
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Halvor Bjørstad

Implementing RVSDG as a dialect of
MLIR

Master’s thesis in Computer Science (MTDT)
Supervisor: Magnus Själander
Co-supervisor: David Metz
June 2023

Halvor Bjørstad

Implementing RVSDG as a dialect of
MLIR

Master’s thesis in Computer Science (MTDT)
Supervisor: Magnus Själander
Co-supervisor: David Metz
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Sammendrag/Abstract

Norsk
Slutten på Dennard-skaleringen og det påfølgende skiftet til flerkjernede og het-
erogene prosessorarkitekturer har flyttet ansvaret for å øke ytelsen til programvare
over på programmerere og verktøyene deres. Et behov for kompilatorer som au-
tomatisk kan utnytte den iboende parallelliteten i programmer og den spesialiserte
maskinvaren som man finner i moderne prosessorer har derfor blitt mye viktigere.
For å kunne gjennomføre slike optimaliseringer, er det viktig at kompilatoren
bruker en mellomrepresentasjon (IR) som gjør det mulig å finne ut hvilken kode
som kan parallelliseres.

Den regionaliserte verdi-/tilstands-avhengighetsgrafen (RVSDG) er en dataflyt-
basert IR. Den representerer beregninger som noder og verdi- og tilstands-
avhengigheter som kanter mellom nodene. Enkelte kontrollflytstrukturer er ek-
splisitt representert ved hjelp av noder med regioner, som igjen inneholder sub-
grafer. Denne programrepresentasjonen eksponerer parallelliteten til programmer
og forenkler dataflytbaserte optimaliseringer.

MLIR er et rammeverk for å implementere domenespesifikke IR-er. Det inneholder
standard infrastruktur og er grunnlaget for et økosystem med IR-dialekter som
modellerer forskjellige domener på forskjellige abstraksjonsnivåer. Disse dialektene
kan sameksistere i en gitt IR, noe som gjør det mulig å representere tradisjonell
kode og akseleratorspesifikk kode i samme datastruktur.

Denne oppgaven viser at RVSDG kan representeres som en dialekt av MLIR. Dette
gjøres både ved å presentere en teoretisk representasjon av RVSDG i MLIR, og ved
å implementere en RVSDG-dialekt i MLIR. Denne dialekten vil gjøre RVSDG mer
tilgjengelig for eksterne kompilatorprosjekter og vil samtidig gi fremtidig forskning
på RVSDG tilgang til infrastrukturen og økosystemet tilbudt av MLIR.

i

ii

English
The end of Dennard scaling and subsequent rise of multicore and heterogeneous
architectures has shifted the burden of improving program performance over to
programmers and their tools. In particular, creating compilers which can exploit
the latent parallelism of programs has become far more important. For such
optimizations to be possible, the compiler needs an intermediate representation
(IR) that makes it possible to detect code that is eligible for parallelization.

The Regionalized Value State Dependence Graph (RVSDG) is a data-flow centric
IR that encodes a program as a graph of nodes, representing computations, con-
nected by edges, representing data or state dependencies. Control flow constructs
are represented as nodes containing regions that hold IR subgraphs. Representing
a program in this manner exposes the inherent parallelism of the program and
simplifies data-flow based compiler optimizations.

MLIR is a framework for creating domain specific IRs. It provides common infras-
tructure as well as an ecosystem of IR dialects that each model their own domain
and/or level of abstraction. These dialects are allowed to coexist in the IR, en-
abling progressive lowering of code and the unified representation of traditional
code and accelerator-specific code.

This thesis shows empirically that RVSDG can be implemented as a dialect of
MLIR, and presents both the conceptual mapping from RVSDG to MLIR and
the implementation of the RVSDG dialect. Having this dialect available makes
RVSDG more accessible to other compiler developers, and also gives future re-
search into RVSDG access to the infrastructure of MLIR.

Contents

Abstract i

Contents iv

List of Figures iv

List of Tables v

1 Introduction 1

2 Theory 3
2.1 LLVM . 3
2.2 MLIR . 4

2.2.1 TableGen . 4
2.2.2 Dialects . 4
2.2.3 Ops . 5
2.2.4 Types . 5
2.2.5 Attributes . 6
2.2.6 Passes . 7
2.2.7 Traits and interfaces . 7
2.2.8 Progressive lowering . 7
2.2.9 IR representations . 8
2.2.10 Software engineering . 9

2.3 RVSDG . 12
2.3.1 Node types . 13

3 Methods 19
3.1 Development environment . 19
3.2 Project structure . 19
3.3 Representation of RVSDG in MLIR 20
3.4 Testing and validation . 21
3.5 Implementation . 24

4 Results 27
4.1 Constraints on node ports . 27
4.2 Interoperability with pass infrastructure 31

iii

iv CONTENTS

4.3 Validation . 31

5 Discussion 33
5.1 Validation of dialect . 33
5.2 Evaluating representations . 34
5.3 The role of RVSDG in the MLIR ecosystem 36
5.4 Future work . 37

6 Conclusions 39

References 41

Appendices: 45

A GitHub repositories 46

B Information for developers 47

C Larger examples 50

List of Figures

2.1 MLIR assembly showing some different standard Ops 6
2.2 Graph showing relation between MLIR elements 6
2.3 MLIR “pretty” format vs. generic format 8
2.4 Example of the Curiously Recurring Template Pattern 9
2.5 RVSDG terminology visualized . 12
2.6 Simple nodes modelling the expression 6+2 13
2.7 Gamma node modelling an if-else-statement 13
2.8 Theta node modelling a do-while-loop 14
2.9 Lambda node modelling an “add N ” function 14
2.10 Delta node modelling code. Dashed edges are state edges 15
2.11 Phi node modelling a recursive factorial function 16
2.12 Omega node modelling a program module. The imported value is

a reference to some printing method. The defined lambda is also
made available to other modules. Dashed lines are state edges . . . 17

3.1 Custom RVSDG dialect format vs generic MLIR assembly 23

4.1 Gamma node represented in the RVSDG dialect 28
4.2 Theta node represented in the RVSDG dialect 29
4.3 Lambda and apply node represented in the RVSDG dialect 29
4.4 Delta node represented in the RVSDG dialect 30
4.5 Builtin CSE-pass simplifying RVSDG-nodes 32

v

List of Tables

2.1 Terms with descriptions . 18

3.1 Conceptual mapping from RVSDG to MLIR 21

vi

CHAPTER 1
Introduction

The end of Dennard scaling [1] brought with it the end of frequency scaling, and
caused single-threaded performance to stagnate [2]. This has caused processor
designs to shift more and more towards multicore and heterogeneous architectures
to better exploit decreasing transistor sizes without blowing their power budget.
Program performance based on such architectural improvements are, however,
not as easily exploited as a simple processor frequency increase. It is up to the
programmers to create programs that take full advantage of and scale with modern
systems. Since this is not always a simple task, and different processors may have
completely different architectures, the creation of tools that can aid programmers
in exposing parallelism and exploiting specialized hardware is of vital importance.

MLIR (Multi Level Intermediate Representation) is a framework for implement-
ing domain specific compiler Intermediate Representations (IRs) [3]. It provides
out-of-the-box infrastructure such as pass management, IR verification, and IR
serialization in addition to a framework for defining operations and data types.
MLIR also introduces the concept of IR dialects. These are logical groupings of op-
erations, attributes, and types which model a specific domain. In MLIR different
dialects are allowed to coexist at all levels of the IR, enabling progressive lowering
from high level IR to target code. Coexisting dialects also makes it possible for
MLIR to model IR for heterogeneous architectures by allowing accelerator-specific
code to coexist with a more traditional IR. Additionally, progressive lowering gives
the compiler more opportunities to discover optimizations [3]. MLIR was origi-
nally created as an IR framework for machine learning tools, but it was eventually
realized that it could have applications in the wider industry [3].

The Regionalized Value State Dependence Graph (RVSDG) presented by Bah-
mann et al. [4] and later expanded on by Reissmann et al. [5] is an IR structure
that seeks to model programs at all levels of abstraction as a unified data-flow
based data structure. RVSDG has been shown to have no intrinsic limitations to
the control flow it can represent [4] and can be constructed from more traditional
Control Flow Graphs (CFGs) in a reasonable amount of time [4, 5]. Reissmann
et al. also provided an implementation of the IR in the form of the JLM research
compiler [5, 6] to prove the feasibility for using RVSDG as an IR for optimizing
compilers. The RVSDG models programs as demand-dependence graphs, which
should both expose the latent parallelism of programs and make it possible to
create simple but powerful data-flow optimization passes on the IR [5].

1

2 CHAPTER 1. INTRODUCTION

This thesis seeks to find out if the RVSDG IR can be implemented as a dialect of
MLIR, and if so, how good of a fit they are for each other. An empirical approach
was taken to answer these questions, and an MLIR dialect was created to model
RVSDG. There are several reasons for wanting RVSDG implemented in MLIR.
The first is to increase the accessibility of RVSDG for compiler developers. While
JLM [5] provides a good proof of concept, its tight coupling to LLVM IR and its
proprietary infrastructure makes it unsuitable as a basis for future, more high level,
compiler projects. The second reason is to get access to the pre-existing dialects
and infrastructure of MLIR for future development and research into RVSDG.

The contributions of this thesis are as follows:

• A conceptual mapping from RVSDG to MLIR is presented

• An MLIR dialect that captures said mapping is created and presented

CHAPTER 2
Theory

This chapter will cover some concepts related to LLVM, MLIR, and RVSDG in
greater detail. This chapter draws heavily from the “Background” chapter in the
pre-study report [7].

2.1 LLVM

LLVM started as a modular compiler framework presented by Chris Lattner in
2002 [8]. Today LLVM is an umbrella project that encompasses several subpro-
jects [9] including LLVM Core (the original framework), Clang (C/C++ compiler),
LLDB (Debugger), MLIR, which will be discussed in section 2.2, and several other
projects. These are used in all manner of compiler and code analysis projects, both
open source, academically, and in industry [10]. LLVM is built around its own
intermediate representation called LLVM IR, including target- and source- inde-
pendent optimizations, and code-generation for a number of different CPUs [11].
In theory, this structure should simplify the process of building compilers for new
languages significantly; All that is needed for getting it running is to create a
compiler frontend that consumes source code and generates LLVM IR, and the
LLVM framework handles the rest.

The LLVM IR is a low-level, Single Static Assignment (SSA) IR [12, 8]. In terms
of available types and operations, it is not too different from a RISC-style instruc-
tion set, but it also retains some high-level information to enable more advanced
optimization and analysis. LLVM IR is however not suited, or intended [8], to
be a generic compiler IR. Due to its inherent low-level nature, it is unable to di-
rectly capture high-level, language specific concepts which are needed to perform
language specific analysis and optimization. This has caused several compiler
projects to create their own domain-specific IRs that lie between the high-level
source language and LLVM IR [3]. While this approach has worked reasonably
well, its necessity highlights a flaw in the LLVM framework; Instead of simply
creating a frontend that “naively” converts source code to LLVM IR, compiler de-
velopers will also have to create their own IR with associated infrastructure to be
able to perform high-level optimizations.

3

4 CHAPTER 2. THEORY

2.2 MLIR

MLIR (Multi Level Intermediate Representation) is a subproject under the LLVM
umbrella [9] that seeks to address the shortcomings of LLVM IR by providing a
framework for implementing domain-specific IRs and transformations [3]. It does
this by providing an extensible ecosystem of IR dialects that model different levels
of abstraction, a declarative interface for defining new levels of abstraction, and
common infrastructure such as pass management, IR verification, documentation
building, and printing and parsing logic [3]. MLIR also standardizes the use of
SSA-values.

2.2.1 TableGen

TableGen is a tool under the LLVM project whose goal is to help humans maintain
and develop records of domain specific information [13]. It reads a tableGen source
file, parses it, and passes the result to a domain specific backend which converts
the data into a format more suitable for direct usage. In MLIR, tableGen is
used as a declarative interface for defining Ops [14, 15], types [16], attributes [16],
interfaces [17], certain graph rewrites [18], and a few other things. Under the
hood, most of these things are specializations of C++ classes. These could be
written by hand, but using tableGen to automatically define them instead saves
dialect authors from writing a lot of boilerplate code, at the cost of having to
learn tableGen. MLIR also makes quite heavy use of strings to identify various
structures and concepts at run time [14]. TableGen helps developers manage these
strings and ensures changes are properly propagated throughout the project.

A tableGen source file consists of a list of records. Each record has a unique
name, a list of values, and a list of super classes, where the list of values is the
actual information being encoded. There are two main types of records: classes
and definitions. Definitions are concrete records that will be instantiated by the
backend, while classes are abstract records that make it possible for record creators
to factor out common behavior or create additional levels of abstraction. TableGen
does provide more complex features that makes it more of a general purpose
programming language [19], although they will not be important for this thesis.

2.2.2 Dialects

Dialects are the main way extensibility is managed in MLIR. They are logical
groupings of operations, types, and attributes [3]. Dialects generally model ei-
ther a particular level of abstraction or a specific domain. Some examples of
dialects that are a part of MLIR by default are the “arith”-dialect which holds
basic mathematical operations [20], the “memref”-dialect which holds generic op-
erations related to interacting with computer memory [21], and the “llvm”-dialect
which models a subset of LLVM IR [22]. Different dialects can also coexist on all
levels of the IR [3]. This enables compiler developers to pick and choose compo-
nents from different dialects when designing their IRs. Developers are also able to
create their own dialects to fit their own use-cases. When doing this, developers
may choose to incorporate ops, types, or attributes from other dialects, which can
save a decent amount of development and maintenance effort.

CHAPTER 2. THEORY 5

2.2.3 Ops

Operations, or Ops as they are commonly called in MLIR, are the main semantic
units of MLIR [3]. They are used for modelling everything from modules and
functions, to loops and conditional execution. Ops take zero or more operands
and produce zero or more results, all of which are typed SSA-values [3]. They can
also take several attributes , which are values that are known at compile time [3].

Ops can also contain a number of regions which are used to model nested program
structure. These regions contain a list of blocks, which in turn contain a list of Ops.
The blocks within any given region form a control flow graph, where terminator
Ops in each block can pass control to another block. Blocks also have a list of
typed arguments, which are can be used as SSA-values within the block. When
control is transferred to a block, the previous Op or block that held control decides
the values of the next block’s arguments. Ops do this implicitly, while other blocks
pass the new argument values as operands to their terminator Ops. Passing of
block arguments is used to replace LLVMs phi-function [3, 23], which is used to
maintain SSA-form under conditional execution.

