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A B S T R A C T   

Offshore wind turbines may be exposed to extreme or accidental loads during the service life, 
such as extreme water slamming, ship collisions, earthquakes, extreme winds, ice loads, etc. 
Under the action of such loads, they will respond not only in the primary eigenmode, but also 
high order modes. This paper presents a Rayleigh-Ritz solution for high order natural frequencies 
and eigenmodes of monopile supported offshore turbines. The model considers explicitly tapered 
wind turbine towers and soil-pile interactions. Different soil conditions are considered using 
equivalent cross coupled springs at the mudline. The proposed Rayleigh-Ritz solution is applied to 
the DTU 10 MW wind turbine mounted on a monopile foundation. The predicted natural fre
quencies and eigenmodes are compared with nonlinear finite element simulations using USFOS. 
The results show excellent agreement for the first 3 eigenmodes. Even higher eigenmodes than the 
3rd order are also calculated but are not presented. They can be readily obtained if needed. 

High order natural frequencies and eigenmodes using the proposed Rayleigh-Ritz solution can, 
together with the Duhamel’s integral, be well utilized in the buckling and collapse analysis and 
design of monopile supported offshore wind turbines in Ultimate Limit States (ULS) and Acci
dental Limit States (ALS). In addition, the high accuracy of the predicted primary natural fre
quency makes it a useful design tool to help avoid undesired resonance from external excitation 
loads and to reduce resonance related fatigue effects in Fatigue Limit States (FLS).   

1. Introduction 

Wind power is at the forefront of the energy evolution transitioning from classical fossil fuel to clean and decarbonizing energy. 
According to DNV report [1], electricity will increase from less than 20% of the energy mix today to around 40% by 2050, where wind 
power will account for a substantial share of about 30% of total electricity. Wind power is generally harvested by onshore and offshore 
wind turbines. Compared to onshore turbines, offshore wind turbines (OWTs) can utilize the vast free space in the open sea with higher 
wind speeds for electricity generation and fewer problems related to noises. Offshore wind turbines need to be supported by either 
fixed foundations (monopile, jacket, etc) or floating floaters (semi-submersible, Spar, barge, tension leg, etc), among which the 
monopile foundation design has proven itself to be the most cost-effective support structure in shallow water (<40 m) and even for 
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deeper waters or larger turbines to come. In addition, monopile foundations are relatively easy to fabricate and to install. According to 
Ramirez et al. [2], large diameter monopiles account for more than 80% of newly installed offshore turbine foundations in Europe. 

Offshore wind turbines are dynamically sensitive structures, and the dynamics of OWTs must be studied in order to avoid resonance 
arising from external excitations and the resonance related fatigue damage through dynamic amplification of turbine responses. 
Evaluation of the primary natural frequency of OWTs is therefore an important design parameter in rules and standards 
(DNV–OS–J101 [3], IEC-61400-1 [4], etc). Typical natural frequency range of OWTs shall be designed away from the rotor rotational 
frequency (1 P) and the blade passing frequency (2 P/3 P) as well as the predominant excitation frequency from waves and winds. 
Arany et al. [5] showed typical loading spectra from waves and winds at offshore sites and the range of 1 P and 3 P frequencies for a 
number of commercial wind turbines of different capacities (2–8 MW) in Fig. 1. The so-called soft-stiff design is most widely adopted, 
where the primary frequency of OWTs fall in the frequency gap between 1 P and 3 P. 

In addition to the primary natural frequency, high order natural frequencies and eigenmodes become important when OWTs are 
subjected to extreme or accidental loads in ULS and ALS conditions, such as extreme water slamming, ship collisions, earthquakes, 
extreme winds, ice loads, etc. In 2013, Super typhoon Usagi on category 4 impacted a wind farm on the southeast coast of China with a 
dramatic change of wind direction and a maximum wind speed of 57 m/s at a 10-m elevation. As a result, eight turbine towers 
collapsed, eleven rotor blades broke off and three turbines were burned, leading to an approximate $16 million loss to the wind farm 
[6]. Fig. 2(a) shows typical buckling and collapsing patterns of wind turbines after extreme storms. Just recently in 2022, a cargo ship 
of 37,200 tons was cast adrift by a heavy storm into the Hollandse Kust Zuid offshore wind farm area in the Dutch North Sea [7]. The 
ship collided with a monopile foundation of an offshore turbine causing significant dents (refer Fig. 2(b)) on the monopile, which needs 
to be removed afterwards. Such extreme and accidental actions are often characterized by loads with short durations and large am
plitudes, and the responses of OWTs are highly transient involving several high order eigenmodes [8,9]. It is therefore crucial to 
accurately assess high order natural frequencies and eigenmodes of OWTs in addition to the first one for reliable analysis and design of 
OWTs in ULS and ALS conditions. 

This paper presents a high-fidelity Rayleigh-Ritz solution for high order natural frequencies and eigenmodes of monopile supported 
offshore turbines considering explicitly tapered turbine towers and soil-pile interactions. The DTU 10 MW turbine mounted on a 
monopile foundation is used as an example. Different soil conditions are considered using equivalent cross coupled springs at the 
mudline. Natural frequencies and eigenmodes obtained by the derived Rayleigh-Ritz solution are verified using nonlinear finite 
element analysis in USFOS. The proposed Rayleigh-Ritz solutions are formulated in matrix form, and can be conveniently implemented 
in the FLS, ULS and ALS analysis and design of offshore wind turbines. 

2. Existing simplified models for monopile supported offshore wind turbines 

2.1. Rigid base model 

The primary natural frequency of offshore wind turbines is of interest to avoid resonance from external excitation loads. As a first 
estimation of the first natural frequency, offshore wind turbines are often simplified as a uniform cantilever beam rigidly supported at 
the base with a concentrated mass at the beam head representing mass of the rotor, nacelle, and an equivalent mass of the turbine 
tower as shown in Fig. 3(a) and (b). The rigid base tower natural frequency fRB,T can be expressed as: 

Fig. 1. Typical wind and wave spectra, rotor rotational frequency (1 P) and blade passing frequency (3 P) bands for six commercial turbines, from 
Arany et al. [5]. 
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fRB,T =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
kT

mRNA + μmT

√

(1)  

Where kT = 3ETIT/L3
T is the lateral stiffness of the tower, ET, IT and LT are Young’s modulus of the tower material, cross sectional 

moment of inertia and length of the tower, respectively. mRNA is the mass of the rotor-nacelle assembly (RNA), and mT is the mass of the 
tower. μ is the equivalent mass ratio of the tower concentrated at the tower top. Arany et al. [5] suggested that the uniform tower 
diameter DT should be taken as an average of the top and the bottom diameter of the tower DT = (DTt + DTb)/2. The average tower 
thickness was therefore determined by tT = mT/(πρTDTLT), where ρT is the density the turbine tower material. 

The selected equivalent mass ratio μ varies in the literature. DNV–OS–J101 [3] suggests μ = 0.25 for earthquake analysis of 
offshore wind turbines using response spectrum methods. IEC-61400-1 (2005) [11] recommends μ = 0.50 to establish accelerations at 
the first tower bending eigen-frequency for the design response spectrum in earthquake analysis. The latest version of IEC-61400-1 
(2019) [4] however suggests using a simplified multi-degree of freedom system for the calculation of wind turbine structural re
sponses. When the static deflection shape of a beam subjected to a concentrated load at the beam tip is used as shape functions, μ =
33
140 = 0.236 is obtained. The recommended mass ratio by DNV–OS–J101 [3] is close to this analytical value. Van der Tempel and 

Molenaar [12] presented a similar expression of fRB,T =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3.04ETIT
(mRNA+0.227mT)L3

T

√
for the first natural frequency of wind turbine towers. 

