
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Tore Apeland Fossland

Semantic Similarity Search over
Spatio-textual Data

Master’s thesis in Computer Science
Supervisor: Kjetil Nørvåg
June 2023

Tore Apeland Fossland

Semantic Similarity Search over Spatio-
textual Data

Master’s thesis in Computer Science
Supervisor: Kjetil Nørvåg
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract
This master’s thesis explores the challenges associated with indexing and searching
spatio-textual data, a rapidly expanding category of multi-dimensional objects with
diverse applications. Existing methods for spatio-textual data search often struggle
to capture the intricate semantic relationships within textual data. To overcome this
limitation, this thesis presents DualiDistance, a novel algorithm that leverages word
embeddings to enhance the accuracy and effectiveness of search operations. Building upon
the foundational principles of the iDistance indexing method, DualiDistance integrates
spatial and textual information into dual indexes to tackle some of the principal challenges
in semantic similarity searches. The approach goes beyond exact term matching by
incorporating semantic relevance and tries to avoid a spatial bias, which can result in
more accurate search results.

i

Sammendrag
Denne masteroppgaven utforsker utfordringene knyttet til indeksering og søk i spatio-
tekstuelle data, en raskt voksende kategori av flerdimensjonale data med varierte bruk-
sområder. Eksisterende metoder for søk over spatio-tekstuell data sliter ofte med å fange
de intrikate semantiske sammenhengende i tekstdata. For å unngå denne begrensningen
presenterer denne oppgaven DualiDistance, en ny algoritme som tar i bruk word embed-
dings for å forbedre nøyaktigheten og effektiviteten av søkeoperasjoner i tekstdata. Ved å
bygge videre på de grunnleggende prinsippene til indekseringsmetoden iDistance, fletter
DualiDistance sammen spatial og tekstuell informasjon i doble indekser for å unngå en
spatial bias som man ser hos andre relaterte metoder.

ii

Aknowledgements
We would like to thank to our thesis advisor, Kjetil Nørvåg, for their guidance and for
providing access to their code repository and datasets. Their code repository served as a
great starting point for our work as well as providing benchmarking capabilities when
testing our algorithms.

Tore Apeland Fossland
Trondheim, 12th June 2023

iii

Contents
Abstract i

Sammendrag ii

Aknowledgements iii

Acronyms vii

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Problem Formulation . 2
1.4 Goals and Research Questions . 3
1.5 Thesis Structure . 3

2 Related Work 5
2.1 Spatial Keyword Search . 5
2.2 Semantic Representations of Text . 5
2.3 Semantic Spatio-textual Search . 6
2.4 Limitations of Existing Methods . 7

3 Background Theory 9
3.1 Symbols . 9
3.2 Spatio-textual Data . 10
3.3 Distance Metrics . 10

3.3.1 Spatial Distance Metrics . 10
3.3.2 Textual Similarity Metrics . 10
3.3.3 Hybrid Distance Metrics . 11

3.4 Features . 11
3.5 Impact of High Dimensionality . 12
3.6 Dimensionality Reduction . 12
3.7 Indexing Methods . 13

3.7.1 Spatial Indexing . 13
3.7.2 Textual Indexing . 13

3.8 B+-Tree . 14
3.9 Nearest Neighbor Search Algorithms . 15

3.9.1 Exact Nearest Neighbors . 15

v

Contents

3.9.2 K-Nearest Neighbor Search . 15
3.9.3 Approximate Nearest Neighbors 16

3.10 Integrating Rankings . 17
3.10.1 Fagin’s Algorithm . 18
3.10.2 Treshold Algorithm . 19

3.11 The iDistance Method . 19
3.11.1 Overview . 20
3.11.2 Index Structure . 21
3.11.3 Data Partitioning and Clustering 22

4 Dual Semantic Similarity Search 23
4.1 K-Means with Maximum Radii Calculation 23
4.2 Optimizing the iDistance Algorithm . 23
4.3 Optimized One-Dimensional iDistance . 24

4.3.1 Query Processing . 25
4.4 Dual Spatio-textual iDistance . 28

4.4.1 Index Construction . 29
4.4.2 Threshold Algorithm For Dual Indexes 30
4.4.3 Query Processing . 31
4.4.4 Inter- and Intra-cluster Pruning . 32
4.4.5 Motivations Driving DualiDistance 34

5 Experimental Evaluation 37
5.1 Experimental Setup . 37

5.1.1 Code and Platform . 37
5.1.2 Algorithms . 37
5.1.3 Dataset . 38
5.1.4 Parameters . 38
5.1.5 Metrics . 39
5.1.6 Queries . 40

5.2 Comparative Evaluation . 40
5.2.1 Varying k . 40
5.2.2 Varying λ . 41

5.3 Sensitivity Analysis . 43
5.3.1 Varying ∆r . 44
5.3.2 Varying f . 46

6 Conclusion and Future Work 49
6.1 Conclusion . 49
6.2 Future Work . 50

Bibliography 53

vi

Acronyms
ANN Approximate Nearest Neighbors.

BERT Bidirectional Encoder Representations from Transformers.

ELMo Embeddings from Language Models.

FA Fagin’s Algorithm.

GloVe Global Vectors for Word Representation.

I/O Input/Output.

KNN k-Nearest Neighbors.

LDA Latent Dirichlet Allocation.

LSH Locality-Sensitive Hashing.

MBB Minimum Bounding Boxes.

MBR Minimum Bounding Rectangles.

NN Nearest Neighbor.

PCA Principal Component Analysis.

t-SNE t-Distributed Stochastic Neighbor Embedding.

TA Threshold Algorithm.

vii

1 Introduction
This master’s thesis focuses on semantic similarity search over spatio-textual data and
the underlying theory that enables them. This chapter presents the motivation and
objectives of this research. We will begin by providing background information and
explaining the motivation for undertaking this work. Next, we will define the problem
formulation. Finally, we will define the goals and research questions that will guide the
work and outline the structure of the thesis.

1.1 Background

Today we are witnessing a tremendous increase in the sheer amount, diversity, and speed
at which digital information is being generated. A substantial portion of the available
data consists of multidimensional information, encompassing various types of data such as
spatial coordinates, textual content, and temporal data. Among these, the intersection of
spatial and textual data, known as spatio-textual data, has drawn considerable attention
due to its broad range of applications. From geotagged social media posts to location-
based service reviews, spatio-textual data is rich in contextual information that provides
insights into users’ behaviors, preferences, and sentiments. Thus, efficient search methods
for this type of data are crucial for many applications. The integration of spatial and
textual information introduces numerous challenges for similarity search. Traditional
methods for spatio-textual search often fall short of capturing the semantic relationships
within textual data. These methods primarily rely on keyword-based search, which may
not consider the nuanced similarities between words and can lead to inadequate search
results.

1.2 Motivation

In this thesis, our motivation is to address the challenges of semantic similarity search
over spatio-textual data. We aim to capture the semantic relationships between words
in a high-dimensional space by utilizing word embeddings, enabling more contextually
accurate and comprehensive search capabilities compared to traditional keyword-based
methods. Word embeddings allow us to represent the textual description of a spatio-
textual object as a dense, high-dimensional semantic vector. By leveraging similarity
functions on these vectors, we can identify semantically similar textual descriptions,
leading to more accurate and contextually sensitive search results. The main challenges
we face are the high dimensionality of the semantic vectors and the integration of spatial

1

1 Introduction

and textual information. The high-dimensional nature of spatio-textual data poses
computational and efficiency challenges for similarity search. Additionally, effectively
incorporating both spatial proximity and semantic textual similarity into a unified index
adds another layer of complexity. To tackle these challenges, we introduce the novel
algorithm DualiDistance. This algorithm is inspired by the iDistance indexing method,
originally designed for high-dimensional similarity search. We extend the principles of
iDistance into the dual spaces of spatial and textual data, allowing us to partition and
index the spatio-textual data space separately. By doing so, we aim to enable faster
retrieval of relevant data objects during query processing, providing an efficient and
effective dual search mechanism.

1.3 Problem Formulation

This master’s thesis addresses the issue of semantic similarity search over spatio-textual
data. The task involves selecting, from a set of spatio-textual objects P = {p1, p2, ..., pn}
each possessing a geographical location (pi.x, pi.y) and a textual annotation pi.text, the
k objects that minimize the distance function d(q, p), considering both semantic and
spatial aspects. The distance function d(q, p) embodies two key elements. The first one
is ds(q, p), which measures the spatial distance between the coordinates of the query
(q.x, q.y) and those of a particular object (p.x, p.y). The calculation of ds(q, p) employs a
normalized form of the Euclidean distance, normalized by Dmaxs , the greatest Euclidean
distance between any two items in the data set

ds(q, p) =
√

(q.x− p.x)2 + (q.y − p.y)2

Dmaxs

The second element is the semantic distance dt(q, p), derived from the comparison
between q.text and pi.text. Semantic distance is defined using word embeddings, which
allow us to transform the textual description of a spatio-textual object p into a highly-
descriptive n-dimensional vector V = {v[1], v[2], . . . , v[n]}. Semantic distance dt(q, p) is
determined as the Euclidean distance between the normalized semantic vectors of q and
p, normalized by the largest potential Euclidean distance Dmaxt

dt(q, p) =

√
(Vq[1]− Vp[1])2 + (Vq[2]− Vp[2])2 + . . . + (Vq[n]− Vp[n])2

Dmaxt

We propose the following equation for the total weighted distance function for two
spatio-textual objects q and p

d(q, p) = λ · ds(q, p) + (1− λ) · dt(q, p) (1)

Here, λ ∈ [0, 1] is an application-specific variable that adjusts the relative impact of
the spatial and semantic components on the overall distance function.

2

1.4 Goals and Research Questions

Problem 1. (Semantic Spatio-textual Similarity Search) Given a set of spatio-
textual objects {pi} ∈ P and a query object q, the objective is to find the k entities
Pk = {p1, . . . , pk} such that

d(q, pi) ≤ d(q, pj), ∀pi ∈ Pk and ∀pj ∈ P − Pk.

where d(q, p) represents the distance between objects q and p. We introduce an exact
algorithm to address the k-nearest neighbors problem above in Section 4.4.

1.4 Goals and Research Questions

Goal Develop indexing and searching methods that improve the performance of similarity
searches in spatio-textual data.

The primary objective of this thesis is to address the limitations of previous approaches
to semantic similarity search over spatio-textual data. By developing scalable and efficient
semantic similarity search techniques, this thesis aims to enhance the performance of
similarity searches and contribute to the broader goal of facilitating more efficient and
effective analysis of spatio-textual data in various applications. To achieve this, the study
focuses on designing and implementing novel methods for indexing and searching large
spatio-textual datasets, while maintaining good performance, generalizability to new
datasets, and adaptability to a range of use cases. To achieve this goal, the research will
focus on the following research questions.

Research question 1 What are the limitations of existing indexing and searching tech-
niques for spatio-textual data, and how do they impact the efficiency and effectiveness
of similarity searches?

Research question 2 How can novel indexing and searching methods be designed to
address the challenges associated with semantic spatio-textual search?

Research question 3 What performance improvements can be achieved by designing new
algorithms, and how do they compare to existing methods in terms of retrieval
efficiency and effectiveness?

1.5 Thesis Structure

The rest of this paper is organized as follows:

• Chapter 2 explores the state-of-the-art indexes and algorithms for semantic search
over spatio-textual data.

• Chapter 3 introduces the theory, tools, and methods necessary to understand the
work.

3

1 Introduction

• Chapter 4 presents the novel spatio-textual index and algorithm DualiDistance and
its accompanying methods.

• Chapter 5 details and discusses the experiments and results obtained from applying
the proposed indexes and algorithms on a large dataset.

• Chapter 6 concludes the thesis and describes possible directions for future research.

4

2 Related Work
This Chapter provides a review of the existing literature on spatial keyword search and
the generation of semantic representations for text. We then explore the state-of-the-art
methods for semantic spatio-textual search. By highlighting the notable limitations of
current approaches, the Chapter underscores the importance of developing new and
improved methods.

2.1 Spatial Keyword Search

In recent years, spatial keyword search has become increasingly important, with a growing
number of location-based devices and services requiring both spatial and textual relevance
between a query and objects in the dataset[4, 5, 7, 15]. This approach combines geographic
location and textual matching to provide users with more accurate and meaningful results
than each domain might achieve independently. Initial efforts in the field concentrated
on Spatial Keyword Search employing boolean constraints, which depends on precise
keyword matching[4]. Nonetheless, this approach might yield unsatisfactory results due to
its inflexible matching requirements. In order to tackle this problem, alternative methods
have been proposed that permit more lenient matching criteria, accepting partial keyword
matches and exhibiting a higher tolerance for spelling errors[4, 8, 26, 27]. However, a
common limitation among these methods is their reliance on the syntactic matching
of query keywords to text. This means they primarily focus on the exact matching
between search terms and textual content without considering semantic relationships
and contextual nuances. This limitation prevents them from retrieving objects that are
synonyms but literally different from query keywords. As a result, there is a growing
need for spatial keyword search methods incorporating semantic representations to better
capture the meaning and intent behind user queries.