As of writing, there exists two main types of regions in MLIR: Single Static Assign-
ment Control Flow Graph (SSACFG)-regions, and graph-regions [24]. SSACFG
regions can have multiple blocks which form a CFG as mentioned above and the
Ops within each block are, somewhat informally, expected to run sequentially. A
consequence of this is that Ops in SSACFG-regions can only access SSA-values
that were produced before them in the IR. Graph-regions on the other hand only
have one block and model Ops that happen in an arbitrary order. Their primary
use is for modelling data-flow graphs, and as such they allow cyclic dependencies
between Ops.

While the standard MLIR dialects offer a decent range of different Ops, these are
not the only ones available. The registry of Ops is fully extensible, and dialect
authors can add as many Ops as they need for their dialects [3]. The semantics
of operands, results, attributes, and regions are also entirely dependent on the
Op they are attached to [3]. This gives dialect authors a lot of freedom in re-
gard to modelling different domains, while still retaining a common interface for
interacting with Ops from different dialects.

MLIR Ops have a set of constraints that define what makes a valid Op instance.
The most common of these constraints come in the form of type and count con-
straints on inputs, outputs, and regions. Most of these can be defined declaratively
through TableGen [14]. If these constraints prove insufficient for properly verifying
an Op, it is possible for dialect authors to create their own verifiers using C++.

2.2.4 Types

All SSA-values in MLIR have a data-type [3]. This can be anything from simple
integer types to complex composite types like structs, vectors, or tensors. These
types encode information about the values that are known at compile time, and
are specified by the Op that created the value or the block which defines it as an
argument [3]. The standard MLIR dialects provide several common types such as
integers, floats, memory references, compact vectors, and tensors. In addition to

6 CHAPTER 2. THEORY

// builtin.module is an Op with a single region with a single block
builtin.module {

// arith.constant takes a literal integer attribute and produces
// one result of type i32.
%val1 = arith.constant 1: i32
%val2 = arith.constant 2: i32

// arith.addi and arith.muli has two SSA operands and produces
// one result.
%sum = arith.addi %val1, %val2: i32
%product = arith.muli %val1, %val2: i32

}

Figure 2.1: MLIR assembly showing some different standard Ops

these, the type system is fully extensible, which allows dialect authors to define
their own types to better model their domain of interest.

2.2.5 Attributes

Attributes are typed values which contain information about Ops that is known at
compile time. Unlike SSA-values they are not typed using the MLIR type system,
but are instead typed using C++ types. The semantics of a given attribute is
specified entirely from the Op it’s attached to.

Figure 2.2 gives an overview of how the different MLIR concept link to each other.
Lines should be read from the end with no feet. The cardinality of the different
relationships is shown through the line "feet": Double dashed lines indicate a
relation to exactly one entity, while the crows foot with a circle indicates a relation
to zero or more entities. E.g Ops have regions which contain blocks which in turn
contain Ops. Block arguments are essentially SSA-values which all have exactly
one type. In addition the purple dialect box shows how a dialect is a grouping of
types, ops, and attributes.

Figure 2.2: Graph showing relation between MLIR elements

CHAPTER 2. THEORY 7

2.2.6 Passes

A pass is a mechanism for traversing, and potentially rewriting, an IR graph.
Different passes can perform different tasks, such as analysis, transformation, or
optimization. MLIR provides a set of common passes, as well as frameworks for
specifying pass pipelines and implementing new passes [3, 25]. All passes are by
default Op agnostic, meaning they can run on any Op, but it is also possible to
create passes that only run on specific Ops. MLIR also provides a framework for
defining different analyses. These are conceptually quite similar to passes, except
that they lazily compute information about a specific Op instead of performing
graph transformations [25]. After an analysis has been performed, it is cached
until a pass invalidates it. Passes can query analyses for the Op being processed
to determine how it should be processed.

2.2.7 Traits and interfaces

An MLIR graph can contain Ops and types that are defined in different dialects
and even exist on completely different layers of abstraction. Since passes can tra-
verse any Op anywhere in the graph, they have to be able to query potentially
very different Ops or types in a unified way. To combat this problem, MLIR intro-
duces traits and interfaces [3, 26, 17]. Traits are used to model simple properties
that an Op will express unconditionally. Properties such as “has no side effects”,
and “is terminator” are typically modelled as traits. More nuanced behavior can
be modelled generically using interfaces, which provide a set of interface methods
that must be implemented by the Op or type. These are then made available to
passes that interested querying Ops for specific information. Some examples of
interfaces provided by MLIR out of the box are callable/call Op interfaces [17]
and side effect interfaces [27].

2.2.8 Progressive lowering

One of the core concept in MLIR is progressive lowering [3]. This means that high
level IRs shouldn’t be lowered directly to machine code, but that it should instead
be lowered step by step through the different levels of abstraction until a set of
dialects suitable for target code generation is reached. Lowering in this manner
helps support a wide array of programming models and target architectures [3],
and enables the creation of pass pipelines that perform optimizations at multiple
levels of abstraction [3]. It also encourages the creation of passes that can work
across different levels of abstraction, which in turn makes reusing passes easier.

To exit MLIR, a subset of LLVM IR is provided in the form of the “llvm”-
dialect [22]. Once MLIR IR has been completely lowered to this dialect, usually
through several other dialects, the IR can be exported to actual LLVM IR and
compiled to runnable code.

8 CHAPTER 2. THEORY

2.2.9 IR representations

MLIR IR is designed to exist in three different forms: an in-memory form suit-
able for programmatic creation and manipulation, a compact serialized form used
for storage and transport, and a human-readable textual form (MLIR assembly)
which allows for easier inspection and debugging by developers [24]. These forms
all represent the same information, and each of them can be converted into any
of the others. All three forms must also be capable of dealing with the extensible
nature of MLIR. The in-memory and serialized forms do this by directly repre-
senting Ops, regions, types, SSA values etc. without taking the semantics of the
different constructs into account [28]. By default, the textual format also uses
a similar structure, but since it needs to be human-readable to be useful, MLIR
also offers mechanisms for creating custom representations of Ops, types, and at-
tributes. Formats can either be specified declaratively using a format string [15],
or by writing custom printers and parsers in C++. The format strings can contain
string literals which are printed and parsed directly, and field names which print-
/parse the value of some field of the entity being printed. The format strings also
accept directives, which are functions that can optionally take some parameters
and handle printing and parsing of special cases [15]. Dialect authors may create
their own directives as well if the provided mechanisms prove insufficient for their
applications, and they don’t feel like creating fully custom printers/parsers. An
example of some built-in Ops in both the pretty and generic format can be seen
in Figure 2.3.

module {
%val1 = arith.constant 5 : i32
%val2 = arith.constant 4 : i32
%sum = arith.addi %val1, %val2 : i32

}
(a) Pretty format

"builtin.module"() ({
%0 = "arith.constant"() {value = 5 : i32} : () -> i32
%1 = "arith.constant"() {value = 4 : i32} : () -> i32
%2 = "arith.addi"(%0, %1) : (i32, i32) -> i32

}) : () -> ()
(b) Generic format

Figure 2.3: MLIR “pretty” format vs. generic format

CHAPTER 2. THEORY 9

2.2.10 Software engineering

MLIR is fundamentally designed around the concepts of user extensibility and
compatibility between layers of abstraction [3], but how does it accomplish this
from a software engineering point of view?

Extending MLIR primarily involves specializing C++ base classes. This holds for
most concepts in MLIR, including dialects, Ops, types, attributes, traits, inter-
faces, and passes. The base classes provide the class members and hooks for in-
teracting with the different MLIR structures generically. They are extended poly-
morphically, and generally wish to use implementations from the derived classes.
This could be accomplished by using run-time polymorphism through C++ vir-
tual methods, but MLIR has in general opted for static polymorphism through the
“Curiously Recurring Template Pattern” (CRTP) [17, 29]. This pattern involves
creating a base class that takes a class derived from itself as a template parameter.
The derived classes then inherit from the base class and pass themselves as the
template parameter. This gives the base class access to the implementations in
the derived class. A simplified example of how this pattern can be used to call
specialized Op verifiers can be seen in Figure 2.4. Using this pattern allows nearly
all type resolution to be performed at compile time, avoiding the run-time cost
of virtual method calls. Dialect classes are an exception to this rule, as they use
virtual calls instead.

template<class ConcreteType>
class OperationBase {

...
static bool verify(Operation *op){

return llvm::cast<ConcreteType>(op).verify();
}
...

}

class MyOperation: public OperationBase<MyOperation> {
public:

...
bool verify() {

printf("MyOperation verified!");
return true;

}
...

}

Figure 2.4: Example of the Curiously Recurring Template Pattern

10 CHAPTER 2. THEORY

Specializing an MLIR Op does not add any class members that are not already
provided by the base class. In fact, all Ops are identical with regard to storage.
Specialized Op classes are actually smart pointer-like objects that reference the
storage object for the specific Op and provide a semantically meaningful interface
on top of it. This also holds for types and attributes, but creating storage for
these construct can be a little more challenging. For non-parametric, or singleton,
types and attributes, no extra work is needed. Parametric types and attributes,
however, need a little more care since they also need to store their parameters.
This is done by creating a specialized storage class that performs all necessary
allocations and memory handling that is required to store an instance of the type
or attribute. When using tableGen to define types or attributes, these storage
classes are automatically generated for types and attributes that only use simple
parameters. For more complex parameters, MLIR provides dialect authors with
the capability of letting the parameters themselves tell the storage class how they
should be allocated and stored. This makes reusing complex parameters a straight
forward task once it has been properly implemented once.

Since parametrized types and attributes often appear with the same parameters
multiple times in the same IR graph, their storage objects are made unique. The
creation and management of immortal unique storage objects is the responsibility
of an MLIRContext object. This object also holds a registry of registered di-
alects and Ops, as well as a thread pool used for various multithreaded operations
performed by MLIR.

Passes are, like most things in MLIR, implemented by specializing a CRTP base
class. Each pass is anchored to exactly one Op, and is only allowed to inspect and
modify that particular Op and Ops contained in its regions. Passes are in addition
allowed to inspect, but not modify, the state of direct ancestors of the anchoring
Op. A consequence of this is that any pass that requires information about sibling
Ops must be anchored to the parent of the Op whose siblings must be queried.
Additionally, passes are not allowed to maintain global mutable state or preserve
mutable state between runs of the pass, and must be copy-constructable [25].
These restrictions exist to make it possible for the MLIR pass infrastructure to
schedule passes to run in parallel, which can increase compiler performance on
modern multicore systems.

Configuring and scheduling pass pipelines is handled through the use of pass man-
agers. Pass managers schedule passes at a particular level of nesting. Every
pass pipeline has a top level pass manager which acts as an entry-point to the
pipeline [25]. This top level pass manager keeps track of the passes that should be
run on the highest level of nesting, but it can also contain nested pass managers
which keep track of passes that should be run on the next level of nesting. These
nested pass managers can again contain their own nested pass managers, enabling
the creation of pass pipelines that operate on any specific level of nesting. Occa-
sionally it may be useful for a pass pipeline to be scheduled as part of another
pass, or to create passes that need to operate at a level of nesting that can not
be statically known. MLIR supports the creation and scheduling of such dynamic
pass pipelines by allowing passes to run arbitrary pass pipelines on the Op being
operated on or any of its children [25].

CHAPTER 2. THEORY 11

Passes will often want to analyze the Ops they are working on to guide their trans-
formations. These analyses can be needed by several passes, and could therefore
be useful to cache. MLIR handles this through the use of analysis classes and anal-
ysis managers. Analysis classes are, unlike passes, not based defined by deriving
from a CRTP base class. They are instead nearly entirely defined by the analysis
author, with the only restrictions being that they need a particular constructor
signature, that they are not allowed to modify the IR graph, and that they are
only allowed to inspect the Op the analysis is run on, its direct descendants, and
its direct ancestors [25]. Analyses can be queried through an analysis manager
and will, once queried, remain cached until invalidated. An analysis will generally
be invalidated by any pass being scheduled on the Op the analysis was run on,
although passes may declare analyses that are known to be preserved.

12 CHAPTER 2. THEORY

2.3 RVSDG

The Regionalized Value State Dependence Graph (RVSDG) is a class of compiler
Intermediate Representations (IR) which aims to model both inter- and intrapro-
cedural computation [4, 5]. It is a data-flow centric IR and takes the form of a
directed, acyclic, hierarchical multigraph, which makes it well suited for perform-
ing data-flow based analyses and optimizations when compared to more traditional
Control Flow Graphs. In this graph, computation is modelled as nodes and data-
dependencies as edges. Nodes have a tuple of inputs and a tuple of outputs,
which model the dependencies and results of the computation, respectively. Each
input is connected to exactly one output, but each output can be connected to
an arbitrary number of inputs. Ordering of side-effecting operations is modelled
using state-edges. RVSDG has two classes of nodes: simple nodes which only
have inputs and outputs, and structural nodes which additionally have at least
one region. Regions consist of a tuple of region arguments, a tuple of region re-
sults, and a sub-graph built up of nodes and edges. Structural nodes are used to
model hierarchical programming structures such as loops, conditional execution,
and functions.

RVSDG has several properties that makes it an attractive IR for optimizing com-
pilers. Since the graph-structure is inherently in SSA-form, passes that reestablish
SSA-form are not necessary [5]. Rediscovering and recanonicalizing control flow
structures isn’t necessary either, since these are explicitly encoded in the graph [5].
RVSDG is also highly flexible with regard to which level of abstraction it oper-
ates on, since computation is primarily performed by simple nodes which are free
to model high- or low-level operations [4]. RVSDG can also be used to model
independent computations, including independent side-effecting operations, and
is also capable of representing all levels of a program as a single, unified data
structure [5].

Figure 2.5: RVSDG terminology visualized

CHAPTER 2. THEORY 13

2.3.1 Node types

Simple nodes model primitive operations [4]. They have a tuple of inputs and a
tuple of outputs, which map to the arguments and results of the modelled opera-
tion. These nodes do not contain any regions. Examples of operations that could
be modelled by these nodes include arithmetic operations such as integer additions,
subtractions, or multiplications, memory loads and stores, bitwise operations, and
comparisons.

+

6 2

Figure 2.6: Simple nodes modelling the expression 6+2

Gamma(γ)-nodes are structural nodes which model conditional execution, such
as if-else or switch statements [4]. They have two or more regions which represent
the different paths the execution may take. The first input to the gamma-node is
a predicate that decides which region should be executed. The other inputs are
context values that are needed by the nodes within the regions and map directly
to the region arguments. Region results are mapped directly to the outputs of the
gamma-node.

int i = random 0 or 1;
int x = 5;
if (i == 0) {

x = x+2;
} else if (i == 1) {

x = x*3;
}

Figure 2.7: Gamma node modelling an if-else-statement

Theta(θ)-nodes are used to model tail-controlled loops [4]. They contain exactly
one region which models the loop body. The inputs to the node model context
values needed by the nodes in the loop body. They map directly to the region
arguments of the first iteration of the loop. For iterations after the first, the
arguments take the values passed to the region results in the previous iteration.
The theta body has an additional region result, which is a predicate that decides
whether the loop performs another iteration. After the last iteration, the values
passed to the region results are mapped onto the outputs of the theta-node. It is
possible to model head-controlled loops by combining gamma- and theta-nodes.

