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A B S T R A C T   

When short-term returns are serially uncorrelated, expected long-term and short-term returns are equal. How-
ever, we show that negative serial correlation among the short-term returns make the expected long-term returns 
lower than the short-term ones. Such serial correlation is likely to arise, for example, for an investor whose 
portfolio is invested abroad in assets denominated in foreign currencies, but who wants to make withdrawals in 
proportion to the fund’s value in the domestic currency, and the exchange rate obeys long-term purchasing- 
power parity. Small-country sovereign wealth funds are leading examples of such investors. For the Norwegian 
GPFG, the expected annualized long-term rate of return in Norwegian kroner may be 0.7 to 1.8 percentage points 
lower than the expected short-term return. Negative contemporaneous correlation between global returns and 
changes in the real exchange rate may dampen and even reverse this result. Empirical evidence suggests that this 
may be the case for investors in USD-denominated assets domiciled in the United Kingdom, but not for investors 
domiciled in Norway or Germany. Empirically, we furthermore find that long-term annualized returns may fall 
short of short-term returns even when evaluated in real USD. Although negative serial correlation also shrinks 
the long-term variance, funds such as the GPFG should calibrate withdrawals to the expected long-term returns 
rather than the short-term ones.   

1. Introduction 

The owners of many endowment funds and sovereign wealth funds 
have implemented rules specifying that regular withdrawals be tied to 
the fund’s expected real return. This return is typically estimated as an 
average of past annual returns. However, if the rates of return display 
negative serial correlation, such calculations typically underestimate the 
average return that can be expected over long horizons. The bias can be 
substantial and lead to premature fund depletion. A prominent example 
is the Norwegian Government Pension Fund Global (GPFG), the world’s 
largest sovereign wealth fund with a current value of about USD 1.3 
trillion, which inspired this paper. Withdrawals from this fund are 
regulated by the kind of rule just mentioned with the intention of forever 
preserving the fund’s real value in expectation. However, we estimate 
that the typical method used to calculate the annual real return un-
derestimates the long-term return by 0.7 to 1.8 percentage point per 
year. Considering that the rule for spending of the proceeds of this fund 

specifies annual withdrawals up to amounts corresponding to the ex-
pected one-year rate of return, these results imply a rather strong 
warning that the fund may be depleted in finite time. 

This result is related to the findings in the literature of skewness in 
long-term returns. Arditti and Levy (1975) show that compounding of 
risky returns induces rightward skewness in multi-period returns even if 
single-period returns are symmetrical. Bessembinder (2018) finds strong 
empirical support for this result. The skewness rises with the time time 
horizon and the volatility of the return. Consider, as an example, an asset 
that each period has an equal chance of rising or falling 50% in value. If 
it is held for one period only, both mean and median return are zero. If it 
is held for two periods, the mean remains zero, but the median drops to 
an annualized – 13.3%. This skewness of the return distribution is not an 
artifact of this particular example, but a general implication of 
compounding. 

Serial correlation of returns adds a layer of complication, which is 
the subject of this paper. Suppose that, in the second period of holding, 
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the probability of a 50% gain is 40% if the first-period return was 50%, 
but 60% if the first-period return was – 50%. The probability of a 50% 
loss is similarly 60% if the first-period return was 50%, and 40% if it was 
– 50%. This change does not affect the unconditional probability dis-
tribution for the second-period return, whose mean remains zero. The 
annualized median two-period return remains − 13.3% as well. How-
ever, the mean two-period return drops to − 2.5%. The negative serial 
correlation tightens the distribution from both ends. However, because 
the high end is further off from the median than the low end, the 
tightening on the high end has a greater effect on the expectation. 

This shrinkage of the annualized multiperiod return does not mean 
that the second-period return is expected to be lower than the first-year 
one, conditional on the information at the time the security is acquired. 
Again, it is also not an artifact of the example chosen, nor does it come 
from any abuse of Itô’s lemma, although we do make use of that well- 
known result below. It happens simply because the compounding of 
returns is not a linear operation, but an inherently convex one. 

Positive serial correlation has the opposite effect, but negative serial 
correlation seems more likely to be observed in practice. Fama and 
French (1988) claimed that stock prices show evidence of mean rever-
sion when studied in long enough samples. The ensuing debate about 
their results does not seem to have been settled in the literature, cf. 
Poterba and Summers (1988), Mukherji (2011), and Pástor and Stam-
baugh (2012). However, the recent essay on long-term investment by 
Cochrane (2022) devotes considerable attention to the possibility that 
stock price drops driven by increases in investors’ discount rates (“dis-
count rate betas”) may signal higher returns ahead. Cochrane empha-
sizes the similarity between such movements in stock returns and those 
of long-term bonds, which indeed tend to be negatively serially corre-
lated, cf. e.g., Campbell and Viceira (2002). 

Another, more clear-cut example concerns investors, like the owners 
of the Norwegian GPFG, that hold foreign-currency denominated assets 
but consume goods whose prices are denominated in the domestic cur-
rency. For such investors, the period real rate of return is a sum of two 
components, one of which being the real return in the foreign market 
and the other the period rate of change of the real exchange rate. If the 
exchange rate obeys long-term purchasing parity, this second compo-
nent of the real rate of return will be negatively serially correlated. 

To our knowledge, this financial effect of purchasing power parity 
has not been noted in the existing literature. Whereas purchasing power 
parity may not hold universally, we believe it tends to hold for most 
developed-country currencies. Chortareas and Kapetanios (2009) pro-
vide strong empirical evidence of mean reversion in real exchange rates 
in the OECD. A further review is provided by Rabe & Waddle (2020). 
Hebisha (2023) finds evidence of mean reversion for most of the cur-
rencies that were converted to the euro in 1999. Our attention to this 
phenomenon came from our research on the Norwegian GPFG, whose 
entire portfolio is held in foreign assets denominated in foreign cur-
rencies, but whose returns are used to help fund the government’s do-
mestic spending, which naturally is denominated in the domestic 
currency. 

