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Stability of superconducting gap symmetries arising from antiferromagnetic magnons
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We consider a planar heterostructure consisting of a normal metal in proximity to an antiferromagnetic insula-
tor, with an interlayer exchange coupling between the metal and the insulator. The coupling to the two sublattices
of the antiferromagnetic insulator is allowed to be asymmetric. An effective electron-electron interaction in
the normal metal, mediated by antiferromagnetic magnons in the insulator, is derived to second order in the
interlayer exchange coupling. Particular emphasis is placed on including analytically derived expressions for the
effective interactions including Umklapp processes in the solutions to the superconducting gap equation. The gap
equation is first solved at the critical temperature as an eigenvalue problem by linearizing the gap equation. The
eigenvectors yield information on the symmetry of the superconducting gap at the onset of superconductivity,
and we derive a phase diagram for the order parameter in this case. In the various regimes of the phase diagram,
we find p-wave, f -wave, and d-wave superconductivity, with p-wave superconductivity in the dominant part of
the phase diagram. Umklapp processes, that come into play with increasing size of the Fermi surface, yield f -
and d-wave symmetries as the preferred symmetries when band filling approaches half filling. To investigate
the stability of this order parameter symmetry as the temperature is lowered, we also consider the nonlinear gap
equation at zero temperature. We conclude that the phase diagram and the symmetries of the superconducting
order parameter essentially are left intact as the temperature is lowered to zero temperature.
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I. INTRODUCTION

The interaction between a magnetic insulator (MI) and
an adjacent nonmagnetic material forms a major research
topic in the field of spintronics. Spin-orbit torque [1–3] and
spin pumping [4,5] have been intensively studied to realize
interconversion between electronic spin current in the non-
magnetic normal metal (NM) and magnonic spin current in the
MI. Based on this, versatile electrically manipulated devices
[1] such as magnetic recording units [6], nano-oscillators
[7–9], and domain-wall racetracks [10] are developed. In
addition, it has been proposed that superconductivity can
be introduced in MI/NM heterostructures [11–17]. Com-
pared to conventional phonon-mediated superconductivity,
the magnons in the MI are responsible for mediating an at-
tractive interaction between the electrons in the neighboring
NM, leading to the formation of a superconducting state. The
magnon-mediated superconductivity has the potential to be
enhanced by engineering the properties of the MI such as
magnetic anisotropy [18] and magnon gap [12]. In addition,
the MI/NM interface also plays a crucial role in manipulating
the resulting superconductivity [13–16].

The ferromagnetic insulator (FMI) combines the advan-
tages of ferromagnetism and insulators, which is highly
needed for developing low dissipation spintronic devices
[19,20]. Magnon-mediated superconductivity has been pro-
posed in a FMI/NM/FMI trilayer [11], in which a triplet
p-wave superconducting pairing with critical temperature
in the interval between 1 and 10 K is found. On the
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other hand, emerging research interests have recently been
focused on antiferromagnetic insulators (AFMIs) with com-
pensated magnetic moments, which possess a higher degree
of stability and lower power consumption compared with
FMIs [21,22]. Similarly, it has been shown theoretically
that an electron-electron interaction yielding superconduc-
tivity can be mediated by antiferromagnetic magnons in an
AFMI/NM bilayer [13] and an AFMI/NM/AFMI trilayer
[12,14]. In Refs. [13,14] it is shown that asymmetric cou-
pling to the sublattices of the AFMI gives rise to a potential
enhancement of the critical temperature due to squeezing of
magnons [23].

In the AFMI, magnons reside in a reduced Brillouin zone
(RBZ) compared to the full first Brillouin zone (1BZ) for elec-
trons in the NM. This introduces electron-magnon scattering
of two types, i.e., regular and Umklapp [see Fig. 1(b)]. The
electrons are scattered with a momentum within the magnon
RBZ through regular scattering. This is the only relevant pro-
cess for a small Fermi surface (FS), like those considered in
Ref. [13] for the AFMI/NM bilayer, where magnon-mediated
p-wave superconductivity was found. In the Umklapp pro-
cesses, the electrons are scattered out of the RBZ by receiving
an additional momentum corresponding to a magnon lattice
vector in the reciprocal space. This mechanism becomes im-
portant as the Fermi surface of the NM becomes larger and
approaches half filling, resulting in a d-wave phase based
on the AFMI/NM/AFMI trilayer within a weak-coupling ap-
proach in Ref. [12] and within a strong-coupling approach in
Ref. [14]. Reference [14] also finds f -wave pairing close to
half filling with sublattice coupling asymmetry.

In this paper, we study magnon-mediated supercon-
ductivity in an AFMI/NM bilayer [see Fig. 1(a)] within
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FIG. 1. (a) Schematic representation of the bilayer structure
considered in this paper, with a normal metal (NM) and an anti-
ferromagnetic insulator (AFMI) on a bipartite lattice (orange and
blue). The spins of the AFMI on the two sublattices interact with
the spins of the electrons with exchange coupling constants that are
allowed to be different on each sublattice, but are uniform within
each sublattice. (b) Illustration of a regular (R) and Umklapp (U)
scattering process. The entire square is the Brillouin zone for the
electrons, while the red square illustrates the reduced magnetic Bril-
louin zone (RBZ). An example Fermi surface is shown in green. In a
regular scattering process, magnons can transfer momenta q between
electrons in the range defined by the RBZ, i.e., within the orange
region. Umklapp processes are necessary to reach momenta outside
the RBZ, i.e., in the blue region.

a weak-coupling BCS framework, where both regular and
Umklapp scatterings are treated on an equal footing. We
analytically derive expressions for the effective electron-
electron interactions mediated by magnons and numerically
solve the resulting gap equation. Both the linearized gap
equation close to the critical temperature and the nonlinear
gap equation at zero temperature are solved. By modulating
the asymmetry of interfacial sublattice exchange coupling
and the chemical potential in the NM, transitions between
different superconducting phases (i.e., p-, d-, and f -wave) are
achieved.