14 CHAPTER 2. THEORY

int n = 13;
int a = 4
do {
a = n * a;
n = n-1;

} while (n > 0)

Figure 2.8: Theta node modelling a do-while-loop

Lambda(λ)-nodes model function definitions [5]. The inputs to a lambda node
model context-values that are needed by the function, while the output of the
node is a reference to the lambda-node itself. This reference can be passed to the
special apply-node together with any function parameters to call the function, with
the results of the call being mapped to the outputs of the apply-node. Lambda-
nodes have a single region which models the function body. The region arguments
represent both the required context values and function arguments. Values passed
to the region results are the return values of the function.

int inc_value = 2;
int f(int value) {

return value + inc_value;
}
f(3);

Figure 2.9: Lambda node modelling an “add N ” function

CHAPTER 2. THEORY 15

Delta(δ)-nodes model global variables [5]. The inputs of the delta-node model
the external dependencies of the variable, and their output is a reference to the
delta-node. The delta node has a single region which models the expression used
to give the variable its value.

int delta = 0;
delta = 3;
delta;

Figure 2.10: Delta node modelling code. Dashed edges are state edges

Phi(ϕ)-nodes are used to express environments with mutual recursion [5]. Since
the RVSDG is directed and acyclic, it is not possible for two nodes to take each
other’s outputs as inputs, or for any node to take its own output as an input. This
poses a problem when attempting to model recursive functions, as they would re-
quire a reference to themselves to be passed as a context value, which is impossible
in a pure DAG. The phi-node is used to solve this problem. It has a single re-
gion which models the mutually recursive environment. The results of this region
map both to the outputs of the phi-node and back to the region arguments. This
mapping of region results to region arguments is the mechanism that enables the
modelling of recursive program structures, while mapping them to the outputs
allows external nodes to access them. The inputs of the phi-node model context
values required by the enclosed nodes, and map directly to the non-recursive region
arguments.

16 CHAPTER 2. THEORY

int f(int n) {
if (n == 0) {

return 1;
} else {

return n * f(n-1);
}

}

Figure 2.11: Phi node modelling a recursive factorial function

CHAPTER 2. THEORY 17

Omega(ω)-nodes are the unit of compilation in RVSDG [5] and model a module,
including external imports and module exports. Omega-nodes are always the top-
level nodes in RVSDG, and as such they have no inputs or outputs. They contain
a single region which represents the code in the compilation unit. The arguments
for this region model external imports, while values passed to the region results
are exported from the module.

include print;
char message[] = "Hello world!";

void greeter(){
print(message);

}

export greeter;

Figure 2.12: Omega node modelling a program module. The imported value is
a reference to some printing method. The defined lambda is also made available
to other modules. Dashed lines are state edges

18 CHAPTER 2. THEORY

Term Description

MLIR The MLIR project with associated tools and libraries

MLIR IR MLIR based IR in any of its three representations

MLIR assembly Textual representation of MLIR IR

RVSDG The Regionalized Value State Dependence Graph IR as a
theoretical construct.

RVSDG dialect The MLIR dialect implemented in this thesis that models
RVSDG.

Node ports Collective term for RVSDG node inputs, outputs, region
arguments, and region results.

Table 2.1: Terms with descriptions

CHAPTER 3
Methods

This chapter describes how the library was developed, and details how the lessons
learned in the pre-study [7] were applied. How RVSDG was initially planned to
be represented in MLIR will also be explained here.

3.1 Development environment

All software has been developed and tested on a university-provided virtual ma-
chine running the following software:

• Operating system: Ubuntu 22.04

• LLVM version: 16.0.0

• MLIR version: 16.0.0

• Clang 16.0.0

• CMake 3.25.2

• Ninja 1.10.1

A dockerfile for setting up a development container can be found in the main code
repository. Links to the code repositories can be found in Appendix A, and more
concrete instructions for building, running, and developing the code can be found
in Appendix B.

3.2 Project structure

The project was structured as an out-of-tree MLIR dialect library, as opposed to
the in-tree structure that was used in the pre-study [7]. This was done for two
main reasons. The first was to reduce development friction by having related files
exist close to each other in the source tree, and to not have to rebuild MLIR on
every update. During the pre-study, a lot of time was wasted navigating the file
system or waiting for the compiler to re-link MLIR [7], time that could have been
better spent on development. The second reason was to improve the usability of
the library. By having the dialect as a standalone library, it is possible to use it
with pre-built LLVM and MLIR libraries. Since building these libraries requires
quite powerful hardware [7] this lowers the barrier of entry for working on the

19

20 CHAPTER 3. METHODS

library by quite a bit. A more in-depth analysis of the pros and cons of in-tree
and out-of-tree can be found in the pre-study report [7].

In addition to the RVSDG dialect, a separate but dependent JLM-compatibility
dialect was also created. This was done to model certain operations and types
that were not available in an RVSDG-compatible form through the default MLIR
dialects. These Ops and types could in theory have been a part of the RVSDG
dialect, but since they were not a part of pure RVSDG, it was decided to move
them to their own dialect. This subject is disussed further in section 5.3.

3.3 Representation of RVSDG in MLIR

During the pre-study, a seemingly workable way to represent RVSDG in MLIR
was discovered but not fully implemented [7]. This mapping formed the basis for
the development of the dialect library.

RVSDG nodes are modelled using MLIR Ops. This mapping was chosen since
MLIR Ops are conceptually quite similar to RVSDG nodes. They are both used to
model computation or structure, they both take SSA-values as inputs, and produce
SSA-values as outputs, and both can contain regions with subgraphs. Using this
mapping also enables the use of pre-existing side-effect-free Ops as simple nodes,
which drastically reduces the amount of work needed to model useful programs.

Structural node regions in RVSDG are modelled as single-block SSACFG regions in
MLIR, with the RVSDG region arguments being represented by the arguments of
the MLIR block, and the RVSDG region results being represented by the operands
to the block terminator Op. While RVSDG is a data-flow graph, and MLIR
graph-regions are created to model data-flow graphs, it makes more sense to use
SSACFG-regions when modelling RVSDG due to RVSDG being acyclic. If graph-
regions had been used, an extra check would be required to ensure that the regions
don’t contain cycles. MLIR graph-regions also don’t allow block arguments, which
would prevent their usage for representing RVSDG region arguments.

Mappings between structural node inputs, node outputs, region arguments, and
region results are encoded by how they are ordered. If a structural node has
inputs that map to its region arguments, the first input will map to the first
region argument, the second input maps to the second argument etc.

RVSDG edges are modelled as passing MLIR SSA-values between Ops. This map-
ping more or less follows from the mapping of nodes to Ops, as edges in RVSDG
already represent the passing of SSA-values. Modelling state edges uses the same
mechanism, but a custom MLIR type has to be created to know that the SSA-
value represents a state edge. Since Ops modelling simple side-effecting RVSDG
nodes also need to consume and produce these state-types, it is not possible to
re-use Ops from other dialects directly. While the pre-study report mentions that
creating a generic “shim-Op” that wraps side-effecting Ops and add state edges
would be the best way forward [7], it was instead decided to implement state-edge
compatible versions of any side-effecting Ops that may be needed.

CHAPTER 3. METHODS 21

The outputs of lambda- and delta-nodes also requires some special considera-
tion, since they are references to the nodes themselves. There were primarily
two ways to represent this. The first option was to use MLIR symbol tables.
This is a mechanism for creating symbols which can be referenced by name in
a non-SSA manner [30] and is the way the default “func” dialect handles func-
tion references [31]. The second option is to create MLIR types for lambda- and
delta-references. These types would need to carry some additional information.
The delta-reference type would need to be aware of the datatype of the variable
modelled by the delta-node. The lambda-reference type would in a similar vein
be required to know the function signature of the lambda-node. For this project,
the second option was chosen since it kept the mapping from edges to passing of
SSA-values consistent.

The predicates for gamma- and theta-nodes were decided to be modelled as a
custom control type. This mirrors the implementation used in JLM. The control
type is instantiated to be able to represent N different options, and an SSA-value
of the control type represents exactly one of these N options. A mapping operation
was introduced to convert arbitrary integer types into these control types. This
choice was primarily made to increase compatibility with JLM, but also makes
it possible to ensure that no out-of-bounds predicates can make it past the Op
verifier.

RVSDG MLIR
Simple node Op with no regions
Structural node Op with regions
Node input Op operand
Node output Op results
Node region Single-block SSACFG region
Region argument Block argument
Region result Operand of block terminator Op
Edge Passing of SSA-values
State edge SSA-value with custom state type

Table 3.1: Conceptual mapping from RVSDG to MLIR

3.4 Testing and validation

Testing of the dialect library was primarily done by manually writing MLIR as-
sembly using the implemented Ops, types, and attributes and check if they were
parsed and verified properly by MLIR. Some more complex examples were also
created by creating a tool in JLM that converts JLM RVSDG to MLIR assem-
bly. To aid in verification, RVSDG dialect aware versions of the mlir-opt tool and
MLIR language server [32] were created. Mlir-opt is a woefully undocumented tool,
but it serves a similar purpose to llvm-opt [33]. It reads in an MLIR assembly
file, applies the specified passes to it, and outputs the resulting MLIR assembly.
Roundtripping MLIR assembly through this tool is a good way to ensure that
MLIR assembly printing and parsing expect the same format and that different
optimizations work as intended. The MLIR language server provides IDE support

22 CHAPTER 3. METHODS

for MLIR assembly, which includes syntax checking, type checking, Op verifica-
tion, and the ability to view the generic MLIR assembly of Ops with a custom
format. This tool provides dialect authors with a quick sanity check while creating
verifiers, type constraints, and assembly formats by providing instant feedback on
handwritten MLIR assembly.

To improve the readability and writability of MLIR assembly using the RVSDG
dialect, it was decided to create a custom assembly format for the various struc-
tural nodes. This was mainly done using the declarative assembly format provided
by MLIR [14]. Two custom assembly directives were also created to improve the
format. The first of these was made to print the operand and argument lists so
that the SSA-values and their respective types are written next to each other in-
stead of being split into separate lists. This was done to improve the ergonomics
of reading and writing the MLIR assembly by decreasing the required amount of
eye and cursor navigation. The second custom directive was used to standardize
printing of the regions of structural nodes. This directive was created to make it
clear that structural node regions should only contain a single block by creating a
region-centric syntax instead of a block-centric syntax. An example of the custom
format compared to the generic format can be seen in Figure 3.1.

For more complete verification of the library, the plan was to roundtrip JLM IR
through the RVSDG dialect. This would show that the RVSDG dialect was capable
of modelling the same structures as JLM. To do this, it would be necessary to link
the RVSDG dialect library in to the JLM executable, which would in turn mean
that JLM and the RVSDG dialect library would need to use the same version of the
different LLVM libraries. Unfortunately, at the time of coding, JLM used LLVM
14 while the RVSDG dialect library used LLVM 16. Some attempts were made,
but performing either an upgrade of JLM or a downgrade of the dialect library
was not deemed worth it, as going through MLIR assembly instead would still
provide some validation of the dialect without requiring either project to change
their LLVM version.

CHAPTER 3. METHODS 23

rvsdg.omegaNode (): {
%ctx0 = arith.constant 4: i32
%ctx1 = arith.constant 5.0: f32
%l = rvsdg.lambdaNode <(i32)->(f32)> (%ctx0:i32, %ctx1:f32):

(%arg: i32, %ctx0: i32, %ctx1:f32): {
%0 = arith.muli %ctx0, %arg: i32
%1 = arith.sitofp %0: i32 to f32
%2 = arith.addf %1, %ctx1: f32
rvsdg.lambdaResult(%2:f32)

}
%param = arith.constant 100: i32
%res= rvsdg.applyNode %l:<(i32)->(f32)>(%param:i32) -> f32
rvsdg.omegaResult()

}
(a) Pretty format

"rvsdg.omegaNode"() ({
%0 = "arith.constant"() {value = 4 : i32} : () -> i32
%1 = "arith.constant"() {value = 5.000000e+00 : f32} : () -> f32
%2 = "rvsdg.lambdaNode"(%0, %1) ({
^bb0(%arg0: i32, %arg1: i32, %arg2: f32):

%5 = "arith.muli"(%arg1, %arg0) : (i32, i32) -> i32
%6 = "arith.sitofp"(%5) : (i32) -> f32
%7 = "arith.addf"(%6, %arg2) {

fastmath = #arith.fastmath<none>
}:(f32, f32) -> f32

"rvsdg.lambdaResult"(%7) : (f32) -> ()
}) : (i32, f32) -> !rvsdg.lambdaRef<(i32) -> (f32)>
%3 = "arith.constant"() {value = 100 : i32} : () -> i32
%4 = "rvsdg.applyNode"(%2, %3) :

(!rvsdg.lambdaRef<(i32) -> (f32)>, i32) -> f32
"rvsdg.omegaResult"() : () -> ()

}) : () -> ()
(b) Generic format

Figure 3.1: Custom RVSDG dialect format vs generic MLIR assembly

24 CHAPTER 3. METHODS

3.5 Implementation

Implementing a dialect library starts with creating a tableGen record for the di-
alect itself. This record defines the name of the dialect, its C++ namespace, and
other dialects the dialect depends on [34]. This record also controls the creation
of certain methods or method signatures on the C++ class for the dialect. The
dialect record is generally quite small and is mainly used as a common reference
for other records. One particular thing to note is that method calls for registering
Ops, types, and attributes need to be implemented in the same compilation units
where the corresponding dialect members are implemented. The RVSDG dialect
library uses separate source files for implementing custom methods on Ops, types,
and attributes. These files are also responsible for including the C++ source
files that are generated from the tableGen records and implementing the dialect
methods for properly registering Ops, types, and attributes, respectively.

Once the dialect itself is created, the next step is to implement Ops and types.
These were also primarily defined by creating appropriate tableGen records [14,
16]. While most of this implementation was “by the book”, some aspects are worth
drawing attention to.

All non-specialized RVSDG inputs, outputs, and region results of the structural
nodes are defined as a variadic list of values of any type. This lets the structural
nodes work with any types from any dialect out of the box. These constraints are,
however, technically not correct, since the legal types for one node port often de-
pends on the types of another. Port dependency constraints were not implemented
in tableGen, and were instead enforced by creating custom C++ Op verifiers [14].
In general, these verifier functions check that the number of ports and the types
they accept match for ports which map to each other. A custom verifier was
also created for the apply node to ensure that the inputs and results of the apply
node match the signature of the called lambda node. A different option and some
associated tradeoffs are briefly discussed in section 5.2.

