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ABSTRACT

Fourier ptychography is a computational imaging technique for capturing images
at high-resolution while maintaining a wide field of view. The technique consists
of gathering information about the sample’s Fourier spectrum by illuminating the
sample from different incidence angles. Each incidence angle then corresponds to
a low-resolution intensity image with information about a particular area in the
sample’s high-resolution spectrum. The set of captured low-resolution intensity
images can then be used to synthesize the sample’s high-resolution complex am-
plitude. Since the complex amplitude is recovered the phase image of the sample
will also be recovered.

The reconstruction procedure is conventionally done with an iterative method,
but recently alternative deep learning-based approaches with neural networks have
been explored. This project explores training neural networks to do Fourier pty-
chographic reconstruction, but with the twist that all training data used to opti-
mize the parameters of the neural network is created by simulation. The simulation
procedure emulates Fourier ptychography imaging of a complex object where the
values used for the amplitude and phase arrays are chosen to be grayscale images
drawn from a dataset of stock images.
Two different neural network architectures were explored.

Reconstruction results on simulated data created from a validation dataset
showed good results, recovering the high-resolution object with high accuracy.
The performance of the neural networks was also tested on real data by recon-
structing an FP image set of a bone and cartilage sample. The neural networks
produced images with increased resolution, but not the resolution gain expected
from theory. A comparison with the high-resolution image reconstructed by the
conventional iterative method showed that the neural networks did not produce
images of comparable quality, with the high-resolution images reconstructed by
the iterative method showing a larger amount of detail which suggests a higher
resolution than the reconstructed neural network solutions.
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SAMMENDRAG

Fourier ptykografi er en beregningsbasert avbildningsteknikk for å oppnå høy
oppløsning og samtidig et bredt synsfelt (FoV). Teknikken består av hente in-
formasjon om prøvens Fourier spektrum ved å belyse prøven fra forskjellige in-
nfallsvinkler. Hver innfallsvinkel produserer et lavoppløst intensitetsbilde som
innneholder informasjon om et bestemt område i prøvens Fourier spektrum. Set-
tet av lavoppløste intensitetsbilder kan deretter brukes til å syntetisere et høyop-
pløst bilde av prøvens komplekse amplitude ved bruk av en rekonstruksjonsme-
tode. Siden den komplekse amplituden rekonstrueres vil også prøvens fasebilde
gjenfinnes.

Rekonstruksjonsmetodene som vanligvis benyttes er iterative metoder basert
på overlappende informasjon i Fourier rommet, men alternative dyplærings baserte
metoder med nevrale nettverk har også blitt utforsket. Dette prosjektet utforsker
bruken av nevrale nettverk for fourier ptykografis rekonstruksjon, men med vrien
at de nevrale nettverkene trenes utelukkende på et datasett konstruert med simu-
lering. Det kunstige datasettet til bruk for trening av de nevrale nettverkene ble
konstuert ved å simulere fourier ptykografisk avbildning av et komplekst objekt,
der verdiene benyttet for amplitude og fase til det komplekse objektet var gråskala-
bilder hentet fra et utvalgt datasett.
To forskjellige nevrale nettverksarkitekturer ble utprøvd.

Rekonstruksjonsresultater på simulerte data, der det avbildede komplekse ob-
jektet var kontruert med data hentet fra et valideringsdatasett, viste gode re-
sultater og lyktes i å rekonstruere det komplekse objektet med høy nøyaktighet.
De nevrale nettverkene ble også testet på virkelig FP data ved å rekonstruere en
FP avbildning av en ben- og bruskprøve. NN metoden genererte rekonstruerte
bilder med økt oppløsning, men ikke den oppløsningsøkningen som er forventet
av teorien. En sammenligning med høyoppløstbildet rekonstruert av den konven-
sjonelle iterative metoden viste at de nevrale nettverkene ikke genererte bilder av
sammenlignbar kvalitet. Rekonstruert høyoppløstbilde med den iterative metoden
viste høyere oppløsning enn høyoppløstbildet generert av den NN baserte meto-
den som indikerer at NN metoden ikke rekonstruerer Fourier spekteret til det
høyoppløste objektet tilstrekkelig.
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CHAPTER

ONE

INTRODUCTION

Fourier ptychography [ZHY13] is an computational imaging technique for achiev-
ing high-resolution while maintaining a large FoV, resulting in a larger SBP for the
system than would be possible conventionally. It is simultaneously also a phase
retrieval technique. The FP imaging procedure consist of illuminating the object
from a set of different angles, resulting in a set of intensity images with each image
corresponding to a certain illumination direction. Each illumination angle collects
information about a certain area of the Fourier domain of the imaged object and
is stored in the corresponding intensity image. The captured images containing
information about the Fourier spectrum of the object are then used to reconstruct
a high-resolution complex image of the object.
The reconstruction procedure takes in the captured images as input and outputs
the reconstructed high-resolution complex object. The most common of these re-
construction procedures are iterative in nature can consists of iterative updates to
the Fourier domain of the high-resolution object until it is consistent with infor-
mation contained in the collected images.

Deep learning based methods have been explored as an alternative to the itera-
tive methods for performing Fourier ptychographic reconstruction ([Ngu+18],[Jia+18]
,[Zha+19],[Lu+21]). Deep learning methods differs from the iterative methods in
that they are optimised once prior use and then reconstructs the high-resolution
object in a few forward passes. If one could train netural networks to produce
reconstruction results of similar quality to the iterative methods then aided with
modern hardware like GPUs one could hope to achieved faster reconstruction that
are just as accurate as the iterative method.

1.1 Aim of work

This project aims to train neural networks for the purpose of Fourier ptychogra-
phy reconstruction without the need for the gathering of training data beforehand.
This is archived by simulating Fourier ptychographic imaging of the complex ob-
ject O(x, y) = A(x, y) · exp(i · ϕ(x, y)) computationally. The arrays A(x, y) and
ϕ(x, y) are chosen to be stock images from selected datasets.
The hope with this approach is that the resulting optimized neural networks have

1



2 CHAPTER 1. INTRODUCTION

learned the reconstruction function well enough that they generalize to real FP
image data captured in the lab. The advantage of this approach is that it elim-
inates the time consuming process of collecting training data for use in network
optimisation.



CHAPTER

TWO

THEORY

2.1 Imaging theory

2.1.1 Linear systems and transfer functions

Linear systems is used to describe a variety of different physical systems, including
optics.
Optical systems very commonly use linear system theory in describing and rea-
soning about the systems properties, which warrants a review of the key concepts.
The following discussion follows the one given in [Goo96, pp. 19–22].

The condition for an operator S to be linear is

S [(af(x, y) + bg(x, y)] = aS [f(x, y)] + bS [g(x, y)] . (2.1)

Using delta-functions one can write a function g(x, y) as

g(x, y) =

+∞¨

−∞

g(x′, y′)δ(x− x′, y − y′) dx′dy′. (2.2)

Using the δ-function trick from equation (2.2), the effect of the linear operator S
on g(x, y) can now be described by

S{g(x, y)} = S


+∞¨

−∞

g(x′, y′)δ(x− x′, y − y′) dx′dy′


=

+∞¨

−∞

S {g(x′, y′)δ(x− x′, y − y′)} dx′dy′ (by linearity)

=

+∞¨

−∞

g(x′, y′)S {δ(x− x′, y − y′)} dx′dy′ (since S operates on x, y)

=

+∞¨

−∞

g(x′, y′)h(x− x′, y − y′) dx′dy′ = h(x, y)⊛ g(x, y).

(2.3)

3



4 CHAPTER 2. THEORY

where h(x, y) is defined by h(x, y) = S {δ(x− x′, y − y′)}.
This means that the effect a linear operator S has on a function g(x, y) can be
described by a convolution with kernel h as defined in equation (2.3).
We further note that

F{g2(x, y)} = G2(νx, νy) = F{h(x, y)⊛ g(x, y)} = H(νx, νy)G1(νx, νy). (2.4)

We see that we can describe the effect of the operator S on the system by a
multiplication by function H(νx, νy) in the frequency-domain.
H(νx, νy) is know as the transfer function of the system.

Figure 2.1.1: Transfer function as a black box.

2.1.2 Coherence

Coherence is the correlation between the phases of EM signals. Two signals that
are coherent will have constant (or near constant) relative phase and thus will
oscillate in union with each other.
Coherent leads to a number of phenomena, notably the production of fringe pat-
terns resulting from interfering signals.

2.1.2.1 Temporal coherence

Temporal coherence is the measure of the phase correlation of a signal U(t) with
the signal at a later time U(t+τ). If we express the signal as U(t) = U0e

iϕeiω0t one
sees that for a monochrome signal, the phase difference between points (t, t + τ)
on the sinusoidal signal in figure (2.1.2) is constant and equal to ω0τ .
In practice there are no perfect monochrome signals, which means for large τ , the
signal at points (t, t+ τ) will not be coherent, i.e no constant phase difference.

t

f(t)

t

t+ τ

Figure 2.1.2: Two points along the signal
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A fundamental reason for the fact that no monochrome signal exist is the signal
emitted by a source have a finite duration, which inevitably makes a monochrome
signal impossible.

Following the example in [PPP18, pp. 230–231], it is easy to show that for a
finite wave-train of the type illustrated in figure (2.1.3)

f(t) =

{
e−ω0t, − τ0

2
< t < τ0

2

0, elsewhere
(2.5)

the fourier transform F (ω) of the is given by

F (ω) =
τ0
2π

[
sin[(τ0/2)(ω − ω0)]

(τ0/2)(ω − ω0)

]
(2.6)

with power spectrum as illustrated which can be seen to be concentrated at ω0,
but still containing a continuum of frequencies.

Figure 2.1.3: Finite wave train

Figure 2.1.4: Power spectrum for the finite
wave train.

The fact that no perfect monochrome signal exists due to the finiteness of the
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wave-trains emitted by sources justifies the concept of a coherence time τ0 for
which points (t, t + τ) with τ ≤ τ0 the signal can be considered coherent. The
corresponding coherence length lt is defined lt = cτ0.

2.1.2.2 Spatial coherence

Spatial coherence is the correlation in phase between laterally separated points
on the wavefront. This is in contrast to temporal coherence, which measures the
degree of correlation down the propagation path.
Figure (2.1.5) shows a double-slit setup. If the light reaching the slits are coherent
the light emanating from the slits will produce interference fringes. It can be
shown ([PPP18, pp. 237–239]) that an approximate condition for the separation
between the slits ls such that a interference pattern is produced on the screen due
to an source of dimension s is given by

ls <
rλ

s
. (2.7)

Figure 2.1.5: Double-slit setup illuminated by an extended source of dimension
s.

Equation (2.7) can be considered a condition on the spatial separation ls for two
points on the wavefront to be coherent.

2.1.2.3 Partial coherence

In practice it is hard to achieve fully coherent radiation, usually the coherence
condition is only approximately met and the signal is neither fully coherent nor
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fully incoherent.
The degree of coherence between two electromagnetic fields E1(t), E2(t) is mea-
sured by the mutual correlation function ([Hec17, p. 600])

Γ12(t) ≡ ⟨E1(t)E
∗
2(t+ τ)⟩T . (2.8)

The normalized version of the mutual correlation function, γ(τ), is often conve-
nient to use, and is given by

γ(τ) ≡ Γ12(t)√
[Γ11(0)Γ22(0)]

. (2.9)

with
Γ11(τ) = ⟨E1(t)E

∗
1(t+ τ)⟩T

and
Γ22(τ) = ⟨E2(t)E

∗
2(t+ τ)⟩T .

