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Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) for partial fulfillment of the requirements for the degree of philosophiae
doctor (PhD). This doctoral work has been performed at the Department of Struc-
tural Engineering, NTNU, Trondheim from August 2018 through April 2023 under
the supervision of Leif Rune Hellevik.

The funding in full is received from NTNU through the Digital Transformation
initiative (1). The Digital Transformation initiative funded 9 projects consisting
of approximately 48 PhD candidates. These projects were tasked with research-
ing transformative technology and knowledge to take part in the digitalization of
society. One of these 9 projects was the “My Medical Digital Twin” (MyMDT),
under which this PhD project takes part (2). The MyMDT project aims to use
knowledge, methods and technology from a wide range of disciplines to make a
platform for personalized treatment of hypertension. This would be a step towards
bringing hypertension treatment towards the realm of precision medicine.

The thesis is a collection of papers published in or submitted to international peer-
reviewed journals. The thesis is organized in two parts. Part I is an introductory
section that presents the themes and background of the thesis and part II includes
the journal papers.
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Abstract

As part of the My Medical Digital Twin (MyMDT) project, an effort to construct
a cardiovascular model for use as a component in a digital twin for management
of hypertension was undertaken. In this thesis we have developed and examined
a simple cardiovascular model of the left-ventricle and systemic circulation. The
model’s ability to be personalized with a small data set and to be able to resolve
and track changes over time in parameters was further analyzed.

A sedentary lifestyle is known to be a risk factor for developing high blood pres-
sure (hypertension). Society is increasingly accommodating a sedentary lifestyle,
and cardiovascular disease is a leading cause of death and disability worldwide.
The aetiology of hypertension is complex and still not fully understood. A large
majority of cases of hypertension are essensial hypertension, which have no iden-
tified cause and therefore it is challenging to prescribe an optimal course of treat-
ment for the individual. Increased activity level, or exercise has been shown nu-
merous times to effectively lower high blood pressure, but what individual factors
will predict a blood pressure drop and of what magnitude is still uncertain. This
response could be affected by individual properties, as well as type of exercise and
exercise dose. To attempt to personalize treatment of hypertension, we proposed
personalizing a cardiovascular model and interpreting the personalized mechanical
parameters as indicators of lower-level hypertension phenotypes to learn about the
impact of exercise as a therapy. Further, we investigated if we could use the para-
meter changes as a source of information to learn about the personalized impact of
exercise as hypertension therapy.

To reach this goal we first constructed a three-chamber, closed-loop lumped para-
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meter model of the left-ventricle and systemic circulation. To make the model
more feasible in a clinical setting, local non-linear optimization techniques were
applied for personalization of the model. Initially, we used synthetic data produced
by the model itself with known parameter values for optimization and investigated
the errors of the personalized parameters. By bounding the parameter space and
sampling different initial parameter guesses we assessed the method’s ability to
recover the true parameters by optimization. Thus, we found that in the noiseless
case all parameters could be recovered to high precision using aortic pressure and
flow data. When applying noise, the errors were substantial, and a subset of the
least sensitive parameters was deemed harder to accurately estimate than others.

For optimization to real data we applied blood pressure waveforms measured non-
invasively both in the digital arteries, and carotid artery as proxies of the aortic
waveform. In this process we also developed a heuristic for parameter estimation
with local optimization and minimal data, based on the technique applied previ-
ously to synthetic data. We assessed the variability in personalized parameters
introduced by the method compared to the variability over repeated measurements
in the individual, and in the population. We found that the individual could in a
majority of cases be resolved from the population and over repeated measurements.

Finally, we tested if we could explain the cause of estimated parameter changes by
regression and correlation analysis. We could not prove any convincing explan-
atory relationship in parameter changes to VO2,max. Neither could we disregard
regression to the mean or day-to-day variability. However, some of the individual
and unexplained parameter variability could be attributed to variation in hemody-
namics measured in SV between different measurement days. We also found an
open-loop version of the model to yield some parameters that were better explained
by individual characteristics such as age, sex, body mass index and stroke volume
in terms of variability. Additionally, the carotid pressure waveform recommended
for optimization as it yielded more consistent parameter estimates with other es-
timation methods.
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Nomenclature

0D - Zero dimensional
1D - One dimensional
2WK - Two-element Windkessel
3D - Three dimensional
3WK - Three-element Windkessel
4WK - Four-element Windkessel
ACE - Angiotensin-converting enzyme
CL - Closed-loop
CFD - Computational Fluid Dynamics
CP - Carotid artery pressure
CO - Cardiac output
CPET - Cardiopulmonary Exercise Test
CRF - Cardiorespiratory Fitness
CVD - Cardiovascular disease
CVS - Cardiovascular System
DALY - Disability-adjusted life years
DRAM - Delayed Rejection Adaption Metropolis
DT - Digital Twin
EDV - End-diastolic volume
EF - Ejection fraction
ESPVR - End-systolic pressure volume relationship FEM - Finite Element Model
FP - Finger artery pressure
FSI - Fluid Structure Interaction
HR - Heart Rate
HRmax - Maximal Heart Rate
HRrest - Resting Heart Rate
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HRR - Heart Rate Reserve
ICU - Intensive care unit
MCMC - Markov-chain Monte Carlo
MyMDT - My Medical Digital Twin
NTNU - Norwegian University of Science and Technology
NO - Nitrous oxide
ODE - Ordinary differential equation
OP - Open-loop
PP - Pulse Pressure
PT - Physical Twin
PV-loop - Pressure-volume-loop
PWV - Pulse wave velocity
SA - Sensitivity Analysis
SSRM - Stepwise Subset Reduction Method
SV - Stroke Volume
TRRA - Trust-region reflective algorithm
VO2max - Maximal aerobic capacity, or maximal oxygen uptake
VO2peak - Peak value of measured aerobic capacity



Symbols

β - Fixed-effect regression coefficient
γ - Random-effect regression coefficient
δ(...) - Model discrepancy
ε(...) - Sample errors
θ - Vector of model parameters.
θi - A particular parameter i in the parameter space.
Cao - Total arterial compliance
Emax - Maximal left-ventricular elastance
Ees - End-systolic left-ventricular elastance
H - Hessian matrix
J(...) - Objective function, or cost function used interchangeably.
Lao - Total arterial inertance
Lfg(x) - Lie derivative of function g(x)
r - Pearson correlation coefficient
Rsys - Total peripheral resistance
SM,i - Main Sobol index
ST,i - Total Sobol index
TASM,i - Variance weighted main Sobol index
TAST,i - Variance weighted total Sobol index
u(t) - Control input function
Vd - Virtual volume axis intercept for the end-systolic pressure volume
relationship
y(...) - Vector of model outputs
ym - Vector of measurements corresponding to model outputs
Zao - Characteristic aortic impedance
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Chapter 1
Introduction

The thesis work has been performed at the Department of Structural Engineering
under at the Norwegian University of Science and Technology (NTNU). The focus
of the work has been to develop a primarily physics-based model of the cardiovas-
cular system, suitable for being part of a Digital Twin under the “My Medical
Digital Twin” (MyMDT) project. This would entail a cardiovascular model being
capable of representing part of the physiological envelope, which in this case refers
to describing individualized information about the hemodynamic state for the in-
dividual, and information relevant to the history and prediction of changes for this
information. The digital twin (DT) holds great potential for future development
within progressing the development of personalized precision medicine (3).

The fist notion in need of exploration is the DT concept. A DT can, in simple
terms, be explained as a digital copy or representation of a physical system or
other digital system. In this text a DT is referred to as the digital representation
of an individual’s cardiovascular system and state of arterial blood pressure and
flow. Baricelli et al. have investigated the use of the concept across multiple dis-
ciplines, and extracted some common properties for DTs (4). The first of which
being seamless and continuous data exchange between the physical twin (PT) and
the DT. Communication and data exchange should also function between different
DTs, and between DTs and domain experts, here relevant health care practition-
ers. Secondly, the DT needs proper ontologies for data comprehension and model
formalization, which for example entails the alignment of model concepts to raw
data. Thirdly, DT technology also expected to incorporate continually improving
AI, and fourthly be self-adapting and self-parameterizing. Finally, the DT is ex-
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8 Introduction

pected to use descriptive and predictive techniques to make decisions relevant to
its own destiny. As such the DT should be able to represent the current status
of the physical twin, and other “what-if” scenarios. The cardiovascular models
which have been utilised in this work could potentially play a part in realizing
many of these properties. The work to be presented, however, focuses on the
self-parameterization capabilities, representation and predictive capabilities of a
MyMDT.

MyMDT has primarily targeted hypertension as the disease carries significant cost
and loss of life to society. High blood pressure is the globally a leading risk factor
for disability-adjusted life years (DALY) (5). The DALY is a measure of years
of life lost to ill health, disability or premature death. Worldwide it is estimated
that 32% of the adult population above 30 years are hypertensive per the European
Society of Cardiology’s definition of hypertension (6). Under this definition a per-
sistent systolic blood pressure above 140 mmHg, and a diastolic blood pressure
above 90 mmHg is diagnosed as hypertension (7). While 51% of men and 41%
of women with hypertension are estimated to be undiagnosed, not all diagnosed
individuals manage to control their blood pressure successfully. Only 23% of all
women and 18% of all men who are estimated to have hypertension actually man-
age to control it and reduce it below the hypertension threshold. Further, high
systolic blood pressure over 140 mmHg is estimated to contribute to the loss of
142 million years of DALY, and not to mention an estimated 7.8 millions deaths
by various cardiovascular diseases per year (8). Therefore, by reducing the pervas-
iveness of hypertension in society, many lives and resources could be spared. Even
reducing the general population’s systolic blood pressure by 1 mmHg is thought to
be sufficient for reducing incidence of cardiovascular disease considerably (9).

The MyMDT project is a collaboration between PhD candidates within a variety of
disciplines, among them being biomedical engineering, statistics, machine learn-
ing, product and sensor development, exercise physiology and genetics. Aside
from the papers appended in this thesis, Spitieris et al. have also performed work
on developing bayesian model calibration of cardiovascular models (mainly ap-
plied to two- and three-element Windkessel models) and prepared three papers
on the subject (10, 11, 12). Steffensen et al. have developed four different sensors
based on a model of inductance to demonstrate their ability to measure pulse waves
in vascular phantoms (13). However, work in all other fields of the project are pro-
gressing simultaneously and are expected to give results in the near future.

While mathematical models can take many forms, as pure statistical regression
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Figure 1.1: Model response inaccuracy versus model complexity: a balance between
model framework error and the number of uncertain inputs. Reprinted with permission
from (14).

based or neural networks, all the way to three dimensional fluid structure interac-
tion models or even to molecular folding models, there is a huge span of models
trying to capture and describe parts of reality at different scales. While in this
work we mainly focus on models rooted in physics and mechanical systems, we
also employ some statistical models to gain insight into measured and generated
data. In the context of MyMDT where the DT needs to be robustly personalized we
find the first principle guiding the work in this thesis. Huberts et al. discuss a road
map for creating personalized cardiovascular models (14). They therein discuss
the property of models where increased model complexity can cause the model to
become more accurate, but also causes it to rely on more input parameters, which
in turn are uncertain and increase model output uncertainty. We similarly assume
there exists a minimum for optimal trade-off between model complexity and out-
put uncertainty for a given application, as illustrated in Figure 1.1. Cardiovascular
modeling also needs to provide outputs of the clinically relevant indices that are
sufficiently precise to be used in practice for non-engineers and scientist (3). An-
other important concept in this context is also robustness, in normal mathematical
use, a robust model is a model that is not majorly affected by outliers. The au-
thor would also like to interpret this concept as to be that a robust model in a DT
for health care should be able to handle cases of missing or corrupted data from
peripheral sensors performing intermittent or continuous personal data readings,
by communication to the end user that predictions are based on partial data, or that
no predictions can be made until all required data is acquired.
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Naturally, the PhD project has focused on parsimonious lumped-parameter mod-
els. As a trade-off for highly detailed geometry or vasculature, the models should
require less data for calibration, or more specifically personalization, and for faster
simulations and personalization of models than higher dimensional and fidelity
models allow. For a tool that is expected to be useful in a clinical setting, these are
also important factors to consider. The project initially centered on finding a simple
model, which easily could be personalized using a minimal set of data. Further the
ambition was to develop exercise models to model the personalized physiological
response to exercise to monitor and quantify the load on the cardiovascular system
from individual and accumulated bouts of physical activity. Simultaneously, the
ambition was to find a model for the long-term cardiovascular remodeling of the
detected or planned pattern of physical activity. This added further requirements
to the minimal model to be developed, as it needed to be sufficiently complex to
be able to describe varying states of physical activity, and their loads on relevant
vasculature.

Exercise was of chosen as a primary therapeutic target, and medication as a sec-
ondary. It is known that not all but many people with hypertension successfully
can lower their blood pressure by engaging in more physical activity, as there are
some non-responders. While the topic of which types of physical activity and the
amount and intensity is still a controversial topic, this was chosen as a main target
for implementation. Therefore, a model which could also describe bouts of phys-
ical activity with different intensities, durations and frequencies is important, not
only to describe the different suggested therapies, but also possibly be a tool to
learn more about the hypertension and hemodynamics in exercise. The lower level
vascular phenotypes have also been investigated and shown to respond to exer-
cise, however also here it is uncertain which populations will experience sustained
change in these properties and for what physical activity stimuli.

To be able to predict the changes of parameters the changes must be sufficiently
large to be detectable, and the variability or uncertainty in estimates for an indi-
vidual set of measurements should be sufficiently low to be able to be able to re-
solve differences between parameters estimated under different conditions or time
points. Whether parameter changes from a model required to change the hemo-
dynamic state corresponds directly to the actual remodeling taking place in vivo
has not been investigated for all models, and is not necessarily generally true. The
data set used for personalization can also play a role in such a context. Studies by
Gerringer et al. and by Audebert et al. investigate parameter developments during
disease progression in animals (15, 16). Similarly, Colunga et al. performed lon-
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gitudinal case studies for subjects post heart transplant which could exhibit signs
of systemic and pulmonary hypertension (17), and was able to use this to interpret
some observations to be complications during post intervention recovery. There
are also studies in the physiology and epidemiology literature on the development
of blood pressure, both long-term such as through initiatives such as the HUNT
study (18), and short term randomized controlled trials, which assess the impact
on cardiovascular parameters such as arterial resistance and stiffness (19, 20, 21)
by a given stimuli or treatment. Such studies can inform how much the cardiovas-
cular system can be expected to change over the course of a given treatment, and
in such a context it can be investigated whether a model with a specified set of
calibration data will reliably be able to resolve and detect such changes.

A plethora of different cardiovascular models exist already (22, 23, 24, 25, 26)
of different scales, dimensionalities and complexities. In the context of MyMDT,
some are more interesting than others and we here focus on lumped-parameter
models, which have no spatial dimensions. A system developed by Conover et
al. is a tool for evaluating the effects of different invasive treatments on the resting
and higher intensity hemodynamics (27). This model is designed to focus on single
ventricle physiologies such as Fontan and Norwood physiology patients and their
predicted exercise capacity. What MyMDT aims for would be something sim-
ilar for patients with a normal physiology, but also a system for tracking vascular
remodelling long-term and incorporating the remodeling stimulus caused by ex-
ercise. To also build the exercise response model for the normal physiology, data
from this cohort would also be necessary. Itu et al. have investigated personaliz-
ation of an open-loop model focusing on the left ventricle and adjacent chambers
using a very limited data set consisting of five measured values (28). Using these
data, four parameters of the systemic circulation and left-ventricle are determined
in order to properly characterize the left-ventricular pressure-volume loop (PV-
loop). The question remains however if such a model is suitable for accurately
capturing the adaptions to increased intensity and metabolic demand during phys-
ical activity, and whether it can capture parameter changes which are informative
to systemic blood pressure changes and exercise stimulus. Works by the research
group headed by Daniel Beard at the University of Michigan has worked on model-
ing of exercise and the understanding of the aetiology of hypertension (29, 30, 31).
Recently, Jezek et al. have developed a model of the circulation which examines
the effects of different postures on the hemodynamics in exercise. This is a step
towards allowing the different activity types be encoded in the simulation of exer-
cise, which perhaps could also be a component of simulating exercise as therapy
or preventative action for hypertension. Gu et al. investigated how impairment of
the baroreflex system can cause essential hypertension in rats (30), which is in line
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with the ideas presented by Pettersen et al. (32). In summary, there are multiple
ongoing efforts to study hypertension management using models as tools.

The aetiology of hypertension is not yet fully understood and still have many ques-
tions to be answered, and similarly from a mathematical modeling perspective
there are still open questions with respect to a lot of what we already know about
cardiovascular physiology and physics-based models. As investigated by for ex-
ample Itu et al., models where the properties of large parts of the systemic vascu-
lature can be described by few parameters do exist (28). However, one question
which is not generally answered is what type of data and how much data is needed
to sufficiently personalize such models and their parameters, or in other words
make the model practically identifiable. We attempt to partially address this issue
in the first appended paper (See chapter 6), where we attempt to solve the inverse
problem of optimizing the model parameters using model outputs as the data to op-
timize for with and without noise (33). In this context, we also compared the use of
waveform data to only single valued clinical indices to assess which gave the least
errors in the parameter estimates. While for example Hann et al., deBournonVille
et al., Pironet et al., and Marquis et al. focus on using measurements and inform-
ation in several model compartments in order to successfully parameterize them
(34, 35, 36, 37), it is also interesting to answer how well can personalized para-
meters be determined in contexts where very sparse data from even just a single
model compartment are available. In a context such as MyMDT, where it would
be beneficial if most measurements could be gathered from wearable, non-invasive
sensors this is a crucial point, and leads to the pursuit of absolute minimal data
sets. The first paper showed that all model parametrs could be estimated to high
accuracy using only aortic pressure and flow waveforms in the noiseless case for
synthetic data produced by the model itself. Application of 5% Gaussian noise to
the data revealed that only the four most sensitive parameters could be reasonably
well estimated using this combination of data. We decided to pursue using only
this data set to assess the performance using real data, but since we also found that
addition of information to the venous compartment improved most estimates, we
continued while optimizing the model parameters to a prescribed level of mean
venous pressure.

Gerringer et al., Marquis et al. among other estimate initial parameter guesses
from the measurements before optimizing using a local optimization algorithm to
find the best optimized parameter set (15, 35). Oppositely we take an approach
where we sample multiple possible parameter combinations and try to find the op-
timal cost function minimum and accounting for some uncertainty in the resulting
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minimum. By bounding the parameter space to a physiologically reasonable re-
gion, we thereby attempt to find the best minimum by exploration of this limited
space and by used of the computational resources, rather than acquiring more data
possibly adjacent to more model compartments.

A second question is whether the parameters can be estimated accurately enough to
be able to meaningfully resolve possibly small changes that may explain changes
in hemodynamics due to exercise stimuli or even just minor daily variations. A
third question is whether a closed-loop or open-loop model formulation is best
for detecting or quantifying the change in parameters, and if they are sufficient
to model exercise induced changes both chronically long-term, and acutely short-
term. The second appended paper investigates how much variability is introduced
in parameters estimated from a single set of measurements with our developed es-
timation heuristic (See chapter 7). We compare this estimated variability to the
variability over estimates made for the study population and to the variability of
repeated estimates made at different time points in the same individuals. The third
appended paper investigates (See chapter 8) what these changes are caused by.
Both papers also compare results for the open-loop and closed-loop models.

In the coming chapters, the background of the project rooted in the physiology and
pathophysiology of the cardiovascular system with focus on hypertension will be
examined closer. Secondly, the models and some methods utilised in the papers
will be described in the methods chapter, before thirdly a brief summary of the
appended papers is presented. Finally, the conclusions drawn from the work is
presented. The papers supporting these conclusions are appended at the very end.
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Chapter 2
Background

2.1 The Cardiovascular System

The cardiovascular system transports oxygen, nutrients and hormonal signal car-
riers to all tissues of the human body (38). This system is illustrated in Figure
2.1 Through mainly the action of the heart and its two ventricles, blood is pumped
from the left ventricles, through the systemic arteries, into the veins, before enter-
ing the right atrium and finally the right ventricle. The blood is again pumped from
the right ventricle through the pulmonary arteries, and veins being oxygenated by
the lungs before returning to the left ventricle through the left atrium. The in-
flow and outflow of each of the ventricles are affected by heart valves, which open
and close depending on the pressure gradient across the valve. valve dynamics
combined with the periodic contraction of the heart muscles (myocardium) causes
pulsatile blood flow and pressure waves to propagate throughout the vasculature.
The heart cycle is split into the systolic and diastolic phase. The cycle is usually
taken to start at the ejection or systolic phase where the contraction of the left vent-
ricle starts, and the atrioventricular valves close when the pressure of the ventricles
exceed the pressures of the atria. All valves are closed as the ventricles continue
to contract in the isovolumic contraction phase. When the left-ventricular pressure
exceeds the aortic pressure, the aortic valve opens, and ejection starts. The ejec-
tion lasts until the ventricular pressure again is less than the aortic pressure and the
ejection stops. The ventricle relaxes until the atrioventricular valve reopens and
the ventricle is refilled. in the final phase of refilling, the atria contract in order to
further increase ventricular filling. Both ventricles experience this heart cycle in
parallel.

15



16 Background

The vessels consist of the arteries transporting oxygenated blood throughout the
cardiovascular system, while the veins transport deoxygenated blood towards the
lungs. The large arteries are the most compliant and elastic arteries, which branch
out into smaller arteries and eventually arterioles. These vessels are less elastic,
but have thicker layers of smooth muscle which allows for better regulation of
resistance, and most of the vascular resistance of the vascular tree is expressed in
these vessels. From the arterioles spring the capillaries, which are the smallest
blood vessels and allow exchange of gas and nutrients to organs. After the capil-
laries follow the venules, small veins and large central veins. The veins are more
compliant than the arteries, and store most of the circulatory blood volume.

The structure of a single blood vessels themselves consist of mainly four sections.
First is the lumen, or the open center of the vessel for blood flow to pass through.
The vessel walls consist of the three layers of the tunica intima, tunica media and
tunica externa. The layers of an artery are illustrated in Figure 2.2. The large
and medium sized arteries follow this structure, while the smaller arteries, arteri-
oles, deviate and omit most structural layers except the endothelium and muscular
precapillary sphincters. The tunica externa is a layer of connective tissue, while
the tunica media is mainly muscular tissue. The tunica interna consists partially
of a layer of elastic lamina constructed by elastin. This layer lies outside a base
membrane of glycoproteins, while the innermost layer bordering the lumen is the
endothelium. The endothelium is part of the endocrine system and can emit en-
docrine agents. The endothelium can in this way control the vascular tone, by
releasing endocrine signals which causes the tunica media to relax or contract.
The lumen radii and distribution of tunica thicknesses alter the mechanical prop-
erties of the vessel and cause different vessels to behave differently with respect
to resistance and compliance. the endothelium also plays a role in the transport of
angiotensin and other hormonal signaling which is important in kidney function
effects on blood volume regulation, and flow mediated dilatation of vessels.

2.2 Cardiovascular Disease and Hypertension

Hypertension is not primarily a disease, but rather a condition of persistently raised
blood pressure. According to the European Society of Cardiology a hypertension
diagnosis is usually given after brachial blood pressure is measured to be above
140 mmHg systolic and 90 mmHg diastolic. Here the blood pressure is given as
systolic over diastolic (systolic/diastolic) in units of mmHg (7). Throughout the
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Figure 2.1: Illustration of the cardiovascular system with names of several large veins and
arteries. The figure is created by Mariana Ruiz Villarreal (39). The figure is released to
the Public Domain, and is used with permission.
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Figure 2.2: Illustration of the general arterial wall structure. The figure is created by
user Kelvin13 on creative commons (40), and is under distributed under a CC BY-SA 3.0
license.

rest of the text blood pressure is given in these units, unless otherwise stated. To
set a diagnosis multiple measurements are usually made and an average given as
the final blood pressure value, since a single measurement can easily be affected
by immediate factors such as mental stress or physical movements. The condi-
tion is usually split in two categories, primary or essential hypertension, in which
the underlying cause is unknown, or secondary hypertension in which the cause
can be attributed to a given cause. The large majority of hypertension cases are
classified as essential hypertension (38). Secondary hypertension can be a result
of conditions such as chronic renal disease, which affects the blood volume reg-
ulation through disturbances in urine secretion. Other causes are also identified;
disturbances in neural regulation caused by high intracranial pressure or damage
to the vasomotor center, elevated hormone levels, or other cardiovascular diseases
such as complete heart block and aortic arteriosclerosis.