The control type used for values passed as predicates to gamma- and theta-nodes
was originally implemented as a standard MLIR type parameterized by an un-
signed integer that represents how many options a value of the type can select
between. For the gamma-node, this worked fine, as the number of regions the
predicate should select between can change from instance to instance. For the
theta-node, however, the predicate should always choose between exactly two out-
comes: run another iteration, or don’t run another iteration. While this could
have been handled in a C++ verifier, it was instead decided to create a more
complex tableGen type constraint that verifies that a node port has a control
type with a specific number of options. This type constraint was modelled using
a tableGen class, which takes an integer representing the number of options of
the control type as a class parameter. When the class is instantiated as part of
an Op definition, the integer is passed and a suitable predicate can be generated
by tableGen. To be used in this manner, tableGen also needs to know how to
build a particular instance of the control type. This is done by declaring the ex-
istence of a simple builder on the generic control type which takes the number of
options as a parameter, and by having the constrained control type class inherit

CHAPTER 3. METHODS 25

from the BuildableType tableGen class. When inheriting from BuildableType, the
exact code needed to get the type instance must be provided as a string of text.
The number of options for the constrained type is injected into this code using
tableGen’s built-in paste operator [19].

One of the first and most time-consuming steps in the process of creating an
MLIR dialect library from scratch is the creation of a functioning build system.
MLIR provides several hooks and utilities for CMake-based projects, so CMake
was chosen for the dialect library. Unfortunately, the utilities provided by MLIR
are barely documented. The only place any mention of these utilities were within
the CMake script files that defined them. MLIR does however provide a standalone
dialect example which includes a basic CMake setup. Some light modification was
required to make this work properly, including changing which MLIR sub-libraries
were linked. Figuring out which libraries to link in was another challenge, since the
MLIR documentation does not provide an explicit list of sub-libraries and their
function. The only place either of these were found were within the build scripts
for the MLIR project itself, and even then no information on scope or usage was
anywhere to be seen. In short, the creation of the build system was heavily based
on trial and error. Available MLIR libraries were discovered by digging through
the MLIR source files to extract available CMake targets, and which libraries were
relevant had to be inferred from their names and source code.

A similar problem occurred when attempting to make use of the sources and
headers generated by tableGen. None of the automatically generated files include
any external header files they depend on, a problem made worse by the at times
highly opaque coding style and nested levels of abstraction employed by MLIR.
This was eventually solved using the process of elimination by adding bulks of
header files where needed, and then gradually removing files until the project would
no longer build. Eventually, sets of header files which contained all definitions
needed by the various auto-generated files were discovered. Additional header files,
each including a single auto-generated header and its dependencies, were created
to contain this problem and mitigate some pain for future dialect developers.

26 CHAPTER 3. METHODS

CHAPTER 4
Results

The main findings of this thesis are that RVSDG can be represented in MLIR,
and that an MLIR dialect has been created to capture this representation. This
dialect can interact with pre-existing non-side-effecting MLIR Ops from other
dialects and seamlessly integrate them as simple RVSDG nodes. A secondary
dialect for modelling JLM-specific operations and constructs was also created,
but not completed. Some simple examples of the dialect being used to represent
different RVSDG nodes can be seen in Figure 4.1, Figure 4.2, Figure 4.3, and
Figure 4.4.

4.1 Constraints on node ports

To ensure that the order-based mappings between node inputs, node outputs,
region arguments, and region results for structural nodes are valid the following
constraints were placed on the structural nodes:

• Gamma nodes

– Number of regions should be greater than or equal to 2

– Number of options in predicate type should match number of regions

– Number and types of region arguments should match node inputs

– Number and types of region results should match node outputs

• Theta nodes

– Number and types of node inputs, node outputs, region arguments, and
region results (excluding the predicate) should be identical

• Lambda nodes

– Given a function signature with n parameters of types T1, T2, . . . ,
Tn, and k node inputs of types I1, I2, . . . , Ik, the lambda node region
should have n+k arguments of types T1, T2, . . . , Tn, I1, I2, . . . , Ik.

– The number and types of the region results should match the return
values of the function signature.

27

28 CHAPTER 4. RESULTS

• Delta nodes

– Number and types of node inputs should match the region arguments.

– Node should have exactly one output and region result.

– The type of result should be equal to the type the output references.

• Phi nodes

– Given n inputs of type I1, I2, . . . , Tn, and k outputs of type O1, O2,
. . . , Ok, the region should have k + n arguments of type O1, O2, . . . ,
Ok, I1, I2, . . . , Tn.

– Number and types of results should match node outputs.

%pre_val = arith.constant 1: i32
%pred = rvsdg.match(%pre_val: i32) [

#rvsdg.matchRule<0, 1-> 1>,
#rvsdg.matchRule<default -> 0>

] -> !rvsdg.ctrl<2>

%var = arith.constant 14.0: f32
%res0, %res1 = rvsdg.gammaNode (%pred: <2>) (%var:f32):[

(%var: f32):{
%d = arith.constant 132.0: f32
rvsdg.gammaResult (%d:f32, %var:f32)

},
(%var: f32):{

%c = arith.constant 2.0: f32
rvsdg.gammaResult (%c:f32, %c:f32)

}
] -> f32, f32

Figure 4.1: Gamma node represented in the RVSDG dialect

CHAPTER 4. RESULTS 29

%test0 = arith.constant 1.0: f32
%test1 = arith.constant 2.0: f32

%res0:2 = rvsdg.thetaNode (%test0:f32, %test1:f32):
(%0: f32, %1: f32): {

%predicate = rvsdg.constantCtrl 0: <2>
rvsdg.thetaResult(%predicate) : (%1:f32, %0:f32)

} -> f32, f32

Figure 4.2: Theta node represented in the RVSDG dialect

%ctx0 = arith.constant 4: i32
%ctx1 = arith.constant 5.0: f32

%l = rvsdg.lambdaNode <(i32)->(f32)> (%ctx0:i32, %ctx1:f32):
(%arg: i32, %ctx0: i32, %ctx1:f32): {
%0 = arith.muli %ctx0, %arg: i32
%1 = arith.sitofp %0: i32 to f32
%2 = arith.addf %1, %ctx1: f32
rvsdg.lambdaResult(%2:f32)

}

%param = arith.constant 100: i32
%res= rvsdg.applyNode %l:<(i32)->(f32)>(%param:i32) -> f32

Figure 4.3: Lambda and apply node represented in the RVSDG dialect

30 CHAPTER 4. RESULTS

%initState = --some previous memory operation--

%deltaRef = rvsdg.deltaNode():
():{

%value = arith.constant 3: i32
rvsdg.deltaResult(%value:i32)

} -> !llvm.ptr<i32>

%newVal = arith.constant 10: i32

%state = jlm.store (%deltaRef:!llvm.ptr<i32>, %newVal:i32) (%initState)
-> !rvsdg.memState

%value, %nextState = jlm.load %deltaRef:!llvm.ptr<i32> (%state)
-> i32, !rvsdg.memState

Figure 4.4: Delta node represented in the RVSDG dialect

CHAPTER 4. RESULTS 31

4.2 Interoperability with pass infrastructure

The RVSDG dialect has also been shown to be able to interact with the exist-
ing pass infrastructure. By attaching the “Pure”-traits to the structural nodes,
which marks them as having no side effects, the built-in Common Subexpression
Elimination (CSE) pass was able to merge identical structural nodes. An example
of this pass transforming MLIR assembly using the RVSDG dialect can be seen
in Figure 4.5. How side effects should be marked on structural nodes will be dis-
cussed in more detail in section 5.2. A custom pass that traverses structural nodes
and prints Op names in a nested fashion has also been created. This pass can be
anchored to any Op marked as isolated from above, which includes all structural
node Ops. It prints the name of the Op it is anchored to, followed by the names
of all non-isolated from above Ops in its regions with proper indentation. If an-
other node that is marked isolated from above is discovered in the regions, their
name is not printed directly, but a new instance of the printing pass is instead
scheduled on the node. This forms a dynamic pass pipeline as described in sub-
section 2.2.10. This printing pass was mainly created to serve as a baseline for
future roundtripping with JLM.

4.3 Validation

Native roundtripping with JLM was not accomplished due to JLM and the RVSDG
dialect library depending on different version of LLVM. A new tool called mlir-
print was instead added to JLM which consumes LLVM IR, converts it to JLM
IR, and outputs textual mlir-assembly which can then be read using the RVSDG
dialect specific version of the mlir-opt tool. Examples of code represented using
the dialect which were generated using mlir-print can be found in Appendix C.

32 CHAPTER 4. RESULTS

Before CSE:
rvsdg.omegaNode (): {

%2 = arith.constant 10: i32
%3 = arith.constant 10: i32

%theta_output, %theta_output2 = rvsdg.thetaNode (%2: i32, %3: i32):
(%2: i32, %3: i32): {

%predicate = rvsdg.constantCtrl 0:<2>
rvsdg.thetaResult (%predicate): (%3:i32, %2:i32)

}->i32, i32

%theta_output3, %theta_output4 = rvsdg.thetaNode (%2: i32, %3: i32):
(%2: i32, %3: i32): {

%predicate = rvsdg.constantCtrl 0:<2>
rvsdg.thetaResult (%predicate): (%3:i32, %2:i32)

}->i32, i32

%4 = arith.addi %theta_output, %theta_output2: i32
%5 = arith.addi %theta_output3, %theta_output4: i32
rvsdg.omegaResult (%4: i32, %5: i32)

}

After CSE:
rvsdg.omegaNode (): {

%c10_i32 = arith.constant 10 : i32
%0:2 = rvsdg.thetaNode (%c10_i32: i32, %c10_i32: i32) :

(%arg0: i32, %arg1: i32): {
%2 = rvsdg.constantCtrl 0 : <2>
rvsdg.thetaResult(%2) : (%arg1: i32, %arg0: i32)

} -> i32, i32
%1 = arith.addi %0#0, %0#1 : i32
rvsdg.omegaResult (%1: i32, %1: i32)

}

Figure 4.5: Builtin CSE-pass simplifying RVSDG-nodes

CHAPTER 5
Discussion

5.1 Validation of dialect

The main goal of this thesis was to see if RVSDG could be implemented in MLIR,
and if so, if MLIR could be a good framework for future work with RVSDG. To this
end, the RVSDG dialect was created. The dialect defines MLIR Ops, types, and
attributes that can be used to represent RVSDG. Its ability to properly capture
all of RVSDG has however not been rigorously tested. Testing with handwritten
MLIR assembly and MLIR assembly generated by the mlir-print tool added to
JLM has provided some encouraging results, but this does not show that the
dialect actually captures the same information as JLM. The original plan was to
create a fully-featured backend for JLM that directly produces in-memory MLIR
IR instead of going through MLIR assembly, and then also create a tool that
could create JLM IR from MLIR IR. Having both of these tools would make it
possible to roundtrip IR between JLM and MLIR and prove that they are in
fact both representing the same graph. This effort was unfortunately hindered
by a mismatch in LLVM version between the RVSDG dialect library, which uses
LLVM/MLIR 16, and JLM, which, at the time of writing, uses LLVM 15, but
at the time of coding used LLVM 14. Downgrading the LLVM version for the
dialect library to LLVM/MLIR 14 would prevent the use of the tableGen and
MLIR assembly language servers, both of which were tools that helped a lot with
development. Since the library is also meant to be used for new compiler projects,
it also makes more sense to target a recent version of LLVM. The other option
would have been to upgrade JLM. Doing this would require a good understanding
of how JLM is built and how its different systems interact with each other. Due to
time constraints on this project, and the near impenetrable nature of template and
macro-heavy c++ code, it was decided that upgrading JLM would fall outside the
scope of this thesis. Fortunately, there now seems to be a renewed development
effort on JLM by the original authors, which has seen JLM upgraded to LLVM 15.
Hopefully it will get to LLVM 16 in not too long, enabling the creation of tools
for roundtripping IR between JLM and MLIR.

33

34 CHAPTER 5. DISCUSSION

5.2 Evaluating representations

The pre-study for this thesis discussed different ways to represent RVSDG in
MLIR. That discussion and the representations that were suggested are summa-
rized in section 3.3 and formed the basis of development for the RVSDG dialect
library. Several of these mappings were only theorized, not implemented, in the
pre-study. Since they have now been implemented, it is time to look back and see
if they work as well as previously envisioned.

Mapping RVSDG nodes to MLIR Ops still seems to be the way to go. MLIR Ops
are meant to model any unit of semantics (functions, nested structures, computa-
tion etc.) and are therefore the obvious choice for modelling almost anything, but
the suitability for RVSDG nodes goes a little further. Both RVSDG nodes and
MLIR Ops take SSA values as inputs, and produce SSA values as outputs. They
can both contain zero or more regions which have a set of arguments and a way to
export values from the regions. Not every aspect of RVSDG nodes and MLIR Ops
lines up perfectly, however. Custom C++ Op verifiers had to be written to ensure
a correct relation between inputs, outputs, region arguments, and region results.
It is likely possible to avoid this by creating more complex type constraints in
tableGen [14], but it might make the tableGen definitions more difficult to read
and modify, which would somewhat defeat the purpose of using TableGen in the
first place. Overall, the representations of Ops, inputs, outputs, region arguments,
and region results have worked quite well with only some smaller complications.

The mapping between RVSDG regions and MLIR regions has some incongruities.
RVSDG regions directly have arguments, results, and a sub-graph, while MLIR
has the added layer of “block” between region and Ops. Arguments and Ops can
actually be directly accessed through the API on the region without needing to
think about blocks, but results cannot, since terminator Ops are a block-specific
concept. This is not a huge problem, and could probably be solved either by
introducing a specialization of the region API or by creating an Op interface for
all structural nodes which handles result Op retrieval.

While working on the phi-node, an inconsistency between JLM and the RVSDG
dialect was noticed; JLM encodes the mapping between inputs, outputs, argu-
ments, and results in a way that allows it to break the constraints mentioned in
section 4.1, in particular the constraints of the phi-node outputs. JLM produced
a phi-node that did not output all its recursion variables. In the RVSDG dialect,
this would lead to ambiguity in the case where a phi-node has multiple recursion
variables of the same type, since the link between node ports is defined by their
position. When creating the mlir-print tool, this problem was solved by printing
out additional outputs, but this may hint at a deeper incongruity that has not yet
been discovered.