It can be shown that the relation between γ(τ) and the total intensity of the
interfering fields is [Hec17, p. 601]

I = I1 + I2 + 2
√
I1I2Re{γ(τ)}. (2.10)

The degree of coherence is given by |γ(τ)| and defines the coherence regime:

|γ(τ)| = 1 fully coherent
0 < |γ(τ)| < 1 partially coherent
|γ(τ)| = 0 incoherent.

2.1.3 Coherent imaging

For coherent illumination there is a constant relative phase between each output
signal O(x, y) in the image-plane.
Due to the constant phase difference the output signal Oout(x, y) vary in unison
at all points (x, y) and can be expressed as a convolution between the input signal
Oin(x, y) and the PSF h(x, y) of the system

Oout(x, y) = h(x, y)⊛Oin(x, y). (2.11)

In the frequency domain the relation becomes

Gout(νx, νy) = H(νx, νy)Gin(νx, νy). (2.12)

2.1.4 Propagation in free space

2.1.4.1 Transfer function of free space

By definition H(νx, νy) is the factor an spatial harmonic is multiplied with to
produce the output spatial harmonic. Considering a spatial harmonic plane wave
in the plane z = z1 given by U(x, y, z1) = exp [−i2π(kxx+ kyy)] and in plane
z = z2 a distance d = z2 − z1 along the optical axis given by U(x, y, z1) =
exp [−i(kxx+ kyy + kzz2)]. H(νx, νy) is the found to be

H(νx, νy) =
U(x, y, z2)

U(x, y, z1)
= exp [−ikzd] = exp

[
−i2πd

√
λ−2 − ν2

x − ν2
y

]
(2.13)

where it has been used that kz =
√

k2 − k2
x − k2

y = 2π
√

λ−2 − ν2
x − ν2

y .
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2.1.4.2 Impulse response function of free space under Fresnel condi-
tions

In general the impulse response function (PSF) h(x, y) is the inverse Fourier trans-
form of H(νx, νy) from eq(2.13). The expression of H(νx, νy) can be simplified un-
der certain conditions. Assuming that kz >> k2

x+k2
y it follows that λ−2 >> ν2

x+ν2
y

and the squre root can be expanded as
√

λ−2 − (ν2
x + ν2

y) =
1
λ

√
1− λ2(ν2

x + ν2
y) ≈

1
λ

(
1− λ2(ν2x+ν2y)

2
+

λ4(ν2x+ν2y)
2

8
− . . .

)
. In the Fresnel approximation all the terms in

the sum following the second is neglected and one is left with

H(νx, νy) ≈ exp

[
−i2πd

λ

]
exp

[
iπdλ(ν2

x + ν2
y)
]

= exp [−ikd] exp
[
iπdλ(ν2

x + ν2
y)
] (2.14)

h(x, y) = F−1 {H(νx, νy)} ≈
i

λd
exp [−ikd] exp

[
−ikx

2 + y2

2d

]
. (2.15)

2.1.5 Fraunhofer diffraction

Figure 2.1.6: Plane wave passing through the horizontal aperture plane Σ and
is collected on a screen a distance z away. The aperture-to-screen distance z is
assumed large. Figure not to scale.

Fraunhofer diffraction is the regime describing the diffraction pattern of waves
when collected at distances sufficiently far from the diffracting object, i.e in the
far field.
Figure (2.1.6) illustrates the setup considered in this section where a plane wave is
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Figure 2.1.7: Diffraction by plane screen.

incident on an aperture and collected on a screen, where the separation z between
the aperture plane and the screen is assumed to be large. Following the derivation
in [Goo96, pp. 72–73] we start with the Huygens-Fresnel principle from scalar
diffraction theory describing the amplitude U(P1) at point P1 when an incoming
wave U is diffracted by an aperture Σ:

U(P1) =
1

jλ

¨

Σ

U(P0)
exp(ikr01)

r01
cos(θ) ds. (2.16)

With θ and r01 defined as indicated in figure (2.1.7).
Substituting z/r for cos(θ) and series expanding the distance r =

√
z2 + (x− ξ)2 + (y − η)2 =

z
√
1 + (x−ξ)2

z2
+ (y−η)2

z2
as r ≈ z

[
1 + 1

2

(
x−ξ
z

)2
+ 1

2

(
y−η
z

)2] and neglecting other
terms than z in the denominator one ends up with

U(P1) =
eikz

iλz

¨

ξ,η

U(ξ, η) exp

[
i
k

2z

[
(x− ξ)2 + (y − η)2

]]
dξdη. (2.17)

Considering the exponent inside the integral expression

i
k

2z
(x2 + y2 + ξ2 + η2 − 2xξ − 2yη)

we note that if the far-field z >> k(ξ2+η2)
2

we can approximately disregard the
ξ2, η2 terms and we are left with the fraunhofer diffraction equation:

U(x, y) =
eikzei

k
2z

(x2+y2)

iλz

¨

ξ,η

U(ξ, η) exp

[
−ik

z
(xξ + yη)

]
dξdη. (2.18)

We note that the integral in equation (2.18) is the Fourier transform of U with
support only over the aperture Σ.
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Figure 2.1.8: Plane wave passing through a plane with a circular aperture and
collected on a screen a distance z away.

2.1.5.1 Circular aperature Fraunhofer diffraction pattern

Considering a case where a plane wave Uin is incident on a circular aperture as
shown in Figure (2.1.8) the wave just to the right of the circular aperture can be
described by the equation Uin(x, y)p(x, y) where p(x, y) is the circ function

p(x, y) =

{
1 if x2 + y2 <

(
D
2

)2
0 elsewhere

(2.19)

Substituting the aperture distribution into equation (2.18) we get the fraunhofer
equation for a circular aperture

U(x, y) =
eikzei

k
2z

(x2+y2)

iλz

¨

ξ,η

Uin(ξ, η)p(ξ, η) exp

[
−ik

z
(xξ + yη)

]
dξdη. (2.20)

If Uin(x, y) is a plane wave travelling in the z-direction of unit amplitude, one has
U(x, y) =

√
Iin = 1 and equation (2.20) becomes

U(x, y) =
eikzei

k
2z

(x2+y2)

jλz

¨

ξ,η

p(ξ, η) exp

[
−i2π

zλ
(xξ + yη)

]
dξdη (2.21)

where 2π
λ

has been substituted for k.
It is worth noting in passing that we can identify the integral in equation (2.21)
as the Fourier transform of the aperture distribution p(x, y), and we can write

U(x, y) =
eikzej

k
2z

(x2+y2)

iλz
P
( x

λz
,
y

λz

)
(2.22)
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where P = F{p(x, y)}.
The resulting intensity pattern observed on the screen can thus be given as

I = I0

∣∣∣P ( x

λz
,
y

λz

)∣∣∣2 (2.23)

for a constant I0. The expression given in equation (2.23) can be calculated to be
([Goo96, p. 77])

I = I0

∣∣∣∣2J1(πDρ/λz)

(πDρ/λz)

∣∣∣∣2 (2.24)

where J1 is the first-order bessel-function, D is the diameter of the circular aper-
ture and ρ is the distance from the screen centre to the point (x, y).

The first zero of the bessel-function J1 defines the radius of the bright central

Figure 2.1.9: Airy disk with radius ρs.

lobe of the diffraction pattern. The zero is found at approximately

ρs = 1.22
λz

D
. (2.25)

2.1.6 The single lens imaging system as a low-pass filter

The main takeaway from this section will be that the a single lens imaging system
acts as a low-pass filter. In terms of the transfer functions in the frequency domain,
it will be shown that

Gout(νx, νy) = H(νx, νy)Gin(νx, νy)

withH(νx, νy) = p(νx/wcutoff, νy/wcutoff)
(2.26)

where p(x, y) is a scaled circ-function introduced in equation (2.19). Equation
(2.26) shows that there is a sharp cutoff in the frequencies that the system can cap-
ture, and it follows that the part of the signal containing frequencies ν > D

2
·wcutoff



12 CHAPTER 2. THEORY

will be lost.

We follow the derivation given in [Bah19, pp. 141–144].

Figure 2.1.10: Single lens imaging system.

We recall that the point spread function h(x, y) is the system response to a unit
impulse given as h(x, y) = S{δ(x, y)}.
We find h(x, y) by following the response from an point source placed at (0,0) on
the optical axis in the input plane in Figure (2.1.10) and follow the signal to the
output plane. The resulting output-signal will be the desired impulse response
function h(x, y).

Using equation (2.15) propagation into the lens-plane results in

UL−(x, y) = h1 exp

[
−ikx

2 + y2

2z1

]
(2.27)

with h1 = (i/λz1) exp (−ikz1).

Right after crossing the lens aperture we have the output

UL+ = UL−(x, y)p(x, y) exp

[
ik
x2 + y2

2f

]
(2.28)

where p(x, y) is the circ-function from equation (2.19) and exp
[
ik x2+y2

2f

]
is a

quadratic phase-factor from the lens ([Goo96, p. 100]), with f being the focal
length of the lens.

Using the Fraunhofer equation (2.18) to find the output signal in the image plane,
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it leads to the impulse function

h(x, y) =
eikz

iλz

¨

ξ,η

UL+(ξ, η) exp

[
−iπ (x− ξ)2 + (y − η)2

λz2

]
dξdη

=
eikz

iλz

¨

ξ,η

h1UL−(ξ, η)p(ξ, η) exp

[
ik
ξ2 + η2

2f

]
exp

[
−iπ (x− ξ)2 + (y − η)2

λz2

]
dξdη

= h1h2 exp

[
i
k

2z2
(x2 + y2)

]¨
ξ,η

p(ξ, η) exp

[
−iϵπ ξ

2 + η2

λ

]
exp

[
−i 2π

z2λ
(xξ + yη)

]
dξdη

(2.29)

with factors h1 = (i/λz1) exp (ikz1) , h2 = (i/λz2) exp (ikz2) and ϵ given by

ϵ =
1

z1
+

1

z2
− 1

f
. (2.30)

Observing that the integral in equation (2.29) is the Fourier transform of p(x, y) exp
[
−iϵπ x2+y2

λ

]
we can write

h(x, y) = h2h1 exp

[
−iπx

2 + y2

λz2

]
P1(x/λz2, y/λz2) (2.31)

with P1 = F
{
p(x, y) exp

[
−iϵπ x2+y2

λ

]}
.

Assuming x2+y2

λz2
<< 1 and a focused system ϵ = 0, we get the approximate

expression
h(x, y) ≈ h1h2P (x/λz2, y/λz2) (2.32)

where P is the Fourier transform F{p(x, y)} of the circ-function p(x, y) from equa-
tion (2.19).

Now that we have obtained h(x, y) we can find the frequency domain transfer
function of the system

H(νx, νy) = F{h(x, y)} = F


+∞¨

−∞

p(ξ, η) exp

[
−j 2π

λz2
(xξ + yη)

]
dξdη


= const · p(−λz2νx,−λz2νy).

(2.33)

We see that the transfer function H(νx, νy) ∼ p(νx/wcutoff, νy/wcutoff), with wcutoff =
1

λz2
, is a scaled circ-function as was to be shown.