2.2 Semantic Representations of Text

Word embeddings are a state-of-the-art technique for creating semantic representations
of text. They are a powerful tool for capturing the underlying meaning and intent of
words and phrases within a text, addressing the limitations of syntactic matching in
spatial keyword search methods. Incorporating word embeddings into a traditional spatial
keyword search can significantly improve the quality of search results by considering
semantic relationships between query terms and documents[6]. In this Section, we discuss
various word embedding techniques and their potential applications in enhancing spatial

5

2 Related Work

keyword search. Word2Vec[16] is a widely-used word embedding technique that learns
continuous vector representations for words in a large corpus of text. The core idea
behind Word2Vec is that words with similar meanings tend to appear in similar contexts.
This approach represents words as high-dimensional vectors in a way that preserves their
semantic relationships, allowing for the computation of similarity between words using
cosine similarity or other distance measures. Global Vectors for Word Representation
(GloVe)[18] is another popular word embedding method. GloVe learns word vectors by
capturing the global co-occurrence information of words in a corpus. The technique
optimizes a weighted least squares objective function that minimizes the difference between
the dot product of word vectors and the logarithm of their co-occurrence probabilities.
While traditional word embeddings like Word2Vec and GloVe have demonstrated success
in various natural language processing tasks, they still have limitations, particularly in
capturing context-dependent word meanings. Context-aware word embeddings, such as
Embeddings from Language Models (ELMo) and Bidirectional Encoder Representations
from Transformers (BERT), address this issue by generating embeddings that take into
account the surrounding context of words within a sentence. ELMo[19] is a context-aware
word embedding method that uses deep bidirectional language models to generate word
representations. ELMo leverages a pre-trained, multi-layer bidirectional Long Short-Term
Memory (LSTM) network to capture both left-to-right and right-to-left context. The
final ELMo embeddings are a weighted combination of the hidden layer representations
from the LSTM network. BERT[9] is another context-aware word embedding technique
based on the transformer architecture[24]. BERT is pre-trained using a masked language
model objective, which allows it to learn bidirectional context by predicting masked
words in a sentence based on their surrounding context. The model also employs a
next-sentence prediction task, which enables it to learn relationships between sentences.
BERT has achieved state-of-the-art performance on a wide range of NLP tasks and is a
good candidate for word embedding generation.

2.3 Semantic Spatio-textual Search

The S2R-tree[6] represents the state-of-the-art in semantic spatio-textual searches, ad-
dressing the same problem as this thesis. Essentially, it expands upon the R-tree structure,
discussed in 3.7.1, integrating spatial coordinates with low-dimensional semantic vectors
to represent the text. These vectors are derived from projecting high-dimensional word
embeddings into an m-dimensional space using a pivot-based method. As a result, each
vector is represented as an m-dimensional vector, with the value of m being as low as
2. The vector thus represents the distance of the specific vector from the m pivots in
high-dimensional space. The S2R-tree is built on the spatial layer of coordinates, with
each leaf further developed into an R-tree indexing the m-dimensional representations
as the semantic layer. Index nodes are then extended with m-dimensional Minimum
Bounding Boxes (MBB) of semantic vectors, allowing only parts relevant to the query to
be accessed. However, its main limitation arises from its spatial-first approach, where the
index primarily focuses on organizing data based on spatial coordinates. Our experimental

6

2.4 Limitations of Existing Methods

findings indicate that its effectiveness is comparable to a basic R-tree implementation
that solely indexes the spatial domain.

The NIQ-tree[20] and its extension, LHQ-tree[21], are multi-level indexing structures
that also adopt the spatial-first approach. These structures use a Quadtree at the top
level, discussed in 3.7.1, to index data objects based on their spatial coordinates. In
the second level, objects within each leaf node are indexed using topic relevance and
iDistance[13]. The topic relevance is derived using Latent Dirichlet Allocation (LDA),
discussed in Section 3.7.2, to create a probabilistic topic model that captures semantic
information. Finally, at the last level, n-gram inverted lists are built to retrieve objects
based on the presence of specific n-grams within them. While the NIQ-tree and LHQ-tree
share similarities with our work, our approach integrates spatial and textual information
using word embeddings, which differ from the topic modeling approach employed in the
NIQ-tree and LHQ-tree.

Sun et al. [22] propose an interactive spatial keyword querying method with semantics.
They also employ LDA to extract semantic representations from the data. In their
approach, they address the challenges of short queries and semantic ambiguity by
incorporating user interactions and feedback in query results. This differs from our
approach, which does not rely on user interaction. User feedback in spatio-textual querying
has limitations as it relies on users’ understanding and interpretation of queries, which can
result in inaccurate or ambiguous feedback and less precise query results. Additionally,
incorporating user feedback adds an extra step of interaction, potentially slowing down
the query process, and scalability challenges arise when collecting and processing feedback
from a large number of users due to the associated time and computational demands.

2.4 Limitations of Existing Methods

Despite significant advancements in semantic spatio-textual similarity search techniques,
existing methods continue to face significant limitations related to scalability, efficiency,
and accuracy. One key limitation of these methods is the dominance of the spatial
dimension in their indexing structures. The spatial-first approach seems to restrict the
potential for exploiting semantic similarities for efficient search and retrieval. When
the spatial dimension dominates the indexing process, the effectiveness is comparable
to that of indexing methods that only consider the spatial domain, such as a basic
R-tree. Therefore, there is a need for a more balanced integration of spatial and textual
information.

Current approaches predominantly rely on low-dimensional semantic vectors or topic
modeling techniques to capture the semantic meaning of queries. However, these methods
have inherent limitations. Low-dimensional semantic vectors, obtained by projecting high-
dimensional word embeddings into a lower-dimensional space, can result in a significant
loss of semantic information, thereby hindering precise semantic capture and contextual
understanding of queries. On the other hand, topic modeling approaches provide a
probabilistic interpretation of semantic information but may struggle to capture the
fine-grained nuances of individual semantic contexts, particularly in large and complex

7

2 Related Work

datasets.
Furthermore, incorporating user feedback to enhance semantic relevance introduces

computational complexity and potential inconsistencies due to subjective interpretations.
Incorporating user interaction can impact system scalability, as processing feedback
from a large number of users poses time and computational challenges. In designing
DualiDistance, we aim to address these limitations. We focus on developing an indexing
structure that integrates spatial and textual dimensions equally, manages high-dimensional
semantic representations efficiently, and provides precise results without relying on user
interaction.

8

3 Background Theory

3.1 Symbols

The primary symbols used in this paper are summarized in Table 3.1.

Table 3.1: Description of symbols used in the algorithms
Symbol Description
q Query object
qid The id of the query object
p Data object
k Number of nearest neighbor objects required by the query
λ Spatio-textual weighting parameter
T iDistance B+-tree
c iDistance stretch factor
S Set of k nearest neighbors
r Radius of a sphere
∆r The change of r
P Set of data partitions
O Set of reference points
Pi The ith partition
Oi The ith reference point
PQ Priority queue for candidate nodes
DB The dataset
DS The dataspace
distmaxi Maximum radius of partition Pi

dist(p1, p2) Metric function returns the distance between objects p1 and p2
idist(d) Returns the iDistance based on d = dist(p1, p2)
querydist(q) Query radius of q
sphere(q, r) Sphere of radius r and center q
furthest(S, q) Sphere of radius r and center q

9

3 Background Theory

3.2 Spatio-textual Data
Spatio-textual data refers to data that contains both spatial and textual information. A
spatio-textual object, denoted as p, is a data object that encapsulates both spatial and
textual information. The spatial information is represented by a geographical location,
characterized by coordinates (p.x, p.y). The textual information of the object, represented
as p.text, comprises a textual annotation associated with the object. This annotation
may consist of a string of words, terms, or other types of text data relevant to the
object. Spatio-textual data can be derived from structured data sources like databases of
addresses and associated textual information, or unstructured sources like social media
posts containing location information and accompanying text.

3.3 Distance Metrics
A key aspect of similarity search is the use of various distance metrics to quantify the
similarity between data objects. This Section reviews commonly used distance metrics
for data with spatial and textual components.

3.3.1 Spatial Distance Metrics

The Minkowski distance - The Minkowski distance measures the distance between two
n-dimensional vectors x = {x1,...,xn} and y = {y1,...,yn}. It is defined as:

ℓp(x, y) = p

√√√√ n∑
i=1
|xi − yi|p (3.1)

Two of the most well-known variants are ℓ1 (Manhattan distance) and ℓ2 (Euclidean
distance), where the latter is most relevant for our purposes.

The Manhattan distance - The Manhattan distance measure the distance between two
n-dimensional vectors x = {x1,...,xn} and y = {y1,...,yn}. It is defined as:

ℓ1(x, y) =
n∑

i=1
|xi − yi| (3.2)

The Euclidean distance - The Euclidean distance measure the distance between two
n-dimensional vectors x = {x1,...,xn} and y = {y1,...,yn}. It is defined as:

ℓ2(x, y) =

√√√√ n∑
i=1
|xi − yi|2 (3.3)

3.3.2 Textual Similarity Metrics

Textual Similarity Metrics are quantitative measures used to evaluate the similarity or
relatedness between two text documents or strings based on their content. Two commonly
used textual similarity metrics are Cosine Similarity and Jaccard Similarity.

10

3.4 Features

Cosine Similarity measures the cosine of the angle between two non-zero vectors in
a term frequency space. There are various ways of transforming sentences into vectors,
one example being word embeddings (??). It is a widely used metric for comparing the
similarity between documents represented by term frequency vectors. The formula for
Cosine Similarity between two vectors A and B is given by:

CosineSimilarity(A, B) = A ·B
∥A∥∥B∥

(3.4)

Jaccard Similarity, also known as the Jaccard Coefficient or Jaccard Index, is a metric
used to measure the similarity between two sets. It is defined as the ratio of the size of
the intersection of the sets to the size of their union. For two sets A and B, the Jaccard
Similarity can be calculated as:

JaccardSimilarity(A, B) = |A ∩B|
|A ∪B|

(3.5)

3.3.3 Hybrid Distance Metrics

Hybrid Similarity Metrics are designed to evaluate the similarity or relatedness between
multi-dimensional data objects, such as spatio-textual data described in Section 3.2.
These metrics take into account both spatial and textual dimensions, combining the
individual similarity measures for each dimension into a unified metric. Typically, hybrid
similarity metrics are formulated as a weighted combination of spatial and textual
similarity metrics. The following is an example definition of a hybrid distance metric.
Given two spatial-textual objects pi and pj , with spatial coordinates (xi, yi) and (xj , yj)
and textual descriptions Ti and Tj , the hybrid distance metric dh(pi, pj) is defined as

dh(pi, pj) = λ · ds(pi, pj) + (1− λ) · dt(Ti, Tj) (3.6)

where λ ∈ [0, 1] is a weighting parameter, ds(pi, pj) represents the spatial distance
between the two objects, and dt(Ti, Tj) represents the textual distance between their
descriptions.

3.4 Features

This Section is from the specialization report in the course TDT4501. A feature of a data
object is a measurable attribute or characteristic of a phenomenon. The set of features
for a data object should be informative, discriminating and independent to achieve good
performance. This means that a feature should contain relevant information about the
data, differentiate between different classes or groups within the data and not correlate
with other features. Since features are usually numerical, the set of features that defines a
data object is stored in a feature vector. An increase in dimensionality implies an increase
in the number of features used to describe the data. For example, in cancer research, age
and the current stage of the spread can be used as features to decide a cancer patient’s

11

3 Background Theory

prognosis. The two features are the dimensions of a feature vector. However, other
factors can give information to the prognosis, like the type of tumor and comorbidities.
By adding these features to the feature vector, we are increasing the dimensionality of
our data.

3.5 Impact of High Dimensionality
The term data dimensionality denotes the count of distinct features or attributes charac-
terizing each data object in a dataset, explained in Section 3.4. The dimensionality can
also increase dramatically due to the use of word embeddings, discussed in Section 2.2,
where words are mapped into high-dimensional vector spaces. The influence of data di-
mensionality is particularly noteworthy in similarity search methods, which often grapple
with high-dimensional data. This increased complexity leads to a phenomenon known as
the curse of dimensionality. With the rise in dimensionality, data becomes increasingly
sparse and requires significant computational resources for processing and analysis. Such
sparsity challenges conventional search methods, which are often designed for dense data.
Interpreting similarity or closeness between data objects also becomes more challenging
with high dimensionality. In high-dimensional spaces, distances between data objects
can become almost equidistant, complicating the distinction between the nearest and
the furthest neighbors. Therefore, researchers adopt varied strategies to manage high-
dimensional data. Some focus on optimizing indexing algorithms for lower-dimensional
data, while others strive to mitigate the intricacies of indexing high-dimensional data. A
common strategy to cope with high dimensionality involves employing alternative vector
similarity metrics or using dimensionality reduction techniques. Dimensionality reduction
strives to convert high-dimensional data into a representation with fewer dimensions while
preserving essential information. The most straightforward technique involves selecting
a relevant subset of features from the total feature set. A more detailed exploration of
dimensionality reduction techniques can be found in Section 3.6.