This work is related to Refs. [12–14]. References [13,14]
are restricted to temperatures close to the critical temperature
of superconductivity, while Ref. [12] is limited to symmetric
coupling to the AFMI sublattices, and an approximate model
with quadratic electron dispersion or circular Fermi surface
is utilized. We use a tight-binding model to treat the noncir-
cular Fermi surface when the chemical potential is tuned to
approach half filling. A study of the superconducting phase
diagram at zero temperature including sublattice asymmetric
coupling and an accurate account of the effect of Umklapp
processes close to half filling is the main result of this paper.
As such, the present paper improves on insights from previous
works [13,14]. Furthermore, our model provides both analyt-
ical and numerical insights into the AFMI magnon-mediated
superconductivity, giving potential theoretical suggestions on
how to realize and manipulate magnon-mediated supercon-
ductivity experimentally.

II. THEORY

A. Model

The AFMI/NM bilayer system, illustrated in Fig. 1(a), is
modeled by the Hamiltonian

H = HAFMI + HNM + Hint, (1)

which consists of the AFMI, NM, and interfacial terms whose
explicit expressions are given by

HAFMI = J
∑
〈i, j〉

Si · S j − K
∑

i

S2
iz, (2)

HNM = − t
∑

〈i, j〉,σ
c†

iσ c jσ − μ
∑
i,σ

c†
iσ ciσ , (3)

Hint = − 2J̄A

∑
i∈A

c†
i σci · Si − 2J̄B

∑
i∈B

c†
i σci · Si. (4)

Here the sum over 〈i, j〉 includes all nearest neighboring
sites. In the AFMI, J and K denote the antiferromagnetic
exchange and easy-axis anisotropy (along ẑ), respectively. Si

is the spin operator at the lattice site i. In the NM, t is the
tight-binding hopping parameter and μ represents the chem-
ical potential. c†

iσ (ciσ ) is the electron creation (annihilation)
operator, which creates (annihilates) an electron with spin σ

at site i. At the AFMI/NM interface, J̄A (J̄B) parametrizes
the sublattice-dependent interfacial exchange coupling. In the
following, these interfacial strengths are described by the
coupling asymmetry parameter � ≡ J̄A/J̄B with J̄B ≡ J̄ . The
notation ci ≡ (ci↑, ci↓)T is introduced and σ denotes the Pauli
matrix vector in the spin space. In addition, we set h̄ = a = 1,
where a is the lattice constant of the square lattice considered
in this paper.

Applying the Holstein-Primakoff and Fourier transforma-
tions for the two sublattice spin operators in the AFMI,
HAFMI is transferred into the momentum space in terms of
the two individual sublattice magnons aq and bq (see Ap-
pendix A for details). Next, the Bogoliubov transformation
with αq = uqaq − vqb†

−q and βq = uqbq − vqa†
−q is performed

to diagonalize the AFMI Hamiltonian, in which αq and
βq are the eigenmagnon operators defined as superpositions
of aq and bq. The resulting diagonalized Hamiltonian is
given by

HAFMI =
∑
q∈♦

ωq(α†
qαq + β†

qβq), (5)

ωq = 2s
√

(zJ + K )2 − z2J2γ 2
q , (6)

in which γq = (2/z)(cos qx + cos qy) is the structure factor.
z and s are the number of nearest neighbors and spin quan-
tum number, respectively. ♦ denotes summation over the
RBZ. The coherence factors in the Bogoliubov transforma-
tion are obtained as uq = cosh θq and vq = sinh θq with θq =
(1/2) artanh[−Jzγq/(zJ + K )].

The NM Hamiltonian can be diagonalized as

HNM =
∑

k∈�,σ

εkc†
kσ

ckσ , (7)

εk = −tzγk − μ, (8)

in which � denotes the sum over the 1BZ. Here we utilized

ciσ = 1√
N

∑
k∈�

ckσ e−ik·ri

= 1√
N

∑
k∈♦

(ckσ e−ik·ri + ck+G,σ e−i(k+G)·ri ) (9)
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in the Fourier transformation, where N is the number of lat-
tice sites at the AFMI/NM interface. G ≡ π (x̂ + ŷ) is the
reciprocal lattice vector, which occurs in the Umklapp scat-
tering processes.

Utilizing the transformations shown in Appendix A and
Eq. (9), the interfacial Hamiltonian Hint = H (A)

int + H (B)
int is

written in terms of diagonalized operators as

H (A)
int = �V

∑
k∈�,q∈♦

[(uqαq + vqβ
†
−q)(c†

k+q,↓ck↑ + c†
k+q+G,↓ck↑)

+ (uqα
†
−q + vqβq)(c†

k+q,↑ck↓ + c†
k+q+G,↑ck↓)], (10)

H (B)
int =V

∑
k∈�,q∈♦

[(uqβq + vqα
†
−q)(c†

k+q,↑ck↓ − c†
k+q+G,↑ck↓)

+ (uqβ
†
−q + vqαq)(c†

k+q,↓ck↑ − c†
k+q+G,↓ck↑)], (11)

which couples the electrons in the NM with the A and
B sublattice magnons in the AFMI. Here we define V ≡
−2J̄

√
s/

√
N .