When monopile foundations are considered, Arany et al. [5] calculated the lateral stiffness of the monopile-tower system shown in 
Fig. 3(d), and the fixed-base natural frequency of the tower-monopile system (excluding foundation stiffness) is given by: 

fRB =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

1 + (1 + λ)3χ − χ

√

fRB,T (2) 

Fig. 2. (A) Buckling and collapse of a wind turbine after extreme winds [10]; (b) damaged monopile foundation of an offshore turbine foundation 
after being collided by a drifting cargo ship of 37,200 tons in heavy storms [7]. 

Fig. 3. Simplified models for offshore wind turbines with rigid bases.  
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where χ = ETIT
EPIP 

is the bending stiffness ratio of the tower and the pile, λ = LS/LT is the ratio of the pile length above the mudline and the 
tower length as shown in Fig. 3(d). EP, IP and LS are Young’s modulus of the pile material, cross sectional moment of inertia and the 
length of the monopile above the mudline, respectively. Ko [13] considered further the influence of tapered towers with varying cross 
sections in the evaluation of the primary eigenfrequency of monopile wind turbines. 

Ladeira et al. [9] used the Idealized Structural Unit Method (ISUM) to model the tower-monopile system, where a monopile 
supported wind turbine was divided into a few elements with uniform cross sections, and the terms from exact beam solutions were 
used as interpolation functions. Continuity and compatibility conditions were satisfied at the element interfaces. In this way, high 
order natural frequencies and eigenmodes could be established. 

2.2. Modelling soil-pile interactions 

For dynamic analysis of monopile supported offshore wind turbines, appropriate stiffnesses for the foundation structure shall be 
applied. The soil stiffness is often represented by nonlinear P-y curves along the embedded depth for the lateral stiffness and nonlinear 
T-z and Q-z curves for the axial stiffness. The approach can be found in API-RPGEO [14] and is recommended in DNV-ST-0126 [15]. 
Due to the stochastic nature of measured soil properties, high or low estimates of the involved soil parameters shall be applied for 
different design process targets to account for their uncertainties [3]. The nonlinear P-y curve method was initially designed for long 
flexible piles and had worked well for such conditions. However, its direct application to low length-to-diameter ratio monopiles (often 
less than 10 to 15) may give unsatisfactory results [16]. Another approach is to model soil-pile interactions by finite element methods 
[17], where the soil part is modelled as constitutive material models (e.g. Mohr-Coulomb material) with detailed soil properties and 
distributions. 

In the initial design stage, detailed information of nonlinear soil stiffness is often not available and such analysis is often very time 
consuming. In the absence of sophisticated modelling tools, simplified representation of the foundation stiffness becomes relevant. 
Three approaches [18] are often used to represent monopile foundation stiffnesses: the distributed springs (DS) model, the apparent 
fixity (AF) model and the coupled spring (CS) model as shown in Fig. 4. The DS model (Fig. 4(a)) idealizes the monopile with flexible 
foundation as a free-free beam with a set of elastic springs distributed along the embedded length of the monopile. The soil stiffnesses 
are linearized from the original nonlinear P-y curves. The AF model (Fig. 4(b)) idealizes the monopile with flexible foundation as a 
cantilever beam whose properties are different above and below the mudline. The beam below the mudline has effective properties and 
a fictitious length that is tuned to obtain the same mudline displacement and rotation as those obtained using the high-fidelity P-y 
curves. The CS model (Fig. 4(c)) idealizes the monopile foundation stiffness as a set of cross-coupled translational and rotational 
springs positioned at the mudline (see Eq. (3)). The mudline stiffnesses are determined such that the same mudline displacement ρ and 
rotation θ are obtained as with the P-y model. 

Fig. 4. Three simplified approaches to model the monopile foundations: (a) the distributed springs (DS) model; (b) the apparent fixity (AF) model; 
and (c) the coupled spring (CS) model. The figure is reproduced from Robinson and Wang [21]. 
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[
F
M

]

=

[
khh khr
krh krr

][
ρ
θ

]

(3) 

The three simplified models have been used and discussed extensively in the literature. Zaaijer [19] discussed the accuracy of 
different simplified foundation modelling techniques in the assessment of dynamic behavior of monopile offshore wind turbines and 
showed that the coupled spring model gave the best solution for monopiles while the AF model yielded large sensitivity of the pre
dicted natural frequencies to the effective fixity length and was therefore strongly discouraged. The prediction with uncoupled spring 
models gave large deviations from the reference model and was not recommended. Arany et al. [20] reached similar conclusions. They 
presented an analytical model for the first natural frequency of monopile offshore wind turbines assuming uniform cross sections and 
coupled springs as the foundation stiffness. The cross-coupling term was shown to have significant effects on the predicted natural 
frequencies. 

The literature review showed that the coupled spring model is a very promising approach to model the foundation. Arany et al. [5] 
considered a three-term coupled spring model in the evaluation of the first natural frequency. Two empirical flexibility factors were 
introduced, and they shall be multiplied by the first natural frequency fRB in Eq. (2) to account for the effects of foundation stiffnesses. 
Determination of the foundation stiffnesses is however challenging in view of the complicated soil composition and distributions along 
the depth. Two main parameters are found to govern the calculation methodology of foundation stiffnesses [5], (1) site condition and 
ground profile at site; (2) pile slenderness and rigidity. Given the information of ground/soil profiles and pile properties, it is possible 
to classify the pile behavior, i.e., whether the monopile will behave as a long flexible pile or a short rigid pile, and then to use 
appropriate relations to obtain the stiffness terms Khh, Krr and Khr. 

According to Randolph [22], the pile is considered as a long flexible pile if LP
DP

≥
( EPe

G∗

)2
7 and as rigid if LP

DP
≤ 0.05

( EPe
G∗

)1
2 [23], where LP 

and DP are the length and diameter of the embedded pile, EPe = EPIP/(πD4
P /64) is the equivalent Young’s modulus, G∗ = Gs(1+3 /4vs)

is the effective shear stress of the soil, Gs is the soil shear modulus and vs is the soil’s Poisson ratio. Poulos and Davis [24] introduced a 

characteristic pile slenderness parameter βpile =

̅̅̅̅̅̅̅̅̅̅
ksubDP
4EPLP

4
√

and suggested that the pile can be considered as slender when βpileLP > 2.5 and 
rigid when βpileLP < 1.5, where ksub is the subgrade reaction modulus of the soil. 

In the absence of detailed and careful site measured soil data, a number of analytical and empirical formulations are available in the 
literature by assuming certain soil stiffness profiles, e.g. Randolph [22], Shadlou and Bhattacharya [16], Carter and Kulhawy [23], etc. 
An overview of formulations for the pile foundation stiffness is found in Arany et al. [25]. Arany et al. [25] stated that slender pile 
formulae often produce better approximation of the eigen frequencies of structures than formulae for rigid piles. The foundation 
stiffness formulations suggested by Shadlou and Bhattacharya [16] considering low length-to-diameter ratios of monopiles exhibiting 
flexible and rigid behavior are given in Table 1 and are used in Section 3.4. 

f(vs) = 1 + 0.6|vs − 0.25| is recommended by Shadlou and Bhattacharya [16]. ESO is the soil Young’s modulus. 