Mean arterial blood pressure is usually thought to be proportional to total peri-
pheral resistance Rsys and cardiac output (CO),

MAP ≈ CO×Rsys. (2.1)

Cardiac output is the volume of blood the left ventricle ejects per unit of time, usu-
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ally measured in litres per minute (L/min), or millilitres per second (mL/s). The
possible causes of secondary hypertension listed above contribute to increasing
at least one of the two factors of the formula, but typically the resistance factor.
The total blood volume can also be affected by one of these conditions, but this
in turn affects the CO. Since most diagnosed cases are still essential hypertension,
the aetiology of the disease is still not fully understood, but possible causes may
still act by modifying these factors analogously to secondary hypertension. The
disease is extremely complex as multiple regulatory systems affect blood pressure,
and how these may transition into pathology and interact under lifestyle changes
and aging is far from understood. A well-known model within the field is the
Guyton model of hypertension where the complex control system of different reg-
ulatory systems is investigated. Although it in recent years has been criticized for
a number of reasons, it still holds insight into several of the regulatory mechan-
isms which are known to affect blood pressure (41, 42). Beard refers to that the
1972 Guyton model recently has been shown to have poor agreement with the salt
retention of the cardiovascular system and it is unknown why (31). This speaks
to the continuing mystery surrounding the etiology of hypertension. Beard goes
on to explain that the Guyton model is often used to argue the view that arter-
ial pressure is determined uniquely by renal salt and fluid regulation, but that the
revealed shortcomings may guide what should be further investigated. In recent
years, research have partially by way of using physics-based models investigated
whether dysfunction of the baroreflex system through stiffened vessel walls is suf-
ficient to explain some cases of essential hypertension (32, 30, 43). This follows
from work by for example Ursino et al. which earlier applied mathematical mod-
els to investigate the baroreflex system, perhaps not solely for hypertension re-
search, but to gain insight into this regulatory mechanism (44). These, represent
alternatives to views where the blood pressure influenced diuresis and natriuresis
often is the mechanism investigated to explain essential hypertension (45). Or
more broadly, views which consider that salt intake or other causes can provoke an
overactive renin-aldosterone-angiotensin-system or overactive sympathetic neural
signals. Models have also been applied in other ways than constructing detailed
models which account for regulatory system interactions. Some such as Segers et
al. also take a purely hemodynamic and descriptive view to study the disease (46).
Segers et al. have applied simpler models to study the differences in parameter val-
ues for groups of patients with normotension or hypertension in combination with
different cardiac remodelling patterns. Based on this they further studied which
parameters contributed most to the elevated blood pressure in the latter category
of groups.

The condition of hypertension itself causes direct pathological remodeling of the
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cardiovascular system. The arterial walls remodel to adapt to changes in wall shear
stress and azimuthal hoop stress (47). Increase in blood pressure causes the hoop
stress to increase and induces the vessel wall to thicken in response. Therefore, in
essential hypertension, resistance vessels experience inward euthropic remodeling.
This means that vessel radii constrict, and wall thickness increases. During anti-
hypertensive therapy, the vessels may experience outward euthropic remodeling,
where vessel radius increases and the wall thickness decreases.

2.3 Treatment of Hypertension

Research indicates that the risk of developing cardiovascular disease (CVD) and
Current treatment of hypertension is both habitual and pharmacological. The ha-
bitual treatment consists of lifestyle alterations which can include cessation of
smoking, dietary changes such as lessened salt intake, or as change in physical
activity levels.

There are 6 classes of medication which are typically used for treatment of hy-
pertension; diuretics, sympathoadrenal system inhibitors, direct vasodilators, cal-
cium channel blockers, angiotensin-converting enzyme (ACE) inhibitors, and an-
giotensin II-receptor antagonists. These target different mechanisms in vasocon-
striction, blood volume regulation and cardiac output in order to lower one of the
two main contributors in the equation (2.1) (38). According to the guidelines from
the European Society of Cardiology/European Society of Hypertension, lifestyle
intervention should be attempted first to lower blood pressure to under the hyper-
tension threshold before prescribing pharmacological treatment (7). This applies
unless there are factors such as elevated risk of other CVDs, demonstrated hy-
pertension mediated organ damage or that the patient has hypertension grade 2 or
higher. Hypertension diagnosis has three categories according to blood pressure
level where grade 1 describes blood pressure levels of between 140/90 and 159/99,
while grade 2 and up have blood pressure levels of 160/100 and upwards.

Lifestyle intervention can involve dietary changes, as mentioned, but we will here
focus on the increase in physical activity level. The technological development in
developed countries, especially, can encourage an increasingly sedentary lifestyle.
This may lead an increasing part of the population to not engage in the amount of
physical activity recommended to ensure a good quality of life and health. The
WHO recommends that one should aim to engage in at least 150 minutes of mod-
erately intense exercise or 75 minutes of high intensity exercise per week (48).



2.4. The Cardiovascular System During Physical Activity 21

This is, however, general advice and not particularly well tailored to an individuals
baseline level of activity or potential for improvement. There exist several studies
which investigate the outcome of exercise on blood pressure levels in people with
hypertension and normotension both with blood pressure and other descriptors of
the cardiovascular system as outcomes/end-points (19, 20, 49, 21, 50). Addition-
ally, these studies show that the effectiveness of the exercise intervention may be
dependent upon type of exercise, duration and initial blood-pressure levels, as well
as different cardiovascular dsieases and conditions. This further suggests that the
blood pressure and phenotype response is highly dependent upon the individual.
It is known that there are some individuals whose high blood pressure and hemo-
dynamics may not respond to exercise intervention. However, exercise can be
effective as therapy for those who do respond, since blood pressure has been ob-
served over several studies to be reduced by -11 mmHg systolic on average for
people with hypertension, and up to -25 mmHg in some cases (51).

2.4 The Cardiovascular System During Physical Activity

While the body always has a metabolic demand at rest in order to sustain life
sustaining functions, this demand increases as energy expenditure rises with in-
creasingly vigorous physical activity. The fraction of total blood flow to organs
such as the kidneys, liver, and parts of the gastrointestinal tract is lessened, but are
dramatically increased to the large muscle groups in order to satisfy the increased
demand for energy. Under such conditions, the cardiac output can increase ap-
proximately fivefold at maximal intensity. The heart rate increases, as does stroke
volume compared to baseline, partially due to increased venous return, but also
due to increased contractility of the heart. In the vasculature several adaptions take
place. The flow directed to the large muscle groups increases, while blood flow
decreases for most other organs. The temperature of the body increases, and the
thermoregulatory system also plays a part in adjusting flow to the surface of the
skin in order to exchange excess heat to the surroundings. For the analysis in this
work, we focus on the global adaptions as the models to be applied do not model
the details of the different organs outside of vessels and cardiac chambers.



22 Background

2.5 Exercise-induced Remodelling of the Cardiovascular Sys-
tem

As the hemodynamics and respiration changes during bouts of physical activity,
the cardiovascular activity also remodels in response to this stimulus and exper-
iences structural changes. The remodeling is dependent upon type of physical
activity, but here we normally consider endurance or aerobic training, and not res-
istance training as the physical activity. After several weeks or more of endurance
training the CO at rest will be almost unchanged, but the maximal CO during
physical activity will be elevated. This is partially due to resting heart rate being
lowered, while the SV is increased in both at rest and higher heart rates. The blood
volume is also increased after exercise, which contributes to a larger end-diastolic
volume (EDV) (52). The change in SV is also caused by structural changes in the
myocardium (53). Similarly, systemic blood pressure is reduced by on average
-3/-3 mmHg, but this will be -11/-8 mmHg for people with hypertension (51, 52).

It should be noted that there is also a group of non-responders to exercise in terms
of improved cardiorespiratory fitness (CRF). There is currently no consensus on
any explanation as to why this group does not respond or what characterises this
group. One viewpoint is that non-responders simply need a higher amount of ex-
ercise in terms of duration per week and therefore the response is thought to be
dose dependent. Montero et al. investigated this hypothesis in a study of healthy
participants and found that non-response was eliminated by changing the exercise
dose (54). However, if this holds true for people with hypertension, and whether
this is also true with respect to drop in blood pressure levels is uncertain. While
type of exercise and intensity and amount holds importance for blood pressure re-
duction, how this affects the magnitude of blood pressure reduction and in which
type of individual is currently inconclusive. Individuals who do not experience
blood pressure drops during night time have been observed to be non-responders
in the past, and it has been proposed that causes can be both genetic or due to the
specific pathophysiology of the individual cases (51).

In the coming subsections we look a little closer at a few parameters that are linked
to exercise-induced remodeling. While more of the model parameters described in
section 3.1.3 may respond to exercise, these are the ones of focus.

2.5.1 Total Peripheral Resistance
Total peripheral resistance (often interchangeably used with systemic vascular res-
istance) is a measure of how the collective geometric properties of the arterial tree
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and the material properties of the blood cause blood pressure to change as blood
ejected by the left ventricle passes through it. For a single blood vessel resistance
to flow is influenced by the blood viscosity, radius and length of the vessel. For
fully developed stationary flow through a tube, popularly known as Poiseulle flow,
the resistance can be described as

R =
8ηl

πr4i
. (2.2)

Here, η is the dynamic viscosity of the blood, l is the vessel length and ri is the
internal radius of the vessel (47). From this formula we note that smaller radii
cause higher resistance, and hence the smaller arteries typically contribute most to
the resistance of the arterial tree. This relationship is only applicable in select parts
of the circulation as it does not apply for pulsatile flow in distensible tubes as you
would find in most parts of the circulation, but nevertheless gives an indication of
how the resistance is related to the descriptors of a blood vessel.

However, the total peripheral resistance specifically refers to the resistance contri-
bution from the entire arterial tree. Vessels diminish in diameter as the blood flows
from the heart towards the capillaries, but they also bifurcate. Computing the total
peripheral resistance could be achieved by adding the resistances in series, and
adding the reciprocals of the parallel artery resistances. A simpler way to de-
termine this quantity though is through the mean pressure drop across the relevant
arteries and mean input flow as per Equation (2.1).

As stated, hypertension is a complex disease which is not yet fully understood, but
some cases of exercise-induced lowered blood pressure is thought to partially be
explained by remodelling of the blood vessels in participants whose blood pressure
are responsive to exercise as treatment. Green et al. collects results showing how
long-term exercise induced structural remodelling of the cardiovascular system
can be mediated partially through the endothelial function (55). Increase in blood
flow such as when the sympathetic neural system initiates increased heart rate dur-
ing vigorous physical activity, cause changes in shear stress. The increased shear
stress stimulates the endothelium which can then emit signaling substances such as
nitrous oxide (NO), which becomes more abundant and affects muscle relaxation
and contraction in the tunica media. This effect is acute as vigorous activity is on-
going. Long-term remodeling takes place as the vessel structure adapts to the new
level of shear stress and reduces shear force to the previous set point by adjusting
the diameter of the vessel. Note that other factors may affect vessel remodelling
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and CO, an example of which being angiogenesis which causes more efficient oxy-
gen uptake in muscles, reducing the need for increased blood flow. Additionally,
increased angiogenesis and a larger number of vessels in the microvasculature may
lower total peripheral resistance. Although, there are currently a number of pos-
sible hypotheses on how angiogenesis is stimulated during exercise. Additionally,
functional changes of the renin-angiotensine-aldosterone system and sympathetic
neural system may occur and further reduce the level of vasoconstriction at rest.

2.5.2 Arterial Compliance
Compliance is closely related to the concept of distensibility, but is also the recip-
rocal of the quantity known as elastance. Compliance is the ability of the blood
vessels to accommodate an increased blood volume, and is usually defined as area
or volume compliance. Area compliance is the rate of pressure change per change
in area, typically the cross sectional blood vessel area, CA = ∆A

∆P . Volume com-
pliance on the other hand is useful for characterizing larger collections of vessels
by defining it as the change of volume per change in pressure,

CV =
∂V

∂P
≈ ∆V

∆P
. (2.3)

The vessel compliance relies both upon the structure and material properties of the
vessel walls. Less muscular vessels such as the larger arteries are usually more
compliant and express most of the compliant properties of the systemic vascular
tree. Similarly to vascular resistance, the compliance of vessel segments can be
aggregated into one compliance, but compliances must added for vessels in par-
allel, and the sum of reciprocal compliances can be used to add compliances in
series.

The veins are also compliant and much more than the arteries. While the exact
factor is probably personal, Hainsworth notes that it is approximately by a factor
of 30 (56), and Rose et al. have shown that the factor is approximately 20 when
measured in dogs (57).

Systemic arterial compliance has bee observed to be increased after exercise in
both young healthy individuals and older individuals in various states of health (58,
59). In the exercise physiology literature, it is common to study the exercise effect
on pulse wave velocity (PWV). Vessel compliance is known to be related to the
structural and material properties of the vessel walls (47). PWV is the propagation
speed of the pressure pulse wave travelling through the vessels, and is dependent
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upon the wall properties. This relationship is modeled through the Bramwell-Hill
and Moens-Korteweg equations

PWV =

√
hEinc

2riρ
(2.4)

and,

PWV =

√
A

ρCA
. (2.5)

Here, h is the vessel wall thickness, Einc is the incremental elastic modulus of the
vessel, ρ is the blood mass density, ri the lumen radius, and A is the lumen area.
Montero et al. and Ashor et al. have meta-analyzed multiple studies investigating
the exercise effect on PWV. While Montero et al. found a decrease with interven-
tion periods over 12 weeks, and when the decrease was supported by a decrease
in blood pressure, it was not concluded that aerobic or resistance training could
lower arterial stiffness. Ashor et al. on the other hand found significant decrease in
PVW among prehypertensive and hypertensive study participants, although with a
small sample of studies. Tanaka reports that studies using different types of aer-
obic exercise have found increased arterial compliance (60). Tanaka also explains
that factors such as reduced elastin and increased collagen in vessels are thought to
contribute to vascular stiffening with age. However, some evidence indicates that
reduction in sympathetic vasoconstriction at rest can lead to increased compliance
after exercise. What factors can explain increased compliance after exercise is not
fully explored and is thought to be a combination of functional and mechanical
factors. Many of the mechanisms are common to the ones that may adjust total
perioheral resistance. Currently, only aerobic exercise has been shown to increase
compliance, while resistance exercise may cause a decrease.

2.5.3 Maximal Left-Ventricular Elastance
The left-ventricle periodically contracts to increase pressure and cause blood flow
to the systemic arteries. While the pressure and blood flow development is subject
to interaction with other vessel compartments and a complex network of regulat-
ory mechanisms, the myocardial muscle contraction itself may be characterized by
contractility. While there is no single universal measure of contractility, it can be
expressed in many ways. The ventricular ejection fraction (EF) is the proportion
of the ejected blood per heart beat or stroke volume (SV) divided by the maximal
volume of the ventricle which is the EDV. The EF characterizes contraction by
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how much volume is displaced by the contractile motion, but is also dependent
on the afterload which the ventricle ejects blood against, ie. the pressure of the
systemic circulation when the heart is ejecting. The end-systolic elastance, which
can be derived from the end-systolic pressure-volume relationship, is an example
of a load-independent measure of the left-ventricular contractility.

The PV-loop, for which an illustration can be seen in Figure 2.3, shows the left-
ventricular pressure and volume development throughout the heart-cycle. The
elastance, the inverse of vascular compliance, can be defined as the change of
pressure given a change in volume, E = ∆P

∆V . A high elastance means that the
ventricle accommodates less added blood volume. Therefore the maximal left-
ventricular elastance, that is the maximal elastance slope in end-systole is often
interpreted as a contractility measure. This slope is independent on ventricular
load in normal physiological function, but requires multiple PV-loops under vary-
ing conditions, or additional information about the ventricular dead space volume
to be determined. The dead-space volume (Vd) is here referred to as the ventricular
volume at which the ventricular pressure would become zero. Suga et al. measured
the ventricular pressure and volumes in dogs and computed the elastance curve as
E(t) = P (t)/(V (t) − Vd) (61). By varying the pre- and afterload of the heart,
Suga et al. found that the maximal elastance value and time of maximal elastance
was independent of the afterload, whenever the contractile (inotropic) state and
heart rate of the heart was unaltered. The basic form of the curves were also found
to be similar for all heart loads, rates and contractile states. They concluded that
the maximal elastance and time of maximal elastance explicitly reflected ventricu-
lar contractility.

While contractility measures such as EF were found to improve after exercise in
hypertensives by Molmen-Hansen et al. (50). However, this does not necessar-
ily mean the end-systolic left-ventricular elastance increases after exercise. There
is some evidence that this also would should increase after exercise, since end-
systolic elastance has been found to increase after intensive exercise in rats. Addi-
tionally it has been showed that stiffening of the myocardium with age can also be
expressed as increased elastance (62), and how these different mechanisms interact
is uncertain.
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Figure 2.3: Depiction of three pressure-volume loops for the left-ventricle. The end-
systolic pressure volume relationship (red) and the linear approximation (black) used to
derive the end-systolic elastance (Ees). The linear approximation intercepts the volume
axis at a virtual intercept volume Vd, which can be negative.
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Chapter 3
Methods

3.1 Cardiovascular Models

This work is based on the principles of physics-based modelling of cardiovascular
function and physiology. However these models exist in a wide range of com-
plexities and model fidelities, which are suited for different types of problems and
applications. This work applied only lumped-parameter models, which operate in
the time domain, but has zero dimension in space and are therefore referred to as
“0D-models” hereinafter.

3.1.1 Higher Dimensional Models
For problems where person specific geometry, a three dimensional description of
blood flow, or spatial description of material properties and mechanics is needed,
tools such as computational fluid dynamics (CFD), finite element models (FEM),
and fluid-structure interaction (FSI) models are useful tools. These tools are highly
detailed and can resolve complex geometries but are usually computationally costly,
so they are often applied to investigate a select part of the cardiovascular model
such a the aorta, or a other vessels (14, 63). This is a distributed parameter model
in the sense that mechanical material parameters can vary with position in the 3D
space (22).

Reducing the dimensionality we have 2D and 1D models, these are often applied
to blood vessels and assuming axisymmetry for the 2D model, and further assump-
tions about the flow profile for the 1D case. These models are simpler and more
efficient than 3D models, and give information about flow and pressure along the

29
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vessel centerline or additionally along the radial line of the cross section for 2D
models. These are also distributed models, as material parameters can vary along
the spatial dimensions. Works such as by Mynard et al. use several 1D models to
describe multiple connected vessels of the branching arterial tree (64).

3.1.2 0D-models
The lumped parameter models differ from the distributed parameter models in that
the parameters characterize the behaviour of an entire volume compartment, and
all pressure and flow is identical within this compartment. While the compartment
has a fluid volume which is prone to change as a state variable, this volume is
considered shapeless, hence zero spatial dimensions. These models are described
by the same formalism as circuit theory and can be analyzed both in a time and
frequency domain, and in this work we focus on the time-domain treatment.

The standard elements of a lumped parameter model are vascular resistance, com-
pliance, and inertance elements. These are analogous to resistors, capacitors and
inductors in circuit theory. Resistance and compliance have been described pre-
viously, but inertance is a property which takes into account the inertia of blood
and relates the acceleration and deceleration of flow to the pressure drop over a
vessel segment. The Ohm’s law analogue describing pressure drop over a ves-
sel segment in reality only describes mean flow (47). Single compartments are
often organized as Windkessel models, which are reported to first be introduced
by Otto Frank in 1899 (65). The most well-known variation of these consist of a
resistance and compliance element and is known as the Two-element Windkessel
(2WK). This model accounts for the total vessel resistance to flow. Otherwise, by
adding another resistance element in series with the parallel compliance and res-
istance elements of the 2WK we find the Three-element Windkessel (3WK). And
lastly by addition of an inertance element we have different variations of the Four-
element Windkessel (4WK) depending on the placement of the inertance element.
An illustration of some common model configurations can be seen in Figure 3.1.
Segers et al. optimized these models to data from 2404 people and demonstrated
differences in their resulting model outputs and parameters (23). The 4WK models
were found to give better representations of the circuit input impedance and best
goodness of fit figures. Still, the value of the inertance was highly dependent upon
the model structure, and was often found to take unrealistic values. Although the
4WKs were most accurate in recreating the data, the paper concluded that which
model was best for estimating parameters for the systemic arteries was still an open
question. It was noted that the 4WK with the inertance in series often agreed well
with parameter estimates from the 3WK. The 3WK was also the model which the
Nelder-Mead method used the smallest amount of iterations to find an estimate for.
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Figure 3.1: An illustration of some common and basic Windkessel models for the sys-
temic circulation. a) The Two-element Windkessel model. b) The Three-element Windkes-
sel model. c) The parallel Four-element Windkessel model. d) The series Four-element
Windkessel model. The models are comprised of resistance (Rsys), compliance (Cao),
characteristic aortic impedance (Zao) and inertance elements (Lao). Qi and Pi are inflow
and pressure, where subscript o indicates outflow and corresponding pressure.

Since the physical interpretability of estimates for L were uncertain and depend-
ent on model configuration, and it is computationally simpler to find estimates for
the Three-element Windkessel seems sufficiently detailed for describing a hyper-
tension state in terms of arterial flow and pressure. However, using a 4WK could
potentially adapt more subtle features in the waveforms and give more physiolo-
gically accurate parameter estimates.

3.1.3 The Three-Element Windkessel with the Varying-Elastance Model
The model used in this investigation is based on many previous similar models,
among them models presented by Smith et al., Stergiopulos et al., and also Pironet
et al. which use a very similar model (26, 24, 66, 37). We have used two mod-
els, one closed-loop version consisting of three compartments; the left ventricle,
systemic arteries and systemic veins, where the venous return is directed into the
mitral valve of the left-ventricle. The other model is practically identical to the
open-loop model presented by Stergiopulos et al. (24). The model is formulated
as a non-linear system of ordinary differential equations (ODEs) and are formu-
lated as changes in compartment volume per unit time. The state variables of the
system are stressed blood volume, pressure and flow.

The arteries are modeled as a 3WK where the aortic valve resistance is lumped
with the characteristic aortic impedance, which acts as the first resistance element
of the circuit. The venous compartment is modeled as a 2WK where the resistance
element is lumped with the mitral valve resistance. Both ventricular valves are
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modeled as unidirectional diodes, which close upon a negative pressure gradient
in the direction of flow. Flow is allowed to go from the venous compartment into
the ventricle, and from the ventricle into the arterial compartment. Flow can in
theory go both ways between the arterial and venous compartment as there is no
valve implemented here. The open-loop model formulation is exactly the same,
except for the venous compartment which is set at a fixed venous pressure, and
similarly, the left atria is fixed at a pressure, and both of these compartments are
now infinitely accommodating blood volume at the given pressure. The closed-
loop model has a constant blood volume.

The ventricle is modeled by the varying elastance model in the configuration as
is presented by Stergiopulos et al. (24). This model is based on the concept of
varying elastance by Suga et al. (61), which found that the ratio between pressure
and volume in the ventricles were universal when corrected for heart rate and con-
tractility state. The ventricle is modeled as having a pressure related to elastance
and volume as Plv(t) = Elv(t)Vlv(t) + Pth, where Pth is the intrathoracic pres-
sure. The elastance function Elv(t) is a periodic function repeating the elastance
shape which is parameterized to have a peak value at a given point of time in the
heart cycle, and attain a maximum elastance value, and to never go below a min-
imum level. There are alternatives to the varying elastance models, such as the
single fiber model as applied by Bovendeerd et al. (25) which gives a simplified
description of the ventricular wall mechanics. Another alternative is the piece-
wise defined cosine function as used by Beard et al. (43). However, the varying
elastance model is versatile and is directly based on global concepts such as elast-
ance which are fairly closely related to clinical measurements which causes it to be
simple to work with. The electromechanics of the myocardium are not described
in detail in such a model formulation. The elastance function is identical for both
the closed- and open-loop model configuration.

The current model assumes that there is no pressure and flow wave propagation
and significant wave reflection in the vessels of the arterial system. the inertance
effect of the vessels are also neglected such that the effects of flow acceleration are
not accounted for in detail. The valve models assume there is no flow reversal at
any point across the valves. The model also assumes that the flow from the sys-
temic veins can adequately mimic the diastolic filling that the left-ventricle would
normally receive from the pulmonary veins. The atrial effects on ventricular filling
are also neglected as these are omitted from the model.

Lastly, it should be noted that assuming the model can be adequately personalized,



3.1. Cardiovascular Models 33

that the parameters can be viewed as representing to underlying lower level pheno-
types leading to the hemodynamic signifiers of normo- or hypertension. However,
these parameters do not by themselves reveal the pathways through which hyper-
tension is hypothesized to manifest or develop without further analysis or some
insight into the parts of parameter space characterizing a certain realization of a
hypertension phenotype. To get the full understanding of hypertension develop-
ment anyway, modeling of known blood pressure regulatory systems would also
very likely be necessary. But the parameter combinations can likely in part play a
role in further understanding of how the condition manifests, at least for an indi-
vidual.