This means that the cutoff frequency νcutoff becomes

νcutoff =
D

2
· wcutoff =

D

2λz2
. (2.34)

For coherent imaging the cutoff frequency can be given as NA/λ ([Zhe16, p. 1.1]),
which is often convenient to phrase in terms of wave vector notation:

kcutoff = k0 · NA (2.35)

with k0 = 2π/λ.
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2.1.7 Space-bandwidth product (SBP)

If an input signal i(x, y) is band-limited in the sense that the entire spectrum I
is contained within the rectangle −Bx ≤ νx ≤ Bx,−By ≤ νy ≤ By, and i(x, y) is
only significant on a rectangular spatial region −Lx ≤ x ≤ Lx,−Ly ≤ y ≤ Ly,
then i(x, y) can be recovered with good accuracy [Goo96, pp. 26–27] by sampling
at a total of

M =
2Lx

1/(2Bx)
· 2Ly

1/(2By)

points by sampling at the Nyquist frequencies 2Bx, 2By.
This motivates the definition of the space-bandwith product (SBP) for an optical
system:

SBP = 16LxLyBxBy. (2.36)

It is clear that the SBP is a performance measure of the amount of information
the optical system can capture.

2.2 Fourier ptychography imaging
Fourier ptychography (FP) is a computational imaging technique for resolution
enhancement, phase retrieval and high SBP microscopy.
The SBP of the total imaging system in enhanced by gathering information in
the Fourier-domain of the high-resolution complex object O(x, y) by sequentially
illuminating the object from several incident directions (kx, ky).

The angled illumination from direction (kx, ky) can be modelled as a coherent
imaging process with the equation

Oout(x, y) = h(x, y)⊛
(
Oin(x, y)e

ikxx+ikyy
)

(2.37)

for the PSF of the system h(x, y).
Transforming equation (2.37) into the Fourier domain we get

Gout = H(νx, νy)Gin(νx − kx, νy − ky) (2.38)

by remembering the fact from fourier theory that F(f(x)eikx) = F (ν − k).

Recalling the discussion from section (2.1.6), it was shown that the Fourier-domain
transfer function H(νx, νy) for a single-lens imaging system was effectively a low-
pass filter described by H(νx, νy) = p(νx/wcutoff, νy/wcutoff).
Using the fact that the cutoff frequency for an objective lens with numerical aper-
ture NA is k0 · NAobj as discussed in section (2.1.6), we can reasonably assume
that the imaging equation equation (2.38) represents the extraction of a circular
patch of radius k0 · NAobj centred at location (kx, ky) from the Fourier spectrum
of the high-resolution object Oin(x, y). Again we have defined k0 = 2π/λ.
If the illumination source used is a LED-array then each image captured by a
LED in the LED-array corresponds to a direction (kx, ky) that provide informa-
tion about a region (a disk) in the Fourier spectrum of the object. Figure (2.2.1)
illustrates the sampling of the Fourier spectrum of Oin(x, y) where each illumi-
nation source captures a disk in the spectrum of Oin(x, y). More precisely, each
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Figure 2.2.1: Conceptual Fourier ptychography illustration: Illuminating a high-
resolution object by each LED to capture Fourier spectrum sequentially

Figure 2.2.2: Correspondence between disks in the fourier spectrum of the high-
resolution object O(x, y) and the captured low-resolution images in fourier pty-
chography.

captured image, referred to in this project as as "low-resolution images", corre-
sponds to a circular patch in the Fourier spectrum of the high-resolution object.
This is formulated mathematically in equation (2.39).

|Oout(x, y)|2 = |F−1{H(νx, νy)F{Oin(x, y)}}|2. (2.39)

H(νx, νy) is the transfer function for the imaging system.
This correspondence is illustrated in figure (2.2.2).

The angled imaging is typically implemented in practice by the use of a LED-
array as shown in figure (2.2.3). The complex object Oin(x, y) is illuminated by
each LED successively, with each LED corresponding to a different direction with
incident wave-vector components (kx, ky). The image corresponding to a specific
LED is collected by the imaging system as a low-resolution intensity image as
discussed previously.
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Figure 2.2.3: Typical setup for fourier
ptychography imaging.

Figure 2.2.4: LED-matrix illustration.

The values for the wave-vector components (kx, ky) can be given as

kxn =
2π

λ

∆xn

(∆xn)2 + (∆yn)2 + h2

kyn =
2π

λ

∆yn
(∆xn)2 + (∆yn)2 + h2

(2.40)

where ∆xn,∆yn is the offset from the central LED as shown in figure (2.2.4), h
is the distance from the LED-matrix to sample as given in figure (2.2.3) and λ is
the wavelength of the illuminating light.

The information captured about the Fourier spectrum of the object Oin(x, y) in
the form of a set of low-resolution images ILR is used to by various reconstruction
algorithms to recover Oin(x, y).
As discussed earlier this section, the low-resolution intensity images captured by
the camera have lower resolution since the transfer function of the imaging system
essentially functions as a low-pass filter. This means that recovering Oin(x, y) from
ILR can be seen as enhancing the resolution of the imaging system.

Another way to formulate the resolution enhancement by FP imaging is in terms
of the numerical aperture. The NA of the system in increased by FP imaging from
NAobj of the objective lens to the synthesized numerical aperture NAsys.
The synthesized aperture of the system is given by [Ou+15]

NAsys = NAobj + NAillu (2.41)
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where NAillu is the increase due to the computational enhancement using the
information gathered about the high-resolution object’s Fourier spectrum.
The increase in numerical aperture NAillu is given by [Ou+15]

NAillu = max
n

√
k2
xn + k2

yn

k0
= sin

(
max

n
θn

)
(2.42)

where n iterates over all the low-resolution images and θn is the angle of illumina-
tion of low-resolution image n.
We see from equation (2.42) that the increase in NA of the system NAsys is inde-
pendent of the NAobj of the employed objective lens.
This property can be utilised by selecting a low-NA objective lens with a large
field-of-view (FoV) and rely on the NAillu term to increase the resolution suffi-
ciently.
In this way it is possible achieve a large increase in the SBP of the imaging system.

2.2.1 Bright-field and dark-field FP images

The low-resolution images can be classified as either bright-field or dark-field. As
discussed previously each low-resolution image corresponds to an incident direc-
tion that is characterised by its wave-vector components (kxn, kyn), which in turn
defines an illumination angle θn

sin (θn) =

√
k2
xn + k2

yn

k0
. (2.43)

The criterion for an illumination angle to result in a bright-field image can be
stated [Sun+18]

sin (θn) ≤ NAobj (2.44)

after which it naturally follows that for a dark-field image

sin (θn) > NAobj. (2.45)

Its clear that when θn is large enough the imaging mode changes from bright-field
to dark-field. The criterion for bright-field imaging can be restated in the Fourier
domain as the condition that the zero-frequency is contained in the disk with
radius k0 · NAobj (cutoff frequency) centred at (kxn, kyn):

(kxn − 0)2 + (k2
yn − 0) < k0 · NAobj. (2.46)

Figure (2.2.5) illustrates which shifts (kxn, kyn) are characterized as bright-field
and dark-field for a uniform sampling of the Fourier spectrum.
It is clear from equation (2.46) that the bright-field images contain information
about the low frequencies in the Fourier spectrum of the high-resolution object,
while the dark-field images contain information about the higher frequencies and
hence the finer details in the high-resolution object O(x, y).
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Figure 2.2.5: Bright-field shift centres (red) and dark-field shift centres (blue).

2.2.2 Maximal achievable FP resolution enhancement

The numerical aperture of the system increased to NAsys due to computational
enhancement using the information provided about the fourier spectrum of the
high-resolution object O(x, y).
As observed in section (2.1.6) the resolution for coherent imaging system is given
λ/NA, which implies that the final resolution for an FP imaging system is given
by

δr =
λ

NAsys

=
λ

NAobj + NAillu
. (2.47)
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Figure 2.2.6: Illustration of resolution enhancement from NAobj to NAsys by FP
imaging.

The largest pixel size the low-resolution intensity images can have and still fully
capture the full signal bandwidth λ/NAobj without anti-aliasing is given by the
Nyquist sampling theorem as λ/(2 · NAobj). Using FP imaging the synthetic nu-
merical aperture of the high-resolution complex amplitude is given NAsys. The
high-resolution intensity image |O(x, y)|2 then corresponds to a convolution in the
Fourier domain which doubles the pass-band to 2 ·k0 ·NAsys. It follows then from
the Nyquist sampling theorem that the largest pixel-size that samples the signal
without anti-aliasing is given by λ/(4 · NAsys).
This gives a total pixel-enhancement for FP imaging of

pixel enhancement = 2 · NAsys

NAobj
. (2.48)

Related to the pixel-wise is the increase in information gathering capacity, mea-
sured by the space-bandwidth product (SBP). The SBP enhancement is given by
[Sun+17]

SBP enhancement =
(
1 +

NAillu

NAobj

)2

=

(
NAsys

NAobj

)2

. (2.49)

2.2.3 Iterative FP reconstruction method

The method of reconstruction in this section was developed by Zheng([Zhe16]).
It is an iterative algorithm that recovers the Fourier spectrum of the high-resolution
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object, F(O(x, y)). The method therefore also recovers O(x, y) which can be com-
puted from the recovered spectrum. Since the complex amplitude O(x, y) is re-
covered the phase of the high-resolution object is also retrieved.

The fundamental idea of the iterative reconstruction method is to impose consis-
tency between the information about the sampled patches of the Fourier spectrum
of the high-resolution object provided by the low-resolution images gathered.
The fact that the method relies on enforcing consistency among the collected data
requires there to be a certain amount of overlap between the sampled disks in the
Fourier domain as illustrated in Figure (2.2.7).

kx

ky

Figure 2.2.7: Fourier domain overlap between disks centred at (kxm, kym).

The main steps of the algorithm can be given as follows:
1.Initialize the current estimated high-resolution image

√
Ihre

iϕhr with an initial
guess.
2.For a given incident direction extract a circular patch Dkxn,kyn centred at (kxn, kyn).
3.Compute the low-resolution complex amplitude corresponding to the extracted
patch Dkxn,kyn :

√
Ilne

iϕln = F−1(Dkxn,kyn).
4.Make the computed low-resolution image from the extracted patch consistent
with the actual low-resolution amplitude

√
Il gathered during imaging by rescal-

ing:

√
Ilne

iϕln →
√
Il√
Iln
·
√

Ilne
iϕln (2.50)

5.Compute F
{√

Ilne
iϕln
}

of the intensity adjusted image
√
Ilne

iϕln , and update
the corresponding circular area centred at (kx, ky) in the fourier spectrum of the
current estimate of the high-resolution object

√
Ihre

iϕhr .
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6.Iterate through all incident directions (kxn, kyn) (indexed by variable n).
7. Repeat until convergence.
A more detailed version of the iterative reconstruction method is given in alg.(1).