3. A Rayleigh-Ritz solution for monopile supported offshore turbines 

3.1. The Rayleigh-Ritz formulation 

The structural deflection shape can generally be considered as a superposition of a number of linearly independent modes: 

w(z)
L

=
∑n

i=1
aiφi(z) (4)  

where φi is the ith trial function and ai is the corresponding weight. L is the characteristic length of the structure. 
The Rayleigh principle states that the frequencies for a conservative system that oscillates about an equilibrium state have sta

Table 1 
Foundation stiffness of piles exhibiting flexible and rigid behaviors from Shadlou and Bhattacharya [16].  

Pile behavior Soil model khh

f(vs)ESO(DP/2)
−

khr

f(vs)ESO(DP/2)2  
krr

f(vs)ESO(DP/2)3  

Flexible Homogeneous 
2.9

( EP

ESO

)0.186 
1.2

( EP

ESO

)0.5 
1.5

( EP

ESO

)0.73 

Parabolic Inhomogeneous 
2.03

( EP

ESO

)0.27 
1.17

( EP

ESO

)0.52 
1.42

( EP

ESO

)0.76 

Linear inhomogeneous 
1.58

( EP

ESO

)0.34 
1.07

( EP

ESO

)0.567 
1.38

( EP

ESO

)0.78 

Rigid Homogeneous 
6.4

(LP

DP

)0.62 
7.1

(LP

DP

)1.56 
13.2

(LP

DP

)2.5 

Parabolic Inhomogeneous 
5.33

(LP

DP

)1.07 
7.2

(LP

DP

)2 
13

(LP

DP

)3 

Linear inhomogeneous 
4.7

(LP

DP

)1.53  
7.1

(LP

DP

)2.5  
12.7

(LP

DP

)3.45   
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tionary values when the system vibrates in its eigenmodes [26]. The Rayleigh-Ritz quotient R(a1, a2,⋯an) is expressed as: 

R(a1, a2,⋯an)=ω2 =
Umax(a1, a2,⋯an)

T0(a1, a2,⋯an)
(5)  

where ω is the vibration frequency, Umax is the maximum strain energy and Tmax = ω2T0 is the maximum kinetic energy. The Rayleigh- 
Ritz quotient shall be minimized with respect to the coefficients, resulting in the following expression: 

∂R(a1, a2,⋯an)

∂ai
= 0, i= 1, 2,⋯n ⇒

(
∂Umax

∂ai
− ω2∂T0

∂ai

)

= 0 i= 1, 2,⋯n (6) 

Eq. (6) leads to the final expression with respect to the generalized stiffness matrix K and the generalized mass matrix M: 
(
K − ω2M

)
a= 0 (7) 

Nontrivial solutions exist when the matrix determinant vanishes. This determines the weight coefficients a1,a2,⋯an, and thereby 
the natural frequencies and eigenmodes. In this paper, we adopt a power series of trial functions of nth order for turbine structures as 
follows: 

φ0 = 1,φ1 =
z
L
,φ2 =

(z
L

)2
,φ3 =

(z
L

)3
⋯,φn =

(z
L

)n
(8)  

3.2. High order natural frequencies and eigenmodes for a uniform cantilever beam with a tip mass 

Land based wind turbines may be simplified as a uniform beam with a concentrated mass at the top and a rigid base at the bottom 
(see Fig. 3(a) and (b)) as a first rough approximation [5,13]. This may also be applied for offshore wind turbine towers or monopile 
supported offshore turbines. Following Arany et al. [5], the uniform tower diameter DT is taken as an average of the top and the bottom 
diameters of the tower DT = (DTt + DTb)/2. The average tower thickness is determined by tT = mT/(πρTDTLT), where mT is the tower 
total weight, ρT, DT and LT are the density, diameter and length of the turbine tower, respectively. 

Analytical solutions of the natural frequencies and eigenmodes exist for a uniform beam with a tip mass rigidly fixed at the base, 
(see Erturk and Inman [27]), where the natural frequencies are determined by solving Eq. (9) with respect to λω: 

1+ cos λω cosh λω + λω
mRNA

mL
(cos λω sinh λω − sin λω cosh λω) −

λω
3JRNA

mL3 (cosh λω sin λω + sinh λω cos λω)

+
λω

4mRNAJRNA

m2L4 (1 − cos λω cosh λω)= 0
(9) 

m = ρA is the beam mass per unit length. mRNA and JRNA are the mass and the rotational inertia of the top mass. The natural fre

quencies can be found by ω =

̅̅̅̅̅̅̅̅
λω4EI
mL4

√

. 
The corresponding rth eigenmode is: 

φr(x)=Ar

⎡

⎢
⎣cos

λω ,rx
L

− cosh
λω ,rx

L
+

sin λω ,r − sinh λω ,r + λω ,r
mRNA

mL

(
cos λω ,r − cosh λω ,r

)

cos λω ,r + cosh λω ,r − λω ,r
mRNA
mL

(
sin λω ,r − sinh λω ,r

)

(

sin
λω ,rx

L
− sinh

λω ,rx
L

)
⎤

⎥
⎦ (10) 

Ar is a single modal constant. 
The analytical solutions can be used to check the accuracy of the Rayleigh-Ritz approach with different polynomial orders. Using 

the Rayleigh-Ritz approach, the maximum strain energy Umax is expressed as: 

Umax =
1
2

∫LT

0

ET IT

[
d2w(z)

dz2

]2

dz

=
1
2
∑n

i=1

∑n

j=1
KijL2

T aiaj,where Kij =

∫ LT

0
ET IT

d2φi(z)
dz2

d2φj(z)
dz2 dz

(11) 

The kinetic energy (KE) T0 includes three terms and reads: 

T0 =
1
2

∫LT

0

m[w(z)]2dx

⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟
tower KE

+

[
1
2
mrna[w(z)]2

]

z=LT⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
RNA mass KE

+

[
1
2
Jrna

[
dw(z)

dz

]2
]

z=LT⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
RNA rotational inertia KE

=
1
2
∑n

i=1

∑n

j=1
MijL2

T aiaj,where Mij =

∫LT

0

mφi(z)φj(z)dz+mrnaφi(LT)φj(LT)+

[

JRNA
dφi(z)

dz
dφj(z)

dz

]

z=LT

(12) 

The first term in Eq. (12) is the kinetic energy carried by the distributed tower mass, and the latter two terms are kinetic energy 
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contributions from the translational mass and the rotational inertia of the top RNA, respectively. Kij and Mij are the generalized 
stiffness matrix and the generalized mass matrix, respectively. With Eq. (7), the natural frequencies and eigenmodes are readily 
obtained. 

The well-established turbine tower of a 5 MW reference wind turbine defined by National Renewable Energy Laboratory (NREL) is 
selected as an example [28]. The main structural parameters of the turbine tower are given in Table 2. Natural frequencies and ei
genmodes of the wind turbine with different support structures are well documented by Bir and Jonkman [18]. The Rayleigh-Ritz 
approach with polynomials of 3rd and 4th order are selected. The obtained natural frequencies are compared in Table 3 and the ei
genmodes are compared in Fig. 5. 