B. Effective interaction

The full Hamiltonian of the AFMI/NM bilayer system can
be written as H = H0 + ηH1, in which we define

H0 ≡ HAFMI + HNM

=
∑

q

ωq(α†
qαq + β†

qβq) +
∑
kσ

εkc†
kσ

ckσ , (12)

ηH1 = ηH (A)
1 + ηH (B)

1 ≡ H (A)
int + H (B)

int . (13)

In order to obtain an effective electron-electron interaction
Hpair mediated by virtual magnons, we perform a canoni-
cal transformation by treating ηH1 as a perturbation. η is a
dummy variable to count powers in the perturbation expan-
sion. The resulting effective Hamiltonian takes the form of
Heff = H0 + Hpair with (see Appendix B for details)

Hpair =
∑
kk′

Vkk′c†
k↑c†

−k↓c−k′↓ck′↑, (14)

in which

Vkk′ = − V 2 2ωq

(εk′ − εk)2 − ω2
q

A(q,�), (15)

A(q,�) = 1
2 (�2 + 1)

(
u2

q + v2
q

) + 2�q�uqvq, (16)

q =
{

k + k′, k + k′ ∈ ♦
k + k′ + G, k + k′ /∈ ♦ , (17)

�q =
{

1, k + k′ ∈ ♦
−1, k + k′ /∈ ♦ . (18)

The effective interaction Vkk′ in Eq. (15) is of the standard
form well known for electron-phonon interactions, apart from
the factor A(q,�). This is a factor that boosts the strength
of the magnon-mediated electron-electron interaction. The
boosting has two origins.

(i) Varying � from 1 to 0 changes the combination of co-
herence factors in the interaction from (uq + vq)2 to u2

q + v2
q .

Since uq and vq have opposite signs and tend to cancel for
small q, this vastly enhances the strength of the interaction for
small-momenta scattering [13,24].

(ii) Umklapp scattering implies that the factor �q takes on
the opposite sign compared to regular scattering. Thus, even
for � = 1 one obtains the combination (uq − vq)2 instead of
(uq + vq)2, again leading to a strengthening of the interaction
[12,13].

III. RESULTS AND DISCUSSION

Consider the odd part of the pairing potential V O(k)
kk′ =

1
2 (Vkk′ − V−k,k′ ) for the Sz = 0 spin triplet channel, i.e., the
typical condensation channel for magnon-mediated super-
conductivity. The BCS gap function is defined as k =
−∑

k′ V O(k)
kk′ 〈c−k′↑ck′↓ + c−k′↓ck′↑〉/2. Within the standard

weak-coupling mean-field theory approach [13,25], the gap
function becomes

k = −
∑

k′
V O(k)

kk′
k′

2Ek′
tanh

Ek′

2kBT
, (19)

which is a nonlinear equation with respect to k with

Ek =
√
ε2

k + |k|2 . On the other hand, the even part of the

pairing potential V E (k)
kk′ = 1

2 (Vkk′ + V−k,k′ ) corresponds to the

spin singlet channel, where k = −∑
k′ V E (k)

kk′ 〈c−k′↑ck′↓ −
c−k′↓ck′↑〉/2. Its gap equation takes the same form as Eq. (19),

except that V O(k)
kk′ is replaced by V E (k)

kk′ .

A. Gap equation at critical temperature

When the temperature T approaches its critical value Tc

from below, the magnitude of k in Ek =
√

ε2
k + |k|2 can be

treated as negligible, giving rise to a linearized gap equation:

k = −
∑

k′
V O(k)

kk′
k′

2|εk′ | tanh

( |εk′ |
2kBTc

)
. (20)

In the following, we assume that the gap is nonzero only
close to the Fermi surface for momenta such that |εk|, |εk′ | <

ωc, with ωc = 2szJ the magnon cutoff energy at the Bril-
louin zone boundary. Furthermore, tanh(|εk′ |/2kBTc)/2|εk′ | is
peaked at the Fermi surface, justifying a Fermi surface aver-
age [25]:

k = −D(μ)
〈
V O(k)

kk′ k′
〉
k′,FS

∫ ωc

−ωc

dε
1

2|ε| tanh

( |ε|
2kBTc

)
,

(21)

where D(μ) is the density of states per spin on the Fermi
surface (see Appendix C for its explicit expression) and 〈 〉k′,FS
denotes the angular average over the Fermi surface. Next, a
dimensionless coupling constant is defined as [26]

1

λ
=

∫ ωc

−ωc

dε
1

2|ε| tanh

( |ε|
2kBTc

)
≈ ln

(
1.13ωc

kBTc

)
, (22)

in which the weak-coupling limit (λ � 1) is assumed. In
terms of λ, the gap function can be written as

