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A B S T R A C T

For effective human–robot collaborative assembly, it is paramount to view both robots and humans as
autonomous entities in that they can communicate, undertake different roles, and not be bound to pre-
planned routines and task sequences. However, with very few exceptions, most of recent research assumes
static pre-defined roles during collaboration with centralised architectures devoid of runtime communication
that can influence task responsibility and execution. Furthermore, from an information system standpoint,
they lack the self-organisation needed to cope with today’s manufacturing landscape that is characterised
by product variants. Therefore, this study presents collaborative agents for manufacturing ontology (CAMO),
which is an information model based on description logic that maintains a self-organising team network
between collaborating human–robot multi-agent system (MAS). CAMO is implemented using the Web Ontology
Language (OWL). It models popular notions of net systems and represents the agent, manufacturing, and
interaction contexts that accommodate generalisability to different assemblies and agent capabilities. As a novel
element, a dynamic consensus-driven collaboration based on parametric validation of semantic representations
of agent capabilities via runtime dynamic communication is presented. CAMO is instantiated as agent beliefs
in a framework that benefits from real-time dynamic communication with the assembly design environment
and incorporates a mixed-reality environment for use by the operator. The employment of web technologies to
project scalable notions of intentions via mixed reality is discussed for its novelty from a technology standpoint
and as an intention projection mechanism. A case study with a real diesel engine assembly provides appreciable
results and demonstrates the feasibility of CAMO and the framework.
1. Introduction

The fifth industrial revolution is neither a chronological addition
nor an alternative to the fourth (better known as Industry 4.0) but
rather one that extends its key traits to be human centric, resilient
and sustainable [1,2]. Many key technologies of Industry 4.0 are thus
expected to act as important enablers of this transition [2]. Human
centricity can be instantiated as human-centric interactions with the
manufacturing environment [3]. However, as noted by Li et al. [4],
interactions in today’s human–robot collaboration (HRC) systems pre-
dominantly suffer from two weaknesses. Firstly, these interactions do
not embody adaptive robotics or the intuitive role of the human op-
erator, as they are designed to follow operator commands, such as
gestures or augmented-reality instructions. Secondly, their collabora-
tion is largely unidirectional and restricted to a master/slave model, far
from the adaptability and flexibility embodied in the social aspects of
teamplay. Proactive HRC is proposed as a cognitive paradigm in this
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direction, as ‘‘a self-organising, bi-directional collaboration between
human operators and robots in manufacturing activities, where they
can proactively work for a common goal in every execution loop over
time’’ [3]. In this study, we aim to implement an information system
that can pave the way towards proactive HRC.

In the context of HRC for component assembly, a cognitive system
and mixed reality (MR) are two of a quartet of enabling technologies
envisioned by Wang [5] that enhance human abilities for human-
centric assembly. The cognitive system is expected to aid the human
operator in global decision making in the form of an intelligent multi-
agent system to help with the operator’s limited cognitive ability, while
mixed reality is expected to assist the operator’s fading memories of
the past and unreliable predictions of the future [5]. The cognitive
system itself is not expected to be a real–time system used for, say,
robot path planning or collision avoidance, but rather for human–robot
relationship management [4]. As such, it offers greater leeway for the
choice of knowledge representation mechanisms from a performance
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Fig. 1. Research setting.

standpoint [4]. As we see it, the cognitive system should have the
means to represent knowledge that capture at least the production
context and the mental attitudes (desires and intentions) of the agent
with respect to the assembled components that synergistically support
the collaborative processes.

The notion of intention is closely associated with cognition. Bi-
directional intent1 recognition is considered to be among the ‘‘deepest
and most important’’ [6] research questions faced by HRC systems.
Selection of roles for shared tasks at a high level or at a finer level,
the goals or intended motion paths may be communicated as inten-
tions [6]. Since the setting in which the work is carried out consists of
a projector–camera setup (Fig. 1), of particular interest is the approach
to communicate robot intentions as visual cues on the product or the
part the operator is collaborating. This has the advantage that it is in
the operator’s field of view, has the operator’s undivided attention, and
bears no requirement on the operator’s part (e.g., a wearable). Several
approaches [7,8] for robot intention projection have been proposed in
literature, but these seem to fall short of the self-organisation we intend
to achieve as they rely on manual techniques for feature extraction.

As for self-organisation, its core tenet is to connect in situation-
dependent ways, automatically, without external intervention [9]. From
the standpoint of an information system,2 for HRC, the main variable
we intend to attain self-organisation for, is the component assembly
(product) and consequently its associated process for assembly. In
effect, this means that the cognitive system must support reusable
concepts of different component assemblies, and together with the
concepts defining the agent (such as desires and intentions), it must
ensure smooth collaboration processes in tandem with the MR environ-
ment. To this end, the implementation integrates the assembly design
environment via a digital thread framework so that the required degree
of self-organisation can be achieved with respect to the product models
and is what enables the study, in part, to make novel contributions.

As for knowledge representation, we aim to model collaborative
assembly as a logical consequence of deliberation between agents.

1 Note the use intent and intention synonymously.
2 Information system here and throughout the article is used as catchall

for tools and technologies for accessing, collecting, processing, storing, and
distribution of information that includes the information model, mixed-reality
environment, ontology, etc.
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As such, the generalisable logic is to allow collaboration for differ-
ent iterations of assembly to ‘‘play out’’ differently based on runtime
deliberation between agents. In contrast to classical deep learning
approaches, we do not use pre-existing data for a reason — to allow
them to ‘‘play out’’ each time, such that it is well within the realms
of logic to reason on data with well-defined semantics. The cognitive
system in our work uses description logic (DL) for knowledge represen-
tation as it was deemed expressive enough for the application context
while supporting relatively efficient inference. In particular, we use the
Web Ontology Language (OWL) for maintaining the knowledge base
of agents following a distributed architecture. The MR environment,
however, is a projector-based, purpose-built web application that forms
intuitive interpretations of the information model underlying the cog-
nitive system and augments the operator’s reality to assist with the
assembly. It also enables communicating with agents via an underlying
MAS framework. As for component- or product-aware visual cues as
intentions, the system allows computation of bounding boxes that are
overlaid on the physical component as visual cues during assembly
using the MR application. The research question we aim to answer from
an information model perspective is ‘‘What is an information model
that maintains and converges upon the common mental attitudes of
collaborative agents in a multi-agent system and associated production
context?’’

The remainder of the paper is organised as follows: Section 2
reviews the state of the art in ontologies, particularly for HRC. Sec-
tion 3 presents the objectives, setting, and scope of the research. The
theoretical foundations underpinning the implementation are presented
in Section 4. In Section 5, the approach to knowledge convergence
and representation is introduced. Section 6 documents the step-by-step
results of following a methodology towards engineering the ontology
and evaluating it based on a case study. Results of its application and
deployment in an HRC framework in a case study are presented in
Section 7. Section 8 analyses the work with respect to the objectives set
out and discusses its limitations before presenting directions for future
work. Section 9 presents a summary of the contributions of the study
in conclusion.

2. Related work

The challenges pertinent to HRC are multi-disciplinary and have
benefited from contributions from evolutionaries, bayesians, analogis-
ers, connectionists, and symbolists alike. The work done as part of this
study predominantly represents that of symbolists for knowledge rep-
resentation and reasoning for (intelligent) agents in the manufacturing
domain, particularly robotics and HRC. As such, it seems fitting to re-
view (and limit ourselves to) works that use DL (specifically OWL) that
cater to knowledge representation and reasoning for manufacturing
as well as works of robotics, preferably in human–collocated settings,
particularly those of collaborative environments between humans and
robots.

Core ontology for robotics and automation (CORA) [10] is the IEEE
standard ontology for robotics and automation that uses suggested up-
per merged ontology (SUMO) [11] as the upper ontology and autonomy
levels for unmanned systems (ALFUS) [12] to characterise its autonomy
level. RoboDB [13] is a database of descriptions of robot embodiment
(body structure, capabilities, etc.) using semantic web (compatible)
technologies.

The OpenRobots ontology (ORO) that enables artificial cognition for
human–robot interactions has been presented in the work of Lemaignan
et al. [14]. The ontology coverage encompasses statically asserted com-
mon sense knowledge that is aligned to the upper ontology OpenCyc,
and entails rules and class expressions for inferences. Whilst sharing the
same common sense knowledge, the robot maintains separate models of
the beliefs of the human to enforce what the authors call as ‘‘perspective

taking’’ (i.e., maintaining private beliefs of the human’s perspective on
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the state of affairs). A memory profile is possibly attached to asser-
tions in the knowledge base to mimic long- and short-term working
memory. Three profiles, viz. short-term, episodic, and long-term, define
the lifetime of statements as 10 s, 5 min, or unlimited, which, if
elapse, result in their removal. The ORO knowledge base receives multi-
modal input from communication (via natural language processing)
and perception modules that receive inputs from the operator and the
environment, respectively, for use by the task planning, execution, and
motion planning modules.

KnowRob [15] uses upper-level ontology concepts from Open-
Cyc [16] in part to develop knowledge bases for robots for the house-
hold domain (kitchen assistance robot) and allows for a description of
events, spatio-temporal information, objects, actions, tasks, processes,
components, and capabilities. The architecture uses the paradigm of the
‘‘world as a virtual knowledge base’’, where information is computed
on demand rather than asserting everything known, as in ORO [14].
Three main types of inference exist in KnowRob: the run-of-the-mill
DL inference, like in ORO, for deterministic information in the ontol-
ogy, probabilistic inference using Bayesian logic networks for uncer-
tain information, and ‘‘computables’’ to compute on-demand instances
of target classes and the relationship between these instances from
perception.

Of late, HRC has seen the use of DL for knowledge representation.
Work has focused on creating new ontologies, such as Sharework
Ontology for Human–Robot Collaboration (SOHO) [17] and Ontology
for Collaborative Robotics and Adaptation (OCRA) [18], due to a lack of
concepts that model collaboration in existing ontologies. SOHO builds
on DUL, a subset of descriptive ontology for linguistic and cognitive
engineering (DOLCE), as its foundation and incorporates SSN [19] and
CORA [10] to extend along three contexts; the production, behaviour,
and environment. SOHO was built as a domain ontology to formally
conceptualise the relationships and properties of collaborative manu-
facturing scenarios. OCRA is also a domain ontology for collaborative
scenarios, that builds on DUL, but has a primary focus on collaboration
and plan adaptation.

However, these ontologies were not directly usable for our appli-
cation for reasons described subsequently. The previously described
‘‘general’’ ontologies, such as CORA and RoboDB are devoid of concepts
that describe collaboration. Even initiatives such as KnowRob were
not targeted for collaborative environments and miss notions of joint
intentions or collaborative (not cooperative) tasks where communi-
cation between agents and execution norms of tasks take the centre
stage. Furthermore, industrial manufacturing and production settings
were not necessarily the goal, and self-organisation from a product
(assembly) or ‘‘recipe’’ variety point of view is not the focus. These
are, however, an important research question for HRC in an industrial
setting [20] and something we attempt to achieve. The notion of
capabilities that theoretically motivate HRC is non-existent in OCRA
and has rather shallow representations in SOHO and neither supports
use in a distributed architecture. The former point is discussed in more
detail in Section 8.

Furthermore, we aim to explore mixed reality as the modality of
choice (vision) as opposed to speech which may not always be viable in
industrial settings. We believe that carefully architected MR interfaces
can prove to be effective channels of communication and have the
potential to obviate the need for non-ergonomic wearables.

Lastly, except for ORO, they do not espouse a multi-agent phi-
losophy as would economic and engineering rationality require for
production environments for HRC [21], where autonomous agents
maintain private distributed beliefs and come to a capability-based
consensus for shared collaborative tasks through dynamic runtime com-
munication. Just as behavioural and sensorimotor patterns emergent in
human-human interaction cannot be reduced to individual accounts,
HRC should transition towards a multi-agent approach with embod-
ied intelligence that incorporates human-human interaction dynam-
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ics [22]. Many works base their approach on a purely communication
standpoint, devoid of the social aspects of teamplay. In contrast, this
study aims to address this by taking advantage of the inherent human
ability to understand speech acts and emphasises dialogue between
collaborating agents to negotiate turns during collaboration.

3. Research objectives, scope, and setting

Exploring dyadic configuration for logic-based formalisms in HRC
presents not only a challenge from an ontology design pattern point of
view, but its instantiation in a coherent multi-agent architecture also
presents a technical and a software architectural challenge. Therefore,
the study sets the following objectives:

1. to architect a logic-based information model for HRC for use in
a distributed setup that captures representations of the manufac-
turing, agent and interaction contexts.

