demand Side 
Management (DSM) are very relevant when the behaviour of buildings 
and urban energy systems together are discussed. In a previous work, we 

presented a DSM approach based on Collective Intelligence (CI), calling 
in CI-DSM, showing that it can increase the energy flexibility and 
climate resilience in urban areas [26]. Nevertheless, a significant chal
lenge lies in identifying optimal building controls for a sizable cluster of 
interconnected buildings, where each structure has an impact on the 
others. The reality is complex and more enhanced approaches are 
needed when the number of buildings and control strategies increase, 
especially when preparing for future extreme and unprecedented events 
[27]. As discussed in [26], the implementation of DSM has been lagging 
behind due to increased complexity of the system operation [28] and the 
need for expensive ICT solutions and implying privacy and security risks 
[29]. There is a need for simpler holistic solutions [30], therefore 
simpler approaches and lighter algorithms are needed for the successful 
control of multi-variant extended systems such as networks of buildings 
and energy grids. To this end, implementation of Reinforcement 
Learning (RL) has shown promising results [31,32], especially the 
model-free RL approaches (e.g. Q-learning) [24]. 

A major limitation in the current state of the art in implementing RL 
(or ML) for energy calculations is the oversimplification of energy 
problems [33,34] and there is a big need to develop RL-based methods 
for real building applications to accelerate training and enhance control 
robustness, especially with bigger participation of multiple agents with 
different priorities [32]. Robust and reliable RL policies are needed to 
address environmental shifts and mismatched configurations [34]. RL 
algorithms with reduced variance are needed to control multi-agent 
systems in non-stationary environments [31,35]. Addressing this gap 
is crucial to effectively adapt to the escalating frequency and intensity of 
climate variations caused by climate change. To enhance energy flexi
bility and climate resilience within urban energy systems, it is impera
tive to develop methods that empower energy management in this 
context. This work significantly focuses on this pivotal aspect, present
ing a novel approach to increase the energy flexibility and climate 
resilience in the energy network. 

This work is designed to integrate RL-based decision making into the 
previously suggested CI-DSM [26] to enhance the performance of the 
energy management system (focusing on demand response) in coping 
with uncertainties and variations of the outdoor climate, focusing on 
extreme climate conditions. The novel EM based on combining CI and 
RL is called CIRLEM and this work explains the theory and results for 
implementing that at the building scale. The performance of CIRLEM is 
investigated for an elderly building in Ålesund, Norway during one 
extreme warm summer and one extreme cold winter for future climate. 
The building is divided into 20 separate zones with active controls for 
heating and cooling set-points, ventilation, and appliances. Multiple 
approaches for controlling the buildings are investigated, which differ in 
the level of control and data sharing, strategies for setting policies and 
randomness. In the following, Section 2 explains the background and 
methodology of CIRLEM, Section 3 presents the results and their 
assessment, and conclusions are discussed in Section 4. 

2. Background and methodology 

As mentioned, the present work is shaped around integrating RL- 
based decision making into a previously presented DSM approach 
based on collective intelligence [26]. This section is divided into four 
subsections, explaining how we reached from CI-DSM to CIRLEM and 
introducing the case study. 

2.1. The need for moving from CI-DSM to CIRLEM 

DSM refers to the set of means to change the pattern and/or 
magnitude of energy use, which usually appear as a set of actions and 
strategies to reduce, increase, or reschedule the demand [29]. DSM plays 
an important role in increasing the flexibility of energy systems [36]. A 
higher flexibility helps to increase the share of distributed generation, 
resulting in a higher reliability and carbon reduction of energy solutions 
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without heavy network investments [28]. DR plays an important role in 
DSM by increasing the demand flexibility [31], helping the energy users 
to go for more economic and greener solutions [37]. We introduced a 
DSM approach based on Collective intelligence, calling it CI-DSM [26]. 
CI is a form of universally distributed intelligence, working based on 
collaborative problem solving and decision making [38]. The CI-based 
systems are identified by their robustness, flexibility, and scalability. 
They can organize themselves autonomously and adapt to unknown 
environments, showing emergent behaviours that enhance their ability 
to cope with uncertain conditions [39]. Since CI-DSM is based on 
distributed intelligence, the data/privacy security considerably in
creases compared to traditional DSMs. 