For wind turbines subjected to extreme loads, the first three eigenmodes are generally of interest. From Table 3 and Fig. 5, the 
Rayleigh-Ritz method with a complete 4th order polynomial can provide excellent prediction of tower eigenfrequencies and eigen
modes. The differences with analytical solutions are within 2%. The Rayleigh-Ritz method with a complete 3rd order polynomial can 
only provide the first two eigenmodes. The first eigenfrequency is well predicted while there is a 5.4% difference for the 2nd 
eigenfrequency. It is therefore recommended to use the 4th order polynomial terms for the first 3 modes and the corresponding 
stiffness and mass matrices are given in Appendix A. 

Simplification of the tapered turbine tower into an equivalent uniform beam with a tip mass introduces errors. Table 3 shows that 
absolute differences of the natural frequencies are in the range of 10%–15% for all the first 3 modes, which is only acceptable as a first 
crude estimation. 

3.3. High order natural frequencies and eigenmodes for a tapered turbine tower 

Tapered towers with varying cross section diameters and thicknesses along the height shall be included for a more accurate rep
resentation of high order natural frequencies and eigenmodes. This will be useful for both land-based turbines (Fig. 6(a)) and floating 
offshore wind turbines (Fig. 6(b)). A rotational spring is introduced at the bottom to represent finite rotational stiffness. The spring 
represents the foundation stiffness for land-based turbines and the rotational flexibilities of the floater structure at the tower 
connection for floating wind turbines. 

Variations of the cross-section moment of inertia and cross section area of turbine towers are studied using two representative 
turbine designs: the NREL 5 MW turbine tower and the DTU 10 MW turbine tower. The main structural parameters of the NREL 5 MW 
turbine tower are given in Table 2. The DTU 10 MW reference wind turbine tower is developed by Bak et al. [29] for a land based 
turbine. The tower thickness is increased by 20% in Bachynski and Ormberg [30] in order to be mounted on a monopile foundation 
without undesired resonance. The latter is adopted in this study and the main structural parameters for the modified DTU 10 MW 
turbine tower is given in Table 4. 

The cross-sectional moment of inertia and area for the two reference turbine towers are plotted in Fig. 7. In the calculation of 
equivalent bending stiffness, Arany et al. [5] assumed a linear variation of tower diameters and thereby a distribution of cross section 
moments of inertia as IT = ITt(1 + az)3, where ITt is the cross section moment of inertia at the tower top, z is the tower coordinate along 
its height and a is a constant. Ko [13] compared different formulations of representing variations of the tower moment of inertia and 

proposed to approximate the cross-section moment of inertia as IT(z)ITb
=

(
ITt
ITb

) z
LT , where ITb is the cross-section moment of inertia at the 

tower bottom. Both models were however, not able to capture well the variations for the NREL 5 MW tower according to results in Ko 
[13]. In addition, the expressions are not very convenient to integrate mathematically. To improve the estimation accuracy, a 2nd 
order polynomial is adopted to approximate the variations of moment of inertia while a 1st order polynomial is used for cross section 
area approximation as follows. 

IT

ITb
= b0 + b1

z
L
+ b2

(z
L

)2
(13)  

AT

ATb
= c0 + c1

z
L

(14)  

where b0, b1, b2 and c0, c1 are approximation constants for the cross-sectional moment of inertia and area, respectively, and they should 
be determined by minimizing the deviations from the raw data points. For the DTU 10 MW tower, the following coefficients are 
obtained: b0 = 0.9955, 

Table 2 
Structural parameters of the NREL 5 MW reference wind turbine [28].  

Tower length LT 87.6 m Average tower diameter DT 4.935 m 

Tower total mass mT 347,460 kg Average tower thickness tT 0.0301 m 
Tower top diamter DTt 3.87 m Young’s modulus ET 210 Gpa 
Tower top thickness 0.0247 m Tower material density ρT 8500 kg/m3 

Tower bottom diameter DTb 6.0 m RNA total mass mRNA 350,000 kg 
Tower bottom thickness 0.0351 m RNA rotational inertia JRNA 4.37 × 107 kgm2  
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B1 = − 1.4522, b2 = 0.6101, c0 = 0.9684 and c1 = − 0.6710. The resulting fitted curves are shown in Fig. 7. It is found that the 2nd 
order polynomials yield excellent fit of the tower moment of inertia while the tower area is represented reasonably well by the 1st 
order polynomial. 

Using the Rayleigh-Ritz approach, the maximum strain energy Umax and the kinetic energy T0 are expressed as: 

Table 3 
Natural frequencies [HZ]of the NREL 5 MW reference wind turbine with fixed base.  

Mode (Hz) analytical R–R 3rd order Error R–R 4th order Error Bir and Jonkman [18] with tapered tower Error 

1st mode 0.2754 0.2754 0.00% 0.2753 0.04% 0.3188 − 13.61% 
2nd mode 2.1264 2.2410 5.39% 2.1278 0.07% 1.8820 12.99% 
3rd mode 5.2312 x x 5.2931 1.18% 4.7244 10.73%  

Fig. 5. First three eigenmodes of the simplified NREL 5 MW turbine tower with a rigid base.  

Fig. 6. Simplified turbine tower model with varying cross sections and finite end rotation stiffness.  
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Umax =
1
2

∫LT

0

ET IT

[
d2w(z)

dz2

]2

dz+
1
2
krot

[
dw(z)

dz

]2

z=0

=
1
2
∑n

i=1

∑n

j=1
KijL2

T aiaj,where Kij =

∫ LT

0
ET IT(z)

d2φi(z)
dz2

d2φj(z)
dz2 dz+ krot

[
dφi(z)

dz
dφj(z)

dz

]

z=0

(15)  

T0 =
1
2

∫LT

0

ρAT(z)[w(z)]2dz+
[

1
2

mRNA[w(z)]2
]

z=LT

+

[
1
2
JRNA

[
dw(z)

dz

]2
]

z=LT

=
1
2
∑n

i=1

∑n

j=1
MijL2

T aiaj,where Mij =

∫LT

0

ρAT φi(z)φj(z)dz+mRNAφi(LT)φj(LT)+

[

JRNA
dφi(z)

dz
dφj(z)

dz

]

z=LT

(16)  

Where IT(z) and AT(z) are the moment of inertia and area of the tower cross sections that vary along the height according to Eqs. (13) 
and (14), and krot is the rotational stiffness at the tower base or the connection. 

Considering a 2nd order polynomial approximation for the cross-section moment of inertia in addition to the uniform beam 
formulation, we select a complete 6th order polynomials as trial functions for the tapered tower, and the resulting stiffness matrix and 
mass matrix are given in Appendix B. Rayleigh Ritz solutions with complete 4th and 5th order polynomials are also presented to 
enable a comparison. The corresponding mass and stiffness matrices can be readily obtained by removing the corresponding rows and 
columns from the matrices for the 6th order. 

To validate the Rayleigh-Ritz prediction, nonlinear finite element software USFOS is adopted to model the modified DTU 10 MW 
turbine tower and to evaluate its natural frequencies and eigenmodes. USFOS [31] is a program aimed at ultimate strength and 
progressive collapse analysis of framed offshore structures. The basic idea of the program is to use terms from analytical beam solutions 
in the shape functions so that one physical element in the structure can be represented by one finite element, which is efficient but still 

Table 4 
Structural parameters of the DTU 10 MW reference wind turbine tower [29].  