Currency exchange adds an element of risk to the small-country 
investor in the global market. The negative serial correlation actually 
limits this risk; and the convexity introduced by compounding makes 
sure that the limitation happens mainly on the upside. However, that is 
enough to bias the expected fund value downwards. 

A further limitation of risk arises if the investor country’s real ex-
change rate is negatively correlated with the movements in global 
financial markets. The presence of such contemporaneous correlation 
dampens the bias just mentioned and may even reverse its sign if the 
contemporaneous correlation is strong enough. 

The following pages explain how that happens and presents some 
evidence on the empirical importance of the relevant mechanisms. The 
next section presents a simple example in discrete time. In Section 3, we 
develop a rigorous model in continuous time for the annualized ex-
pected long-term returns for a portfolio whose dynamic behavior can be 

described as the sum of a submartingale and a mean-reversion process. 
Section 4 adds the possibility of a negative contemporaneous correlation 
between the two elements and shows how this correlation may dampen 
or reverse the results in Section 3. Section 5 presents some empirical 
evidence on the expected multi-period real returns in local currencies of 
dollar-based portfolios owned by investors domiciled in Norway, Ger-
many, and the United Kingdom, respectively. Section 6 discusses the 
results, and Section 7 concludes. 

2. An example in discrete time 

Let rt denote the annual rate of return in from year t − 1 to year t. 
Assume the return process is stationary with mean r and serial co-
variances cov(rt, rt− j), denoted sj. Then, as shown in Appendix A, the 
annualized expected return of holding this asset from year 0 to year n ≥
2 can be written as 

r0n = (1+ r)

{

1 + (1 + r)− 2

[
∑n− 1

j=1
(n − j)sj + h.o.m.

]}1/n

− 1, (1)  

where h.o.m. stands for higher order moments. Clearly, if all the serial 
correlation terms are weakly negative, some of them strictly negative, 
and the higher-order terms small enough to be ignored, r0n < r. 

The source of this effect lies in the compounding of returns. Whereas 
the financial returns are compounded geometrically, the expected value 
of the rate of return is computed arithmetically. If one year’s rate of 
return comes out above expectation it will make the fund larger. Because 
of the negative serial correlation, this movement will, with some prob-
ability, be reversed the following year. The same mechanism works on 
the downside. However, the reversal from the upside will be larger 
because it starts from a higher base. Thus, on average, the lingering 
effects of a less-than-expected rate of return will dominate those of the 
larger-than-expected ones. 

3. Formal analysis in continuous time 

We consider an asset or a portfolio of assets whose rate of return 
contains an element of negative serial correlation. In this setting, the 
rate of return can conveniently be specified as a sum of two components, 
a geometric Brownian motion with drift μ and standard deviation σ1, and 
a mean-reverting Ornstein-Uhlenbeck process dx(t), so that the instan-
taneous return r on the asset (or fund) value A is given by the sum 

r(t) :=
dA(t)
A(t)

= μdt+ σ1dB1(t)+ dx(t), (2)  

where the last term is the Ornstein-Uhlenbeck process 

dx(t) = α(κ − x(t) )dt+ σ2dB2(t). (3)  

Here, B2 is a Brownian motion, stochastically independent of B1, and α 
> 0 and κ are constant parameters. This process, originally proposed by 
the physicists Uhlenbeck and Ornstein (1930) and explored by, for 
example, Vasicek (1977) and Maller, Müller, G., & Szimayer (2009),1 is 
the continuous-time analogy of an AR(1) process in discrete time. We 
emphasize that we think of the two components of the rate of return as 
representing two properties of the same asset or portfolio, not as 
different assets or portfolio components among which the investor can 
choose. From (3) it should be clear that this component of the return has 
an unconditional zero mean, so that Er(t) = μ. 

The differential equation Eq. (3) is known to have the following 
solution: 

1 A compact presentation can be found in Wikipedia, https://en.wikipedia. 
org/wiki/Ornstein%E2%80%93Uhlenbeck_process, accessed on June 25, 2022. 
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x(t) = x0e− αt + κ(1 − e− αt)+ σ2

∫t

0

e− α(t− s)dB2(s). (4) 

As shown in Appendix B, the unconditional (i.e. t, s → ∞) serial 
correlation coefficients for the rates of return in (2) can be written as 

corr(rt, rs) = −
α
2

e− α|t− s|
(

σ2
2

σ2
1 + σ2

2

)

dt, t ∕= s. (5) 

Clearly, corr(rt, rs) < 0. Its absolute value is lower the longer the lag 
length |t − s| and approaches zero asymptotically. For a given lag length, 
it increases with the mean-reversion parameter α and also with the 
relative importance of the mean-reverting component of the rate of re-
turn, as measured by the variance ratio σ2

2/(σ1
2 + σ2

2). 
Substituting from (3) into (2), we can write the instantaneous return 

as: 

r(t) =
dA(t)
A(t)

= [μ+ α(κ − x(t) ) ]dt+ σ1dB1(t)+ σ2dB2(t). (6)  

Proposition. For an asset or portfolio with a starting value of A0and 
instantaneous rates of return defined by (6), the annualized expected return 
of holding the asset or portfolio until time t > 0 is (a) lower than the expected 
short-term return, (b), a decreasing function of the length t of the holding 
period, (c) asymptotically reaching a lower limit equal to the annualized 
expected rate of return for the limiting case where x(t) is a Brownian motion, 
i.e. α → ∞. 

Proof. Application of Itô’s lemma to (6) yields the law of motion in 
logs as 

dlnA(t) =
[

μ+α(κ − x(t) ) −
1
2
(
σ2

1 + σ2
2

)
]

dt+ σ1dB1(t)+ σ2dB2(t)

=

[

μ −
1
2
(
σ2

1 + σ2
2

)
]

dt+ σ1dB1(t)+ dx(t). (7) 

Integration forward then gives the future log value as 

ln
(

A(t)
A0

)

=

[

μ −
1
2
(
σ2

1 + σ2
2

)
]

t+ σ1

∫t

0

dB1(s)+
∫t

0

dx(s)

=

[

μ −
1
2
(
σ2

1 + σ2
2

)
]

t+ σ1

∫t

0

dB1(s)+ x(t) − x0  

=

[

μ −
1
2
(
σ2

1 + σ2
2

)
]

t+ σ1

∫t

0

dB1(s)+ (κ − x0)(1 − e− αt)+ σ2

∫t

0

e− α(t− s)dB2(s),

(8)  

where the last equality follows from (4). From (4), we also find the 
unconditional mean 

E[x(t) − x0 ] = E[(κ − x0)(1 − e− αt) ] = 0,

so that 

Eln
(

A(t)
A0

)

=

[

μ −
1
2
(
σ2

1 + σ2
2

)
]

t.