3.1.4 Structural Identifiability
Before even attempting to optimize model parameters or showing practical identi-
fiability it can be beneficial to know that a mathematical model has a set of model
parameters which can uniquely describe different states of the system under ideal
conditions. By ideal conditions we here mean where the data for optimization is
noiseless and is perfectly described by the model in the sense that there is no model
discrepancy. First we define global structural identifiability as it is discussed by
Miao et al. (67). If a model organized in a system of equations with a vector of
model outputs y with a known valid control input u(t) and any two parameter
vectors θ1 and θ2 satisfies that

y(u,θ1, t) = y(u,θ2, t), if and only if θ1 = θ2. (3.1)

In the context of the model of focus for this work, we regardthe the control input
u(t) as the input function τ(t) of the left-ventricular elastance function, which is
periodic with the heart cycle period T 1. However, this is a strict condition which
is challenging to prove for the entire parameter space. This is essentially a one-to-
one mapping of system input to output. Local structural identifiability is defined
in the following way

y(u,θ1, t) = y(u,θ2, t), if and only if θ1 = θ2, and θ1,θ2 ∈ P ∗. (3.2)

P ∗ is in this context an open neighbourhood around a point θ∗. While structural
identifiability can in some cases be shown analytically, it quickly becomes a com-
plex task to do so as model complexity increases, and the model structure may

1τ(t) = t mod T , in this example.
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cause additional challenges in achieving this. Many software tools have been pro-
posed to solve this for application in chemistry, and biological systems. Castro et
al. have compared many proposed techniques to solve this within the aforemen-
tioned disciplines (68). Their work points to tools such as DAISY and COMBOS,
which apply algebraic techniques to systems of equations on a specific form, but
this turned out not to be applicable to the model configuration outlined above.
Castro et al. also suggest more computationally intensive methods which could
treat systems on the form of our model.

Villaverde et al. developed the computational STRIKE-GOLDD tool, which im-
plements a differential algebra method to show local structural identifiability (69).
The method is based on the concept of observability, which will not be strictly
defined here, but is analogous to identifiability. Observability assesses whether
there are neighbouring states to a chosen initial system state which is indistin-
guishable from all states in a neighbourhood of the chosen state. If the initial state
is distinguishable from the states in the neighborhood, then the state is locally
observable. By state we here mean the combination of state variables describing
the system, which for the model of section 3.1.3 can be compartment pressures or
volumes. Further, the observability matrix is built by calculating the Lie derivat-
ive which is taken of the output function of the system with respect to the model
state variables x and parameter vector θ. Note that what is in the rest of the text
referred to as the model outputs y(..., t) are in many cases equivalent to the state
variables x in this context. The vector of state parameters can be the compartment
pressures or stressed blood volumes according to how the differential equations for
the model are defined. The Lie derivatives are defined by

Lfg(x) =
∂g(x)

∂x̃
f(x, u)

L2
fg(x) =

∂Lfg(x)

∂x̃
f(x, u)

...

Li
fg(x) =

∂Li−1
f g(x)

∂x̃
f(x, u).

Here f(x, u) refers to the right hand side of the ODE for the relevant state para-
meter if arranged on the form dx

dt = f(x(t),u(t),θ). Simultaneously x̃ can repres-
ent any state variable from x or input parameter from θ. However, for time varying
inputs the Lie derivative is extended to
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Li
fg(x, u) =

∂Li−1
f g(x, u)

∂x̃
f(x, u) +

j=i∑

j=0

∂Li−1
f g(x, u)

∂u(j)
u(j+1). (3.3)

The method works by constructing the observability matrix by performing the Lie
derivatives over all state variables and model parameters for up to the “n+q”th first
Lie derivatives and constructing a matrix based on this. The actual number of de-
rivatives to be used can be less than this. The n is here the number of states, while
q denotes the number of model parameters, while a superscript on the form (j)
denotes j differentiations with respect to time. If the resulting matrix is full rank,
the system is locally structurally identifiable. For more details, see Villaverde et
al. (69, 70).

3.1.5 Practical Identifiability
Practical identifiability, in contrast to structural identifiability, also accounts for
imperfections in data. As in the works of Brynjarsdóttir et al. (71), data measure-
ments ym(t), can be expressed as the sum of model outputs, model discrepancy
δ(t) and measurement noise ε(t) as such

ym(t) = y(u(t),θ, t) + δ(t) + ε(t). (3.4)

In a realistic optimization scenario we are then given a set of data to optimize θ
for data which is on the form in equation (3.4). Errors in parameter estimates are
then introduced jointly by the model discrepancy and measurement noise. The
model parameters are practically identifiable if the model parameters can then be
estimated to a sufficiently small error from the solution for different noise profiles
and data samples characterizing the same measured state. The level of parameter
error acceptable, should be predetermined, and how to practically evaluate this is
a complex issue for nonlinear models since the true level of error can be unknown
in application to real data. However, one can for example use methods to estim-
ate reference values and apply profile-likelihood techniques such as Pironet et al.
has done for a model similar to the one presented in this thesis (72). The level of
accepted error is also problem specific and needs to be determined to be able to
assess the practical identifiability (67).

It is important to note that the appended papers do not strictly demonstrate prac-
tical identifiability for the presented models. The papers of sections 6 and 7 are
aimed towards answering how an estimation procedure based on multiple local op-
timizations with little prior information performs in estimating correct parameter



36 Methods

values given that it may terminate in other minima than the global minimum. Fur-
ther, we aim to answer how this performs for model personalization and resolution
for predicting and calculating personalized parameter changes (33, 73). This also
refers to how the choice of local optimization with a small data set of synthetic or
real data can fail to find the correct minimum for describing the physiologically
correct state. It can also fail to find the global minimum of the objective function,
regardless of if this truly is the most physiologically correct one or not. We ex-
amine the effect of varying the initial parameter estimate guesses in contrast to for
example varying sampled noise profiles, or examining the statistical confidence
intervals of the neighbourhood of an optimized estimate point.

3.2 Mathematical Optimization

In the following we assume the control input is always known, and unchanged, and
does not affect the problem solution so we omit it in all subsequent mathematics.
To personalize a cardiovascular model the problem of model optimization must
be solved. We mean by this that we seek to find an estimate for optimized or
personalized model parameters θ̂ by solving the inverse problem

θ̂ = min J(θ), (3.5)

where J(...) is a cost function, or objective function to be minimized. If the prob-
lem is successfully solved, the resulting parameter estimate θ̂ is then the parameter
set best describing the solution which satisfies the constraints implemented in the
cost function. By inverse problem we here mean that we from data corresponding
to model outputs, determine which model parameters (and optionally inputs) these
are the product of given a mathematical model incorporating these parameters (and
inputs). In this work we focus on a sum of least squares approach and formula-
tion of the objective function, as opposed to for example a maximum likelihood
approach.

We can separate between global and local optimization methods. Global optim-
ization in this work refers to methods which search specifically for the object-
ive function minimum with the lowest value if it exists, while local optimization
methods search for any local minimum and do not search for the global minimum
specifically. Global methods such as Monte Carlo methods, or differential evolu-
tion methods to mention some, can often be expensive computationally, and this
makes these methods less feasible for optimization problems which ideally should
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be solvable in a setting outside of academia or strictly research based activities,
such as in the clinical setting.

We attempt to use local methods in this work, as they are less computationally
costly. Well-known and popular methods which are often used within the field is
the gradient descent method Levenberg-Marquard and direct search Nelder-Mead
simplex method. Gradient descent methods operate by evaluating the gradient of
the objective function in various ways and picks the steepest direction to look for a
minimum. Direct search methods (represented by Nelder-Mead) on the other hand
do typically not evaluate the objective function gradient.

3.2.1 Selected Previous Work in Parameter Estimation of Lumped-Parameter
Models

Within the field of biomechanics, and biomedical engineering applied to lumped-
parameter models specifically there has been different approaches to personalizing
model parameters. Many different approaches have been proposed, while there
is no apparent consensus on a generally best method for a wide range of models.
Early works by for example Segers et al. use the Nelder-Mead simplex algorithm to
estimate parameters from personalized data for different Windkessel models. Kind
et al. take a different approach called Subspace Model Identification to optimiz-
ing Windkessel model parameters to data (74). By formulating the cardiovascular
system equations as a matrix equation and solving by linear algebra methods and
the MOESP algorithm they obtain parameter estimates for different noise profiles.
The work concluded that the method was robust for the 3WK for different noise
profiles on simulated data, but less convincing for the 4WK.

Moving on to systems models describing more compartments of the circulation
we have for example the work by Colunga et al. and Marquis et al. (17, 35). The
aforementioned authors treat more complex models where identifiable subsets of
model parameters are first investigated, care is taken to find initial guesses for the
personalizable parameters before optimizing using the Levenberg-Marquardt al-
gorithm. They also verified their estimates by confidence intervals obtained by a
global Markov-Chain Monte Carlo (MCMC) approach of the type known as the
Delayed Rejection Adaption Metropolis (DRAM) algorithm. By application of
sensitivity analysis they also reduce their parameter sets to identifiable sets based
on sensitivity analysis. Pironet et al., and deBournonville et al. similarly find
informed initial parameter guesses and optimize using a combination of a rapid
proportional gain algorithm before refining the parameters using the Nelder-Mead
simplex algorithm (36, 37). Hann et al. use a six compartment model similar to the
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one used by Smith et al. and argue that standard non-linear local optimization is
too liable to find other minima than the true global minimum and present a method
where by examining the parameter changes and effects on model outputs iterat-
ively approach a unique solution (34, 26). They have developed a computationally
efficient iterative procedure for use in the intensive care unit (ICU) context, which
gradually update parameter estimates such that the chosen model outputs were pre-
dicted to high accuracy when compared to data with noise. This procedure is en-
visioned for use with invasive data, and extracts information and time points from
pressure and volume data to personalize 6 or more parameters per three chambers
of the 6 chamber model. Their approach does not use the entire waveforms as they
argue this lessens error by eliminating features that are not sufficiently accurately
modeled by model discrepancy. A contrasting approach to this may be to take in-
formation from the entire waveform, and try to extract information from the local
minima close to or surrounding the global minima as this may have useful inform-
ation about the variability of the waveform and perhaps the parameters as well.
Itu et al. take an approach to personalizing the pressure-volume loop by estimat-
ing relevant arterial and ventricular parameters using only 5 single valued indices
from the arteries and left-ventricle (28). The dogleg trust-region method is used
in combination with a fixed-point method to augment the next iterative step size
in order to optimize the final three personalized parameters, while total peripheral
resistance is estimated beforehand.

Moving up further in cardiovascular model complexity Pant et al. takes a dif-
ferent approach, where they use a Unscented Kalman-filtering approach to adapt
the parameters of a Windkessel model. By starting with a 3D representation of
the aorta, different subsections of the models are replaced by 3WK models, and
Kalman-filtering is used to estimate parameters for the lumped-models for sub-
sequent use in parameterizing a 3D model (75). Similarly, the method has been
applied to a detailed model of the circulation including the pulmonary, systemic
and pulmonary circulation in a single ventricle physiology, distinguishing between
the upper and lower body circulation (76). The method demonstrates fast conver-
gence to the experimentally measured value for the elements of 3WK models, and
good recreation of model outputs. The method has also been tested with a single
3WK model using synthetic data and show similar good results. However, it is also
shown that with poor initial choices for parameter values, the method may fail.

3.2.2 A Heuristic for Estimation Using Minimal Data
When optimizing the parameters of the model described in Section 3.1.3 to syn-
thetic pressure and flow data with Gaussian noise, average parameter errors of 10%
and upwards were found when performing multiple repetitions using a local op-



3.2. Mathematical Optimization 39

timization method (33). This suggests that there possibly are minima close to the
global minimum which are almost as good as the best minimum. Daily variabil-
ity in many of the hemodynamic states can be quite large. Throughout a 24 hour
span of time, there is up to a 40 mmHg difference in systolic blood pressure for
people with suspected hypertension (77). There are even differences between sep-
arate heart beats due to for example heart rate variability and respiratory effects.
Therefore, we suggest that there is not necessarily one minimum which is a cor-
rect representation for the general hemodynamic state and parameters. Since, local
optimization can find different minima which may still have similar cost function
values to the best identified minimum, we take these minima into account to create
an average parameter which takes some of the information from the other almost
equally good minima. Although beat to beat variability can be alleviated by aver-
aging data or other methods, this can be a supplement to such actions, since some
uncertainty in the true minimum may arise from model and data discrepancy as
well. As a remedy, we have developed an estimation heuristic which attempts to
take into account information from minima close to what is deemed to be a reas-
onable minimum, if not the global minimum.

When averaging parameters for an unbounded parameter space during optimiza-
tion we found that averaging the multiple minima could cause resulting estimates
that did not yield a realistic hemodynamic state compared to the data. To ensure
physiologically realistic parameter values we therefore opted for constraining the
parameter space to physiologically relevant parameter values.

Further the procedure is organized in sequential steps; first an exploration of the
parameter space to find a candidate for the global minimum is performed by sampling
30 initial parameter guesses from a uniform distribution within the parameter
bounds. Secondly, 20 new initial parameter guesses are sampled around the pre-
vious initial guess yielding the best optimization minimum. This was done to
partially explore the region close to the best minimum more closely, while still ex-
ploring other minima in the vicinity to continue the search for the best minimum.
A uniform distribution with ranges of 10% above and below the previous values
were taken to find the new estimates. The best remaining samples according to
the objective function are then averaged to use information about the other best
estimates found within this round. Let the vector of model parameters be θ, and θi
is the ith component of the vector. The optimization steps are as follows:

1. Apply the local optimization method to make 30 parameter estimates from
30 different sets of initial guesses.
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2. Take the initial parameter guess which yields the lowest objective function
value estimate and create a new uniform distribution centered on these para-
meter values.

3. Make 20 new initial guesses based on the best previous guess and produce
20 new vectors of estimates, we call this set of parameters Θstep2.

4. Make a selection based on the best objective function values from Step 3,
Θk

filtered, where k denotes the kth filtered estimate.

5. Compute the final parameter estimate as the mean of the estimates from
Step 3, such that θ̂mean,i = 1

Nk

∑
k Θ

k
filtered,i. Here, Nk is the number of

remaining estimated parameter vectors in Θfiltered after filtering.

A full description of the algorithm is given in appended paper of chapter 7. Colunga
et al., and Marquis et al. take an approach to making more informed guesses about
the initial values, and use local optimization methods with a 10% range around
these predetermined initial guesses to ensure that the solution converges. How-
ever, they do not state whether they bound the allowed parameter space beyond
allowing only positive valued estimates.

3.2.3 The Trust-Region Reflective Algorithm
For our approach we opted for the Trust-Region Reflective Algorithm (TRRA).
This method is widely available as one of the optimization algorithms implemented
in the popular Python library SciPy. This approach also supports use of bounds in
contrast to standard SciPy implementations of for example the Levenberg-Marquardt
algorithm. The algorithm is local and may therefore terminate in local minima,
without further modification. The work described in this thesis focuses on using
this algorithm to find candidates for global minima on a bounded parameter space.

The TRRA is a trust-region method. This means that to find the correct step
and direction towards a minimum, the method approximates the objective func-
tion around the initial point by a second order Taylor series expansion, like a
Levenberg-Marquardt algorithm would. If the step direction towards a minimum
is θs, such that θk+1 = θk + θs then the objective function approximation can
take the form

FJ(θk + θs) ≈ J(θk) +
∂J

∂θ
(θk)

Tθs +
1

2
θT
s

∂2J

∂θ2 (θk)θs (3.6)

≈ J(θk) +∇J(θ)Tk θs +
1

2
θT
s HJ(θk)θs. (3.7)
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This approximation is only trusted within the trust region ∆k, which is updated
for each iteration. The Hessian of the objective function HJ is approximated and
amended by a term which accounts for the distance to the parameter constraint
boundaries. An Newton step is found by using this Hessian approximation to find
a candidate step within the trust region,

M(θk)θs = −D−1(θk)∇θs. (3.8)

Here, the M(θk) matrix is the amended and approximated Hessian, and D−1(θk)
is an inverse scaling matrix. The reflective part of the title refers to a method for
reflecting the search step off the constraint boundary for the search, which is taken
as a candidate for the step direction. The path to the boundary which is not re-
flected, as well as a step candidate solved strictly on the interior of the trust region
which does not exceed any parameter constraints are also taken as candidate steps.
The reflective step has been shown to increase the efficiency of the search in com-
parison to some other optimzation algorithms. We refer to the work by Branch et
al. for further details (78).

3.3 Other Methods

3.3.1 Regression Models
To perform statistical analysis on data and estimated model parameters, linear re-
gression has been applied in order to analyze the major influences of the para-
meter estimates. We apply linear regression models. The the dependent vari-
able, which is taken to be stochastic Z, and p independent variables or predictors
X1, X2, ..., Xp. By minimizing the sum of least squares, we can obtain a regres-
sion line for the best optimized line to the data on the form

ẑi = β0 +

p∑

j=1

βjxj,i (3.9)

Here, ẑi denotes the regression model prediction for data point i, and βj denotes
the regression coefficients describing the contribution of each covariate and the y-
axis intercept. The Pearson correlation r is a measure of how two variables move
in relation to one another. The square of this is the coefficient of determination r2

which can be defined as
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r2 =

∑n
i=1(ẑi − z̄)∑n
i=1(zi − z̄)

, (3.10)

where z̄ is the sample mean of the W variable, and zi is data point number i. n
here indicates the number of data points. The coefficient of determination indic-
ates what percentage of the variability in the dependent variable is explained by the
dependent variables. However, for multiple regression with multiple independent
variables, the r2 increases with every added independent variable. Therefore we
define the adjusted r2, which accounts for the number of covariates as the follow-
ing

Adj. r2 = 1− (1− r2)

(
n− 1

n− p− 1

)
, (3.11)

where p indicates the number of independent variables. With these tools we can
investigate what information adds to or subtracts from the explained variance and
make conclusions on what influences the dependent variable.

The concept of linear regression models can be extended to allow interpretation
of grouped hierarchical data, by allowing regression coefficients to vary with ran-
dom components that can account for inter-group differences. This is a useful
concept for analyzing repeated measurements among individuals which have dif-
ferent properties.

A generic model can be expressed as

ẑi,k = β0 + γ0,k +

p∑

j=1

(βjxj,i,k + γj,k)xj,i,k. (3.12)

Here the β parameters express the fixed slopes and intercept of the fixed effects.
The γ coefficients express the random effects attributable to groups or individuals.
We assume that these are random and have a zero mean.

3.3.2 Sensitivity Analysis
Sensitivity analysis in short is a method to analyse how sensitive model outputs
and predictions y(θ, t) are to errors and uncertainties in model inputs θ, where θi is
the ith parameter of the vector. The output is represented by the stochastic variable
Y for now, and the parameters are also regarded as stochastic with measurement
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uncertainty and error. The notion of sensitivity analysis presented in this text is
based on Sobol indices (79). The conditional expectation value of the output given
a certain parameter is denoted as E[Y |θi]. Hence, we can express the first order, or
main, Sobol sensitivity index as

SM,i(Y ) =
V[E[Y |θi]]

V[Y ]
. (3.13)

The variance of the variable Y is denoted as V[Y ] in the above. This main Sobol
index quantifies the contribution of only the parameter θi to the output Y and not
any of the other parameters or any interaction effects with these parameters. One
can compute the portion of the total variance of Y that is caused by the interaction
between two or more parameters which would cause effects of higher order, but
we do not apply these. The total sensitivity index of the model output Y is given
by

ST,i(Y ) = 1− V[E[Y |θ−i]]

V[Y ]
, (3.14)

which quantifies the total contribution of the parameter θi to the variance of output
Y . The notation θ−i signifies all parameters except parameter θi. The computation
of these variables can be done in different ways, but this is not the focus of this
thesis so we skip this here. Some popular methods to be mentioned are Monte
Carlo methods and the polynomial chaos expansion.

The outputs of the model of Section 3.1.3 are time dependent and cyclical. There-
fore, the different parameters may have non-uniform contributions to the output
variance over the interesting time intervals, and the total variance itself may also
vary with time. To account for this variability in time we use the variance weighted
averages which are formulated as

TASM,i =

∑
k SM,i(y(tk))V[y(tk)]∑

k V[y(tk)]
, (3.15a)

TAST,i =

∑
k ST,i(y(tk))V[y(tk)]∑

k V[y(tk)]
. (3.15b)

From the quantities defined in eq. (3.15a) and (3.15b) we can make conclusions
about which parameters are the most influential for specific model outputs. Addi-
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tionally, we can pinpoint which parameters are less likely to be accurately estim-
ated when the model parameters is optimized to data for which some parameters
are barely influential. The parameters of low influence can then be candidates for
parameters which should be fixed to measured values or known values from the
population.



Chapter 4
Summary of Papers

4.1 Summary of Appended Papers

Paper 1: Parameter estimation for closed-loop lumped parameter models of
the systemic circulation using synthetic data
N.L. Bjørdalsbakke, J. Sturdy, D.R. Hose, L.R. Hellevik
Published in Mathematical Biosciences (2022)

In this paper we investigated personalization of a closed-loop lumped parameter
model of the systemic circulation and left ventricle using local optimization meth-
ods. Initially a sensitivity analysis of the model was performed where the para-
meters were ranked according to the influence on the aortic pressure waveform.
Using synthetic data with and without noise, we attempted to make multiple initial
guesses for the algorithm to find the best objective function minima and average the
best cases within reasonable bounds for the parameter space. Since the data was
synthetically produced by the model itself the true parameter values were known
and the mean absolute percentage error could be calculated. Nine model para-
meters were chosen for optimization and were sequentially fixed at correct values
according to the ascending order of sensitivity ranking to assess how parameter
errors were impacted. We named this framework the stepwise subset reduction
method (SSRM). The main results from this analysis was that using the waveforms
of aortic pressure and flow gave superior estimates than using five standard clinical
indices measured in the systemic arteries. The four most influential parameters
could be estimated to an error less than approximately 10% when 5% Gaussian
noise was applied to the synthetic waveforms. Additionally, results indicated that
fixing the venous compliance parameter had a similar effect on estimated errors
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as providing the venous pressure waveform for optimization. We concluded that
among the least sensitive parameters, three were were particularly challenging to
optimize when data was noisy, and these were venous compliance, minimal left-
ventricular elastance, and mitral valve resistance.

Paper 2: Monitoring Variability in Parameter Estimates for Lumped Para-
meter Models of the Systemic Circulation Using Longitudinal Hemodynamic
Measurements
N.L. Bjørdalsbakke, J. Sturdy, E.M.L. Ingeström, L.R. Hellevik
Published in BioMedical Engineering OnLine (2023)

Using data from a pilot randomized controlled trial on exercise motivation we at-
tempted to personalize the model parameters for waveform data of flow and pres-
sure recorded for each participant. In this analysis we used the same closed-loop
cardiovascular model as in previous work, as well as an open-loop formulation
almost identical to the one used by Stergiopulos et al. (24). An optimization heur-
istic based on doing multiple estimations with local optimization attempts, and
then a second sweep for the best initial parameter guess was used to obtain per-
sonalized parameters. From the final 20 optimization attempts we picked the best
sets of estimates and computed the interquartile range divided by the median para-
meter estimate to quantify the variability of estimates. This measure of variability
was computed for each set of measurements, secondly across all three repeated
days of measurement per individual, and thirdly across the entire set of measure-
ments for the entire eligible study population. We computed these quantities for
parameters optimized for both model formulations, as well as both pressure wave-
forms measured in the finger arteries, and the carotid artery. Both waveforms were
taken as direct proxies to the central aortic waveform. We also compared model
estimates to estimates made by conventional estimation methods, and found high
correlation for estimates for total peripheral resistance, and medium to high correl-
ation for aortic compliance estimates. We concluded that in a majority of cases the
individual measurement variability was sufficiently low that it would be possible
to distinguish parameter sets estimated at single measurements from the different
measurements over multiple days, as well as from the entire study population.

Paper 3: Examining Temporal Changes in Model Optimized Parameters Us-
ing Longitudinal Hemodynamic Measurements
N.L. Bjørdalsbakke, J. Sturdy, E.M.L. Ingeström, L.R. Hellevik
Ready for submission (2023)
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Using data from a pilot randomized controlled trial on exercise motivation we had
previously personalized model parameters for waveform data of flow and pressure
recorded for each participant. We had done so for both a closed- and open-loop
model formulation. The analysis was also performed using both finger artery pres-
sure and carotid pressure waveforms as proxies of central aortic pressure. For
this investigation we focused on the total peripheral resistance, systemic arterial
compliance, and maximal elastance of the left-ventricle. Parameter changes over
the first half and the entire duration of the study intervention period were com-
puted. From these data we wished to investigate whether changes were effects
of regression to the mean, exercise stimuli, a poor personalization procedure, or
stemmed from day-to-day hemodynamic variability. To do this we examined cor-
relations between changes over different parts of the study period to changes com-
puted by conventional estimates. Multiple linear regression models were built to
assess whether measured VO2,max affected the predicted variables by explaining
more variance. Case studies were also performed in order to assess if parameters
changed as expected in response to exercise in the participants we most expected
to change. We found that changes in total peripheral resistance and arterial compli-
ance changes, correlated moderately or highly to with conventional estimates. For
maximal left-ventricular elastance correlation could only be proven over the entire
study period. Carotid pressure waveform based estimates peformed better than fin-
ger pressure based estimates. Regression analysis indicated that adding VO2,max

would not add to the explained variability of the predicted variable any more than
age, sex and body mass index. Stroke volume was found to explain more variance
than VO2,max. However, it could not be concluded that the predicted parameters
could be attributed to something else than regression to a personal mean, day-to-
day variability, or insufficiencies of the model personalization procedure.