2. to develop and interface with 1, a component-driven MR applica-
tion that supports the foregoing information model and provides
the operator with a useful interface for inter-agent bi-directional
communication.

3. to support principles of self-organisation and social aspects team-
play as described along the development processes of 1 and
2.

4. to implement a multi-agent system instantiation for HRC that
supports 1, 2, and 3 and verify its utility by means of a case
study.

The scope of this study is to realise this self-organising team infor-
mation system between collaborating agents for component assembly
by formalising the representation of knowledge for the agents. Thus,
the scope is limited to information flows and information modelling.
As such, the self-organisation from an information system standpoint is
also at the semantic level of knowledge representation (i.e., concepts
developed must support reusability across different use cases of the
intended application to accomplish the set goals of collaborative as-
sembly). Furthermore, the work does not deal with implementations
of real-time systems, such as robot trajectory planning and collision
avoidance, but the work may be considered an input to these systems,
as justified in Section 1. For example, a task may be inferred as an
intention, but it remains out of the scope of this study to check if and
how the task is carried out. For the sake of completeness and carrying
out a case study, we have implemented a module that executes pre-
defined motion trajectories for the execution of the tasks. However,
appropriate interfaces are provided so that they can be integrated with
real-time systems that are envisioned to be of a broader architecture
left as future work.

The research is carried out in a laboratory environment, as shown in
Fig. 1. It consists of a DLP projector (1920 × 1080) and a Kinect camera
(RGB-D) mounted atop, and thus have in their fields of view a height-
adjustable table that acts as a collaborative working space between
a table-mounted UR5 collaborative robot and a human operator. The
component assembly use case is that of the assembly of a real diesel
engine.

4. Theoretical foundations

4.1. A multi-agent view

Collaborative scenarios between robots and humans can be seen as
a team working on a common task or towards a common goal [23].
These tasks may require various degrees of autonomy that are at or
anywhere along a spectrum that spans between the ends of human-only
and machine-only [21]. Such symbiosis between humans and robots
that is characterised by autonomy fits well [21] into the abstractions
of the distributed artificial intelligence paradigm of multi-agent sys-

tems [24] that forms a sound foundation for the design of intelligent
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systems [25]. Woolridge and Jennings [26] highlight three desirable
characteristics of intelligent agents, viz. reactivity, which allows a timely
response to events, proactiveness, which allows the exhibition of goal-
directed behaviour, and social ability, which allows interaction with
other agents.

As evident from the literature in the previous section, most studies
on multi-agent systems in the domain of HRC either ignore or downplay
the social aspect as a mere communication problem that caters to the
robot’s reactivity to specific tasks or events. We posit, similar to Li [4],
that attaining human centricity in collaborations involving humans
would greatly benefit from greater social aptitude and a proactive
attitude from the robot during interactions and is yet to receive due
attention.

To this end, self-organising teamwork has been identified as the ‘‘cen-
tral brain’’ [4] in enabling proactive HRC and helps the collaborating
agents to assume roles based on their capabilities at runtime. This
is accomplished via federated knowledge convergence mechanisms of
data in decentralised HRC systems within and between factories [4].
As such, systems that accomplish this are not solely used for time-
critical applications, such as robot path planning or decision making,
but to serve as crucial inputs to these [4]. We dissect self-organising
teamwork as two concepts of self-organisation and teamwork and treat
them separately in our approach for HRC in the next section, based on
existing theories in the literature that is subsequently presented.

4.2. Self-organisation

The basic tenet of self-organisation is increased autonomy and
reduced dependencies, with the objective of fast response in dynamic
contexts [9,27]. Lu et al. [9] define self-organisation as ‘‘...connecting
in situation-dependent ways that can change their internal structure,
organisation, and functions with minimum external intervention to
achieve optimal manufacturing operations and system performance in
response to unforeseen conditions and evolution along time’’.

From the targeted scope of an information system standpoint, our
perspective on self-organisation tailored to the context of human–robot
collaborative assembly is as follows. Robot agents are automatically
configured to handle different component assemblies and adapt to them
in a manner that satisfies the overall objectives of the said component
assemblies. Such a requirement was even reported as necessary for
collaborative assembly applications in a recent interview that was con-
ducted with automation engineers and assembly operators [20]. This
calls for the representation and reasoning of the underlying information
system to be semantically and syntactically generalisable and accom-
modating to different products, processes, and resources. Operator
assistance systems would similarly follow suit and adapt accordingly by
modifying assembly instructions, for example. Such self-configuration
also means that there must be a provision for agents (robot or human)
to join and leave at will or unexpectedly with minimal consequence
on the assembly process. As agents become available and unavailable,
the team must self-optimise in that they should take stock of the
capabilities of available agents, acknowledge the non-participation of
unavailable or disagreeing agents, and accordingly manage the col-
laboration. However, since the implementation of real-time systems
that monitor the execution of tasks and deviations is outside the scope
of this study, we do not implement feedback systems that can detect
anomalies to optimise the behaviour of collaborating agents, which
admittedly would enable a higher degree of self-organisation. Agents
are trusted with tasks and are expected to communicate truthfully
regarding failures or completions.

4.3. Teamwork

Humans are social beings that sustain and thrive on inter-personal
relationships with fellow peers, and few notable achievements, if any,
have been accomplished without them. The case can be thought to
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be no different for human–robot collaborative relationships, and a
sound motivation for HRC has already been presented in Section 1.
However, to endow a sense of belongingness, which is needed in a
human-centric manufacturing context [3], our approach takes the view
that humans’ collaboration with their machine counterparts should be
designed as a social interaction. This social interaction, in principle,
might not only foster a sense of understanding and safety and enable
a closer relationship but might also consequently promote their wider
acceptance.

To endow a sense of being part of a team, one approach is for
these social interactions be expressive of tasks as desires based on
the current beliefs of the agent that could potentially transform into
intentions for execution. The expectation is that using notions of folk
psychology, such as beliefs, desires, and intentions (BDI), to model the
mental attitude towards collaborative assembly would be intuitive to hu-
mans and thus help reduce the ambiguities in communication involving
them, especially when used with supportive interaction modalities. The
BDI framework is a conceptual framework for developing intelligent
agents and, in general, the intentional stance is an abstraction tool
in computing to explain, understand, and, crucially, program complex
computer systems [28, p. 31]. The paradigm has been in use since
several decades since its inception. More mature implementations in-
clude the procedural reasoning system [29,30], which has been used
to successfully implement systems that tackle air traffic congestion
(OASIS [31]) and air mission modelling [32] (dMars [33]). The next
subsection gives a brief description of the mental attitudes adopted in
this study.

4.3.1. Beliefs, desires, and intentions
Beliefs are the ‘‘informative component of the system’s state’’ [34].

The system includes the world that the agent inhabits and the agent
itself. Beliefs generally include only the domain-dependent abstractions
of the important properties of those aspects relevant to the agent’s
design objectives [35]. The notion of capabilities is closely associated
with agency. The treatment of capability as a mental attitude is debat-
able [36]. However, an agent would not decide to pursue anything that
it believes it is incapable of, which could be perceived as a belief in an
agent’s ability to be useful and is the direction chosen here.

Desires represent the motivational attitude of the agent regarding
what it wishes to achieve or what states of the world it wishes to create.
Hence, desires act as the driver for actions [35]. However, the agent
may not necessarily be able to achieve everything it desires, either due
to it not aligning with its prior commitments or due to the lack of
capabilities required for it. The former can be considered the class of
conflicting desires, while the latter, the class of non-achievable desires.

Intentions form the class of achievable and non-conflicting desires.
In other words, although the agent desires to create different states of
the world, it can pursue a sub-set of these as its intentions based on
its capabilities and its runtime commitments. Intentions are treated as
separate mental states and are those that the agent intends to pursue
upon deliberation with the collaborating agent. Thus, communication
acts as the activity that could potentially transform the desires of an
agent into the intentions that it commits to.

4.3.2. Joint intentions, commitment, plans and action
The elegant structure and use of folk psychological notions of

mental attitudes as beliefs, desires, and intentions are expected to
make execution flow logically intuitive to the collaborating human
operator, which could contribute to effective collaboration. The notion
of intention plays a distinct role and is treated on par with beliefs
and desires. This allows for modelling these attitudes based on the
deliberation process (on what to achieve) of practical reasoning [37],
the results of which are intentions that lead to actions.

We draw some inspiration for modelling joint intentions from Co-
hen and Levesque’s joint intention theory [38], which informs joint
intentions as a ‘‘joint commitment to perform a collective action, while
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in a certain shared mental state’’. We see these shared mental states
as individual intentions that represent the same task that the agents
in question have mutually committed to and are thus joint intentions.
Commitments are agreements modelled based on communication, i.e., the
runtime messages exchanged that are pertinent to the (collaborative)
task.

Once commitments are made, intentions are pursued by executing
actions which are part of the body of a plan [34] that accomplishes
an intended goal and thus drives means-end reasoning (the process
of how to achieve intentions) [37]. The preconditions under which a
plan may be adopted are defined by the head part of the plan [34].
Individual actions are representative of the collective plan that is fully
defined with collaboration modalities. Each plan has actions that execute
tasks in one of three collaboration modalities: independent, synchronous,
or concurrent. Actions with the independent modality execute separate
tasks without any collaboration. Actions of a synchronous modality
execute tasks sequentially, i.e., one is done after another. Simultaneous
modality actions execute tasks at the same time.

This section presented the theoretical foundations that underpin
the concepts defining the attitude of the agents towards collaborative
assembly as beliefs, desires, and (joint) intentions. The notions of
commitments, plans, and actions are also discussed. We build on these
foundations in Section 6 after presenting the overall approach in the
next section.

5. Approach

Insights from literature [4] into attaining self-organising teamwork
for proactive HRC guide us towards a two-step approach: (i) knowledge
convergence from HRC systems and (ii) knowledge representation for
non-real-time human–robot relationship management. The approaches
for the two as adopted in this study are subsequently detailed.

5.1. Knowledge convergence by realising an HRC digital thread framework

Our approach towards attaining self-organisation for HRC (as de-
scribed in Section 4.2) entails architecting and implementing a digital
thread framework that is purposed with knowledge convergence from
siloed information systems in the extended environment, which the
collaborative environment is part of. Kraft’s comprehensive definition
of the digital thread is as follows ‘‘an extensible, configurable and
agency enterprise-level analytical framework that seamlessly expedites
the controlled interplay of authoritative data, information, and knowl-
edge in the enterprise data- information-knowledge systems...to inform
decision makers throughout a system’s life cycle by providing the
capability to access, integrate and transform disparate data into ac-
tionable information’’. Drawing a parallel to HRC, authoritative data in
systems corresponds to product, process, and resource models; decision
makers include the robot and operator; and the capability to access,
integrate, and transform disparate data into actionable information
describes the utility of the framework, the underlying information
models that support seamless integration, and operator support systems
that aid collaboration. Lu et al. [9] opine that such a manufacturing
digital thread works upstream and downstream between phases of the
product lifecycle (design, manufacturing, inspection, etc.) via standard
interfaces and is expected to enable informed design and collaborative
manufacturing.

Our earlier works [39,40] developed an agent-oriented digital
thread framework for HRC. The framework exploits the flexibility
offered by the paradigm or ‘‘technology’’ [41] of knowledge-based
engineering systems to build a digital thread [42] between the assembly
design and the physical assembly environment. Using the framework,
the robot and operator agents have the means to retrieve the required
information for the assembly dynamically and on demand at runtime.
These may include assembly instructions and product and manufactur-
ing (PMI) data, among others, and use the KBE software API to define
363
Fig. 2. Mixed-reality interaction with the digital thread framework.

software interfaces to the supportive MR model in a product-neutral
(therefore accommodating product variety), or rather product-aware,
manner that builds the foundation towards self-configuration as we
first defined in Section 4.2. Furthermore, the Java Agent Development
Framework (JADE) [43], an agent-oriented middleware, addresses the
domain-independent issues of self-configuration in an agent-oriented
environment that allows agents to join and leave at will while allowing
them to be discovered through yellow/white pages services and com-
municate via standardised interaction protocols. Although, JADE was
developed circa 2000, it is still maintained. It was the result of several
years of development that has had four major releases and is therefore
quite stable and allows for future maintenance via an LGPL licence.