Furthermore, from (8): 

Vln
(

A(t)
A0

)

= tσ2
1 + σ2

2
1 − e− 2αt

2α . (9) 

From the formula for the expectation of a lognormal variable, we 
then find 

lnE

(
A(t)
A0

)

= μt −
1
2
σ2

2

(

t −
1 − e− 2αt

2α

)

. (10) 

Thus, the annualized expected return after a holding period of t years 
becomes 

r0t =

(
1
t

)

lnE

(
A(t)
A0

)

= μ −
1
2

σ2
2

(

1 −
1 − e− 2αt

2αt

)

. (11) 

Note that the function f : ℝ+ → (0,1), defined by 

f (z) =
1 − e− z

z
(12)  

is convex and monotonically decreasing between the limiting values 

lim
z→0

f (z) = 1  

and 

lim
z→∞

f (z) = 0,

so that 

0 < f (z) < 1.

Thus, for αt > 0, 

r0t = μ −
1
2

σ2
2[1 − f (2αt) ]〈μ.

r0t is decreasing in t and α, and approaches a lower limit of μ − σ2
2/2 

for t → ∞, the same limit as the one approached for all horizons if α → ∞. 
Q.E.D. 

Consider now the case of an investor located in a small country with 
an independent currency, but whose entire investment is made abroad. 
Measured in the domestic currency, the real rate of return is then the 
sum of the real return in foreign currency and the rate of change of the 
real exchange rate. If the exchange rate satisfies purchasing power parity 
as a long-term trend, the real exchange rate can reasonably be modeled 
as a mean-reverting process like the one in (3). Supposing that the first 
two components on the right of (2) represent the real return in the global 
market and that the two stochastic processes are independent of each 
other, we have then proved 

Corollary 1. For an investor located in a country whose real exchange rate 
behaves like in (3) and whose investment is made abroad at real returns in 
foreign currency as specified by the first two terms on the right of (2), the 
annualized expected real return in the domestic currency of holding the asset 
or portfolio over time is lower than the corresponding real rate in the global 
market and a decreasing function of the length t of the holding period. 

A number of investment funds, such as the Norwegian GPFG, are 
subject to rules that permit annual withdrawals in amounts corre-
sponding to the fund’s expected real return. In our model, this behavior 
can be specified by setting μ = 0. Then, if the entire fund is invested 
abroad, but the withdrawals specified as a percentage of the fund’s value 
in the domestic currency, Proposition 1 means that the fund will even-
tually be depleted in expectation. We formulate this result as 

Corollary 2. Consider a fund owned by an agent in a country whose real 
exchange rate behaves like (3), whose investment is made abroad at real 
returns in foreign currency as given by the first two terms on the right of (2), 
and from which regular withdrawals are made in amounts equal to μ times 
the fund’s value in the local currency. Then, the fund’s expected value in 
domestic currency is a decreasing function of the time horizon t, asymptoti-
cally approaching zero as t → ∞. 

Proof. Setting μ = 0 in (10) gives 
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lnE

(
A(t)
A0

)〈

0,

so that 

EA(t) < A0.

Clearly, the right-hand side of (10) then grows without limit in ab-
solute value as t → ∞, so that EA(t)→0. Q.E.D. 

Fig. 1 illustrates the results in the proposition by depicting the 
annualized expected future returns for horizons up to 50 years and 
varying values of the mean-reversion parameter α. Whereas the graph 
for α = 0 (no serial correlation) is a horizontal line at the short-term 
expected rate of return of μ, the corresponding graphs for α >
0 decline with the time horizon and asymptotically approach the lower 
bound of μ − σ2

2/2, which would represent the annual expected rate of 
return at all horizons for α → ∞. The stronger the mean reversion, the 
faster does the annual expected return drop with the time horizon. 

Although the distribution of the annualized expected return becomes 
increasingly skewed to the right as the holding period increases, as noted 
above, low-probability prospects of very high future returns neverthe-
less keep the expected long-term return anchored at the expected short- 
term return as long as the rates of return are serially uncorrelated. In our 
analysis, this is the limiting case of α = 0, which yields r0t = μ. 

What changes this result in the presence of negative serial correlation 
is the fact that mean reversion of securities prices reduces the long-term 
variance of returns. That effect reduces the likelihood of very high future 
returns whereas, on the downside, gross returns of zero remains a lower 
bound. The net result is to lower the expected value and more so as the 
time horizon rises. 

4. Correlation between the return components 

So far, our analysis implicitly assumes that the two return compo-
nents are uncorrelated. For an investor in a small country, it might be 
argued that a negative contemporaneous correlation should be ex-
pected. For example, a shift in sentiment toward “risk off” might make 
investors shy away from global stocks as well as small-country cur-
rencies, so that small-country currencies should tend to depreciate when 
global equity markets fall. Hossfeld and MacDonald (2015) present ev-
idence of such correlation for the Australian, New Zealand, and Cana-
dian dollars and the Swedish krona, to some extent also the Norwegian 
krone, especially so during times of financial distress.2 

To allow for such correlation, redefine dB2 as 

dB2(t) = ρdB1(t)+
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ2

√
dB′

2(t), (13)  

so that ρ can be interpreted as the coefficient of contemporaneous cor-
relation between dB1 and dB2. If this correlation is negative, the 
exchange-rate mechanism could act like a natural hedge for the small- 
country investor. Although this correlation leaves the unconditional 
expectation of the exchange-rate change at zero, it reduces the short- 
term variance from σ1