By analysing the performance of CI-DSM for extreme climate con
ditions in Stockholm, we showed that it can enhance the flexibility of an 
energy system and consequently make it more resilient against envi
ronmental variations or external shocks [26]. Running the energy sim
ulations and applying the adaptation measure (or control strategy) was a 
time consuming process in the Stockholm case study, although the only 
adaptation measure was changing the set-point temperature for the 
whole building. This is while buildings usually have multiple control 
strategies, so reaching an optimum control can become computationally 

demanding. Moreover, there exist several other influencing factors and 
indicators, such as user behaviour/comfort and appliances, which all 
can affect the energy performance of buildings. Reaching an optimum 
control strategy in the existence of multiple influencing factors can 
become very challenging, both when simulating and controlling build
ings in connection to the energy grid. We need lighter algorithms to be 
implemented in energy management systems, enabling a big number of 
agents (with multiple control strategies) to communicate and collabo
rate in a complex environment. In this regard, RL-based methods have 
shown substantial potential in resolving increasing complexities within 
the energy domain, considering both supply and demand [34,40]. In 
CIRLEM, RL is implemented to use the global CI-based knowledge for 
optimum decision making at two levels, as explained in the following. 

2.2. Flexibility signal and collective behaviour in the grid 

The need for flexibility is usually transferred from the energy pro
vider to the consumer through the energy network, which is called 
flexibility signal hereafter. In many cases, the price signal is also used as 
the flexibility signal, affected by the market and bidding strategies that 
govern the energy grid/market. In CI-DSM, the flexibility signal was 0 or 

Fig. 1. Schematic presentation of the communication strategies for CI-DSM and CIRLEM.  
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1, which 1 indicates the need for flexibility, asking buildings (or agents) 
to lower their energy demand by adopting their adaptation measures (or 
changing their control settings), which was only changing the indoor 
set-point temperature in [26]. Signal 0 allowed lifting the adaptation 
measures or continuing the control settings as is. Signal 1 was generated 
whenever the energy demand during operation time (or during extreme 
weather conditions) was higher than the reference values (which was 
considered as the energy demand at that time during typical weather 
conditions). The flexibility signal was transferring from the first group of 
buildings to the second and so on per time step, engaging one group of 
buildings per time step. Lifting the adaptation strategies was starting 

from the last group; the last to engage would be the first to release. In 
Fig. 1, the figure on top explains the CI-DSM communication strategy 
(for more details check [26]). Thanks to the simple communication 
approach (only 0 or 1 signals), the size and need of data transfer/storage 
decreases enormously (cheap ICT solutions). 

In CIRLEM, the flexibility signal is a signal between 0 and 5, which 
0 means there is no need for flexibility and 5 asks for the maximum 
possible flexibility in the grid. The approach of sending the signal can 
differ depending on the intelligence and control level at the energy 
supply or cluster side (which can be interpreted as Distribution System 
Operators or DSO). Higher control access often corresponds to increased 
data transfer while compromising data protection and user privacy. In 
this work, we are assessing two control strategies: 1) Edge Node Control 
(ENC), and 2) Edge node and Cluster Control (ECC). In ENC, the need for 
data transfer between buildings and the energy provider is at a minimum 
level (or keeping the user privacy at a maximum level). Meanwhile, 
there is no need for a high computational power at the cluster level since 
only one flexibility signal is transferred to the whole grid per time step 
(e.g. every 15 min) without any decision making at this level, as is 
visualized in Fig. 1. Although all buildings (or agents in the grid) receive 
the same signal per time step in ENC, they can respond differently 
depending on their capability and preferences. In ECC, the privacy 
measures at the building level are less strict than ENC and the compu
tational power is stronger on the supply side. This creates the opportu
nity to optimize the distribution of signals for the buildings connected to 

Fig. 2. Overall interaction in an RL-based system between the agent and the 
environment. 

Fig. 3. The 3D model of the Eidet building.  

Fig. 4. The 3D model of the Eidet building.  

V.M. Nik and M. Hosseini                                                                                                                                                                                                                    



Applied Energy 350 (2023) 121785

5

the grid and transfer specific signals to different buildings as shown in 
Fig. 1. In both ENC and ECC, the energy supplier/distributor does not 
know about the specific control actions taking place within buildings. In 
ECC the distributor understands the impact of single buildings/agents in 
the network, while such knowledge is not needed in ENC. 

Having a set of signals (0–5) and adaptation measures in buildings 
implies a big difference between CI-DSM and CIRLEM, making the de
cision making procedure more advanced (selecting the optimum adap
tation measures per buildings depending on the signal), especially 
considering the connection of many buildings with different demand 
profiles and adaptation strategies to the grid [41,42]. This is where RL 
plays an important role and helps to reach an optimum solution. In other 
words, RL enables the buildings/agents to reach a collective behaviour 
in response to the flexibility signal, helping to increase climate resilience 

and safely pass extreme events. 