Algorithm 1 Fourier Ptychography Reconstruction Algorithm
1: procedure Reconstruct(I,NLEDs, NA,NITERS)
2: m← number of low-resolution images NLEDs ×NLEDs in I
3: Ks← positions of LEDs in frequency domain
4:

√
IHRe

iϕHR ← initialize array of size M ×N
5: FHR ← F{

√
IHRe

iϕHR}
6: for i← 0 to NITERS do
7: for j in range(length(Ks)) do
8: [kx, ky]← Ks[j]
9: disk← Extract_Circular([kx, ky], k0 ·NA)

10:
√
Ilje

iϕlj ← F−1{disk}
11:

√
Ilje

iϕlj ←
√
Il√
Iln
·
√
Ilne

iϕln

12: FHR[kxl : kxh, kyl : kyh]←
√
IHRe

iϕHR

13: end for
14: end for
15:

√
IHRe

iϕHR = F−1{FHR}
16: return

√
IHRe

iϕHR

17: end procedure

2.3 Neural networks

2.3.1 Fundamentals

Machine learning models can usually be described as a parametrized function
f(x;θ) where the parameters θ can be optimized to minimze a given cost function
L(y, f(x;θ)).
Neural networks are a specific type of machine learning models consisting of a
connected graph of nodes. Each node in the graph represents a specific function
and can thus be thought of as extracting a certain feature from the input data.

Neural networks are usually organized into layers as illustrated in figure (2.3.1).
The network illustrated in figure (2.3.1) is such the the next layer is a function of
only the previous layer. In such a feed-forward architecture the network can be
considered a composition of functions

x
f1−→ f1(x)

f2−→ f2(f1(x))
f3−→ · · · fn−1−→ fn−1(· · · f2(f1(x)))

fn−→ fn(fn−1(· · · f2(f1(x)))

where fn is the function that computes layer n from layer n− 1.
In this perspective the layers of the network represents successive transformations
of the data in a way which helps solve the end goal, which is to minimize the
loss function L. Not all neural networks needs to be strictly feed-forward like the
network in figure (2.3.1) but the intuition of layer-wise processing and successive
feature extraction is something that applies to many types of neural networks.
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Input Hidden Hidden Hidden Output

Figure 2.3.1: Fully connected feed-forward network with three hidden layers and
two output nodes. Each arrow can be associated with a weight parameter w

(n)
ij

between the two nodes.

We denote a node number j in a hidden layer n by h
(n)
j .

For a feed-forward network the value of each node in the hidden layer is computed
in a two-step computation:

h
′(n)
j =

m∑
i=1

w
(n)
ij h

(n−1)
i + b

(n)
j (1)

h
(n)
j = ρ(h

′(n)
j ) (2)

(2.51)

where (1) is a weighted sum of the node values in the previous layer n− 1 plus a
bias bj, followed by (2) which is the application of a nonlinear function ρ.

We see that all the nodes h
(n)
j in the next layer can be computed as a matrix

multiplication where the weights wij is replaced with a weight matrix W and the
biases bj is replaced with a bias vector b

h′(n) = W(n)⊤h(n−1) + b(n) (1)

h(n) = ρ
(
h′(n)) . (2)

(2.52)

Where now all the nodes h
(n)
j in hidden layer n is represented by the vector h(n),

and ρ(h(n)) denotes the element-wise application of the nonlinear function ρ.

The fact that matrix multiplication and vector addition can be used to do the
main bulk of the computation in the network is one of the main reasons why
neural network computations can be done so quickly on hardware like GPUs that
are made for parallellizable computation such as matrix multiplications. For these
reasons neural networks usually operates on vectorized data, and vectors, matrices
and multidimensional arrays are the default language in neural network literature.
The fast computations enabled by specialized hardware such as GPUs is a major
reason why the very large neural networks that are common today have become
feasible.
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2.3.2 Optimization of neural networks

The parameters θ in the neural network f(x;θ) will be optimized to minimize the
loss function of the problem L(y, f(x;θ)) where y is the desired output for the
input x.
In many cases one has a dataset of datapoints (xi, yi)

N
i=1 and hence it is desired to

find the parameters θ∗ that minimizes the sum the loss function over the entire
dataset

θ∗ = argmin
θ

N∑
i=1

L(yi, f(xi;θ)). (2.53)

Equation (2.53) defines the optimal values for the parameters θ, and any optimiza-
tion prodcedure for neural networks would hope to discover these values. Since
optimizing neural networks is a difficult high-dimensional optimization problem,
reaching the optimal solution is not always realistic. Luckily one does not need to
find the optimal set of parameters θ∗ for the neural networks to be useful.

Most neural networks optimization methods only use the first order derivatives
∂L
∂θk

when computing updates to the parameters. The reason for this is that com-
puting second order derivatives ∂L

∂θk1∂θk2
is very expensive when the number of

parameters in the network is very large, which is often the case.
Thus it remains to find a way to compute the gradient ∂L

∂θk
of the loss with respect

to each parameter θ = (θ1, · · · , θK) in the network.
If one uses all the datapoints when computing the gradients we are seeking a way
to compute the derivative

∂Ltot

∂θk
=

∂
∑N

i=1 L(yi, f(xi;θ))

∂θk
(2.54)

that can be used for computing updating the parameters in an optimization rou-
tine.

2.3.2.1 Backpropagation

The conventional way of computing these gradient is with the backpropagation
algorithm.
As an illustration of the backpropagation algorithm we consider how the weights
wij from the feed-forward described by equation (2.51) is done with backpropaga-
tion.
We are interested in computing ∂L

∂wij
since this derivative can be used for updating

the parameters wij, bj using one of the first-order optimization methods that are
common in neural network optimization.
Using the chain rule we can write

∂L

∂wij

=
∂L

∂hj

∂hj

∂wij

∂L

∂bj
=

∂L

∂hj

∂hj

∂bj
.

(2.55)

From equation (2.55) we observe that if we can compute ∂L
∂hj

we can find ∂L
∂wij

and ∂L
∂bj

and hence compute the first-order derivatives for all parameters θ =
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(
W(1) · · ·W(K),b(1) · · ·b(K)
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(n)
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=
Hn∑
i=1

[
L

∂h
(n)
i

ρ′

(
Hn−1∑
l=1

w
(n)
lj h

(n−1)
l

)
w

(n)
ij

] (2.56)

The weight parameters w
(n)
ij denotes the weight parameters in the matrix W(n)

between hidden layers (n− 1), n. The number of nodes in layer n is denoted Hn.

The last line in equation (2.56) shows that given all the ∂L
∂h(n) from layer n we

can compute also compute ∂L
∂h(n−1) in the previous layer n− 1.

Hence the derivatives ∂L
∂wij

, ∂L
∂bj

for all parameters can be computed by successively
passing the ∂L

∂h(n) derivatives backward through the network, explaining the name
backpropagation.
This derivation only showcased the case where both h(n) and h(n−1) were hidden
layers in a feed-forward network but it serves to illustrate the idea behind the
backpropagation method.
It is possible to derive a vectorized form of equation (2.56) which formulates the
equation in terms of matrix multiplications so that backpropagation can be done
efficiently by taking advantage of hardware like GPUs just as was the case for the
forward pass.

Optimizing the network now consists of
(1) Forward pass given input data xi.
(2) Computing derivatives using backpropagation.
(3) Using the derivatives to compute the parameter update

2.3.2.2 Mini-batches

Many machine learning problems, such as classification problems, consists of miniz-
ing a loss function L over a dataset. In the case of a image classification problem
each datapoint (xi, yi) would consist of input image xi and the corresponding true
label yi.
Computing the true gradient given in equation (2.57) of such a problem

∇θ

N∑
i=1

L(yi, f(xi;θ)) (2.57)

would require iterating trough the entire dataset (xi, yi)
N
i=1 which for large dataset

with large N would be unfeasible due to time and memory constraints.
The solution often opted for instead is computing the gradient over a smaller
subset of the dataset (xi, yi)

n
i=1 of size n, where n is much smaller than the dataset
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size such that n << N . The gradient that is being computed is

∇θ

n∑
i=1

L(yi, f(xi;θ)). (2.58)

Since not all datapoints are used, this is not the true gradient of the problem but
instead a noisy estimate.
Such a selection for datapoints of size n is often referred to as a mini-batch, and
n is referred to as the batch size.

2.3.2.3 Optimization routines

As mentioned most of the common neural network optimization methods are first-
order and only requires the derivatives ∂L

∂θk
as input.

Stochastic gradient descent (SGD) is a rather simple method defined by

θ(t+1) = θ(t) + α∇θ

n∑
i=1

L(yi, f(xi;θ
(t))) (2.59)

where n is the mini-batch size. The name stochastic in SGD derives from he fact
that the gradients computed using mini-batches is a noisy estimate of the true
gradient.

More sophisticated routines than SGD have been developed. One notable and
commonly used method is Adam [KB14].
The Adam optimizer adapts the learning rate individually for each parameter us-
ing information from running estimates of the gradients mt and squared gradients
vt

At each step t, the running averages are updated using the gradient from step t,
gt = ∇θ

∑n
i=1 L(yi, f(xi;θ

(t))):

mt = β1mt−1 + (1− β1)gt (2.60)

vt = β2vt−1 + (1− β2)g
2
t (2.61)

Here, β1 and β2 are hyperparameters that is input into the Adam method at the
start. β1, β2 are the decay rates of the gradient average and squared gradient
average respectively. Since the running gradients are zero initialized they are in-
herently biased ([KB14]) and must be bias-corrected. The bias-corrected gradients
m̂t and gradients squared v̂t are computed as:

m̂t =
mt

1− βt
1

(2.62)

v̂t =
vt

1− βt
2

(2.63)

The parameters of the model is update in the following way, where α is the learning
rate:

θt+1 = θt − α
m̂t√
v̂t + ϵ

(2.64)

Where ϵ is a small constant added to the denominator to avoid division by zero.
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2.3.3 Convolutional neural networks

In a fully connected feed-forward network is shown in figure (2.3.1) the next layer
h(n) is computed from the the previous layer using a matrix multiplication

h(n) = W(n)⊤h(n−1) + b(n). (2.65)

If layer n has k nodes and layer n− 1 has l nodes the number of learnable param-
eters in the weight matrix W(n)⊤ will be l× k. If the layers in the neural network
are large (large l, k) each layer requires a large amount of parameters. If for in-
stance the dimensions of the layers h(n),h(n−1) is in the thousands the parameters
in the weight matrix W(n) will be in the millions.
This is one of the reasons alternative networks to the fully-connected feed-forward
network from figure (2.3.1) have been developed.

A very common type of network, especially for image data, that have been devel-
oped is the convolutional neural networks (CNN).
A convolution can be thought of as an filter of given spatial dimensions sliding
over a feature map. Mathematically this can be described as convolution of the
feature map I and a filter K resulting in an output S [GBC16]

S(i, j) = (I ⊛K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (2.66)

The convolution operation occurs frequently in image processing, and many well-
known convolutional filters for various image processing tasks exists.
Examples of such filters are the edge-detection filter and the gaussian blur filter.

The convolution operation potentially changes the spatial dimensions of the input
feature maps on account locations (i, j) in the input image I parts of the filter K
would extend beyond the border of I. Such cases could be handled by padding
the input image I before applying the convolution. Both padding the input im-
age with zeros and replicating the edge-values are common choices. The spatial
dimensions of the output given the chosen padding, stride and filter size can be
found by [PyT21]

Hout =

⌊
Hin + 2× padding− filter_size

stride
+ 1

⌋
Wout =

⌊
Win + 2× padding− filter_size

stride
+ 1

⌋
.