3.6 Dimensionality Reduction
Dimensionality reduction methods can be used to avoid the problem stated in Section
3.5. These techniques attempt to reduce the complexity of high-dimensional data while
preserving its essential structure and relationships. It aims to transform the original
high-dimensional data into a lower-dimensional representation, which can facilitate more
efficient processing, visualization, and storage. This Section provides an overview of some
popular dimensionality reduction techniques, including t-Distributed Stochastic Neighbor
Embedding (t-SNE)[23], Linear Discriminant Analysis, and Principal Component Analysis
(PCA). The t-SNE algorithm can effectively capture complex relationships, making it
useful for visualizing high-dimensional data. However, it is not well-suited for similarity
searches as it is specifically used for visualization purposes only. Linear Discriminant
Analysis is a supervised technique that focuses on maximizing class separation using
class label information. However, for similarity searches on spatio-textual data, which

12

3.7 Indexing Methods

does not have well-defined class labels or relationships, PCA is a better option. PCA is
an unsupervised method that captures the maximum variance in the data, preserving
the inherent structure of the data without relying on class labels. It achieves this by
transforming a set of variables that may be related to each other into a smaller set of
uncorrelated variables called principal components. These components are arranged in
order of importance, with the first components capturing the most significant patterns of
variation in the original data.

3.7 Indexing Methods
Indexing methods are data structures and algorithms designed to organize and store data
in a way that enables efficient retrieval, modification, and deletion operations. They play
a crucial role in reducing the search space and improving the performance of nearest
neighbor search algorithms. In the context of high-dimensional spatio-textual data,
various indexing methods have been proposed. This Section explores the most common
one-dimensional indexes of spatial and textual data.

3.7.1 Spatial Indexing

Spatial indexing methods are specifically designed for organizing and searching data
objects based on their spatial attributes, such as coordinates. These enable the efficient
processing of spatial queries. R-trees[12], kd-trees[2], and quad-trees[11] are considered
some of the most effective methods utilized in spatial indexing. R-trees utilize a hierarch-
ical tree structure optimized for multi-dimensional data, encapsulating data objects within
Minimum Bounding Rectangles (MBR). Each node in the tree is linked to a MBR. The
data objects are stored in the leaf nodes. If a node isn’t a leaf node, it contains additional
MBRs. Importantly, all objects that are encapsulated within a larger parent MBR are
also included within one of its child MBRs. Kd-trees, or k-dimensional trees, are binary
tree structures for organizing k-dimensional objects. Utilizing splitting hyperplanes, each
non-leaf node divides the space into two half-spaces, with left and right hyperplane objects
represented in the respective left and right subtrees. This recursive process results in a
binary tree partitioning space based on the k-dimension object coordinates. Quad-trees,
primarily used for two-dimensional spatial data, recursively partition a space into four
quadrants. Each node symbolizes a square area, with non-leaf nodes having four children
representing the respective quadrants of the square. The partitioning continues until
each node encapsulates at most one object or reaches a specified depth level.

3.7.2 Textual Indexing

Textual indexing focus on organizing and searching data based on their textual attributes,
such as keywords, terms, or semantic relationships. These enable efficient processing of
textual queries, including keyword search, phrase search, and semantic search. Inverted
indexes are data structures that store a mapping from words to their locations in a set
of documents. By listing the documents in which a particular term appears, inverted

13

3 Background Theory

indexes facilitate efficient keyword-based search, allowing for quick retrieval of relevant
documents. This technique is commonly used in search engines and large-scale text
databases.

Suffix trees[25], on the other hand, are trie-based data structures that store all the
suffixes of a given text. By enabling efficient pattern matching and substring searches,
suffix trees are particularly useful for applications that require complex string operations,
such as computational biology, data compression, and natural language processing. Suffix
trees can also be adapted to handle multiple texts or documents through generalized
suffix trees, further extending their applicability.

Latent Dirichlet Allocation (LDA)[3] is a generative probabilistic model that is widely
used for extracting abstract topics from collections of documents, thereby capturing
the semantic structure of the data. In the context of semantic similarity search over
textual data, LDA can be used to create representations of textual data that capture the
underlying semantic content. LDA perceives each document as a mixture of topics, with
each topic being a distribution over the vocabulary of the text. It starts by assigning
every word in a document to a random topic, then iteratively updates these assignments
based on the prevalence of topics within the document and the prevalence of words
within the topics. As the algorithm converges, it creates a stable set of topics each
characterized by a particular set of words. These topics form the semantic representation
of the document, capturing the underlying semantic content. Therefore, LDA enables the
conversion of complex textual data into more manageable topic-based representations
that preserve the core semantic information.

Word embeddings are vector representations of words that capture their semantic
meanings in the context of textual indexing, and are generated based on the contextual
usage of words in large corpora. The generated vectors preserve semantic relationships,
enabling more accurate and context-aware search capabilities within textual indexes. They
will be discussed in detail in Section 2.2 since they are a key factor in the performance of
our method.

3.8 B+-Tree

Space partitioning methods divide the search space into non-overlapping regions, each
containing a subset of the data objects. By recursively partitioning these regions, a
hierarchical data structure is constructed. Common space partitioning methods are
described in Section 3.7.1. While space partitioning is commonly used for nearest
neighbor search, some methods use alternative data structures such as B+-trees. The
B+-tree[1] is a balanced tree data structure designed for efficient storage and retrieval of
large datasets in block-oriented storage systems. Compared to binary search trees, the
B+ tree is especially advantageous due to its high fanout, which refers to the number of
pointers to child nodes in a node. Typically, the fanout of a B+ tree is on the order of 100
or more, significantly reducing the number of Input/Output (I/O) operations required to
locate elements in the tree. The keys within each node are sorted in ascending order, and
the tree is balanced so that all leaf nodes are at the same level. Nearest neighbor search

14

3.9 Nearest Neighbor Search Algorithms

using B+-trees is done by mapping high-dimensional data objects to a one-dimensional
space. This mapping enables the data objects to be efficiently stored in the tree and
accessed using a standard tree traversal search algorithm. To find the nearest neighbor
to a query point, the query object q is first mapped to one-dimensional space. A range
search is then executed in the B+-tree around the mapped query object to retrieve a set
of candidate points. The distances between the query object and the candidate objects
are then computed, and the object with the smallest distance is returned as the nearest
neighbor. By leveraging the properties of B+-trees and the one-dimensional mapping
technique, this approach may provide a fast and accurate method for nearest-neighbor
searches over large datasets.

3.9 Nearest Neighbor Search Algorithms

Nearest Neighbor (NN) search is a form of proximity search that focuses on identifying the
object in a given dataset that is closest or most similar to another specified object. This
closeness is typically quantified using a dissimilarity function where larger values denote
less similarity. Consider a set of objects DB = p1, p2, ..., pn located in a d-dimensional
space DS. Given a query object q in DS, the task of NN search is to find the object in
DS that is closest to q. A direct extension is the k-Nearest Neighbors (KNN) search,
which identifies the k closest objects to the query object instead of just the singly closest.

3.9.1 Exact Nearest Neighbors

The linear search algorithm, also known as the exhaustive search or brute-force search, is
a simple and straightforward method for exact nearest neighbor search. The algorithm
iterates over all objects in the dataset and computes the distance between each object
and the query point. The object with the smallest distance is returned as the nearest
neighbor. Algorithm 1 is a simple implementation of a linear nearest neighbor search
over a dataset DB and a query object q. It keeps track of the current nearest neighbor
p∗ relative to q and its distance dmin. Finally, p∗ is returned when all objects in DS have
been checked.

The time complexity of algorithm 1 is O(n), as it requires computing the distance
between q and each object in DB. The space complexity is O(1), as the algorithm only
needs to store dmin and p∗.

3.9.2 K-Nearest Neighbor Search

The KNN search is an extension of the nearest neighbor search in Section 3.9.1. Instead
of finding the sole nearest neighbor p∗, KNN search aims to identify the k nearest neighbor
objects to q. The problem can be defined as follows. Given a set of objects {pi} ∈ P and
a query object q, the objective is to find the k entities Pk = {p1, . . . , pk} such that

d(q, pi) ≤ d(q, pj), ∀pi ∈ Pk and ∀pj ∈ P − Pk.

15

3 Background Theory

Algorithm 1 Linear Search Algorithm for Exact Nearest Neighbor Search
Require: DS, q
Ensure: p∗

1: p∗ ← None
2: dmin ←∞
3: for i← 1 to n do
4: di ← d(pi, q)
5: if di < dmin then
6: p∗ ← pi

7: dmin ← di

8: end if
9: end for

10: return p∗

In contrast to exhaustive linear scanning of the entire dataset, KNN search typically
employs a strategy of incrementally expanding the search radius around the query object
until the KNN are identified. The KNN search, as outlined in algorithm 2, employs an
incremental approach in identifying the K nearest neighbors to a query object q. Starting
with a query sphere, sphere(q, r), centered at q with a small initial radius, it maintains a
result set holding objects that constitute the K nearest neighbors. This radius expands
incrementally until the K nearest neighbors to q are found.

In KNN search, data is often divided into distinct partitions or subsets using a
partitioning algorithm, partitions in Algorithm 2, like KMeans.Instead of considering every
object in the dataset, the algorithm examines only the objects from partitions intersecting
with sphere(q, r), determined by the function intersects(p, q, r). This significantly reduces
the number of distance computations required compared to a linear approach. The time
complexity of the search is reduced to O(m), where m denotes the number of objects
within the partitions that intersect with the search sphere.

3.9.3 Approximate Nearest Neighbors

As the scale and dimensionality of data increase, it can become computationally prohibitive
to conduct an exact nearest neighbor search. To alleviate this, a more computationally
efficient paradigm known as Approximate Nearest Neighbors (ANN) search has been
proposed. The main principle of ANN is to identify a set of k data objects in the dataset
that are similar to the query object, although not necessarily the exact closest. In this
context, an acceptable trade-off exists between the accuracy of results and computational
efficiency. While it does not guarantee to provide the exact nearest neighbors, it offers
an approximate result that is often indistinguishable in practical applications. Several
techniques can be employed for ANN searches. One method is Locality-Sensitive Hashing
(LSH), which simplifies the data by grouping similar items together to speed up the
search. The more similar the two items are, the more likely they will be grouped together,
which helps reduce the search space and time. LSH utilizes hash functions to group

16

3.10 Integrating Rankings

Algorithm 2 K-Nearest Neighbor Search with a Search Radius
Require: Dataset D = p1, p2, . . . , pn, Query object q, Number of neighbors K, r,

Partition function partitions(DS), Intersection function intersects(p, q, r)
Ensure: K nearest neighbors within radius r, N

1: N ← ∅
2: r ← 0
3: P ← partitions(DS)
4: while N ≤ k do
5: Increase search radius r
6: for each partition p in P do
7: if intersects(p, q, r) then
8: for each member m in p do
9: di ← dist(m, q)

10: if |N | < K then
11: Add m to N
12: else
13: Find farthest object pf in N
14: If di < d(pf , q), replace pf with m in N
15: end if
16: end for
17: end if
18: end for
19: end while
20: return N

similar items together. While these hash functions aim to assign similar items to the same
bucket, there is still a possibility of dissimilar items colliding or similar items being placed
in different buckets, resulting in an approximation rather than an exact result. Another
method is to introduce an error tolerance parameter to make the nearest neighbor search
approximate. This parameter specifies the maximum acceptable deviation from the exact
nearest neighbors. By allowing a small tolerance for the search results to be within a
certain distance from the exact nearest neighbor, the search process can be significantly
accelerated, especially in large and high-dimensional datasets. This relaxation of precision
strikes a balance between speed and accuracy, ensuring that the results remain acceptable
while achieving faster query performance.

3.10 Integrating Rankings

Integrating Rankings is a technique employed for combining ranked lists from different
domains. Given a set of objects, each object has m grades associated with m distinct
criteria; the goal is to efficiently integrate these object rankings based on the provided
grades. The grade for each object’s i-th criterion is represented by xi. Grades are

17

3 Background Theory

assumed to be within the range of 0 ≤ xi ≤ 1, where a higher value of xi indicates
better performance according to the i-th criterion. The input consists of m sorted lists,
where each list represents one criterion. The i-th list is sorted according to xi. The
main objective is to find the top k objects that best satisfy all the criteria. Given the
m sorted lists of objects and their grades based on different criteria, the challenge is
to devise an efficient algorithm that can integrate these rankings to identify the top k
objects. The algorithm should consider the trade-offs between accuracy, computational
complexity, and resource utilization while achieving the desired ranking integration. The
following is a presentation of the main algorithms for integrated rankings[10]. The Naive
Algorithm is an obvious and simple method for integrating sets into a top-k candidate
set. It evaluates each item in the dataset by computing the overall grade of every object
and returns the top k answers. The Naive Algorithm is easy to implement but comes
with a large computational complexity.