2.3. Integrating RL into decision-making 

In a CI-based system, agents encounter repeated tasks and situations 
where learning from the past behaviours and consequences could 
improve the coming collective behaviours and achievements [43]. 
Moreover, agents can deploy RL to improve their individual and the 
whole system performance [44]. RL is a machine learning training 
method based on rewarding desired behaviours of (an) agent(s) [32] 
which can be also interpreted as the process of learning to act optimally 
in an environment through experience [34]. RL is a game between an 
agent and an environment, where the environment is represented by a 
Markov Decision Process (MDP) [34], formed by a quadruple (S, A, P, 

Fig. 5. Comparing the convergence speed and energy saving of algorithms with different randomness levels (0% to 100%), action library size (left: 24 and right: 48) 
for cooling demand during EWY summer. 

Fig. 6. Comparing the convergence speed and energy saving of algorithms with different randomness levels (0% to 100%), action library size (left: 24 and right: 48) 
for cooling demand during ECY winter. 
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R), representing State, Action, Environment and Reward [32]. In an 
MDP environment, the current state characterizes the whole process 
completely [45] saying that each state depends on the preceding states. 
Additionally, all the parameters in the quadruple values of (S, A, P, R) 
necessarily have finite numbers of elements, and actions and states 
interact in discrete time. Fig. 2 depicts the overall interactions between 
entities in an RL-based system where the agent perceives the state from 
the environment, takes an action and modifies its conditions in the 
environment, and earns a reward accordingly from the environment. 
The policy is to update after each new experience and reward for 
improving coming actions. 

Eq. (1) formulates an MDP environment where s’ is the successor 
state of s and p(s’, r|s, a) is the probability of transition to the state s’ 
with reward r, from the state s and the action a. Agents aim to maximize 
the expected return E[Gt ] from the actions. Gt is calculated based on Eq. 
(2) where γ is the discount factor between and equal to 0 and 1, Rt is the 
reward at time t, and γkR is the value of receiving reward R after k + 1 
time-steps [46]. 

p(s′, r|s, a)≐Pr{St = s′,Rt = r|St− 1 = s,At− 1 = a} (1)  

Gt =
∑T

k=0
γkRt+k+1 (2) 

RL algorithms tend to estimate the value function which gives a 
quantitative assessment of the agent for being in the given state. This 
value refers to the expected return (E[Gt ]) or future/expected reward 
which depends on what action the agent takes. Accordingly, the value 
function outcome is the “ways of acting”, so-called policies (π) [46]. In 
each interaction with the environment, the agent receives a reward from 
the environment. The agent then updates the current policy according to 
the earned reward leading to an improvement in the actions. 

Based on whether the model of the environment is accessible by the 
agent, RL algorithms can act model-free and model-based. A model-free 
RL method primarily relies on learning while model-based method 
mainly relies on planning [47]. In the contexts of buildings and energy 

Fig. 7. Comparing the distribution of the hourly (top) cooling demand in EWY summer and (bottom) heating demand in ECY winter.  
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Fig. 8. Percentage of indoor temperature during EWY summer and ECY winter for L24 and L48 runs with different randomness levels. For ENC-ECY-L48, the indoor 
comfort range has been extended to 19-24 ◦C instead of 21-24 ◦C. 
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systems, providing the model requires enormous amounts of data and 
yet the training efficiency is low [48] due to the large amount of un
certain and unknown data. In contrast, model-free RL can perform with 
the least amount of data by real-time learning and learning directly from 
the actions while it does not require to store the full description of the 
model [49]. The model-free approach avoids complexities in building 
energy modelling, energy systems identification, user behaviour, and 
weather conditions [50]. During the interaction with the environment, 
agents learn how to maximize their reward over time by taking proper 
actions in response to their environment based on the real-time data. 
Model-free approaches are divided into three categories, namely, (1) 
policy based (e.g., REINFORCE), (2) value based (e.g., Q-learning), and 
(3) hybrid actor-critic style [51,52]. Model-based methods, on the other 
hand, are divided into model-based RL with a known model (e.g., 
AlphaZero) or a learned model (e.g., Dyna-style) [53]. 

Nagy et al. [51] and Gao and Wang [53] carry out comprehensive 
studies about model-free and model-based RL methods while value and 
policy based methods are investigated by Nachum et al. [52] and Nagy 
et al. [51]. Zhuang et al. [54] proposes an RL-MPC (Model Predictive 

Control) coupled method for HVAC control using time series forecasting. 
Biemann et al. [55] applies a model-free actor-critic control algorithm 
for HVAC in an experiment showing the robustness and data efficiency 
emphasizing the implementation complexities. Suman et al. [56] de
ploys RL to learn occupants behaviour using MDP to overcome the un
certainties related to the occupants. Fu et al. [57] shows the 
outperformance of the model-free RL compared to MPC in a simulation- 
based study for load shifting while Wang et al. [58] compare the per
formance of the model-free RL against MPC in HVAC control optimi
zation. Zhou et al. [59] introduce a combination of RL with a rule-based 
control and decision-tree to enhance the building energy flexibility. 
Coraci et al. [60] propose an online transfer learning approach to in
crease the scalability of RL in building control. 