The framework includes an MR application (Fig. 2) that builds on
JADE to enable explicit real-time dynamic interactions between human
and robot agents involved in collaborative assembly (Fig. 2) while also
functioning as an operator assistance system. The MR environment
prototyped as part of our earlier work [40] has had its existing func-
tionality extended and improved as part of this study to support the
rich vocabulary of the engineered ontology in this study, which was
not envisioned at the time of its conception. The earlier developed ap-
plication quickly grew unwieldy as the vocabulary and features became
richer and more complex and state management became a problem of
its own. Therefore, the source was rebuilt using a component-based
architecture that uses the popular ReactJS [44] library to facilitate
its sharing, reusability, and extensibility, while Redux [45] was used
for component state management. In essence, the MR environment
consists of a purpose-built web application that is projected onto the
shared workspace between the operator and a robot. The operator
interacts with the interface using a ring mouse that effects clicks on the
interface components. A precomputed homography maps the operator’s
hands, which are detected using a machine-learning hand-detection
solution [46] to mouse coordinates. More details on the MR interface
are presented in Section 7.2, which details the case study where it is
employed.

5.2. Knowledge representation

Our earlier works laid the technological foundation as infrastructure
for information retrieval and access by means of a framework [39] and
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an MR application [40]. However, attaining self-organisation for our
use case in HRC collaborative assembly would not be possible without
a concrete internal agent architecture that characterises social aspects
of teamwork and manages the collaborative assembly of a product in
a self-organised way. Therefore, this study contributes an information
model that is instantiated in the software models that define the agents
and allows it to be employed in a use case of a collaborative product
assembly.

It is important to revisit the notion of self-organising teamwork and
how it influences the choice of knowledge representation mechanisms.
Firstly, it is not a real-time system but provides inputs to the real-time
systems (e.g., robot motion planning) [4]. As for what these inputs are,
our approach entails defining the state of the assembly, which would
then serve the necessary production tasks, processes, and assembly
part in question as inputs to the real-time systems. For example, a
specific assembled state of the component assembly would dictate that
the next possible state(s) correspond to the assembly of, say, exactly
three parts following corresponding pick-and-place assembly tasks. The
real time systems, for example, object-detection and robot-motion-
planning modules, can then function with respect to these parts alone,
and operator guidance systems may present these as ‘‘options’’ with
corresponding instructions to the operator. The system was modelled
as a finite-state machine. Specifically, we model the system as a subset
of a Petri Net as described next. As with workflow nets, these PNs
have a single input place (source) without a prior transition and a
single output place (sink) with no subsequent transitions. Furthermore,
it is safe (1-bounded, i.e., does not contain more than 1 token in
all reachable markings) with each place having exactly one incoming
arc and exactly one outgoing arc. This allows for concurrency but not
conflict in PN terms. With such net systems, the sequential and parallel
interdependencies of sub-assembly tasks can be naturally captured in
a simple and intuitive manner and have already been widely used in
literature to represent component assembly. These can be represented
in a standardised syntax of Petri Net Markup Language (PNML) (PNML,
ISO/IEC 15909 Part 2) [47]. Representations that follow a standard
enable the interoperability that is required for self-configuration and
self-organisation from a knowledge representation standpoint.

Furthermore, self-organising teamwork should allow the robot and
operator to take up manufacturing tasks or activities if they are quali-
fied to do so based on their capabilities, and it should allow changing
roles on the fly [4]. For component assembly, such a representation
should thus at least include representations of the tasks associated with
the assembly of the sub-assembly parts (e.g., pick/place, grasp/release,
etc.), necessary representations of the sub-assembly parts that feed any
real-time systems (e.g., a point cloud profile that could be useful for
object detection), a representation of agent capabilities that defines
an agent’s ability to do a task, and mental attitudes of the agents
that are reflective of their behaviour and allow carrying out the tasks
collaboratively towards accomplishing the overall goal of component
assembly.

Robotics applications generally make use of imperative languages,
such as C/C++, JAVA, etc., that code logic in traditional IF/THEN state-
ments and loops. In such cases, the knowledge is usually ‘‘hard-wired’’
and lost between program code [48–50]. However, for collaborative
multi-agent robotics, formally representing knowledge explicitly in a
knowledge base (KB) has the advantage that this knowledge is not
bound to a specific agent and may be reused for several agents possibly
for different domains and consequently results in less overall program
code and maintenance. Furthermore, the core tenet of self-organisation
is to adapt to changing scenarios, and in this case, changing assemblies,
components and behaviours of the collaborating agents, which thus
requires the flexibility to create, update, and maintain knowledge as
private beliefs in distributed knowledge bases. Thus, the flexibility
offered by formal knowledge representation is better suited to the needs
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of self-organisation and is the direction chosen in our work.
In the domain of distributed multi-agent systems, ontologies play
a key role in developing such knowledge bases by conceptualising a
domain. ‘‘Conceptualisation’’ refers to an abstract model of the key
concepts and their relationships that characterise a phenomenon of
interest [51], and an ontology is ‘‘a formal explicit specification of a
shared conceptualizaton’’ [52]. When the terminologies (concepts) of
an ontology are augmented with assertional knowledge (individuals
or instances) that instantiate a domain of interest, the touted ‘‘intelli-
gent’’ agents materialise as the formal semantics allows for automated
reasoning.

Logic-based formalisms, specifically description logics are preferred
for authoring ontologies for the following reasons:

(i) Formal logic can be used to formulate relationships that describe
the relationships within an assembly and model their interplay
with the social aspects of teamwork that embody conversational
elements, in a logically intuitive manner.

(ii) DL is formal with clear semantics and manages the trade-off
between expressivity and reasoning complexity well. Although
the study does not develop real-time systems, the system is to
be reasonably performant.

(iii) Formal semantics allows for automated reasoning and the infer-
ence of implicit data from asserted facts. Inferring relevant states
of affairs from asserted conversational elements may be achieved
using the notion of classification (i.e., if a class is a sub-class
of another) and subsumption (i.e., if an individual is a mem-
ber of a class) by running inference procedures on logic-based
representations. As such, the rational behaviour of collaborating
agents may be imitated by checking the consistency of an agent’s
beliefs, commitments, and capabilities by DL reasoners when
appropriately implemented.

This section presented our approach towards developing an infor-
mation system for HRC that involves knowledge convergence via a
digital thread framework and the use of ontologies for developing the
knowledge bases of the agents. The next section details the results of
an ontology engineering methodology that developed such an ontology
for this study.

6. Ontology engineering

Engineering the knowledge base (KB) involves formally creating
an explicit specification of the key concepts and their relationships,
which are known as ontologies in computer science parlance, that make
up the domain of multi-agent collaborative component assembly, as
described previously. An ontology engineering methodology provides
step-by-step guidelines for the development of such concepts and helps
manage their complexity [53,54]. This study uses the methodology
presented by Sure et al. [54] in developing the ontology and involves
five phases: (i) feasibility, (ii) kickoff, (iii) refinement, (iv) evaluation,
and (v) application and evolution. Their outcomes are detailed in the
following subsections.

6.1. Feasibility study

The motivation that advocated the development of the ontology was
detailed in Section 5.2. During the feasibility study, its scope from an
information modelling point of view is defined based on the application
scope defined earlier.

The ontology is developed in the context of a distributed human–
robot environment for a collaborative component assembly use case
with an emphasis on self-organisation and teamwork. As such, the scope
from a knowledge representation viewpoint encompasses the represen-
tation of the component assembly, the assembly processes, and their
interplay with social interactions of a human–robot team as logical

definitions. The aim is to achieve self-organisation, and that means



Journal of Manufacturing Systems 70 (2023) 359–381J. David et al.
that the ontology concepts entailed in the aforementioned represen-
tations must be independent of the dynamic components of an HRC
environment, i.e., the product to be assembled and the behaviour
of the collaborative agents. Thus, the product representations must
follow a product-neutral and product-aware method that dovetails
with the interplay between collaborative interactions and teamwork.
Here, product neutrality means that the concepts of assembly must be
generalisable to any component assembly, with respect to both the sub-
assembly parts and the processes entailed in assembling them. Product
awareness means that functions/activities that depend on the product
features and/or geometry must work across all subassembly parts.

Therefore, at this stage, we define three contexts for the ontol-
ogy: (i) the manufacturing context (MCx) that includes the product,
process, and resource descriptions, (ii) the agent context (ACx) that
defines the mental attitude which defines the agent’s motivational and
intentional stance with respect to the assembly tasks, and (iii) the
interaction context (ICx) that defines the message exchanges and conse-
quent commitments. The agent and interaction contexts together define
the social aptitude of the agents, i.e., the ‘‘capacity to encode and
interpret social cues to draw inferences about other people’s beliefs and
intentions’’ [55].

Here, we make a final note on the intended type of ontology to
be developed based on Hejst et al.’s classification [56]. Ontologies
may be classified along the ‘‘amount and type of structure’’ dimension
as terminological, information, and knowledge modelling ontologies and
along the ‘‘subject of the conceptualisation’’ dimension as representation,
generic, domain, and application ontologies. It is the intention of the
authors to develop an application ontology for the specific tools and
technologies employed in the framework described in Section 5.1 and
a knowledge modelling ontology with logic formalisms to capture neces-
sary semantics. Although application ontologies are not intended to be
directly reusable, we discuss how CAMO may be reused in Section 8.

6.2. Kickoff

The kickoff phase initiates the actual ontology development, start-
ing with a description of what the ontology should support depending
on its application context in the form of an ontology requirements
specification [54]. This, as noted by Sure et al. [54], is expected to guide
the authoring process in the inclusion and exclusion of concepts and
relationships while looking for potentially existing reusable ontologies.
The outcome of this stage is a semi-formal description of the ontology.
In the following subsections, a detailed account of these two steps is
given.

6.2.1. Ontology requirement specification
The requirements are further clarified by elucidating the following:

(i) the aim and use of the ontology, (ii) the information provided by the
ontology, (iii) the users of the ontology, and (iv) the questions that the
ontology must be capable of answering, i.e., the competency questions.

(A) Aim and use of the ontology:
The aim and use of the ontology to be developed are best
clarified by its use case. The ontology is intended to be used as
an application ontology that is to be instantiated as a distributed
knowledge base for a human–robot team that is characterised as
a multi-agent system engaged in collaborative assembly within
the context of an existing digital thread framework that inte-
grates the assembly design environment. The ontology has the
following aims:

(i) to form representations of agent beliefs that logically
dovetail the manufacturing, agent, and interaction con-
texts as envisioned in the feasibility stage (Section 6.1).

(ii) to infer the social aptitude of the agent by reasoning over
the represented knowledge in the foregoing contexts.
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(iii) to support self-organisation as described in Section 4.2 in
the context of human–robot collaborative assembly.

(B) Information provided by the ontology:
The information that can be obtained from the ontology by
direct query or by running inference procedures is as follows:

(i) the assembled state of the component that defines the
production tasks and entailed processes (MCx) for a given
assembly.

(ii) the sequence of and inter-dependencies between these
tasks and processes (MCx).

(iii) the informational, motivational, and intentional stance of
the agents with respect to these tasks (ACx).

(iv) the capabilities of the agents and resources and those
required by the tasks for their execution (MCx, ACx).

(v) information regarding plans, actions, and any collabo-
ration modalities resulting from commitments made to
execute the task (ICx).

(C) Users: The users of the ontology are divided into three cate-
gories:

(i) Producers of assertional information: The assertional knowl-
edge (ABOX) of the product is expected to be populated
automatically by external applications. Relevant GD&T
information is obtained via ‘‘KBE technology’’ of the CAD
software as presented in Section 5.1 and populated au-
tomatically. To facilitate easy population of the other
information of the product work and process plans, the
representational schema (TBOX) must be compatible with
prevalent standards. With the existing framework infras-
tructure, it should allow for easy and automatic pop-
ulation by mapping process and resource information
from enterprise systems to their corresponding resource
and process information constructs within the knowledge
base via suitable adapters, possibly with intuitive user
interfaces.

(ii) Consumers of the information: The consumers of the infor-
mation as envisioned are the collaborating agents, i.e., the
robot, and the operator, and the product designers.

(iii) Maintainers of the information: The information model
would ideally be maintained by the knowledge engineer
in the organisation that extends the TBOX with con-
cepts useful in the organisation, following a methodology
similar to the one undertaken in this study.

(D) Key competency questions: The answers to the following ques-
tions are pivotal for the agent to perform its core functions and
support the deployed mixed-reality environment. The developed
information model is checked for its ability to answer these
questions in the evaluation phase, which also documents the
method of information retrieval (Table 1). For any question, the
word ‘‘given’’ is used to define the input to the query and is
something the agent requires information about. The rationale
for the questions is provided along with the questions. To be
concise, trivial questions are avoided.

(i) What are the available tasks for an agent?
Agents exhibiting goal-directed behaviour should be able
to gather the tasks that they need to perform so that they
can accomplish the overall goal of collaborative assembly.