2 + σ2
2 to σ1

2 + σ2
2 + 2ρσ1σ2. This variance could 

conceivably be lower than σ1
2, which represents the risk facing a large- 

country investor with the same portfolio. In that case, the exchange- 
rate mechanism would serve as an effective natural hedge for the 
small-time investor. It obviously requires 

ρ ≤ − (1/2)σ2/σ1. (14) 

However, a negative contemporaneous correlation would change the 
results in Section 3 even if (14) is not satisfied. With non-zero correla-
tion, Eq. (7) would change into 

dlnA(t) =
[

μ+ α(κ − x(t) ) −
1
2
(
σ2

1 + σ2
2 + 2ρσ1σ2

)
]

dt  

+(σ1 + ρσ2)dB1(t)+ σ2
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ2

√
dB′

2(t)

=

[

μ −
1
2
(
σ2

1 + σ2
2 + 2ρσ1σ2

)
]

dt+ σ1dB1(t)+ dx(t), (7′)  

and (8) into 

ln
(

A(t)
A0

)

=

[

μ −
1
2
(
σ2

1 + σ2
2 + 2ρσ1σ2

)
]

t+(κ − x0)(1 − e− αt)

+ σ1

∫t

0

dB1(s)+ ρσ2

∫t

0

e− α(t− s)dB1(s)+ σ2
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ2

√
∫t

0

e− α(t− s)dB′

2(s). (8′) 

This formula lets us derive the variance of the t-period log change for 
this case as 

Vln
(

A(t)
A0

)

= t
[
σ2

1 + σ2
2f (2αt) + 2ρσ1σ2f (αt)

]
, (9′)  

where f again is defined as in (12). Then, Eq. (11) becomes 

r0t = μ −
1
2

σ2
2[1 − f (2αt) ] − ρσ1σ2[1 − f (αt) ]. (11′) 

Because f(z) < 1, the last term in obviously positive if ρ < 0. Thus, a 
negative correlation dampens the results in Section 3 and may indeed 
reverse them. To see the conditions for such reversal to happen, define 
the function g : ℝ+ → (1,2) as 

g(z) =
1 − f (z)

1 − f (z/2)
. (15) 

Like f, g is a convex and decreasing function, with end points are 
given as 

lim
z→0

g(z) = 2, lim
z→∞

g(z) = 1,

so that 

1 < g(z) < 2.

For r0t > μ, we must have 

ρ < −
1
2
(σ2/σ1)g(2αt). (14′) 

This condition is a little stricter than the one in (14). For a given ρ, it 
is more likely to be satisfied for long than for short horizons. 

Asymptotically, then, the criterion for a contemporaneous negative 
correlation between the global asset return and the exchange-rate 
change to reverse the results in Corollaries 1 and 2 is the same as for 
the currency change to act as an effective hedge in the one-period case. 
However, because g is a decreasing function, the criterion is somewhat 
stricter for short than for long horizons. 

5. Empirical evidence 

As a check for how well our theoretical findings fit the data, we have 
studied the historical real performance of three different USD-valued 
portfolios for investors in Norway, Sweden, Germany, and the United 
Kingdom between January of 1993 and September of 2020. We decided 
to start our sample at the end of the ERM crisis of the early 1990s, after 

2 Cho, Choi, Kim, and Kim (2016) document flight to quality from emerging 
to advanced economies during times of stock-market decline. However, because 
the evidence of purchasing power parity is weaker for emerging-market cur-
rencies, we focus our analysis on small, open advanced economies. Ning (2010) 
analyses the correlation between exchange rates and stock returns in advanced 
economies; but because she focuses on exchange-rate changes and stock returns 
in the same country, her results are less relevant for our analysis. 
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which the relevant currencies floated relatively freely.3 For German 
investors, we used the D-mark through 1998 and the euro thereafter, 
splicing the two series at the official rate of conversion. The portfolios 
were the S&P 500, the FTSE Global Equity, and a 70–30 portfolio of the 
FTSE Global Equity and the Bloomberg Global Bond index. We included 
the latter even though bond portfolios may have an inherent tendency 
toward mean reversion, because this combination approximates the 
index underlying the government mandate for the Norwegian GPFG. 
The rates of return include dividends and coupon payments. All indices 
and exchange rates were deflated with the CPIs of the respective 
countries.4 

We started by running Dickey-Fuller tests of unit roots for the 
respective indices and real exchange rates as a preliminary check of 
mean reversion. We based our tests on regressions of the form 

Δyt = c+ δyt− 1 + et.

Our hypothesis is that the three real USD-valued portfolio indices 
should not have unit roots, implying δ = 0, but have positive constants 
reflecting mean returns, thus effectively being submartingales. In 
contrast, the four real exchange rates should be mean reverting, 
implying δ < 0 and zero constants, as indications of long-run purchasing- 
power parity. The results are presented in Table 1, with the top panel 
showing results using monthly data and the lower panel the corre-
sponding results from annual data. 

The monthly results find significantly positive constant terms for all 
three real USD-valued portfolios. They are also consistent with the 
presence of unit roots, suggesting no mean reversion. The corresponding 
results on annual data show the same pattern, albeit with somewhat 
weaker significance for the constant terms. We conclude that these tests 
show no evidence against the real USD-valued indices behaving like 
submartingales. 

On monthly data, none of the four real exchange rates show signif-
icant evidence of mean reversion when constants are included in the 
regressions. However, the significance of the constant term for the real 
USD/SEK exchange rate on the 10% level provides some evidence 
against mean reversion for this currency. Because these constant terms 
should be zero under the mean-reversion hypothesis, we rerun these 
estimates without the constant term. The results are given in the right- 
hand part of the table. Then, the real USD/GBP exchange rate shows 
significant evidence of mean reversion on the 10% level when T δ̂ is used 
as the test statistic. 