In its current iteration, the RVSDG dialect has three distinct types for representing
state edges: IOState, MemState, and LoopState. These were somewhat naively
copied from JLM, which uses the same three distinct types. All the state types
implement a common state type interface. As of writing, the state type interface
does not provide any fields or methods and only serves to enable recognition of an
arbitrary state type. While this method works, there might be a more elegant way

CHAPTER 5. DISCUSSION 35

to integrate it with the side effect systems present in MLIR. MLIR queries Ops for
side effects through the side effect interface [27]. This interface provides methods
that allow Ops to analyze themselves and return a list of side effect objects to the
querying entity. A state edge type parametrized by a list of side effect objects could
be created, and the side effect interface implementation on RVSDG-compliant Ops
could query incoming and outgoing state edges for the side effects of the Op. This
would make the system more flexible in terms of more exotic side effects and
could potentially enable more optimizations as it would be possible to track which
specific resources are being modified and in what way by following the state edges.
One consequence of this approach would be that structural nodes which contain
side-effecting Ops in their regions would themselves be marked as having side
effects, even if the state edge just passes through the node. Further testing is
needed to determine whether this approach to modelling different types of state
edges will be an improvement over the current implementation.

JLM is an experimental compiler that was made to show that RVSDG could be
constructed, optimized, and destructed in a reasonable amount of time and with
decently good results [5]. In this regard it performs quite well, but it carries with
it a significant amount of baggage from LLVM IR. In particular, it has certain type
and operation choices that may not be optimal for use in a higher level compiler.
Lambda and delta references are for instance explicitly modelled using LLVM
pointers. RVSDG itself does not enforce that these references should be low level
pointers, and a higher level compiler might wish to use another abstraction for
their references. The RVSDG dialect unfortunately inherited this trait from JLM
in an effort to easily be able to interoperate with JLM. Some approaches to tackle
this problem in the RVSDG dialect have been identified: The first one is to create
a high-level reference type which is used internally in the RVSDG dialect and other
dialects that build on the RVSDG dialect. Another is to create a type-interface
which can be implemented by the types of external dialects to allow them to model
their own references and create types which operate on said references. The third
option is to instead create types for the lambda node itself and model references
using MLIR’s pre-existing memref type [21]. The first two options are not mutually
exclusive. Creating a type interface for RVSDG references and providing some
default high-level implementation of said interface does not take much more work
that just creating the type or just making the interface. Similarly, analyses and
transformations that use the interface should just work on new implementations.
The main cost of creating an interface is the work and research required to ensure
that it is general enough to cover most potential use-cases, but specific enough
to actually be useful for transformations. The added flexibility of the interface
might however be worth the added complexity. Using MLIR memref types would
make interoperability with pre-existing MLIR Ops easier and almost eliminate
the maintenance effort of the reference types themselves, at the cost of flexibility.
Using memref types in addition to a high level interface is also possible, although
it would require special handling of memref types in some passes and analyses. A
way to handle this as well is to attach the interface to the memref type, which
can be done without making changes to the MLIR source code [17]. In short
terms, creating a high-level reference type interface would be an extremely flexible
solution that could incorporate a default high-level implementation, customized

36 CHAPTER 5. DISCUSSION

reference types from users of the dialect, and the default memref type. Reference
types from other dialects could also be incorporated by attaching the interface to
their reference types.

Overall, the chosen representations of RVSDG concepts in MLIR work well. They
appear to be able to capture the structure of RVSDG, and traversal of the graph
can be done in a straight forward manner by traversing MLIR IR’s def-use chains [35].
While no RVSDG-specific optimizations have been implemented yet, there are no
obvious roadblocks to doing so in the future.

5.3 The role of RVSDG in the MLIR ecosystem

While the main focus of this thesis is whether MLIR is a good framework for rep-
resenting and working with RVSDG, an equally interesting question would be how
RVSDG could fit into the MLIR ecosystem. What RVSDG provides is a way to
represent code as a unified, data-flow based data structure suitable for performing
optimizations. These are things that MLIR already provides by itself, and RVSDG
does not provide too much additional benefit on these points. Where it can con-
tribute however is with side effect based analysis and automatic parallelization.
Representing the ordering of side-effecting operations as passing of SSA-values
makes it easy to find the correct ordering of Ops by traversing the def-use chains
of the state edges. This is not a mechanism MLIR provides by default, and order
is instead enforced lexically or by special Ops that model parallel execution [24,
36, 37]. Because of this, RVSDG may be a good structure for IRs that desire
automatic parallelization or other transformations that require knowledge of the
ordering of side-effecting operations.

The creation of the JLM dialect as a separate dialect to the main RVSDG di-
alect was done to keep the RVSDG dialect itself as general purpose as possible.
It does, however, also act as a small demonstration as to how the RVSDG di-
alect is intended to be used when developing more domain specific dialects. More
specifically, it demonstrates the creation of new Ops that model computation at
a given level of abstraction and interact with the RVSDG state and control types.
Using a pattern like this makes the RVSDG dialect more flexible, as it does not
enforce a given level of abstraction. The main drawback of this approach is that
the complexity of the code will be greater than if all Ops and types were com-
bined into a single dialect: Ops, types, and attributes will be defined by different
projects. Several libraries will need to be linked. More header files will need to
be included. This problem only compounds for compiler projects who wish to
use several RVSDG based dialects to do progressive lowering. The flexibility and
separation of duty gained by this approach should, however, be well worth the
added complexity.

CHAPTER 5. DISCUSSION 37

5.4 Future work

While the core dialect is more or less complete, there is still some work that needs
doing. A good next step would be to decide how to best implement state edges.
The alternative implementation discussed above where the state type holds a list
of side effects and the corresponding resources they affect should be implemented
and evaluated against the current system of several distinct state types.

Another aspect of the dialect that has not been thoroughly explored is its suit-
ability as a basis for optimization passes. While RVSDG itself has been shown
to be suitable for optimization [5], no transformation passes beyond some default
passes included in MLIR have been implemented or tested. A good way to test this
would be to re-implement the same optimizations that are already implemented in
JLM. The simplest optimization to implement would probably be dead node elim-
ination, as described by Reissmann et al. [5]. Implementing optimization passes
should also reveal potential flaws in the representation of RVSDG that is used in
the dialect.

As of right now, there are no good ways to enter or exit the RVSDG dialect. The
mlir-print tool can generate some MLIR assembly that uses the RVSDG dialect,
but preferably there should be a way to enter the dialect by directly constructing
in-memory IR instead of generating text. As for exiting the MLIR dialect, there
are a couple of options on the table. One approach would be to go the MLIR route
and find a suitable set of dialects that the RVSDG dialect could be progressively
lowered into. Alternatively, it would be possible to go back into JLM once the
LLVM version problems have been resolved. Going back into JLM should be easier
since the fundamental structure of the IR is near identical. After exiting to JLM,
the RVSDG could be destructed into LLVM IR, which can then be converted to
target code. Staying within MLIR would however make RVSDG more accessible
to other compiler developers, since they could develop their entire compilation
pipeline using MLIR. It would also allow compilers using RVSDG to benefit from
future developments in MLIR.

JLM has shown that RVSDG can be used to represent low-level code such as
LLVM IR [5], but so far there haven’t really been any compiler implementations
that use RVSDG to represent a program at a higher level of abstraction. Such
a compiler would be a good demonstration of the RVSDG dialect, and would at
the same time conclusively show that RVSDG can be used as an IR for high level
languages.

38 CHAPTER 5. DISCUSSION

CHAPTER 6
Conclusions

This thesis has presented a way to represent RVSDG in MLIR and an MLIR
dialect which implements said representation. The dialect has been shown to
seemingly be able to model all structural nodes and integrate side effect free Ops
from other dialects as simple nodes. The creation of a domain-specific dialect
that builds on top of the RVSDG dialect has also been demonstrated through
the creation of the JLM dialect. Applications of pre-existing MLIR optimization
passes has been shown to work in some cases through the application of the built-in
Common Subexpression Elimination pass. This dialect has however not yet been
fully validated. A good next step would be to perform roundtripping between JLM
and the RVSDG dialect to prove that the representations can model the same
structure. Additionally, it would be beneficial to implement some optimization
passes that work on the RVSDG dialect, since being suitable for optimizations
is one of the main selling points of RVSDG as an IR. Despite this, the RVSDG
dialect shows promise as a platform for future experimentation with RVSDG, and
should, with some more refinements, serve to enable other compiler developers to
use RVSDG as the basis for their own IRs.

39

40 CHAPTER 6. CONCLUSIONS

References

[1] R.H. Dennard et al. “Design of ion-implanted MOSFET’s with very small
physical dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (Oct.
1974). Conference Name: IEEE Journal of Solid-State Circuits, pp. 256–
268. issn: 1558-173X. doi: 10.1109/JSSC.1974.1050511.

[2] Nico Reissmann. “Principles, Techniques, and Tools for Explicit and Au-
tomatic Parallelization”. eng. Accepted: 2019-05-14T11:27:39Z ISSN: 1503-
8181. Doctoral thesis. NTNU, 2019. url: https://ntnuopen.ntnu.no/
ntnu-xmlui/handle/11250/2597564 (visited on 06/05/2023).

[3] Chris Lattner et al. “MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation”. In: 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). 2021, pp. 2–14. doi: 10.1109/
CGO51591.2021.9370308.

[4] Helge Bahmann et al. “Perfect Reconstructability of Control Flow from De-
mand Dependence Graphs”. en. In: ACM Transactions on Architecture and
Code Optimization 11.4 (Jan. 2015), pp. 1–25. issn: 1544-3566, 1544-3973.
doi: 10.1145/2693261. url: https://dl.acm.org/doi/10.1145/2693261
(visited on 06/02/2023).

[5] Nico Reissmann et al. “RVSDG: An Intermediate Representation for Op-
timizing Compilers”. In: ACM Transactions on Embedded Computing Sys-
tems 19.6 (Nov. 2020), pp. 1–28. doi: 10.1145/3391902. url: https:
//doi.org/10.1145/3391902.

[6] Nico Reissmann. phate/jlm-eval-suite. original-date: 2019-07-01T12:43:52Z.
May 2022. url: https://github.com/phate/jlm-eval-suite (visited on
12/03/2022).

[7] Halvor Bjørstad. Implementing RVSDG in MLIR: The beginning of a jour-
ney. Specialization project. NTNU, Dec. 2022. url: https://github.com/
Riphiphip/rapport_fordypningsprosjekt_H22/releases/download/
v1.0.0/Fordypningsprosjekt_H22.pdf.

[8] Chris Lattner. “LLVM: An Infrastructure for Multi-Stage Optimization”.
See http://llvm.cs.uiuc.edu. MA thesis. Urbana, IL: Computer Science
Dept., University of Illinois at Urbana-Champaign, Dec. 2002.

[9] The LLVM Compiler Infrastructure Project. url: https://llvm.org/ (vis-
ited on 11/23/2022).

[10] LLVM users. url: https://llvm.org/Users.html (visited on 11/23/2022).
[11] The LLVM Compiler Infrastructure Project. url: https : / / llvm . org /

Features.html (visited on 04/25/2023).

41

https://doi.org/10.1109/JSSC.1974.1050511
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2597564
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2597564
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/2693261
https://dl.acm.org/doi/10.1145/2693261
https://doi.org/10.1145/3391902
https://doi.org/10.1145/3391902
https://doi.org/10.1145/3391902
https://github.com/phate/jlm-eval-suite
https://github.com/Riphiphip/rapport_fordypningsprosjekt_H22/releases/download/v1.0.0/Fordypningsprosjekt_H22.pdf
https://github.com/Riphiphip/rapport_fordypningsprosjekt_H22/releases/download/v1.0.0/Fordypningsprosjekt_H22.pdf
https://github.com/Riphiphip/rapport_fordypningsprosjekt_H22/releases/download/v1.0.0/Fordypningsprosjekt_H22.pdf
https://llvm.org/
https://llvm.org/Users.html
https://llvm.org/Features.html
https://llvm.org/Features.html

42 REFERENCES

[12] LLVM Language Reference Manual — LLVM 16.0.0git documentation. url:
https://llvm.org/docs/LangRef.html (visited on 11/23/2022).

[13] TableGen Overview — LLVM 16.0.0git documentation. url: https : / /
llvm.org/docs/TableGen/ (visited on 12/02/2022).

[14] Operation Definition Specification (ODS) - MLIR. url: https://mlir.
llvm.org/docs/OpDefinitions/ (visited on 12/02/2022).

[15] Operation Definition Specification (ODS) - MLIR. url: https://mlir.
llvm.org/docs/DefiningDialects/Operations/#declarative-assembly-
format (visited on 12/09/2022).

[16] Defining Dialect Attributes and Types - MLIR. url: https://mlir.llvm.
org/docs/DefiningDialects/AttributesAndTypes/ (visited on 05/24/2023).

[17] Interfaces - MLIR. url: https://mlir.llvm.org/docs/Interfaces/
(visited on 04/28/2023).

[18] Table-driven Declarative Rewrite Rule (DRR) - MLIR. url: https://mlir.
llvm.org/docs/DeclarativeRewrites/ (visited on 05/24/2023).

[19] 1 TableGen Programmer’s Reference — LLVM 17.0.0git documentation.
url: https : / / llvm . org / docs / TableGen / ProgRef . html (visited on
05/24/2023).

[20] ’arith’ Dialect - MLIR. url: https://mlir.llvm.org/docs/Dialects/
ArithOps/ (visited on 04/26/2023).

[21] ’memref’ Dialect - MLIR. url: https://mlir.llvm.org/docs/Dialects/
MemRef/ (visited on 04/26/2023).

[22] ’llvm’ Dialect - MLIR. url: https://mlir.llvm.org/docs/Dialects/
LLVM/ (visited on 11/25/2022).

[23] LLVM Language Reference Manual — LLVM 17.0.0git documentation. url:
https://llvm.org/docs/LangRef.html#phi-instruction (visited on
04/27/2023).

[24] MLIR Language Reference - MLIR. url: https://mlir.llvm.org/docs/
LangRef/ (visited on 11/30/2022).

[25] Pass Infrastructure - MLIR. url: https://mlir.llvm.org/docs/PassManagement/
#preserving-analyses (visited on 04/28/2023).

[26] Traits - MLIR. url: https://mlir.llvm.org/docs/Traits/ (visited on
04/28/2023).

[27] Side Effects & Speculation - MLIR. url: https://mlir.llvm.org/docs/
Rationale/SideEffectsAndSpeculation/ (visited on 05/22/2023).

[28] MLIR Bytecode Format - MLIR. url: https://mlir.llvm.org/docs/
BytecodeFormat/#mlir-encoding (visited on 05/01/2023).

[29] Chapter 2: Emitting Basic MLIR - MLIR. url: https://mlir.llvm.org/
docs/Tutorials/Toy/Ch-2/ (visited on 06/06/2023).

[30] Symbols and Symbol Tables - MLIR. url: https://mlir.llvm.org/docs/
SymbolsAndSymbolTables/ (visited on 12/02/2022).