(ii) What is the motivational and intentional stance that defines
the mental attitude of the agent towards the available tasks?
Characterising the mental attitude of the agent with re-
spect to the assembly tasks is important when coordinat-
ing the tasks between them and preventing turn-taking

behaviour.
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(iii) What is the effect of carrying out a given task on the state of
the assembly process?
Once the agent has carried out a task, a belief update
operation must yield the subsequent tasks to be per-
formed, respecting their inter-task dependencies and pre-
requisites.

(iv) What are the primitive tasks (functions) that constitute a
given process? In what order are they to be executed, and
under what execution norms?
The decomposition of a process into primitive tasks or
functions is necessary for ‘‘division of labour’’ during
collaboration. The sequence and norms of functions that
a given process is made of are necessary for an agent to
know to generate a plan that has actions that execute
all primitive tasks that fully define the given process. Its
knowledge also helps initiate appropriate communication.

(v) What plans, if any, does an agent have for a given process?
Plans contain actions that are needed to execute a given
process.

(vi) Is an agent capable of performing a given process? What
capabilities are required?
Every agent has resources that give it capabilities, and it
is necessary for the agent to know about them so that it
can commit to a task that requires a certain capability to
perform it. For example, a robot has a gripper that gives it
the capability to grasp and release certain kinds of objects
for a pick-and-place task.

(vii) Are all pre-requisites for a given production task fulfilled?
Understanding the pre-requisites of a task is necessary
to carry out the given task successfully. For example,
regarding assembly, a part might need to be assembled
on top of another sub-assembly part.

(viii) What are the human-readable instructions for a task in a
language familiar to the operator ?
Collaboration with a novice operator would be more effi-
cient and safer if the operator was better aware of his or
her responsibility towards accomplishing the task.

.2.2. Determining the essential concepts and their relationships
This step involves creating a conceptual model of the important

oncepts and their attributes and relationships for detailed refinement
n the subsequent stage. The primary concepts belonging to the produc-
ion, interaction, and agent contexts are introduced, building on the
oundations introduced first. For better readability, Manchester OWL
yntax [57] is used.

(A) Foundations: The developed ontology builds on DUL [58], a
lightweight ontology that combines theories from two foun-
dational ontologies, namely DOLCE [59] and ‘‘description and
situation’’[60], along with concepts from other ontologies span-
ning concepts of plan, information and collection ontologies [58]
. Foundational ontologies is used with the objective of facili-
tating reuse, enhancing reliability, and making them well or-
ganised [61]. The vocabulary for capability and processes uses
existing works in literature [62].

(B) Manufacturing context
We introduce a product physical object (ProductPO) as a
specialisation of the DUL:PhysicalObject to categorise all
product-related concepts introduced herein. This also makes def-
initions of other manufacturing-related concepts more intuitive
and necessarily restrictive, as will soon be shown.
A part (Part) is a ‘‘leaf’’ physical product object that cannot be
decomposed in the context it is used in and thus is characterised
only by its shape and size. For reasons that will be made clear
in Sections 5.1 and 7.2, we are particularly interested in the
366

minimum bounding box that encloses a part. S
Clas s : Part

SubClassOf : ProductPO
SubClassOf : hasBoundingBox exac t l y 1 BoundingBox

An assembly is a physical product object that is composed of two
things that is any combination of only another assembly or a
part.

Clas s : Assembly

SubClassOf : ProductPO
SubClassOf : DUL: hasComponent min 2 ProductPO
SubClassOf : DUL: hasComponent only ( Assembly

or Part )
SubClassOf : DUL: hasComponent some ( Assembly

or Part )
SubClassOf : hasBoundingBox max 1 BoundingBox

A product is the produce of (value to) an enterprise that can be
composed of at least of an assembly or a part. The realisation
of a product follows a product workplan (ProductWorkPlan)
(or work instructions), which is the sequence of steps that are
production tasks (ProductionTask). These tasks contain one
or more processes (ptm:Process) that are executed according
to a process plan (ProcessPlan). Note the process vocabulary
ptm is a process taxonomy model from literature [62].

Clas s : Product

SubClassOf : ProductPO
SubClassOf : DUL: hasComponent min 2 ProductPO
SubClassOf : DUL: hasComponent only ( Assembly

or Part )
SubClassOf : DUL: hasComponent some ( Assembly

or Part )
SubClassOf : hasProductWorkPlan min 1

ProductWorkPlan

The product workplan is modelled as (a subset of) the petri
net that includes a set of production tasks and corresponding
intermediary states. Fig. 3 shows the relationships between the
core PN concepts discussed (in blue) and a petri net equivalent
representation (Fig. 4).3 Each ‘‘place’’ of the petri net is char-
acterised by activities which are production tasks, represented
by PN ‘‘transitions’’ that are connected to outgoing arcs from
the said ‘‘place’’. Both outgoing and incoming arcs of transitions
are modelled as simple OWL object properties (leadsTo and
includesActivity, respectively) as they do not have any
corresponding weights in PNs. Production tasks themselves are
represented by a ‘‘nested’’ PN to define processes according to
a process plan (ProcessPlan) with similar intermittent pro-
cess states. A boolean attribute hasToken keeps track of the
existence of a token in ‘‘places’’ that ‘‘enables’’ corresponding
transition(s), be it either production tasks or entailed processes.
The agent transitions between the product and process states by
‘‘carrying out’’ the production tasks and processes that are rep-
resented by these ‘‘transitions’’ and thereby effecting a change in
the product’s assembled state as denoted by the marking of the
PN.

(C) Interaction context:
The interaction context represents communication (message ex-
changes) and commitments (agreements). The agents use the

3 Due to a more intuitive representation, a similar visual representation
s preferred over a graph of nodes and edges to present the case study in
ection 6.4.1.



Journal of Manufacturing Systems 70 (2023) 359–381J. David et al.
Fig. 3. Key concepts and relationships that models the manufacturing, agent, and interaction contexts during the kickoff and refinement phases of ontology engineering.
Fig. 4. Conceptual petri net equivalent representation. Production Tasks follow a
process plan that defines processes and process states as ‘‘nested’’ nets.

JADE framework to communicate using standardised interaction
protocols (IPs). These IPs define message sequences and, for each
message, a communicative act (also known as performatives,
such as request, query, propose, etc.) among others, as defined
by FIPA [63] using an agent communication language (ACL)
(ACLMessage). An ACLMessage is defined by eight param-
eters (OWL data properties): sender, receiver, content,
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performative, in_reply_to, reply_with , protocol, and
conversation_id as defined by JADE.
A collection of message exchanges that are part of a conversation
and follow a protocol are commitments made and stored as a
contract (DUL:Contract). These specialise as defined classes
AcceptContract, ProposeContract, RequestContract,
CollaborationContract and RejectContract based on
the performative and/or interaction protocol which the messages
are a part. Note that disagreements (such as a reject or cancel)
are also interpreted as contracts as an agreement to disagree.
When a contract is recorded, it is always defined with respect
to a production task indicated with the isTaskDefinedIn
object property. Since communication is about existing tasks,
the concepts of the agent context can use the interaction context
to model the mental attitudes that influence agent behaviour as
shown next.

(D) Agent context:
Based on concepts of beliefs, desires, goals, and intentions,
which were introduced in Section 4.3, the agent context de-
scribes the semantics of their instantiations in the knowledge
base.
Beliefs are the ‘‘informative component of the system’s state’’, ac-
cording to the notions of Rao and Georgeff [34]. Since we follow
a distributed architecture, each agent is considered to have a
private belief about everything instantiated in the knowledge
base. As such, the notion of belief is ‘‘passive’’ and contains
beliefs about capabilities, plans, actions, and so on. That is, we
do not use reification to model the propositions of belief that do
or do not hold true at any given instant to limit the number of

propositions that could otherwise affect reasoning performance.
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Such propositions automatically and quite conveniently rely on
the rules of the petri net formalism (e.g., an enabled transition).
Desires represent the motivational state of the agent and are
those tasks that the agent would like to perform but has yet to
commit to. To this end, we want the agents to desire to do the
available production tasks associated with the assembly.

Clas s : Des i re

EquivalentTo :

ProductionTask and ( i sAc t i v i t y I n c l ud ed In some
( ProductState and ( hasToken value t rue ) ) )

Drawing inspiration from [50], there are four sub-classes of de-
sires modelled. These are AchievableDesire,
ConflictingDesire, NonAchievableDesire and
NonConflictingDesire. The achievability of a desire is
premised on the agent’s capability to do a task. Thus, we
have desires that are achievable with a capability defined as
achievable desires.

Clas s : AchievableDesire

EquivalentTo :

Des i re and
( isAchievableWithCap min 1 Capab i l i t yQua l i ty )

The above isAchievableWithCap axiom is populated at run-
time to account for changing capabilities. More on the capabil-
ities of an agent and what is required to do a task will be dealt
with in the subsequent refinement stage (Section 6.3).
When agents communicate, they store an ACLMessage individ-
ual for every message exchanged, which is part of a type of
Contract based on the protocol used. Knowledge of the well-
defined semantics that the protocols follow, such as the type
(performative) and sequence of message exchanges, allows us
to define the descriptions of classes that define other subclasses
of desires. For NonConflictingDesire, the definition is as
follows:

Clas s : NonConf l i c t ingDes i re

EquivalentTo :

Des i re and ( i sTaskDef inedIn some
( ProposeContract and ( hasPart some
( ACLMessage and ( ( performative value

"ACCEPT−PROPOSAL " )
and ( r e ce i ve r value " Robot " ) ) ) ) ) )

EquivalentTo :

Des i re and ( i sTaskDef inedIn some
( RequestContract and ( hasPart some
( ACLMessage and ( ( performative value
"AGREE" ) and ( sender value " Robot " ) ) ) ) ) )

EquivalentTo :

Des i re and ( i sTaskDef inedIn some
( RequestContract and ( hasPart some
( ACLMessage and ( ( performative value
"REFUSE " ) and ( r e ce i ve r value " Robot " ) ) ) ) ) )

EquivalentTo :

Des i re and ( i sTaskDef inedIn some
( RequestContract and ( hasPart some
( ACLMessage and ( ( performative value
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" FAILURE " ) and ( r e ce i ve r value " Robot " ) ) ) ) ) )

EquivalentTo :

Des i re and ( i sTaskDef inedIn some
( ProposeContract and ( hasPart some
( ACLMessage and ( ( performative value
"REJECT−PROPOSAL " ) and
( sender value " Robot " ) ) ) ) ) )

In layperson terms, this means that non-conflicting desires are de-
sires (desirable production tasks by definition) which the agent
in question has proposed that it perform or has accepted another
agent’s request to do so. Conversely and intuitively, if there
is a refusal or failure to honour a request or a rejection of a
proposal that is initiated by the agent, this too qualifies as a non-
conflicting desire. Note that since non-conflicting desires are, in
principle, desires, based on the previous definition, they only
apply to the currently available production tasks that respect
the rules of PNs (i.e., production tasks represented by transitions
that are enabled). Furthermore, note that the description entails
value restrictions along the property receiver and sender,
and each agent has its own agent identifier as its value (the
case above is shown for the robot). The reasoning engine that
each agent contains separate instantiations of, can then infer
subjectively for each agent, different other subclasses of desires
and, further, intentions, as will soon be shown.
When we scale to additional robots and operators, it is easy
to see that the core principles still work. Each agent will have
a private knowledge base with the above definition (for the
concept NonConflictingDesire), with the agent identifier
as the value for sender and receiver in the aforementioned
definition. For example, if a single robot calls for a proposal
from two operators (O1 and O2) and both operators agree, the
robot then chooses between the two based on some internal logic
(e.g., total operator workload) and approves the proposal of one
(O1) and rejects the other (O2). Consequently, the presence of
the ‘‘ACCEPT-PROPOSAL’’ (as an attribute of the message ex-
changed with the robot) in the knowledge base of O1 causes the
corresponding task to be inferred as a non-conflicting desire via
logical reasoning. The opposite is true in the case of O2 where
the task is inferred as a conflicting desire due to the presence of
‘‘REJECT-PROPOSAL’’ (as an attribute of the message exchanged
with the robot).
Similar descriptions exist for ConflictingDesire and
NonAchievableDesire and have been omitted for brevity.
The former is defined as desires that the agent has requested of
another agent to be done or that were proposed by another agent
to be done. The latter is defined as desires that are complete
(each agent sends a message with the performative inform to
inform of task completion) and thus are no longer achievable.
Intentions specialise desires as those that are achievable and
non-conflicting. The definition is as follows:

Clas s : In t en t ion

EquivalentTo :

AchievableDesire and NonConf l i c t ingDes i re

In summary, although the agent desires to carry out production
tasks that lead to component assembly, it can pursue a subset of
these as its intentions based on its capabilities and its runtime
commitments.
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Fig. 5. SHACL shape that defines the process of placing rocker arm shaft.