3.10.1 Fagin’s Algorithm

Top k

X1 0.4

X3 0.7

X4 0.9

X2 1.1

R1

X5 1

X1 0.1

X2 0.3

X3 0.5

X4 0.8

R1

X2 0.8

X4 0.1

X3 0.2

X1 0.3

X5 0.7

Figure 3.1: Fagin’s algorithm with k = 2

Fagin’s Algorithm (FA)[10] is a more efficient method for top-k queries, utilizing sorted
access to each list. The algorithm carries out sorted access in parallel to each of the m
sorted lists Li and stops when there are at least k objects, each of which has been seen in all
the lists. Next, for each object R that has been seen, it retrieves all of its fields x1, ..., xm

by random access and computes F (R) = F (x1, ..., xm). Finally, it returns the top k
answers. FA guarantees to find the exact top-k results but may require accessing a large
number of objects in each list. To understand why FA guarantees the exact top-k results,
consider an object R that was not seen with grades x1, ..., xm, and an object seen in every

18

3.11 The iDistance Method

sorted list S with grades y1, ..., ym. Since R was not seen, it implies that xi ≤ yi for each
i. As a result, the function value for R is F (R) = F (x1, ..., xm) ≤ F (y1, ..., ym) = F (S).
Therefore, R cannot be part of the top-k results. Figure 3.1 demonstrates this with k =
2, shown in green. After the third iteration, shown in red, there are two objects, X1 and
X3, that have been seen in all the sorted lists. The algorithm terminates and returns the
current Top-k objects seen. It is important to note that every object that has been seen
in at least on of the sorted sets is considered, not just the objects that have been seen
in all sets. To consider every object random accesses is performed to get every grade,
shown in blue.

3.10.2 Treshold Algorithm

Threshold Algorithm (TA)[10] is another alternative that leverages a threshold value
to stop the search early when the top k objects have been confidently identified. The
algorithm performs sorted access in parallel to each of the m sorted lists Li. As each
object R is seen under sorted access, it retrieves all of its fields x1, ..., xm by random
access and computes F (R) = F (x1, ..., xm). If this is one of the top k answers so far,
it is stored in a data structure. For each list Li, let x̂i be the grade of the last object
seen under sorted access. The threshold value t is then defined as F (x̂1, ..., x̂m). When k
objects have been seen whose grade is at least t, the algorithm terminates, and the top-k
objects are returned. TA usually requires fewer accesses than FA while still guaranteeing
the exact top-k results. The Threshold Algorithm is correct for every monotone aggregate
function F . Moreover, TA is optimal in a very strong sense, as it is as good as any
other algorithm on every instance, within a constant factor, except for pathological
algorithms that make wild guesses. This optimality ensures that TA provides efficient
and accurate top-k query results in a wide range of scenarios. TA can be adapted to
create an approximation algorithm for situations where obtaining approximately top-k
answers is sufficient rather than exact top-k results. Given a parameter, ε > 0, an
ε-approximation of top-k answers is a collection of k objects R1, ..., Rk so that for each
object R not among them, (1+ε)·F (Ri) ≥ F (R). To transform TA into an approximation
algorithm, the stopping rule is simply modified. The algorithm halts when k objects have
been seen whose grade is at least t

1+ε . This adjustment enables the efficient retrieval of
approximately top-k answers, catering to situations where an exact top-k result is not
strictly required. There are also methods for scenarios where sorted access or random
access to the lists is restricted, but these are not relevant for our purposes.

3.11 The iDistance Method

In iDistance[13], an novel approach is proposed for effective KNN search within high-
dimensional metric spaces. We allocate this Section to the iDistance method as it
constitutes a crucial component of the novel similarity search techniques proposed in this
thesis. An in-depth examination of the iDistance method allows us to highlight its key
features, advantages, and the rationale behind employing it as the foundation for our

19

3 Background Theory

solutions. We will discuss the query processing part of the iDistance algorithm in Section
4.3 instead, since our implementation will be slightly different than the original.

3.11.1 Overview

The primary motivation behind iDistance is to reduce the search space, enabling efficient
similarity search. iDistance achieves this by splitting the data space into non-overlapping
partitions and using distance-based indexing to facilitate fast search operations. The
method is founded on three key observations. First, the similarity or dissimilarity
between data objects can be assessed utilizing a reference point. Second, data objects
can be sorted according to their distances relative to a reference point. Lastly, metric
distances are one-dimensional values. The transformation of high-dimensional data into a
single-dimensional space allows for the utilization of existing single-dimensional indexes,
such as the B+-tree in the iDistance algorithm. This transformation facilitates KNN
searches by converting them into simpler one-dimensional range searches, leveraging the
efficiency and effectiveness of established index structures. Given a collection of data
objects DB in a d-dimensional metric space DS and a related distance function dist, let
P = {p1, p2, p3} represent three data objects in DS. The distance function dist has the
following properties.

dist(p1, p2) = dist(p2, p1) ∀p1, p2 ∈ DB (3.7)
dist(p1, p1) = 0 ∀p1 ∈ DB (3.8)

0 < dist(p1, p2) ∀p1, p2 ∈ DB; p1 ̸= p2 (3.9)
dist(p1, p3) ≤ dist(p1, p2) + dist(p2, p3) ∀p1, p2, p3 ∈ DB (3.10)

Although other distance functions can be applied to iDistance, we consider the Euclidean
distance described in Section 3.3. A high-dimensional database can be divided into
partitions with reference objects Oi for data partition Pi. Data object p in the partition
can be related to Oi concerning its distance to it, dist(Oi, p). Using the triangle inequality,
we see that

dist(Oi, q)− dist(p, q) ≤ dist(Oi, p) ≤ dist(Oi, q) + dist(p, q). (3.11)

In the scenario where we use a search radius defined by querydist(q), we aim to find
all data objects p that satisfy dist(p, q) ≤ querydist(q). For all such objects p, they must
therefore meet the condition

dist(Oi, q)− querydist(q) ≤ dist(Oi, p) ≤ dist(Oi, q) + querydist(q). (3.12)

In partition Pi, we only need to consider candidate objects p whose distance from the
reference point, dist(Oi, p), is constrained by this inequality, which typically defines an
annulus around the reference point. Let distmaxi be the distance between Oi and the
furthest object in partition Pi. If dist(Oi, q)− querydist(q) ≤ distmaxi, then partition
Pi must be searched for candidate objects. Otherwise, this partition can be excluded

20

3.11 The iDistance Method

from consideration. Figure 4.1 illustrates a search process involving three partitions P1,
P2, and P3. When considering the query object q and query radius r, it is necessary to
search within partitions P1 and P2, while partition P3 can be pruned.

Leaf nodes of B+-tree

O1

O3
O2

c0 c1 c3

d1 A
c2

d2 d3

A

B

C

B C

Figure 3.2: The iDistance Index Method

3.11.2 Index Structure

In iDistance, high-dimensional objects are transformed into objects in a single-dimensional
space using a three-step algorithm. First, the high-dimensional data space is split into
a set of partitions. Second, a reference point is identified for each partition. Suppose
there are N partitions P = {P0, P1, . . . , PN−1} and their corresponding reference objects
{O0, O1, . . . , ON−1}. Finally, all data objects are represented in a single-dimensional
space. A data object p is assigned an index key y given by the equation

y = i× c + dist(p, Oi) (3.13)

Here, i represents the index of the partition p belongs to, c is a constant used to stretch
the data ranges, and dist(p, Oi) represents the distance between p and Oi. Essentially, c
serves to partition the single-dimensional space into regions so that all objects in partition
Pi are mapped to the range [i× c, (i + 1)× c). c must be set sufficiently large to avoid

21

3 Background Theory

overlap between the index key ranges of different partitions. This concept is illustrated in
Figure 3.2. Two data structures are employed in iDistance. First, a B+-tree, described in
Section 3.8, is used to index the transformed objects to facilitate speedy retrieval. Second,
an array is used to store the N data space partitions and their respective reference
points, which helps determine the data partitions that need to be searched during query
processing.

3.11.3 Data Partitioning and Clustering

The data space is divided into partitions, each with an associated reference point.
Various reference point selection and partitioning strategies are employed in the iDistance
paper. The partitioning strategies are split into space-based partitioning and data-based
partitioning respectively. Space-based partitioning involves dividing the data space into
equal partitions using geometric patterns and assigning reference objects based on the
structure of the partitions. Data-based partitioning, on the other hand, focuses on
identifying and leveraging the inherent clustering or correlation within the data. The
reference objects are selected based on the properties of the clusters, such as their centers
or edges. The study highlights the importance of selecting a partitioning strategy that
minimizes partitioning sphere overlap, in order to promote high levels of pruning. They
find that data-based partitioning is more suitable for real-life data, as it often exhibits
clustering or correlation naturally. In this context, the K-means clustering algorithm was
adopted, with the number of clusters serving as a tuning parameter. The authors provide
an extensive experimental evaluation of iDistance, demonstrating its effectiveness, and
propose a cost model that can be utilized for query optimization.

22

4 Dual Semantic Similarity Search
In this Chapter, we provide a comprehensive overview of our proposed method for
performing dual index semantic similarity searches, trying to address the limitations
identified in Section 2.4. We first explore the utilization of the K-Means algorithm and
the optimization of the original iDistance implementation. The main part of this Chapter
details our contribution, a Dual Spatio-textual iDistance algorithm, DualiDistance. This
encompasses various aspects such as index construction, the implementation of the
common top-K using the threshold algorithm, and the employment of inter- and intra-
cluster pruning strategies. Finally, we discuss the rationale and decision-making process
that motivated the development of DualiDistance.

4.1 K-Means with Maximum Radii Calculation

Algorithm 3 is an iterative algorithm based on K-Means[14] designed to partition a given
dataset DB into K distinct partitions. The algorithm’s output includes the partitions P ,
the set of reference points O, and the set of maximum cluster radii distmax. To begin,
O is initialized either randomly or using a heuristic method, while distmax is initialized
with zeros. The algorithm then enters a loop that continues until convergence is achieved.
Within this loop, Oi for each partition Pi is calculated as the mean of all objects in
DB assigned to Pi. Next, for each data object p in DB, the distance d(p, Oi) from p to
each point of O is calculated. p is then assigned to the closest reference point Oi, and
its partition assignment in P is updated accordingly. Once convergence is reached, the
algorithm calculates the maximum radii for each partition by setting the corresponding
distmaxi to be the maximum distance from any object in partition Pi to the reference
point Oi. Finally, the algorithm returns the partitions P , the reference points O, and
the maximum radii distmax.

4.2 Optimizing the iDistance Algorithm

By implementing the iDistance algorithm from scratch, we are able to improve upon the
method as we see fit. The B+-tree implementation is provided by Gregory Popovitch1.
To optimize the iDistance algorithm for our specific needs, we can incorporate several
enhancements that may help boost its efficiency and effectiveness. The iDistance al-
gorithm, as presented in the original paper, makes use of recursion. This might lead to
a considerable call stack for large datasets and potentially cause stack overflow issues.

1https://github.com/greg7mdp/parallel-hashmap

23

4 Dual Semantic Similarity Search

Algorithm 3 K-Means Clustering Algorithm with Maximum Radii Calculation
Require: DB, K
Ensure: P , O, distmax

1: O ← ∅
2: R ← ∅
3: while not convergence do
4: for i = 1 to K do
5: Oi ←Mean(DB, Pi)
6: end for
7: for each p ∈ DB do
8: Oclose ← ClosestO(O, p)
9: AddToPartition(Pclose, p)

10: end for
11: end while
12: for i = 1 to K do
13: distmaxi ← MaximumDistance(Pi, Oi)
14: end for
15: return P , O, distmax

To prevent this, we can employ iterative techniques that mimic recursion but avoid the
drawbacks associated with deep recursive function calls. This modification not only
circumvents potential stack overflow problems but we also found that it enhances the
algorithm’s execution speed. Pruning is a critical aspect of the iDistance algorithm
that can significantly reduce the search space by eliminating irrelevant partitions and
objects within relevant partitions. To further improve efficiency, we can employ novel
pruning techniques that better identify and disregard irrelevant search space. Similarly,
we can improve efficiency with early termination techniques. The iDistance algorithm
also executes the searches of the spatial dimension and textual dimension sequentially.
To speed up the search performance, we could leverage parallel processing techniques. By
dividing the dataset into spatial and textual indexes and processing them concurrently,
we could cut down the search time and improve the algorithm’s scalability.

4.3 Optimized One-Dimensional iDistance

This Section describes our implementation of the iDistance algorithm and the changes we
have made to the original. The optimized One-Dimensional iDistance algorithm performs
indexing and k-nearest neighbors search over either spatial or textual data objects. It
partitions the data using the K-Means implementation in Algorithm 3 and leverages
the B+ tree structure described in 3.8 to perform an exact k-nearest neighbor search.
In Algorithm 4, the dataset DB is first partitioned into K disjoint partitions, P, using
Algorithm 3. Each partition is assigned a reference point Oi, which is the mean value of
all objects in P , and radius distmaxi, which is the distance to the most distant object

24

4.3 Optimized One-Dimensional iDistance

in pi. The iDistance, idist, is then computed for each data object using equation 3.13
and the stretch constant c. The iDistance values and the ids of the corresponding data
objects are then inserted into the B+ tree T .