These results become somewhat sharper when the focus is changed 
from monthly to annual data, apparently because the use of annual data 
smooths over some monthly noise. Three of the real exchange rates then 
show significant signs of mean reversion without constant terms. 
However, the real USD/SEK rate continues to look off. When the con-
stant is included, it is significantly positive on the 10% level. When it is 
not, neither test statistic shows anything close to significance of the δ 
coefficient. Although we believe that, fundamentally, the Swedish krona 
obeys purchasing power parity in the long run, we have to conclude that 
its performance on our sample does not qualify it as a candidate to 
illustrate the effects of mean reversion on that same sample. The three 
others, the Norwegian krone, the German mark/euro, and the British 
pound should, appear to pass this test, however. 

In estimating annualized expected returns over varying horizons, we 
follow Mukherji (2011) by drawing 1000 independent samples of 120- 
month block returns with replacement from our data and use these 
samples to compute mean returns over horizons between one and ten 
years. We do this for the real returns of the respective portfolios valued 
in USD, NOK, DEM-EUR, and GBP. Because the USD was stronger at the 

Fig. 1. Annualized expected rate of return by investment horizon. 
σ1 = 17 % , σ2 = 10 % , μ = 3%. 

3 This is certainly the case for the Swedish krona, the German mark (and the 
euro), as well as the British pound. Although the fixed exchange rate of the 
Norwegian krone was given up in December of 1992, the Norges Bank’s 
mandate continued to require that the krone be kept “stable” against the other 
European currencies. This policy was effectively given up in mid-1998 and 
officially replaced by a formal inflation target in September of 2001.  

4 Data for S&P 500 total return were taken from Bloomberg, whereas the 
latter two indices were graciously made available to us by our colleague Espen 
Henriksen. The rates of return are defined as end-of-month to end-of-month log 
changes for monthly data and analogously for annual data. The exchange rates 
and CPIs were downloaded from the FRED database. 
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end than at the beginning of our sample against all the three of the other 
currencies, the estimated mean returns are somewhat lower for the USD- 
valued portfolios. Under the maintained hypothesis of long-term pur-
chasing parity, we ascribe these differences to sampling errors and 
adjust the returns of each of the non-USD portfolios at all horizons by 
subtracting the difference in the mean one-year return between the USD- 
based portfolio and the corresponding portfolios in the other respective 
currencies.5 

The results are presented in Table 2 and illustrated in Fig. 2. Contrary 
to the evidence in Table 1, they indicate that the annualized expected 
returns decline with the horizon even in real U.S. dollars. This somewhat 
surprising result may reflect the well-known low power of the Dickey- 
Fuller test. However, the decline is clearly sharper for the real returns 
in Norwegian kroner or German marks/euros, as predicted by our the-
ory. The decline does not start for real until after about four years and 
may even seem somewhat hump-shaped for the early years. However, 
for horizons beyond four years, the decline becomes substantial and 
proceeds approximately linearly; however, signs of the convexity seen in 
Fig. 1 can be detected between eight and ten years. We finally note that 
the GBP-based returns are very similar to the ones in U.S. dollars and 
even somewhat higher. 

As suggested by the analysis in Section 4 above, the difference be-
tween the expected returns in USD and in the alternative currencies 

tends to be reduced by negative contemporary correlation between the 
respective exchange rates and the USD-based returns. If this correlation 
is strong enough it may erase the difference completely and even reverse 
it. Estimates of these correlations from our sample are presented in 
Table 3, with 95% confidence intervals based 10,000 bootstrap samples. 

On monthly data, all the point estimates are significantly negative 
and of the same order of magnitude for all three currencies. They thus 
cannot account for the differences in performance between the GBP and 
the other two non-USD currencies shown in Table 2 and Fig. 2. However, 
the annual data show a different pattern, suggesting that the initial 
weakening effect of dollar-based financial losses may have been partly 
reversed in subsequent months for the NOK and the DEM-EUR. For the 
GBP, on the other hand, the difference goes in the opposite direction, so 
that the contemporaneous correlation is even more negative on annual 
than on monthly data. It is also significant or borderline significant. 

This finding suggests that the special behavior of the expected 
returns on the real GBP-valued portfolios can indeed be explained by the 
negative contemporaneous correlation. 

A remaining question is whether the equality in (14′) is satisfied for 
the real GBP-valued portfolios and thus explain the finding of slightly 
higher expected returns for this currency. Defining ξ := ρ+ 1

2 (σ2/σ1), 
this condition can be expressed equivalently for long horizons, i.e., for t 
→ ∞, as ξ < 0. Table 3 lists point estimates and 95% confidence intervals 
for this quantity as well. On monthly data, the point estimates are very 
close to zero and insignificantly different from zero in all cases. On 
annual data, the results again differ. For the real NOK and real DEM-EUR 
portfolios, the point estimates are all positive, indicating that (14′) is not 

Table 1 
Results of Dickey-Fuller tests.   

Monthly data  

With constant terms Without constant terms  

Constant δ̂ δ̂/s.e. Tδ̂ δ̂ δ̂/s.e. Tδ̂ 

S&P 500 0.010** 
(0.005) 

− 0.004 
(0.005) 

− 0.840 − 1.353    

FTSE GE 0.011** 
(0.006) 

− 0.008 
(0.006) 

− 1.229 − 2.574    

70–30 FTSE GE – Bloomberg GB 0.009** 
(0.004) 

− 0.007 
(0.005) 

− 1.271 − 2.324    

Real USD/NOK 0.002 
(0.002) 

− 0.018 
(0.012) 

− 1.541 − 5.973 − 0.013 
(0.011) 

− 1.193 − 4.316 

Real USD/SEK 0.005* 
(0.003) 

− 0.018 
(0.011) 

− 1.680 − 5.310 0.002 
(0.006) 

− 0.312 − 0.631 

Real USD/DEM-EUR 0.003 
(0.002) 

− 0.020 
(0.011) 

− 1.851 − 6.699 − 0.008 
(0.008) 

− 0.998 − 2.623 

Real USD/GBP 0.001 
(0.001) 

− 0.020 
(0.012) 

− 1.633 − 6.600 − 0.020 
(0.012) 