4.2 Statement of Authorship

Paper 1

Nikolai Lid Bjørdalsbakke co-authored the code, and performed most of the ana-
lysis, except for the sensitivity analysis. He also wrote the major part of the manu-
script, apart from the section focusing on sensitivity analysis.

Paper 2

Nikolai Lid Bjørdalsbakke co-authored the code, and performed all analysis. He
also wrote the major part of the manuscript.

Paper 3
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Nikolai Lid Bjørdalsbakke wrote all code, and performed all analysis. He also
wrote the major part of the manuscript.



Chapter 5
Conclusions and Directions for
Further Work

5.1 Conclusions

The work presented in the first paper produced evidence that using arterial wave-
forms rather than ordinary arterial derived clinical indices improved accuracy when
estimating model parameters. This was achieved using a local estimation al-
gorithm for synthetic data with and without noise and in absence model discrep-
ancy (33). Without noise, the model parameters were estimated with less than
0.01% error. With added noise parameter errors increased but the four most sensit-
ive parameters could be recovered to less than approximately 10% error. However,
it was shown that the error could be reduced further by adding more data in the
venous model compartment. From the same analysis it was found that among the
least sensitive parameters, the venous compliance, minimal left-ventricular elast-
ance, and mitral valve resistance were particularly challenging to estimate.

We further developed the estimation algorithm before application to real data col-
lected in a clinical trial. Here, we found that the model estimates for arterial res-
istance and compliance exhibited moderate or high correlation with more conven-
tional estimates made without application of cardiovascular systems models. This
was true both when using finger arterial pressure (FP) and carotid arterial pres-
sure (CP) waveforms as approximations of more central waveforms. We assessed
the variability of parameter estimates in terms of inter-quartile range divided by
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median parameter estimates. It was then shown that the parameter variability per
set of measurements was smaller than the variability over estimates made for re-
peated measurements in the same individual, and for the variability over the study
population. Estimates made for both an open- (OL) and closed-loop (CL) car-
diovascular model, and both pressure waveforms, supported these results. This
suggests that, in a majority of cases, we can resolve individuals from the popula-
tion using parameter estimates, and to distinguish between measurement days. The
results based on carotid pressure waveforms found marginally less personal vari-
ability for single measurements than the finger pressure based estimates. In terms
of mean parameter values estimated for the population, the OL and CL models
gave similar results with only minor deviations. In contrast, when using the FP
waveform for estimating parameters, the arterial compliance was significantly dif-
ferent to estimates made with the CP waveform.

In the final part of the work we investigated the cause of parameter changes. Re-
gression analysis revealed that change in fitness measured by VO2max could not
explain more of the parameter variability than BMI, age, and sex. Using SV as a
covariate was instead found to explain more of the parameter variability. We could
not conclude that the cause of parameter change was not due to regression to the
mean, week-to-week variability, or insufficiencies in the optimization algorithm.
We found estimated parameter changes based on the CP waveform to be better
correlated than the FP based estimates when compared to estimates made by more
conventional estimation methods.

Based on the individual findings we can make some additional conclusions. On
the application of an OL versus a CL model for the purposes of MyMDT there
seems to be little difference in terms of personalization using the chosen algorithm.
The OL has a minor advantage in better agreement with parameter changes made
for other estimation methods, and therfore this could be preferred for estimation
parameter changes. However, the CL model has more mechanisms and physic-
ally interpretable parameters than the OL model. In settings where venous return
and the venous blood pool is of interest such as in states of exercise, these model
concepts may still be interesting, although more effort to appropriately determine
these parameters using a limited data set must be made.

In terms of FP versus CP, we observe that mean parameter values are generally
similar except for the arterial compliance parameter. However, parameters derived
from FP usually correlated less well with estimates made with more conventional
estimation methods. This does not mean they are necessarily intrinsically poorer,
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but when comparing parameter changes with changes from conventional methods,
the correlations were either not statistically significant or they were lower than for
estimated changes based on the CP waveform. Consequently, we recommend that
use of the CP for parameter estimation, or there should be some transfer function
applied to the FP especially to alleviate the effects of the heightened arterial com-
pliance estimates. Despite the relative ease of FP collection it does not give as
useful results as CP, seeing as arterial compliance can be a relevant parameter for
explaining hypertension.

In partial agreement with works by Itu et al. and Hann et al. (28, 34), the 4 to
5 most sensitive parameters seem feasible to be determined at least in a synthetic
data setting. For the same parameters under application of real data it seems chal-
lenging to reliably estimate parameter changes using measurements from a single
model compartment with the chosen estimation method. Further, it seems challen-
ging to reliably personalize other, less sensitive parameters even with waveform
data.

Finally, we found that while the chosen parameter estimation heuristic was able
to find appropriately personalized estimates to recreate the original data satisfact-
ory, the tracking of parameter changes was more uncertain. Arterial resistance
and compliance changes were at least moderately well estimated using the CP
waveform. Changes for the maximal left-ventricular elastance parameter did not
consistently show a non-zero correlation. Physical activity could not be shown to
reliably explain changes in parameters either. Despite not being able to sufficiently
describe the cause of changes, the model and estimation procedure seem able to
partially track the changes reflected by the hemodynamic variability in measure-
ments made weeks apart.

5.2 Future Work

There are many avenues in which this work could be advanced. Both from a
primarily parameter estimation perspective, but also in the context of MyMDT.

First, we look at the parameter estimation work as discussed in the attached papers.
The models treated in this work focus on models of the complete circulation, or the
heart and arteries simultaneously. We tested their ability to be personalized with
limited data in order to track parameter changes informed by exercise and other
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factors. Analogously to work by Segers et al. (46), who used cardiovascular model
parameters to separate different groups of patients with hypertension, we wished
to separate different individuals based on parameters but also track their parameter
changes. Studies who used similar models to track development of disease usually
focused on the Windkessel in isolation, such as Gerringer et al. (15), or a single
parameter in a much more extensive and complex model such as Audebert et al.
(16). Since this work has tried to capture both cardiac and vascular changes, it
could be interesting to compare the changes in optimized arterial parameters from
the combined model with an isolated Windkessel model to investigate whether
these changes are more informative about exercise remodeling.

Our final paper detailing an exploratory analysis on the monitoring of parameter
changes (section 8), could benefit from a more thorough analysis on regression.
Ordinary linear regression is applied in this work to investigate the effect of phys-
ical activity on the parameter development. Since the data is longitudinal, a linear
mixed model is recommended for the analysis, but due to scarce data points, this
caused data groups to become very small in terms of data points. Regardless of
choice of model, the analysis would probably be improved by allowing collection
of more data in a larger study group. But to add a predetermined exercise protocol
to the trial could also prove to give a data set with a stronger signal for remod-
elling, as the change in cardiorespiratory fitness was often small in the analyzed
data set, and activity levels between participants was very variable. Exploration
of the effect on other personalized model parameters could also prove interesting,
although some may be considered less clinically relevant. Reconducting the ana-
lysis where different smaller subsets of model parameters were personalized could
also give some insight into whether the physical activity impact was most apparent
in some of the other model parameters. The most easily accessible point of im-
provement however, could be to test another personalization method if one of the
many suggested methods emerged as most reliable and was able to use only flow
and pressure in a single compartment. There are several proposed methods, and
as far as the author knows there are still no works comparing a selection of these
methods in a structured way, which could have been a valuable addition within the
field, since several groups are facing this problem simultaneously.

As results from the analysis on explanation of parameter changes in the paper of
chapter 8 showed little correlation between the model estimated Emax and meth-
ods based on conventional equations, it could be beneficial to estimate a load-
independent estimate from a different estimation method. This would give a better
indication on whether this parameter is informed by real changes in the data.
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Now, looking at the context of the MyMDT project there are several avenues to ex-
plore. Works by for example Fresiello et al., and Kung et al. (80, 81), have already
demonstrated some more detailed exercise models, which combine the cardiovas-
cular system with respiratory and gas exchange system models. Conover et al.
demonstrated a system for partially personalizing a circulation model for Fontan
and Norwood physiology patients which had capabilities of evaluating exercise ca-
pacity of the individual (27). For application in MyMDT, what is left unanswered
is how this or a similar circulation and exercise model would be changed to re-
flect a normotensive and hypertensive patient group with a normal physiology. An
unsolved problem is also how to adapt a model describing only the left-ventricle
to describe exercise for an anatomically normal heart at different intensity levels.
The right ventricle is recognized as being influential on the CO during physical
activity. We refer to this form of exercise model describing the hemodynamic re-
sponse during bouts of physical activity as the acute exercise model.

However, to be able to learn about and predict exercise-induced remodeling, an ex-
ercise model which incorporates the stimuli (increased pressure and flow) modeled
by the acute exercise model to make chronic changes to the physiological envelope
and thereby the resting hemodynamics can be valuable. The work in this thesis has
been focused on the parameterization of a resting state to be modified by such a
model and the acute exercise model. Herein, the chosen model and detectability of
changes has been emphasized, to assess whether the parameterization scheme and
parameter sensitivity to changes could be used to track changes reliably in a model
predicting chronic changes in resting parameters. An unanswered question here is
whether there is a difference in how the changes should be modeled due to whether
it is resistance or endurance exercise, and even what intensity of endurance exer-
cise, and how this would manifest. There has been observed a dependency in
long-term hemodynamic and vascular remodeling responses to different exercise
regimes (50, 60), and therefore this would have to guide informative for how the
exercise remodelling modeling should operate. We refer to this type of model as
the chronic exercise model. For the current work based in real data, the type of
exercise has not been controlled and does not make distinction on the type of ex-
ercise. There are several avenues one may think about to get to a personalized
chronic exercise model. First, one may use an initial period of training to calibrate
the expected change and extrapolate based on this. Or one could calibrate us-
ing population data for different narrowly defined sub-populations, but this would
likely require a high amount of studies with closely monitored and varied exercise
dose, and the degree of personalization expressed could be questionable. Another
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possibility is identifying genetic and personal characteristics, which are identified
to be governing for the chronic response to exercise. This, of course, requires that
some of these can be or have been identified, however this also requires more re-
search to properly map. There are also avenues for using machine learning in such
a context, where the space of possible informative factors are complex and if this
could aid in finding a mapping of personal characteristics to the type of exercise
response one would expect, but data requirements are perhaps even higher in this
context.

Beyond predictive models of exercise remodeling given a planned exercise regime
and physical activity stimuli, to be able to assess the benefit of exercise, one should
also compare to expected cases where no exercise has been undertaken, ie. expec-
ted development with no change in lifestyle. Additionally, it would be beneficial
to investigate the effect of different types of medication on lower level phenotypes
encoded in cardiovascular models in order to assess the impact on blood pressure.
This combination of functionality could potentially enable MyMDT to be a useful
tool for clinicians.

So to summarize, what as a minimum remains from a MyMDT point of view is the

• A personalizable acute exercise model describing the acute response to phys-
ical activity.

• A personalizable chronic exercise model for cardiovascular exercise induced
remodeling converting physical activity as stimuli into changes in the para-
meters of the cardiovascular model.

• Assessment of predicted change in resting blood pressure from various sources
over different time scales to recommend a best course of hypertension man-
agement.

• All previous steps must be investigated for both prehypertensive and hyper-
tensive subjects as potential users of the platform.

Aside from the work presented in this thesis, some work has gone into developing
a quazi-personalized exercise model based on population data from Chantler et al.
(82), as a starting point for the acute exercise model. This model builds adapted
polynomial models for each application where a parameter value is prescribed at
a given exercise intensity specified as heart rate reserve (HRR) according to the
population averaged response. This is further personalized by using the ratio of
the population resting value to the personalized resting value to scale the resulting
curve, and thereby find a quazi-personalized model. HRR is defined as
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HRR =
HR−HRrest

HRmax −HRrest
, (5.1)

where HRmax and HRrest are maximal and resting heart rate, respectively. The
model has been further explored, developed and tested by Anne Øksnes Aal in her
master’s thesis (83).

Further, some work has gone into developing a prototype for the chronic exercise
model as well. Based on the assumption that there will be a upper limit or satur-
ation level for how well a parameter improves, we defined a simple metric based
on integrating the cardiac power development simulated under physical activity at
measured heart rate reserve levels. This would use a sigmoid function to prescribe
how much a cardiovascular parameter would change after a set amount of time
adhering to this exercise pattern. The sigmoid would ensure that a saturation level
would be reached after a high dose of exercise. As a simple prototype these two
models, were combined to illustrate a pipeline for how such a model could work.
These are all initial developments of the summary points above, but require more
development to see fruition.
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A B S T R A C T

Physics-based models can be applied to describe mechanisms in both health and disease, which has the
potential to accelerate the development of personalized medicine. The aim of this study was to investigate
the feasibility of personalizing a model of systemic hemodynamics by estimating model parameters.

We investigated the feasibility of estimating model parameters for a closed-loop lumped parameter model
of the left heart and systemic circulation using the step-wise subset reduction method. This proceeded by
first investigating the structural identifiability of the model parameters. Secondly, we performed sensitivity
analysis to determine which parameters were most influential on the most relevant model outputs. Finally, we
constructed a sequence of progressively smaller subsets including parameters based on their ranking by model
output influence. The model was then optimized to data for each set of parameters to evaluate how well the
parameters could be estimated for each subset. The subsequent results allowed assessment of how different
data sets, and noise affected the parameter estimates.

In the noiseless case, all parameters could be calibrated to less than 10−3% error using time series data,
while errors using clinical index data could reach over 100%. With 5% normally distributed noise the accuracy
was limited to be within 10% error for the five most sensitive parameters, while the four least sensitive
parameters were unreliably estimated for waveform data. The three least sensitive parameters were particularly
challenging to estimate so these should be prioritized for measurement. Cost functions based on time series
such as pressure waveforms, were found to give better parameter estimates than cost functions based on
standard indices used in clinical assessment of the cardiovascular system, for example stroke volume (SV)
and pulse pressure (PP). Averaged parameter estimate errors were reduced by several orders of magnitude
by choosing waveforms for noiseless synthetic data. Also when measurement data were noisy, the parameter
estimation procedure based on continuous waveforms was more accurate than that based on clinical indices. By
application of the stepwise subset reduction method we demonstrated that by the addition of venous pressure
to the cost function, or conversely fixing the systemic venous compliance parameter at an accurate value
improved all parameter estimates, especially the diastolic filling parameters which have least influence on the
aortic pressure.

1. Introduction

Mechanistic models have large potential within biomedical appli-
cations to possibly explain physiology and pathophysiology. Models
which aim to describe physical systems are typically dependent upon
model parameters to give an accurate description of reality. Parameters
are primarily calibrated by using numerical optimization schemes and
measured data. In biomedical applications it is desirable to predict a
personalized response to a problem specific treatment or stimuli. Then
using data measured for the present and previous states of an individ-
ual, predictions can be made about the future state of the personalized
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model, which has numerous applications in medicine. In the current
literature there are many examples of cardiovascular models predicting
different system states, medical intervention outcomes or disease [1–5].
Finding a model usable with minimal data from a typical clinical visit
and low computational requirements is highly desirable to enable use
of such models in the general health context. To investigate how well
model parameters can be personalized in this context we approach the
problem by using simple models.
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In this manuscript we apply our analysis to a parsimonious model of
the systemic circulation and the left ventricle to describe the cardiovas-
cular state of an individual. The investigations are based on data types
that should be available non-invasively and available outside extraor-
dinary situations such as visits to the intensive care unit (ICU). Since
changes in individuals correspond to changes in model parameters it is
important to find reliable methods to accurately and reliably estimate
these parameters, such that the models can be used to monitor changes
in response to for example therapy.

A large body of work has been done on model personalization
within medical applications, but much of the research has focused
on complex models that draw from a large set of measurements to
personalize the model, and animal studies are often conducted to col-
lect intensive and invasive measurement sets [6,7]. Invasive data from
human subjects has also been used as seen in work by Colunga et al.
and Pant et al. [8–10]. For the individual providing such data it is less
additional burden and risk if such measurements are non-invasive and
limited to as few locations on the anatomy as possible. Model person-
alization of the cardiovascular system has been realized [8–12]. These
studies often focus on the details of novel optimization approaches
or the quality of outputs produced by the personalized models, while
this manuscript focuses on the accuracy of the estimated parameters
themselves. However, it remains a question just how much the available
data set can be limited to successfully identify the necessary model
parameters. The model must also be personalizable by the available
data found within the context for model application, otherwise clinical
application will likely be infeasible. The minimalistic model presented
in this manuscript may provide a simple framework for monitoring
changes in the systemic arterial and left heart hemodynamics.

Both model complexity and data modalities differ, while some stud-
ies use electronic data records from a large number of individuals, some
efforts instead focus on intensive data from just a few individuals. Pant
et al. [9,10], fit the parameters of a lumped parameter model using an
Unscented Kalman Filter (UKF) approach. The technique was demon-
strated to be able to reliably estimate parameters for a three element
Windkessel (WK) using a single cycle noisy synthetic waveform data. In
a clinical environment Pant et al. used MRI measurements, waveform
data from catheters, and doppler ultrasound to estimate personalized
parameters in two individuals. Meiburg et al. apply a similar approach
using a UKF to estimate parameters in a different model of the systemic
circulation using synthetic waveform data which yields promising re-
sults [11]. Hann et al. have developed a method for personalization
where parameters are continuously re-estimated based on the forward
model solution, which has been applied to both synthetic and real
waveform data in combination with clinical indices measured in the
ICU [12]. Colunga et al., Marquis et al. and de Bournonville et al. take
an approach to personalizing closed-loop lumped parameter models
using invasive data sets to compute good nominal values before model
optimization [6–8]. This approach usually relies on measurements from
multiple vessel compartments or population data, and thorough pa-
rameter identifiability analysis. Patient specific modeling would likely
benefit from more accurate measurement techniques, which would
improve estimated parameters and possibly improve predictions based
on these estimates. However, not only improved accuracy but also
novel measurement techniques that would make data acquisition easier
and less burdensome for both the individual and society would make
patient specific modeling feasible where it would earlier be stopped by
lack of available data.

The question of how well and which personalized model parameters
can be identified is also model specific. Hann et al. take a structured
approach to reducing the available data sets, while reducing the model
complexity in the process [12]. We take a different approach where
the problem complexity is reduced by sequentially fixing parameters,
but mainly examine the question of how well estimated parameters
correspond to parameters that are known to describe a given set of data,
which has not been investigated in many contexts. We refer to these

known parameters as the ‘‘true’’ parameters, throughout this study. A
method for assessing the accuracy of the estimated parameters with
respect to the true parameters is introduced in this manuscript. Further,
we investigate how different available data sets and cost functions af-
fect the accuracy and precision of parameter estimates, using standard
optimization methods. Guided by sensitivity analysis, we assess the
impact of reducing the estimated parameter subset by a method which
is applicable to any deterministic computer model with continuous
output ranges and constant parameters. Effectively, a practical iden-
tifiability analysis of the model is performed under different scenarios.
This investigation is motivated by the hypothesis that determination
of accurate personalized model parameters is essential for predicting
future states of the system, and for using models as potential diagnosis
support systems.

In order to be able to evaluate the accuracy of parameter estimates
we focus on synthetic data generated from the model, as the 𝑡𝑟𝑢𝑒
value of parameters is in general impossible to know for real data
situations. For this investigation we use synthetic data with and without
noise to investigate the best possible cases for estimation of parameters
while still approximating real data. We emphasize that we wish to
assess how different choices of parameter subsets affect estimation of
parameter values rather than to identify the model configuration which
best emulates the data. Attempting to estimate the parameters for real
data belongs to future work, but will shed more light on how model
discrepancy influences the resulting parameter estimates.

2. Method

2.1. Model

The motivation of this work was to determine if hemodynamic
measurements could be applied to estimate personal mechanical param-
eters characterizing an individual’s cardiovascular system. In general
the parameters are defined in terms of a mechanistic model of the
cardiovascular system. While various anatomically and physiologically
detailed models have been developed to describe the human cardio-
vascular system [13–15], in this study we implemented a closed-loop
lumped parameter model of the systemic circulation and left ventricle
as a realistic candidate for routine clinical application. In contrast to
some more detailed models the model applied in this work is suitable to
real-time simulation. Perhaps more significantly, reducing the number
of parameters required to specify the model is expected to reduce
the measurement burden required to personalize the model. More
detailed models often require direct imposition of population average
or nominal values for parameters which may limit their potential for
personalization.

The lumped parameter model in this work is similar to that pre-
viously applied by Segers et al. [16], however, instead of assuming a
constant filling pressure for the left ventricle, we included a venous
compartment to represent the left ventricular filling pressure (See Fig. 1
for a graphical depiction of the model). This is a similar but simplified
version of the approaches of Smith et al. [17] and Hann et al. [12].
Mathematically, the model consists of a system of differential equations
that describe the time evolution of the state variables, which are the
stressed volumes of the ventricle, arteries and veins. The pressures and
flows are determined algebraically from the volumes.
𝑑𝑉𝑠𝑎
𝑑𝑡

= 𝐶𝑠𝑎
𝑑𝑃𝑠𝑎
𝑑𝑡

= 𝑄𝑙𝑣𝑎𝑜 −𝑄𝑠𝑦𝑠

𝑑𝑉𝑠𝑣
𝑑𝑡

= 𝐶𝑠𝑣
𝑑𝑃𝑠𝑣
𝑑𝑡

= 𝑄𝑠𝑦𝑠 −𝑄𝑠𝑣𝑙𝑣

𝑑𝑉𝑙𝑣
𝑑𝑡

= 𝑄𝑠𝑣𝑙𝑣 −𝑄𝑙𝑣𝑎𝑜

(1)

𝑉𝑠𝑎, 𝑉𝑠𝑣 and 𝑉𝑙𝑣 are the stressed blood volumes of the systemic
arteries, systemic veins and left ventricle, respectively. 𝐶𝑠𝑎 and 𝐶𝑠𝑣 are
the volume compliance values of the systemic arteries and veins, while
𝑃𝑠𝑎 and 𝑃𝑠𝑣 are the corresponding pressures of these compartments.
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𝑄𝑙𝑣𝑎𝑜 denotes the volume blood flow from the left ventricle to the
systemic arteries, 𝑄𝑠𝑦𝑠 is the flow between the systemic arteries and
veins, and finally 𝑄𝑠𝑣𝑙𝑣 is the flow from the veins to the left ventricle.
The left ventricular pressure is assumed to be a linear function of the
volume of the left ventricle, 𝑃𝑙𝑣 = 𝐸𝑙𝑣(𝑡)𝑉𝑙𝑣, where 𝐸𝑙𝑣(𝑡) is the elastance
of the ventricle at time 𝑡. The elastance is modeled as a periodic
function, which mimics the periodic contraction of the ventricle and the
associated pressure gradient and ejection of blood into the arteries. The
pressure in the arteries and veins are also modeled as linear functions
of the corresponding volumes, 𝐶𝑃 = 𝑉 , where 𝐶 is the compliance of
the respective compartment and describes aggregated stiffness of the
arterial or venous walls. All equations describing the model are given
in Appendix A.

The compartments and their connections are characterized by a set
of mechanical parameters listed in Table 1 along with the symbols
and selected reference values used in this study. Segers et al. report
reference values for most of these parameters in both normotensive
and hypertensive populations [18]. In this work we use the reference
values for the normotensive population and manually adjusted the
parameters not reported by Segers et al. The parameters originate
from the mathematical description of each component. The lumped
parameter approach represents the cardiovascular system as a set of
compartments that contain a volume of blood at a particular pressure,
and connections between these compartments which model the flow of
blood between these compartments.

The flows between compartments are modeled as a linear function
of the pressure difference between the compartments, 𝑄 = 𝛥𝑃∕𝑅,
where 𝑅 is a resistance and determines the mechanical energy required
to sustain flow between compartments. The flows to and from the
ventricle are slightly more complicated as the heart valves ensure these
flows are always in the direction obeying the cardiac cycle. The valves
are modeled as diodes such that the flow is linearly related to pres-
sure for negative pressure gradients, and 0 otherwise. Note that flow
from the venous compartment, representing the systemic veins, directly
enters the left ventricle across the mitral valve, which conceptually
assumes the systemic venous pressure is identical to the pulmonary
venous pressure. We therefore assume the effects of atrial dynamics are
negligible, as previous works also have [12,17], and that ventricular
interaction effects are negligible.