λk = −D(μ)
〈
V O(k)

kk′ k′
〉
k′,FS, (23)

which becomes an eigenvalue problem by picking discrete
points equidistantly placed on the Fermi surface for k and k′

to construct V O(k)
kk′ as a matrix. Consequently, λ and k can be
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FIG. 2. Phase diagram of the critical temperature Tc in terms of sublattice coupling asymmetry � and chemical potential μ. The green,
blue, and red colors correspond to spin-triplet p-wave, spin-triplet f -wave, and spin singlet d-wave phases, respectively. The corresponding
gap structures are shown on the right, red for positive and blue for negative k on the Fermi surface. Here, we have used parameter values
J = 5 meV, K = J/2000, J̄ = 20 meV, s = 1, z = 4, and t = 1 eV.

solved as eigenvalues and eigenvectors, respectively. Here we
utilize the largest eigenvalue for λ to determine Tc and its cor-
responding eigenvector to get the gap structure information.
While this procedure determines Tc, it only determines the gap
amplitude up to a multiplicative constant. We will return to
this below when we consider solutions to the gap equation for
T < Tc. Based on Eq. (22), the estimated critical temperature
Tc is given by

kBTc = 2eγ

π
ωce−1/λ ≈ 1.13ωce−1/λ, (24)

where γ = 0.577 is Euler’s constant. As described above, we
follow the same procedure to obtain Tc for the spin singlet
channel with V E (k)

kk′ and then determine the final Tc as the
greatest value obtained from these two channels. Employ-
ing plausible material parameters obtained from experiments
[12,13,27,28], the critical temperature Tc is plotted as a phase
diagram in terms of the chemical potential μ and the asym-
metry parameter � ≡ J̄A/J̄B in Fig. 2, where different colors
are utilized to show the symmetries of their corresponding
gaps (i.e., eigenvectors). In the green region with smaller μ

and �, we find spin triplet p-wave superconductivity. Since
the square lattice is symmetric under π/2 rotations, px and py

are degenerate solutions of the eigenvalue problem. Hence, all
linear combinations of px and py are solutions, and we refer
to this as p-wave. Possible solutions include a time-reversal-
symmetry-broken px + ipy gap [25]. Our definitions of gap
symmetries are illustrated in Fig. 2.

In the p-wave region the highest Tc ≈ 50 K is achieved
at the largest asymmetry � = 0 and the lowest chemical
potential μ = −3.9 t . At such low filling, the Fermi surface
is small, ensuring that all scattering processes involve small
magnitudes of magnon momenta q where the strongest cou-
pling is expected for small � [13,24]. A similar increase in
Tc for small Fermi surfaces and small � was found within a
strong-coupling calculation in Ref. [14].

As � < 1 decreases, the electron-magnon coupling with
small momentum transfer increases due to squeezing of an-
tiferromagnetic magnons [23]. We get V O(k)

kk′ < 0 with large

magnitude for k ≈ k′ and V O(k)
kk′ > 0 with large magnitude

for k ≈ −k′ promoting p-wave spin triplet gaps. On the
other hand, V E (k)

kk′ > 0 with increasing magnitude when k ≈ k′

which prevents solutions to the gap equation for spin singlet
gaps. As a result spin triplet superconductivity is preferred.

When the size of the FS increases, Umklapp processes
become relevant as two points on the FS may be further apart
than the extent of the RBZ. A consequence of this is that
V O(k)

kk′ , viewed as a function of k′ on the FS with k fixed to
a point of the FS, develops four more sign changes. Hence,
it eventually becomes preferable for the gap to have six sign
changes, f -wave instead of p-wave. The strong peaks in V O(k)

kk′

for k ≈ ±k′ increase in magnitude for decreasing �. Hence,
more Umklapp processes are needed to make an f -wave gap
preferred. This explains why the transition from p-wave to
f -wave occurs at larger μ for smaller �. Similar to the p-
wave case, there is a degeneracy of fx and fy. Any linear
combination of fx and fy solves the linearized gap equation,
and we refer to this as f -wave.

For � = 1 there is no enhancement of the coupling for
k ≈ ±k′. In fact, V O(k)

kk′ > 0 when k ≈ k′ preventing solutions

to the gap equation for spin triplet gaps. V E (k)
kk′ is positive (but

anisotropic) for all k and k′ on the FS. Hence the spin singlet
gap prefers a sign changing d-wave over s-wave. So, close
to � = 1, a spin singlet d-wave is preferred, which results
in the red region in Fig. 2. Unlike the spin triplet case, the
spin singlet eigenvalue problem is not degenerate, and we find
that a dx2−y2 gap symmetry is preferred. Note that Tc increases
rapidly when approaching half filling, where the Umklapp
enhancement of the interaction is most active. Further away
from half filling the coupling is too weak to yield a measurable
Tc in any pairing channel.

054520-4



STABILITY OF SUPERCONDUCTING GAP SYMMETRIES … PHYSICAL REVIEW B 108, 054520 (2023)

FIG. 3. Phase diagram of the gap maximum max at zero temperature in terms of sublattice coupling asymmetry � and chemical potential
μ. The green, blue, and red colors correspond to the spin-triplet p-wave, spin-triplet f -wave, and spin singlet d-wave phases, respectively. The
hatched areas show where symmetries on both sides of the boundary lead to convergence with the underneath color indicating the symmetry
with larger gap amplitude. Here we use the same parameters as indicated for Fig. 2.