(2.67)

In a convolutional layer in a neural network the filter weights K(i, j) are learnable
parameters that are optimized during network training. In this way the network
can learn its own filters to extract features useful to solve a given task.
A convolutional layer in a neural network consist of a given number of filters each
one producing an output map S as given by equation (2.66).

Convolutional layers have several benefits. They cost considerably less param-
eters than fully-connected layers, which is due to the fact that the convolution
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filters work locally on a very restricted number of values from the input feature
map I, contrasted with fully-connected layers with connections between each in-
put unit and each output unit.
CNNs utilize the fact that features in image data are often local. Detecting edges
for instance usually only requires local data in the input image.
They also feature parameter reuse in the sense that a filter can extract the same
features at different spatial locations in the input image I.
For instance if a filter have learned to extract a feature like edges it be used to
detect edges anywhere on the input image.

2.3.4 Neural network architectures

2.3.4.1 ResNet

Figure 2.3.2: Resnet layer.

ResNets ([He+16]) were introduced to enable training of deep neural networks.
One of the reasons why training deep neural networks can be challenging is that
the learning signal has to be backpropagated through a lot of layers, where in each
layer it would pick up multiplicative factors that could potentially be quite small.
This could cause the learning signal to become very weak after passing backwards
through many layers, resulting in the infamous vanishing gradient problem.
The main trick used in ResNets to mitigate this problem is to let there be a skip
connection as illustrated in figure (2.3.2). The derivative of a layer, where the
non-skip connection is represent by f is then given by

∂(layer)
∂x

=
∂

∂x
(x+ f(x)) = 1 + f ′(x). (2.68)

As equation (2.68) shows, that even if f ′(x) turns out to be small the learning
signal backwards will not be diminished.

2.3.4.2 DenseNet

DenseNets ([Hua+17]) is another approach to designing neural networks that does
not suffer from the vanishing gradient problem.
DenseNets are organized into dense blocks. Each dense block contains a given
number of convolutional layers. As shown in figure (2.3.3) dense nets concatenates
channel-wise the output of each convolutional layer in the dense block to the
current state. This leads to direct forward connections between every layer in the
dense block. The direct connections help with gradient flow backwards during
training and helps prevent vanishing gradients. DenseNet architecture encourages
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feature reuse since it does not change the feature maps, but adds new feature maps
to the current state.
The number of output channels from convolutional layer in a dense block that is
concatenated to the state is referred to as the growth-rate k. If the input array
has dimensions (C,W,H) and is passed through a dense-block of L layers with
growth-rate k the output array will have dimensions (C + L · k,W,H).

Figure 2.3.3: Dense block in a DenseNet architecture. Concatenation is denoted
by ⊛.

2.3.5 Common layers in neural networks

2.3.5.1 Upsampling

Upsampling refers to increasing the spatial dimensions of the feature maps.
Upsampling can be implemented in neural networks in various ways such as trans-
posed convolutions ([Eva16]) or pixelshuffle layers ([Shi+16]).
Another option is simply using nearest neighbour upsampling. The advantages
of this approach is that no additional parameters is introduced, as opposed to
tranposed convolution layers which contains learnable parameters.

2.3.5.2 Downsampling

Downsampling refers to decreasing the spatial dimensions of the feature maps.
One common way of doing this is by using a strided convolution. As shown in
equation (2.67) we see that choosing stride = 2, padding = 1, filter size = 3 for the
convolutional layer results in halving the spatial dimensions of the input array.
Other options include max-pooling and average pooling. Average pooling is a
strided convolution where all the filter weights are given by wij = 1/F 2 for a filter
of dimensions F × F .

2.3.5.3 Instance normalization

Normalization layers are layers that normalize the input in various different ways.
The goal of normalization layers is to ensure that the units have a similar distri-
bution and value ranges.
Experience has shown that such normalization layers can make neural network
training more stable and faster which is why the inclusion of various types of nor-
malization layers has become common practice.
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Instance normalization ([UVL16]) is a normalization layer that normalizes over
the spatial dimensions of the input units.
Specifically if the input is of shape (C,W,H), where W,H represent the spatial di-
mensions instance norm computes normalization over each channel independently
[UVL16]:

yc,i,j =
xc,i,j − µc√

σ2
c + ϵ

, µc =
1

W ×H

W∑
i=1

H∑
j=1

xc,i,j, σ2
c =

1

W ×H

W∑
i=1

H∑
j=1

(xc,i,j − µc)
2.

(2.69)

yc,i,j is the output of the instance normalization layer for input xc,i,j. The index c
runs over the channel-dimension and i, j indexes the spatial location in the feature
maps. µc is the mean of the c-th channel and σ2

c is the variance of the c-th channel,
and ϵ is a small constant added to avoid zero-division.

2.3.6 Generative adversarial networks (GANs)

Generative adversarial networks ([Goo+14]) are a class of generative models that
consists of two neural networks, a generator G and a discriminator D.
The fundamental idea is to train the networks G,D in a adversarial way defined
by the minimax equation [Goo+14]

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (2.70)

z is randomly generated noise that is input into the generator with the interpre-
tation that the generator is sampling from an latent distribution.

Put in words the generator network G in a GAN tries to generate output that
will maximize the probability that the discriminator network D classifies the out-
put as real. The discriminator network will output a probability that estimates
whether an input is real or fake.
The hope is that this will give us a generator network G that can produce realistic
data x indistinguishable from the real distribution pdata.

The loss functions for the generator network becomes

Lgen = log(1−D(G(z))) (2.71)

and the loss function for the discriminator becomes

Ldisc = − logD(x)− log(1−D(G(z))). (2.72)

This gives us the following gradients used for updating the generator and discrim-
inator network:

∇θG

1

n

n∑
i=1

log(1−D(G(z)))

∇θD

−1
n

n∑
i=1

[logD(x) + log(1−D(G(z)))]

(2.73)
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where n is the mini-batch size. The log-probability can be used instead of the prob-
ability since the parameters maximizing the log-probability is the same paramters
that maximizes the probability.

2.3.6.1 LSGAN

Least squares generative adversarial networks (LSGAN) is a purposed ([Mao+17])
modification of regular GANs, where the loss function for the discriminator is a
least squares loss function. This means that the output from the discriminator in
an LSGAN is interpreted as a real number and not a probability.
The loss functions for the generator and discriminator can be chosen to be

Lgen = [D(G(z))− 1]2 (2.74)

for the generator and

Ldisc =
1

2
[D(x)− 1]2 +

1

2
[D(G(z))− 0]2 (2.75)

for the discriminator.
With this choice of loss functions the discriminator tries to optimize its parameters
so that it outputs 1 for real data and 0 for fake data.
LSGANs was shown in [Mao+17] to lead to better and more stable learning than
regular GAN for certain problems and represents an alternative method to regular
GANs that is often easier to train.
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THREE

CREATING A FP IMAGING DATASET USING STOCK
IMAGE DATA

Training neural networks often requires considerable amounts of training data.
State of the art generative models are often trained on datasets containing mil-
lions of datapoints. Gathering real training data for fourier ptychography recon-
struction would be time consuming endeavour since each datapoint in the dataset
would involve imaging the object from many different incident directions, often
numbering in the hundreds. This chapter presents a way of generating a dataset
that can by used to train neural networks for fourier ptychography reconstruc-
tion. Using synthetic data constructed from simulation of the imaging process
and stock-image data as input is an alternative way of creating training data re-
moving the need to gather real training data. Datasets with stock image data
are numerous and available since computer vision problems and tasks have always
been at the forefront of tasks that one is interested in automating with machine
learning models.

3.1 Generating a synthetic FP training set from
stock images

For real FP imaging conducted in the lab the sample is illuminated sequentially
from a set of incident directions {(kxn, kyn)}. These incident directions is defined
by the relative angle compared to the the on-axis illuminating source. As has been
discussed in section (2.2) each of these different incident illumination directions
(kxn, kyn) gives rise to shifts in the Fourier-domain such that

F{Oin}(νx, νy) = H(νx, νy)F{Oout}(νx − kxn, νy − kyn).

Combined with the fact that the objective lens of the imaging system acts as a low-
pass filter, i.e that the transfer function of the optical system has the property
H(νx, νy) ∼ p(νx/w, νy/w) for some cutoff frequency w, then each illumination
direction corresponds to circular disk in the Fourier spectrum of Oin(x, y). The
cutoff frequency, i.e the radius of the extracted disks, is chosen to be k0 ·NAobj as
discussed in section (2.1.6).
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Simulation of FP imaging can then be done by extracting these disks from a high-
resolution object Oin(νx, νy) and using the extracted disks to create the simulated
low-resolution intensity images.

3.1.1 FP simulation algorithm

The method for simulating the forward imaging process is adapted from the one
suggested in [Zhe16, pp. 2.3–2.6].
A complex object Oin(x, y) is constructed from an amplitude A(x, y) and a phase
ϕ(x, y). The values for the amplitude A(x, y) and the phase ϕ(x, y) arrays is chosen
to be from a dataset of grayscale images. Explicitly if we want to construct a com-
plex object of dimensions (m,n), then A(x, y), ϕ(x, y) will be real arrays of dimen-
sions (m,n) with their values given by a grayscale images randomly selected from a
dataset. The complex object is then formed as Oin(x, y) = A(x, y) exp [i · ϕ(x, y)].
With a high-resolution complex object constructed the simulation of the imaging
is done by
1.Computing the fourier transform of F {Oin(x, y)}
2.Extracting circular patches {Dn} of radius k0 · NAobj from F {Oin(x, y)} for a
given set of shifts {(kxn, kyn)}.
3.Compute the low-resolution intensity images |F−1 {Dn}|2 from the extracted
patches.
For each shift (kxn, kyn) there has now been created a corresponding low-resolution
image. The set of created low-resolution images ILR, combined with the high-
resolution complex object A(x, y) exp [i · ϕ(x, y)] now constitute one datapoint
(ILR, [A(x, y), ϕ(x, y)]) in the training dataset. The simulation procedure is vi-
sualized in figure (3.1.1).

Figure 3.1.1: FP imaging simulation.
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3.1.2 Dataset creation

Figure 3.1.2: Synthetic FP dataset creation.

The forward FP simulation method described in the previous section showed how
to create a datapoint given two image arrays that are identified as A(x, y), ϕ(x, y).
In this way an entire dataset for FP reconstruction can be made from an set of
stock images obtained from a dataset as illustrated in figure (3.1.2).
Each FP datapoint (ILR, [A(x, y), ϕ(x, y)]) contains a set of low-resolution images
and two high-resolution images, making the training data memory intensive and
requiring large storage capacity for the dataset sizes requires to train a neural
network of the required capacity. This means that the dataset needs to be contin-
uously generated during training time.
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FOUR

FOURIER PTYCHOGRAPHIC RECONSTRUCTION
USING NEURAL NETWORKS

The goal of a FP reconstruction is using the information from the set of low-
resolution intensity images ILR to recover the high-resolution complex object
O(x, y) = A(x, y) exp (i · ϕ(x, y)), where A(x, y) is the object amplitude ϕ(x, y) is
the object phase.
The input to the neural network will therefore be the set of low-resolution FP
images ILR.
Using the set of low-resolution images as input the task of the neural network will
be to generate a reconstructed high-resolution object Õ(x, y).
Many neural network designs for the FP reconstruction task choose to output two
real arrays Ã(x, y),ϕ̃(x, y), representing the reconstructed amplitude and the re-
constructed phase of the high-resolution complex object, instead of outputting a
complex-valued array Õ(x, y). This is also the approach taken in this project.
As suggested in figure (4.0.1) a neural network for reconstructing the high resolu-
tion object from a number of C low-resolution images will thus be a function:

Gθ : RC×m×n → R2×M×N (4.1)

where θ represent the network parameters, (m,n) are the spatial dimensions of
the low-resolution images, (M,N) are the spatial dimensions of the output high-
resolution objects. The two in the output dimensions (2,M,N) stems from the
fact that the neural network outputs two reconstructed high-resolution arrays
Ã(x, y), ϕ̃(x, y) of spatial dimensions (M,N). The reconstructed complex object
is then formed as Õ(x, y) = Ã(x, y) exp

(
i · ϕ̃(x, y)

)
.