[31] ’func’ Dialect - MLIR. url: https://mlir.llvm.org/docs/Dialects/
Func/ (visited on 12/02/2022).

[32] MLIR : Language Server Protocol - MLIR. url: https://mlir.llvm.org/
docs/Tools/MLIRLSP/ (visited on 05/07/2023).

[33] opt - LLVM optimizer — LLVM 17.0.0git documentation. url: https://
llvm.org/docs/CommandGuide/opt.html (visited on 05/07/2023).

https://llvm.org/docs/LangRef.html
https://llvm.org/docs/TableGen/
https://llvm.org/docs/TableGen/
https://mlir.llvm.org/docs/OpDefinitions/
https://mlir.llvm.org/docs/OpDefinitions/
https://mlir.llvm.org/docs/DefiningDialects/Operations/#declarative-assembly-format
https://mlir.llvm.org/docs/DefiningDialects/Operations/#declarative-assembly-format
https://mlir.llvm.org/docs/DefiningDialects/Operations/#declarative-assembly-format
https://mlir.llvm.org/docs/DefiningDialects/AttributesAndTypes/
https://mlir.llvm.org/docs/DefiningDialects/AttributesAndTypes/
https://mlir.llvm.org/docs/Interfaces/
https://mlir.llvm.org/docs/DeclarativeRewrites/
https://mlir.llvm.org/docs/DeclarativeRewrites/
https://llvm.org/docs/TableGen/ProgRef.html
https://mlir.llvm.org/docs/Dialects/ArithOps/
https://mlir.llvm.org/docs/Dialects/ArithOps/
https://mlir.llvm.org/docs/Dialects/MemRef/
https://mlir.llvm.org/docs/Dialects/MemRef/
https://mlir.llvm.org/docs/Dialects/LLVM/
https://mlir.llvm.org/docs/Dialects/LLVM/
https://llvm.org/docs/LangRef.html#phi-instruction
https://mlir.llvm.org/docs/LangRef/
https://mlir.llvm.org/docs/LangRef/
https://mlir.llvm.org/docs/PassManagement/#preserving-analyses
https://mlir.llvm.org/docs/PassManagement/#preserving-analyses
https://mlir.llvm.org/docs/Traits/
https://mlir.llvm.org/docs/Rationale/SideEffectsAndSpeculation/
https://mlir.llvm.org/docs/Rationale/SideEffectsAndSpeculation/
https://mlir.llvm.org/docs/BytecodeFormat/#mlir-encoding
https://mlir.llvm.org/docs/BytecodeFormat/#mlir-encoding
https://mlir.llvm.org/docs/Tutorials/Toy/Ch-2/
https://mlir.llvm.org/docs/Tutorials/Toy/Ch-2/
https://mlir.llvm.org/docs/SymbolsAndSymbolTables/
https://mlir.llvm.org/docs/SymbolsAndSymbolTables/
https://mlir.llvm.org/docs/Dialects/Func/
https://mlir.llvm.org/docs/Dialects/Func/
https://mlir.llvm.org/docs/Tools/MLIRLSP/
https://mlir.llvm.org/docs/Tools/MLIRLSP/
https://llvm.org/docs/CommandGuide/opt.html
https://llvm.org/docs/CommandGuide/opt.html

REFERENCES 43

[34] Defining Dialects - MLIR. url: https://mlir.llvm.org/docs/DefiningDialects/
(visited on 05/31/2023).

[35] Understanding the IR Structure - MLIR. url: https://mlir.llvm.org/
docs/Tutorials/UnderstandingTheIRStructure/ (visited on 05/22/2023).

[36] ’omp’ Dialect - MLIR. url: https://mlir.llvm.org/docs/Dialects/
OpenMPDialect/ (visited on 05/23/2023).

[37] ’async’ Dialect - MLIR. url: https://mlir.llvm.org/docs/Dialects/
AsyncDialect/ (visited on 05/23/2023).

https://mlir.llvm.org/docs/DefiningDialects/
https://mlir.llvm.org/docs/Tutorials/UnderstandingTheIRStructure/
https://mlir.llvm.org/docs/Tutorials/UnderstandingTheIRStructure/
https://mlir.llvm.org/docs/Dialects/OpenMPDialect/
https://mlir.llvm.org/docs/Dialects/OpenMPDialect/
https://mlir.llvm.org/docs/Dialects/AsyncDialect/
https://mlir.llvm.org/docs/Dialects/AsyncDialect/

44 REFERENCES

Appendices

45

APPENDIX A
GitHub repositories

The code for this project can be found on my personal GitHub account

GitHub repository links

• Main code repository: https://github.com/Riphiphip/mlir_rvsdg

• JLM fork: https://github.com/Riphiphip/jlm/tree/mlir-print

46

https://github.com/Riphiphip/mlir_rvsdg
https://github.com/Riphiphip/jlm/tree/mlir-print

APPENDIX B
Information for developers

This appendix details information that should be useful for continuing work on
the RVSDG dialect library. In particular, it will cover project setup, building the
code, and how to navigate the codebase. Up-to-date instructions can also be found
in the repository’s README file. Any instructions written here have ONLY been
tested on Ubuntu 22.04.

Getting started

What’s in the box?

The following can be found in the RVSDG dialect library GitHub repository:

• The RVSDG dialect library which is a representation of pure RVSDG in
MLIR

– TableGen files can be found under ‘include/RVSDG‘

– Header files can be found under ‘include/RVSDG‘

– C++ source files can be found under ‘lib/RVSDG‘

• The JLM dialect library which builds on the RVSDG library and contains
structures used for interoperation between RVSDG and JLM

– TableGen files can be found under ‘include/JLM‘

– Header files can be found under ‘include/JLM‘

– C++ source files can be found under ‘lib/JLM‘

• The ‘rvsdg-opt‘ tool which is a tool for parsing MLIR assembly that contains
RVSDG and JLM dialects, and performing various transformations on the
RVSDG

– The tool can be found under ‘rvsdg-opt‘

• The ‘rvsdg-lsp-server‘ tool which is an expansion of the MLIR language
server that adds support for the RVSDG and JLM dialects

– The tool can be found under ‘rvsdg-lsp-server‘

47

Software dependencies

• LLVM 16.0.0

• MLIR 16.0.0

• Build tools:

– Clang 16 or another C++ compiler with support for C++17 and
#pragma once

– CMake ≥ 3.13.4

– Ninja-build

Building the project

• Ensure all software dependencies have been installed and are working cor-
rectly

• Set the LLVM_DIR and MLIR_DIR environment variables to the paths
containing the CMake directories for your LLVM and MLIR installations,
respectively.

– The value for LLVM_DIR can often be found by running

llvm-config-16 --cmakedir

– The value for MLIR_DIR can often be found by running

llvm-config-16 --prefix

and appending /lib/cmake/mlir to the result

• Create a directory named ‘build‘ within the project root directory

• Run the following commands from inside the ‘build‘ directory:

cmake .. -GNinja
cmake --build .

• After the build has completed, the library binaries can be found in build/lib
and the ‘rvsdg-opt‘ and ‘rvsdg-lsp-server‘ tools can be found under build/bin

• A package containing library binaries and headers can be created by running

ninja package

from within the build directory

48

Dev container

The GitHub repository for the dialect library contains a dockerfile which can be
used to build a development container for working on the RVSDG dialect library.
This container contains all required library and tool dependencies and builds the
RVSDG dialect library and mlir-print tool, both as a sanity check for the container
itself, and so they can be used as reference during development. The repository
also provides a devcontainer.json file which provides a set of recommended Visual
Studio Code settings and extensions. Combined, these files can be used with the
VSCode dev container extension to easily set up and maintain a development
environment for the library.

Using the development container requires a local installation of Docker.

Using rvsdg-opt and rvsdg-lsp-server

The rvsdg-lsp-server is not meant to be used directly, but in conjunction with an
IDE which supports it. It provides intellisense, hover information, code completion
and other utilities. The language server is confirmed to work with Visual Studio
Code’s MLIR extension.

The rvsdg-opt tool is a command line utility based on mlir-opt, but incorporating
the RVSDG and JLM dialects. This tool can be used to parse and run passes
on MLIR assembly that uses the RVSDG and JLM dialects. Some examples of
common uses are:

• Roundtrip

rvsdg-opt --no-implicit-module <file> | rvsdg-opt

• Run Op name printing pass

rvsdg-opt --rvsdg-print-export --no-implicit-module <file>

• Print as generic MLIR assembly

rvsdg-opt --mlir-print-op-generic --no-implicit-module <file>

The "–no-implicit-module" flag prevents MLIR from wrapping the IR in a top-
level "builtin.module" Op. This role is taken by the omega-node in the RVSDG
dialect.

49

https://marketplace.visualstudio.com/items?itemName=llvm-vs-code-extensions.vscode-mlir
https://marketplace.visualstudio.com/items?itemName=llvm-vs-code-extensions.vscode-mlir

APPENDIX C
Larger examples

These examples have been generated by the mlir-print tool that was added to JLM
for this project.

test-fprintf

This example shows a program that calls the external function fprintf represented
in the RVSDG dialect. The field types for the _IO_FILE structs have been
removed for readability.

C source code

1 #include <stdio.h>
2 int main()
3 {
4 fprintf(stderr, "%d * %d = %d", 3, 3, 9);
5 }

RVSDG dialect representation

1 rvsdg.omegaNode (
2 %0: !llvm.ptr<!llvm.ptr<!llvm.struct<"struct._IO_FILE", ...>>>,
3 %1: !rvsdg.lambdaRef<
4 (!llvm.ptr<!llvm.struct<"struct._IO_FILE", ...>>,

!llvm.ptr<i8>, !jlm.varargList, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)

↪→

↪→

5 ->
6 (i32, !rvsdg.ioState, !rvsdg.memState,

!rvsdg.loopState)↪→

7 >
8): {
9 %2 = rvsdg.deltaNode():

10 (): {
11 %3 = arith.constant 0: i8
12 %4 = arith.constant 37: i8
13 %5 = arith.constant 32: i8
14 %6 = arith.constant 61: i8
15 %7 = arith.constant 37: i8
16 %8 = arith.constant 100: i8

50

17 %9 = arith.constant 42: i8
18 %10 = arith.constant 32: i8
19 %11 = arith.constant 32: i8
20 %12 = arith.constant 100: i8
21 %13 = arith.constant 100: i8
22 %14 = arith.constant 32: i8
23 %15 = arith.constant 37: i8
24 %16 = llvm.mlir.undef: !llvm.array<13 x i8>
25 %17 = llvm.insertvalue %15, %16[0]: !llvm.array<13 x i8>
26 %18 = llvm.insertvalue %12, %17[1]: !llvm.array<13 x i8>
27 %19 = llvm.insertvalue %10, %18[2]: !llvm.array<13 x i8>
28 %20 = llvm.insertvalue %9, %19[3]: !llvm.array<13 x i8>
29 %21 = llvm.insertvalue %14, %20[4]: !llvm.array<13 x i8>
30 %22 = llvm.insertvalue %7, %21[5]: !llvm.array<13 x i8>
31 %23 = llvm.insertvalue %13, %22[6]: !llvm.array<13 x i8>
32 %24 = llvm.insertvalue %11, %23[7]: !llvm.array<13 x i8>
33 %25 = llvm.insertvalue %6, %24[8]: !llvm.array<13 x i8>
34 %26 = llvm.insertvalue %5, %25[9]: !llvm.array<13 x i8>
35 %27 = llvm.insertvalue %4, %26[10]: !llvm.array<13 x i8>
36 %28 = llvm.insertvalue %8, %27[11]: !llvm.array<13 x i8>
37 %29 = llvm.insertvalue %3, %28[12]: !llvm.array<13 x i8>
38 rvsdg.deltaResult(%29:!llvm.array<13 x i8>)
39 }->!llvm.ptr<!llvm.array<13 x i8>>
40 %30 = rvsdg.lambdaNode <(!rvsdg.ioState, !rvsdg.memState,

!rvsdg.loopState)->(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)> (

↪→

↪→

41 %1:
!rvsdg.lambdaRef<(!llvm.ptr<!llvm.struct<"struct._IO_FILE",
...>>, !llvm.ptr<i8>, !jlm.varargList, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>,

↪→

↪→

↪→

↪→

42 %0: !llvm.ptr<!llvm.ptr<!llvm.struct<"struct._IO_FILE",
...>>>,↪→

43 %2: !llvm.ptr<!llvm.array<13 x i8>>
44):
45 (%31: !rvsdg.ioState, %32: !rvsdg.memState, %33:

!rvsdg.loopState, %34:
!rvsdg.lambdaRef<(!llvm.ptr<!llvm.struct<"struct._IO_FILE",
...>>, !llvm.ptr<i8>, !jlm.varargList, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>, %35:
!llvm.ptr<!llvm.ptr<!llvm.struct<"struct._IO_FILE", ...>>>,
%36: !llvm.ptr<!llvm.array<13 x i8>>): {

↪→

↪→

↪→

↪→

↪→

↪→

↪→

46 %37, %38 = jlm.load %35:
!llvm.ptr<!llvm.ptr<!llvm.struct<"struct._IO_FILE", ...>>>
(%32) -> !llvm.ptr<!llvm.struct<"struct._IO_FILE", ...>>,
!rvsdg.memState

↪→

↪→

↪→

47 %39 = arith.constant 0: i32

51

48 %40 = arith.constant 9: i32
49 %41 = arith.constant 3: i32
50 %42 = arith.constant 3: i32
51 %43 = arith.constant 0: i64
52 %44 = arith.constant 0: i64
53 %45 = llvm.getelementptr %36[%44, %43]:

(!llvm.ptr<!llvm.array<13 x i8>>, i64, i64) -> !llvm.ptr<i8>↪→

54 %46 = jlm.createVarargs (%42: i32, %41: i32, %40: i32)
-> !jlm.varargList↪→

55 %47, %48, %49, %50 = rvsdg.applyNode %34 :
!rvsdg.lambdaRef<(!llvm.ptr<!llvm.struct<"struct._IO_FILE",
...>>, !llvm.ptr<i8>, !jlm.varargList, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>(%37 :
!llvm.ptr<!llvm.struct<"struct._IO_FILE", ...>>, %45 :
!llvm.ptr<i8>, %46 : !jlm.varargList, %31 : !rvsdg.ioState, %38
: !rvsdg.memState, %33 : !rvsdg.loopState) -> i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

56 rvsdg.lambdaResult(%39:i32, %48:!rvsdg.ioState,
%49:!rvsdg.memState, %50:!rvsdg.loopState)↪→

57 }
58 rvsdg.omegaResult(%2:!llvm.ptr<!llvm.array<13 x i8>>,

%30:!rvsdg.lambdaRef<(!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>)

↪→

↪→

↪→

59 }
60

52

test-do-while

This example shows a program that calculates and prints the sum of all positive
integers lower than 5.