Algorithm 4 iDistance: Nearest Neighbor Index
Require: DB, K, c
Ensure: T

1: T ← ∅
2: P, O, distmax ← K-Means(DB, K)
3: for each Pi ∈ P do
4: for each p ∈ Pi do
5: dp ← dist(Oi, p)
6: iDistancep ← idist(d, c)
7: Insert key iDistancep and value p into T
8: end for
9: end for

10: return T

4.3.1 Query Processing

Algorithms 8-6 provide an overview of the iDistance k-Nearest Neighbors (KNN) search
process. The iDistance KNN search algorithm operates similarly to a simple KNN search,
described in Section 3.9.2. It starts by searching within a small sphere of radius r
and incrementally enlarges the search space until k nearest neighbors are found. The
search stops when the distance from the query point q to the most remote object in the
answer set S, is less than or equal to the current search radius r. Before considering the
main iDistanceKNN algorithm it is crucial to understand three key methods, namely
SearchInward, SearchOutward, and LocateLeaf.

SearchInward inspects a leaf node’s entries towards the left, determining their inclusion
in the K nearest neighbors and updating the results as needed. Taking Figure 4.1 as
an example, the SearchInward routine examines towards the left sibling in partition
P1 as indicated by arrow A, while SearchOutward examines towards the right sibling
as per arrow B. For partition P2, only SearchInward is used to examine towards the
left sibling from distmax2, following the direction of arrow C. LocateLeaf, a standard
B+-tree traversal routine, identifies a leaf node based on a search value. Due to the
similarities of the two algorithms, we will focus on explaining SearchInward. Algorithm 5
demonstrate SearchInward, and displays the relevant changes necessary for SearchOutward
in parentheses. The original implementation performs a recursive nearest neighbor search
within a partitioned dataset. The algorithm operates by utilizing a priority queue, PQ,
the current node ce, a search limit iValue, the B+-tree T, a query object q and the
current partition Pc. It returns the current node ce, which will be used to start the search
from where we left off if the partition is not exhausted. At the start, the algorithm checks
if the current node ce is the first entry of T. If this is not the case, the algorithm then

25

4 Dual Semantic Similarity Search

Algorithm 5 iDistance: Original SearchInward (SearchOutward)
Require: PQ, ce, iValue, T, q, Pc

Ensure: ce
1: if ce is not first (last) entry in T then
2: score ← dist(ce, q)
3: w ← PQtop

4: if score < w.score then
5: Add ce to PQ
6: end if
7: if ce.distance > iValue (ce.distance < iValue) then
8: ce = MoveLeft(ce) (MoveRight(ce))
9: SearchInward(PQ, ce, iValue, T, q, Pc) (SearchOutward(PQ, cn, iValue, T,q),

Pc)
10: end if
11: if ce /∈ Pc then
12: ce ← T.end
13: end if
14: end if
15: return ce

calculates the distance between the ce and the q, referred to as score. The algorithm
then find the worst element in the priority queue, PQtop. If the score of ce is better
than PQtop, the algorithm adds ce to the priority queue. Next, the algorithm examines
whether the dist(ce, P) is less than the search limit iValue. If it is, it means that we are
still in the search annulus and so the algorithm shifts one entry to the left by calling
the MoveLeft or MoveRight function. Following this, the algorithm recursively invokes
itself with the updated parameters. When iValue is reached, it checks whether ce is still
within the current partition Pc. If we reached the end of the partition, the current entry
is set to the endpoint of the tree structure T.end, marking the completion of the search
within this partition. Finally, the algorithm returns ce as a pointer for further search
later, or as a flag marking the partition Pc as exhausted.

Algorithm 6 show our new SearchInward implementation, which adopts an iterative
approach. This can offer several benefits over the recursive approach outlined in the
original iDistance paper. Recursive calls result in additional overhead because each
recursive call results in the addition of a new layer to the stack, consuming memory.
This overhead can be significant, especially for large datasets with high dimensionalities,
ultimately causing slower execution times. In worst-case scenarios, excessive recursion can
lead to stack overflow errors. An iterative approach avoids these issues. Each iteration
operates within the same stack frame, rather than creating a new one for each recursive
call. This translates to less memory usage, less overhead for function calls, and generally
a faster execution time. It also reduces the risk of stack overflow errors. In the first
version of our SearchInward implementation, we stored document identifiers in the lists

26

4.3 Optimized One-Dimensional iDistance

Algorithm 6 iDistance: New SearchInward (SearchOutward)
Require: cn, iV alue, p
Ensure: nd

1: Initialize current node distance nd
2: while Current node cn is not first (last) node in T do
3: Update cn one entry to the left (right)
4: Update nd to be to the key value of cn
5: if cn is not a member of partition p then
6: End of partition, cn ← end of T
7: Break loop
8: else if cn is member of partition p then
9: score ← dist(cn, q)

10: Add cn to PQ if score is better than the score of w
11: end if
12: if nd < iV alue (nd >= iV alue) then
13: Break loop
14: end if
15: end while
16: return cn

lp and rp. This proved itself to be highly inefficient, and we opted to store the document
iterators for the B+-tree instead. An iterator is a pointer-like object that can be used to
iterate over the elements of a container, like our B+-tree. When using an iterator, you
can easily access the documents and their neighbors again without having to perform a
new search operation. In contrast, using document identifiers requires us to perform a
lookup operation every time we increase r we want to continue searching where we left
off in SearchInward and SearchOutward.

Algorithm 7 operates using several parameters, the priority queue PQ, the query
identifier idq, the left and right pointer lists lp and rp, the boolean flag list oflag, the
search radius r, and the stretch factor c. The priority queue PQ stores potential nearest
neighbors. idq represents the identifier of the query object q. The left and right pointers,
lp and rp respectively, are used to navigate the tree structure during the search operation.
oflag is a boolean flag indicating whether a partition has been searched or not. r is the
search radius and c is a constant used in the calculation of the iDistance.The algorithm
commences by setting q to be idq, representing the query point. It then iterates through
each partition Pi of the partition set P . For each partition, it calculates the distance dq

from the reference point of the partition Op to the query point q. The steps that follow
depend on the state of oflagp (the operation flag for partition p). If oflagp is FALSE
it means that partition Pi has not been searched before, and we have to consider three
different scenarios. First, if the query point, q, is within the partition Pi, we traverse
the partition to locate the node where q is stored. We then conduct both SearchInward
and SearchOutward. For instance, in the first iteration depicted in figure 4.1, we only

27

4 Dual Semantic Similarity Search

O1

r0

r1q

O3
O2

Leaf nodes of B+-tree

A B C

Figure 4.1: The iDistance Search Method

inspect partition P1, using q to navigate down the B+-tree. The second scenario arises
when q is outside the partition, but the query sphere sphere(q, r) intersects with the
partition. Two spheres q and Oi intersects if dist(q, Oi) < radiusq + radiusOi . In this
situation, we only perform SearchInward. This is illustrated when sphere(q, r) intersects
with partition P2 in figure 4.1, which contains the reference point O2. The third and
final scenario is when the partition Pi doesn’t intersect with the query sphere. In this
case, there’s no need to examine the partition, as shown with partition P3 in figure 4.1.

The main search Algorithm 8 runs Algorithm 7 with an increasingly larger search radius
r. When the furthest object in the set S is within the current search radius r and there
are at least k objects in the set, the K nearest neighbors have been identified. At this
point, all other objects still not considered have a distance d from q larger than querydist.
Consequently, any further expansion of the query sphere is unnecessary, guaranteeing
100% accuracy of the iDistance result.

4.4 Dual Spatio-textual iDistance

In the following Section, we introduce DualiDistance, our multi-dimensional extension
of the iDistance algorithm designed for conducting efficient semantic similarity searches

28

4.4 Dual Spatio-textual iDistance

Algorithm 7 iDistance KNN search algorithm: SearchO
Require: PQ, idq, lp, rp, oflag, r, c, λ

1: q ← idq

2: for each Pi of P do
3: dq ← dist(Op, q, λ)
4: if not oflagp then
5: if q ∈ Pi then
6: oflagi ← TRUE
7: iDistanceq ← idist(dq, c, i)
8: n ← LocateLeaf (T , iDistanceq)
9: lpi ← SearchInward(PQ,n, idistanceq − r, q, Pi)

10: rpi ← SearchOutward(PQ,n, idistanceq + r, q, Pi)
11: else if sphere(Op, distmaxp) intersects sphere(q, r) then
12: oflagi ← TRUE
13: n ← LocateLeaf (T , distmaxi)
14: lpi ← SearchInward(PQ,n, idistanceq − r, q, Pi)
15: end if
16: else
17: if lpi ̸= T.end then
18: lpi ← SearchInward(PQ,lpi, idistanceq − r, q, Pi)
19: end if
20: if rpi ̸= T.end then
21: rpi ← SearchOutward(PQ,rpi, idistanceq + r, q, Pi)
22: end if
23: end if
24: end for

on high-dimensional spatio-texutal data. Unlike the original iDistance, DualiDistance
is capable of retrieving documents that meet both spatial and textual criteria. We also
detail the integration of the threshold algorithm, which combines the dual indexes to
find the optimal set of spatio-textual objects for a given query. Figure 4.2 depicts the
separate dual search process and its subsequent combination.

4.4.1 Index Construction

Efficient search processes require a data structure that integrates spatial and textual
aspects. Instead of performing spatial-fist indexing, we advocate for a joint strategy that
does not favour one dimension since the spatial-centric approach seems to provide little
information about their semantic relation to the query. To overcome this, we suggest a
"dual" index that captures both the spatial and textual facets individually, finding objects
that are alike in terms of both their spatial proximity and semantic similarity. The
dual index also incorporates a weighting parameter, λ. λ provides the ability to adjust
the emphasis between spatial proximity and textual similarity. The implementation of

29

4 Dual Semantic Similarity Search

Algorithm 8 iDistance KNN main search algorithm: iDistanceKNN
Require: idq, k, T , λ, c, ∆r
Ensure: S

1: q ← idq

2: S ← ∅
3: PQ(k)← ∅
4: r ← 0
5: flag ← FALSE
6: lp, rp ← T.end
7: oflag ← FALSE ∀Pi ∈ P
8: while flag is FALSE do
9: Increment r with ∆r

10: Find the worst candidate w in PQ
11: if dist(w, q, λ) < r and |S| is k then
12: flag is set to TRUE
13: end if
14: searchO(PQ, idq, lp, rp, oflag, r, c, λ)
15: end while
16: return S

this parameter allows dynamic adjustments for each query without any changes to the
underlying data structures.

In this Section we provide an outline of the dual index for DualiDistance as implemented
in Algorithm 9. The algorithm starts with the initialization of two B+-trees, Ts and Tt,
which will be used to store the spatial and textual indexes, respectively. The partitions,
denoted by Ps and Pt, reference points, Os and Ot for spatial and textual data respectively,
and the maximum distances from the reference points to any point within the partitions
distmaxs and distmaxt, are derived from Algorithm 3. The next phase involves creating
the iDistance indexes. For each partition in Ps and for each member data object p within
the partitions, the algorithm computes the distance ds from the reference point Oi for
partition Pi to p. This distance is then used to calculate the iDistance value iDistancep

using Equation 3.13. The pair (iDistancep, p) is subsequently inserted into the spatial
index B+-tree Ts. This process is mirrored for the textual partitions Pt. Upon completion
of these steps, the DualiDistance index construction process yields two B+-trees Ts and
Tt that serve as independent spatial and textual indexes.

4.4.2 Threshold Algorithm For Dual Indexes

In the implementation of DualiDistance, we use the Threshold Algorithm (TA), presen-
ted in Algorithm 10, in the main query search function. The incorporation of TA into
the DualiDistance main search function allows for the simultaneous exploration of both
spatial proximity and textual similarity while maintaining computational efficiency by
identifying and returning the top-k relevant documents as early as possible. The search

30

4.4 Dual Spatio-textual iDistance

O1

r0

r1q

O3
O2

Textual

O1

r0

r1q

O3
O2

Spatial

F

Figure 4.2: The DualiDistance Search Method

operation works by gradually enlarging a search radius r. At each step, it produces sets
of documents that are sorted based on their spatial and textual distances relative to
the query object q. These sets are then processed by TA to find the optimal k-nearest
neighbors in relation to q. For every iteration over the search radius r, the spatial and
textual search functions traverse their respective B+-trees to generate sorted sets of
documents, spatialDocs andtextualDocs. Each of the sets contains documents sorted by
their spatial and textual distances from the query q. When Algorithm 10 is run, for
every pair of current documents ps and pt, the algorithm gets their respective spatial and
textual distances, and calculates for each their combined distance score as a weighted sum,
using the weight parameter λ. If the calculated score, known as score, is among the top-k
scores, the present document, either spatialDoc or textualDoc, is added to the priority
queue PQ. Simultaneously, the threshold value t is dynamically updated, computed as
the combined score of the last examined pair, ps and pt. The algorithm stops early and
returns TRUE when it encounters a pair of documents from spatialDoc and textualDoc
whose combined scores is better than the value of treshold, and the worst document in
PQ is closer to q than the current search radius r. If it is not able to terminate early,
it does an exhaustive search and returns wether there exists k documents who is closer
to q than r. The search process repeats, with the search radius incremented at each
pass, until one of the steps above returns TRUE. Documents that have been assessed in
previous iterations are tracked in a set consideredDocuments, thereby avoiding the need
to recompute their scores in subsequent iterations.