4.1 Patchwise reconstruction of images

Large image sizes make neural network operations very memory expensive, es-
pecially for training but also for inference. It is not uncommon for fourier pty-
chography that the low-resolution intensity images have spatial dimensions in the
thousands, for instance (1024 × 1024) or (2048 × 2048). This makes working on
the full-size images unfeasible due to the large amount of GPU memory it would
require. This is especially true during network training when intermediate results
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Figure 4.0.1: Reconstruction of low-resolution intensity images by neural net-
work.

would have to be stored for gradient computation.
The solution to this problem will be to reconstruct the high-resolution image
patch-wise. Specifically, given an upscale factor r, the neural network Gθ would
take in inputs of shape (C,m, n) and output reconstructed patches (2, r ·m, r ·n).

As a concrete example, consider an imaging setup using a camera with a reso-
lution of (2048) × (2048) and using a 15 × 15 LED array for illuminating the
object, resulting in 152 = 225 low-resolution images. Assume an upscale factor of
r = 4. Reconstruction patch-wise could be done by choosing patches of spatial
dimensions (64, 64) for input into the neural network. Then the neural network
would take as input patches of shape (152, 64, 64) and output patches of shape
(2, 256, 256).
Reconstruction of the entire image would by done by a sliding window, where the
window has spatial dimensions of 64× 64.
Reconstructing the high-resolution object patch-by-patch in this particular exam-
ple would require (2048/64)2 = 1024 patches passed through the neural network.
Its important to note that this would not require 1024 separate passes since neural
network software and GPUs are able to do this in parallel.

4.2 Loss functions for FP reconstruction

The loss function defines the minimization problem the neural network parameters
are optimised after. Explicitly we are seeking the network Gθ∗ with parameters
θ∗ such

θ∗ = argmin
θ

∑
L(Gθ(ILR)) (4.2)

where L is the chosen loss function to minimize and ILR is the input low-resolution
intensity images.
The quality of the reconstruction results one obtains with a trained generator net-
work Gθ is highly dependent on choosing a good loss function since it defines the
optimization criteria for the parameters θ.
The network is designed to output the reconstructed complex valued high-resolution
object, with the high-resolution object being represented with separate channels
for the amplitude and the phase, so G(ILR) = (Ã(x, y), ϕ̃(x, y)). The network
output will thus be arrays having the shape (2,M,N) where M,N is the spatial
dimensions of the high-resolution complex image.
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4.2.1 Distance loss

The most obvious choice of loss function is arguably using the distance between
the reconstructed high-resolution image and the true high-resolution image as the
loss.
Distance can be measured in different ways, but the most natural and commonly
used would be the mean squared error (MSE) or the mean absolute error (MAE).
We refer to these distance measures as the L2 loss and L1 loss respectively.
The L2 loss (MSE) is defined as squared differences between the corresponding
pixel values in the reconstructed and true images, divided by the total number of
pixels:

L2 =
1

MN

∑
x,y

[p(x, y)− p̃(x, y)]2 = ∥p(x, y)− p̃(x, y)∥2 (4.3)

Similarly, the L1 loss (MAE) is defined :

L1 =
1

MN

∑
x,y

|p(x, y)− p̃(x, y)| = ∥p(x, y)− p̃(x, y)∥1 (4.4)

in both cases M,N is the spatial dimensions of the images.

4.2.2 Adversarial loss

In the framework of standard GANs one can define an adversarial loss for the
generator G as

Ladv = log [1−D(G(ILR))]. (4.5)

or in the case of LSGANs as discussed in (2.3.6.1):

Ladv = [1−D(G(ILR))]
2. (4.6)

In both cases the adversarial loss measures how good the generator network G is
at fooling the discriminator network D.
Adversarial losses like defined in equations only encourages the generator network
G to output images of high visual quality, but does not enforce the images to
be solutions to the FP reconstruction problem and therefore needs to be used in
combination with other loss function that enforce closeness to the solution of FP
reconstruction problem.

4.2.3 Composite loss functions for FP reconstruction

Empirically it is often the case that using using only distance losses such as L2 or
L1 losses for image reconstruction problems usually does not lead to high-quality
results. It is frequently found in practice that the solutions obtained from only
using L2 or L1 loss functions in the neural network training leads to blurry im-
ages, due to the tendency L2 and L1 losses has of encouraging averaged solutions.
Reconstructed images appear blurry when the highest frequency components of
the target image have not been recovered. Stated another way; when trained with
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only L2 or L1 losses the neural network fails to reconstruct the highest frequencies
in the image and lacks finer details. This is detrimental to the image quality and
can render the reconstructed images unusable.
The aforementioned reasons motivates using a composite loss function incorporat-
ing both a distance loss, such as the L1 or L2 loss and an adversarial loss.
Such a loss function can be given as a weighted sum of the distance loss function
and the adversarial loss function:

L = w1L1 + w2Ladv. (4.7)

The L1 distance term ensures that the reconstructed image is close pixel-wise to
the real image and the adversarial loss Ladv encourages reconstruction of the higher
frequency part by also training the generator network G to produce reconstructed
images that are hard to distinguish from the true value. Typically the L1 term
would be weighted higher than the Ladv since the reconstructed solutions staying
close to the true values pixel-wise is the most important criteria for good solutions.

4.3 Network architectures

The network architecture is an important parameter for the performance of the
network. This section presents the chosen architectures for both the generator
and discriminator networks.

The input to the generator networks is the collected set of low-resolution intensity
images ILR, which is a real array of dimension (C,m, n) where C is the number
of low-resolution images and (m,n) is the spatial dimensions of low-resolution im-
ages.
To avoid confusion it is again mentioned that since the reconstruction is done
patch-wise, so (m,n) will be the spatial dimensions of a chosen patch size. The out-
put of the generator network will be high-resolution patches of dimension (2,M,N)
where (M,N) = (r ·m, r · n). Upper bounds for the upscale factor r is discussed
in section (2.2.2).

The discriminator only evaluates the perceptual quality of the output images,
not how well the output solves the FP reconstruction problem. The input to the
discriminator network is therefore the reconstructed high-resolution image patches
of dimension (1,M,N).

4.3.1 Generator networks

Two architectures for the generator network is explored in this project.

The first is a rather deep ResNet network as illustrated in figure (4.3.1). The
architecture of this network is inspired by the generator network architecture from
the paper [BDS18]. The ’non-local’ block in the network architecture is defined the
same way as in [BDS18]. This network outputs only a single high-resolution image
of shape (1,M,N) so two networks are needed to reconstruct the high-resolution
complex object O(x, y), one for reconstructing the amplitude A(x, y) and another
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network for reconstructing the phase ϕ(x, y).
The ResNet network used with architecture as given in figure (4.3.1) had 41.08 M
parameters.

The other generator architecture explored is a DenseNet ([Hua+17]) with a U-net
architecture ([RFB15]) adapted from the paper [Lu+21]. This generator architec-
ture reconstructs the amplitude A(x, y) and the phase ϕ(x, y) simultaneously and
hence outputs an array of dim (2,M,N).
The DenseNet network used with architecture as given in figure (4.3.2) had 68.32
M parameters.
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4.3.1.1 ResNet generator

Figure 4.3.1: ResNet generator network architecture.
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4.3.1.2 DenseNet generator

Figure 4.3.2: DenseNet generator network architecture.
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4.3.2 Discriminator networks

Figure 4.3.3: Discriminator network architecture. The network layer ’non-local’
is defined the same way as in [BDS18].
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4.4 Network training
As described in section (3.1.2) the training data is generated continuously as
needed using the simulation method from section (3.1.1). As was also discussed,
the arrays A(x, y), ϕ(x, y) which is used to create the stimulated FP imaging dat-
apoints (I

(i)
LR, [A(x, y), ϕ(x, y)]

(i)) will be chosen to be stock images. The arrays
A(x, y) and ϕ(x, y) will be grayscale images read in from a chosen dataset. The
FP datapoints (I

(i)
LR, [A(x, y), ϕ(x, y)]

(i)) are continuously generated as needed us-
ing stock images as values for A(x, y), ϕ(x, y). The grayscale images are scaled
into proper ranges, [0, 1] for A(x, y) and [0, 2π] for ϕ(x, y) before begin input into
the FP simulation method.

It is likely that the datasets chosen will have a large impact on the performance
of the final network. One might hypothesize that a more diverse training dataset
leads to a network that is better at generalizing since it has learned to output a
greater range of image classes, hence a rather large diverse dataset is chosen.
The dataset used is the ILSVRC2014 dataset from the ’ImageNet Large Scale Vi-
sual Recognition Challenge 2014’ competition. The dataset contains 456567 RGB
images of 200 different classes.
The images in the datasets is converted to grayscale, resized to spatial dimensions
(256, 256) and separated into a training set and a validation set with a 85%-to-15%
split.
The FP image simulation method are set to simulate FP imaging with a 15x15
LED array, corresponding to 152 = 225 different (kxn, kyn) shifts and 225 low-
resolution intensity images ILR. An upscale factor of r = 4 is chosen, which gives
means low-resolution images have spatial dimensions (64, 64).
Summarising; the input to the neural network will be arrays ILR of dimensions
(225, 64, 64), the neural network will be trained to reconstruct the high-resolution
amplitude A(x, y) and phase ϕ(x, y) of spatial dimensions (256, 256) and hence
the dimensions of the output will be (2, 256, 256).

Some preprocessing of the datapoints (I
(i)
LR, [A(x, y), ϕ(x, y)]

(i)) is applied before
training starts.
The low-resolution images ILR are normalized before being input into the generator
netowork G:

I
′(i)
LR =

I
(i)
LR − µILR

σILR

. (4.8)

All generator network ends in a tanh-function which has range [−1, 1] as it is a con-
venient way to constrain the output. For this reason image arrays A(x, y),ϕ(x, y)
are mapped into [−1, 1] before being input to the loss-function. This does not lose
generality since the arrays can be re-scaled back to the proper ranges when needed.