The model presented in Fig. 1 produces very similar arterial hemo-
dynamics as the referenced model by Smith et al. The latter is a four
element WK (4WK) as the former is a three element WK (3WK). Studies
show that this version of the 4WK can be better optimized to data than
the 3WK, but introduces another personalizable parameter and often
yields similar parameter values for aortic characteristic impedance and
resistance when fitted to real data [19]. Vachiéry et al. highlight that
pulmonary arterial hypertension is challenging to diagnose and that
even this condition may not be reflected in the left heart or systemic
circulation [20]. In exercise, the pulmonary circulation and right heart
are recognized to be influential also on arterial hemodynamics through
limitations on cardiac output [21,22]. The absence of the right heart
and pulmonary circuit may then cause limited expressions of exercise
hemodynamics and limit the applicability of the model, but confirma-
tion of this statement requires further investigation beyond the scope
of this manuscript. By redirecting the venous return directly into the
left ventricle, the cardiac preload is modeled by the venous pressure
and flow rather than fixing the preload and venous properties as in
an open-loop model. By circumventing the pulmonary circulation and
right heart we also omit many potentially personalizable parameters,
which may further complicate the process of personalizing the model
with limited data. If the model is sufficiently simple so that it can be
run and personalized in real time it may be used to monitor changes in
resting hemodynamics. As discussed by Huberts et al. model accuracy
lessens as the model is simplified [23], so an important question to be
answered in a different setting is whether a simplified model is able
resolve small changes in hemodynamics caused by a chosen form of
stimulus.

Table 1
The model parameters are listed with their corresponding symbols and reference values.
For most parameters the reference values were reported by Segers et al. [18]. The
remaining parameters have been manually tuned. We use these reference values as
experimental estimates, and in our wording as the ‘‘true’’ parameters, to generate the
data used for the parameter estimation procedure.
Symbol Description True values Units

𝐶𝑎𝑜 Systemic arterial 1.13 mL
mmHg

compliance
𝐶𝑠𝑣 Systemic venous 11.0 mL

mmHg
compliance

𝐸𝑚𝑎𝑥 Maximal left 1.5 mmHg
mL

ventricular elastance
𝐸𝑚𝑖𝑛 Minimal left 0.03 mmHg

mL
ventricular elastance

𝑅𝑚𝑣 Mitral valve 0.006 mmHg s
mL

resistance
𝑅𝑠𝑦𝑠 Systemic vascular 1.11 mmHg s

mL
resistance

𝑇 Heart period 0.85 s
𝑡𝑝𝑒𝑎𝑘 Time of peak 0.3 s

ventricular elastance
𝑉𝑡𝑜𝑡 Total stressed 300 mL

blood volume
𝑍𝑎𝑜 Characteristic 0.033 mmHg s

mL
impedance of the aorta

Fig. 1. The closed-loop, lumped parameter model of the systemic circulation and
the left ventricle. The circuit equivalent formulation of the model is depicted, with
the pressures of each compartment, as well as most of the mechanical parameters.
The model describes three compartments: the left ventricular, arterial and venous
compartments. 𝑃𝑡ℎ is the intrathoracic pressure, 𝑃𝑙𝑣 is the left ventricular pressure
and 𝐸𝑙𝑣(𝑡) indicates the left ventricular elastance function. For an explanation of the
remaining parameters, see Table 1.

For the remainder of this article, it is convenient to treat the model
variables, e.g. 𝑃𝑎𝑜, 𝑄𝑎𝑜 or 𝑃𝑠𝑣, as functions of the parameters 𝜽 and
time, 𝑦(𝑡,𝜽), where 𝑦 denotes a particular variable. Thus the values at
a particular time point are denoted 𝑦(𝑡𝑘,𝜽). 𝜽 denotes the vector of all
model parameters. These functions are approximated numerically using
SciPy’s implementation of the 4th-order Runge–Kutta (RK4) method
to integrate the differential equations [24]. The resulting system of
equations may be stiff, and therefore we also tested solving the system
with the backward differentiation formula (BDF), but it was found to
be much more computationally expensive than RK4 while results were
found to be comparable.

2.2. Data and measurements

A focus of this study was to determine how accurately and pre-
cisely specific model parameters could be estimated from various data
sources. In order to quantify the performance of the estimation proce-
dure, the true values of the parameters, 𝜽𝑡𝑟𝑢𝑒, must be known. As this is
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not possible for real clinical data, we simulated realistic measurement
data based on the numerical solution of the model for particular param-
eter values such that the true values of the parameters are known. The
data generated in this way stimulates continuous waveform data for
pressure and flow in the aorta and large systemic veins of the cardio-
vascular system (Using the notation proposed previously, 𝑃𝑎𝑜(𝑡𝑘,𝜽𝑡𝑟𝑢𝑒),
𝑄𝑎𝑜(𝑡𝑘,𝜽𝑡𝑟𝑢𝑒), and 𝑃𝑠𝑣(𝑡𝑘,𝜽𝑡𝑟𝑢𝑒). In addition, measurements of common
clinical indices were simulated by computing these from the waveform
data, e.g. 𝑃𝑠𝑦𝑠 = max𝑘 𝑃𝑎𝑜(𝑡𝑘,𝜽𝑡𝑟𝑢𝑒). The time varying measurements and
clinical indices are depicted in Fig. 2 and described in the following
section. The model equations Appendix A were solved by the 4th order
Runge–Kutta scheme. Model outputs were solved until they reached
a steady periodic state, which was found to be reached by 10 heart
cycles. We also tested the solution after more heart cycles but model
outputs did not change and parameter estimates remained identical. In
the following, we use the notation 𝑦𝑚𝑘 to denote a measured value of
the quantity 𝑦 at time 𝑡𝑘 if appropriate (𝑦𝑚 denotes a time independent
measurement).

We expressed the time series simply as a list of continuous mea-
surement points of pressure or flow. A series of 100 points per heart
cycle were defined, corresponding in this example to a measurement
frequency of approximately 117.6 Hz with the chosen heart rate.
Pressure catheters or tonometry can be used to measure blood pressure
waveforms [25], and doppler ultrasound is routinely applied to record
flow velocity waveforms in the heart and aorta.

In clinical practice blood pressure is assessed by sphygmanometry of
brachial systolic and diastolic blood pressure. These may be emulated
as the maximum and minimum values of the simulated aortic pressure
waveform, respectively. The model does not explicitly describe the
brachial pressure, thus the simulated data may be thought of the
best case where central aortic pressure is measured. Aortic pressure
is typically comparable to brachial pressure (especially in healthy,
young to middle aged individuals). The difference between systolic and
diastolic pressures is the pulse pressure, which is also a common clinical
measure often used to compute other hemodynamic quantities [26].

The stroke volume and maximal aortic flow are two additional mea-
sures commonly used in clinical practice. These may both be derived
from ultrasound measurements of the flow velocity and diameter of
the left ventricular outflow tract [27]. The peak value corresponds
to maximal aortic flow, while the integral of the volumetric flow
over a single cardiac cycle gives the volume of blood ejected by the
ventricle, the stroke volume. Since the three volume compartments of
the model (Section 2.1) do not represent any anatomical features these
measurements are emulated from the flow across the aortic valve.

The model generated data may be represented as

𝑦𝑚𝑘 = 𝑦(𝑡𝑘,𝜽𝑡𝑟𝑢𝑒) (2)

where the superscript 𝑚 emphasizes this is the measured value and
subscript 𝑘 denotes the time point, where relevant. For the case where
𝑦𝑚𝑘 is a scalar extracted from a time series output the 𝑘 index is without
meaning.

Realistic clinical measurements will have some noise. In this anal-
ysis, we investigate both the ideal case of perfect measurements and
the more realistic case of noisy measurements. Noisy measurements
are simulated by adding randomly sampled perturbations to the model
outputs

𝑦𝑛𝑜𝑖𝑠𝑦𝑘 = 𝑦(𝑡𝑘,𝜽𝑡𝑟𝑢𝑒) × 𝜉𝑘 (3)

where 𝜉𝑘 are independently and identically distributed normal random
variables with mean 1 and standard deviation 0.05. In reality, the noise
may be biased at least in parts of the measured signal, but this may
depend on the measurement technique or equipment. To keep the case
most general and for simplicity we use normal distributed noise even
though more sophisticated noise distributions can be constructed in
theory.

Fig. 2. Most of the data types and measurements are depicted, as well as their relations.

2.3. Structural identifiability analysis

Before investigating whether model parameters can be estimated in
practice, a structural identifiability analysis will reveal if there is at
all any possibility for estimating parameters from more realistic data.
Structural identifiability only considers the model structure and data
under perfect conditions.

Performing a global structural identifiability analysis means proving
that a model formulation gives a unique model output for any given
parameter vector 𝜽. Alternatively, a model is globally structurally
identifiable if for two distinct arbitrarily chosen vectors of parameters
𝜽1 and 𝜽2 from a parameter space 𝛩 then 𝑦(𝑡𝑘,𝜽1) = 𝑦(𝑡𝑘,𝜽2) holds if
and only if 𝜽1 = 𝜽2 for all 𝑘 [28,29]. A model is locally structurally
identifiable if the condition 𝑦(𝑡𝑘,𝜽) ≠ 𝑦(𝑡𝑘,𝜽′) is true for any 𝜽 in an
open interval around 𝜽′ in the parameter space 𝛩. Therefore, for strictly
local structural identifiability multiple but discretely different vectors
of 𝜽 can generate the same model outputs which causes additional
concerns for practical parameter estimation, as there may be multiple
parameter sets which recreates the output. However, it is not a given
that the system has more than one solution within the domain for
practical implementation. Practical identifiability analysis needs to be
performed to assess this. Given that a model is locally identifiable, it
can still be globally identifiable unless it is explicitly proven not to be.

Villaverde et al. have developed the STRIKE-GOLDD software pack-
age which determines the local structural identifiability of non-linear
differential equation models by a method involving Lie derivatives [30].
We applied the MatLab implementation of STRIKE-GOLDD to our
model with different data combinations to investigate identifiability.
However, this software requires the right hand side of the system of
ODEs to be infinitely differentiable functions with respect to both the
state variables and parameters, and the valve models are not differen-
tiable in this context. Therefore, we analyze the model in its ejection
phase enforcing a closed mitral valve and open aortic valve using left
ventricular pressure and aortic flow as the aortic pressure is equal to
left ventricular pressure in the systolic ejection phase according to the
model. For the diastolic phase, systemic arterial pressure is given while
the valves are open and closed oppositely to the ejection phase. The
dynamic driver function for the model which is the left ventricular
elastance function is dependent upon a time signal which is periodic
with the length of the heart cycle. The time signal controlling the
elastance cycle is the time variable but defined as 𝑢(𝑡) = 𝜏 = 𝑡 mod 𝑇

4



N.L. Bjørdalsbakke, J.T. Sturdy, D.R. Hose et al. Mathematical Biosciences 343 (2022) 108731

and is treated as a known dynamic system input in this context. The
full specification of the elastance function is given in Appendix A.

Pironet et al. perform a structural identifiability analysis by demon-
strating that a unique solution for the parameter set can be found
by using the information from perfectly observed model outputs [31].
The model examined by Pironet has a very similar formulation to
our model, but includes more chambers, yet with a certain set of
outputs the model was found to be globally structurally identifiable.
Information from both the systolic and diastolic phases are used sepa-
rately to identify parameters, as we have done using STRIKE-GOLDD.
Parameters which are shown to be identifiable constant parameters
are used to prove the identifiability of other parameters. Parameters
identified during the model in the diastolic phase is used in identifying
parameters in the ejection phase, and hence the reverse should also be
valid. Some of the computations relevant to the identifiability analysis
which required high amounts of memory were performed on the NTNU
IDUN computing cluster [32].

2.4. Sensitivity analysis

Sensitivity analysis of the model quantities of interest can identify
which parameters most influence the model’s prediction of a quantity
of interest. This method can subsequently be applied to identify which
parameters may be estimated from given types of measurements, or
conversely may be applied to identify which measurements are neces-
sary to provide information about particular parameters [23,33,34]. We
analyzed the sensitivity of the model outputs in terms of Sobol indices
which are commonly used as a global measure of sensitivity [35]. Sobol
indices quantify sensitivity as the proportion of variance of the model
output attributable to variance of particular parameter values:

𝑆𝑀,𝑖(𝑦) =
Var(E(𝑦|𝜃𝑖))

Var(𝑦)
(4a)

𝑆𝑇 ,𝑖(𝑦) =
E(Var(𝑦|𝜃∼𝑖))

Var(𝑦)
(4b)

where 𝑆𝑀,𝑖 and 𝑆𝑇 ,𝑖 denote respectively the main and total sensitivity
to parameter 𝜃𝑖, while 𝑦 denotes the function sensitive to the parameters
𝜽, or for this analysis a model output.

To interpret these indices, we note that a quantity of interest with
high values of either index for given parameter suggests that measure-
ment of that quantity may provide substantial information about that
parameter. However, if 𝑆𝑀,𝑖 is low but 𝑆𝑇 ,𝑖 is large then parameter
𝜃𝑖 impacts the quantity of interest primarily through interactions with
other parameters and consequently may substantially affect the quan-
tity of interest. Unfortunately due to its interactivity it may remain
challenging to estimate due to its dependence on the values of other
parameters.

In general, parameter estimation becomes more challenging as more
parameters are estimated. In addition, strong interactions between
parameters may impede efficient numerical optimization. Prior works
have employed a number of subset selection methods to reduce the
number of parameters varied while fitting the model to data [36,37].
Most such methods are based on analysis of sensitivities and in general
select subsets of parameters with high sensitivity to estimate, as the
data will provide the most information about these. The complementary
set of parameters with lower sensitivity is then fixed at nominal values,
which is expected to have minimal impact on the fitting of the model
to the data.

Sobol indices have a clear interpretation in terms of the behavior
of individual variables, but the interpretation of the Sobol indices for
many variables or for a time varying signal may not be as easily
interpreted. For example simply averaging across variables or time will
weight regions of low variance equally to those of high variance. To
remedy this one may instead examine the variance weighted averages

𝑇𝐴𝑆𝑀,𝑖(𝑦) =
∑

𝑘 𝑆𝑀,𝑖(𝑦(𝑡𝑘)) Var(𝑦(𝑡𝑘))∑
𝑘 Var(𝑦(𝑡𝑘))

(5a)

𝑇𝐴𝑆𝑇 ,𝑖(𝑦) =
∑

𝑘 𝑆𝑇 ,𝑖(𝑦(𝑡𝑘)) Var(𝑦(𝑡𝑘))∑
𝑘 Var(𝑦(𝑡𝑘))

. (5b)

Here we abbreviate time-averaged as (TA). We computed the indices
defined in (4) assuming all input parameters were independently and
uniformly distributed over the range of 90% to 110% of their nominal
values. The indices were estimated using a Monte-Carlo approach as
proposed by Saltelli et al. with 2500 samples per parameter [35].
The weighted averages (5) were subsequently computed from these
estimates of the Sobol indices [33,38].

2.5. Synthetic data generation and parameter estimation

For the purposes of fitting a model to data a typical approach is to
assume the data, 𝑦𝑚𝑘 , are simply a perturbation of the values predicted
by the model for the true parameter values:

𝑦𝑚𝑘 = 𝑦(𝑡𝑘,𝜽𝑡𝑟𝑢𝑒) + 𝐸𝑘. (6)

Given the data and the model, the objective is then to determine
the value of 𝜽 that produces model predictions best matching the data,
i.e. with minimal 𝐸𝑘. To quantify how well a given value of parameters
matches the data, a cost function must be defined, for example

𝐽 (𝜽) =
∑
𝑘
(𝑦(𝑡𝑘,𝜽) − 𝑦𝑚𝑘 )

2. (7)

To estimate the parameters a minimization problem is solved

�̂� = arg min𝐽 (𝜽) (8)

which corresponds with ordinary least squares regression. The mini-
mization problem is typically solved using a numerical optimization
method, and the Trust Region Reflective algorithm (TRRA) was chosen
for this study due to accepting parameter bounds, and is available
through SciPy [24]. The constraint applied to the cost functions used
in this investigation are given in higher detail in Appendix B.

Four cost functions were considered in this work, corresponding to
three sets of clinical measurements. The first corresponds with fitting
the model to standard clinical measurements

𝐽 (𝜽) =

(
𝑃𝑠𝑦𝑠(𝜽) − 𝑃𝑚

𝑠𝑦𝑠

𝐾𝑝𝑠𝑦𝑠

)2

+
(𝑃𝑑𝑖𝑎(𝜽) − 𝑃𝑚

𝑑𝑖𝑎
𝐾𝑝𝑑𝑖𝑎

)2

+
(
𝑃𝑃 (𝜽) − 𝑃𝑃𝑚

𝐾𝑝𝑝

)2

+
(
𝑆𝑉 (𝜽) − 𝑆𝑉 𝑚

𝐾𝑆𝑉

)2

+
(𝑄𝑚𝑎𝑥(𝜽) −𝑄𝑚

𝑚𝑎𝑥
𝐾𝑞𝑚𝑎𝑥

)2
.

(9)

The 𝐾𝑗 are scaling factors, where subscript 𝑗 indicates a type of
measurement the parameter normalizes. These were used to ensure
that all quantities contributing to the cost function were weighted
approximately equally. See Appendix B for the values used in our
computations.

The second cost function corresponds to making use of continuous
pressure and flow waveform data which is not typically measured in
the clinic:

𝐽 (𝜽) =
𝑁∑
𝑘

(
𝑃𝑎𝑜,𝑘(𝜽) − 𝑃𝑚

𝑎𝑜,𝑘

𝐾𝑝

)2

+
𝑁∑
𝑘

(
𝑄𝑎𝑜,𝑘(𝜽) −𝑄𝑚

𝑎𝑜,𝑘

𝐾𝑞

)2 (10)
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where 𝑘 indicates the sample time points of the measurements for a
total 𝑁 points per measurement type.

The third cost function requires measurement of the venous systolic
and diastolic pressure values:

𝐽 (𝜽) =

(
𝑃𝑠𝑦𝑠(𝜽) − 𝑃𝑚

𝑠𝑦𝑠

𝐾𝑝𝑠𝑦𝑠

)2

+
(𝑃𝑑𝑖𝑎(𝜽) − 𝑃𝑚

𝑑𝑖𝑎
𝐾𝑝𝑑𝑖𝑎

)2

+
(
𝑃𝑃 (𝜽) − 𝑃𝑃𝑚

𝐾𝑝𝑝

)2

+
(
𝑆𝑉 (𝜽) − 𝑆𝑉 𝑚

𝐾𝑆𝑉

)2

+
(𝑄𝑚𝑎𝑥(𝜽) −𝑄𝑚

𝑚𝑎𝑥
𝐾𝑞𝑚𝑎𝑥

)2

+

(
𝑃𝑠𝑣,𝑠𝑦𝑠(𝜽) − 𝑃𝑚

𝑠𝑣,𝑠𝑦𝑠

𝐾𝑝𝑠𝑣𝑠𝑦𝑠

)2

+

(
𝑃𝑠𝑣,𝑑𝑖𝑎(𝜽) − 𝑃𝑚

𝑠𝑣,𝑑𝑖𝑎

𝐾𝑝𝑠𝑣𝑑𝑖𝑎

)2

.

(11)

The fourth cost function requires measurement of the venous pres-
sure wave form in addition to the aortic pressure and flow:

𝐽 (𝜽) =
𝑁∑
𝑘

(
𝑃𝑎𝑜,𝑘(𝜽) − 𝑃𝑚

𝑎𝑜,𝑘

𝐾𝑝

)2

+
𝑁∑
𝑘

(
𝑄𝑎𝑜,𝑘(𝜽) −𝑄𝑚

𝑎𝑜,𝑘

𝐾𝑞

)2

+
𝑁∑
𝑘

(
𝑃𝑠𝑣,𝑘(𝜽) − 𝑃𝑚

𝑠𝑣,𝑘

𝐾𝑝𝑠𝑣

)2

.

(12)

As many optimization methods such as the Quasi-Newton method
used in this analysis may be attracted to local minima, we attempted
to mitigate this by performing the numerical optimization with several
initial parameter values randomly sampled according to the formula

𝜃𝑠𝑎𝑚𝑝𝑙𝑒𝑑,𝑖 = 𝜃𝑟𝑒𝑓 ,𝑖(1 + 𝛿𝑖), (13)

where 𝛿𝑖 are stochastic values drawn independently from a normal dis-
tribution with a zero mean and standard deviation of 0.3. 𝜽𝑟𝑒𝑓 was a set
of reference parameters used to sample initial guesses arbitrarily chosen
within a physiologically realistic combination of parameters. They are
not equal to 𝜽𝑡𝑟𝑢𝑒, as to not center the distribution of the sampled
parameters at the desired cost function minimum. See Appendix B for
the list of reference values.

2.6. Quantities of interest

The main goal of fitting the model to personal data is to accurately
estimate 𝜽𝑡𝑟𝑢𝑒, thus the measure of error for this is �̂� − 𝜽𝑡𝑟𝑢𝑒, where
�̂� is the estimated parameter vector. 𝜽𝑡𝑟𝑢𝑒 are the synthetic reference
parameters, listed in Table 1. We evaluated how well local optimization
algorithms could calibrate the lumped parameter model by recovering
the ‘‘true’’ parameters when we used no prior knowledge about the
parameters aside from what was considered approximately physiolog-
ically realistic ranges for the parameters. We generated the data sets
used in this study with the ‘‘true’’ parameter values, 𝜽𝑡𝑟𝑢𝑒, set to the
values reported by Segers et al. for normotensive individuals [18]. The
remaining parameters of the parameter vector which are not reported
by Segers et al. were chosen by manual tuning and their values are
reported in Table 1. Thus, the true parameters, 𝜽𝑡𝑟𝑢𝑒, are mostly chosen
to be values used in the literature.

Specifically, to recover these parameters we optimized the model
outputs according to the measurements in Section 2.2. Table 2 lists the
relevant quantities, and Fig. 2 depicts them.

Table 2
The model waveform outputs are listed along with any derived quantities that are or
serve as approximations to clinical indices. Abbreviations are also specified.
Model outputs/measurements Derived clinical index

Aortic pressure waveform, 𝑃𝑎𝑜 – Aortic systolic and diastolic pressures,
𝑃𝑠𝑦𝑠 and 𝑃𝑑𝑖𝑎
– Pulse Pressure, 𝑃𝑃

Aortic flow waveform, 𝑄𝑎𝑜 – Maximal aortic flow, 𝑄𝑎𝑜,𝑚𝑎𝑥
– Stroke Volume, 𝑆𝑉

Systemic venous pressure
waveform, 𝑃𝑠𝑣

– Venous systolic and diastolic averaged
pressures, 𝑃𝑠𝑣,𝑠𝑦𝑠 and 𝑃𝑠𝑣,𝑑𝑖𝑎

2.7. The stepwise subset reduction method

Based on the total Sobol indices in (4), and (5) we ranked pa-
rameters with respect to aortic pressure, and devised an approach
to investigate how adding additional less sensitive parameters to the
fitting procedure affects parameter estimation. We named the method
the stepwise subset reduction method (SSRM).

The purpose of parameter estimation based on the model presented
here is to develop a method for identifying personal characteristics from
clinically measured data. In this context, the personal characteristics
are the parameter values 𝜽𝑡𝑟𝑢𝑒; however, simultaneous estimation of all
parameter values may be challenging, particularly when measurements
are noisy. We thus sought to investigate how this approach performed
for various subsets of parameters in order to determine if any less
influential model parameters should be fixed in order to improve the
robustness of this approach. For similar models, calibration of stable
parameters with low variability have been demonstrated [6,12].

For each cost function and data set (to be described later), we
performed the numerical optimization procedure outlined in the pre-
vious section for each subset of parameters (described in the following
section) for 𝑁𝑠 = 50 sets of 𝜽𝑠𝑎𝑚𝑝𝑙𝑒𝑑 as initial guesses for the parameters.
For each set of initial guesses, the cost function at the termination of
the optimization procedure was recorded. Subsequently the minimum
cost function observed in the subset was identified, and only the cases
where the cost function was less than 125% of the minimum observed
cost function were retained for evaluation of the subset.

The subsets of parameters were defined as follows. At maximum
all nine parameters (see Table 1) were estimated at once as described
in the previous paragraph. After fitting all nine model parameters we
repeated this step eight times, while fixing one additional parameter
at its true value according to 𝜽𝑡𝑟𝑢𝑒 in ascending order of sensitivity per
repetition. In practice this means that the subset selection was reduced
by one additional parameter at each iteration. See Table 3 for the full
sequence of subsets in the SSRM. All nine parameters are estimated
𝑁𝑠 times, then the eight most sensitive parameters are estimated 𝑁𝑠
times, and so on until only the most sensitive parameter is estimated.
From here on this method is referred to as the stepwise subset reduction
method (SSRM).

The SSRM was then performed for ten different estimation sce-
narios. First, for standard clinical indices as specified in Eq. (9) with
(III) and without noise (I). Subsequently, for aortic flow and pressure
waveforms (10) with (IV) and without noise (II). Another four scenarios
(V–VIII) were all based on noisy waveform data (3). Two approaches
(V and VI) included venous information as per Eqs. (11) and (12),
respectively. Two additional scenarios focused on the impact of fixing
either 𝑡𝑝𝑒𝑎𝑘 (VII) or 𝐶𝑠𝑣 (VIII) at their true values by applying the SSRM
for estimating the remaining parameters based on noisy aortic data
(11).