Similar phase transitions can also be achieved based on the
strong-coupling Eliashberg theory [14]. This is an important
point, since the boosting mechanism for Tc, involving both
Umklapp and the coherence factors from diagonalizing the an-
tiferromagnetic magnons, easily puts us in the strong-coupling
regime. Reference [14] finds an effective cutoff on the magnon
spectrum that is lower than ωc = 2szJ , giving a reduction of
the estimated Tc. The similarity of our present results to the
strong-coupling results as far as the symmetry of the gap is
concerned right at T = Tc motivates us to also consider the
low-temperature limit using a weak-coupling treatment. This
problem is considerably more demanding numerically, since
the equations to be solved are nonlinear.

B. Gap equation at zero temperature

To investigate the low-temperature behavior of the super-
conductor, we consider the gap equation at zero temperature.
The main purpose of this is to investigate if the symmetry of
the superconducting order parameter that we find at T = Tc is
altered in any significant way as the temperature is lowered.
This is not an entirely trivial question. At T = Tc, as men-
tioned above, the gap equation is linear. Hence, any linear
combination of two solutions with the same eigenvalue is
also a solution. The situation is altered for T < Tc, where
the gap equation is nonlinear. Consequently, one expects the
degeneracy between solutions that exist at T = Tc to be lifted.
In addition, it is conceivable that solutions that are preferred
at T = Tc could be replaced by other solutions with different
symmetries for T < Tc. Determining what happens requires
an explicit calculation. To investigate the low-temperature
regime, we consider the limit T = 0, since we expect the tem-
perature dependence of the gap to saturate well above T = 0.
The present analysis therefore extends previous work using

weak-coupling BCS theory not including Umklapp, where
only the T = Tc case was studied in Ref. [13]. It also extends
the work properly including Umklapp processes [14], which
only considered T = Tc.

Applying the Fermi surface average in the nonlinear
Eq. (19), the ensuing gap takes the form

k = −D(μ)
〈
V O(k)

kk′ k′χ (k′ )
〉
k′,FS (25)

where

χ (k′ ) =
∫ ωc

−ωc

dε
tanh(

√
ε2 + |k′ |2/2kBT )

2
√

ε2 + |k′ |2 . (26)

Using tanh(
√

ε2 + |k′ |2/2kBT ) → 1 at T = 0, we obtain the
analytical expression

χ (k′ ) =
∫ ωc

0

dε√
ε2 + 2

k′

= arsinh
ωc

|k′ | . (27)

Next, we insert the gap information obtained at Tc in the
previous section to construct a trial solution in order to nu-
merically solve the nonlinear Eq. (25) at zero temperature.
max(0) is defined as the largest amplitude of the gap function
at zero temperature. The amplitude of the trial solution is set
to 2ωce−1/λ based on the BCS result for the zero-temperature
gap amplitude [26]. Figure 3 is the resulting phase diagram for
max(0), which shows the same superconducting symmetry
phases as Fig. 2 at the critical temperature except for small
changes of the transition boundaries.

Close to the phase boundaries we considered both sym-
metries found at T = Tc for the trial solution and found
some regions where both symmetries converge, illustrated by
hatched regions. For 0.5 � � � 0.9 a hatched region is not
shown at the transition between p-wave and f -wave. There,
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Tc and max are both from a numerical and an experimental
standpoint zero, rendering the determination of a hatched re-
gion insignificant.

The degeneracies in the p- and f -wave regions found close
to Tc are also present at T = 0. Any linear combination of
px ( fx) and py ( fy) can solve the zero-temperature Fermi
surface averaged gap equation in the green (blue) region.
We conjecture that a more complete momentum resolved
zero-temperature gap equation may prefer one specific linear
combination. The free energy could be used to decide which
symmetry is preferred in the hatched regions, and which linear
combinations are preferred in the green and blue regions.
The free energy depends on k in the entire 1BZ, while we
have solved Fermi surface averaged gap equations. With that
degree of approximation, we do not believe we have sufficient
information to accurately judge the energetically preferred
gap symmetry. Since px + ipy gives no nodes on the Fermi
surface for εk it should give a larger condensation energy than
a real combination of px and py. On the other hand, px type
solutions at zero temperature have a slightly larger amplitude
than the px + ipy solutions in this system. We conclude that
they are competing orders and name the region p-wave. The
same goes for linear combinations of fx and fy in the f -wave
region. In the hatched regions, p-wave and f -wave, or f -wave
and d-wave, are competing orders.

There is a possibility that a time-reversal-symmetry-broken
state, where the spin triplet gap with zero net spin has px + ipy

symmetry, is energetically preferred in the green region of the
phase diagram. As explained in Ref. [29], such a fully gapped
state has chiral edge states, and can be thought of as a topo-
logical superconductor. However, by symmetry arguments,
Majorana zero modes in the core of superconducting vortices
are not expected [29]. Hence, it could not find applications in
topological quantum computation which involves braiding of
Majorana zero modes [30–32]. Topological superconductors
with Majorana zero modes in the core of vortices require
Cooper pairs made up of spinless fermions or spin polarized
electrons [31,32], neither of which are possible at an interface
between a NM and a MI with collinear ground states [15].

References [29,33–37] consider the coexistence of antifer-
romagnetic order and superconductivity in antiferromagnetic
metals. The current consensus [37] is that d-wave supercon-
ductivity is preferred. These studies of bulk systems should
involve equal coupling to both spin species of the antiferro-
magnet. Thus, they should be most comparable to the � = 1
case of the AFMI/NM interface in this paper, where we also
found d-wave pairing.