− 1.607 − 6.507*   

Annual data  
With constant terms Without constant terms 

S&P 500 0.159* 
(0.087) 

− 0.088 
(0.082) 

− 1.080 − 2.291    

FTSE GE 0.154* 
(0.091) 

− 0.127 
(0.105) 

− 1.205 − 3.312    

70–30 FTSE GE – Bloomberg GB 0.116* 
(0.066) 

− 0.102 
(0.088) 

− 1.159 − 2.655    

Real USD/NOK 0.022 
(0.023) 

− 0.270 
(0.153) 

− 1.768* − 7.020 − 0.218 
(0.142) 

− 1.535 − 5.678* 

Real USD/SEK 0.059* 
(0.038) 

0.216 
(0.149) 

− 1.451 − 5.611 − 0.028 
(0.088) 

− 0.318 − 0.731 

Real USD/DEM-EUR 0.038 
(0.025) 

− 0.259 
(0.144) 

− 1.800* − 6.639 − 0.111 
(0.109) 

− 1.012 − 2.878 

Real USD/GBP 0.004 
(0.017) 

− 0.324 
(0.165) 

− 1.966* − 8.427* − 0.326 
(0.162) 

− 2.019** − 8.476* 

Significance levels for δ̂/s.e. and T δ̂ as tabulated by Fuller (1976). 
Constant terms are t distributed. 
Standard errors in parentheses. 

* Significant at the 10% level. 
** Significant at the 5% level. 

5 The adjustments amounted to 0.90 pp. for NOK-based portfolios, 0.68 pp. 
for DEM-EUR, and 0.53 pp. for GBP. 
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satisfied for t → ∞. This result is consistent with the annualized expected 
values on these currencies being lower than the corresponding ones for 
the real USD-valued portfolios. For the real GBP-valued portfolios, the 
point estimates are all negative and rather large, suggesting that (14′) 
may indeed be satisfied for t → ∞ for these portfolios, although not 
significantly so. 

For shorter horizons, we define ξ′ := ρ + (σ2/σ1), so that the condi-
tion in (14′) can be expressed as ξ′ < 0. The point estimates for this 
quantity (not shown) came out as positive in all cases, indicating that 
(14′) is not satisfied for short horizons. 

6. Discussion 

As an application of Corollary 1, the simulation study by Mork, 
Trønnes, and Bjerketvedt (2022) analyzes the future development of the 
Norwegian GPFG, whose investments are all made abroad in foreign- 
currency dominations, but whose returns are used to help defray gov-
ernment spending in Norwegian kroner. The estimation of their model 
on annual data found no significant contemporaneous correlation be-
tween the real USD equity returns and the rates of change in the USD/ 
NOK real exchange rate, which is consistent with the findings in lower 
panel of Table 3.6 Their findings imply an annual expected long-term 
real rate of return in domestic currency of close to 0.7 percentage 
points less than the one-period return. They also find that the expected 
rate of return falls quickly with a rising time horizon, such that the 
nearly 0.7 percentage point difference is essentially reached already at 
the five-year horizon, as illustrated in Fig. 1. 

The results in Table 2 suggest a difference between the annualized 

ten-year and the one-year expected return of as much as 1.8 percentage 
points, more than twice the implications of the estimated simulation 
model. The rule for spending the returns of the GPFG stipulates annual 
withdrawals corresponding to the fund’s expected short-term rate of 
return. As an application of Corollary 2, Mork et al. (op. cit.) estimate 
that the fund’s expected real value 40 years hence is likely to be 18% 
lower than its current value of USD 1.3 trillion. This calculation ignores 
future deposits into the fund, which seem likely to be substantial given 
the current policies governing the Norwegian oil and gas sector. Even so, 
however, our findings throw considerable doubt on the sustainability of 
the current spending rule. 

Out of the 1.8 percentage points of difference between ten-year and 
one-year annualized returns, 1.3 percentage points come from a corre-
sponding difference between ten-year and one-year returns in real U.S. 
dollars. The latter point should be of considerable interest for the owners 
of U.S. endowment funds. The same would be true for U.K. funds, whose 
returns appear to follow the ones in U.S. dollars fairly closely. For funds 
based in Germany, our results fall in between the ones for British and 
Norwegian investors. 

Dybvig and Qin (2021) go beyond expected values and show that a 
fund with a withdrawal policy like that of the GPFG eventually will lead 
to depletion even without serially correlation in the rates of return. The 
explanation comes from the same convexity as above, namely, that the 
distribution of the future fund value will become increasingly skewed to 
the right until, eventually, all probability mass is concentrated at a spike 
next to zero. Our analysis takes a step further by showing that, with 
negative serial correlation, the fund’s future value cannot even be pre-
served in expectation, unless, that is, the instantaneous withdrawal rate 
is lowered from μ to μ − σ2

2/2. 
Negatively serially correlated rates of return are not all bad news, of 

course, because they also mean that the variance rises more slowly than 
the time horizon, as seen in (9). The literature on mean reversion often 
refers to the variance ratio, defined as the ratio between the annualized 
t-period variance and the one-period variance. In our model, it becomes 

VRt =
σ2

1 + σ2
2f (2αt) + 2ρσ1σ2f (αt)

σ2
1 + σ2

2 + 2ρσ1σ2
. (16) 

As expected, this ratio is less than unity if ρ = 0. This is the implicit 
assumption underlying the studies by, for example, Poterba and Sum-
mers (1988), Mukherji (2011), or Pástor and Stambaugh (2012). For the 
GPFG, under the assumption of ρ = 0, this ratio works out as 0.37 after 
40 years, according to the findings by Mork et al. (op. cit.). 

For σ2 ≤ σ1, the partial derivative of VRt with respect to ρ is negative 
and larger in absolute value the larger αt. Thus, ceteris paribus, a 
negative contemporaneous correlation makes VRt larger and may 
indeed cause it to exceed unity. It is easily seen that the condition for the 
latter to happen is identical to the condition that the annualized ex-
pected rate of return exceed the instantaneous one. Thus, if r0t > μ, we 
should have VRt > 1, and vice versa. 