The motivation for the investigations with fixed 𝑡𝑝𝑒𝑎𝑘 (VII) or 𝐶𝑠𝑣
(VIII) was the observation that by inclusion or removal of certain pa-
rameters in the estimated subset, the estimation error of the remaining
parameters changed by an order of magnitude. The addition of more
data from the venous compartment was motivated by the observation
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Table 3
A table representing the sequence of model parameter subsets as
estimated by the SSRM.
The sequence of
subsets in SSRM

Subset parameters

#1 𝑉𝑡𝑜𝑡, 𝐸𝑚𝑎𝑥, 𝐶𝑎𝑜, 𝑅𝑠𝑦𝑠, 𝑡𝑝𝑒𝑎𝑘, 𝐶𝑠𝑣, 𝐸𝑚𝑖𝑛, 𝑍𝑎𝑜, and 𝑅𝑚𝑣
#2 𝑉𝑡𝑜𝑡, 𝐸𝑚𝑎𝑥, 𝐶𝑎𝑜, 𝑅𝑠𝑦𝑠, 𝑡𝑝𝑒𝑎𝑘, 𝐶𝑠𝑣, 𝐸𝑚𝑖𝑛, and 𝑍𝑎𝑜
#3 𝑉𝑡𝑜𝑡, 𝐸𝑚𝑎𝑥, 𝐶𝑎𝑜, 𝑅𝑠𝑦𝑠, 𝑡𝑝𝑒𝑎𝑘, 𝐶𝑠𝑣, and 𝐸𝑚𝑖𝑛
#4 𝑉𝑡𝑜𝑡, 𝐸𝑚𝑎𝑥, 𝐶𝑎𝑜, 𝑅𝑠𝑦𝑠, 𝑡𝑝𝑒𝑎𝑘, and 𝐶𝑠𝑣
#5 𝑉𝑡𝑜𝑡, 𝐸𝑚𝑎𝑥, 𝐶𝑎𝑜, 𝑅𝑠𝑦𝑠, and 𝑡𝑝𝑒𝑎𝑘
#6 𝑉𝑡𝑜𝑡, 𝐸𝑚𝑎𝑥, 𝐶𝑎𝑜, and 𝑅𝑠𝑦𝑠
#7 𝑉𝑡𝑜𝑡, 𝐸𝑚𝑎𝑥, and 𝐶𝑎𝑜
#8 𝑉𝑡𝑜𝑡, and 𝐸𝑚𝑎𝑥
#9 𝑉𝑡𝑜𝑡

that many of the least sensitive and hardest to estimate parameters
relate to ventricular filling, which in turn is largely determined by
venous pressure.

As stated, the SSRM was conducted by fixing the model parameters
that were not in the subset at their true values. To investigate the
effect on parameter estimates by fixing the parameters at wrong values,
we repeated the SSRM with the cost function in Eq. (10) but fixed
the parameters at 30% above their true value (X), and the effect on
parameter estimates was observed.

In the previous estimation cases (I)–(VIII) and (X), the same sampled
values of noise, 𝜉𝑘, were used in all optimization runs. To assess the
general impact of noise, we estimated parameters from 𝑁𝑠 cases of
normally distributed noise (3) applied to the data in Eq. (10) (IX).
For each sample of 𝜉𝑘, we estimated parameters from only one initial
parameter guess. The sampling values in Table B.6 from Appendix B
were used as initial guesses in this exercise, which were confirmed to
estimate all parameters to negligible error without noise.

The performance of the parameter estimation procedure was evalu-
ated for each subset and cost function by calculating the mean absolute
percentage error (MAPE) between estimated and true parameter values

𝑀𝐴𝑃𝐸𝑖 =
1
𝑁𝑠

𝑁𝑠∑
𝑗=1

||||||
�̂�𝑖,𝑗 − 𝜃𝑡𝑟𝑢𝑒,𝑖

𝜃𝑡𝑟𝑢𝑒,𝑖

||||||
⋅ 100%. (14)

𝑖 indicates the 𝑖th parameter of the vector 𝜽, while 𝑗 indicates
estimate number out of 𝑁𝑠 estimates. The mean percentage error (MPE)
is defined nearly identically, but without the modulus operation. The
standard deviation of the MAPE measurements was computed as

𝐴𝑃𝐸𝑖 𝑆𝑇𝐷 = Std

(|||||
�̂�𝑖 − 𝜃𝑡𝑟𝑢𝑒,𝑖
𝜃𝑡𝑟𝑢𝑒,𝑖

|||||
⋅ 100%

)

=

√√√√√ 1
𝑁𝑠

𝑁𝑠∑
𝑗=1

(
𝐴𝑃𝐸𝑖,𝑗 −𝑀𝐴𝑃𝐸𝑖

)2
(15)

The workflow for calculating parameter estimation error for a se-
lected cost function and number of fixed parameters is illustrated in
Fig. 3. For each such configuration the non-linear optimization was
repeated 𝑁𝑠 = 50 times with a new initial parameter value 𝜽𝑠𝑎𝑚𝑝𝑙𝑒𝑑
from Eq. (13) for each run. The features of all the applied cost functions
are organized in Section 2.8.

2.8. Summary

Parameter sensitivity was quantified by estimating variance
weighted averages and total Sobol indices as per Eqs. (4) and (5b),
respectively. Based on the sensitivities to the timeseries output for
the aortic pressure, we ranked the model parameters. To assess the
impact of adding parameters of varying sensitivity to the estimation
procedure we developed the SSRM (stepwise subset reduction method).
The SSRM was applied by ranking model parameters by sensitivity,
then estimating all model parameters in the first ‘‘step’’, and then

reducing the estimated subset by the least sensitive parameter for
the second ‘‘step’’ and making new parameter estimates. The subset
reduction continues stepwise until only the most sensitive parameter is
estimated. The SSRM was repeated in 10 estimation scenarios:

I For a cost function using clinical indices
II For a cost function using waveform data
III For a cost function using clinical indices with noise
IV For a cost function using waveform data with noise
V For a cost function using clinical indices with noise including
systolic and diastolic venous pressure

VI For a cost function using waveform data with noise including the
venous pressure waveform.

VII For a cost function using waveforms with noise where the 𝑡𝑝𝑒𝑎𝑘
is always fixed at its true value.

VIII For a cost function using waveforms with noise where the 𝐶𝑠𝑣 is
always fixed at its true value.

IX For a cost function using waveforms where noise is varied 𝑁𝑠
times for each step in the SSRM.

X For a cost function using waveforms where parameters are fixed
at 30% above their true value as they are left out of the estimated
parameter subset.

After these steps were completed we computed and examined the
MAPE and MPE for the estimated parameters compared to the true
parameters to assess accuracy, precision and bias.

3. Results

3.1. Structural identifiability analysis

Local structural identifiability was analyzed using the STRIKE-
GOLDD software. The measured aortic pressure is defined as 𝑃𝑎𝑜 =
max𝑃𝑙𝑣, 𝑃𝑠𝑎 in our model, which means that during ejection the aortic
pressure is equal to the left ventricular pressure, but is equal to the
systemic arterial pressure in diastole. When given aortic flow and left
ventricular pressure during ejection all model parameters were found
to be locally structurally identifiable except 𝑅𝑚𝑣 as it was eliminated
from the model description by closing the mitral valve. The filling phase
model was analyzed using only systemic arterial pressure as aortic flow
is zero at this point in the heart cycle. The parameters 𝑅𝑠𝑦𝑠, 𝐶𝑎𝑜, 𝑍𝑎𝑜,
and 𝐶𝑠𝑣 were taken as parameters known to be structurally identifiable
upon the second analysis and the rest of the parameters were also found
to be locally structurally identifiable in this analysis given waveform
data.

3.2. Sensitivity analysis

The sensitivity analysis yielded a parameter ranking based on the
sensitivity of the parameters to model outputs. Table 5 shows the
ranking according to Sobol indices (4b) for systolic and diastolic pres-
sure and variance weighted sensitivity (5b) to dynamic output signals.
Table 4 displays the parameter sensitivities, which for dynamic signals
are the total variance weighted average from Eq. (5b) over a heart cycle
and for the clinical indices are the total Sobol indices from Eq. (4b).

3.3. Parameter estimation

Computation of the MAPE for all 𝑁𝑠 = 50 model evaluations
yielded substantial errors in some estimated parameters for most cost
functions. The exception was the noiseless case with the cost function
in Eq. (10) (II) where all parameters were estimated to an error of
order of magnitude 10−3 percent or less, see Fig. 4. The bar graphs
presented from Figs. 4–13 present the parameter MAPE or MPE with
standard deviations for all parameter subsets in the SSRM, cases I–X.
The bars corresponding to 𝑛 parameters are the errors of the estimates
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Fig. 3. An illustration of SSRM for one chosen cost function is described. (a) A ‘‘true’’ parameter set (𝜽𝑡𝑟𝑢𝑒) is defined and used to generate corresponding model output, which is
illustrated by an aortic pressure curve in this example. In (b) multiple sampled 𝜽𝑠𝑎𝑚𝑝𝑙𝑒𝑑 initial parameter values are used to estimate 𝑁𝑠 parameter sets �̂�. The pipeline is repeated
nine or eight times as the parameter subset selection is reduced by one parameter for each repetition. For this manuscript the entire SSRM is repeated in ten different estimation
scenarios. The errors are computed elementwise for each of the parameters in the parameter vector.

Table 4
Sensitivity values for the parameters to different model outputs. The values given for
the time averaged outputs are the total variance weighted averages, see (5), and the
derived clinical indices are given as the total Sobol indices (4).
Model output 𝑇𝐴𝑆𝑇 ,𝑖(𝑃𝑎𝑜) 𝑇𝐴𝑆𝑇 ,𝑖(𝑉𝑙𝑣) 𝑇𝐴𝑆𝑇 ,𝑖(𝑄𝑙𝑣𝑎𝑜) 𝑃𝑠𝑦𝑠 𝑃𝑑𝑖𝑎

𝑉𝑡𝑜𝑡 6.8 ⋅ 10−1 6.3 ⋅ 10−1 1.2 ⋅ 10−1 7.1 ⋅ 10−1 6.6 ⋅ 10−1
𝐸𝑚𝑎𝑥 1.1 ⋅ 10−1 6.4 ⋅ 10−2 1.0 ⋅ 10−1 9.9 ⋅ 10−2 1.1 ⋅ 10−1
𝐶𝑎𝑜 8.3 ⋅ 10−2 1.0 ⋅ 10−1 4.7 ⋅ 10−2 1.5 ⋅ 10−1 3.7 ⋅ 10−3
𝑅𝑠𝑦𝑠 6.5 ⋅ 10−2 1.7 ⋅ 10−2 1.8 ⋅ 10−1 1.5 ⋅ 10−2 2.1 ⋅ 10−1
𝑡𝑝𝑒𝑎𝑘 3.6 ⋅ 10−2 1.6 ⋅ 10−1 5.7 ⋅ 10−1 8.3 ⋅ 10−3 3.8 ⋅ 10−3
𝐶𝑠𝑣 2.4 ⋅ 10−2 2.1 ⋅ 10−2 4.0 ⋅ 10−3 2.4 ⋅ 10−2 2.3 ⋅ 10−2
𝐸𝑚𝑖𝑛 1.3 ⋅ 10−2 1.6 ⋅ 10−2 4.3 ⋅ 10−3 1.6 ⋅ 10−2 8.1 ⋅ 10−3
𝑍𝑎𝑜 3.0 ⋅ 10−4 4.0 ⋅ 10−5 1.0 ⋅ 10−2 2.0 ⋅ 10−4 3.9 ⋅ 10−5
𝑅𝑚𝑣 2.0 ⋅ 10−4 1.7 ⋅ 10−3 2.0 ⋅ 10−4 3.0 ⋅ 10−4 3.8 ⋅ 10−5

Table 5
Based on the sensitivity values calculated and presented in Table 4, the following
rankings of how sensitive the chosen outputs are to each respective parameter have
been compiled. The parameters at the 1st position are the most influential parameters
to the model output they are listed under.
Model output 𝑇𝐴𝑆𝑇 ,𝑖(𝑃𝑎𝑜) 𝑇𝐴𝑆𝑇 ,𝑖(𝑉𝑙𝑣) 𝑇𝐴𝑆𝑇 ,𝑖(𝑄𝑙𝑣𝑎𝑜) 𝑃𝑠𝑦𝑠 𝑃𝑑𝑖𝑎

1st 𝑉𝑡𝑜𝑡 𝑉𝑡𝑜𝑡 𝑡𝑝𝑒𝑎𝑘 𝑉𝑡𝑜𝑡 𝑉𝑡𝑜𝑡
2nd 𝐸𝑚𝑎𝑥 𝑡𝑝𝑒𝑎𝑘 𝑅𝑠𝑦𝑠 𝐶𝑎𝑜 𝑅𝑠𝑦𝑠
3rd 𝐶𝑎𝑜 𝐶𝑎𝑜 𝑉𝑡𝑜𝑡 𝐸𝑚𝑎𝑥 𝐸𝑚𝑎𝑥
4th 𝑅𝑠𝑦𝑠 𝐸𝑚𝑎𝑥 𝐸𝑚𝑎𝑥 𝐶𝑠𝑣 𝐶𝑠𝑣
5th 𝑡𝑝𝑒𝑎𝑘 𝐶𝑠𝑣 𝐶𝑎𝑜 𝐸𝑚𝑖𝑛 𝐸𝑚𝑖𝑛
6th 𝐶𝑠𝑣 𝑅𝑠𝑦𝑠 𝑍𝑎𝑜 𝑅𝑠𝑦𝑠 𝑡𝑝𝑒𝑎𝑘
7th 𝐸𝑚𝑖𝑛 𝐸𝑚𝑖𝑛 𝐸𝑚𝑖𝑛 𝑡𝑝𝑒𝑎𝑘 𝐶𝑎𝑜
8th 𝑍𝑎𝑜 𝑅𝑚𝑣 𝐶𝑠𝑣 𝑅𝑚𝑣 𝑍𝑎𝑜
9th 𝑅𝑚𝑣 𝑍𝑎𝑜 𝑅𝑚𝑣 𝑍𝑎𝑜 𝑅𝑚𝑣

for the 𝑛 most sensitive parameters while the rest of the less sensitive

parameters are fixed at their true values. Consequently, the figures

allow the reader to assess how increasing or decreasing the number

of estimated parameters affect the parameter estimation error.

For the cost functions using clinical indices (I), all errors were
considerably larger when compared to the waveform based error es-
timates (II). For the subsequent plots only the parameter estimates
with the smallest cost functions, which were here defined to be less
than 125% of the smallest achieved cost function value, are included.
Limiting the selection of estimates to the best cost functions is common
practice when performing repeated estimates. This filtering improved
the clinical index based estimates for the subsets containing up to
four of the most sensitive parameters when all other parameters were
fixed at their true value, and made these comparable to the waveform
estimates, see Fig. 5. Small improvements were seen for most subsets
on the left hand side of the figure, but for subsets with more than
five parameters, there was no clear trend that the parameter estimates
improved.

All parameters of our model were estimated with good accuracy
when noise was omitted for the cost function in Eq. (10). For clinical
indices only the estimates of the four most sensitive parameters were
reasonably accurate. The maximal MAPE for the waveform parameter
estimates was on the order of 10−3%, while for clinical indices this was
order 102%, as shown in Fig. 5.

Fig. 6 shows little noticeable bias for parameter estimates based
on waveform data, though the estimates of 𝐶𝑠𝑣 and 𝑅𝑚𝑣 have minor
negative and positive bias, respectively. The estimates based on clinical
indices are all biased to a noticeable degree with especially large
positive biases for 𝐸𝑚𝑎𝑥, 𝐶𝑎𝑜, 𝐶𝑠𝑣, 𝐸𝑚𝑖𝑛 and 𝑍𝑎𝑜.

For the cost function in Eq. (9), when more than four parameters
were estimated, the accuracy was reduced and the worst cases yielded
an average error of over 100% for some of the least sensitive parame-
ters. Estimates for the four least sensitive parameters in the model: 𝐶𝑠𝑣,
𝐸𝑚𝑖𝑛, 𝑍𝑎𝑜, and 𝑅𝑚𝑣, generally displayed larger errors, emphasizing that
these parameters were challenging to estimate.

Fig. 7 shows the results of the SSRM for the same cost functions as
in Fig. 5, but with noise (III and IV). The noise reduced the accuracy
of estimates, especially for the waveform cost function.

Including either venous indices or waveform data as in cost func-
tions (11) (V) and (12) (VI) improved estimates for at least the seven
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Fig. 4. The plots display a comparison of the MAPE for the parameter estimates using cost functions (10) (left) and (9) (right). These results correspond to scenarios (II) and (I).
All 𝑁𝑠 estimates are presented in this graph. The bottom row of figures illustrate how the estimates change when you estimate all nine parameters at once and gradually fix one
by one parameter at their ‘‘true’’ or correct values. The top row illustrates the same procedure when the five least sensitive parameters are always fixed. The number of parameters
indicates how many parameters are estimated while the rest are fixed.

Fig. 5. The plots display a comparison of the MAPE for the parameter estimates using cost functions (10) (left) and (9) (right). These results correspond to scenarios (II) and (I).
Only the estimates with a cost function value below 125% of the smallest cost function found for each parameter subset were included. The bottom row of figures illustrate how
the estimates change when you estimate all nine parameters at once and gradually fix one by one parameter at their ‘‘true’’ or correct value. The top row illustrates the same
procedure when the five least sensitive parameters are always fixed. The number of parameters indicates how many parameters are estimated while the rest are fixed.

most sensitive parameters as seen in Fig. 8. The estimates of 𝐸𝑚𝑖𝑛 and
𝐶𝑠𝑣, which largely determine ventricular filling in the model, improved
noticeably for both cost functions. However, the cost function based
on clinical indices still resulted in estimates with substantially larger
errors in the majority of cases.

Figs. 9 displays the results found when 𝑡𝑝𝑒𝑎𝑘 was fixed at its correct
value and the subset selection method was performed only on the
remaining parameters (VII). A comparison of Fig. 9 and the left panel
of Fig. 7 reveals that the errors of the parameter estimates were not
substantially affected by fixing 𝑡𝑝𝑒𝑎𝑘. The same analysis was conducted
for 𝐶𝑠𝑣 (VIII), but in this case all estimates were improved when
estimating five or more parameters (compare Fig. 10 and the left panel
of Fig. 7). Most errors were reduced by an order of magnitude, with the
exceptions of 𝐸𝑚𝑖𝑛 and 𝑅𝑚𝑣 for which the improvements were between
14.9% and 88.4%.

One estimation case was performed where the noise added to the
data was varied for each estimation rather than the initial parameter
guesses (IX), see Figs. 11 and 13. Some negative biases were observed
for 𝑅𝑠𝑦𝑠 and 𝐶𝑠𝑣, while the least sensitive parameter 𝑅𝑚𝑣 exhibited a
large positive bias.

Fig. 12 shows the results of applying the SSRM to cost function (10),
but where fixed parameters were set at 30% above their true value (X).
Estimated errors were shown to increase as more parameters were left
out of the estimated subsets.

4. Discussion

We sought to evaluate the potential for estimation of personal car-
diovascular parameters for a lumped parameter model that may serve
as the basis for predicting long-term changes of the resting systemic
hemodynamics in an individual. In order to know that it is theoretically
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Fig. 6. The plots display a comparison of the MPE for the parameter estimates using cost functions (10) (left) and (9) (right). These results correspond to scenarios (II) and
(I). Only the estimates with a cost function value below 125% of the smallest cost function found for each parameter subset were included. The MPE metric gives an indication
of whether estimates are biased toward being higher or lower than the true value. The bottom row of figures illustrate how the estimates change when you estimate all nine
parameters at once and gradually fix one by one parameter at their ‘‘true’’ or correct value. The top row illustrates the same procedure when the five least sensitive parameters
are always fixed. The number of parameters indicates how many parameters are estimated while the rest are fixed.

Fig. 7. The plots display a comparison of the MAPE for the parameter estimates using cost functions (10) (left) and (9) (right) where 5% normally distributed noise is added to
the signals to which the model is fitted. These results correspond to scenarios (IV) and (III). Only the estimates with a cost function value below 125% of the smallest cost function
found for each parameter subset were included. The bottom row of figures illustrate how the estimates change when you estimate all nine parameters at once and gradually
fix one by one parameter at their ‘‘true’’ or correct value. The top row illustrates the same procedure when the five least sensitive parameters are always fixed. The number of
parameters indicates how many parameters are estimated while the rest are fixed.

possible to recover the model parameters at all we first performed a
structural identifiability analysis. The model was found to be locally
structurally identifiable, hence demonstrating that it is possible to find
at least one identifiable parameter vector for a given model output. As
the possibility of estimating the model parameters depends on the data
available, we compared an approach using only commonly measured
clinical quantities to more data rich approaches using waveform data
describing pressures and flows. Both types of data sets were synthet-
ically generated from simulations of a computer model. In addition,
we expected that attempting to estimate all parameters in the model
simultaneously might inhibit the quality of the parameter estimates,
so we applied the SSRM to investigate the benefits of fixing some of
the parameters to generic values, while estimating the remaining pa-
rameters. This performance of the parameter estimation was evaluated

by the SSRM for ten distinct combinations of measurement data and
constraints.

The results indicate that it is possible to estimate the most influen-
tial parameters to the aortic pressure output signal within an accuracy
of 10−5% using both cost functions (9) and (10), if the rest of the
parameters are set at their correct value. Introducing noise on the other
hand, worsens the accuracy for all parameters as seen in Fig. 7, yet the
time series results are still most reliable despite the added noise. These
results are also only achieved in one model realization, so how well this
result generalizes to other models is yet uncertain.

Gill et al. analyzed the appropriate step sizes for numerical dif-
ferentiation of functions with numerical errors and showed that the
step size should be larger than the square root of the expected rela-
tive error [39]. As the model is solved by a Runge–Kutta numerical

10



N.L. Bjørdalsbakke, J.T. Sturdy, D.R. Hose et al. Mathematical Biosciences 343 (2022) 108731

Fig. 8. The plots display the results of parameter the MAPE for the parameter estimates using cost function (10) (left) and (9) (right) for noisy data with added terms containing
information from the systemic venous pressure waveform. These results correspond to scenarios (VI) and (V). Only the estimates with a cost function value below 125% of the
smallest cost function found for each parameter subset were included. The bottom row of figures illustrate how the estimates change when you estimate all nine parameters at
once and gradually fix one by one parameter at their ‘‘true’’ or correct value. The top row illustrates the same procedure when the five least sensitive parameters are always fixed.
The number of parameters indicates how many parameters are estimated while the rest are fixed.

Fig. 9. The plots display the MAPE for the parameter estimates using cost function
(10) with noise, while always keeping parameter 𝑡𝑝𝑒𝑎𝑘 fixed at its true value. These
results correspond to scenario (VII). Only the estimates with a cost function value below
125% of the smallest cost function found for each parameter subset were included.
The bottom row of figures illustrate how the estimates change when you estimate all
nine parameters at once and gradually fix one by one parameter at their ‘‘true’’ or
correct value. The top row illustrates the same procedure when the five least sensitive
parameters are always fixed. The number of parameters indicates how many parameters
are estimated while the rest are fixed.

integration procedure with relative error tolerance set to 10−9, the
minimum step-size for numerical differentiation of the model output is
10−4.5. Consequently, it should not be expected to estimate parameters
to greater accuracy than this when using a numerical gradient based
optimization method. The results show the parameters are estimated
to the expected accuracy, well below any physically significant error
level.

The addition of noise reduced accuracy in the parameter estimates
based on waveform data, see the left hand side of Fig. 7. The four

previously well estimated parameters became biased when the model
was fitted to clinical indices, although still with high precision when
a subset of four or fewer parameters were estimated, as seen on the
right hand side of Fig. 7. When five or more parameters were estimated,
the noise did result in poorer estimates compared to the noiseless case
shown on the right hand side of Fig. 5. By further inspection, it emerged
that the waveform data estimates were more accurate than for clinical
indices when using noisy data in terms of average error, especially
when estimating only the most sensitive parameters.

Inclusion of venous information in both cost function classes proved
beneficial, especially for estimates concerning parameters important
pertaining to the filling phase of the heart, in this case 𝐶𝑠𝑣 and 𝐸𝑚𝑖𝑛.
This was not unexpected as more data in a compartment which is the
source of inflow for the heart should provide more information to these
parameters.

Fig. 7 shows that the average errors decreased substantially after 𝐶𝑠𝑣
was removed from the estimated subset. 𝐶𝑠𝑣 was the first parameter to
appear with errors on the scale of 102 when added to the estimated
subset. The results of fixing 𝐶𝑠𝑣 for all estimated subsets, can be seen
in Fig. 10. A substantial improvement in most estimation errors was
observed. Similarly to adding venous information to the cost functions,
estimation of the ventricular filling parameters improved, but also
estimation of some more sensitive parameters, indicating that this
parameter has a larger influence on the estimates of other param-
eters. Therefore, making accurate estimates for the central systemic
venous compliance 𝐶𝑠𝑣 can be an alternative to inconvenient pressure
measurements in the central veins.