IV. CONCLUSION

In this paper, we have considered superconducting order-
ing mediated by antiferromagnetic magnons both close to
the critical temperature and in the low-temperature regime.
We use a BCS weak-coupling approach with an effective
magnon-mediated electron-electron interaction. Specifically,
we have utilized analytical expressions for effective inter-
actions mediated by such magnons, including properly the
effect of Umklapp processes, which will be important once
the Fermi surface is large enough that any two points on the
Fermi surface cannot be connected by the momenta of the

magnetic Brillouin zone, available to the magnons. We find
that Umklapp processes play an important role in determining
the correct superconducting gap symmetry over large tracts
of the (μ,�)-phase diagram. At low to intermediate filling
fractions, we find p-wave pairing, while for most values of
� we find f -wave pairing for intermediate to large filling
fractions. Close to � = 1, we find d-wave pairing. The results
obtained at T = Tc correspond well to the results obtained at
T = 0. Hence, the symmetries found for the superconducting
gap function are stable to variation in temperature. Our results
at T = Tc obtained within a BCS weak-coupling approach are
in very good agreement with previous results found using a
much more elaborate strong-coupling Eliashberg approach.
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APPENDIX A: HOLSTEIN-PRIMAKOFF
AND FOURIER TRANSFORMATIONS

We introduce the Holstein-Primakoff transformation for
the two sublattice spin operators in the AFMI:

SA
i+ = SA

ix + iSA
iy =

√
2s − a†

i aiai ≈
√

2sai, (A1)

SA
i− = SA

ix − iSA
iy = a†

i

√
2s − a†

i ai ≈
√

2sa†
i , (A2)

SA
iz = s − a†

i ai, (A3)

SB
j+ = SB

jx + iSB
jy = b†

j

√
2s − b†

jb j ≈
√

2sb†
j, (A4)

SB
j− = SB

jx − iSB
jy =

√
2s − b†

jb jb j ≈
√

2sb j, (A5)

SB
jz = −s + b†

jb j, (A6)

where ai and b j are the two sublattice magnon operators and s
is the spin quantum number associated with the lattice site
spins. Next, we perform the Fourier transformations of the
magnon operators:

ai = 1√
NA

∑
q∈♦

aqe−iq·ri , bi = 1√
NB

∑
q∈♦

bqe−iq·ri , (A7)

in which NA = NB = N/2 and N is the number of lattice sites
at the AFMI/NM interface. ♦ is used to mark the sum over
the RBZ.

Inserting these transformations directly in Hint yields some
additional terms that have been ignored compared to Eqs. (10)
and (11). First, terms involving two magnon operators are
assumed negligible compared to the one-magnon processes.
Second, terms involving only electron operators, akin to Zee-
man terms, are expected to have little influence on our results
regarding the superconducting state when the spin splitting is
small compared to the electron bandwidth, i.e., J̄ � t [13].
They are only nonzero for � < 1, and can be eliminated by
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considering an AFMI/NM/AFMI trilayer [14], or a compen-
sating magnetic field to ensure that the superconducting state
is preferred over the normal state (cf. the Chandrasekhar-
Clogston limit). For the bilayer case and � < 1, this implies
that one can observe the appearance of superconductivity
when applying an external magnetic field.

APPENDIX B: DERIVATION
OF EFFECTIVE INTERACTION

Here we derive the effective interaction mediated by the
antiferromagnetic magnons. We use a Schrieffer-Wolff trans-
formation to obtain an effective magnon-mediated interaction
to second order in the coupling constant J̄ between the AFMI
and the electron spins in the NM. This is effectuated by a
canonical transformation H ′ = e−ηSHeηS , such that the pair-
ing interaction to second order in V ≡ −2J̄

√
s/

√
N becomes

Hpair =
∑
LL′

H (L,L′ )
pair =

∑
LL′

1

2

[
ηH (L)

1 , ηS(L′ )], (B1)

where L ∈ {A, B} and ηS(L) satisfies

ηH (L)
1 + [H0, ηS(L)] = 0. (B2)

Choosing the Ansätze

ηS(A) = �V
∑

kq

[(xk,quqαq + yk,qvqβ
†
−q)c†

k+q,↓ck↑

+ (xk,q,Guqαq + yk,q,Gvqβ
†
−q)c†

k+q+G,↓ck↑

+ (zk,quqα
†
−q + wk,qvqβq)c†

k+q,↑ck↓

+ (zk,q,Guqα
†
−q + wk,q,Gvqβq)c†

k+q+G,↑ck↓], (B3)

ηS(B) =V
∑

kq

[(wk,quqβq + zk,qvqα
†
−q)c†

k+q,↑ck↓

− (wk,q,Guqβq + zk,q,Gvqα
†
−q)c†

k+q+G,↑ck↓

+ (yk,quqβ
†
−q + xk,qvqαq)c†

k+q,↓ck↑

− (yk,q,Guqβ
†
−q + xk,q,Gvqαq)c†

k+q+G,↓ck↑], (B4)

and inserting them into Eq. (B2), the coefficients in the An-
sätze can be solved as

xk,q = wk,q = 1

εk − εk+q + ωq
,

xk,q,G = wk,q,G = 1

εk − εk+q+G + ωq
, (B5)

yk,q = zk,q = 1

εk − εk+q − ωq
,

yk,q,G = zk,q,G = 1

εk − εk+q+G − ωq
. (B6)

Given ηS(L), the pairing effective electron-electron interac-
tions given by Eq. (B1) are calculated as

H (A,A)
pair = 1

2
�2V 2

∑
kk′q

{[
u2

q(yk′,−q − xk,q)