4.4.3 Query Processing

Algorithm 11 outlines the query processing in DualiDistance. At the start, the algorithm
sets up various variables for execution, such as the query identifier idq, the left and
right pointers for the spatial and textual search lps, rps, lpt, rpt, and the reference
point flags for each section (oflags, oflagt). It also initializes the search radius r and
assigns a termination flag flag to FALSE. Document sets for the spatial and textual

31

4 Dual Semantic Similarity Search

Algorithm 9 DualiDistance: Nearest Neighbor Index
Require: DB, K, c
Ensure: Ts, Tt

1: Ts, Tt ← ∅
2: Ps, Os, distmaxs ← K-Means(DB, K)
3: Pt, Ot, distmaxt ← K-Means(DB, K)
4: for each Pi ∈ Ps do
5: for each p ∈ Pi do
6: ds ← dist(Oi, p)s

7: iDistancep ← idist(ds, c)s

8: Insert key iDistancep and value p into Ts

9: end for
10: end for
11: for each Pi ∈ Pt do
12: for each p ∈ Pi do
13: dt ← dist(Oi, p)t

14: iDistancep ← idist(ds, c)t

15: Insert key iDistancep and value p into Tt

16: end for
17: end for
18: return Ts, Tt

indexes Docss, Docst are set up, along with a group of already evaluated documents
consideredDocuments, a priority queue PQ(k) to contain k candidate nodes, and the
final result set S. In every iteration of the main loop, the search radius r is increased by
a set value ∆r. Following that, the functions searchOs and searchOt are called upon
to identify candidate nodes in the spatial and textual index, respectively, within the
present search radius. Once the candidate nodes are identified, the Threshold Algorithm
is applied. This algorithm evaluates the considered candidate nodes from both the spatial
and textual fields, including their distance from the query. If the threshold condition
is achieved, the algorithm performs early termination. After the search ends, the top k
elements in the priority queue are moved to the final result set S. Thus, the algorithm
ultimately provides S, which comprises the exact k-nearest neighbors to the given query
in terms of both spatial and textual distances.

4.4.4 Inter- and Intra-cluster Pruning

The DualiDistance algorithm employs two significant pruning strategies to improve
search efficiency, namely inter-cluster pruning and intra-cluster pruning. The purpose
of inter-cluster pruning is to reduce the number of clusters that need to be searched.
Clusters that are distant from the query are eliminated from the search process. This is
the case when the search sphere does not contain nor intersect with a partition sphere.
This process significantly decreases the search space and can improve the query response

32

4.4 Dual Spatio-textual iDistance

Algorithm 10 Threshold Algorithm
Require: spatialDocs, textualDocs, k, PQ, q, consideredDocuments, λ, r
Ensure: Top-k documents found or need to expand the search radius

1: spatialIterator ← spatialDocs.begin
2: textualIterator ← textualDocs.begin
3: threshold← 0
4: while spatialIterator ̸= spatialDocs.end AND textualIterator ̸= textualDocs.end

do
5: spatialDoc← spatialIterator
6: if spatialDoc /∈ consideredDocuments then
7: Insert spatialDoc into consideredDocuments
8: score← a ∗ spatialDoc.score + (1− a) ∗ semanticScore(q, spatialDoc)
9: Add to PQ if better: (spatialDoc, score)

10: end if
11: textualDoc← textualIterator
12: if textualDocument /∈ consideredDocuments then
13: Insert textualDoc into consideredDocuments
14: score← λ ∗ spatialScore(q, doc) + (1− λ) ∗ textualDoc.score
15: Add to PQ if better: (textualDoc, score)
16: end if
17: threshold← a ∗ spatialDoc.score + (1− a) ∗ textualDoc.score
18: if threshold ≥ PQ.top AND PQ.size ≥ k AND PQ.top < r then
19: return TRUE
20: end if
21: Increment spatialIterator, textualIterator
22: end while
23: if PQ.size ≥ k AND PQ.top < r then
24: return TRUE
25: else
26: return FALSE
27: end if

33

4 Dual Semantic Similarity Search

Algorithm 11 DualiDistance: Nearest Neighbor Search
Require: idq, k, Ts, Tt, λ, c, λr, ∆r
Ensure: S

1: q ← idq

2: S, Docss, Docst, consideredDocuments← ∅
3: PQ(k)← ∅
4: r ← 0
5: flag ← FALSE
6: lps, rps ← Ts.end
7: lpt, rpt ← Tt.end
8: oflags ← FALSE ∀Pi ∈ Ps

9: oflagt ← FALSE ∀Pi ∈ Pt

10: r ← 0
11: while flag is FALSE do
12: Increment r with ∆r
13: searchOs(Docss, idq, lps, rps, oflags, r)
14: searchOt(Docst, idq, lpt, rpt, oflagt, r)
15: flag = TresholdAlgorithm(Docss, Docst, k, PQ, q, consideredDocuments, λ, r)
16: end while
17: Add the top k members of the priority Queues PQ to S
18: return S

time considerably. While inter-cluster pruning helps reduce the number of clusters that
need to be considered, intra-cluster pruning is done inside each cluster that is being
searched. It aims to reduce the number of data points that need to be searched within a
cluster. Intra-cluster pruning operates on the premise that within a cluster, not every
data point will be relevant to a given query. When performing a range query inside a
cluster, inter-cluster pruning operates under the assumption that only data entries within
a specific annulus of each cluster sphere, determined by the query radius, need to be
examined. Figure 4.1 shows both types of pruning. Partitions P1 and P2 prunes all the
colorless document, and is a result of intra-cluster pruning. P 3, on the other hand, is an
example of inter-cluster pruning since it is never considered in the search.

4.4.5 Motivations Driving DualiDistance

We found two main ways to address the limitations of existing methods described in
Section 2.4. Firstly, high-dimensional word embeddings can be employed to overcome
the limitations of low-dimensional semantic vectors and topic modeling techniques. High-
dimensional embeddings preserve the semantic richness of textual data and capture
nuanced semantic relationships more accurately. By utilizing these embeddings, semantic
spatio-textual searches can be conducted with improved accuracy and contextual relevance.
Secondly, a dual indexing strategy can be implemented to address the spatial-first bias
observed in existing techniques. This approach involves separating the spatial and textual

34

4.4 Dual Spatio-textual iDistance

indexes, ensuring equal emphasis on both dimensions during the indexing process. By
treating the spatial and textual components independently, the indexing structure can
avoid inherent biases and provide a balanced and effective approach to indexing large
spatio-textual datasets.

During the initial stages of our search for inspiration in designing a novel similarity
search algorithm, our attention was captivated by the iDistance technique. This choice
was driven by the algorithm’s unique approach to addressing various challenges regarding
high-dimensional data. It is also used in some of the related work discussed in Section
2.3. The iDistance method accomplishes this by dividing the data space into separate
regions based on reference points, and this partitioning reduces the portion of the dataset
that needs to be examined in a search operation. Another key factor in our decision was
the dimensionality reduction mechanism of iDistance. By converting multi-dimensional
objects into one-dimensional values, iDistance simplifies the data structure and makes
querying more efficient since the demand for costly distance calculations is reduced. This
characteristic made iDistance an attractive foundation for our new algorithm, considering
the complexity of our data.

Integrating search results from two separate indexes presents challenges, as our empirical
experiments demonstrate that a naive approach would be computationally infeasible.
We were then left with two viable options, namely the TA and Fagin’s Algorithm (FA).
Ultimately, we opted for the Threshold Algorithm (TA) as the preferred choice for
implementing DualiDistance. This decision was primarily driven by the TA’s ability to
directly utilize the precomputed distance scores stored in the sorted sets of documents.
Each object or document in our sorted spatial and textual lists already has a precomputed
distance score from the main searches. The TA is able to take advantage of these pre-
computed scores by using them directly in its threshold calculation at each iteration. In
contrast, FA would require either recalculating the distances or storing them in a separate
data structure. This leads to significant additional computational costs, particularly in
high-dimensional datasets. These factors make TA a superior choice compared to FA for
our specific requirements.

The decision to make DualiDistance an exact method, rather than an approximate
one, primarily stemmed from the importance of accuracy in retrieving the most relevant
results in spatial-textual searches. Exact nearest neighbor methods ensure the returned
results are indeed the closest to the query in the context of both spatial and textual
distances, which is crucial in numerous applications. Approximate Nearest Neighbors
(ANN) methods, on the other hand, trade off a degree of accuracy for increased efficiency.
While this may be acceptable in some contexts, it can lead to sub-optimal results,
particularly when high accuracy is of high importance. When it comes to comparing
approximate nearest-neighbor methods to current approaches, the challenge lies in the
lack of a universal standard to quantify their performance. The inherent trade-off between
speed and accuracy in these methods makes it difficult to compare them directly to other
techniques.

35

5 Experimental Evaluation
Chapter 5 presents a comprehensive assessment of the performance of our proposed
method through a series of experiments. The Chapter begins with an overview of the
experimental setup, including details about the coding platform, algorithms used, dataset,
selected parameters, evaluation metrics, and the nature of the queries employed. We
then conduct a comparative evaluation to examine the impact of changing key variables
such as k and λ on performance. The latter part of the Chapter focuses on a sensitivity
analysis, investigating the robustness of our method by varying parameters ∆r and
f . This experimental analysis serves to examine the effectiveness and efficiency of our
approach over a range of parameters.

5.1 Experimental Setup

In this Section, we outline our experimental setup. We provide the methodologies and
parameters used to assess our proposed algorithm to facilitate the replication of our
results.

5.1.1 Code and Platform

The algorithms in this study are implemented in C++ using g++ version 12.2.0, while the
data set preprocessing and partitioning are implemented using Python3. The experiments
are run on a remote DigitalOcean Droplet, using Ubuntu 22.10. The droplet is connected
to a local Visual Studio Code instance through an ssh connection. The local Visual
Studio Code instance is run on a MacBook Pro M1. The droplet has 8GB Memory, 4
Intel Xeon 2nd Generation Scalable processors, and an 80 GB disk. The processors are
clocked at a base frequency of 2.50 GHz and a max turbo frequency of 3.90 GHz.

5.1.2 Algorithms

The study evaluates the performance and effectiveness of five distinct indexing methods,
including our proposed method DualiDistance. We first make use of a linear scan
algorithm, fittingly called Scan. This algorithm computes distances between the query
and all objects within the dataset. It is included due to its tendency to outperform
index-based algorithms in high-dimensional spaces. Secondly, we employ an index-based
algorithm known as the R-tree, which constructs an R-tree using the spatial coordinates
of each object, thereby functioning as a purely spatial index. Lastly, our methods are
benchmarked against the state-of-the-art algorithm S2R discussed in Section 2.3.

37

5 Experimental Evaluation

5.1.3 Dataset

The dataset used in this master’s thesis is provided by our supervisor. It is composed
of 500.000 geotagged tweets collected from across the United States. Each tweet object
contains a high-dimensional word embedding and a spatial coordinate with x and y
components. All tweets in the dataset are written in English and acquired using the
public Twitter API1, and their spatial coordinates have been normalized in [0, 1]× [0, 1].
In terms of data preparation and index creation, the text from each tweet is transformed
into a 100-dimensional semantic vector representation using the Glove model. To create
a unique semantic vector for each tweet, the average of the individual word embeddings
is computed. Words that do not feature in the predefined vocabulary or are recognized
as common stop-words are excluded from this process. Furthermore, tweets comprising
less than three words are discarded, as they are deemed to offer minimal value due to
an overabundance of stopwords or unfamiliar terms. Regarding clustering, we leverage
the K-Means algorithm to derive the cluster centroids, radii, and members. We are
able to apply the K-Means algorithm on the whole dataset, thanks to its relatively
small size. This approach ensures that every data object directly contributes to the
formation of cluster centroids and radii, maximizing the representativeness and accuracy
of our clustering. However, for future studies involving larger datasets, we may need to
adjust this method due to computational considerations. In future scenarios, it would
be more efficient to perform K-Means clustering on a representative sample of the data,
and then assign the remaining data objects to the nearest clusters. This method still
maintains reasonable accuracy while drastically improving computational efficiency. The
implementations used for K-Means come from Python3’s scikit-learn[17] library.