An interesting observation can be made from Fig. 8 for the wave-
form data parameter estimates: As soon as 5 or more parameters are
selected in the estimated subset, the estimation error for all parameters
are practically constant and unperturbed by estimation of additional
parameters. This signifies that the deviation from true parameters is
sufficiently small, which according to the figure is 10% or less, such
that the estimation error in the least sensitive parameters does not
influence the other estimates in any way. It appears that the same
minimum is found in the cost function regardless of the additional
lesser sensitive parameters, and this must then mean the noise level
in the data limits more accurate optimization with respect to parame-
ters. For the large majority of parameters the error is well below 5%
which was the specified noise amplitude. Consequentially, if the venous
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Fig. 10. The plots display the MAPE for parameter estimates using cost function (10)
with noise, while always keeping parameter 𝐶𝑠𝑣 fixed at its true value. These results
correspond to scenario (VIII). Only the estimates with a cost function value below
125% of the smallest cost function found for each parameter subset were included.
The bottom row of figures illustrate how the estimates change when you estimate all
nine parameters at once and gradually fix one by one parameter at their ‘‘true’’ or
correct value. The top row illustrates the same procedure when the five least sensitive
parameters are always fixed. The number of parameters indicates how many parameters
are estimated while the rest are fixed.

Fig. 11. The plots display the MAPE for parameter estimates using cost function (10)
with 𝑁𝑠 = 50 different noise cases, but the same initial parameter guess for each
case. These results correspond to scenario (IX). Only the estimates with a cost function
value below 125% of the smallest cost function found for each parameter subset were
included. The bottom row of figures illustrate how the estimates change when you
estimate all nine parameters at once and gradually fix one by one parameter at their
‘‘true’’ or correct value. The top row illustrates the same procedure when the five least
sensitive parameters are always fixed. The number of parameters indicates how many
parameters are estimated while the rest are fixed.

pressure waveform is available, all parameters should be obtainable
to within 10% accuracy based on the noise sample used. Compared
to Fig. 12 where parameters are fixed at 30% above their true value,
but without noise and venous data we find errors of approximately

10% for most estimates when less than 7 parameters are estimated,
but some errors approach 100% as progressively fewer parameters are
estimated. Therefore, the estimation procedure seems more sensitive
to poor estimates for fixed parameters than to noise in the data. This
is even the case when the three least sensitive parameters are fixed at
their wrong values.

In Fig. 13 we observe that for most parameters, the estimation error
is averaged out and shows little or no bias for most parameters over
a larger number of noisy samples as one might expect for Gaussian
noise. The four least sensitive parameters do show some bias which
emphasizes that estimates of these cannot be trusted in general. In
Fig. 11 presenting MAPE, the errors are maximally 15.4% for the five
most sensitive parameters, and up to 88.1% for the next three most
sensitive parameters, and even over 103% for 𝑅𝑚𝑣. Therefore, noise can
have a large impact on a single cycle of data. However the estimate
error variance is for the most part quite low, so based on this it
appears that it is not the details of the different noise samples which
mainly dictate the estimation error, but rather the presence of normally
distributed noise of the given magnitude.

From our investigation it was also demonstrated that fixing param-
eters at wrong values will substantially affect estimates. We observed
that the estimation error fell in a range of 0.1%–100% for all param-
eters as seen in Fig. 7. Adding 30% to the fixed parameter values
was then determined to be a suitable level for comparison on average.
Fig. 12 shows that the estimation errors then fell in the range of 10−6%–
50% for most parameters in the model, regardless of which estimated
subset was considered. When all 9 parameters are estimated, none
are fixed at erroneous values. As more parameters were fixed, the
estimation error also grew rapidly. This was true even for a noise-
less case, implying that parameters set at wrong values may strongly
influence the other parameter estimates. To be able to personalize,
or calibrate this model means that the three or four least sensitive
parameters should be estimated or measured to high accuracy, before
the chosen least squares optimization methods can estimate the rest to
good accuracy, unless venous pressure data are available. Some of the
three least sensitive parameters can be estimated from pressure, flow
and/or volume measurements, but most often require measurements in
or around the left ventricle [40,41], which is costly and burdensome for
an individual. In the case of 𝐸𝑚𝑖𝑛 one may perhaps estimate this from
the end-diastolic pressure–volume relationship but there are not any
examples of this being demonstrated, that are known by the authors.

The SSRM was performed in the sequence prescribed by the pa-
rameter sensitivity ranking according to the aortic pressure time series
in Table 5, because this is among the most easily observed outputs to
predict and is therefore also used to constrain the cost function either as
a time series or as extrema values. The optimization approach presented
relies solely on the local Quasi-Newton optimization method TRRA, as
opposed to more computationally expensive global optimization meth-
ods such as for instance Markov Chain Monte Carlo methods, or genetic
algorithms [12]. Partial motivation for this work is to develop methods
where computational time is another parameter to be minimized and
is the reason why computationally cheaper algorithms are preferred in
this investigation. Other notions of sensitivity could have been chosen
to rank the parameters, but the total variance weighted averaged Sobol
indices were chosen in this instance. For the notions of sensitivity tested
the least sensitive three parameters were often the same. On the other
hand there were some variations among the more sensitive parameters,
but there were no dominating patterns.

Only for a limited subset of the most sensitive parameters is the local
optimization by TRRA robust for parameter estimation given that all
other parameters are fixed at their true values. Robust means here that
the results are practically independent of the initial parameter values,
and that the estimates are made to low error. The four least sensitive
parameters 𝐶𝑠𝑣, 𝐸𝑚𝑖𝑛, 𝑍𝑎𝑜 and 𝑅𝑚𝑣 could not be reliably estimated in all
cases as they were estimated with large errors. The conclusion must be
that the inclusion of these parameters makes the cost function very flat
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around the true minimum in parameter space and causes difficulties for
the numerical optimization method. Conclusions based on the estimates
of these parameters can therefore not be trusted in a majority of cases.
Counter intuitively, the second least influential parameter 𝑍𝑎𝑜 could
for cost functions using waveforms often be better estimated compared
to the other three least influential parameters. This may be explained
by limited resolution in the sensitivity analysis. For parameters of
sensitivities below 0.1 it is challenging to make an accurate ranking,
and hence 𝑍𝑎𝑜 might actually be more influential than the other three
parameters since they were all estimated to similar low values.

The data used in this analysis is purely synthetic, which in contrast
to real data exhibit no model discrepancy, and has no structured noise
or hidden bias. Still, in this perfect case it is not always possible to
fit the model to its own output data using the applied methods given
randomly sampled initial parameter guesses. This lends credence to
the methods presented by Colunga et al. and de Bournonville et al.
which emphasize that using good nominal values used as initial val-
ues for the optimization problem is necessary for accurate parameter
estimation [7,8]. To make the estimation scenario more realistic we
applied Gaussian noise to the output signals from the model. The
standard clinical method of measuring blood pressure is to measure the
systolic and diastolic blood pressure by cuff plethysmography and the
measurement uncertainty is widely regarded to be ±5mmHg. Using 100
mmHg as a reference scale for blood pressure and adding noise from
a normal distribution with 5% standard deviation the error should be
comparable and even introduce larger deviations at some points, mak-
ing this a realistic measurement error. During measurement of blood
flow velocity a slight misalignment of only 2 deg between measurement
probe and direction of blood flow may introduce large errors, so as a
general rule of thumb for Doppler velocity uncertainty is ±10%. As we
have observed when comparing the results from using noiseless to noisy
data the results are majorly affected by adding 5% normally distributed
noise, and we hypothesize that knowing personalized parameters accu-
rately is essential to make personalized predictions about an individual.
However, it would also be beneficial if measurements could be made
more readily available and less burdensome to the patient such that
more data can be collected and make it easier to perform analysis for
an individual at all, rather than be limited by not having any data to
attempt this.

This study can be described as a practical identifiability study
where we attempted to personalize a model to a given set of data
under both ideal and noiseless conditions. The structural identifiability
was demonstrated and supported by the demonstration of practically
recovering the true parameters in the noiseless case using waveforms.
The other scenarios investigated in this paper showed that the model
was not practically identifiable by the given set of measurements with
noise. By application of the STRIKE-GOLDD software tool we showed
that the model was locally structurally identifiable using aortic pressure
and flow waveforms. Local structural identifiability implies that there
may be an infinite set of solutions to the problem, yet we seem to
find the correct cost function minimum in the noiseless case using
waveforms which may support that there is only one solution in the
chosen domain of valid parameters.

The estimation results were chosen by picking the estimates with
the best cost function values, and therefore the limit was set at a
cost function value 125% higher than the lowest cost function value.
Controlling the cost function by picking the best results are common
practice in optimization problems. The result, however, is that in some
cases depending on the variation in the results all results are included
if all estimates yield an equally good cost function value and the
operation means nothing is done. In other cases the limit may be too
strict and only a few of the results are used in the final average. This
also means that the standard deviation bars are calculated based on
little data and may be uncertain.

In most of the results we observed uneven improvement in estimates
as the subset size of estimated parameters decreased. Some of the

Fig. 12. The plots display model fits using cost function (10), but where fixed
parameters are fixed at 30% above their true value. These results correspond to scenario
(X). Only the estimates with a cost function value below 125% of the smallest cost
function found for each parameter subset were included. The bottom row of figures
illustrate how the estimates change when you estimate all nine parameters at once
and gradually fix one by one parameter at their ‘‘true’’ or correct value. The top row
illustrates the same procedure when the five least sensitive parameters are always fixed.
The number of parameters indicates how many parameters are estimated while the rest
are fixed.

Fig. 13. The plots display the MPE for parameter estimates using cost function (10)
with 𝑁𝑠 different noise cases, but the same initial parameter guess for each case. Only
the estimates with a cost function value below 125% of the smallest cost function
found for each parameter subset were included. The MPE metric gives an indication
of whether estimates are biased toward being higher or lower than the true value.
The bottom row of figures illustrate how the estimates change when you estimate all
nine parameters at once and gradually fix one by one parameter at their ‘‘true’’ or
correct value. The top row illustrates the same procedure when the five least sensitive
parameters are always fixed. The number of parameters indicates how many parameters
are estimated while the rest are fixed.

uneven variation may be explained by the addition of noise and finite

points of the waveform data. The minimum which the optimization

algorithm finds for noisy data may not correspond exactly to the
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solution defined by 𝜽𝐭𝐫𝐮𝐞. Therefore, as different parameter subsets
are optimized for the perturbed optimal solution the estimates may
unevenly approach more accurate estimates as the metric used can
compare a cost function minimum which differs slightly from the
minimum defined by the noiseless waveforms.

The results of our study are somewhat in contrast to prior works
on parameter estimation and subset selection for cardiovascular mod-
els [36,42] which propose that fixing insensitive and some strongly
correlated parameters may improve parameter estimates and model
fits. Some of these methodologies have been tested primarily on fitting
models to experimental or clinical data, and have not been evaluated
on synthetic data sets where the true values of model parameters can
be directly known. Many such studies argue that parameter estimates
show good convergence to the estimated values (e.g. Pant et al. [10])
and some have employed statistical approaches to quantify uncertainty
and variability of the parameter estimates such as Colunga et al. and
Marquis et al. [6,8]. These studies have estimated lower uncertainties in
parameter estimates than have been found in our synthetic approach,
but use more sophisticated optimization methods. While the models,
measurements, and parameter estimation methods differ in numerous
ways, the patterns in these results may well be a general feature of
lumped parameter circulatory models.

5. Conclusion

We have applied the stepwise subset reduction method (SSRM) to a
closed-loop lumped parameter model in order to investigate how well
this model can be calibrated using limited, in this case synthetic, data.
Consequentially we have demonstrated a framework for assessing the
accuracy and precision of parameter estimation for different subsets
of model parameters. We first performed a structural identifiability
analysis which revealed the model to be structurally identifiable with
waveform data from the aorta. The local optimization methods applied
in this analysis were sensitive to initial parameter guesses, and we
investigated the effect on the precision and accuracy of estimated
parameters. We demonstrated, that using waveform data as opposed to
scalar clinical indices improves the accuracy of parameter estimates,
and the waveform data cost functions are far more robust in terms
of providing the best estimates despite the introduction of normally
distributed noise to the data. Standard local optimization methods can
be used for model calibration of the five most sensitive parameters in
the presented simple-lumped parameter model of the systemic circu-
lation and left ventricle. The most sensitive parameters are generally
recovered with errors less than 10% given that the other parameters
are fixed at correct values, and noise is normally distributed at 5%.
We also showed that when parameters were fixed at 30% above their
true value, estimation error can be comparable to the error introduced
by noise even if only the three least sensitive parameters are fixed
at erroneous values. The four least sensitive parameters could not be
generally reliably estimated by this method without more information,
and no conclusions should be based on estimates of these parameters.
The three least sensitive parameters especially should be considered for
measurements. The addition of venous information to the cost function
further improved parameter estimates, and after analysis by the SSRM
the central venous compliance of the systemic circulation was found to
be a positive influence on the less sensitive parameter estimates if it
could be measured and fixed at an accurate value.
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Appendix A. Model equations

The model is comprised as a system of nonlinear ODEs describing
the volume state variable of the three model compartments. The dy-
namic elastance function of the heart contributes a source term to the
system of ODEs.

𝑑𝑉𝑠𝑎
𝑑𝑡

= 𝐶𝑠𝑎
𝑑𝑃𝑠𝑎
𝑑𝑡

= 𝑄𝑙𝑣𝑎𝑜 −𝑄𝑠𝑦𝑠

𝑑𝑉𝑠𝑣
𝑑𝑡

= 𝐶𝑠𝑣
𝑑𝑃𝑠𝑣
𝑑𝑡

= 𝑄𝑠𝑦𝑠 −𝑄𝑠𝑣𝑙𝑣

𝑑𝑉𝑙𝑣
𝑑𝑡

= 𝑄𝑠𝑣𝑙𝑣 −𝑄𝑙𝑣𝑎𝑜

(A.1)

𝑉𝑠𝑎, 𝑉𝑠𝑣 and 𝑉𝑙𝑣 are the stressed blood volumes of the systemic
arteries, systemic veins and left ventricle respectively. 𝐶𝑠𝑎 and 𝐶𝑠𝑣 are
the compliance values of the systemic arteries and veins, while 𝑃𝑠𝑎
and 𝑃𝑠𝑣 are the corresponding pressures of these compartments. 𝑄𝑙𝑣𝑎𝑜
denotes the volume blood flow from the left ventricle to the systemic
arteries, 𝑄𝑠𝑦𝑠 is the flow between the systemic arteries and veins, and
finally 𝑄𝑠𝑣𝑙𝑣 is the flow from the veins to the left ventricle. The two
remaining state variables, pressure and flow, are mainly modeled by
linear relationships as expressed below

𝑉𝑠𝑎 = 𝐶𝑠𝑎𝑃𝑠𝑎

𝑉𝑠𝑣 = 𝐶𝑠𝑣𝑃𝑠𝑣

𝑃𝑙𝑣 = 𝐸𝑙𝑣(𝑡)𝑉𝑙𝑣 + 𝑃𝑡ℎ(𝑡)
𝐸𝑙𝑣(𝑡) = (𝐸max − 𝐸min)𝑒(𝑡) + 𝐸min

𝑃𝑎𝑜 = max [𝑃𝑠𝑎, 𝑃𝑙𝑣]

𝑄𝑙𝑣𝑎𝑜 = 𝐼(𝑃𝑙𝑣 > 𝑃𝑠𝑎)
𝑃𝑙𝑣 − 𝑃𝑠𝑎

𝑍𝑎𝑜

𝑄𝑠𝑣𝑙𝑣 = 𝐼(𝑃𝑠𝑣 > 𝑃𝑙𝑣)
𝑃𝑠𝑣 − 𝑃𝑙𝑣

𝑅𝑚𝑣

𝑄𝑠𝑦𝑠 =
𝑃𝑠𝑎 − 𝑃𝑠𝑣

𝑅𝑠𝑦𝑠
.

(A.2)

𝑃𝑎𝑜 indicates aortic pressure, while 𝑃𝑙𝑣 denotes left ventricular
pressure. 𝑍𝑎𝑜 is the characteristic aortic impedance while 𝑅𝑠𝑦𝑠 and 𝑅𝑚𝑣
are total systemic vascular and mitral valve resistances. The indicator
function 𝐼(𝑥) has the value 1 when the argument 𝑥 is true and 0 when
𝑥 is false. The activation function 𝑒(𝜏) is defined as

𝑒(𝜏) = 𝛼 ×
(𝜏∕𝑎1)𝑛1

1 + (𝜏∕𝑎1)𝑛1
× 1

1 + (𝜏∕𝑎2)𝑛2
(A.3)

where 𝜏 is position in the cardiac cycle between the end of the last
diastolic period and the end of the next diastolic period 𝜏 = 1. The
parameters 𝑎1 and 𝑛1 determine the shape of contraction and 𝑎2 and
𝑛2 determine the shape of relaxation of the elastance curve and the
timing of peak elastance. The choice of values for these parameters are
identical to those of Stergiopulos et al. [13]. We wrote the parameter
values for 𝑎1 and 𝑎2 in terms of the ratio of

𝑡𝑝𝑒𝑎𝑘
𝑇 , and set 𝛼 = 1.672, to

ensure normalization of the curve. 𝑡𝑝𝑒𝑎𝑘 describes the time of peak ven-
tricular elastance, and therefore determines when the left ventricular
elastance 𝐸𝑙𝑣(𝑡) reaches 𝐸𝑚𝑎𝑥. The intrathoracic pressure function 𝑃𝑡ℎ
describes the external pressure effects on the ventricular muscle aside
from pressure gradients inside the blood vessels and is here modeled
as a constant of 𝑃𝑡ℎ(𝑡) = −4 mmHg. Otherwise the parameters are as
defined by Table 1.

The 𝑉𝑡𝑜𝑡 parameter describes total stressed volume and is enforced
by setting initial compartment volumes and pressures such that the
total stressed volume equals the parameter value. The model was
demonstrated to conserve the volume and hence the total blood volume
will not change. The initial volumes and pressures are set according to
the equations

𝑉𝑎𝑜,0 = 𝐶𝑎𝑜𝑃𝑎𝑜,0, and

𝑃𝑠𝑣,0 =
𝑉𝑡𝑜𝑡 − 𝑉𝑎𝑜,0 − 𝑉𝑙𝑣,0

𝐶𝑠𝑣

(A.4)

14



N.L. Bjørdalsbakke, J.T. Sturdy, D.R. Hose et al. Mathematical Biosciences 343 (2022) 108731

Table B.6
All model parameters that are assigned to be personalizable are listed along with their
upper and lower bounds as chosen for this study. The sampling value is the mean value
of the normal distribution from which initial parameter guesses are sampled.
Parameter Upper bounds Lower bounds Sampling value Units

𝐶𝑎𝑜 10.0 0.5 1.0 mL
mmHg

𝐶𝑠𝑣 30.0 0.5 10.0 mL
mmHg

𝐸𝑚𝑎𝑥 5.0 0.9 2.0 mmHg
mL

𝐸𝑚𝑖𝑛 1.0 0.0 0.06 mmHg
mL

𝑅𝑚𝑣 0.1 0.0 0.003 mmHg s
mL

𝑅𝑠𝑦𝑠 3.0 0.5 1.0 mmHg s
mL

𝑇 0.85 0.85 0.85 s
𝑡𝑝𝑒𝑎𝑘 0.75 0.05 0.32 –
𝑉𝑡𝑜𝑡 2000. 50. 250. mL
𝑍𝑎𝑜 1.0 0.0 0.1 mmHg s

mL

Table B.7
The scaling factors 𝐾 which are used to balance and
approximately normalize the terms in the specified
cost functions. Subscripts: p — Aortic pressure wave-
form, q — Aortic flow, PP — pulse pressure, psys
— Systolic aortic pressure, pdia — Diastolic aortic
pressure, psvsys — Systolic averaged venous pressure,
psvdia — Diastolic averaged venous pressure, psv —
Averaged venous pressure waveform, SV — stroke
volume, and qmax — maximal aortic flow.
Symbol Value Unit

𝐾𝑝 100.0 mmHg
𝐾𝑞 500.0 mL

s
𝐾𝑃𝑃 40.0 mmHg
𝐾𝑝𝑠𝑦𝑠 120.0 mmHg
𝐾𝑝𝑑𝑖𝑎 80.0 mmHg
𝐾𝑝𝑠𝑣𝑠𝑦𝑠 20.0 mmHg
𝐾𝑝𝑠𝑣𝑑𝑖𝑎 20.0 mmHg
𝐾𝑝𝑠𝑣 20.0 mmHg
𝐾𝑆𝑉 100.0 mL
𝐾𝑞𝑚𝑎𝑥 500.0 mL

where the initial aortic pressure is set to 𝑃𝑎𝑜,0 = 100 mmHg, and initial
left ventricular volume is set to 𝑉𝑙𝑣,0 = 100 mL. The initial venous
pressure is denoted by 𝑃𝑠𝑣,0.

Appendix B. Algorithm specification

The algorithm applied for computations within this study was cho-
sen to be the Trust Reflective Region Algorithm as implemented in
SciPy version 1.4.1 [24].

The function scipy.optimize.least_squares() function is applied given
the arguments listed below and a initial parameter guess. The reference
parameters for the initial parameter guesses are listed in Table 1 and
are sampled as vectors with normally distributed noise with a standard
deviation of 30% as per Eq. (13). Each parameter is assigned its own
random perturbation, except 𝑇 which is always fixed. The parameters
are also assigned upper and lower bounds, which are set to the values
given in Table B.6. The initial parameter guesses are limited to fall
within these bounds.

Scaling factors used to balance the different components in the cost
functions as specified in Section 2 are listed in Table B.7.

Otherwise some function specific parameters for the accuracy of the
method are set as 𝑥𝑡𝑜𝑙 = 2.3 ⋅ 10−16, 𝑓 𝑡𝑜𝑙 = 2.3 ⋅ 10−16, 𝑔𝑡𝑜𝑙 = 2.3 ⋅ 10−16

and 𝑑𝑖𝑓𝑓 _𝑠𝑡𝑒𝑝 = 1. ⋅ 10−3.
For sampling noise applied to time series signal according to for-

mula (3) the numpy seed, np.random.seed() function was initialized at
the value 87654321. The seed was set at 112233, for sampling initial
parameter guesses, 𝜃𝑠𝑎𝑚𝑝𝑙𝑒𝑑 , as prescribed by formula (13).
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Abstract 

Background: Physics-based cardiovascular models are only recently being considered 
for disease diagnosis or prognosis in clinical settings. These models depend on param-
eters representing the physical and physiological properties of the modeled system. 
Personalizing these parameters may give insight into the specific state of the indi-
vidual and etiology of disease. We applied a relatively fast model optimization scheme 
based on common local optimization methods to two model formulations of the left 
ventricle and systemic circulation. One closed-loop model and one open-loop model 
were applied. Intermittently collected hemodynamic data from an exercise motiva-
tion study were used to personalize these models for data from 25 participants. The 
hemodynamic data were collected for each participant at the start, middle and end of 
the trial. We constructed two data sets for the participants, both consisting of systolic 
and diastolic brachial pressure, stroke volume, and left-ventricular outflow tract velocity 
traces paired with either the finger arterial pressure waveform or the carotid pressure 
waveform.

Results: We examined the feasibility of separating parameter estimates for the indi-
vidual from population estimates by assessing the variability of estimates using the 
interquartile range. We found that the estimated parameter values were similar for the 
two model formulations, but that the systemic arterial compliance was significantly 
different ( p < 10

−6 ) depending on choice of pressure waveform. The estimates of 
systemic arterial compliance were on average higher when using the finger artery 
pressure waveform as compared to the carotid waveform.

Conclusions: We found that for the majority of participants, the variability of param-
eter estimates for a given participant on any measurement day was lower than the 
variability both across all measurement days combined for one participant, and for the 
population. This indicates that it is possible to identify individuals from the population, 
and that we can distinguish different measurement days for the individual participant 
by parameter values using the presented optimization method.
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models, Parameter variability
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Background
Cardiovascular disease is a leading cause of loss of quality of life and premature death 
worldwide  [1]. Although much of the pathophysiology is known, cardiovascular dis-
ease typically progresses over several years before detectable, and then often severe, 
symptoms emerge. Furthermore, subsequent prediction of the cardiovascular response 
and determining the benefits of early intervention remain challenging. Computational 
modeling has been proposed, by several engineers and researchers, to improve early 
detection and treatment of cardiovascular disease  [2–4]. These models parallel similar 
applications in engineering. However, one of the main issues in medical applications 
is the estimation of model parameter values representing an individual patient (model 
personalization) [4].