+ v2
q (yk,q − xk′,−q)

]
c†

k+q,↓ck↑c†
k′−q,↑ck′↓

+ [
u2

q(yk′,−q,G − xk,q,G) + v2
q (yk,q,G − xk′,−q,G)

]
× c†

k+q+G,↓ck↑c†
k′−q+G,↑ck′↓

}
, (B7)

H (B,B)
pair = 1

2
V 2

∑
kk′q

{[
u2

q(yk,q − xk′,−q)

+ v2
q (yk′,−q − xk,q)

]
c†

k+q,↓ck↑c†
k′−q,↑ck′↓

+ [
u2

q(yk,q,G − xk′,−q,G) + v2
q (yk′,−q,G − xk,q,G)

]
× c†

k+q+G,↓ck↑c†
k′−q+G,↑ck′↓

}
, (B8)

H (A,B)
pair + H (B,A)

pair = �V 2
∑
kk′q

[uqvq(yk,q + yk′,−q − xk,q − xk′,−q)

× c†
k+q,↓ck↑c†

k′−q,↑ck′↓

− uqvq(yk,q,G + yk′,−q,G−xk,q,G − xk′,−q,G)

× c†
k+q+G,↓ck↑c†

k′−q+G,↑ck′↓]. (B9)

We next assume that only electrons with opposite momenta in-
teract. Inserting the expressions in Eqs. (B5) and (B6), we then
obtain the effective electron-electron interaction for scattering
electron pairs from (k′,−k′) to (k,−k), given in Eq. (14).

APPENDIX C: DENSITY OF STATES IN THE NM

Following Refs. [15,38], the density of states per spin in
the NM can be calculated as

D(ε) =
∑
k∈�

δ(ε − εk) = N

A�

∫ π

−π

dθ

∫ c(θ )

0
dkkδ(ε − εk,θ ),

(C1)

in which θ = atan2(ky/kx ) with kx = k cos θ and ky = k sin θ .
A� = 4π2 denotes the area of the 1BZ � and the upper
cutoff c(θ ) = π/max{| cos θ |, | sin θ |} confines the integral to
k ∈ �.

Given a function f (k) with roots ki and f ′(ki ) = 0,
δ[ f (k)] = ∑

i δ(k − ki )/| f ′(ki )|. Here we have f (k) = ε +
2t[cos(k cos θ ) + cos(k sin θ )] based on Eq. (8) with μ = 0.
Consequently, we have

D(ε) = N

A�

∫ π

−π

dθ
∑

i

ki(θ )

| f ′[ki(θ )]| . (C2)

Since ε and μ enter the above equations in the same way,
we can use Eq. (C2) from setting μ = 0 to obtain the den-
sity of states on the Fermi surface (ε = 0) at nonzero μ as
D(ε = μ) ≡ D(μ).

[1] Q. Shao, P. Li, L. Liu, H. Yang, S. Fukami, A. Razavi, H. Wu,
K. Wang, F. Freimuth, Y. Mokrousov, M. D. Stiles, S. Emori,

A. Hoffmann, J. Åkerman, K. Roy, J.-P. Wang, S.-H. Yang, K.
Garello, and W. Zhang, IEEE Trans. Magn. 57, 1 (2021).

054520-7

https://doi.org/10.1109/TMAG.2021.3078583


SUN, MÆLAND, AND SUDBØ PHYSICAL REVIEW B 108, 054520 (2023)

[2] R. Ramaswamy, J. M. Lee, K. Cai, and H. Yang, Appl. Phys.
Rev. 5, 031107 (2018).

[3] P. Gambardella and I. M. Miron, Phil. Trans. R. Soc. A 369,
3175 (2011).

[4] B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt,
Y.-Y. Song, Y. Sun, and M. Wu, Phys. Rev. Lett. 107, 066604
(2011).

[5] R. Cheng, J. Xiao, Q. Niu, and A. Brataas, Phys. Rev. Lett. 113,
057601 (2014).

[6] C. O. Avci, A. Quindeau, C.-F. Pai, M. Mann, L. Caretta, A. S.
Tang, M. C. Onbasli, C. A. Ross, and G. S. D. Beach, Nat.
Mater. 16, 309 (2017).

[7] T. Chen, R. K. Dumas, A. Eklund, P. K. Muduli, A. Houshang,
A. A. Awad, P. Dürrenfeld, B. G. Malm, A. Rusu, and J.
Åkerman, Proc. IEEE 104, 1919 (2016).

[8] M. Collet, X. de Milly, O. D’Allivy Kelly, V. V. Naletov, R.
Bernard, P. Bortolotti, J. Ben Youssef, V. E. Demidov, S. O.
Demokritov, J. L. Prieto, M. Muñoz, V. Cros, A. Anane, G. de
Loubens, and O. Klein, Nat. Commun. 7, 10377 (2016).

[9] M. Evelt, C. Safranski, M. Aldosary, V. E. Demidov, I.
Barsukov, A. P. Nosov, A. B. Rinkevich, K. Sobotkiewich, X.
Li, J. Shi, I. N. Krivorotov, and S. O. Demokritov, Sci. Rep. 8,
1269 (2018).

[10] S. Vélez, J. Schaab, M. S. Wörnle, M. Müller, E. Gradauskaite,
P. Welter, C. Gutgsell, C. Nistor, C. L. Degen, M. Trassin, M.
Fiebig, and P. Gambardella, Nat. Commun. 10, 1 (2019).