Tower length LT 115.63 m Young’s modulus ET 210 Gpa 

Tower total mass mT 628 tons × 1.2 Tower material density ρT 8500 kg/m3 

Tower top diamter DTt 5.5 m RNA total mass mRNA 674 tons 
Tower top thickness 0.020 m × 1.2 RNA rotational inertia JRNA 1.659 × 108 kgm2 

Tower bottom diameter DTb 8.3 m Moment of inertia at tower bottom cross section ITb 10.07 m4 

Tower bottom thickness 0.038 m × 1.2  

Fig. 7. Fitting of tower cross section moment of inertia and area according to Eqs. (13) and (14).  
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preserves high accuracy. Nonlinear material properties are accounted for by means of yield hinge theory and interaction formulas for 
stress resultants. USFOS has been extensively used in the analysis of framed structures under environmental and accidental loads, such 
as offshore wind turbines [32], jackets and jack-ups [33], floating bridges [34] and offshore fish farms [35]. The DTU 10 MW reference 
turbine tower is modelled using 20 beam elements. Within each element, cross sections with linearly varying diameters can be 
modelled. The rotor-nacelle-assembly is modelled as a nodal mass including rotational inertia JRNA at the top. 

The tower bottom is considered fixed in the first place. The calculated natural frequencies from USFOS simulations and the 
Rayleigh-Ritz method of different orders are compared in Table 5 with and without considering the rotational inertia. Fig. 8 compares 
the corresponding eigenmodes considering the rotational inertia. Results showed that the Rayleigh Ritz method with 5th order and 6th 
order polynomials predicts virtually the same natural frequencies and eigenmodes of the first 3 modes, which matches well with 
USFOS results, and the difference is within 5%. The 4th order Rayleigh Ritz method predicts less accuracy for the 3rd eigenmode. Even 
higher eigenmodes than the 3rd order are also calculated but are not shown. They can be readily obtained if needed. 

Fig. 9 compares the first 3 eigenmodes using USFOS simulations with and without considering the rotational inertia. Results show 
that the rotational inertia is almost negligible for the first eigenmode of the turbine while its influence is significant for high order 
eigenmodes. When the rotational inertia is neglected, the errors thus brought for natural frequencies of the 2nd and 3rd modes 
approach up to 100%. The corresponding eigenmodes also differ significantly, especially for the 3rd mode. The tower tip rotation for 
the 3rd mode is much reduced when the rotational inertia is considered. It is therefore crucial to include the rotational inertia when 
high order eigenmodes become important. 

For floating offshore wind turbines, the floater can often be treated as a rigid body while the floater connection to the tower bottom 
may have a finite rotational stiffness krot . In a nondimensional format with respect to tower properties, the stiffness becomes ηrot =
krotLT
ETITb

. Table 6 compares natural frequencies of the tapered turbine tower with different bottom connection stiffness using USFOS and 
the Rayleigh-Ritz method of 6th order. The rotational inertia at the tower tip JRNA is considered. The corresponding eigenmodes are 
compared in Fig. 10. The Rayleigh-Ritz method of 6th order shows excellent prediction of the first three natural frequencies and ei
genmodes for the tapered turbine tower with finite bottom stiffness, and the error is within 5%. With a smaller bottom stiffness, the 
natural frequencies become lower, and the tower tends to become more flexible to lateral deflection. 

3.4. High order natural frequencies and eigenmodes for monopile supported offshore wind turbines 

High order natural frequencies and eigenmodes for a monopile supported offshore wind turbine with a tapered tower are 
considered, see Fig. 11. The foundation stiffness is modelled as a set of cross coupled translational and rotational springs at the mudline 
as described in Section 2.2. 

Using the Rayleigh-Ritz method, a complete 6th order polynomial is adopted for the tapered tower as in section 3.3. One main 
difference is that the term φ0 = 1 needs to be included since the tower base deflection is no longer zero. A 4th order polynomial is used 
for the monopile including the term φ0 = 1 for non-zero monopile lateral displacement at the mudline. The corresponding trial 
functions are as follows: 

wtower(z1)

LT
= a0 · 1+ a1

(
z1

LT

)

+ a2

(
z1

LT

)2

+ a3

(
z1

LT

)3

+ a4

(
z1

LT

)4

+ a5

(
z1

LT

)5

+ a6

(
z1

LT

)6

0≤
z1

LT
≤ 1 (17)  

wmono(z2)

LT
= g0 · 1+ g1

(
z2

LT

)

+ g2

(
z2

LT

)2

+ g3

(
z2

LT

)3

+ g4

(
z2

LT

)4

0≤
z2

LT
≤ γ =

LS

LT
(18)  

where z1 and z2 are the vertical coordinate of the tower and monopile in the local coordinate system as defined in Fig. 11, respectively. 
wtower(z1) and wmono(z2) are the lateral deflections of the tower and the monopile, which are nondimensionalized with respect to the 
tower height LT. γ = LS/LT is the ratio of the monopile height above the mudline LS over the tower height LT. 

At the connection of the tower bottom and the monopile, there is a significant change of cross section diameter and thickness. The 
following continuity and compatibility requirements in Eq. (19) shall be satisfied at the connection, which ensure that lateral 

Table 5 
Natural frequencies [HZ] of the modified DTU 10 MW reference turbine tower with rigid base.  

Mode 
(Hz) 

USFOS with JRNA R–R method of 6th order with JRNA Error R–R method of 5th order with JRNA R–R method of 4th order with 
JRNA 

1st mode 0.282 0.281 − 0.4% 0.281 0.281 
2nd mode 1.444 1.441 − 0.2% 1.441 1.441 
3rd mode 3.490 3.639 4.3% 3.639 3.911 

Mode 
(Hz) 

USFOS without 
JRNA 

R–R method of 6th order without 
JRNA 

Error R–R method of 5th order without 
JRNA  

1st mode 0.289 0.288 − 0.3% 0.288 0.288 

2nd mode 2.420 2.474 2.2% 2.476 2.566 
3rd mode 6.817 7.383 8.3% 7.978 8.898  
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Fig. 8. First three eigenmodes of the DTU 10 MW turbine tower considering varying tower cross sections and a rigid base.  

Fig. 9. USFOS simulations for the first three eigenmodes of the DTU 10 MW turbine tower with and without the rotational inertia.  

Table 6 
Natural frequencies [HZ] of the DTU 10 MW reference turbine tower with different rotational stiffnesses.  

Mode (Hz) USFOS 
ηrot = 1 

R–R method, 6th order 
ηrot = 1 

Error USFOS 
ηrot = 10 

R–R method, 6th order 
ηrot = 10 

Error 

1st mode 0.163 0.164 0.6% 0.258 0.257 − 0.4% 
2nd mode 1.175 1.164 − 0.9% 1.366 1.361 − 0.4% 
3rd mode 2.728 2.782 2.0% 3.170 3.274 3.3% 

Mode (Hz) USFOS 
ηrot = 100 

R–R method, 6th order 
ηrot = 100 

Error USFOS 
ηrot = inf 

USFOS 
ηrot = inf 

Error 

1st mode 0.279 0.278 − 0.4% 0.282 0.281 − 0.4% 

2nd mode 1.435 1.432 − 0.2% 1.444 1.441 − 0.2% 
3rd mode 3.445 3.586 4.1% 3.490 3.639 4.3%  
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displacements and slopes are continuous over the cross-section dimension changes, and common bending moments and shear forces 
are carried at the intersection. 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Disp continuity : wtower(z1 = 0) = wmono(z2 = γLT)

Slope continuity : w′
tower(z1 = 0) = w′

mono(z2 = γLT)

Moment : − ET IT w″
tower(z1 = 0) = − EPIPw″

mono(z2 = γLT)

Shear : − ET IT w‴
tower(z1 = 0) = − EPIPw‴

mono(z2 = γLT)

(19) 

From Eq. (19), the following relationship can be established between the shape function coefficients of the tower and the monopile: 

Fig. 10. First three eigenmodes of the DTU 10 MW turbine tower considering varying tower cross sections and finite rotational stiffnesses at 
the base. 