.3. Refinement

The kickoff phase modelled the key concepts in the manufacturing,
gent, and interaction contexts and laid the foundation for develop-
ng the detailed ontology of the knowledge base for attaining the
equirements we set out with. At this point, we are faced with the
mportant decision of choosing a knowledge representation language,
s this could influence the further development of the information
odel. The languages of the Semantic Web stack were selected for the

mplementation because of the following reasons:

(i) The Web Ontology Language (OWL) as a knowledge representa-
tion language is based on descriptive logic that is formal with
clear semantics and was deemed expressive enough to model
the needed constructs while also being able to support inference
using rules that govern the ‘‘encyclopedic’’ and ‘‘common-sense’’
knowledge.

(ii) OWL is widely popular as the language of choice for authoring
ontologies, especially in production systems, with several devel-
oped in the literature that are available for reuse. Its use obviates
the need to model all concepts from the ground up.

(iii) The languages of the Semantic Web stack support both notions
of the open world (e.g., OWL) and the closed world (e.g., the
Shapes Constraint Language (SHACL)). Their compatibility with
each other makes it possible to synergistically model real-world
use cases of HRC by exploiting both of these opposite notions.

(iv) As a technology originally built for the web, it is possible to
perform federated queries that return results based on knowl-
edge from multiple sources. Doing this would be advantageous
in a heterogeneous environment that is characterised by multiple
agents.

(v) There is active development in and around the technologies
that support OWL (reasoners, triplestores, other compatible lan-
guages, etc.) and an active community that maintains them.
Therefore, developers have ample choices and community sup-
port while building such systems. Most of these tools or tech-
nologies have seen several decades of improvement, with many
receiving the recommendation status of the World Wide Web
Consortium (W3C). OWL has been used in a variety of case stud-
ies in systems deployed within organisations that are currently
used in production environments, as documented in an online
repository [64] and thus can be considered mature technology
capable of realising implementations with a higher technology
readiness level (TRL).

Having selected the knowledge representation language, the refine-
ment phase consisted of (i) task description, (ii) collaboration, and (iii)
task execution.

(A) Task Description:
As introduced in Section 6.2, production tasks and constituent
processes exist. Both of these are represented by PN transitions
expressed in OWL. Their segregation makes for a convenient
abstraction for adoption as a desire or intention. Their corre-
sponding PN places denote partial product states and process
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states, respectively. The definition of what constitutes a produc-
tion task is left to the process engineer to generalise. In any
case, the central idea is that a complex workplan for assembly
leads to increasingly simpler production tasks containing pro-
cesses that require certain capabilities on the part of the agents
performing them. These capability requirements are represented
by the hasProcessDescription property, which defines a
resolvable URI of a SHACL graph. SHACL [65] is a language used
for validating RDF graphs by defining constraints on the content,
structure, and meaning of an ontology, and we use it primarily
for two reasons:

(a) decomposing a process into primitive tasks or functions.
Such a decomposition is considered necessary for ‘‘divi-
sion of labour’’, i.e., assigning agents’ roles during collab-
orative processes.

(b) representing the capability required to perform each of
these primitive tasks and, therefore, the entire process.

To understand better, we examine the representation in greater
detail by using an example of the process of placing a rocker
arm shaft (Fig. 5). We use the process taxonomy model and the
capability model vocabularies [62] with namespace prefixes ptm
and cm, respectively.
Primitive Tasks or Functions: Primitive tasks are represented by
SHACL node shapes. Node shapes are used to validate RDF
terms, that become ‘‘focus nodes’’ in SHACL terminology during
a validation, and here we use them to validate the capability
required to perform the said primitive task. Property shapes of a
node shape are used for the parametric validation of capabilities
by specifying constraints that must be met.
In the example graph shown in Fig. 5, there are four such node
shapes, each corresponding to four primitive tasks:
SHP_MOV_RockerArmShaft, SHP_MOV2_RockerArmShaft,
SHP_GRA_RockerArmShaft and SHP_REL_RockerArmShaft
. These node shapes reflect the primitive task that entail a
placing process, i.e., a bracing function, two moving functions,
one each to approach and depart, and a release function. Each of
these node shapes contains two kinds of property shapes. One or
more capability property shapes validate the capabilities possessed
by the agent at the parametric level required by the function
represented by the node shape that contains the said property
shape. A single instance property shape is used to represent ‘‘meta’’
properties of the primitive task. The two are discussed separately
next.
Capability property shape: The capability property shape repre-
sents the capability (or capabilities) required by the primitive
tasks that the said shape is part of (node shape). As such,
it targets the capabilities of the capability model instantiated
in the KB of the agent with the necessary parameters, i.e., it
imposes constraints on them as required by the primitive task.
An example of the capability parameters defined as property
restrictions is shown for cm:Moving in Fig. 6. Furthermore,
each node shape, since each node shape represents an atomic
primitive task, it targets one capability using the predicate
sh:targetClass and validates it against the one or more
property shapes (of the node shape). The property shapes define
constraints on the parameters of the instantiated capability
individual, which the node shape targets as required by the
primitive task the node shape represents.
In Fig. 5, e.g., the SHP_MOV_RockerArmShaft node shape
defines a property shape (camo:PayloadShape) that checks
for cm:payload data property being greater than or equal to
4 for the instantiated individual(s) belonging to the capability
class cm:Moving (property restrictions as shown in Fig. 6).
This means that the task requires that the robot be capable of
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Fig. 6. Property restrictions defined for the ‘‘Moving’’ Capability as visualised from
Protege ontology editor, vocabulary from [62].

moving a payload of 4 kg. Assuming the correct instantiation
of the capabilities, a UR3 (payload 3 kg) robot would fail the
validation, while a UR5 (payload 5 kg) would not. Several of
these checks may be carried out by more property shapes for
the node shape if needed, depending on the task.
The aforementioned instantiation of capabilities is also dynamic
to account for changing capabilities, such as tool changes. For
example, every gripper change (or initialisation) effects an up-
date of the payload parameter to the capabilities provided by it
(the gripper) by adjusting for its own weight using a SPARQL
UPDATE query. For example, if the robot is rated for a payload
of 5 kg and the gripper (rated payload 4 kg) weighs 1.2 kg then
the robot payload-gripper weight difference (5–1.2) of 3.8 kg is
compared with the gripper’s rated payload of 4 kg. Since the
difference is not greater than the griper payload, the difference,
i.e., 3.8 kg, is the combined payload (even though the gripper is
rated for 4 kg). On the contrary, if the gripper weighed 0.8 kg,
the difference would be 4.2 kg, and as this difference is greater
than the rated payload of the gripper, the combined payload is
the rated payload of the gripper, i.e., 4 kg (even though the robot
is rated for a payload of 5 kg).
Fig. 7 illustrates the validation report for the aforementioned
UR3 robot case. Note how the validation report contains use-
ful information (using vocabulary defined by the SHACL stan-
dard) on the failure, i.e., which capability individual (along
sh:focusNode), which parameter (along sh:resultPath),
the value that caused the failure (along sh:value), the prop-
erty shape that failed (along sh:sourceShape), the constraint
component (along sh:sourceConstraintComponent) and a
user-defined message (along sh:resultMessage). As the val-
idation reports are basically RDF graphs themselves, can be
parsed to extract these important values and deal with such fail-
ures appropriately to communicate with another agent regarding
the specific parameter of the specific capability, as an example.
Instance Property Shape: Besides representing and validating the
capabilities required for primitive tasks, there should be means
to represent other properties, such as the order in which they are
to be executed, their execution modalities, etc. The challenge we
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Fig. 7. Result of SHACL validation as a validation report serialised in turtle format as
reported by SHACL Jena Implementation (v4.5.0) [66].

face here is one that is created by the choice of SHACL graphs for
the representation of process descriptions. While SHACL graphs
themselves are RDF graphs and may be extended by custom-
defined properties, we cannot take for granted that the SHACL
processors that implement the SHACL standard and parse these
graphs, will ignore these. To this end, a reliable workaround
would mean finding means to represent the information we need
within the bounds allowed by the SHACL standard. Favourably,
SHACL implements what are known as ‘‘non-validating prop-
erties’’ for property shapes that are ignored by SHACL pro-
cessors and are not subject to any formal interpretation by
them. Conveniently, we have four such attributes (sh:name,
sh:description, sh:order, and sh:group) that, by a mat-
ter of pure coincidence, have relatable names given the context
of the properties of the primitive tasks we aim to represent. Since
they are to be used in property shapes, we need to define a shape
that will pass validation as they are used alongside other shapes
that validate the capability required to perform the task. This
we define as an instance property shape that checks the instance
type to be the class the node shape has as its target declaration
(hence the name instance property shape). Note that this way,
the instance property shape is always bound to conform (pass
validation), and as such it makes for a convenient syntax to
represent the non-validating properties of the primitive task.
The name and description of the task are provided in sh:name
and sh:description attributes. The order in which the tasks
may be executed is represented in the sh:order attribute.
Drawing inspiration from Helms et al. [67], the sh:group
attribute represents the execution norm of the task and takes
as a value (range) a sh:PropertyGroup. Tasks with the in-
dependent norm execute separate tasks. Tasks of a synchronous
norm execute tasks sequentially, i.e., one done after another.
Simultaneous norm tasks are to be executed at the same time.
For more complex representations of modalities, for example,
the presence of multiple different simultaneous modality tasks,
property groups themselves can be of a type maintained along
rdf:type. Such complex cases are not considered currently but
can be accommodated. These SHACL shape graphs are parsed
and queried with SPARQL ( Table 1 iv) to return them in the
order of execution and grouped by execution norms using the
SPARQL ORDER BY and GROUP BY clauses, respectively. The
agent can then use this information, along with coded execution
logic, to carry out processes independently or collaboratively.

(B) Collaboration: The motivation for collaboration comes from the
partial capability to perform a process of a production task iden-
tified because of a corresponding failed SHACL validation. Coded
execution logic initiates communication with existing agents
using the FIPA contract-net protocol [68]. Note that the FIPA
contract-net protocol was originally designed for task delegation,
where a coordinator agent delegates a task to an agent from
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Fig. 8. The FIPA Contract-Net Interaction Protocol.

a pool of agents capable of it. Since FIPA does not have an
interaction protocol specifically for collaborative use cases, we
adapt the contract-net protocol as message exchange sequences
for task delegation and collaboration logically overlap (Fig. 8).
The first message in the protocol uses the ‘‘call for proposal’’
performative that the agent uses to inform available agents of
the need for collaboration. The message contains information
about the incapable process, the production task it is part of,
and the capability class that failed (obtained from the validation
report as just mentioned). Agents that receive this message
describe their capabilities for the failed capability (via SPARQL
DESCRIBE), internally validate the process in question, and if
it conforms, send a proposal to collaborate using the ‘‘propose’’
performative with a description of the capability in question in
RDF/OWL in the content field. The initiator agent validates this
capability based on its initial knowledge of what it is incapable
of and, if it conforms, accepts the proposal and records the mes-
sages exchanged as a collaboration contract (i.e., an agreement
for collaboration). Since the collaboration was designed between
a single human operator and a single agent, as mentioned in
Section 3 where the research scope and setting were outlined,
we use a subset of the contract-net protocol, the propose proto-
col instead. The propose protocol is similar to the contract-net
protocol, without the initial unnecessary call for proposals, given
the dyadic human-robot configuration of the research setting.