The RL engine in CIRLEM is a value-based model-free engine which 
uses the flexibility signal to learn about its environment and state. In this 
work, the flexibility signal is defined as a number between 0 and 5, 
comparing the energy demand at time t to the reference energy demand 
at time t. The reference energy demand is the demand during typical 
weather conditions or TDY. Signal 0 means that the energy demand is 
less than or equal to the TDY demand while values 1–5 indicate a higher 
demand; the larger the signal, the higher the demand in comparison to 
the TDY demand. Since the signal is generated every 15 min in this work, 
the reference values are calculated by considering the average and 
maximum 15-min energy demand values for TDY seasonal periods. For 
example, the maximum 15-min cooling demand in TDY summer and the 
average 15-min value for the whole TDY summer. Afterwards, the range 
of calculated values is divided into five equal sections (can be non-equal 
depending on the need and capacity of the energy provider). Knowing 
these values, the corresponding flexibility signals are generated per time 
step (15-min) using a simple function. 

The self-knowledge of the agent is generated by calculating rewards 
per time step or values. In this work, energy demand and indoor comfort 
are used to define the value functions. If both the energy demand and 
indoor discomfort at time t are smaller than the corresponding value for 
the extreme reference case (the default setting of agents/buildings 
during extreme weather conditions, ECY or EWY), the value function (or 
reward at that time t for the adopted actions) is equal to 1, if energy 
demand is smaller but discomfort is larger, it is equal to 0.5, and if both 
are larger, the value function at time t is zero. Actions with the value of 1 
are selected as a set of actions that form the policy (unless the algorithm 
does not converge to a solution, then actions with the value function of 
0.5 are also considered). The selected actions are added in the library of 

Fig. 9. Integral of the flexibility signal over time for ENC with L24 and L48 
over EWY summer and ECY winter for different randomness levels. 

Fig. 10. Flexibility signal profiles for five runs of ENC with R10 for L24 (left) and L48 (right) during EWY summer.  
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actions, forming the final and optimized library or the policy of the 
agent. In other words, the agent’s policy is a set of optimal actions which 
have been selected through an iterative process. We set a limit for the 
length of the library in this work, which is 24 and 48 actions and 
respectively called L24 and L48 hereafter. In this work, we put an equal 
weight to energy saving and comfort when selecting the actions. This 
can be changed based on the need, for example putting a higher weight 
on energy saving (e.g. 70%) and lower on comfort (e.g. 30%). 

The control strategies inside agents are interpreted as the actions of 
the agents, which are divided into three groups of 1) changing the 
cooling set-point between 18 and 29 ◦C in summer and heating set-point 
between 17 and 28 ◦C in winter, both with the intervals of 1 ◦C (12 
possible actions), 2) changing the ventilation rate per area between 
0 and 1.5 [l/m2/s] with 0.3 [l/m2/s] intervals (5 possible actions), and 
3) changing the internal loads (including equipment and plug loads) 
between 0 and 9 [W/m2] with the intervals 3 [W/m2] (4 possible ac
tions). This results in 240 possible actions per agent. These actions are 
also called adaptation actions/measures, since they are the actions of the 
agent to adapt to the new environmental conditions. The actions are 

selected randomly at the beginning and through the rewarding mecha
nism, the agents pick the suitable actions till creating the policy. To not 
stick all the time to the same policy and try different actions, we defined 
a randomness factor in the algorithm, which allows the algorithm to pick 
a random action even after fixing the policy. This opens doors to update 
the policy if (by any chance) a better action is being experienced by the 
agent. In this work, we have defined six randomness levels of 0%, 10%, 
30%, 50%, 70% and 100%, which 0% means there is no random choice 
(sticking all the time to the learnt policy) and 100% means to go all the 
time with random actions. 

2.4. The case study 

The performance of CIRLEM is assessed for an elderly care centre in 
Ålesund, Norway, which is called Eidet and owned by the Ålesund 
municipality (Fig. 3). The Eidet building is operated by the municipality 
property manager who operates around 400 public buildings in the 
town. The majority of the buildings are equipped with a building 
management system (BMS) that provides online access and control to 

Fig. 11. Flexibility signal profiles for five runs of ENC with R10 for L24 (left) and L48 (right) during ECY winter.  