Fig. 11. A simplified model for monopile supported offshore wind turbines with tapered towers and cross coupled springs as foundation stiffness.  
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=A · g (20) 

A4×5 is the connectivity matrix. The transformation matrix T5×7 between the vector for the monopile shape function coefficients 
g5×1 and that for the tower a7×1 is therefore expressed as: 

⎡

⎢
⎢
⎢
⎢
⎣
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g3
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⎤

⎥
⎥
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⎡
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⎤

⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎦

=T5×7 · a7×1 (21)  

where (A− 1)5×4 is the Moore-Penrose inverse or the generalized inverse of the non-square matrix A. The Moore Penrose inverse matrix 
exists and is unique when A matrix is in full rank. 

With the established trial functions for the lateral deflection of the monopile and the tower, the maximum strain energy Umax and 
the kinetic energy T0 can be formulated. Following Eq. (6), the mass matrix M and the stiffness matrix K for a monopile turbine with a 
tapered tower and three coupled springs as foundation stiffnesses can be expressed as: 

Mij =

∫γLT

0

ρPAPTpiφp− 1(x)φq− 1(x)Tqjdx

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Monopile

+

∫LT

0

ρT AT(z)φi− 1(z)φj− 1(z)dz

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Tower

+mRNAφi− 1(LT)φj− 1(LT)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

RNA mass

+

[

JRNA
dφi− 1(z)

dz
dφj− 1(z)

dz

]

z=LT⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
RNA rotational inertia

;

i, j ∈ [1, 2, 3,⋯, 7], p, q ∈ [1, 2, 3, 4, 5];

(22)  

Kij =

∫ γLT

0
EPIPTpi

d2φp− 1(z2)

dz2
2

d2φq− 1(z2)

dz2
2 Tqjdz
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+

[
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dφq− 1(z2)
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Tqj

]
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Foundation springs

i, j ∈ [1, 2, 3,⋯, 7], p, q ∈ [1, 2, 3, 4, 5];

(23)  

where the expressions follow the Einstein summation convention. The final expressions for the mass and stiffness matrices are given in 
Appendix C, from which nondimensional parameters that govern the natural frequencies and eigenmodes of monopile supported 
offshore turbines are summarized in Table 7. 

The modified DTU 10 MW wind turbine tower mounted on a monopile is adopted for further illustration and is analyzed in USFOS. 
The turbine tower properties are given in Table 4. The monopile length above the mudline is LS = 40 m and the pile penetrates LP = 42 

Table 7 
Governing nondimensional parameters for monopile offshore wind turbines.  

Dimensionless parameter Formula Dimensionless parameter Formula 

Length ratio γ γ =
LS

LT 

Non-dimensional tower bending stiffness ETITb

ρTATbLT
4 

Mass ratio α α =
mRNA

ρTATbLT 

Non-dimensional foundation lateral stiffness ηhh ηhh =
khhL3

T
ETITb 

Non-dimensional rotational inertia β =
JRNA

ρTATbLT
3 

Non-dimensional foundation cross stiffness ηhr ηhr =
khrL2

T
ETITb 

Mass density ratio of pile over tower bottom ρPAP

ρTATb 

Non-dimensional foundation rotational stiffness ηrr ηrr =
krrLT

ETITb 
Bending stiffness ratio EPIP

ETITb     
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m into the soil. The monopile has a diameter of DP = 9 m and a thickness of tP = 110 mm [30]. 
The monopile is considered fixed at the mudline in the first place. Natural frequencies predicted by the Rayleigh-Ritz method and 

USFOS simulations are compared with in Table 8 for the first three modes, and the corresponding eigenmodes are plotted in Fig. 12. 
The predicted natural frequencies and eigenmodes show excellent agreement. 

Next, the soil-pile interaction is modelled as three coupled springs as shown in Fig. 11, and the foundation stiffness values suggested 
by Shadlou and Bhattacharya [16] in Table 1 are used. The soil conditions are considered simply to be homogeneous with constant soil 
stiffness along the embedded depth. The Young’s modulus of soil Eso is crucial in determining the foundation stiffness. Two soil 
Young’s modulus are selected, i.e., Eso = 30 Mpa, which is representative of the Siemens 3.6 MW at the Walney 1 site [16] and Eso = 5 
Mpa as a kind of soft soil. The calculated foundation stiffnesses for the coupled springs are given in Table 9. In USFOS modelling, the 
boundary of the monopile bottom is represented as coupled springs with the same values as given in Table 9. Natural frequencies using 
the Rayleigh-Ritz method and USFOS simulations are compared in Table 10 for the first three modes, and the corresponding eigen
modes are plotted in Fig. 13. The predicted natural frequencies and eigenmodes again show excellent agreement, demonstrating high 
fidelity of the approach. From Fig. 13, the mudline displacement is generally small for the primary eigenmode and become evident for 
the 2nd and 3rd modes, especially with the soft soil condition. This is the case also for monopile rotations at the mudline. 

4. Modelling of soil-monopile interactions 

So far, the agreement between numerical simulations and the analytical method is excellent. The problem that remains is how well 
the coupled spring model represents real soil flexibilities. In addition, by assuming coupled springs, the inertia effects and kinetic 
energy carried by the pile underneath the mudline are disregarded. These effects will be explored in this section, where soil conditions 
are explicitly modelled using USFOS. 

4.1. USFOS modelling of monopile foundation 

USFOS is originally a tool tailored for jacket structures, where the foundation normally consists of a series of slender piles con
nected to the legs. Each single pile experiences axial resistance (T-Z and Q-Z) and horizontal resistance (P–Y) as recommended in API- 
RPGEO [14] and DNV-ST-0126 [15]. The large distance between the piles provides the global bending resistance of the jackets. In 
USFOS [36], it is stated that if a jacket pile model is used to represent large diameter monopiles, the global bending resistance will be 
underestimated. This is mainly due to the large dimensions of monopiles with a much larger friction area, which provides an additional 
bending resistance compared to the smaller piles used for jackets. 

Recently, a monopile element for large diameter piles was established in USFOS [36] by subdividing the pile into a limited number 
(8 or 16 often used) of “integration points” or “auxiliary piles”, refer Fig. 14. Each represents a certain arc of the monopile. Forces 
occurring in each single pile is transferred to the monopile, and the monopile resistance is obtained by summing up contributions from 
all auxiliary piles along the monopile circumference including the shear contribution. 

4.2. Homogenous soil conditions 

The DTU 10 MW turbine on a monopile foundation continues 42 m into the soil following the design of Bachynski and Ormberg 
[30]. The monopile has a diameter of 9 m and a thickness of 11 cm. The soil condition is considered homogenous in the first place. Two 
soil stiffnesses of 33.5 MN/m/m and 100 MN/m/m, i.e. (Force/unit lateral deflection/unit pile length) are assumed for the P-y curves, 
representing relatively soft and stiff soils. The established monopile turbine model is shown in Fig. 15. The blades are equipped with 
high stiffness (rigid) materials so that the effects of blade flexibilities are disregarded. 