(C) Task Execution:
We draw inspiration from multi-agent system literature [37]
to move from intentions to actions that execute the task. In-
tentions are pursued by executing actions that are part of a
plan that accomplishes the goal and thus drives means-ends
reasoning. Intentions also constrain future deliberations [37].
So far, we have modelled intentions as achievable and non-
conflicting desires that are production tasks (not processes).
Their definitions entail descriptions of the message exchanges
about the available production tasks that are inferred at runtime
and consequently influence their behaviour. Each production
task has processes and process states that follow a process plan
for the production task (Fig. 4). The agents’ plans are rep-
resented at this level i.e., the process level (not production
task). The class AgentPlan (⊆DUL:Plan) acts as a library of
agent plans that are instantiated as its individuals at runtime.
Actions (DUL:Action) that belong to a plan are indicated via

an (isPartOfPlan) object property. The capability required to
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Fig. 9. Relevant information associated with the assembly test Case.
execute an action is maintained via a hasCapabilityClass

attribute that defines a URI of the capability (from the capability
model ontology) required to perform the intended task. These
attributes are necessary to model deterministic actions based
on specific capability classes. As an example, the unique URI
camo:HumanGuidance can be interpreted as requiring a simul-
taneous modality action on the part of both agents, an upward
force action by the robot that compensates the weight of the
part, and a move action for the operator to effortlessly guide
the part into place. A schematic of the key concepts is shown in
Fig. 3.
Plans are generated dynamically once a commitment (Contract)
regarding the execution of a production task is made based
on runtime communication between agents. One of two types
of plans, namely ‘‘collaborative’’ and ‘‘non-collaborative’’, are
generated depending on the capability checks at runtime and are
maintained by the camo:hasType data property. These plans
help execute different program logic during plan execution, as
is shown in Section 6.4. The preconditions under which a plan
may be adopted are defined in the head part of the plan [34].
Since processes are modelled as PN transitions, the enabling of
the transition can be modelled as the pre-condition (concept of
Situation in DUL) under which the plan for a process task may be
considered for adoption. A hasHead attribute of Plan associates
with the respective ProcessState. Note that each plan can
have one or more actions depending on the process description
(of primitive tasks), and although the semantics allow for several
plans to exist as options in a process state, the scope of the
current work limits us to working with a single plan and reserves
the question of multiple plans and one being better than another
for future work.
In conclusion, the engineered ontology as the information model
aims to effect a logically consistent interplay between the con-
cepts of desires, intentions, plans, and actions between collabo-
rating agents so that they are suitable for use by the real-time
systems when queried. Therefore, an external robot module
interfaced directly with the robot controller can query for plans,
their corresponding processes, the part on which a process is
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performed, and the actions of the plan without contradicting
the operator’s private beliefs. For example, the availability of
a non-collaborative plan to pick an engine block frame, when
adopted, can initiate robot motion and grasping actions accord-
ing to the generated plan, where the robot is solely responsible
for task execution as it is capable. This would be either upon
the operator’s request or proactively by the robot itself, but
only after the operator has acknowledged the robot’s desire for
the same and agreed to it, leading to robot’s intention. Since
the scope of the work does not cover the real-time systems
responsible for pose estimation and robot path planning, for this
study, the location of parts is assumed to be known and robot
waypoints and trajectories are hard coded. As such, the robot
timely contributes to collaborative assembly with the help of the
control logic discussed in Section 7.3.

6.4. Evaluation

Before the ontology was employed in the target environment, it was
evaluated for its ability to answer the competency questions defined in
the kickoff stage. To validate the answers to the competency questions,
we populate the ABOX of the ontology with a test assembly case used
in the upcoming application phase, as described next.

6.4.1. Test case:
The test case involves the assembly of a real diesel engine that

consists of five parts: (i) engine block (x1), (ii) screws (x4), (iii) engine
block frame (x1), (iv) rocker arm (x8), and (vi) rocker arm shaft (x1), as
shown in Fig. 9a (left). The equivalent PN representation of the product
workplan is shown in Fig. 9b, using the convention presented in Sec-
tion 6.2.2. It consists of five production tasks that entail corresponding
processes (performed on parts). While the PN equivalent representation
of all production tasks as processes are not shown due to lack of space,
they mostly resemble the case for the ‘‘Assemble Rocker Arm Shaft’’
that is shown.

Fig. 9a (right) tabulates key terms of the instantiation of the diesel
engine assembly (ABOX) in CAMO. Capability descriptions instantiated
in the ontology render the agents (operator and robot) capable or
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Fig. 10. A schematic representation of the implementation.
incapable of a process. This is indicated by the last column in the table
in Fig. 9a as follows: robot-only (R), operator-only (O), both robot and
operator capable separately (R||O), both robot and operator capable
collaboratively (R&&O).4 These are modelled in a way that they reflect
the capability of the gripper attached to the robot and the preferences of
the operator that are instantiated as individuals of the capability classes
of the capability model or lack thereof. Next, we briefly present these
semantic descriptions underpinning the capabilities for this specific test
case.

The lack of capability to carry out a process can be understood
semantically in two ways, and an example of each is intentionally
present in the test case. First, the absence of the instantiation of the
capability class that is required for the task in question, that is due to
the absence of a resource that provides the agent with the capability.
For example, this is the case of the ‘‘screwing’’ process as the robot is
not equipped with a suitable gripper to perform a screwing process.
Secondly, such an incapability may also be understood by the failure
of the parametric SHACL validation of the capabilities instantiated in
the agent KB against the shape that represents the capabilities required
to do the task in question. For example, this is the case for the pick and
place processes of the rocker arm, as it is modelled that the gripper is
suitable for picking parts with a minimum dimension that is greater
than the relatively small rocker arms. Note that other picking and
placing processes exist of which the robot is capable.

It is possible to define special property shapes in CAMO to ef-
fect deterministic behaviours of the agents. An example of this is
camo:HumanGuidance property shape of the ‘‘Place Rocker Arm

4 To be clear, this convention is used only as an indication to the reader
and in reality they are a result of a combination of the capabilities instantiated
in the knowledge base of the agents using the capability model vocabulary
and the requirements of the process described as SHACL shapes as defined in
Section 6.3(A).
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Shaft’’ process (Fig. 9b (right)). The failure of this shape during val-
idation indicates that the action to move needs to be performed in
simultaneous modality with that of the operator’s action for the said
process. This will then result in corresponding communicative acts to
make sure that the agents are aware of the modality, as is shown in the
next section.

The answers to the competency questions are obtained by queries
that answer or graphs that validate the agent’s knowledge base and are
tabulated in Table 1, and are verified for the test case presented.

7. Application: Case study – deployment in an HRC framework

7.1. Tools and technology

The engineered ontology is deployed in the setting (Fig. 1) with
the HRC framework that integrates the assembly design software and
incorporates the mixed-reality interface (Fig. 2), which was introduced
in Sections 3 and 5. A schematic of the framework instantiation is
shown in Fig. 10.5 The framework builds on JADE, to enable agent-
oriented interactions between the collaborating agents via standardised
interaction protocols (FIPA [63]). Both the robot and the operator are
instantiated as JADE agents in the framework with each maintaining its
private knowledge base using CAMO. We use the popular JAVA Apache
JENA library [66] (v4.5.0) to work with OWL (Jena Ontology API),
SPARQL (Jena ARQ API) and SHACL (Jena SHACL API) programmati-
cally. Jena Fuseki provides a RESTful interface to the knowledge base of
the agents for non-conversational information retrieval via SPARQL 1.1
query protocols. The back end of the knowledge base is implemented
with the help of Jena TDB, which provides a robust, transactional
persistent storage layer for the knowledge base. The inference engine is
provided by Openllet (v2.6.5) [69], an open-source OWL2 DL reasoner.

5 For a detailed software architecture, see [39].
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Evaluation of the ontology based on the defined competency questions.
CQ
No.

Methodology of Information Retrieval Query / Shape
(Prefix names are omitted for brevity)

Single / Multiple SPARQL
∣ Reasoning used ∣ SHACL
needed

Remark

(i) Query for the enabled transitions that represent production tasks,
i.e., check for transitions that have a marking via the boolean
hasToken property set to "true" for all its input places and query
its includesActivities object property.

SELECT ? task1 ? id WHERE {
? task1 a camo : ProductionTask . ? task1 camo : UID ? id .
? s t a t e camo : i n c l u d e s A c t i v i t i e s ? task1 . ? s t a t e camo : hasToken true .
MINUS {
? s t a t e1 camo : hasToken true . ? s t a t e2 camo : hasToken f a l s e .
? s t a t e1 camo : i n c l u d e s A c t i v i t i e s ? task1 .
? s t a t e2 camo : i n c l u d e s A c t i v i t i e s ? task2 .
f i l t e r ( ( ? task1=?task2 ) ) } }

Single ∣ No ∣ No The same format of the query is applied to query
the active process tasks of a production task. Note
that this does not factor in the agent’s capability
to do the task.

(ii) Achievable desires are asserted with isAchievableWithCap object
property dynamically at runtime with a SPARQL Update Query. The
other subclasses of desires and intentions are automatically inferred
at runtime based on the defined class definitions. A simple SPARQL
query (using negation) can be used to query intentions that are not
non-achievable or conflicting desires.

SELECT ? i n t WHERE {
? i n t a camo : In t en t ion .
FILTER NOT EXISTS {

? i n t a camo : NonAchievableDesire .
? i n t a camo : Con f l i c t i ngDe s i r e .

}
}

Single ∣ Yes ∣ No Desires and its subclasses represent the moti-
vational stance while intentions represent the
intentional stance.

(iii) An update query to effect the firing of a transition, i.e., remove
tokens from incoming places of a given transition representing the
(production or process) task to outgoing places of the transition.

DELETE
{ camo : P1 camo : hasToken " t rue " ^ ^ xsd : boolean .
camo : P2 camo : hasToken " f a l s e " ^ ^ xsd : boolean . }
INSERT
{ camo : P2 camo : hasToken " t rue " ^ ^ xsd : boolean .
camo : P1 camo : hasToken " f a l s e " ^ ^ xsd : boolean . }
WHERE {? places camo : hasToken ?hasSourceToken . }

Multiple ∣ No ∣ No Note that the query is constructed dynamically by
querying the input and output places of a given
task. In this case separate queries have returned
results that P1 and P2 are input and output places
of the given task. The pattern is common for
transitions representing both production tasks and
processes.

(iv) The SHACL graph that maintains task description is first queried
and resolved via the hasProcessDescription property. Then a
second query (shown), queries the description for the primitive tasks,
involving aggregates and solution sequence modifiers returns the
sequence of tasks, possibly grouped by execution norms if needed.

SELECT ? ac t i onC la s s ?group ? order ? desc ?name ? context WHERE {
?nodeShape a sh : NodeShape .
?nodeShape sh : t a r g e t C l a s s ? ac t i onC la s s .
?nodeShape sh : property ? propertyShape .
? propertyShape sh : value ? ac t i onC la s s .
? propertyShape sh : order ? order .
? propertyShape sh : group ?group .
? propertyShape sh : de s c r i p t i on ? desc .
? propertyShape sh : name ? context .

} ORDER BY asc (? order )

Multiple ∣ No ∣ No Solution sequence modifiers (ORDER BY) and Ag-
gregation (GROUP BY) may be nested or used
interchangeably in any combination depending on
the returned result.

(v) The plan for a process task is maintained via the hasHead attribute
with the incoming place (process state) to the transition that
represents the given process task.

SELECT ? plan
WHERE {

? plan a camo : AgentPlan .
? plan camo : hasHead ? proce s sS ta t e .
? p roce s sS ta t e camo : i n c l ude sAc t i v i t y camo : PT_PlaceRockerArmShaft .

}

Multiple ∣ Yes ∣ No All active plans are automatically inferred by the
reasoner using a defined class expression. See
concept ActivePlan.

(vi) Query the description of a given task expressed as a SHACL
graph maintained via the hasProcessDescription attribute.
Read the returned graph as regular rdf and query target class
(sh:targetClass, shown) of the node shape(s) that represent
primitive tasks that make up the process task. Describe the capa-
bilities of the agent with respect to that target class and run a shacl
validation of the described capabilities against the SHACL graph.

shacl shape as shown in Fig. 5
SELECT ? t a r g e t C l a s s WHERE {

? shape a sh : NodeShape .
? shape sh : t a r g e t C l a s s ? t a r g e t C l a s s .

}

Multiple ∣ No ∣ Yes Describe queries are generated dynamically for all
returned target classes.

(vii) Describe the given production task (transition) for the incoming
places (ProductState). SHACL Validation of the returned graph
(from the DESCRIBE query) using a node shape (shown) that has
a property shape for the path (hasToken) that uses the value
constraint to be ‘‘true’’ for all incoming places.

camo : isEnabled
a sh : NodeShape ;
sh : t a r g e t C l a s s camo : ProductState ;
sh : property [ a sh : PropertyShape ;

sh : path camo : hasToken ;
sh : hasValue " t rue " ^ ^ xsd : boolean ; ] .

Multiple ∣ No ∣ Yes What this essentially does in the PN formalism is
checking if all incoming places for the transition
that represents the task has a token.