The loss function used is a weighted sum of L1 loss and an adversarial GAN-
loss Ladv, L = w1L1 + w2Ladv as justified in section (4.2.3). The values used are
w1 = 100, w2 = 1.
The adversarial loss arising from the GAN means that a discriminator network D
will be trained alongside the generator network G.
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The networks are trained using a batch size of 3. The training is divided into
epochs where each epoch contains 300 parameters updates. The initial learning
rate is set to 1.5× 10−5 and after the first 150 epochs the learning rate is decayed
by multiplying the learning rate by 0.9 every 10 epochs.
The optimization routine used is Adam ([KB14]) for both the generator and dis-
criminator networks.
The learning of the discriminator is slowed down by multiplying the discriminator
loss by 0.5, as suggested in [Iso+17].
This is to prevent the discriminator for overpowering the generator too much. We
hypothesise that since the generator has to minimise the L1 loss in addition to
the GAN adversarial loss Ladv it makes the task of learning to fool the discrim-
inator harder, and hence it might be beneficial to slow down the learning of the
discriminator network.

4.5 Related work

The use of neural networks for fourier ptychographic reconstruction has already
accumulated an extensive body of work. A variety of different methods have been
explored, with many different choices when it comes to network architectures,
training data and loss functions.

The approach taken in this project has been inspired by the previous work [Lu+21]
and their work on the use of neural networks for FP reconstruction. Similarly to
the work done in this thesis project they use simulation of the imaging process
to generate the training data used for network optimization. Their purposed net-
work is a U-net with dense connections similar the network shown in figure (4.3.2).
One of the main features of their network architecture is the splitting up of the
dark-field and bright-field images and processing these images independently for
the first layers in the network.The intuition behind this is that the intensity val-
ues of the bright-field images are quite different form the dark-field images. This
results in a quite large dynamic range for the input data if they are input into
the neural network on equal basis as one array and could be detrimental to the
learning process. The idea of separating the dark-field and bright-field images has
also been applied to the network architectures used in this project.
Another similarity as mentioned is the use of simulation of the FP imaging pro-
cess for constructing a training data set. In [Lu+21] random patches from a set
of ground truth high-resolution images is extracted. The random patches is then
used in a forward FP imaging simulation, obtaining 225 low-resolution FP im-
ages. The approach taken to create a dataset is thus similar to the one used in
this project, with the difference being that instead of using ground-truth high-
resolution objects obtained from experiment, stock images are put into the FP
simulation algorithm. There is a key difference in that the training set constructed
in this project is purely synthetic in contrast to the work by [Lu+21] in which the
training data stems from real experimental FP images.

[Ngu+18] reconstructs FP microscopy images of live-cells with a deep learning ap-
proach. For training data they use a single FPM dataset (one set of low-resolution
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images and corresponding high-resolution images) where the high-resolution ground
truth images have been reconstructed with an iterative solution method. The
dimensions of the high-resolution images are 12800 × 10800 with low-resolution
images of dimensions 2560× 2160, corresponding to an upscale factor of r = 5.
The training dataset is created by selecting random crops from the ground-truth
high-resolution phase image along with the corresponding patches from the low-
resolution intensity images. Each cropped patch then gives a data-point (X, Y )
for use network training
. The loss function described in their paper is quite extensive, being a weighted
sum of several components other than the usual L1-loss function. Similarly to
many other approaches to reconstructing FP images with NNs, they also choose
to incorporate an adversarial component in the loss function to avoid blurry out-
put images. Specifically they train a cGAN where the conditional discriminator
computes D(G(I)|I) where x is the input low-resolution FP images. In words the
discriminator outputs a probability that the output of the generator G(I) is real
given the low-resolution images I. In addition to the adversarial loss form the
discriminator they include an L1 loss in the fourier domain between reconstructed
high-resolution images and the ground truth high-resolution images, to further
improve the reconstruction of higher frequencies and avoid blurry output images.
Concretely the loss function is given as a weighted sum of individual loss functions

l = λ1(lMAE + lFMAE) + λ2lG + λ3lθG (4.9)

with the individual loss functions given by

lMAE =
1

r2WH
∥ϕ−G(I)∥1

lFMAE =
1

r2WH
∥F {ϕ} − F {G(I)}∥1

lG = − logθG(D(G(I)|I))
lθG = −∥θG∥2

(4.10)

lMAE is the l1 pixel-wise loss, lFMAE is the l1 distance in the fourier domain between
the reconstructed and ground truth, lG is the adversarial loss and lθG = −∥θG∥2
is an l2-regularization term often used when training neural networks.
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FIVE

RESULTS AND DISCUSSION

5.1 Reconstruction of synthetic FP images
The two different networks was trained on a simulated dataset as described in
section (3.1.2).
This section presents how well the neural networks are able to reconstruct unseen
FP datapoints derived from the validation dataset, i.e datapoints which the neural
network has not been trained on.
The FP datapoints are obtained by by the simulation procedure given in section
(3.1.1), drawing the A(x, y), ϕ(x, y) input from the validation set.

The parameters for the forward FP simulation procedure used to create the net-
work training data is selected in such a way that the k-shifts {(knx, kny)}225i=1 are
the same as the k-shifts produced by the experimental parameters given in table
(5.2.1). This enables the network trained on the resulting simulated data dataset
to also reconstruct real FP image data for the real dataset presented in section
(5.2), and hence the same trained networks are used in both sections.

Table 5.1.1: Network Performance in terms of average L1 loss, average Peak
Signal To Noise (PSNR) and average Structural Similarity Index Measure (SSIM).

Network L1 Loss (avg) PSNR (avg) SSIM (avg)

ResNet phase 0.1588 28.73 dB 0.6222
ResNet amp 0.0710 31.43 dB 0.7466

DenseNet phase 0.1226 29.30 dB 0.6977
DenseNet amp 0.0722 31.36 dB 0.7441

The performance metrics in table (5.1.1) was calculated by creating 20,000 FP
datapoints using stock images from the validation dataset, hence all datapoints
were previously unseen by the generator networks.
As can be seen from table (5.1.1) the performance of both network architectures
are very similar.The reconstructed phase images are of lower quality than the re-
constructed amplitude. It is not unexpected that recovering the phase is a more
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difficult problem than recovering the amplitude. Furthermore a lot of information
about the high-resolution amplitude is already present in the on-axis low reso-
lution intensity image since the high-resolution is usually similar to an upscaled
version of the on-axis image.

The most important criteria for the reconstructed images is closeness to the true
values in the L1 or L2 sense, i.e that the distance between the reconstructed image
and true image is small. It is however also important that the quality of the re-
constructed images are high in terms of noise-level, sharpness and visible details.
Figure (5.1.1) shows reconstruction results for FP-datapoints simulated by the FP
simulation method with input A(x, y), ϕ(x, y) randomly selected from the valida-
tion dataset.
The on-axis low resolution intensity images is up-scaled to the same dimensions
256× 256 using nearest neighbourhood up-sampling and shown for context.
A qualitative inspection of the reconstructed images in figure (5.1.1) shows that
the reconstructed images Ã(x, y), ϕ̃(x, y) have a strong resemblance with the in-
put A(x, y), ϕ(x, y), and are hard to distinguish at the image scale used in figure
(5.1.1). The low-level features in the images seems to be recovered very well.
The PSNR metric also indicates that the images have been reconstructed fairly
accurately. The reconstructed amplitude images A(x, y) have values roughly in
the range 30 dB− 34 dB while the reconstructed phases ϕ(x, y) have lower PSNR
scores in the range 28 dB − 30 dB which indicates lower image quality compared
to the reconstructed amplitude. This suggest that the image quality of the recon-
structed amplitude is higher than the image quality of the reconstructed phase,
but this is not immediately apparent when viewing the images at the selected scale
in figure (5.1.1).
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True amplitude

True phase

Simulated on-axis low-resolution image

Reconstructed amplitude DenseNet

33.59 dB 29.87 dB 34.47 dB 32.10 dB

Reconstructed phase DenseNet

29.49 dB 28.82 dB 30.23 dB 28.68 dB

Reconstructed amplitude ResNet

33.80 dB 29.94 dB 33.97 dB 31.81 dB

Reconstructed phase ResNet

29.00 dB 28.42 dB 28.39 dB 28.88 dB

Figure 5.1.1: Reconstruction of simulated FP data randomly selected from the
validation dataset. Reconstructed images are captioned with the Peak Signal to
Noise (PSNR) score.
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Figure 5.1.2: Zoomed in view of amplitude image reconstruction patches.

Figure (5.1.2) shown the reconstructed amplitude by the DenseNet and ResNet
for a particular image part of the image as indicated by the square in the large
high-resolution image.
Inspecting the upscaled patch of the reconstructed high-resolution amplitude im-
age reveals that some of the finer details are lost in the amplitudes reconstructed
by the neural networks. The amplitudes output by the neural networks further-
more looks more noisy and blurred. As discussed earlier the blurry images indicate
that the higher-frequency components of the spectrum of the image A(x, y) have
not been fully recovered.
A similar comparison for a phase reconstruction is shown in figure (5.1.3). Figure
(5.1.3) shows the reconstruction results for a FP-datapoint generated from ran-
domly selected validation data. The observations made about the image equality
of the reconstructed phase images mirror those made about the reconstructed am-
plitude image. The finer details in the image have not been recovered and this is
reflected in the PSNR score of the reconstructed images.
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Figure 5.1.3: Zoomed in view of amplitude image reconstruction patches.

5.2 Recontruction of real FP images

The neural networks trained on stock image data was tested on real FP imaging
data and the results are presented in this section.
For clarity we repeat that the neural networks take the set of FP low-resolution
images as input and output the reconstructed high-resolution amplitude Ã(x, y)
and high-resolution phase ϕ̃(x, y). Together the amplitude and the phase make up
the reconstructed high-resolution object Õ(x, y) = Ã(x, y) · exp(i · ϕ̃(x, y)).
The neural networks was trained on channel-wise normalized input as described
in section (4.4), and hence the FP low-resolution images was normalized before
being fed to the neural networks.
Reconstruction is also performed with the iterative reconstruction method and
the reconstructed high-resolution object is compared to the corresponding recon-
structed high-resolution images as produced by the neural networks.

5.2.1 Bone and cartilage dataset

The FP imaging dataset used for the reconstruction test is an FP microscopy
imaging of a bone and cartilage sample.
The size of the LED-array used was 15×15 resulting in 225 low-resolution intensity
images. The pixel size of the camera sensor used was 6.5µm and the magnification
factor M = 2 results in an effective pixel size of 3.25µm.
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Additional parameters for the experiment is provided in table (5.2.1).

Figure 5.2.1: On-axis low-resolution intensity image. The region enclosed by the
red square will be used for testing the reconstruction performance of the optimized
neural networks.

Table 5.2.1: Experimental Parameters for FP imaging of the bone and cartilage
sample.The setup is similar to the example given in figure (2.2.3).