In order to enable a fair comparison, the homogenous soil stiffness needs to be transformed into an equivalent set of coupled springs 
at the mudline. From the literature, two expressions are found useful assuming flexible pile behavior. Poulos and Davis [24] suggested 
the following spring stiffness for homogenous soil conditions: 

[
F
M

]

=

⎡

⎢
⎢
⎢
⎢
⎣

ksubDp

βpile
−

ksubDp

2β2
pile
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⎤
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[
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θ

]

(24)  

where βpile =

̅̅̅̅̅̅̅̅̅̅
ksubDP
4EPLP

4
√

is a characteristic pile slenderness parameter. 

Table 8 
Natural frequencies [HZ] of the DTU 10 MW turbine tower supported on a monopile foundation fixed at the mudline.  

Mode (Hz) USFOS with JRNA The Rayleigh-Ritz method Error 

1st mode 0.245 0.245 0.0% 
2nd mode 1.249 1.250 0.1% 
3rd mode 2.528 2.623 3.8%  
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Psaroudakis et al. [38] derived an analytical solution for pile responses assuming the Winkler type spring on foundations. The 
following expressions were obtained for homogenous soil conditions: 
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Fig. 12. First three eigenmodes of the DTU 10 MW turbine tower mounted on a monopile foundation fixed at the mudline.  

Table 9 
Calculated foundation stiffnesses for the cross coupled springs.   

Khh (GN/m) Khr (GN) Krr (GNm/rad) ηhh ηhr ηrr 

Rigid pile 
Eso = 30 MPa 

2.25 − 47.7 1700 1640 − 301 92.8 

Flexible pile 
Eso = 30 MPa 

1.31 − 18.7 469 957 − 118 25.6 

Rigid pile 
Eso = 5 MPa 

0.374 − 7.95 283 274 − 50.2 15.5 

Flexible pile Eso = 5 MPa 0.305 − 7.64 289 223 − 48.3 15.8  

Table 10 
Natural frequencies [HZ] of the DTU 10 MW turbine tower supported on a monopile foundation with cross coupled springs at the mudline.  

Stiff soil Foundation assuming flexibile pile 
Eso = 30 MPa 

Foundation assuming rigid pile 
Eso = 30 MPa 

Mode (Hz) USFOS R–R method error USFOS R–R method error 
1st mode 0.214 0.214 0.0% 0.234 0.234 − 0.0% 
2nd mode 0.995 0.996 0.1% 1.134 1.136 0.2% 
3rd mode 1.898 1.919 1.2% 2.096 2.141 2.1% 

Soft soil Foundation assuming flexibile pile 
Eso = 5 MPa 

Foundation assuming rigid pile 
Eso = 5 MPa 

Mode (Hz) USFOS R–R method error USFOS R–R method error 

1st mode 0.183 0.184 0.1% 0.192 0.192 0.0% 
2nd mode 0.789 0.788 0.2% 0.840 0.840 0.0% 
3rd mode 1.669 1.672 0.2% 1.712 1.718 0.3%  
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Table 11 compares natural frequencies of the first 3 modes using USFOS simulations and the Rayleigh-Ritz solutions. The corre
sponding eigenmodes are plotted in Fig. 16. Results transpire that the Rayleigh-Ritz method based on Psaroudakis et al. [38]’s 
coupled-spring soil expressions yields an excellent match with USFOS simulations using P-y curves only. This is the case for both 
natural frequencies and eigenmodes. The Rayleigh-Ritz method with Poulos and Davis [24]’s formulae shows less agreement, but is 
still reasonably accurate. The formulations derived by Psaroudakis et al. [38] are therefore highly recommended. 

The good agreement shows that the coupled spring model represents realistic soil conditions well if the coupled spring stiffnesses 
are properly selected and calculated. Neglecting the inertia effects of embedded piles does not seem to influence much the obtained 
eigenmodes, even for high order eigenmodes. It is also interesting to find from Fig. 16 that evidently there exists a pivot point for the 
embedded piles, where the pile lateral displacement vanishes. The position of the pivot point depends on soil stiffness distribution over 
the embedded depth. 

The above USFOS simulations considered only lateral stiffness with P-y curves. In practice, the shear resistance (T-z) can also 
contribute to resisting lateral bending moment for large diameter monopiles. By introducing additionally T-z curves (assuming the 
same stiffness as the P-y curves) and Q-z curves for shear resistance in simulations, the natural frequencies obtained with USFOS are 
given in Table 11. The shear effects do not show a significant influence on the natural frequencies. 

4.3. Site measured soil condition 

Soil is a heterogeneous material with properties that vary vertically and horizontally, see e.g., layered soils in Fig. 17(left). The 
inherent variability of soil properties is due to the natural heterogeneity resulting from continuous geological processes [39]. In this 
section, quantitative values obtained from measurement campaigns at Dogger Bank are used as a basis for the P-y curves. The soil 

Fig. 13. First three eigenmodes of the DTU 10 MW turbine tower mounted on a monopile foundation with cross coupled springs at the mudline.  

Fig. 14. (Left) Pipe with 8 integration points along the circumference [37]; (right) The disk model of soil springs in USFOS. Each disk represents a 
soil layer and the size of the disk is proportional to the soil stiffness. 

Z. Yu and J. Amdahl                                                                                                                                                                                                  



Marine Structures 92 (2023) 103482

17

profile at the design location consists of a surface layer of dense sand (2 m) with underlying layers of stiff clays as reported in Horn [40]. 
Due to the stochastic nature of the measured soil properties, Horn [40] reported upper and lower estimates of the clay shear strength 
with linear fits. Based on the measured soil properties, nonlinear P-y curves were calculated based on the API-RPGEO [41] formu
lations and are modelled as elastic-plastic disks in USFOS. The corresponding initial tangential stiffnesses of the nonlinear P-y curves 
over the embedded depth are plotted in Fig. 17(right). 

It is however difficult to find analytical formulations to determine the coupled spring stiffnesses for such complicated soil stiffness 
distributions. A possible approach is to find an equivalent homogenous soil stiffness and then use the formulations by Psaroudakis et al. 
[38] in Eq. (15). We selected two different ways of obtaining the equivalent constant soil stiffness. The first is to use a uniformly 
weighed average, which gives an equivalent stiffness of 66.4 MN/m/m. The second is to adopt a linearly weighed average by assuming 
a pivot point at half of the embedded depth, i.e., 0.5LP. This yields an equivalent stiffness of 59.8 MN/m/m. 

Table 12 compares natural frequencies of the first 3 modes using USFOS simulations and the Rayleigh-Ritz solutions with two 
different equivalent constant stiffness approximations. The corresponding eigenmodes are plotted in Fig. 18. The results show that the 
equivalent constant stiffnesses approximated by both methods give reasonably good estimation. The linearly weighed approach 
assuming a pivot point at 0.5LP shows better accuracy. From USFOS simulations in Fig. 18, the true pivot point is approximately 2/3 LP 
below the mudline. It is expected that the linearly weighed approach assuming a pivot point at the exact position will give even better 
agreement. 

Fig. 15. USFOS modelling of the monopile supported DTU 10 MW turbine with soil foundations.  

Table 11 
Natural frequencies [HZ] of the DTU 10 MW turbine tower supported on a monopile foundation with homogenous soil stiffnesses.  