(viii) Query the hasHRDescription attribute of the sub-task of the task. SELECT ?Desc WHERE {
camo : Place_Engine_Frame camo : hasHRDescription ?Desc .
FILTER ( lang (? Desc ) = ‘ f i ’ ) }

Single ∣ No ∣ No -
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Fig. 11. Components of the mixed-reality interface.
7.2. Mixed-reality interface

The MR interface (Fig. 11) consists of five different components
that are tasked with different functions, albeit with the overarching
purpose of providing an interface for the operator to interact with the
collaborating agent (robot) and representing and making accessible to
the operator the underlying information models. These five components
are:

1. Product Workplan Panel: This is a collapsible drawer of adjustable
width, drawn from the right (Fig. 11b (right drawer)) that allows
the operator to select the workplan associated with the assembly
and render it as a collapsible tree from its petri net markup
language (PNML) (PNML, ISO/IEC 15909 Part 2) [47] represen-
tation. Each element of the tree that represents a production task
is represented using different background colours that indicate
the status of the task and/or draw the attention of the operator
(Fig. 11a (right drawer)). For example, the screenshot of the
MR interface (Fig. 11a) shows when three tasks are completed,
which is indicated by the green background, while the task
‘‘Assemble Rocker Arm’’ blinks in dark orange to support the
message sent by the robot (Fig. 11a (bottom)) with contextual
information. It also consists of a progress wheel that represents
the percentage completion of the tasks in the work plan.
375
2. Process Plan Panel: This is a collapsible drawer of adjustable
width that is drawn from the left (Fig. 11b (left drawer)), which
allows the operator to select a production task to view its process
plan, which is rendered as a tree from its PNML representation.
The drawer may also be drawn open by another agent to, for ex-
ample, provide contextual information for a message. A process
may be selected to view a detailed description of the primitive
tasks by clicking a ‘‘Fetch Detailed Description’’ button, which
subsequently draws open another left drawer to neatly display
them as a stack of cards. The left drawer also displays any
accompanying figures that are relevant to the intended process.

3. Message Panel: This is a ‘‘message box’’ that appears at the
bottom (Fig. 11a (bottom)), which notifies the operator of mes-
sages from other agents in the framework (Fig. 11a (bottom)).
It consists of a sender field, that is populated with the JADE
agent identifier (AID), message type field that indicates the
performative (communicative act) and interaction protocol the
conversation belongs to, a message field that displays the content
of the message, and 1–3 buttons (depending on the performative
as defined by FIPA) that allow the operator to respond to the
message.

4. Interaction Panel: The interaction panel (Fig. 11b) is a drawer
that can be opened by clicking the button ‘‘Perform Commu-
nicative Act’’ in the layout (not visible in the figure) to interact
with the robot. The panel allows the operator to select the
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Fig. 12. Transformation of bounding box coordinates from CAD model.6

performative and the task from clickable buttons as necessary
for communication.

5. Canvas: The canvas is implemented using the HTML 5 Canvas
API and, allows for free-form drawing. The canvas is used by
the agents to either communicate their intentions by spatially
projecting shapes on the physical assembly or provide visual
guidance for the operator. This, as shown in Fig. 12a-c , is
extracted from the CAD model of the part at runtime and uses
a pre-computed transform (direct linear transform) to map co-
ordinates defining the bounding boxes of subassembly parts to
projector pixels. The Jarvis algorithm is then used to compute
the convex hull of the transformed points (Fig. 12d). Lines are
drawn between the points defining the convex hull and filled
with colour using the canvas API (Fig. 12e-f). The result for the
case of rocker arms can be seen in yellow in the centre in Figs. 2
and 11.

These components interact with the knowledge base of the agents
via RESTful message exchanges (Fig. 10) in real time to achieve their
intended functionalities. For example, the Process Plan and Interaction
Panels allow you to query and interact, respectively, with production
tasks that are only currently available (enabled transitions in the equiv-
alent PNs) by querying the KB with the SPARQL query (CQ No. (i) in
Table 1).

7.3. Communication patterns and control logic

The process of collaborative assembly starts when the operator
selects the product workplan from a list of available ones and requests
collaborative assembly (done on the product workplan panel). The sys-
tem supports four basic communication patterns that conform to their
designated use as FIPA standards.

1. The robot-push pattern uses the FIPA-Request protocol to re-
quest that the operator performs a task.

2. The robot-pull pattern uses the FIPA-Propose (or FIPA-
ContractNet) protocol to propose to the operator that the robot
does a task (possibly with the need for collaboration).

6 c-f are drawn manually using a drawing tool for the sake of explanation.
376
3. The operator-push pattern uses the FIPA-Request protocol to
request that the robot performs a task.

4. The operator-pull pattern uses the FIPA-Propose (or FIPA-
ContractNet) protocol to propose to the robot that the operator
does a task.

Furthermore, the robot is configured to operate either in a proac-
tive mode (using primarily robot-push and robot-pull patterns), which
involves picking up available tasks and initiating communication with
the operator,7 or reactive mode, which executes tasks upon operator
request (using operator-push and operator-pull patterns). For the robot
in proactive mode as employed in the case study, the control flow is as
shown in Fig. 13. Only the key steps are shown to keep the flow chart
readable and concise. The control logic of the robot is divided over two
JADE behaviours, namely Desire and Intention. Elements that are
part of a collaborative workflow are drawn in purple.

The Desire behaviour is responsible for traversing the PN, picking
up production tasks, checking capabilities, and initiating conversations
with the operator via the MR interface. The inference engine classifies
the tasks after the conversation with the operator as subclasses of
desires (achievable and non-achievable; conflicting and non-conflicting)
and consequently as intentions (achievable and non-conflicting desires),
as defined in the agent context of the KB (Section 6.2.2). In our case
study, between agent conversations for reasoning about desires and
intentions, we found it took between 100ms-1500 ms. As the size of the
ontology grew the performance dipped. Although, it was unnecessary
for the performed case study, in principle, we would be able to contain
the size of the ontology dynamically (for example, by discarding older
conversations about completed tasks after storing them) to keep the
reasoning both computationally tractable and performant.

Furthermore, plans are generated dynamically, and each contains
actions based on the corresponding process the plan has been created
for in accordance with the process descriptions (in SHACL). These
actions contain as attributes the fields of the instance property shape
(Fig. 5) along with a performer field that indicates which agent is
responsible for it based on the agreement in contracts that is the
consequence of the runtime deliberation between the agents. They also
contain a status field used to record the execution of the task. If an
agent has agreed to do a task that it is wholly capable of (i.e., non-
collaborative), all actions are the responsibility of the agent and will
be filled with the AID of the said agent. Plans are generated for
all processes in the production task. Once plans are generated, an
Intention behaviour is spawned for the respective production task
to carry out the process plan of the production task adopted as the
intention. Note that at this stage, the agent is aware of all the processes
of the production task that is adopted as the intention, the entailed
processes, and the capabilities to perform each of them.

The Intention behaviour, similar to Desire, plays by the rules of
the token game of the PN, representing the process plan, and explores
the available processes of the production task the intention is about.
An external Robot Controller Module interfaced spontaneously queries
for the plans and any associated part and process information. This
is accomplished via REST interface provided by Fuseki. The Robot
Controller Module translates the knowledge of the process (picking,
placing, screwing, etc.) and the part the process is performed on to ac-
tual robot motions based on pre-defined motion paths and actions. The
robot module subsequently updates the status of the actions of the plan,
in the KB of the robot upon execution (again via Fuseki). Collaborative
processes have a slightly different execution flow in the Intention
behaviour as shown in Fig. 13. This difference is predominantly to
make the operator aware, via the MR interface, of the collaborative
nature of the process and the specific sequence and execution norms of

7 Note that nothing prevents the operator from exercising operator-push
and operator-pull patterns in the robot proactive mode, and the discussed
semantics underlying intentions automatically prevent turn-taking behaviour
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Fig. 13. The control flow defining proactive robot behaviour between Desire and
Intention Jade behaviours.

the entailed actions. For example, for a simultaneous modality action
(e.g., placing the rocker arm shaft in the case study), the operator has
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the possibility to indicate when the operator is ready to act and when
the action is completed.

The assembly was done for the test case presented in the evaluation
phase, and CAMO was found to support it well. The robot was con-
figured in the proactive mode, but the operator also makes use of the
operator-pull pattern. A video recording of the case study is available
online.8 In it, the assembly of both collaborative and non-collaborative
tasks are shown from five concurrent views. Three views from cameras
show the Kinect view output from the hand-tracking ML pipeline, an
assembly view of the assembled diesel engine and a regular camera
view of the workspace showing the MR environment in action. Two
screen recordings also capture the JADE sniffer tool that records the
messages exchanged in the JADE framework and the MR application
as viewed from the web-browser, one each separately.

8. Discussion

This article presents the development of an application ontology
and its instantiation as distributed knowledge bases in a multi-agent
HRC framework. The approach entailed integrating the ubiquitous
product design software, leveraging its programable CAD kernel (the
‘‘technology’’ of knowledge-based engineering according to Rocca [41])
to define appropriate interfaces to get relevant information about the
assembly at runtime. Next, we discuss the significance of the approach,
the developed information model, and the MR application in light of
the research objectives outlined in Section 3.

8.1. Developed artefacts

The development of CAMO follows a sound ontology engineering
methodology and builds upon DUL, a lighter axiomatisation version
of a foundational ontology (DOLCE) with more intuitive terminology
and additional supporting theories [58]. As such, it has sound logical
theories as its foundation, and due to its broad foundational coverage,
it may be easily reused or extended. Furthermore, despite being an
application ontology, the design patterns used may be generalised
for reuse in another multi-agent context. Specifically, the logical for-
malisms underpinning the concepts of the agent context (desires and
intentions) can inspire similar approaches based on the performatives
of agent interactions, as there is little, if any, application of multi-
agent systems that do not demand inter-agent communication. This is
besides the obvious fact that these concepts may be reused out of the
box for systems developed in accordance with the FIPA standards. In
these ways, the information model developed in this study supports
generalisability for similar applications.

A review of related work on logic-based architectures for HRC ex-
posed that they either lacked concepts modelling collaboration, ignored
the multi-agent aspect, had centralised knowledge bases or downplayed
their interaction as a mere communication problem, i.e., some ad-hoc
way to get the message across. Such solutions from an information
system standpoint, are difficult to scale to adapt to product variety,
as an example. In this article, we have shown how a logic-based
architecture can model collaborative interactions along with the asso-
ciated manufacturing context should interactions adhere to a standard.
We have attempted a human-centric approach by modelling interac-
tion sequences following folk psychology that has been conveniently
presented via mixed reality along with performatives based on speech-
act theory [43,70]. These performatives include expressives, which
express attitudes, exercitives, which ask for actions to be performed,
and interrogatives, which query for information akin to human–human
interactions. These provide contextually relevant information for the
operator along with message content as text. For example, a glance
at ‘‘request’’ performative may lead the operator to understand that

8 https://youtu.be/bgB00fFKgG8

https://youtu.be/bgB00fFKgG8
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they are being requested to do something that they may choose to
conveniently ignore, without understanding what, if busy.

Another observation could be made on how the concept of capabil-
ities is treated. For example, Umbrico et al. [17] use rules to model the
capabilities as follows:

DUL: Agent ( a ) ∧ Function ( f ) ∧ hasCapab i l i ty ( a , c )
∧ r equ i r e s ( f , c ) → canPerform (a , f )

This translates to ‘‘if a function f requires a capability c and an
agent has that capability c, then the agent can perform the function’’. An
analogous rule-based approach for determining the capabilities of man-
ufacturing resources using SPARQL Inferencing Notation (SPIN) has
been proposed in earlier work [62]. While such rule-based definitions
work in principle, they do not allow for understanding what exactly
causes incapability, should it occur. This is most likely a direct conse-
quence of the open-world assumption of OWL, where no assumptions
are made on the absence of statements, i.e., something not known to
be true is unknown. In HRC use cases, where the theoretical motivation
itself is premised on the combined capabilities of collaborating agents,
rule-based and consistency-based capability checking may fall short of
conveniently identifying missing or non-conforming capabilities. Using
SHACL for capability checking, as we have in this study, enforces the
closed world assumption as constraints on capabilities represented in
OWL to identify missing capabilities.

Often, capabilities are defined by a whole host of parameters (an ex-
ample of which can be seen in Fig. 6). Performing a semantic validation
using a standard such as SHACL can help with the parametric validation
of capabilities, such as the payload being too heavy, as discussed
previously. The result of such parametric validation of capabilities
can provide meaningful results using supported constraint components
(value type, cardinality, value range, etc. [65]) that the agent can use
to navigate around such failure (e.g., by considering switching to a
suitable gripper at a gripper station). Note that the results of the valida-
tion are governed by the SHACL standard [65], whose values adhere to
the standardised vocabulary of the SHACL namespace. This allows for
the building of scalable situation-independent routines for capability
validation without much programming overhead for the application
developer and makes for an elegant and maintainable approach for
the representation of capabilities and validating requirements. The
alternative to this using prevalent approaches would be to exhaustively
check the parameters individually, but that would be tedious (even pro-
grammatically) and far from optimal from a performance standpoint.
In summary, knowledge of why a capability does not meet the criteria
put forth by a task, besides acknowledging its absence, can be crucial
in effectively modelling processes, such as HRC, that are motivated
by complementing individual capabilities of agents to begin with. A
standards-based approach only furthers this by making it scalable.