C source code

1 #include <assert.h>
2 #include <stdio.h>
3

4 static unsigned int f(unsigned int n) {
5 unsigned int s = 0;
6 do {
7 s += n;
8 } while(n--);
9

10 return s;
11 }
12

13 int main() {
14 unsigned int s = f(5);
15 printf("%d\n", s);
16 assert(s == 15);
17 }

RVSDG dialect representation

1 rvsdg.omegaNode (%0: !rvsdg.lambdaRef<(!llvm.ptr<i8>,
!llvm.ptr<i8>, i32, !llvm.ptr<i8>, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (!rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>, %1:
!rvsdg.lambdaRef<(!llvm.ptr<i8>, !jlm.varargList,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) -> (i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>): {

↪→

↪→

↪→

↪→

↪→

↪→

2 %2 = rvsdg.lambdaNode <(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)->(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)> ():

↪→

↪→

3 (%3: i32, %4: !rvsdg.ioState, %5: !rvsdg.memState, %6:
!rvsdg.loopState): {↪→

4 %7 = llvm.mlir.undef: i32
5 %8 = arith.constant 0: i32
6 %9, %10, %11, %12, %13, %14 = rvsdg.thetaNode(%3: i32,

%8: i32, %7: i32, %4: !rvsdg.ioState, %5: !rvsdg.memState, %6:
!rvsdg.loopState):

↪→

↪→

7 (%15: i32, %16: i32, %17: i32, %18: !rvsdg.ioState,
%19: !rvsdg.memState, %20: !rvsdg.loopState): {↪→

8 %21 = llvm.add %16, %15: i32
9 %22 = arith.constant 0: i32

10 %23 = arith.constant -1: i32

53

11 %24 = llvm.add %15, %23: i32
12 %25 = llvm.icmp "ne" %15, %22: i32
13 %26 = rvsdg.match(%25 : i1) [
14 #rvsdg.matchRule<1 -> 1>,
15 #rvsdg.matchRule<default -> 0>
16] -> !rvsdg.ctrl<2>
17 %27, %28, %29 = rvsdg.gammaNode(%26:

!rvsdg.ctrl<2>)(%24: i32, %15: i32, %21: i32, %16: i32): [↪→

18 (%30: i32, %31: i32, %32: i32, %33: i32): {
19 %34 = rvsdg.constantCtrl 0: !rvsdg.ctrl<2>
20 rvsdg.gammaResult(%34:!rvsdg.ctrl<2>,

%31:i32, %33:i32)↪→

21 },
22 (%35: i32, %36: i32, %37: i32, %38: i32): {
23 %39 = rvsdg.constantCtrl 1: !rvsdg.ctrl<2>
24 rvsdg.gammaResult(%39:!rvsdg.ctrl<2>,

%35:i32, %37:i32)↪→

25 }
26]->!rvsdg.ctrl<2>, i32, i32
27 rvsdg.thetaResult(%27): (%28:i32, %29:i32, %21:i32,

%18:!rvsdg.ioState, %19:!rvsdg.memState, %20:!rvsdg.loopState)↪→

28 }->i32, i32, i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState↪→

29 rvsdg.lambdaResult(%11:i32, %12:!rvsdg.ioState,
%13:!rvsdg.memState, %14:!rvsdg.loopState)↪→

30 }
31 %40 = rvsdg.deltaNode():
32 (): {
33 %41 = arith.constant 40: i8
34 %42 = arith.constant 110: i8
35 %43 = arith.constant 0: i8
36 %44 = arith.constant 105: i8
37 %45 = arith.constant 97: i8
38 %46 = arith.constant 109: i8
39 %47 = arith.constant 32: i8
40 %48 = arith.constant 41: i8
41 %49 = arith.constant 116: i8
42 %50 = arith.constant 110: i8
43 %51 = arith.constant 105: i8
44 %52 = llvm.mlir.undef: !llvm.array<11 x i8>
45 %53 = llvm.insertvalue %51, %52[0]: !llvm.array<11 x i8>
46 %54 = llvm.insertvalue %50, %53[1]: !llvm.array<11 x i8>
47 %55 = llvm.insertvalue %49, %54[2]: !llvm.array<11 x i8>
48 %56 = llvm.insertvalue %47, %55[3]: !llvm.array<11 x i8>
49 %57 = llvm.insertvalue %46, %56[4]: !llvm.array<11 x i8>
50 %58 = llvm.insertvalue %45, %57[5]: !llvm.array<11 x i8>
51 %59 = llvm.insertvalue %44, %58[6]: !llvm.array<11 x i8>
52 %60 = llvm.insertvalue %42, %59[7]: !llvm.array<11 x i8>

54

53 %61 = llvm.insertvalue %41, %60[8]: !llvm.array<11 x i8>
54 %62 = llvm.insertvalue %48, %61[9]: !llvm.array<11 x i8>
55 %63 = llvm.insertvalue %43, %62[10]: !llvm.array<11 x i8>
56 rvsdg.deltaResult(%63:!llvm.array<11 x i8>)
57 }->!llvm.ptr<!llvm.array<11 x i8>>
58 %64 = rvsdg.deltaNode():
59 (): {
60 %65 = arith.constant 0: i8
61 %66 = arith.constant 99: i8
62 %67 = arith.constant 46: i8
63 %68 = arith.constant 115: i8
64 %69 = arith.constant 116: i8
65 %70 = arith.constant 45: i8
66 %71 = arith.constant 47: i8
67 %72 = arith.constant 115: i8
68 %73 = arith.constant 119: i8
69 %74 = arith.constant 115: i8
70 %75 = arith.constant 101: i8
71 %76 = arith.constant 101: i8
72 %77 = arith.constant 47: i8
73 %78 = arith.constant 101: i8
74 %79 = arith.constant 99: i8
75 %80 = arith.constant 46: i8
76 %81 = arith.constant 105: i8
77 %82 = arith.constant 116: i8
78 %83 = arith.constant 115: i8
79 %84 = arith.constant 47: i8
80 %85 = arith.constant 116: i8
81 %86 = arith.constant 116: i8
82 %87 = arith.constant 101: i8
83 %88 = arith.constant 115: i8
84 %89 = arith.constant 116: i8
85 %90 = arith.constant 45: i8
86 %91 = arith.constant 100: i8
87 %92 = arith.constant 111: i8
88 %93 = arith.constant 116: i8
89 %94 = arith.constant 45: i8
90 %95 = arith.constant 104: i8
91 %96 = arith.constant 108: i8
92 %97 = llvm.mlir.undef: !llvm.array<32 x i8>
93 %98 = llvm.insertvalue %80, %97[0]: !llvm.array<32 x i8>
94 %99 = llvm.insertvalue %77, %98[1]: !llvm.array<32 x i8>
95 %100 = llvm.insertvalue %93, %99[2]: !llvm.array<32 x i8>
96 %101 = llvm.insertvalue %76, %100[3]: !llvm.array<32 x i8>
97 %102 = llvm.insertvalue %72, %101[4]: !llvm.array<32 x i8>
98 %103 = llvm.insertvalue %85, %102[5]: !llvm.array<32 x i8>
99 %104 = llvm.insertvalue %74, %103[6]: !llvm.array<32 x i8>

100 %105 = llvm.insertvalue %71, %104[7]: !llvm.array<32 x i8>

55

101 %106 = llvm.insertvalue %79, %105[8]: !llvm.array<32 x i8>
102 %107 = llvm.insertvalue %70, %106[9]: !llvm.array<32 x i8>
103 %108 = llvm.insertvalue %69, %107[10]: !llvm.array<32 x i8>
104 %109 = llvm.insertvalue %75, %108[11]: !llvm.array<32 x i8>
105 %110 = llvm.insertvalue %68, %109[12]: !llvm.array<32 x i8>
106 %111 = llvm.insertvalue %82, %110[13]: !llvm.array<32 x i8>
107 %112 = llvm.insertvalue %83, %111[14]: !llvm.array<32 x i8>
108 %113 = llvm.insertvalue %84, %112[15]: !llvm.array<32 x i8>
109 %114 = llvm.insertvalue %86, %113[16]: !llvm.array<32 x i8>
110 %115 = llvm.insertvalue %87, %114[17]: !llvm.array<32 x i8>
111 %116 = llvm.insertvalue %88, %115[18]: !llvm.array<32 x i8>
112 %117 = llvm.insertvalue %89, %116[19]: !llvm.array<32 x i8>
113 %118 = llvm.insertvalue %90, %117[20]: !llvm.array<32 x i8>
114 %119 = llvm.insertvalue %91, %118[21]: !llvm.array<32 x i8>
115 %120 = llvm.insertvalue %92, %119[22]: !llvm.array<32 x i8>
116 %121 = llvm.insertvalue %94, %120[23]: !llvm.array<32 x i8>
117 %122 = llvm.insertvalue %73, %121[24]: !llvm.array<32 x i8>
118 %123 = llvm.insertvalue %95, %122[25]: !llvm.array<32 x i8>
119 %124 = llvm.insertvalue %81, %123[26]: !llvm.array<32 x i8>
120 %125 = llvm.insertvalue %96, %124[27]: !llvm.array<32 x i8>
121 %126 = llvm.insertvalue %78, %125[28]: !llvm.array<32 x i8>
122 %127 = llvm.insertvalue %67, %126[29]: !llvm.array<32 x i8>
123 %128 = llvm.insertvalue %66, %127[30]: !llvm.array<32 x i8>
124 %129 = llvm.insertvalue %65, %128[31]: !llvm.array<32 x i8>
125 rvsdg.deltaResult(%129:!llvm.array<32 x i8>)
126 }->!llvm.ptr<!llvm.array<32 x i8>>
127 %130 = rvsdg.deltaNode():
128 (): {
129 %131 = arith.constant 0: i8
130 %132 = arith.constant 53: i8
131 %133 = arith.constant 49: i8
132 %134 = arith.constant 32: i8
133 %135 = arith.constant 61: i8
134 %136 = arith.constant 32: i8
135 %137 = arith.constant 61: i8
136 %138 = arith.constant 115: i8
137 %139 = llvm.mlir.undef: !llvm.array<8 x i8>
138 %140 = llvm.insertvalue %138, %139[0]: !llvm.array<8 x i8>
139 %141 = llvm.insertvalue %136, %140[1]: !llvm.array<8 x i8>
140 %142 = llvm.insertvalue %137, %141[2]: !llvm.array<8 x i8>
141 %143 = llvm.insertvalue %135, %142[3]: !llvm.array<8 x i8>
142 %144 = llvm.insertvalue %134, %143[4]: !llvm.array<8 x i8>
143 %145 = llvm.insertvalue %133, %144[5]: !llvm.array<8 x i8>
144 %146 = llvm.insertvalue %132, %145[6]: !llvm.array<8 x i8>
145 %147 = llvm.insertvalue %131, %146[7]: !llvm.array<8 x i8>
146 rvsdg.deltaResult(%147:!llvm.array<8 x i8>)
147 }->!llvm.ptr<!llvm.array<8 x i8>>
148 %148 = rvsdg.deltaNode():

56

149 (): {
150 %149 = arith.constant 0: i8
151 %150 = arith.constant 10: i8
152 %151 = arith.constant 100: i8
153 %152 = arith.constant 37: i8
154 %153 = llvm.mlir.undef: !llvm.array<4 x i8>
155 %154 = llvm.insertvalue %152, %153[0]: !llvm.array<4 x i8>
156 %155 = llvm.insertvalue %151, %154[1]: !llvm.array<4 x i8>
157 %156 = llvm.insertvalue %150, %155[2]: !llvm.array<4 x i8>
158 %157 = llvm.insertvalue %149, %156[3]: !llvm.array<4 x i8>
159 rvsdg.deltaResult(%157:!llvm.array<4 x i8>)
160 }->!llvm.ptr<!llvm.array<4 x i8>>
161 %158 = rvsdg.lambdaNode <(!rvsdg.ioState, !rvsdg.memState,

!rvsdg.loopState)->(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)> (%1: !rvsdg.lambdaRef<(!llvm.ptr<i8>,
!jlm.varargList, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>, %148: !llvm.ptr<!llvm.array<4 x i8>>, %2:
!rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>, %130: !llvm.ptr<!llvm.array<8 x i8>>, %64:
!llvm.ptr<!llvm.array<32 x i8>>, %40: !llvm.ptr<!llvm.array<11
x i8>>, %0: !rvsdg.lambdaRef<(!llvm.ptr<i8>, !llvm.ptr<i8>,
i32, !llvm.ptr<i8>, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>):

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

162 (%159: !rvsdg.ioState, %160: !rvsdg.memState, %161:
!rvsdg.loopState, %162: !rvsdg.lambdaRef<(!llvm.ptr<i8>,
!jlm.varargList, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>, %163: !llvm.ptr<!llvm.array<4 x i8>>, %164:
!rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>, %165: !llvm.ptr<!llvm.array<8 x i8>>, %166:
!llvm.ptr<!llvm.array<32 x i8>>, %167: !llvm.ptr<!llvm.array<11
x i8>>, %168: !rvsdg.lambdaRef<(!llvm.ptr<i8>, !llvm.ptr<i8>,
i32, !llvm.ptr<i8>, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>): {

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

163 %169 = arith.constant 15: i32
164 %170 = arith.constant 0: i64
165 %171 = arith.constant 0: i64
166 %172 = arith.constant 5: i32
167 %173 = llvm.mlir.undef: i32

57

168 %174, %175, %176, %177 = rvsdg.applyNode %164 :
!rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>(%172 : i32, %159 : !rvsdg.ioState, %160 :
!rvsdg.memState, %161 : !rvsdg.loopState) -> i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState

↪→

↪→

↪→

↪→

↪→

169 %178 = llvm.getelementptr %163[%171, %170]:
(!llvm.ptr<!llvm.array<4 x i8>>, i64, i64) -> !llvm.ptr<i8>↪→

170 %179 = jlm.createVarargs (%174: i32) -> !jlm.varargList
171 %180 = llvm.icmp "eq" %174, %169: i32
172 %181 = rvsdg.match(%180 : i1) [
173 #rvsdg.matchRule<1 -> 1>,
174 #rvsdg.matchRule<default -> 0>
175] -> !rvsdg.ctrl<2>
176 %182, %183, %184, %185 = rvsdg.applyNode %162 :

!rvsdg.lambdaRef<(!llvm.ptr<i8>, !jlm.varargList,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) -> (i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>(%178 :
!llvm.ptr<i8>, %179 : !jlm.varargList, %175 : !rvsdg.ioState,
%176 : !rvsdg.memState, %177 : !rvsdg.loopState) -> i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState

↪→

↪→

↪→

↪→

↪→

↪→

177 %186, %187, %188, %189 = rvsdg.gammaNode(%181:
!rvsdg.ctrl<2>)(%166: !llvm.ptr<!llvm.array<32 x i8>>, %165:
!llvm.ptr<!llvm.array<8 x i8>>, %167: !llvm.ptr<!llvm.array<11
x i8>>, %173: i32, %168: !rvsdg.lambdaRef<(!llvm.ptr<i8>,
!llvm.ptr<i8>, i32, !llvm.ptr<i8>, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (!rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>, %183: !rvsdg.ioState,
%185: !rvsdg.loopState, %184: !rvsdg.memState): [

↪→

↪→

↪→

↪→

↪→

↪→

↪→

178 (%190: !llvm.ptr<!llvm.array<32 x i8>>, %191:
!llvm.ptr<!llvm.array<8 x i8>>, %192: !llvm.ptr<!llvm.array<11
x i8>>, %193: i32, %194: !rvsdg.lambdaRef<(!llvm.ptr<i8>,
!llvm.ptr<i8>, i32, !llvm.ptr<i8>, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (!rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>, %195: !rvsdg.ioState,
%196: !rvsdg.loopState, %197: !rvsdg.memState): {

↪→

↪→

↪→

↪→

↪→

↪→

179 %198 = arith.constant 0: i64
180 %199 = arith.constant 0: i64
181 %200 = arith.constant 20: i32
182 %201 = arith.constant 0: i64
183 %202 = arith.constant 0: i64
184 %203 = arith.constant 0: i64
185 %204 = arith.constant 0: i64
186 %205 = llvm.getelementptr %191[%204, %203]:

(!llvm.ptr<!llvm.array<8 x i8>>, i64, i64) -> !llvm.ptr<i8>↪→

187 %206 = llvm.getelementptr %190[%202, %201]:
(!llvm.ptr<!llvm.array<32 x i8>>, i64, i64) -> !llvm.ptr<i8>↪→

58

188 %207 = llvm.getelementptr %192[%199, %198]:
(!llvm.ptr<!llvm.array<11 x i8>>, i64, i64) -> !llvm.ptr<i8>↪→

189 %208, %209, %210 = rvsdg.applyNode %194 :
!rvsdg.lambdaRef<(!llvm.ptr<i8>, !llvm.ptr<i8>, i32,
!llvm.ptr<i8>, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>(%205 : !llvm.ptr<i8>, %206 : !llvm.ptr<i8>,
%200 : i32, %207 : !llvm.ptr<i8>, %195 : !rvsdg.ioState, %197 :
!rvsdg.memState, %196 : !rvsdg.loopState) -> !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState

↪→

↪→

↪→

↪→

↪→

↪→

↪→

190 rvsdg.gammaResult(%193:i32,
%208:!rvsdg.ioState, %210:!rvsdg.loopState,
%209:!rvsdg.memState)

↪→

↪→

191 },
192 (%211: !llvm.ptr<!llvm.array<32 x i8>>, %212:

!llvm.ptr<!llvm.array<8 x i8>>, %213: !llvm.ptr<!llvm.array<11
x i8>>, %214: i32, %215: !rvsdg.lambdaRef<(!llvm.ptr<i8>,
!llvm.ptr<i8>, i32, !llvm.ptr<i8>, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (!rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>, %216: !rvsdg.ioState,
%217: !rvsdg.loopState, %218: !rvsdg.memState): {

↪→

↪→

↪→

↪→

↪→

↪→

193 %219 = arith.constant 0: i32
194 rvsdg.gammaResult(%219:i32,

%216:!rvsdg.ioState, %217:!rvsdg.loopState,
%218:!rvsdg.memState)

↪→

↪→

195 }
196]->i32, !rvsdg.ioState, !rvsdg.loopState,

!rvsdg.memState↪→

197 rvsdg.lambdaResult(%186:i32, %187:!rvsdg.ioState,
%189:!rvsdg.memState, %188:!rvsdg.loopState)↪→

198 }
199 rvsdg.omegaResult(%148:!llvm.ptr<!llvm.array<4 x i8>>,

%130:!llvm.ptr<!llvm.array<8 x i8>>,
%64:!llvm.ptr<!llvm.array<32 x i8>>,
%40:!llvm.ptr<!llvm.array<11 x i8>>,
%158:!rvsdg.lambdaRef<(!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>)

↪→

↪→

↪→

↪→

↪→

↪→

200 }

59

test-rectfct

This example shows a program consists of one self-recursive function and two
mutually recursive functions.

C++ source code

1 #include <stdio.h>
2

3 void f(unsigned n) {
4 printf("%d\n", n);
5 if (n > 0)
6 f(n-1);
7 }
8

9 unsigned y(unsigned);
10

11 unsigned x(unsigned n) {
12 return y(n);
13 }
14

15 unsigned y(unsigned n) {
16 return x(n);
17 }
18

19 int main() {
20 f(10);
21 return 0;
22 }

RVSDG dialect representation

1 rvsdg.omegaNode (%0: !rvsdg.lambdaRef<(!llvm.ptr<i8>,
!jlm.varargList, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>): {

↪→

↪→

↪→

2 %1, %2 = rvsdg.phiNode():
3 (%3: !rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,

!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>, %4: !rvsdg.lambdaRef<(i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>): {

↪→

↪→

↪→

↪→

4 %5 = rvsdg.lambdaNode <(i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)->(i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)> (%4: !rvsdg.lambdaRef<(i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) -> (i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>):

↪→

↪→

↪→

↪→

60

5 (%6: i32, %7: !rvsdg.ioState, %8: !rvsdg.memState, %9:
!rvsdg.loopState, %10: !rvsdg.lambdaRef<(i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>): {

↪→

↪→

↪→

6 %11, %12, %13, %14 = rvsdg.applyNode %10 :
!rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>(%6 : i32, %7 : !rvsdg.ioState, %8 :
!rvsdg.memState, %9 : !rvsdg.loopState) -> i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState

↪→

↪→

↪→

↪→

↪→

7 rvsdg.lambdaResult(%11:i32, %12:!rvsdg.ioState,
%13:!rvsdg.memState, %14:!rvsdg.loopState)↪→

8 }
9 %15 = rvsdg.lambdaNode <(i32, !rvsdg.ioState,

!rvsdg.memState, !rvsdg.loopState)->(i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)> (%3: !rvsdg.lambdaRef<(i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) -> (i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>):

↪→

↪→

↪→

↪→

10 (%16: i32, %17: !rvsdg.ioState, %18: !rvsdg.memState,
%19: !rvsdg.loopState, %20: !rvsdg.lambdaRef<(i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) -> (i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>): {

↪→

↪→

↪→

11 %21, %22, %23, %24 = rvsdg.applyNode %20 :
!rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>(%16 : i32, %17 : !rvsdg.ioState, %18 :
!rvsdg.memState, %19 : !rvsdg.loopState) -> i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState

↪→

↪→

↪→

↪→

↪→

12 rvsdg.lambdaResult(%21:i32, %22:!rvsdg.ioState,
%23:!rvsdg.memState, %24:!rvsdg.loopState)↪→

13 }
14 rvsdg.phiResult(%5:!rvsdg.lambdaRef<(i32, !rvsdg.ioState,

!rvsdg.memState, !rvsdg.loopState) -> (i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>, %15:!rvsdg.lambdaRef<(i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) -> (i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>)

↪→

↪→

↪→

↪→

15 }->!rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>, !rvsdg.lambdaRef<(i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>

↪→

↪→

↪→

↪→

16 %25 = rvsdg.deltaNode():
17 (): {
18 %26 = arith.constant 0: i8
19 %27 = arith.constant 10: i8
20 %28 = arith.constant 100: i8
21 %29 = arith.constant 37: i8
22 %30 = llvm.mlir.undef: !llvm.array<4 x i8>

61

23 %31 = llvm.insertvalue %29, %30[0]: !llvm.array<4 x i8>
24 %32 = llvm.insertvalue %28, %31[1]: !llvm.array<4 x i8>
25 %33 = llvm.insertvalue %27, %32[2]: !llvm.array<4 x i8>
26 %34 = llvm.insertvalue %26, %33[3]: !llvm.array<4 x i8>
27 rvsdg.deltaResult(%34:!llvm.array<4 x i8>)
28 }->!llvm.ptr<!llvm.array<4 x i8>>
29 %35 = rvsdg.phiNode(%0: !rvsdg.lambdaRef<(!llvm.ptr<i8>,

!jlm.varargList, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>, %25: !llvm.ptr<!llvm.array<4 x i8>>):

↪→

↪→

↪→

30 (%36: !rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>, %37: !rvsdg.lambdaRef<(!llvm.ptr<i8>,
!jlm.varargList, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>, %38: !llvm.ptr<!llvm.array<4 x i8>>): {

↪→

↪→

↪→

↪→

↪→

31 %39 = rvsdg.lambdaNode <(i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)->(!rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)> (%38:
!llvm.ptr<!llvm.array<4 x i8>>, %37:
!rvsdg.lambdaRef<(!llvm.ptr<i8>, !jlm.varargList,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) -> (i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>, %36:
!rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>):

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

32 (%40: i32, %41: !rvsdg.ioState, %42: !rvsdg.memState,
%43: !rvsdg.loopState, %44: !llvm.ptr<!llvm.array<4 x i8>>,
%45: !rvsdg.lambdaRef<(!llvm.ptr<i8>, !jlm.varargList,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) -> (i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>, %46:
!rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>): {

↪→

↪→

↪→

↪→

↪→

↪→

↪→

33 %47 = jlm.createVarargs (%40: i32) ->
!jlm.varargList↪→

34 %48 = arith.constant 0: i32
35 %49 = arith.constant 0: i64
36 %50 = arith.constant 0: i64
37 %51 = llvm.getelementptr %44[%50, %49]:

(!llvm.ptr<!llvm.array<4 x i8>>, i64, i64) -> !llvm.ptr<i8>↪→

38 %52 = llvm.icmp "ugt" %40, %48: i32
39 %53 = rvsdg.match(%52 : i1) [
40 #rvsdg.matchRule<1 -> 1>,
41 #rvsdg.matchRule<default -> 0>
42] -> !rvsdg.ctrl<2>

62

43 %54, %55, %56, %57 = rvsdg.applyNode %45 :
!rvsdg.lambdaRef<(!llvm.ptr<i8>, !jlm.varargList,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) -> (i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>(%51 :
!llvm.ptr<i8>, %47 : !jlm.varargList, %41 : !rvsdg.ioState, %42
: !rvsdg.memState, %43 : !rvsdg.loopState) -> i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState

↪→

↪→

↪→

↪→

↪→

↪→

44 %58, %59, %60 = rvsdg.gammaNode(%53:
!rvsdg.ctrl<2>)(%40: i32, %46: !rvsdg.lambdaRef<(i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) ->
(!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>, %55:
!rvsdg.ioState, %56: !rvsdg.memState, %57: !rvsdg.loopState): [

↪→

↪→

↪→

↪→

45 (%61: i32, %62: !rvsdg.lambdaRef<(i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) ->
(!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>, %63:
!rvsdg.ioState, %64: !rvsdg.memState, %65: !rvsdg.loopState): {

↪→

↪→

↪→

46 rvsdg.gammaResult(%63:!rvsdg.ioState,
%64:!rvsdg.memState, %65:!rvsdg.loopState)↪→

47 },
48 (%66: i32, %67: !rvsdg.lambdaRef<(i32,

!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) ->
(!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>, %68:
!rvsdg.ioState, %69: !rvsdg.memState, %70: !rvsdg.loopState): {

↪→

↪→

↪→

49 %71 = arith.constant 1: i32
50 %72 = llvm.sub %66, %71: i32
51 %73, %74, %75 = rvsdg.applyNode %67 :

!rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>(%72 : i32, %68 : !rvsdg.ioState, %69 :
!rvsdg.memState, %70 : !rvsdg.loopState) -> !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState

↪→

↪→

↪→

↪→

↪→

52 rvsdg.gammaResult(%73:!rvsdg.ioState,
%74:!rvsdg.memState, %75:!rvsdg.loopState)↪→

53 }
54]->!rvsdg.ioState, !rvsdg.memState,

!rvsdg.loopState↪→

55 rvsdg.lambdaResult(%58:!rvsdg.ioState,
%59:!rvsdg.memState, %60:!rvsdg.loopState)↪→

56 }
57 rvsdg.phiResult(%39:!rvsdg.lambdaRef<(i32, !rvsdg.ioState,

!rvsdg.memState, !rvsdg.loopState) -> (!rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>)

↪→

↪→

58 }->!rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>

↪→

↪→

63

59 %76 = rvsdg.lambdaNode <(!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)->(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)> (%35: !rvsdg.lambdaRef<(i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (!rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>):

↪→

↪→

↪→

↪→

60 (%77: !rvsdg.ioState, %78: !rvsdg.memState, %79:
!rvsdg.loopState, %80: !rvsdg.lambdaRef<(i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (!rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>): {

↪→

↪→

↪→

61 %81 = arith.constant 0: i32
62 %82 = arith.constant 10: i32
63 %83, %84, %85 = rvsdg.applyNode %80 :

!rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>(%82 : i32, %77 : !rvsdg.ioState, %78 :
!rvsdg.memState, %79 : !rvsdg.loopState) -> !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState

↪→

↪→

↪→

↪→

↪→

64 rvsdg.lambdaResult(%81:i32, %83:!rvsdg.ioState,
%84:!rvsdg.memState, %85:!rvsdg.loopState)↪→

65 }
66 rvsdg.omegaResult(%25:!llvm.ptr<!llvm.array<4 x i8>>,

%35:!rvsdg.lambdaRef<(i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>, %1:!rvsdg.lambdaRef<(i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState) -> (i32, !rvsdg.ioState,
!rvsdg.memState, !rvsdg.loopState)>, %2:!rvsdg.lambdaRef<(i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState) -> (i32,
!rvsdg.ioState, !rvsdg.memState, !rvsdg.loopState)>,
%76:!rvsdg.lambdaRef<(!rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState) -> (i32, !rvsdg.ioState, !rvsdg.memState,
!rvsdg.loopState)>)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

67 }
68

64

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Theory
	LLVM
	MLIR
	TableGen
	Dialects
	Ops
	Types
	Attributes
	Passes
	Traits and interfaces
	Progressive lowering
	IR representations
	Software engineering

	RVSDG
	Node types

	Methods
	Development environment
	Project structure
	Representation of RVSDG in MLIR
	Testing and validation
	Implementation

	Results
	Constraints on node ports
	Interoperability with pass infrastructure
	Validation

	Discussion
	Validation of dialect
	Evaluating representations
	The role of RVSDG in the MLIR ecosystem
	Future work

	Conclusions
	References
	Appendices:
	GitHub repositories
	Information for developers
	Larger examples