In an apparent contradiction of our model, Mukherji (op. cit.) reports 
expected returns that rise or stay constant with rising horizons even in 
cases where the variance ratio falls well below unity. In our sample, we 
also seem to observe some elements of a similar contradiction between 
the indications of mean reversion from the variance ratios (not shown) 
and the expected annual returns. Further investigation of this apparent 
puzzle goes beyond the scope of the current paper, however. 

7. Conclusion 

Compounding introduces an element of convexity in the computa-
tion of long-term returns. 

The implication that the distribution of long-term returns tends to be 
skewed to the right has been duly noted and analyzed in the literature. 
However, as long as the period rates of return are serially uncorrelated, 
the annualized expected long-term rate of return equals the short-term 

Table 2 
Adjusted expected annualized real rates of return (in percent) at varying hori-
zons in different home currencies.    

Currency 

Portfolio Horizon 
(years) 

USD NOK DEM- 
EUR 

GBP 

S&P 500 1 7.17 7.17 7.17 7.17  
2 6.95 7.31 7.52 7.35  
3 7.35 7.30 7.52 7.41  
4 7.12 7.37 7.58 7.45  
5 6.28 6.46 6.68 6.65  
6 6.13 6.41 6.63 6.54  
7 5.58 5.53 5.81 5.86  
8 5.15 4.81 5.17 5.36  
9 4.83 4.17 4.60 4.89  
10 4.70 3.87 4.25 4.77 

FTSE Global Equity 1 5.65 5.65 5.65 5.65 
2 4.92 5.27 5.48 5.31 
3 5.55 5.50 5.72 5.61  
4 5.24 5.48 5.69 5.57  
5 4.67 4.85 5.07 5.04  
6 4.57 4.85 5.07 4.98  
7 4.25 4.20 4.48 4.53  
8 3.95 3.61 3.97 4.16  
9 3.78 3.12 3.55 3.84  
10 3.79 2.97 3.34 3.86 

70–30 FTSE GE – 
Bloomberg GB 

1 4.77 4.77 4.77 4.77 
2 4.17 4.89 4.73 4.57 
3 4.69 4.79 4.87 4.75  
4 4.44 5.03 4.90 4.77  
5 4.02 4.45 4.42 4.40  
6 3.93 4.55 4.43 4.35  
7 3.73 4.08 3.97 4.02  
8 3.55 3.57 3.56 3.76  
9 3.47 3.20 3.24 3.53  
10 3.49 2.94 3.04 3.57  

6 Mork et al. (op. cit.) did find a significant correlation of − 0.44 between the 
real USD return of the bond part of the portfolio and the log level of the real 
exchange rate. 
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one. In this paper, we show how this implication unravels in the pres-
ence of negative serial correlation of returns. 

Negative serial correlation has previously been studied for stock- 
market returns, with the effect on long-term risk as its main focus. 
This paper has moved the focus to expected returns and warns that long- 
term returns tend to be lower than short-term returns in the presence of 

negative serial correlation. Our main application concerns investors in 
small countries that invest their funds in foreign securities denominated 
in foreign currencies, but whose interest lies in their real rates of return 
in the domestic currency. Then, if the exchange rate obeys long-term 
purchasing power parity, the real rates of return in the domestic cur-
rency will be negatively serially correlated, and the annualized expected 

a

b

c

Fig. 2. Adjusted expected annualized real returns at varying horizons in different home currencies.  
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long-term returns are lower than their short-term counterparts. 

We find empirical support for this result on data for expected real 
returns at varying horizons for investors in Norway and Germany 
holding U.S. dollar denominated portfolios. Interestingly, a major part of 
the difference between long-horizon and short-horizon expected returns 
comes from a similar pattern for the same portfolios evaluated in real U. 
S. dollars. However, the effects of the currency exchange come on top of 
that. For U.K. investors we find no significant difference between returns 
in real British pounds or real U.S. dollars. 

The difference between the German and Norwegian cases on the one 
hand and the British on the other, seems to arise from the fact the real 
rates of change in the USD/GBP exchange rate show significant negative 
contemporaneous correlation with the dollar-evaluated real portfolio 
returns. Such correlation dampens the effects of the negative serial 
correlation of the changes in the real exchange rates and may reverse it if 
it is sufficiently strong. The GBP case seems to lie on the borderline for 
this to happen. 

We feel sovereign wealth funds, endowment funds, and other funds 
that aim for sustainability of returns would be well advised to take these 
results into account, especially when decisions are made about the 
allowable size of annual withdrawals. If specified as a percentage of the 
fund value, this percentage should in many cases be smaller than the rate 
of short-run expected returns.  

Appendix A. Proof of Eq. (1) 

Proof by induction: 
Suppose the result holds for n − 1, so that 

(
1 + r0,n− 1

)n− 1
:= E[(1 + r1)⋯(1 + rn− 1) ] = (1 + r)n− 1

+ (1 + r)n− 3

[
∑n− 2

j=1
(n − 1 − j)sj + h.o.m.

]

Then, using the rules for covariances of products (e.g. Bohrnstedt & Goldberger, 1969), we obtain 

(1 + r0n)
n
≡ E[(1+ r1)⋯(1+ rn) ] = E{[(1+ r1)⋯(1+ rn− 1) ](1+ rn) }

= (1+ r)E[(1+ r1)⋯(1+ rn− 1) ] + (1 + r)n− 2

[
∑n− 1

j=1
sj + h.o.m.

]

= (1 + r)n
+(1 + r)n− 2

[
∑n− 2

j=1
(n − 1 − j)sj + h.o.m.

]

+(1 + r)n− 2

[
∑n− 1

j=1
sj + h.o.m.

]

= (1 + r)n
+(1 + r)n− 2

[
∑n− 1

j=1
(n − j)sj + h.o.m.

]

,

which directly implies Eq. (1). For n = 2, we see directly that 

Table 3 
Contemporaneous cross correlations between the real USD returns and the rates 
of change of the respective real exchange rates.   