Fig. 12. Flexibility signal distribution for five runs of ENC with R10 for L24 (left) and L48 (right) during EWY summer.  
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the buildings. The building was built in 2017 in five floors and a 
conditioned area of 7000 m2. The first to fourth floors accommodate 
private residential units and gathering rooms with a number of 32 rooms 
per floor. The basement includes facility rooms, kitchen, fridges, and 
storages. Like other municipal buildings, Eidet elderly care centre is also 
equipped by BMS, smart meters, and renewable sources of energy con
sists of photovoltaic cells, solar collector, boreholes, and thermal storage 
which are fully controlled by the BMS [61]. The residential rooms are 
the majority of the units, each around 32 m2 including a bathroom. 
Rooms are private with one occupant and an independent set-point 
which can be adjusted by the user ±3◦C relative to the BMS setpoint. 
There are also some gathering rooms and offices in the building. The 
Eidet building presents an ideal case study for evaluating the perfor
mance of CIRLEM, owing to its controlled and monitored environment 
encompassing separate zones, users, and controllers. Additionally, the 
building’s seamless connection to the grid and the availability of 
detailed information and data further contribute to its suitability for in- 
depth analysis. 

For the purpose of this work, a high spatiotemporal resolution 
building performance simulation model was developed in EnergyPlus, 

including multiple thermal zones on each floor. EnergyPlus was selected 
to develop the building energy model (BEM) because of the proper 
integration with Python and the possibility of interaction with the dy
namic simulation at each timestep via EnergyPlus API to mimic the 
flexible energy management. EnergyPlus API provides the ability to 
fetch the results at each timestep, modify the settings of the BEM and 
continue the dynamic simulation accordingly. Two groups of variables 
are defined including sensors and actuators to send and receive values 
from the API. Sensors represent the simulation results such as energy 
demand and air temperature which fetch the data from the simulation 
after each run and send to CIRLEM script. Actuators carry the required 
values to run the energy simulation such as cooling and heating setpoint, 
ventilation rate (per area and per people), lighting load, equipment load, 
occupancy, etc. to send them to the simulation according to the de
cisions made by CIRLEM. In total, 20 different thermal zones are 
generated which are considered as agents in this study. The model is 
verified against measured electricity, using historic weather data (check 
[61] for more details). 

Typical and extreme weather data sets are generated using 13 future 
climate scenarios from the “Coupled Model Intercomparison Project 5” 

Fig. 13. Flexibility signal distribution for five runs of ENC with R10 for L24 (left) and L48 (right) during ECY winter.  

Fig. 14. Evolution of the discomfort hours over runs of the algorithm for ENC-L24-R10 during EWY (left) and ECY (right).  
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(CMIP5) for the period of 2040–2069. Three sets of data are generated 
for building simulation using Nik’s approach [62], namely Typical 
Downscaled Year (TDY), Extreme Warm Year (EWY) and Extreme Cold 
Year (ECY). CIRLEM is used to control the performance of the 20 zones 
in the Eidet building during EWY summer and ECY winter in comparison 
with the typical (TDY) summer and winter. The distributions of the 
outdoor temperature together with some statistics are shown Fig. 4 for 
the typical and extreme weather data sets. 

3. Results 

Results are discussed in two sections and the first one is focused on 
ENC where all the decision making is happening at the edge node (i.e. 
inside agents or buildings). The performance of CIRLEM for different 
randomness levels is also investigated in this case. In the second section, 
the performance of CIRLEM with 10% randomness is investigated for 
ENC and ECC, investigating how transferring some of the decision 
making to the cluster level affects the performance of CIRLEM. 

3.1. ENC and different randomness levels 

In ENC all the decision making is happening at the edge node (inside 
the agent) and only one flexibility signal is transferred from the cluster 
to all the agents. The assessment is conducted by considering policies 
with two distinct numbers of actions: 24 and 48, referred to as libraries 
or sets of actions (designated as L24 and L48). Additionally, six different 
randomness levels are considered: 0%, 10%, 30%, 50%, 70%, and 100%. 

In this work, the convergence criteria were based on checking the 
last five runs and comparing the total energy demand of the building. If 
the standard deviation of the last five runs is 0.002 times smaller than 
their average, then the final solution (or the optimum policy) converges. 
This is very strict convergence criteria and to streamline the process 
without compromising the outcome, we made the necessary adjustment 
by relaxing the convergence criteria for L48 to 0.02. This decision was 
taken to prevent prolonged runs when there was no certainty of a 
significantly improved solution being achieved. Moreover, for L48 
during ECY winter, we had to extend the acceptable range of indoor 

Fig. 15. Evolution of the discomfort hours over runs of the algorithm for ENC-L48-R10 during EWY (left) and ECY (right).  

Fig. 16. Comparing the convergence and energy saving of ENC and ECC algorithms for cooling in extreme warm summer and heating in extreme cold winter.  
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Fig. 17. Cumulative distribution of the hourly cooling (left) and heating (right) demand for the reference case during typical and extreme conditions and ENC and 
ECC with L24 and L48 during extreme weather conditions. 