Soil stiffness Mode 
(Hz) 

USFOS with P-y 
curves only 

R–R method based on Psaroudakis 
et al. [38] soil 

R–R method based on Poulos 
and Davis [24] soil 

USFOS with P-y, T-z and 
Q-z curves 

ks = ksubDP =

33.5MN/m/m 
1st mode 0.201 0.201 0.215 0.203 
2nd 

mode 
0.914 0.919 1.001 0.923 

3rd 

mode 
1.802 1.825 1.912 1.812 

ks = ksubDP =

100MN/m/m 
1st mode 0.220 0.220 0.222 0.221 
2nd 

mode 
1.041 1.046 1.068 1.049 

3rd 

mode 
1.969 2.008 2.049 1.980  
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5. Discussions 

The excellent agreement of the Rayleigh-Ritz solutions with the analytical and USFOS numerical simulations show high accuracy of 
the approach. The method is presented in matrix form in the appendices and can, together with the Duhamel’s integral, be readily 
implemented in the buckling and collapse analysis and design of monopile supported offshore wind turbines according to the prin
ciples of Ultimate Limit States (ULS) and Accidental Limit States (ALS). In addition, the high accuracy of the predicted primary natural 

Fig. 16. First three eigenmodes of monopile supported DTU 10 MW turbines with homogenous soil foundations of different stiffnesses.  

Fig. 17. (Left) Illustrative drawing of a random field soil model from Smilden, Sørum [39] (right) Initial tangential stiffness of the nonlinear soil P-y 
curves at a Dogger Bank wind farm along the embedded depth used in Horn [40]. 
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Table 12 
Natural frequencies (Hz) of the DTU 10 MW turbine tower supported on a monopile foundation with site measured soil stiffnesses.  

Mode (Hz) USFOS R–R method with uniformly weighed soil stiffness R–R method with linearly weighed stiffness 

1st mode 0.213 0.215 0.213 
2nd mode 0.977 1.007 0.995 
3rd mode 1.859 1.940 1.920  

Fig. 18. First three eigenmodes of monopile supported DTU 10 MW turbines with site measure soil conditions.  

Fig. 19. (A) An equivalent mass of the embedded pile added to the cross coupled spring model to account for pile inertia effects. (b) The hinge- 
stiffness model for monopile supported offshore wind turbines. 
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frequency makes it a useful design tool to help avoid resonance from external excitation loads and to reduce resonance related fatigue 
effects in Fatigue Limit States (FLS). 

The coupled spring model shows good accuracy for homogenous soil conditions and for realistic site measured soil conditions. The 
effect of neglecting inertia forces and kinetic energy of the embedded pile is limited as regards primary and high order natural fre
quencies and eigenmodes. This seems to contradict the conclusion drawn in Bir and Jonkman [18], where it is stated that when higher 
modes play a role in turbine dynamics, the coupled spring representation of soil could lead to erroneous results. This may be due to the 
different formulae used for the coupled spring stiffnesses. In case the inertia effects of embedded piles become important, it is 
convenient to modify the present coupled spring model by introducing an equivalent mass at the mudline mEP, representing the mass of 
the embedded pile, see Fig. 19(a). mEP may be determined in the same way as the equivalent tower mass in Eq. (1). This will give an 
extra term in Eq. (22) and therefore in the resulting mass matrix. 

Another approach is to introduce a new foundation model as shown in Fig. 19(b), termed hinge-stiffness (HS) foundation. The 
foundation is modelled as a pile with an effective length of LEP, the bottom of which is at the pile pivot point with zero lateral 
displacement. This method includes partly the inertia effects of embedded piles. Without lateral displacements at the base, the soil 
stiffness can be simplified into only one rotational stiffness ksoil. The model is inspired from direct observation of USFOS simulation 
results, where a pivot point clearly exists for the embedded pile. It will be straightforward to modify the Rayleigh-Ritz expressions in 
Section 3.4 to account for the hinge-stiffness foundation form. The remaining problem is how to determine the effective embedded 
pile length LEP and the rotational stiffness ksoil. The effective embedded pile length can be found by force and moment equilibrium 
assuming certain soil stiffness distributions. When homogenous soil stiffness is assumed, moment equilibrium yields an effective length 
of 12LP. Darvishi-Alamouti, Bahaari [42] derived that the effective length would be between 23LP and 34LP if a linear distribution of soil 
stiffness is assumed along the depth. This is consistent with observations from USFOS simulations. The foundation stiffness ksoil can be 
readily determined for a given pivot point location and soil stiffness distributions. In addition, it may be useful to transform existing 
formulae for the cross coupled spring stiffnesses directly into the present hinge-stiffness foundation model without significant efforts. 
This is not explored further as the coupled spring model worked very well and the formulations for the spring stiffnesses are already 
well established. 

6. Conclusions 

This paper derived a Rayleigh-Ritz solution for high order natural frequencies and eigenmodes of monopile supported offshore 
wind turbines considering explicitly the tapered towers and soil pile interactions. The model is applied to the DTU 10 MW turbine 
mounted on a monopile foundation with different soil conditions. The predicted results are compared with nonlinear finite element 
USFOS simulations. The following conclusions are drawn.  

(1) The proposed Rayleigh-Ritz solution is capable of predicting high order natural frequencies and eigenmodes of monopile 
offshore wind turbines with very high accuracy. The solution is formulated on the matrix form and can be readily utilized in the 
FLS, ULS and ALS analysis and design of offshore wind turbines.  

(2) The coupled spring model represents well soil pile interactions for different soil conditions if the spring stiffnesses are calculated 
properly. The neglect of inertia effects and kinetic energy carried by the embedded pile has limited influence on the accuracy of 
the first 3 modes. The stiffness formulations by Psaroudakis, Mylonakis [38] are recommended for homogenous soil conditions.  

(3) Direct observations of USFOS simulations indicate that a pivot point exists on the embedded pile, where the lateral displacement 
vanishes. A simplified hinge-stiffness foundation model with an effective embedded pile length and a rotational soil spring is 
proposed. The effective embedded length varies with the soil stiffness distributions over the embedded depth, and the pivot 
point is generally located in the lower half of the pile. 
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Appendix 

High order natural frequencies and eigenmodes can be readily obtained by solving the matrix equation (K − ω2M)a = 0, and the 
mass and stiffness matrices are presented in the following for convenient implementation. The relevant MATLAB codes can be shared 
upon private communication with the authors.  

A. Generalized stiffness and mass matrices for a uniform cantilever beam with a tip mass 

The complete 4th order polynomial terms are recommended for a uniform cross section with a tip mass as follows. The φ0 term 
vanishes with a rigid base. 

φ1 =
z
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mL3 , where m is the tower mass per unit length. The mass matrix M is expressed as: 
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The stiffness matrix K becomes 
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B. Generalized stiffness and mass matrices for a tapered turbine tower 

The complete 6th order polynomial terms are recommended for a tapered turbine tower as follows. The φ0 term vanishes at the 
tower base with finite rotational stiffness only. 
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Let α = mRNA
ρTATbLT

and β = JRNA
ρTATbLT

3, where ρT is the density of the tower material and ATb is the cross-section area at the tower base. The 
mass matrix M is expressed as: 
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C. Generalized stiffness and mass matrices for a monopile foundation offshore turbine considering tapered towers and soil-pile 
interactions 

Let α = mRNA
ρTATbLT

,β = JRNA
ρTATbLT

3 and γ = LS
LT

, where ρT is the density of tower material and ATb is the cross-section area at the tower base. 
For a monopile supported offshore turbine considering tapered towers and soil-pile interactions, the mass matrix M is expressed as: 
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