The mixed-reality application provides a convenient interface for
the operator to interact with the developed information models. It does
the job of abstracting away from the details of the underlying net
formalisms, product work plans, entailed process plans, part geometry,
etc. expressed in OWL/SHACL, STEP, etc. to provide their more intu-
itive representations in JavaScript as trees, cards, colour shades, and
free-form drawings, sometimes neatly tucked away in optionally visible
drawers. This is done with the goal of reducing the cognitive load on
the operator while increasing his/her situational awareness. From a
novelty standpoint, our work introduces web technologies to the task
of architecting extended reality interfaces for a typically constrained
collaborative industrial environment. Its significance lies in greatly
reducing the barrier to working with scripting languages (JavaScript)
that are easier and faster to develop and maintain [71] than their
compiled counterparts, such as C# for Unity as an example. The web
browser, as a mature platform, works cross-platform and has seen more
than a couple of decades of improvement and standardisation (HTML,
CSS). This means a wide range of 3rd party libraries to choose from
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oth for added functionality (e.g., 3D STL — three.js, for visualisation
of part geometry) and for development (ReactJs, Angular, Vue, etc.),
and therefore ‘‘reduces’’ its development problem to a front-end web
development problem, a problem that in today’s day and age has
solution architects aplenty.

In Sections 1 and 3, we set out the objective of attaining a re-
spectable degree of self-organisation for the developed artefacts from
an information system standpoint. As for the developed ontology, the
notions of product work plans and entailed process plans follow net
formalisms that have been a widely popular approach to modelling
distributed systems. We posit that the possibility of a bijective cor-
respondence between a versatile and standardised (PNML, ISO/IEC
15909 Part 2 [47]) net formalism and its equivalent OWL represen-
tation may be seen as an advantage and contribute towards CAMO’s
acceptability in industrial informatics. The benefit of using a standard
was seen during the application’s development itself. It was possible
to create the product workplan and the process plans using the user-
friendly WolfGang Petri Net editor [72] that conformed to the standard.
As such, modelling collaborative processes is use case-agnostic follow-
ing the pattern described that self-configures for situation-dependent
use cases, and allows for the adoption of these collaborative processes
as desires and intentions by collaborating agents. In the MR application,
the product workplan panel and process plan panel are also accepting of
PNML formats to visually represent product work plans and process
plans as trees.

The visual communication of intentions via mixed reality is made
possible by the integration of ‘‘KBE technology’’ [41] that features a
programmable CAD kernel that we used to traverse the assembly tree
to calculate bounding box coordinates of part components. Again here,
the assembly can change, and its CAD model can be in a whole host
of formats supported by NX (STL, 3MF, IGES, STEP, etc.) that can be
interpreted in a way that populates the ABOX of CAMO correctly with
BBOX coordinates, and thus the approach supports self-configuration
as we first defined. This is in contrast with existing works in liter-
ature [7,8,73] that use manual approaches for feature extraction for
intent projection. Lastly, the use of SHACL allows for a standards-
based, scalable approach for parametric validation of agent capabilities.
Therefore, we see the system as capable of self-optimising, i.e., taking
stock of available agent capabilities and initiating collaborations with
respective agents for collaborative assembly, thus contributing to self
organisation as defined in Section 4.2.

8.2. Limitations and future work

First of all, it is important to note that the approach presented in
the study alone may not be used to realise an end-to-end deployment
of an HRC assembly system in practice, as evident in Section 3, which
outlines the scope of the work. The system developed in the form of
a self-organising team network plays the important role of assigning
responsibilities through deliberation, which is needed to prevent turn-
taking behaviour and achieve the outlined objectives. We envision that
our contribution would come just before the real-time systems (logi-
cally, not based on priority) of pose estimation, trajectory planning,
and collision avoidance.

As for this study, we are aware of the following shortcomings.
Firstly, for the information model, the current ontology lacks a repre-
sentation of concepts in the temporal dimension. In principle, it might
be useful to schedule or coordinate shared tasks for the future, defer
tasks for a fixed time, introduce time-based collaboration modalities,
or simply log events. Currently, all tasks are discussed and executed
‘‘in the now’’. To allow for a greater ‘‘degree of freedom’’ for flexible
interaction, temporal concepts will be necessary, and this is something
we consider as future work to further improve the applicability of the
developed work. Next, the decomposition of processes into primitive
tasks is inevitable to decide who does what in collaborative scenarios,

but it is not always a straightforward process. For this, we propose as
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future work developing a library of process templates derived itera-
tively from successful implementations and the developing a GUI to aid
their easy deployment. Likewise, for the description of production tasks
and processes, we would like to investigate if we can programmatically
extract their sequence for conversion into PNML using KBE technology.
Currently, in the study, although the model supports the semantics
of OWL, it is manually constructed using Protege, an OWL editor. It
lacks a PNML to OWL translator, a straightforward piece of software
that would map each PNML concept to its corresponding concept in
OWL, that remains a future work. The workflow would then be to (i)
construct work plans using user-friendly GUIs, (ii) translate from PNML
to OWL, optionally validate the plans either using a GUI manually or
automatically using SHACL constraints validation, and (iii) import them
into the knowledge base of agents. Thus, the cost and time of modelling
the tasks and processes are minimal once the required translator is
developed as future work.

Another possible future direction of work for the information model
is supporting concepts of design for collaborative assembly (DCA).
We believe it would be beneficial for the operator to record his/her
experience of the assembly to further improve the safety, physical
and cognitive ergonomics, and assembly efficiency as per the design
guidelines and principles presented by Gualtieria et al. [74]. This
(experience) would then be presented to the designer in a custom-built
KBE application to close the loop between manufacturing and design,
realising the potential of the digital thread.

The aforementioned developments as concepts in the ontology must
be reciprocated with corresponding developments in the MR applica-
tion that supports their use. For example, component(s) in the appli-
cation that enable the operator to record the DCA terminologies and
component(s) that allow the operator to respond to deferred requests
must be considered. Apart from this, in its current state, we acknowl-
edge that the MR interface bears the requirement of a flat surface for
operation and that it is not indicative of all collaborative assembly
environments. However, table-top assembly environments in industrial
settings are quite common. Furthermore, bounding box approximations
as intentions bear the requirement of a CAD model and might not
be the best approximation in niche cases for certain part geometries.
Nevertheless, they will fully encompass the intended part shape.

From the standpoint of the developed framework, its dependence
on proprietary software as the KBE system may not be appealing to
some, and the generalisability of the approach may be of concern.
The former may be justified by the value it adds to the system. The
ability to map between various complex product standards (e.g., STEP)
and proprietary models is a feat of software engineering to behold in
itself and can be expected to require several thousand person-hours.
Abstracting these models into a common object model and making
it accessible by well-defined, albeit (necessarily) verbose APIs that
form the basis for self-configuration understandably come at a cost. As
for generalisability, ‘‘KBE technology’’ is growing in popularity and is
finding its way to mainstream CAD/CAE software vendors. Examples
of these software are Solidworks by Dassault Systems and AutoCAD by
AutoDesk, as detailed in the work of Rocca [41]. The expectation is
that as more works demonstrate the utility of ‘‘KBE technology’’, its
absence will be seen as the lack of a versatile and useful feature, and
consequently motivate CAD vendors to adopt more open architectures.
As for bounding boxes, their intersection is a common and performant
means of collision detection that most, if not all, 3D geometry software
comes with the ability of its computation, as does NX.

While this work presented the information model and its validation
by means of competency questions, case study, and informed argu-
ments, in future work, the advantages of the proposed approach from
the standpoint of the process of HRC (e.g., process performance and/or
operator satisfaction) will also need to be quantifiable. As for what
kind of improvements are expected, we currently have the following
candidate hypotheses: (i) the use of the system reduces the workload
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of the operator during product changeovers and enables shorter task
completion time; (ii) the system improves system usability and user
experience when compared to hand-held and/or wearable augmented
reality devices during assembly and during product changeovers; and
(iii) the system allows collaborating with a robot effectively, thereby
reducing workload on the operator and increasing robot utilisation
time.

The final step of ontology engineering is its evolution over time
[54]. The ontology must be maintained and extended when necessary
to suit a specific context or application. Careful thought has been put
into the development of the information model and MR application
to facilitate its reuse, as has already been discussed. The ontology is
shared publicly under the Creative Commons Attribution-ShareAlike
4.0 International Licence (CC BY-SA 4.0) online.9

9. Conclusion

As HRC gains traction and becomes more commonplace, the need
for associated information systems that gain the operator’s trust and
approval will likely grow. These information systems are expected to
facilitate the intuitive role of humans by incorporating social aspects of
teamplay while also allowing for flexible and adaptable process flows,
and are reported needed by the industry [20]. The core element of
such an information system is an information model which models
the key concepts of the domain, their relationships, constraints, and
rules that describe the semantics of the production and agent contexts.
The constrained nature of typical HRC environments also rules out the
traditional interfaces employed by these information systems. There-
fore, mixed-reality interfaces have been proposed to cope with fading
memories of the past and unreliable predictions of the future.

The work presented in this study develops one such information sys-
tem for human–robot component assembly. We put forth the following
as the contributions of the study:

1. The work develops CAMO, an information model for distributed
human–robot collaborative multi-agent systems that models the
manufacturing, agent, and interaction contexts. The distributed
nature of the application of the ontology adds to its novelty as,
to the best of our knowledge, existing ontologies for HRC target
a centralised architecture. The need for information systems to
espouse multi-agent philosophy is prevalent in literature [21,22]
and discussed in this study. The design pattern to represent the
mental attitudes based on interactions mimics social aptitude, as
in human-human interaction, maintains an appreciable degree of
self-organisation, and is one that is novel and can be reproduced
in similar contexts using logical formalisms.

2. Just as the theoretical motivation of HRC lies in complement-
ing capabilities, as novel elements, the developed work intro-
duces parametric validation of individual capabilities via SHACL
shapes that motivate collaborations and maintain an appreciable
degree of self-organisation. This is in contrast with existing
works in literature that rely on rules and/or consistency checks
or ignore them overall, which can be unsuitable for collaborative
use cases.

3. In their very recent work, Hayes and Scassellati [6] put forth a
question for intention conveyance for HRC: ‘‘How can a robot
leverage channels of communication that humans understand,
despite dissimilar physical forms or capabilities?’’ This work de-
velops a web-based, component-driven, projector-based mixed-
reality application10 that supports the foregoing information
model and takes into account different agent capabilities. Al-
though a proof of concept was developed as part of our earlier
work, this study shows the technical feasibility of the solution

9 https://permanent.link/to/jd-doctoral-dissertation/camo
10 https://permanent.link/to/jd-doctoral-dissertation/interaction-ui

https://permanent.link/to/jd-doctoral-dissertation/camo
https://permanent.link/to/jd-doctoral-dissertation/interaction-ui
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by means of a case study that a large group of application
developers known as ‘’front-end developers’’ are adept at, using
scripting languages that report overall faster development time
and easier maintenance.

4. Although bounding boxes as an information construct for agent
intentions was proposed in our prior work [75], their runtime
use for collaborative interactions using the developed MR model
is made possible as part of the work reported in this study. The
demonstration shows the utility of the developed digital thread
framework, which was purposed for knowledge convergence via
enterprise systems, for use by collaborative agents for compo-
nent assembly, and showcases the benefits of integrating product
life-cycle data for manufacturing, particularly HRC.

5. From a methodological perspective, this study is an example
of how ontology engineering methodologies may be used to
build an application ontology for a distributed application. With
the exception of a few, most papers in the manufacturing do-
main present only the result as the developed ontology. Here,
methodological steps are documented in detail, which helps with
understanding design decisions and rationale.

In this work, we choose to approach HRC from the standpoint of a
eam working in tandem towards the goal of assembly, considering the
eeds of the current manufacturing landscape. We allow for the col-
aboration to ‘‘play out’’ and not be based on pre-planned routines but
ather on agent capabilities and runtime message exchanges pertinent
o the assembly tasks.

Any attempt to detail the work that made the foregoing contribu-
ions in the limited space of an article would be challenging. Nonethe-
ess, we hope the article suffices to appreciate the subtle interplay
etween philosophy, multi-agent systems, and logic modelling net sys-
ems, to effect what may be perceived as intelligence and make the
oregoing contributions. In conclusion, as future products and pro-
uction systems become more complex, information systems will take
n greater responsibility to compensate for the inherent limits of the
uman working memory and enable the transition towards human-
entred manufacturing, the likes of which today are labelled as Oper-
tor 4.0 and Industry 5.0. The expectation is that information systems
esearch such as the reported work can help take significant strides
orward in this direction.
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