5.1.4 Parameters

The choice of parameters plays a crucial role in our work, with the number of clusters for
a dataset being particularly significant. Over-clustering can lead to excessive granularity
and fragmentation of data which can potentially inflate computational requirements.
On the contrary, under-clustering can result in overly generalized groups, which could
hamper pruning effectiveness. Hence, the challenge in applying clustering algorithms lies
in striking a delicate balance between these extremes. Choosing the appropriate number
of clusters is largely determined by the specific characteristics of the dataset and the
overall objectives of the work. In our experiments, we determined the number of clusters
using the formula

Ks = Kt =
√
|O| · 0.01 · f

This formula seems to yield a suitable number of clusters for various data set sizes. The
multiplier f can be adjusted to further control the number of clusters, and we conducted
experiments to evaluate different values of f. It is important to clarify that our objective
is not to determine the exact optimal number of clusters for each attribute. Instead, our
goal is to introduce a parameter that enables us to adjust the level of granularity in the

1https://developer.twitter.com/en/docs/twitter-api

38

5.1 Experimental Setup

resulting partitioning scheme. Beyond that, we alter the number of k-nearest neighbors,
∆r, and the balancing parameter of the distance function λ. Table 5.1 encapsulates the
values of the examined parameters.

Parameter Values
Twitter Data set size |O| 500k
Dimensionality of the original space n 100
Number of nearest neighbors k 5, 10, 25, 50, 100
∆r 0 - 0.04, step: 0.005, def: 0.01
Multiplier f 0.1, 0.3, 0.5, 0.7, 0.9
Balancing parameter λ 0 - 1, step:0.1, def: 0.5

Table 5.1: Parameters ranges and their default values.

5.1.5 Metrics

In our experiments, we assess the performance of the algorithms in Section 5.1.2 using
a set of metrics designed to evaluate their efficiency, adaptability, and computational
overhead. These metrics provide insights into the practical applications of the algorithms
and enable comparative analysis. We primarily assess the performance of each algorithm
based on its query execution time. The query execution time is a measure of the time
taken by an algorithm from query execution to the final result retrieval. A shorter
execution time indicates a more efficient algorithm.

In addition to execution time, we evaluate the effectiveness of pruning strategies by
tracking the total number of accessed objects during query execution. This metric
indicates the number of documents examined or processed by the algorithms to retrieve
the result. A lower value suggests more effective pruning. We also keep track of the
number of objects accessed by the Threshold Algorithm (TA). This metric provides
valuable insights into how many objects TA evaluates in order to stop the search early
and identify the top-k relevant documents. By monitoring TA accesses, we gain a deeper
understanding of its efficiency within the broader framework of DualiDistance. This
information becomes particularly meaningful when compared to the total accesses made
by DualiDistance. It indicates whether we retrieve an excessive number of documents
before executing the TA, which could lead to unnecessary computational overhead.
Ideally, we aim for a scenario where the number of retrieved objects closely aligns with
the requirements of TA, avoiding the expenditure of resources on fetching and evaluating
unnecessary documents. It is important to note that DualiDistance is an exact method,
so there is no need to calculate or report an error rate. The algorithm produces exact
results and ensures the retrieval of the optimal k documents.

39

5 Experimental Evaluation

5.1.6 Queries

In our experimental setup, we conduct a series of runs, each employing a distinct object
from our dataset as a query. For each run, we select 20 objects at random, ensuring a wide
variety of test conditions and a robust evaluation of the performance of each algorithm.
This process helps to eliminate any potential biases that might be introduced by using a
fixed set of query objects. For each query, we track a variety of metrics that provide us
with insight into the algorithm’s performance and efficiency. These metrics include the
algorithm and query that is used, the number of nearest neighbors requested, and the
weighting factor used to balance the importance of spatial and textual distances. We also
measure several time-related metrics, such as the time taken for index construction, the
query execution time, and the total time from indexing to result retrieval. To gauge the
efficiency of our pruning strategy, we record the number of documents accessed during
the execution and the number of documents pruned. The result values we present are
the mean values from the 20 runs for each query.

5.2 Comparative Evaluation

We perform a comprehensive evaluation of our proposed method in comparison to
established algorithms. This evaluation involves systematically varying key parameters,
namely k and λ, to analyze their influence on the performance of each method. By
conducting this assessment, we gain valuable insights into the strengths and weaknesses
of our approach relative to existing solutions.

5.2.1 Varying k

By examining Figure 5.3 and 5.4, we can assess the influence of the number of retrieved
nearest neighbors, k, on the performance of the Scan, R-tree, S2R-tree, and DualiDistance
algorithms. These figures reveal distinct patterns and shed light on how different values
of k affect the efficiency of these algorithms. The Scan algorithm, which compares every
document in the dataset to a given query, exhibits consistent performance regardless of the
value of k. This is expected, as its approach evaluates every document independently of
k. As k increases, the performance gap between the scan algorithm and other algorithms
diminishes. The Scan algorithm, which visits all documents, does not incur significant
additional overhead when handling larger k values. As a result, its query time can even
become competitive with other algorithms in such scenarios.

The R-tree, a spatial indexing algorithm, demonstrates a slight increase in the number
of visited objects as k increases. However, its query time remains stable, indicating
efficient pruning of non-relevant objects and the ability to retrieve a larger result set
without significantly impacting query time. Surprisingly, the S2R-tree and R-tree exhibit
nearly identical performances, raising doubts about the added effectiveness of the S2R-
tree’s semantic layer. Despite the additional complexity and theoretical advantages of
the S2R-tree, their performances closely resemble each other. In contrast, DualiDistance
shows an increase in both query time and the number of visited objects as k grows. Of

40

5.2 Comparative Evaluation

0 20 40 60 80 1000

500

1,000

1,500

2,000

2,500

3,000

k

Q
ue

ry
T

im
e

in
m

se
c

Scan R-tree DualiDistance S2R

Figure 5.1: Varying k

concern is the discrepancy between the number of documents fetched by DualiDistance
and the number of documents accessed by its threshold algorithm. This mismatch
suggests an over-retrieval of documents, potentially leading to unnecessary computational
overhead and impacting overall performance.

5.2.2 Varying λ

Figure 5.3 and 5.4 evaluate the effect of the balancing factor λ. λ serves as a control
parameter that governs the balance between spatial and semantic search. Specifically,
for λ = 0, the problem reduces to k-nearest neighbor (k-NN) search of high-dimensional
semantic vectors, while for λ = 1, it is reduced to spatial k-NN. The density of documents
in different dimensions plays a crucial role in the effect of varying λ. Spatial data exhibits
a denser distribution, with many documents originating from the same or nearby locations.
On the other hand, high-dimensional semantic vectors display greater sparsity and wider
distribution. The Scan algorithm, known for its brute-force approach of evaluating every
document in the dataset, maintains consistent query time and visits the same number
of objects across different λ values. This is expected, as the Scan algorithm does not
discriminate between spatial and semantic relevance. While this method may seem
computationally heavy and less efficient for high λ values, where the density of spatial
data can speed up queries, it performs surprisingly well for low λ values. The sparsity
of semantic vectors becomes more dominant in this scenario, and the Scan algorithm’s

41

5 Experimental Evaluation

0 20 40 60 80 1000

100.000

200.000

300.000

400.000

500.000

k

N
um

be
r

of
vi

sit
ed

ob
je

ct
s

Scan R-tree DualiDistance S2R Treshold algorithm

Figure 5.2: Varying k

exhaustive scanning strategy proves effective. This is consistent with earlier findings,
where the Scan Algorithm becomes an increasingly viable choice as the dimensionality
increases. Both the R-tree and S2R-tree algorithms exhibit notable reductions in query
time and the number of visited objects as λ increases, transitioning from sparse semantic
search to denser spatial search. These algorithms leverage spatial indexing to efficiently
prune non-relevant regions of the search space, resulting in improved performance for
higher λ values. The S2R-tree and R-tree algorithms heavily rely on spatial indexing
to facilitate efficient spatial queries. However, as λ decreases and the problem becomes
more semantically oriented, the effectiveness of spatial indexing diminishes. Notably,
the performance of the S2R-tree algorithm, despite its increased complexity in handling
semantics, closely resembles that of the purely spatial R-tree. This similarity raises doubts
about the potential advantages of its semantic integration. DualiDistance possesses a
distinctive characteristic, where the search and retrieval of documents are not dependent
on λ. This approach, while providing consistency, also may lead to a consistently higher
query time across different λ values. The complexity of managing dual indexes within
DualiDistance may contribute to this behavior. Interestingly, DualiDistance consistently
fetches almost twice as many documents as those accessed by its associated threshold
algorithm. This suggests potential over-fetching and inefficiency in early pruning that
warrant further investigation. The threshold algorithm in DualiDistance employs λ for
computing the total document score and is an important factor when determining which
documents should be part of the final result. The algorithm exhibits a significant decrease

42

5.3 Sensitivity Analysis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

500

1,000

1,500

2,000

2,500

3,000

λ

Q
ue

ry
T

im
e

in
m

se
c

Scan R-tree DualiDistance S2R

Figure 5.3: Varying λ

in the number of visited objects as λ transitions from 0 to 1. This reduction indicates
the algorithm’s proficiency in spatial search surpasses that of semantic search, reflecting
the inherent challenges in exploring high-dimensional spaces. In datasets with spatially
dense distributions, characterized by many documents sharing identical coordinates, the
process of populating the priority queue with suitable candidates becomes notably easier
as the value of λ increases. With a higher concentration of documents in the same
spatial location, the search process may require fewer iterations, enabling the earlier
identification of the top-k nearest neighbors. As λ decreases and the focus shifts to
semantics, the influence of sparsity in high-dimensional semantic vectors becomes more
significant.

5.3 Sensitivity Analysis

The following is a sensitivity analysis to explore the behavior of our proposed method
DualiDistance under different conditions. By varying key parameters, specifically ∆r and
f , we investigate the impact of these variations on the overall performance of our model.
This helps us understand the robustness and generalizability of our method across diverse
applications.

43

5 Experimental Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

100.000

200.000

300.000

400.000

500.000

λ

N
um

be
r

of
vi

sit
ed

ob
je

ct
s

Scan R-tree DualiDistance S2R Treshold algorithm

Figure 5.4: Varying λ

5.3.1 Varying ∆r

The parameter ∆r in our DualiDistance algorithm dictates the rate of the incremental
extension of the search radius r. Its effect on the algorithm’s performance is observable
in two primary areas, namely the query time and the number of visited objects during
the search process. Our sensitivity analysis for ∆r is encapsulated in Figures 5.5 and 5.6.
As shown in Figure 5.5, the query time exhibits a general trend to decrease with larger
∆r values. This observation makes some intuitive sense considering the design of our
algorithm. With a larger ∆r, each step of the search covers a broader space, potentially
reducing the time to reach the nearest neighbors. It may also reduce the number of
iterations the main search loop needs to perform.

However, one must interpret these results with caution due to the behavior of our
threshold algorithm implementation. Our threshold algorithm implementation Algorithm
10 has a termination condition in line 18 that is dependent on the search radius r, which
is modulated by ∆r. If ∆r is set too high, the initial search radius becomes overly large
at the start, which might lead to early termination of the search loop before confirming
the exact k nearest neighbors. Therefore, a larger ∆r might speed up the query time but
could potentially compromise the accuracy of the search.

Moving onto Figure 5.6, we observe that the number of visited objects by the Du-
aliDistance algorithm remains relatively consistent across varying values of ∆r. The
stability in the number of visited objects by the DualiDistance algorithm across different
∆r values can be attributed to the algorithm’s design. DualiDistance incrementally

44

5.3 Sensitivity Analysis

0 0.01 0.02 0.03 0.040

500

1,000

1,500

2,000

2,500

3,000

∆r

Q
ue

ry
T

im
e

in
m

se
c

DualiDistance

Figure 5.5: Varying ∆r

expands the search radius r and explores the documents within that radius in each index.
While a larger ∆r allows the search to cover a wider area in each step, DualiDistance is
specifically designed to find the exact k nearest neighbors. Consequently, the algorithm
continues running until it has identified k documents that are closer to the query object
than the current search radius. Regardless of the specific value of ∆r, a similar set of
documents may be likely to be considered in both indices, leading to a relatively constant
count of visited objects. In contrast, the count of visited objects for the threshold al-
gorithm declines significantly with larger ∆r values. This suggests that with an enlarged
initial search radius, the threshold algorithm can meet its termination condition sooner,
thereby visiting fewer objects. However, as noted earlier, this increased efficiency might
come at the expense of reduced search precision. Determining an appropriate value for
∆r is a balancing act. On the one hand, a higher value can hasten the query time but
may risk diminishing search accuracy due to premature termination of the threshold
algorithm. On the other hand, a lower value, although preserving the integrity of the
search, could lead to longer query times. Since we require the exact k-nearest neighbors,
we need to choose a conservative value for ∆r that ensures exact results at the cost of
query performance.