[11] N. Rohling, E. L. Fjærbu, and A. Brataas, Phys. Rev. B 97,
115401 (2018).

[12] E. L. Fjærbu, N. Rohling, and A. Brataas, Phys. Rev. B 100,
125432 (2019).

[13] E. Erlandsen, A. Kamra, A. Brataas, and A. Sudbø, Phys. Rev.
B 100, 100503(R) (2019).

[14] E. Thingstad, E. Erlandsen, and A. Sudbø, Phys. Rev. B 104,
014508 (2021).

[15] K. Mæland and A. Sudbø, Phys. Rev. Lett. 130, 156002 (2023).
[16] B. Brekke, A. Sudbø, and A. Brataas, arXiv:2301.07909.
[17] X. Gong, M. Kargarian, A. Stern, D. Yue, H. Zhou, X. Jin, V. M.

Galitski, V. M. Yakovenko, and J. Xia, Sci. Adv. 3, e1602579
(2017).

[18] Ø. Johansen, A. Kamra, C. Ulloa, A. Brataas, and R. A. Duine,
Phys. Rev. Lett. 123, 167203 (2019).

[19] A. A. Serga, A. V. Chumak, and B. Hillebrands, J. Phys. D:
Appl. Phys. 43, 264002 (2010).

[20] D. Meng, H. Guo, Z. Cui, C. Ma, J. Zhao, J. Lu, H. Xu, Z.
Wang, X. Hu, Z. Fu, R. Peng, J. Guo, X. Zhai, G. J. Brown,
R. Knize, and Y. Lu, Proc. Natl. Acad. Sci. USA 115, 2873
(2018).

[21] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Nat.
Nanotechnol. 11, 231 (2016).

[22] C. Sun, H. Yang, and M. B. A. Jalil, Phys. Rev. B 105, 104407
(2022).

[23] A. Kamra, E. Thingstad, G. Rastelli, R. A. Duine, A. Brataas,
W. Belzig, and A. Sudbø, Phys. Rev. B 100, 174407 (2019).

[24] E. Erlandsen, A. Brataas, and A. Sudbø, Phys. Rev. B 101,
094503 (2020).

[25] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[26] K. Fossheim and A. Sudbø, Superconductivity: Physics and

Applications (Wiley, New York, 2004).
[27] E. J. Samuelsen, M. T. Hutchings, and G. Shirane, Physica 48,

13 (1970).
[28] Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M.

Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi,
S. Maekawa, and E. Saitoh, Nature (London) 464, 262
(2010).

[29] Y.-M. Lu, T. Xiang, and D.-H. Lee, Nat. Phys. 10, 634 (2014).
[30] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[31] B. A. Bernevig and T. L. Hughes, Topological Insulators and

Topological Superconductors (Princeton University, Princeton,
NJ, 2013).

[32] M. Sato and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017).
[33] J. R. Schrieffer, X. G. Wen, and S. C. Zhang, Phys. Rev. B 39,

11663 (1989).
[34] D. M. Frenkel and W. Hanke, Phys. Rev. B 42, 6711 (1990).
[35] J.-P. Ismer, I. Eremin, E. Rossi, D. K. Morr, and G. Blumberg,

Phys. Rev. Lett. 105, 037003 (2010).
[36] W. Rowe, I. Eremin, A. T. Rømer, B. M. Andersen, and P. J.

Hirschfeld, New J. Phys. 17, 023022 (2015).
[37] A. T. Rømer, I. Eremin, P. J. Hirschfeld, and B. M. Andersen,

Phys. Rev. B 93, 174519 (2016).
[38] K. Mæland, H. I. Røst, J. W. Wells, and A. Sudbø, Phys. Rev. B

104, 125125 (2021).

054520-8

https://doi.org/10.1063/1.5041793
https://doi.org/10.1098/rsta.2010.0336
https://doi.org/10.1103/PhysRevLett.107.066604
https://doi.org/10.1103/PhysRevLett.113.057601
https://doi.org/10.1038/nmat4812
https://doi.org/10.1109/JPROC.2016.2554518
https://doi.org/10.1038/ncomms10377
https://doi.org/10.1038/s41598-018-19606-5
https://doi.org/10.1038/s41467-019-12676-7
https://doi.org/10.1103/PhysRevB.97.115401
https://doi.org/10.1103/PhysRevB.100.125432
https://doi.org/10.1103/PhysRevB.100.100503
https://doi.org/10.1103/PhysRevB.104.014508
https://doi.org/10.1103/PhysRevLett.130.156002
http://arxiv.org/abs/arXiv:2301.07909
https://doi.org/10.1126/sciadv.1602579
https://doi.org/10.1103/PhysRevLett.123.167203
https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1073/pnas.1707817115
https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1103/PhysRevB.105.104407
https://doi.org/10.1103/PhysRevB.100.174407
https://doi.org/10.1103/PhysRevB.101.094503
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1016/0031-8914(70)90158-8
https://doi.org/10.1038/nature08876
https://doi.org/10.1038/nphys3021
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1103/PhysRevB.39.11663
https://doi.org/10.1103/PhysRevB.42.6711
https://doi.org/10.1103/PhysRevLett.105.037003
https://doi.org/10.1088/1367-2630/17/2/023022
https://doi.org/10.1103/PhysRevB.93.174519
https://doi.org/10.1103/PhysRevB.104.125125