Monthly data   

NOK DEM-EUR GBP 

S&P 500 ρ̂ − 0.316 − 0.235 − 0.229  
95% conf. 
Interval 

(− 0.433, 
− 0.189) 

(− 0.357, 
− 0.110) 

(− 0.348, 
− 0.108)  

ξ̂ 0.049 0.075 0.058  
95% conf. 
Interval 

(− 0.073, 
0.183) 

(− 0.050, 
0.204) 

(− 0.071, 
0.183) 

FTSE Global Equity 

ρ̂ − 0.423 − 0.343 − 0.344 
95% conf. 
Interval 

(− 0.527, 
− 0.307) 

(− 0.457, 
− 0.222) 

(− 0.453, 
− 0.228)  

ξ̂ − 0.062 − 0.037 − 0.062  
95% conf. 
Interval 

(− 0.175, 
0.063) 

(− 0.050, 
0.204) 

(− 0.180, 
0.059) 

70–30 FTSE GE – 
Bloomberg GB 

ρ̂ − 0.482 − 0.423 − 0.386 
95% conf. 
Interval 

(− 0.578, 
− 0.374) 

(− 0.527, 
− 0.310) 

(− 0.491, 
− 0.274)  

ξ̂ 0.009 − 0.007 − 0.002  
95% conf. 
Interval 

(− 0.107, 
0.135) 

(− 0.115, 
0.114) 

(− 0.119, 
0.124)   

Annual data 
S&P 500 ρ̂ − 0.102 − 0.054 − 0.478  

95% conf. 
Interval 

(− 0.607, 
0.498) 

(− 0.655, 
0.377) 

(− 0.804, 
0.067)  

ξ̂ 0.216 0.222 − 0.216  
95% conf. 
Interval 

(− 0.344, 
0.879) 

(− 0.134, 
0.640) 

(− 0.550, 
0.315) 

FTSE Global Equity 

ρ̂ − 0.223 − 0.146 − 0.559 
95% conf. 
Interval 

(− 0.655, 
0.377) 

(− 0.502, 
0.214) 

(− 0.839, 
− 0.029)  

ξ̂ 0.089 0.125 − 0.302  
95% conf. 
Interval 

(− 0.408, 
0.776) 

(− 0.208, 
0.544) 

(− 0.596, 
0.226) 

70–30 FTSE GE – 
Bloomberg GB 

ρ̂ − 0.279 − 0.229 − 0.594 
95% conf. 
Interval 

(− 0.655, 
0.377) 

(− 0.559, 
0.113) 

(− 0.839, 
− 0.029)  

ξ̂ 0.159 0.152 − 0.223  
95% conf. 
Interval 

(− 0.335, 
0.844) 

(− 0.162, 
0.584) 

(− 0.596, 
0.226)  
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E[(1+ r1)(1+ r2) ] = (1 + r)2
+ s1.

Q.E.D. 

Appendix B. Serial correlation of rates of return 

Serial correlation comes only from the third term of (2). For the Ornstein-Uhlenbeck process, we know that the serial correlation of levels is given 
by the unconditional covariance 

cov(xt, xs) =
σ2

2

2αe− α|t− s|.

Positive serial correlation in levels implies negative serial correlation in rates of change. However, the correlation between the rates of change is 
complicated by the fact that they have order of magnitude dt. To circumvent this complication, we look first at finite differences: 

cov(xt+h − xt, xs+h − xs)

= cov(xt+h, xs+h) − cov(xt, xs+h) − cov(xt+h, xs)+ cov(xt, xs).

Without loss of generality, assume h > 0. Also, for simplicity, assume t > s; the case of t < s is analogous. From the formula above, we then obtain 

cov(xt+h − xt, xs+h − xs)

=
σ2

2

2α
(
2e− α(t− s) − e− α(t− s− h) − e− α(t− s+h) )

=
σ2

2

α e− α(t− s)
[

1 −
1
2
(
eαh + e− αh)

]

.

Because the Brownian motion part of the rate of return (2) is serially uncorrelated, this formula also describes the covariance between the rates of 
return rt and rs. 

Similarly, the variance of the finite changes of the Ornstein-Uhlenbeck levels is 

V(xt+h − xt) =
σ2

2

α
(
1 − e− αh).

To get the variance of the full rate of return we must, according to (2), add the variance of the Brownian motion part. For finite rather than 
infinitesimal asset-value changes, it can be written as 

V(rt) = σ2
1h+

σ2
1

α
(
1 − e− αh),

so that, for finite changes of the asset value, 

corr(rt, rs) = e− α(t− s) 1 − 1
2 (e

αh + e− αh)

αhσ2
1/σ2

2 + 1 − e− αh.

This expression becomes “zero over zero” for h → 0. However, for small h, 

∂
[
1 − 1

2 (e
αh + e− αh)

]

∂h
= −

1
2

α
(
eαh − e− αh)→0,

when h → 0, and 

∂2[1 − 1
2 (e

αh + e− αh)
]

∂h2 = −
1
2
α2( eαh + e− αh)→ − α2.

Similarly, 

∂
[
αhσ2

1

/
σ2

2 + 1 − e− αh
]

∂h
= α

(
σ2

1

/
σ2

2 + e− αh)→α
(
σ2

1

/
σ2

2 + 1
)
,

and 

∂2[αhσ2
1

/
σ2

2 + 1 − e− αh
]

∂h2 = − α2e− αh→ − α2  

so, for small h, 

corr(rt, rs) ≈ − (1/2)e− α(t− s) α2h2

α(σ2
1/σ2

2 + 1)h − (1/2)α2h2  

= −
α
2

e− α(t− s) h
σ2

1/σ2
2 + 1 − (1/2)αh

≈ −
α
2

e− α(t− s) h
σ2

1/σ2
2 + 1

.

Because the case where s > t is analogous, we may thus write, for all infinitesimal changes 

K.A. Mork and H.A. Trønnes                                                                                                                                                                                                                 



International Review of Financial Analysis 88 (2023) 102696

11

corr(rt, rs) = −
α
2

e− α|t− s|
(

σ2
2

σ2
1 + σ2

2

)

dt.
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