NA Magnification Pixel size (µm) Wavelength Image Size Distance to sample

0.055 2 6.5 530 nm 2048 × 2048 200 mm

5.2.2 Reconstruction results

The region enclosed by the red square in figure (5.2.1) have been reconstructed and
the resulting high-resolution intensity images displayed in figure (5.2.2) together
with contents of the red square region from the on-axis low-resolution intensity
image shown in figure (5.2.1).
We reconstruct the high-resolution intensity with the iterative method (b) as well
as with the two different optimized generator neural networks shown in (c) and
(d).
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(a) On-axis upscaled intensity (b) Reconstructed intensity iterative
method

(c) Reconstructed intensity DenseNet gen-
erator

(d) Reconstructed intensity ResNet gener-
ator

Figure 5.2.2: (a) is the upscaled region from the on-axis low-resolution intensity
image corresponding to the reconstructed high-resolution region shown in (b),(c)
and (d). All images shown have dimensions 512 × 512. All images have been
contrast adjusted and scaled to fit the entire 16-bit range to enhance image clarity.
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From figure (5.2.2) we observe that both the reconstructed intensity images gen-
erated by the neural networks contain details not visible in the on-axis image
(a) in figure (5.2.2). A general qualitative visual inspection also suggest the re-
constructed intensity images appear to have higher resolution than the upscaled
on-axis image.
The resolution enhancement becomes even clearer in figure (5.2.3), which provides
an enlarged view of the top half of the region shown in figure (5.2.2). Conse-
quently we conclude with relatively high confidence that the neural networks have
succeeded in enhancing the original resolution. The intensity image reconstructed
by the iterative method, shown in (b) figure (5.2.2), contain finer details not dis-
cernible in the intensity images reconstructed by the neural networks.
The finer patterns present in the intensity reconstructed by the iterative method
seems ’fused’ together in the intensities reconstructed by the neural networks. This
leads us to conclude that the neural networks have failed to enhance the resolu-
tion sufficiently to reproduce these details. This suggests that the NNs have not
learned to utilize all the available information in the input set of low-resolution
FP images.

(a) Upscaled on axis intensity.

(b) Reconstructed intensity by ResNet generator.

Figure 5.2.3: Enlarged view of the 512× 256 top half of the image patch shown
in figure (5.2.2)
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(a) Reconstructed amplitude by the iterative method.

(b) Reconstructed amplitude by the ResNet generator.

Figure 5.2.4: Reconstructed amplitude patch of dimension 512×256 for the top
half of the image patch enclosed by the red square in figure (5.2.1).

Comparing the amplitudes reconstructed by the iterative method and the ResNet
neural network in figure (5.2.4) it shows more clearly that neural network has
not managed to reconstruct the fine-grained details that can be observed in the
amplitude reconstructed by the iterative method show in (a) figure (5.2.4).
However the amplitude reconstructed by the neural network are to be able to
reproduces edges and the overall ’structure’ of the image.
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(a) Reconstructed phase image ϕiter by it-
erative method

(b) Reconstructed phase image ϕresnet by
ResNet generator.

(c) Reconstructed phase image ϕdense
DenseNet generator.

Figure 5.2.5: Phase image reconstructions of dimensions 512×512 for the 128×
128 patch enclosed by the red square in figure (5.2.1).

Reconstructed phase images are shown in figure (5.2.5). All reconstructed phases
have been transformed into the range of [0, 2π).
Qualitatively we see that the phase images reconstructed by the neural networks
are able to detect edges and overall structure fairly well. But again the neural
networks fail to reconstruct the finer details.
We also observe significant phase differences at various regions when comparing
the phase image reconstructed by the neural networks to the phase reconstructed
by the iterative method.
Edge effects between upscaled patches are also apparent in the phase images pro-
duced the the neural networks, these edge effects also degrades the image quality.
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(a) Reconstructed phase image ϕiter iterative method.

(b) Reconstructed phase image ϕresnet ResNet generator.

(c) |ϕiter − ϕresnet|

Figure 5.2.6: Enlarged view of 256× 512 patch from figure (5.2.5).
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The enlarged view in figure (5.2.6) highlight the previous observations about dis-
crepancies in phase value and details between the phase reconstructed by the
iterative method and the phase reconstructed by the neural network.
Figure (5.2.6) (c) shows the absolute phase difference between the reconstructed
phase images for the iterative method and the ResNet generator |ϕiter − ϕresnet|.
The plot of |ϕiter−ϕresnet| indicates that the neural networks outputs phase values
close to ϕiter for the ’background’ region, i.e regions with little variations in phase.
In regions with high variation in phase ϕresnet varies markedly from ϕiter.

(a) Reconstructed phase iterative method. (b) Reconstructed phase ResNet generator.

Figure 5.2.7: Reconstructed 1024 × 1024 phase images by the (a) iterative
method and (b) the ResNet neural network. The top-left quadrant corresponds
to the region in the on-axis image enclosed by the red square in figure (5.2.1).

The phase image reconstructed by the neural network seems to have the roughly
the same edges as the phase image produces by the iterative method. Areas with
phase considerably different from the average (’background’) phase value differ-
ence also appear in the same spatial locations in the two phase images. However
there are again there are significant differences in the phase values between the
phase recovered by the neural network and the phase recovered by the iterative
method.
Figure (5.2.7) also showcases some interesting differences between the reconstructed
phase image by the iterative method and the phase image reconstructed by the
neural network.
The phase image recovered by the iterative method have some ’wave-like’ artefacts
which is not present in the phase reconstructed by the neural network, while the
phase reconstructed by the neural network have jittery artefacts throughout the
image.
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Figure 5.2.8: Log power spectrum for reconstructed complex amplitude Õ(x, y)
of the same image patch as figure (5.2.7).

The log power spectra of the recovered complex amplitude Õ(x, y) corresponding
to the same image patch as in figure (5.2.7) is shown in figure (5.2.8).
The encircled areas in figure (5.2.8) are defined such that the fraction of the
spectral density outside of the area is less than 1× 10−6, in other words it defines
a soft frequency cutoff radius. The soft cutoff for the spectrum reconstructed by
the iterative method is 0.063k0 and for the spectrum reconstructed by the ResNet
generator 0.040k0. This show that the spectrum reconstructed by the iterative
method have a larger portion of the spectral density at higher frequencies than
the spectrum reconstructed by the neural networks, and could explain why the
recovered images by iterative method contain finer details.

5.3 Reconstruction time and performance

Reconstruction time can be an important factor in FP reconstruction, especially
if one needs to reconstruct a long sequence of FP images.
Table (5.3.1) compares reconstruction times for the iterative method and for neu-
ral network based reconstruction. Most software for neural networks are made to
process mini-batches of input data as discussed in section (2.3.2.2), which means
it will upscale several patches in the same forward pass.
The neural network architectures used in this project will takes input batches of
dimension (batch_dim, 225, 64, 64) and outputs high-resolution patches of dimen-
sions (batch_dim, 256, 256). The number of forward passes required to reconstruct
the entire high-resolution image is then 20482/(batch_dim · 642). Obviously the
larger batch dimension the faster the reconstruction of the entire image will be.
The VRAM size of the GPU used is the limiting factor of the batch dimension.
Considering batch sizes of the form 2n , it was found that the largest possible
batch dimensions for the DenseNet was 64, while the largest batch size possible
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for the ResNet architecture turned out to be 32 when tested on a NVIDIA RTX
3090 GPU with 24 GB VRAM
The comparison with the iterative method shows that reconstruction with neu-
ral networks is considerably faster than reconstruction with the iterative method.
The speedups are quite large and its 7 − 12 times faster to reconstruct an entire
8192×8192 complex high resolution image from a set of 2048×2048 low-resolution
images using neural networks instead of 5 iterations of the iterative method.
If the image quality and accuracy of the neural network reconstructions could be
improved to be of comparable quality as the output of the iterative method this
represents a significant faster method, especially for long image sequences.
Drawbacks to the neural network method as presented in this project is the time
it takes to train the network, often taking days of training to converge.
A situation where training a neural network beforehand is viable could be a case
where a long sequence of FP image data is to collected over time, one such case
could be monitoring the evolution of a dynamically changing sample.
Another drawback is the need to retrain the network anytime changes in the ex-
perimental parameters that determine the k-shifts {(kxn, kyn)} occurs, since this
changes the definition of the input to the neural network. The iterative method
on the other hand does not suffer from this problem.

Table 5.3.1: Comparison of reconstruction times for the iterative method and
for the generator neural networks. Patch size refers to the spatial dimensions of
the input patch extracted from the low-resolution images. Total reconstruction
time is defined as the time requires to reconstruct the entire high-resolution object
from low-resolution images of dimension 2048× 2048.

Method Batch size Patch size (spatial) Forward pass time Total reconstruction time

Iterative_5loops - 256 3.891s 249.0s
Iterative_5loops - 512 17.53s 280.5s
Iterative_10loops - 256 8.166s 522.6s
Iterative_10loops - 512 35.470s 567.5s
DenseNet 64 64 1.303s 20.85s
DenseNet 32 64 0.655s 20.96s
ResNet 32 64 1.130s 36.16s
ResNet 16 64 0.571s 36.55s
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CONCLUSIONS

Neural networks have been implemented and trained for Fourier ptychographic
reconstruction. The entire training dataset used for optimizing the network pa-
rameters is created by simulation. The simulation procedure used to create the
dataset emulates fourier ptychographic imaging of a complex object O(x, y) =
A(x, y) ·exp(i ·ϕ(x, y)) where the arrays A(x, y), ϕ(x, y) are grayscale stock images
drawn from a dataset. In this way a synthetic dataset is created and removes the
need for time consuming collection of training data by doing FP imaging in the
lab.
Two neural network architectures were explored.
After network optimization the performance of the neural networks were tested
on previously unseen FP datapoints created by selecting data from a validation
dataset. The network performance was measured by averaging over a total 20,000
FP datapoints created with input data from a validation dataset. Both the neural
network models showed overall good performance reconstructing previously un-
seen simulated FP data.
In terms of average L1 distance on validation data between reconstructed images
and ground truth images both networks had an average L1 loss of around 0.07 for
amplitude reconstructions, while the phase reconstructions had slightly higher L1

loss, with about 0.12 average L1 loss for the DenseNet generator and 0.16 average
L1 loss for the ResNet generator.
The image quality of the reconstructed high-resolution images was also found ac-
ceptable in terms of the image quality metrics PSNR and SSIM.

The neural networks that had been trained only on synthetic training data was
tested by reconstructing a real FP image dataset. The real FP data was a FP
imaging set of a bone and cartilage sample.
The high-resolution image reconstructed showed that the neural networks suc-
ceeded in enhancing the resolution, but not to the level theoretically possible,
meaning the networks did not manage to fully recover the high-resolution object
O(x, y).
The quality of the reconstructed high-resolution neural networks was consider-
ably worse than the corresponding high-resolution image reconstructed by the
conventional iterative method. The images reconstructed by the iterative method
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contained more details not visible in the reconstructed images produced by the
neural networks.
The neural network based reconstruction method considered in this project was
considerably faster in reconstructing the high-resolution images compared to the
iterative method, but with the image quality of the reconstructions produced by
the networks it cannot considered a viable option for Fourier ptychographic recon-
struction.

No major performance difference was observed for the two neural network ar-
chitectures tested, namely the ResNet-style network and the Dense-net style net-
work. It was observed that the DenseNet had somewhat better phase recovery
performance. Given that the DenseNet recovers the entire complex object in one
forward pass and has a total of 68.32M parameters while the ResNet generator
uses two separate networks with 41.08M paramters each. It was also observed that
it was possible to reconstruct larger batches with the DenseNet than the ResNet,
indicating that the ResNet uses more VRAM on the GPU during a forward pass
than the DenseNet. Taking these facts into account the DenseNet is the preferred
architecture of the two considered.

6.1 Future work
The architecture of the generator networks could probably be improved by further
testing and experimenting. This could be a part of the solution to improving the
reconstruction peformance.
Another possible improvement concerns the FP simulation method for creating a
FP dataset from stock images. There is likely possible to improve the simulation
method to produce FP datapoints with low-resolution intensity images that are
more similar to real FP data.
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