Fig. 18. Distribution of the hourly cooling (left) and heating (right) demand for the reference case during typical and extreme conditions and ENC and ECC with L24 
and L48 during extreme weather conditions. 

Fig. 19. Number of hours for each flexibility signal for ENC and ECC with L24 and L48 during EWY (left) and ECY (right).  
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temperature and set the minimum to 19 ◦C (instead of 21 ◦C). Fig. 5 
compares the convergence of the algorithms to reach an optimum 
cooling policy in the building for EWY summer, while Fig. 6 makes a 
similar comparison for heating policy in ECY winter. The reference en
ergy values are shown as dashed blue (for typical weather conditions) 
and red (for extreme weather conditions) lines. The reference control 
strategy for both cases is having ventilation rate per area of 0.3 [l/m2/s] 
and internal load of 6 [W/m2], while the cooling set-point in summer is 
23 ◦C and heating set-point in winter is 24 ◦C. For both the cases in Fig. 5 

and Fig. 6, a lower randomness level results in lower energy demand. We 
reach an optimum policy faster with a smaller library size, or L24, 
however the convergence speed does not show any correlation with the 
randomness level. For cooling in summer in Fig. 5, L24 drops the energy 
demand very quickly after the fourth run, in comparison to L48 
(compare the green asterisk with the other graphs in Fig. 5-right). L24 
works better for both cooling and heating the building, decreasing the 
energy demand to lower values and converging faster. The difference 
between L24 and L48 is considerable for heating demand as is visible in 
Fig. 6. 

For all the cases, a lower randomness results in a lower final energy 
demand (for the fixed policy). The distributions of the hourly energy 
demand values are plotted in Fig. 7 together with some statistics above 
each boxplot. For both the cooling and heating demands, a higher 
randomness increases the average energy demand but not necessarily 
the other statistics. For example, the maximum hourly energy demand 
(or peak values) can slightly decrease by increasing the randomness. In 
ENC, increasing the library size for the policy does not provide any 
advantage during the cooling season and even worsens the performance 
of CIRLEM during the heating season. 

Knowing that indoor comfort has the same weight as energy saving 
in this study, distribution of the indoor temperature for different 
randomness levels and run cases are compared in Fig. 8. For all the cases, 

Fig. 20. Distribution of indoor temperature during EWY summer and ECY winter for ENC and ECC with L24 and L48 policies.  

Table 1 
Percentage of indoor temperature being maintained within the comfort range 
across various CIRLEM algorithms.  

CIRLEM Comfort during 
EWY [%] 

Comfort during 
ECY [%] 

Comfort during ECY - 
extended comfort [%] 

ENC- 
L24 

97.2 98.7 N/A 

ENC- 
L48 

96.1 20.8 80.9 

ECC- 
L24 

98.5 99.9 N/A 

ECC- 
L48 

97.9 24.2 100  
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CIRLEM keeps the indoor temperature in the defined comfort range most 
of the time. By reducing the randomness level, there is an observed in
crease in the percentage of maintaining temperatures at the upper limit 
(24 ◦C) during the warm months (EWY) and at the lower limits (21 ◦C or 
19 ◦C) during the cold months (ECY). This can result in a lower energy 
demand. 

Impacts of randomness level on the flexibility signal is shown in 
Fig. 9 by calculating the integral of the flexibility signal over time and 
comparing it between different cases. As visible, for each case (e.g. EWY- 
L24) a higher randomness level results in a higher integral of flexibility 
signals. The only exception is ECY-L48 for the randomness of 100%, 
which is not a case to make conclusions about the performance of 
CIRLEM itself, since L48 is not an optimum policy length for heating in 
cold season, as it obvious based on the results (a bigger number of ac
tions can increase the risk of extreme conditions for this heating domi
nated case). In general, we can see that the R10 algorithm can be 
considered as a safe choice and R0 a conservative one. For both the 
cooling and heating cases in Fig. 9, L24 keeps the total value of the signal 
integral lower than L48. 

Picking 10% as the optimum randomness level in this work, the 
evolution of CIRLEM over different runs, as it approaches convergence, 
is studied by comparing the flexibility signals between different runs. As 
it was discussed in the theory section, the flexibility signal represents the 
state of the environment and reflects upon the collective behaviour of 
the agents. Therefore, studying its variations between different cases can 
provide more information about their performances. As time progresses, 
the algorithm is expected to learn and effectively manage energy de
mand, aiming to optimize the performance of the energy system by 
minimizing peak demands and achieving a smoother energy consump
tion profile. The profiles of flexibility signals for some runs (including 
the first and last run) are shown in Fig. 10 and Fig. 11, respectively for 
EWY summer and ECY winter. As is visible, the intensity of signals over 3 
decreases by reaching the final run. This is better illustrated in Fig. 12 
and Fig. 13 by plotting bar charts for exactly the same cases. As visible, 
the quantity of 2, 3, 4 and 5 signals decrease as the solution converges 
while the number of 0 and 1 signals increase (the only minor exception is 
ENC-L48-R10-ECY for signal 2 in Fig. 13). This indicates that CIRLEM 
learns by time to keep the energy demand at lower levels and decrease 
the number of hours with intense energy demand. 