45

5 Experimental Evaluation

0 0.01 0.02 0.03 0.040

100.000

200.000

300.000

400.000

500.000

∆r

N
um

be
r

of
vi

sit
ed

ob
je

ct
s

DualiDistance Treshold algorithm

Figure 5.6: Varying ∆r

5.3.2 Varying f

The parameter f only plays a significant role in the DualiDistance algorithm, which
utilizes clustering to partition the data. As depicted in Figure 5.7, increasing f leads
to an increase in query time. This behavior aligns with our understanding that higher
f values generate a greater number of clusters, which adds complexity to the search
process and hence extends the query time. An interesting observation is that the query
time does not exhibit a linear increase but rather levels off at higher values of f in
the DualiDistance algorithm. This suggests that the algorithm’s design possesses a
certain degree of resilience, effectively managing the complexity associated with a larger
number of clusters. Meanwhile, as shown in Figure 5.8, the number of visited objects by
DualiDistance also increases as f grows. DualiDistance partitions the data space into
multiple clusters and, for each search query, the algorithm conducts a dual search in both
spatial and textual index structures. As the number of clusters grows, the data space is
divided into smaller segments. Even though each individual cluster becomes smaller, the
total number of clusters the algorithm might need to traverse during a search increases.
The algorithm doesn’t access all documents in a cluster indiscriminately during its dual
search in both spatial and textual index structures. It specifically examines the relevant
documents in each cluster that belongs to the same cluster as the query, or those located
within an annulus defined by the intersection of the query’s search sphere and the cluster
sphere. The necessity to navigate more clusters, induced by their increased number, also
necessitates more annuluses to be searched. This can potentially lead to a larger number

46

5.3 Sensitivity Analysis

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

500

1,000

1,500

2,000

2,500

3,000

f

Q
ue

ry
T

im
e

in
m

se
c

DualiDistance

Figure 5.7: Varying f

of documents being considered. The transition process between searching each cluster
can also incur an overhead leading to a performance dip.

Interestingly, Figure 5.8 demonstrates that the number of objects visited by the
threshold algorithm seems to follow a different trend, decreasing as f increases. This
divergence implies that the threshold algorithm may be more efficient at managing an
increasing number of clusters. In the threshold algorithm, two sorted lists of spatial
and textual distances are processed in parallel. Each list contains documents, sorted
by their spatial or textual distance to the query document. At every iteration, the
algorithm chooses the document closest to the query from each list, ensuring that it
has not been previously examined. The threshold, which is derived from the distances
of the two current documents, is then updated accordingly. When we increase the
number of clusters, the documents within the data space become more finely partitioned.
This tighter grouping of documents in each cluster leads to smaller distances between
documents within the same cluster, which means that the documents in the sorted lists
could have lower scores. Therefore, sorted lists containing documents with lower scores
may lead to a situation where the threshold value becomes greater than the combined
distance score of the worst candidate in the result set faster. This may allow the algorithm
to more efficiently prune irrelevant documents whose combined distances are greater
than the threshold. Consequently, the number of accessed objects would decrease as the
number of clusters increases.

47

5 Experimental Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

100.000

200.000

300.000

400.000

500.000

f

N
um

be
r

of
vi

sit
ed

ob
je

ct
s

DualiDistance Treshold algorithm

Figure 5.8: Varying f

48

6 Conclusion and Future Work
6.1 Conclusion
This thesis set out with the aim of improving the performance of semantic similarity
searches over spatio-textual data. To achieve this objective, we focused on developing
new indexing and searching methods that could effectively manage and extract valuable
insights from large-scale spatio-textual datasets. Throughout this research journey, we
pursued answers to four core research questions, and in this conclusion, we will assess
how our endeavors have fared against the original goals and questions.

Goal Develop indexing and searching methods that improve the performance of similarity
searches in spatio-textual data.

We identified significant limitations in existing semantic spatio-textual search methods,
including spatial-first bias and limited semantical capabilities. To address these challenges,
we proposed the utilization of high-dimensional word embeddings and a dual indexing
strategy, resulting in the development of the DualiDistance method. However, in practical
experiments, DualiDistance did not outperform existing methods and introduced new
complexities such as document over-retrieval and computational load for larger numbers
of clusters. While we feel our efforts to innovate and implement a new method point
in the right direction, the expected performance improvements were not fully realized.
Nevertheless, these findings may provide some insight for future work in semantic spatio-
textual search techniques.

Research question 1 What are the limitations of existing indexing and searching tech-
niques for spatio-textual data, and how do they impact the efficiency and effectiveness
of similarity searches?

Through our literature review, we identified the key limitations of existing indexing
and searching techniques for spatio-textual data. One key limitation of these methods is
the dominance of the spatial dimension in their indexing structures. When the spatial
dimension dominates the indexing process, the effectiveness is comparable to that of
indexing methods that only consider the spatial domain, such as a basic R-tree. Another
limitation is that current approaches predominantly rely on low-dimensional semantic
vectors or topic modeling techniques to capture the semantic meaning of queries. Our
experiments also showed that the additional low-dimensional semantic layer in the S2R-
tree did not provide any clear performance advantage over the simpler R-tree. Topic
modeling approaches provide a probabilistic interpretation of semantic information but

49

6 Conclusion and Future Work

may struggle to capture the fine-grained nuances of individual semantic contexts. Lastly,
incorporating user feedback to enhance semantic relevance introduces scalability issues
and potential inconsistencies due to subjective interpretations.

Research question 2 How can novel indexing and searching methods be designed to
address the challenges associated with semantic spatio-textual search?

To address the limitations of existing spatio-textual data indexing and searching
techniques, two main concepts should be adopted. Firstly, high-dimensional word
embeddings can better capture semantics and context in queries than low-dimensional
semantic vectors or topic modeling techniques. Secondly, a dual indexing strategy that
separates spatial and textual indexes can mitigate the spatial-first bias in current methods.
This balanced approach could enhance accuracy, context relevance, and efficiency in
managing large spatio-textual datasets.

Research question 3 What performance improvements can be achieved by designing new
algorithms, and how do they compare to existing methods in terms of retrieval
efficiency and effectiveness?

To address Research Question 3, we proposed the DualiDistance method, which
integrates the design ideas suggested in response to Research Question 2. DualiDistance
utilizes high-dimensional word embeddings to provide a more comprehensive and context-
aware representation of semantics in spatio-textual data. Moreover, it employs a dual
indexing strategy with separate indexes for spatial and textual data, avoiding the spatial-
first bias inherent in existing methods. Despite these promising design choices, the
performance improvements of DualiDistance did not outperform the existing methods
in our experiments. Several reasons may explain this outcome. DualiDistance tends to
retrieve more documents than the threshold algorithm needs to stop the search process
early. When the number of clusters increases, DualiDistance requires more computational
resources to handle the increased complexity. There might be ways to change the
implementation so that higher amounts of clusters do not incur a significant dip in
performance. Lastly, the choice of the ∆r parameter represents a trade-off between speed
and accuracy. A higher value can speed up query time but may compromise search
accuracy due to premature termination of the algorithm. Since we require exact results,
we had to set the value of ∆r conservatively.

6.2 Future Work
The findings and experiences of this study reveal several potential directions for future
research aimed at improving the performance of semantic spatio-textual search.

One important direction for further exploration is the investigation of alternative
indexing techniques, whether unified or dual, to address the spatial-first bias observed in
existing methods. While the dual indexing approach employed by DualiDistance shows
promise, there is potential for the development of innovative indexing methods that

50

6.2 Future Work

not only balance the spatial and textual dimensions but also leverage their interplay to
achieve efficient pruning early in the search process.

Additionally, exploring alternative techniques for semantic representation in spatio-
textual data is a worthwhile pursuit. While high-dimensional word embeddings offer
rich semantic representations, their computational complexity due to high dimensionality
poses challenges. Research into alternative methods that provide equally robust semantic
capabilities without the computational load could greatly enhance spatio-textual data
search performance.

Lastly, refining the DualiDistance method itself holds the potential for improving its
effectiveness. Addressing issues such as document over-retrieval and computational load
associated with increasing cluster numbers is a challenge worth tackling. Optimizing
the stopping criteria of the threshold algorithm or exploring new techniques for early
stopping could potentially enhance performance without compromising result accuracy.

51

Bibliography
Bayer, R., & McCreight, E. (1970). Organization and maintenance of large ordered indices.

Proceedings of the 1970 ACM SIGFIDET (now SIGMOD) Workshop on Data
Description, Access and Control, 107–141.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18 (9), 509–517.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal
of Machine Learning Research, 3 (Jan), 993–1022.

Chen, L., Cong, G., Jensen, C. S., & Wu, D. (2013). Spatial keyword query processing:
An experimental evaluation. Proceedings of the VLDB Endowment, 6 (3), 217–228.

Chen, L., Shang, S., Yang, C., & Li, J. (2020). Spatial keyword search: A survey.
GeoInformatica, 24 (1), 85–106.

Chen, X., Xu, J., Zhou, R., Zhao, P., Liu, C., Fang, J., & Zhao, L. (2020). S2R-tree:
A pivot-based indexing structure for semantic-aware spatial keyword search.
GeoInformatica, 24 (1), 3–25.

Chen, Z., Chen, L., Cong, G., & Jensen, C. S. (2021). Location- and keyword-based
querying of geo-textual data: A survey. The VLDB Journal, 30 (4), 603–640.

Cong, G., Jensen, C. S., & Wu, D. (2009). Efficient retrieval of the top-k most relevant
spatial web objects. Proceedings of the VLDB Endowment, 2 (1), 337–348.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding [arXiv:1810.04805 [cs]].

Fagin, R. (2002). Combining fuzzy information: An overview. ACM SIGMOD Record,
31 (2), 109–118.

Finkel, R. A., & Bentley, J. L. (1974). Quad trees a data structure for retrieval on
composite keys. Acta Informatica, 4 (1), 1–9.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. ACM
SIGMOD Record, 14 (2), 47–57.

53

Bibliography

Jagadish, H. V., Ooi, B. C., Tan, K.-L., Yu, C., & Zhang, R. (2005). iDistance: An
adaptive B+-tree based indexing method for nearest neighbor search. ACM
Transactions on Database Systems, 30 (2), 364–397.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. University of California Press.

Mahmood, A., & Aref, W. (2019). Scalable Processing of Spatial-Keyword Queries.
Synthesis Lectures on Data Management, 11, 1–116.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word
Representations in Vector Space [arXiv:1301.3781 [cs]].

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., & Thirion, B. (2011). Scikit-learn:
Machine Learning in Python. The Journal of Machine Learning Research, 12,
2825–2830.

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word
Representation. Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 1532–1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer,
L. (2018). Deep Contextualized Word Representations. Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 1, 2227–2237.

Qian, Z., Xu, J., Zheng, K., Sun, W., Li, Z., & Guo, H. (2016). On Efficient Spatial
Keyword Querying with Semantics. Database Systems for Advanced Applications,
149–164.

Qian, Z., Xu, J., Zheng, K., Zhao, P., & Zhou, X. (2018). Semantic-aware top-k spatial
keyword queries. World Wide Web, 21 (3), 573–594.

Sun, J., Xu, J., Zheng, K., & Liu, C. (2017). Interactive Spatial Keyword Querying
with Semantics. Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, 1727–1736.

van der Maaten, L., & Hinton, G. (2008). Viualizing data using t-SNE. Journal of
Machine Learning Research, 9, 2579–2605.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., & Polosukhin, I. (2017). Attention is all you need. Proceedings of the 31st
International Conference on Neural Information Processing Systems, 6000–6010.

Weiner, P. (1973). Linear pattern matching algorithms. Proceedings of the 14th Annual
Symposium on Switching and Automata Theory (swat 1973), 1–11.

54

Bibliography

Wu, D., Cong, G., & Jensen, C. (2012). A framework for efficient spatial web object
retrieval. The VLDB Journal, 21.

Yao, B., Li, F., Hadjieleftheriou, M., & Hou, K. (2010). Approximate string search in
spatial databases. 2010 IEEE 26th International Conference on Data Engineering
(ICDE 2010), 545–556.

55

	Abstract
	Sammendrag
	Aknowledgements
	Acronyms
	Introduction
	Background
	Motivation
	Problem Formulation
	Goals and Research Questions
	Thesis Structure

	Related Work
	Spatial Keyword Search
	Semantic Representations of Text
	Semantic Spatio-textual Search
	Limitations of Existing Methods

	Background Theory
	Symbols
	Spatio-textual Data
	Distance Metrics
	Spatial Distance Metrics
	Textual Similarity Metrics
	Hybrid Distance Metrics

	Features
	Impact of High Dimensionality
	Dimensionality Reduction
	Indexing Methods
	Spatial Indexing
	Textual Indexing

	B+-Tree
	Nearest Neighbor Search Algorithms
	Exact Nearest Neighbors
	K-Nearest Neighbor Search
	Approximate Nearest Neighbors

	Integrating Rankings
	Fagin's Algorithm
	Treshold Algorithm

	The iDistance Method
	Overview
	Index Structure
	Data Partitioning and Clustering

	Dual Semantic Similarity Search
	K-Means with Maximum Radii Calculation
	Optimizing the iDistance Algorithm
	Optimized One-Dimensional iDistance
	Query Processing

	Dual Spatio-textual iDistance
	Index Construction
	Threshold Algorithm For Dual Indexes
	Query Processing
	Inter- and Intra-cluster Pruning
	Motivations Driving DualiDistance

	Experimental Evaluation
	Experimental Setup
	Code and Platform
	Algorithms
	Dataset
	Parameters
	Metrics
	Queries

	Comparative Evaluation
	Varying k
	Varying

	Sensitivity Analysis
	Varying r
	Varying f

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