It is interesting to see how the indoor comfort conditions change per 
run until converging to a final solution. This is visualized in Fig. 14 and 
Fig. 15, respectively showing the discomfort hours for EWY summer and 
ECY winter. Each bar chart shows the over (plus values) and under- 
temperature (minus values) hours separately for two policies with 24 
and 48 sets of actions. The data presented clearly indicates a decrease in 
the number of discomfort hours across all cases, with some fluctuations 
observed during the convergence process. However, it is worth noting 
that the ENC-ECY-L48 case exhibits a larger number of under- 
temperature hours. This discrepancy is due to our consideration of any 
temperature below 21 ◦C as discomfort hours, while the ENC-ECY-L48 
case includes an extended discomfort range of 19–24 ◦C, resulting in a 
significant number of hours falling within the 19–21 ◦C range. 

3.2. ENC and ECC with 10% randomness 

This section presents a comparison between two distinct approaches 
for running CIRLEM. As explained in the theory section, the ENC 
approach involves all control and optimization taking place at the edge 
side, where agents receive a single signal per time step from the energy 
provider. In ECC, each agent has its own policy (which is developed 
through running a process similar to ENC), however there is a higher 
control at the cluster level, enabling optimized distribution of the flex
ibility signal among agents. In essence, ECC involves a greater level of 
control that optimizes the allocation of signals across agents. All the 
results in this section are based on having a randomness level of 10% 
when running CIRLEM. 

The convergence of ENC and ECC approaches are compared in 
Fig. 16. Naturally, all the ECC cases converge much faster and start with 
lower values for energy demand than ENC since ECC starts from the 
point ENC ends, using the optimum policies that are converged in ENC. 
So, we cannot neglect the time required for agents to reach their opti
mum policies. Having the ENC policies, ECC can help to better distribute 
them among agents and reach lower energy demand values, as is visible 
in Fig. 16. 

The cumulative energy demand profiles are plotted in Fig. 17 for all 
the cases in comparison to the reference cases for typical and extreme 
weather conditions. According to the results for cooling demand, ENC- 
L24 and ENC-L48 algorithms perform quite similarly (ENC-L24 per
forms slightly better, saving energy for 1% more). Adding a higher 
control at the cluster level can decrease the cooling demand a bit more, 
which is relatively bigger for ECC-L48 (~3% for L24 and ~ 8% for L48; 
compare ENC-L48 with ECC-L48 in Fig. 17-left). For heating demand, 
ENC-L24 performs very well and decreases the heating demand to values 
very close to the TDY reference. ECC-L24 slightly enhances the perfor
mance of CIRLEM, saving around 7% more energy in comparison to 
ENC-L24. Unlike the L24 case, the difference between ENC and ECC is 
huge for the L48 case. The heating demand for ENC-L48 is very high and 
close to the extreme ECY case. By adding a higher control at the cluster 
level for ECC-L48, it is possible to decrease the heating demand for 51% 
to values lower than the TDY reference case. Based on the results, having 
a bigger library size for ENC does not necessarily help with saving more 
energy and can even increase the energy demand and complicate the 
optimization process, especially for the case of heating during ECY 
winter. A bigger library can be advantageous in ECC where the higher 
control at the cluster level can become helpful in reaching optimum 
distributions of the policies. 

By checking the distribution of the hourly energy values in Fig. 18, 
we see that differences in reducing the peak cooling demand are not 
considerable between different algorithms, unlike heating demand 
which ENC-L48 shows the worst performance in this case as well. ECC 
helps to decrease the outliers for heating demand, which might be 
considered as unprecedented future peaks, depending on how to inter
pret them [25]. Considering that the case study is already designed for 
cold climate conditions and the energy system can cope with extreme 
cold events, ENC-L24 can be a safe and cheap solution. 

The distribution of flexibility signals for different algorithms are 
compared in Fig. 19 for cooling (left) and heating (right). Interestingly, 
ECC results in diminishing 4 and 5 signals in both cases, meaning that it 
successfully manages to avoid putting high pressure on the energy 
supplier during extreme weather events. While ENC-L48 is excluded for 
heating during ECY, it is worth noting that ENC still demonstrates a 
remarkable performance in reducing the necessity for high flexibility. 

Distribution of the indoor temperature among the cases are 
compared in Fig. 20 for EWY summer and ECY winter. For all the cases, 
temperature is mostly distributed in the comfort range (assuming that 
the comfort range is 19-24 ◦C for L48-ECY and 21-24 ◦C for the rest). The 
performance of ENC-L24 is interestingly well for both EWY and ECY. For 
example, ENC-L24 has the highest percentage of 21 ◦C during EWY 
summer, while it is at the lower end of the comfort limit (which may 
require spending more energy in summer as visible in previous figures). 
Table 1 summarises the percentage of indoor temperature being main
tained within the comfort range across all the CIRLEM algorithms 
assessed in this work. Given the remarkable performance of all algo
rithms in meeting the comfort criteria with consistently high rankings, 
this analysis shows that having a larger policy library and higher control 
at the cluster level does not necessarily and/or considerably enhances 
the indoor comfort in comparison to the fastest and simplest CIRLEM 
algorithm, namely ENC-L24. 

4. Conclusions 

In this work, CIRLEM was introduced which is a novel energy 

V.M. Nik and M. Hosseini                                                                                                                                                                                                                    



Applied Energy 350 (2023) 121785

15

management (EM) approach developed based on the synergic integra
tion of the fundamental concepts of collective intelligence (CI) and 
reinforcement learning (RL). The RL engine in CIRLEM is a value-based 
model-free engine which uses the flexibility signal to learn about its 
environment and state. The flexibility signal reflects upon the collective 
behaviour of the agents in the grid. Two ways of running CIRLEM were 
investigated: 1) based on doing all the decision making and optimization 
at the edge node (or agents), called Edge Node Control or ENC, and 2) 
based on adding a higher control at the cluster level and controlling 
building from outside, called Edge node and Cluster Control or ECC. In 
ENC, there is no need to know about the control options and behaviour 
of single buildings, ensuring maximum user privacy and minimum data 
transfer, while in ECC there is a need to understand the impact of the 
policies adopted by buildings, however still there is no need to know 
about the actions in the policy. The performance of CIRLEM was 
investigated for an elderly building in Ålesund, Norway during two 
extreme periods; summer in an extreme warm year (EWY) and winter in 
an extreme cold year (ECY). The building was divided into 20 separate 
zones, each helping the whole group of zones and the energy supplier to 
pass the extreme conditions safely. Four reference cases were considered 
to perform a comparative analysis where two of them are the default 
running mode of the building during summers in typical (TDY) and 
extreme warm (EWY) years, and the other two are the default mode 
during typical and extreme cold (ECY) winters. The performance of 
CIRLEM was assessed for policies with 24 and 48 sets of actions (called 
L24 and L48), considering six randomness levels of 0, 10, 30, 50, 70 and 
100% (R0–100) for ENC, while e.g. R10 means that the agent selects a 
random action for 10% of time instead of picking the best action from its 
policy. 

Based on the results, CIRLEM converges quickly to an optimum so
lution (optimum set of policies), providing an enhanced indoor comfort 
and energy saving, with variations between cases based on running ENC 
or ECC, size of the policy library and randomness level. There is no 
obvious correlation between randomness and convergence, however a 
higher randomness level increases the average energy demand but not 
necessarily the other statistics such as maximum energy demand. Ac
cording to the results, having a bigger library size for ENC does not 
necessarily help with saving more energy and can even increase the 
energy demand and make the optimization process lengthier, especially 
for the case of heating during ECY winter. A bigger library can be ad
vantageous in ECC where the higher control at the cluster level can 
become helpful in reaching optimum distributions of the policies. 
Moreover, considering the fact that all algorithms performed remark
ably well in meeting the comfort criteria, we can conclude that having a 
larger policy library and higher control at the cluster level does not 
necessarily and/or considerably enhance the indoor comfort. Overall, 
CIRLEM could enhance the energy flexibility and climate resilience of 
the building, saving energy without compromising indoor comfort, 
while the fastest and simplest CIRLEM algorithm, namely ENC-L24, 
demonstrated an excellent performance for both cooling in EWY sum
mer and heating in ECY winter. 

This work is based on some ongoing projects and further research is 
under development to enhance CIRLEM. The future work is focused on 
integrating other selection criteria such as energy price into decision 
making. Moreover, by integrating other factors into the energy price, 
such as sustainability of the energy source and flexibility, the price 
signal itself can be used as a comprehensive flexibility signal. The per
formance of CIRLEM is going to be assessed for other climate regions 
over Europe considering different building designs and urban areas. 
Moreover, the developed algorithms will be implemented in Raspberry 
Pi control units and tested in controlled environments. 
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