Previous research has shown promising results for personalizing cardiovascular 
models [5–12] or predicting intervention effects in settings of localized cardiovascular 
disease and critical care  [13, 14]. In this work, we investigated the application of such 
models as a tool for monitoring of the left ventricle and systemic circulation in appar-
ently healthy adults at risk of developing cardiovascular disease. The parameters of 
hemodynamic models represent mechanical properties of the heart and blood vessels, 
such as contractility, compliance, and resistance, and their estimation can be seen as 
low-level phenotyping. Longitudinal monitoring of subtle changes in individual hemo-
dynamics may provide means for early detection of novel risk factors and cardiovascu-
lar disease progression, which may otherwise be ignored or undetected. Furthermore, 
hemodynamic modeling may be used to predict changes to a given stimuli to determine 
the best course of treatment.

Various approaches for personalizing cardiovascular models have been demon-
strated  [5–12]. We focused on an approach for improving screening of apparently 
healthy adults at risk of cardiovascular disease in clinical practice. In this context, 
we identified three main factors influencing the choice of model and personaliza-
tion method. First, we considered the cardiovascular physiology of interest which was 
defined by targeted model outputs such as central blood pressure, ventricular and aor-
tic blood flow. Second, the objective of widespread hemodynamic monitoring limits the 
feasibility of acquiring detailed anatomical data on vascular networks, and thus, we con-
sidered which data may be available in a realistic clinical setting. We focused on models 
and personalization methods that can be accomplished from widely available non-inva-
sive clinical measurements, such as echocardiography and continuous blood pressure 
monitoring. Third, we considered model performance in terms of precision, accuracy, 
and predictive power. A main consideration was that increased model complexity may 
give a better representation of underlying mechanisms, but requires more data to con-
strain the additional parameters [3, 15]. Another consideration, of relevance to clinical 
practice, was the computational complexity and time cost of evaluating more sophisti-
cated models. Indeed, increased model complexity becomes particularly problematic in 
the personalization process as computational demands for estimation of personalized 
parameters can increase. Additionally, a more complex model with more personalizable 
parameters increases uncertainty in model outputs [3]. We investigated two effectively 
minimal models of the cardiovascular system consisting of lumped parameter repre-
sentations of the left ventricle and the systemic circulation in a closed- and open-loop, 
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respectively. In summary, the minimal approach in this work was motivated by the car-
diovascular physiology of interest, the limited clinical data, and the long-term goal of 
enabling personalized predictions in clinical practice without a large additional burden 
to the patient and healthcare provider.

In this work, we developed a computationally efficient approach to personalize two 
minimal models based on numerical optimization to adapt the model outputs to meas-
ured data. Our approach is presented as a computationally cheaper method compared 
to more complex global methods. Simultaneously, we used an ensemble of estimates to 
account for uncertainty in the initial parameter estimates. We evaluated this modeling 
and personalization approach with available data from 25 individuals, with initially low 
physical activity levels, participating in a pilot study investigating the effects of physical 
activity self-monitoring on blood pressure. The participants were given advice on how 
much physical activity they should aim to engage in over the course of 12 weeks while 
monitoring their activity by wrist-worn heart rate sensors. Clinical measurements of 
blood pressure, volume, and flows were acquired at the beginning, middle, and end of 
the intervention period to detect potentially non-linear parameter changes. This study, 
similarly to the work of [16], investigates the change of parameters throughout an inter-
vention period, which could give more insight into progression of disease or therapy. 
However, Audebert et al. focus on a parameter in response to disease progression in rats, 
while we monitor exercise as hypertension therapy in humans.

Our primary objective was to find personalization methods which could reliably esti-
mate model parameter values specific for each participant and measurement day. Our 
evaluation of the parameter estimates used the relative variability of individual param-
eter estimates in comparison to the variation of parameter estimates for all participants. 
To this end, we express variability as the interquartile parameter range normalized by 
the median and refer to it as the interquartile range (IQR). Furthermore, we evaluated 
the consistency in parameter estimates from the closed- and open-loop models and 
using various pressure waveforms. The model output of primary interest was the cen-
tral aortic pressure wave for monitoring of medical conditions such as hypertension. In 
summary, this study investigates the feasibility of using lumped parameter models with 
different data to detect personalized changes in model parameters after 6 to 12 weeks of 
exercise.

Method
In this work, we used data on brachial arterial pressure, finger arterial pressure, pulse 
wave velocity (PWV), and volumetric flow in the left-ventricular outflow tract (LVOT) 
before and after 6 and 12 weeks of physical activity.

Study design, setting, and participants

Personal Activity Intelligence (PAI) is a personalized and relative metric of exercise 
frequency, duration, and intensity based on heart rate monitoring and an accumulated 
score of ≥ 100 PAI/week is associated with higher cardiorespiratory fitness and lower 
cardiovascular mortality [17, 18]. We used data from a pilot randomized controlled trial 
to assess whether a 12-week intervention with PAI monitors increase physical activity 
and reduce 24-h ambulatory blood pressure in adults with elevated blood pressure [19]. 
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A secondary aim of the trial was to collect data for computational models describing 
cardiovascular remodeling of physical activity. The data provided varied opportunities 
for personalizing models, and this work outlines our approach for model personaliza-
tion. The trial was approved by Regional Committee on Medical and Health Research 
Ethics of Norway (Identifier: 2019/1084) and preregistered on clinicaltrials.org (Identi-
fier: NCT 04151537).

Data collection

All hemodynamic measurements were collected at pre- (baseline), mid- (6 weeks), and 
post-intervention (12 weeks), denoted 1, 2, and 3 as superscripts in the formulations, 
respectively.

Physical activity monitoring

To assess physical activity level at baseline and during the whole 12-week intervention 
period, all participants were provided a wrist-worn heart rate monitor without a dis-
play (LYNK2). The monitor automatically processed raw heart rate data to an aggre-
gated weekly PAI score. The baseline period lasted one initial week directly before the 
intervention period. Twenty-six initially inactive participants (< 50 PAI/week based 
on self-reported physical activity) with elevated blood pressure (systolic ≥ 130 mmHg 
and/or diastolic ≥ 80 mmHg) were randomized 1:1 to an active intervention or passive 
control. Participants in the active intervention were provided with a mobile application 
for self-monitoring of PAI score and were instructed to obtain and maintain ≥ 100 PAI/
week. Participants in the passive control were recommended to follow the World Health 
Organization’s physical activity guidelines of 150 min of moderate intensity or 75 min of 
vigorous intensity activity or any combination thereof per week [20].

Blood pressure recordings

Brachial and finger pressure were measured with non-invasive cuff-based devices. Bra-
chial pressure measurement yielded momentaneous measurements of systolic and dias-
tolic blood pressures, while the finger pressure measurements provided continuous 
waveforms.

Brachial pressure was recorded in two ways. First, brachial pressure was assessed in 
the sitting position with an automatic blood pressure monitor (TangoM2, SunTech Med-
ical Inc) at the test station, which is from this point on referred to as office blood pres-
sure. Second, brachial pressure was measured with a 24-h ambulatory blood pressure 
monitor (Oscar 2 model 250, SunTech Medical Inc), which is abbreviated to ABPM. We 
used the average systolic and diastolic blood pressure during waking hours in the data 
analyses.

Finger arterial pressure was measured in the left lateral recumbent position using 
Finometer PRO (FinaPres) for 4 of the participants and Non-Invasive Blood Pres-
sure Nano (FinaPres) for the remaining participants. We synchronized all finger artery 
recordings with LVOT flow obtained with echocardiography.
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Echocardiography

All participants underwent three full echocardiographic assessments (Vivid E95, Ving-
Med). Velocity flow trace in the LVOT and stroke volume (SV) from the left ventricle 
were the considered most relevant measurements. Traces of LVOT flow was synchro-
nized with finger pressure for at least three heart cycles. The first cycle was assumed to 
be less prone to noise and extracted as the sample cycle. We converted the velocity trace 
as the volumetric flow in units of milliliters per second (mL/s) to be compatible with 
the model formulation. Stroke volume was computed from 4D measurement of the left 
ventricle which was automatically segmented to determine SV and averaged over multi-
ple heart cycles using EchoPAC (GE Healthcare). Stroke volume was used to rescale the 
LVOT flow cycle integral such that the cycle sample corresponded to the volume meas-
ured in 4D, which we have assumed to be a more accurate and stable measure of the SV 
as it was automatically averaged over multiple heart cycles.

Applanation tonometry

Pulse wave velocity was acquired by applanation tonometry (SphygmoCor CvMS v9, 
AtCor Medica). The PWV was estimated by monitoring the carotid and femoral pres-
sure waves and computing the time of pulse propagation from the ventricle to the two 
points. Uncalibrated pressure cycles are reported as an image with marker points for 
each QRS complex. We extracted carotid pressure waveforms from the tonometry 
traces. The cyclic waveform data points were digitized using WebPlotDigitizer [21]. We 
used carotid and finger pressure waveform data for our model optimizations as continu-
ous blood pressure data have been shown to give better estimates than using momenta-
neous measurements using synthetic data [22].

Data preprocessing

The data preprocessing described in this section and the data analyses described in the 
subsequent sections were executed in Python (Version 3.9).

Finger pressure

Arterial finger pressure was synchronized to the LVOT flow signal to the precision of 
the closest heart beat for all three aortic flow measurement locations. The flow data were 
interpolated to match the time points of the pressure recording to ensure the same fre-
quency and enable applying a standard numeric solver to the paired data. The pressure 
cycle was rescaled to match ambulatory blood pressure to use the finger pressure wave-
form as a proxy of more central waveforms.

Tonometry traces

The tonometry traces were of varying quality and we assessed all cycles manually before 
determining which to include in the analyses. The waveforms were assessed visually and 
discarded if they were obviously distorted, lacked any signs of the dicrotic notch plateau, 
or did not represent complete heart cycles. The remaining cycles, each representing a 
heartbeat, were normalized to a uniform scale, averaged, and subsequently scaled to 
match ambulatory blood pressure. The cycle lengths were averaged to estimate the heart 
rate, and the final pressure cycle was standardized to this heart rate.
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Pressure and flow waveform alignment

None of the collected pressure and flow waveforms were collected at the same sam-
pling rate which was required by the chosen estimation algorithm. Matching time 
points ensures equal weighting of the two waveform signals due to number of con-
tributing residuals in an optimization context. When pairing flow and the finger pres-
sure signals, the heart cycle was determined by identifying the distance between start 
of upstroke for the first flow cycle and to the next start of upstroke. These time points 
were then used to extract a corresponding pressure cycle from the continuous pres-
sure recording. The flow signal was linearly interpolated to match the time points of 
the finger pressure. For the carotid waveforms, the data with the largest mean inter-
point distance in time had their measurement points rearranged to be evenly distrib-
uted over the corresponding heart cycle. Afterwards, both pressure and flow signals 
were interpolated to the new uniformly distanced time points. The number of total 
data points for the flow and carotid pressure waveforms were often comparable and 
therefore the number of total discretized points were not changed considerably in 
most cases due to interpolation. All pressure measurements were linearly rescaled 
so that the maximum and minimum of the waveform matched the ambulatory blood 
pressure systolic and diastolic values. However, in a single set of measurements the 
ambulatory blood pressure was missing and office blood pressure was used instead.

In both cases, the flow cycle length in time was rescaled to have the same heart 
rate as the pressure sample, and to have the same SV as recorded in 4D echocardi-
ography mode. In cases where 4D SV were missing, we used the SV calculated by 
EchoPac from the LVOT flow. All pressure and flow cycles were aligned to start at 
systolic upstroke.

Models

In this work, we applied two models of the left ventricle and systemic circulation. One 
closed-loop model in which the venous pressure and volume was estimated as a model 
prediction and one open-loop model which assumed fixed venous pressure and left atrial 
pressure. The parameters chosen for personalization in our models are shown in Table 1.

Closed‑loop model

The simplified closed-loop model used for personalization has been presented by 
Bjørdalsbakke et al. [22], and is based on similar models by Segers, Smith and Stergio-
pulos et al. [2, 23–26]. An illustration of our version of the model is provided in Fig. 1.

The closed-loop model is described by a system of differential equations characterizing 
the behavior of the stressed volumes of the ventricle, arteries, and veins. All flows were 
computed as the pressure gradient across resistances between the model compartments. 
Each separate compartment was modeled using a linear relationship between pressure 
and volume. See “Model equations” section for the full mathematical model description.

Open‑loop model

The open-loop model formulation is identical to the closed-loop model, except that 
the venous compartment is removed. This means the venous compliance parameter 
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is replaced by a fixed venous pressure value, which in turn means that the total 
stressed blood volume parameter fluctuates. The model is identical to the one used 
by Stergiopulos et  al. [24], but we set the constant venous pressure to Psv = 6.0 
mmHg, which is a value within the range of a normal central venous pressure (CVP) 
[27, 28]. See Fig. 1 for an illustration of the model. Additional details of the math-
ematical description can be found in “Model equations” section.

Model output

The model outputs such as pressure and flow are denoted as y(t, θ) to emphasize 
that each output varies with time t and the parameter vector θ . From these model 
predictions, estimates of clinical measurements can be derived. The model predic-
tions were computed numerically using SciPy’s implementation of the 4th-order 
Runge–Kutta (RK4) method to integrate the differential equations  [29]. The model 
was solved for 10 heart cycles, and the tenth cycle was taken as the model prediction.

Fig. 1 a The closed-loop, lumped parameter model of the left ventricle, systemic arteries, and veins. b 
The open-loop lumped parameter model of the left ventricle and systemic arteries. The circuit equivalent 
formulation of the models are depicted with the pressures and most of the mechanical parameters used to 
describe the systemic circulation. The venous compartment is volumeless and only partially described in the 
open-loop model. Adapted from Bjørdalsbakke et al. [22], and used under CC-BY 4.0
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Parameter estimation

The inference method for the parameters was based on a local optimization method, 
similar to the work outlined in [22]. We preferred a local optimization method as it is 
most feasible to apply to routine screening in clinical practice as global methods often 
demand higher computational costs. The SciPy implementation of the Trust-Region 
Reflective Algorithm (TRRA) was chosen as it supports the use of bounds for differ-
ent parameters [29], which can constrain the parameter space to more physiologically 
realistic parameters.

Both models take a vector of parameters θ and generate outputs y(tk , θ) at time 
point k. A real measurement at the same time point can be described as being com-
posed by this model output and other terms of the form

where Ek is a measurement error or noise. However, to infer the parameters which 
reproduce a measured set of data, a problem on the form

must be solved. Here, J is a cost function which characterizes the optimization problem. 
In this work, we focused on non-linear least squares optimization.

The TRRA is dependent upon a set of initial parameter guesses θ where the ith compo-
nent of the vector is θi . We found personalized parameter estimation by applying the TRRA 
in a five-step procedure. In short, the procedure can be described as follows: 

1 Use the TRRA to make 30 parameter estimates from 30 different sets of initial 
guesses.

2 Take the initial parameter guess which yields the lowest cost function value estimate 
and create a new uniform distribution centered on these parameter values.

3 Make 20 new initial guesses based on the best previous guess and produce 20 new 
sets of estimates, we call this set of parameters �step2.

(1)ymk = y(tk , θ)+ Ek ,

(2)ˆθ = arg min J (θ)

Table 1 The closed-loop model parameters are listed with their corresponding symbols and units. 
The same parameters are used to describe the open-loop model except for Csv and Vtot

Symbol Description Unit

Cao Systemic arterial compliance mL
mmHg

Csv Systemic venous compliance mL
mmHg

Emax Maximal left ventricular elastance mmHg
mL

Emin Minimal left ventricular elastance mmHg
mL

Rmv Mitral valve resistance mmHg s
mL

Rsys Total peripheral resistance mmHg s
mL

T Heart period s

tpeak Time of peak ventricular elastance s

Vtot Total stressed blood volume mL

Zao Characteristic impedance of the aorta mmHg s
mL
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4 Make a selection based on the best cost function values from Step 3, �p,d,k
filtered , where k 

denotes the kth filtered estimate, and p refers to participant, while d represents pre-, 
mid-, and post-intervention measurement days encoded as 1, 2, and 3.

5 Compute the final parameter estimate as the mean of the estimates from Step 3, such 
that ˆθp,dmean,i =

1
Nk

∑
k �

p,d,k
filtered,i . Nk is the number of remaining estimated parameter 

vectors in �p,d
filtered after filtering.

To find the best parameter estimates, guesses for each component of the parameter vec-
tor were sampled from a uniform distribution with a lower bound θlower,i and upper bound 
θupper,i . Consequently, we sampled the initial parameter guesses in Step 1 as

where U(a, b) is a continuous uniform distribution, with upper and lower bound a and 
b. Thirty sets of initial parameters sets were sampled and used to optimize the cost func-
tion J (θ) . In Step 2, the initial parameter guess resulting in the optimization with the 
smallest cost function value was taken as a new reference set θmin to sample 20 more 
guesses, in Step 3, from a uniform distribution with limits 10% below and above the 
components of the reference parameter set as in

This procedure resulted in multiple sets of estimated parameters ˆθ which in Step 4 were 
filtered by only accepting the results with a cost function value smaller than or equal 
to the mean value of the 20 optimized parameter sets from Step 3. Lastly, in Step 5, the 
mean of the selected parameter sets were taken as the final parameter estimate for par-
ticipant p on measurement day d, ˆθ

p,d

mean.
The cost function was designed to adapt the model to the pressure and flow waveforms, 

SV, and ambulatory blood pressure. If we let Pm
k  denote the measured pressure and Pao,k 

denotes the model output aortic pressure at time point k, while Qm
k  and Qk denote the aortic 

flow, then the cost function can be expressed as

Here, N is the number of time points in the waveform sample, Psys and Pdia are the sys-
tolic and diastolic values of the pressure waveform, SVm is the SV corresponding to the 
area under the flow waveform, and the m superscript denotes a real measurement. SV 
as determined by the model is the SV calculated as the maximal change of volume in 
the left ventricle throughout the final heart cycle. The final term constrained the mean 
venous pressure ( MVP ) computed by the model to approximately 6 mmHg, which is a 
value within the range of a normal central venous pressure (CVP) [27, 28]. The model 
only models the Psv which is the averaged pressure of all veins and is not actually tied 
to a vein in particular. We calculate the mean value of the pulsatile Psv signal to create 

(3)θi = U(θlower,i, θupper,i),

(4)θi = U(0.9θmin,i, 1.1θmin,i).

(5)

J (θ) =

N
∑

i

(

Pm
i −Pao,i
Kp

)2
+

∑N
i

(

Qm
ao,i−Qao,i

Kq

)2

+

7.52N 2

402

[

(

Pm
sys−Psys

Kp,sys

)2

+

(

Pm
dia−Pdia
Kp,dia

)2
]

+

7.52N 2

402

[

(

SVm
−SV

KSV

)2
+

1
9

(

6.0−MVP
KMVP

)2
]

.
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the mean venous pressure indice MVP . We thereafter approximate the MVP indice to 
be equal to the CVP as this influences ventricular filling, and the is the model concept 
most closely related to CVP. All constants K are scaling constants with a magnitude sim-
ilar to a reference level for the different measurement types. For further details, settings, 
and bounds for the optimization routine, see Optimization algorithm details. The cost 
function was identical for both models, except for the final venous pressure term, which 
was not applicable to the open-loop model. The weights 7.5

2N 2

402
 and 2.5

2N 2

402
 were manually 

tuned to assign more weight to the pressure extrema values and clinical indices as these 
are particularly important in clinical settings, and  perhaps also more likely to express 
cardiovascular remodeling. The number 40 was chosen as a reference scale since the 
number of data points in the carotid waveform and LVOT flow signals were usually close 
to this number before interpolation.

Previous optimization of parameters for the closed-loop model using aortic pres-
sure and flow shows that Emin,Rmv and Zao are among the most challenging param-
eters to estimate in synthetic data produced by the model itself with Gaussian noise 
[22]. These three parameters were found to be least sensitive to aortic pressure when 
applying a sensitivity analysis to the model. In the parameter optimization routine 
used, these parameters were therefore not prioritized for attempted personaliza-
tion. The remaining parameters in Table 1 were chosen for estimation, except for T 
which was estimated directly from the waveform cycle lengths. Despite the low sen-
sitivity value, Zao was included for optimization since initial attempts at optimizing 
the model to real data indicated that this improved the model’s ability to recreate the 
pressure waveform during systole. For the open-loop model, the same parameters 
were personalized as for the closed-loop model, except for Vtot and Csv . The mitral 
valve resistance was fixed to be Rmv = 0.02

mmHg s
mL  . Emin was fixed to 0.055 or 0.06 

depending on whether or not the systolic pressure was below 140 mmHg, see Optimi-
zation algorithm details for further details.

All model output waveforms incorporated in the cost function were aligned with 
pressure and flow data by enforcing that the model outputs always started at begin-
ning of systole. No single parameter determines the start of systole in the model, so 
this was done by translating the waveforms in time until they started at the correct 
value.

Post‑processing of parameter estimates

All computed parameters were normalized by body surface area (BSA) computed as

All participants had height and weight measured at pre-intervention, while weight was 
also measured at mid- and post-intervention and BSA updated accordingly. All param-
eter estimates, except for tpeak , have been BSA indexed as a normalization to account 
for variations in body size for parameters, which may be assumed to be body size 
dependent.

(6)BSA =

√

Height ·Weight

3600
.
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Due to noisy or missing data or missing synchronization data, we could not compute 
parameters for all study participants. Thus, we defined two data sets, both included the 
LVOT flow trace converted to volumetric flow, the ambulatory blood pressure values 
and stroke volume. The first data set included the finger pressure waveform scaled by 
ambulatory blood pressure and synchronized with the LVOT flow cycle, while the sec-
ond data set included the averaged carotid pressure waveform scaled by ambulatory 
blood pressure paired with the LVOT flow cycle.

The data sets based on finger pressure had 50 eligible measurements across all partici-
pants and measurement days, while the carotid pressure had eligible 62 measurements. 
For finger pressure, 9 participants could be identified at all three measurement days, 
whereas 14 participants were identified for carotid pressure. Seven of these participants 
had eligible measurements for both pressures. The total number of unique study par-
ticipants in the data set was 25 when counting all data sets where all three measurement 
days were not present. For all eligible participants, and for both models, we estimated 
Emax , Rsys , Cao , tpeak , Zao . For the closed-loop model, Csv and Vtot were also estimated.

The variability within estimates for each individual participant and the population as 
a whole were assessed by computing the interquartile range and dividing by the median 
value. In this manuscript, we refer to this as the interquartile ratio (IQR):

where the 25% and 75% subscripts refer to the corresponding percentiles. The means for 
the parameters over all participants and all measurement days were computed to also 
assess if there were differences in estimates between model formulations and pressure 
waveforms.

We used IQR to assess estimate variability in three different contexts. First, we inves-
tigated the variability in estimates for single participants on any measurement day, for 
which we calculated the IQR based on the set of estimates �filtered yielded from a single 
set of raw data, i.e., a given participant on a given measurement day. The median IQR for 
these estimates was found, and the first and third quartiles were interpreted as a meas-
ure of variability in the IQR for each participant on any measurement day. We computed 
the IQR for all eligible participants whether they had 1, 2 or 3 available measurement 
days. We refer to this as the “Single day IQR”.

Second, the variation across an individual over all measurement days d was assessed 
for each individual p. The three estimated sets �filtered resulting in parameter estimates 
ˆθ
p,1

mean , ˆθ
p,2

mean , and ˆθ
p,3

mean for each participant p were combined to make one common set 
of parameters �p

all days containing the best optimized parameter estimates across all 
measurement days for each individual. Only participants whose parameters could be 
estimated for all 3 days were included. For each participant, the IQR was computed 
based on the set �p

all days , and afterwards the median IQR and first and third quartiles 
were determined. We named this quantity the “Multiple day IQR”.

Third, we computed the final parameter estimates ˆθ
p,d

mean for all participants on all 
measurements days and subsequently collected these in a set for which we computed 
the IQR value. This IQR value was interpreted as the variability in parameters across the 

(7)IQR =

θi,75% − θi,25%

ˆθi,median

,
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population and across all measurement days. All participants were included, and this 
IQR measure is referred to as the “Population IQR”. This quantity is not presented with 
standard deviations as it is a single value characterizing the study population. All three 
IQR analyses were repeated for both models and the data sets with pressure waveform 
measured in either the carotid artery or finger artery.

Other methods for estimating model parameters

The arterial parameter estimates from the personalization could be compared to esti-
mates made with more traditional methods to estimate these. Arterial compliance can 
be estimated by

where PP is the brachial artery pulse pressure as a proxy for more central pressure. Simi-
larly, the vascular resistance can be estimated by

where CO is cardiac output and MAP is mean arterial pressure calculated as the mean of 
the pressure waveform scaled with brachial pressure.

Quality of waveform optimizations

To assess whether the estimated model parameters could recreate the waveforms and, 
especially, the other indices included in the cost function accurately, we examined the 
unscaled residuals between model predictions and data. Instead of listing each residual 
for every participant and measurement day, we assessed the mean absolute value of 
residuals on each measurement day for both data sets and model formulations sepa-
rately. The model outputs used to compute the residuals are the outputs based on the 
final parameter set based on the averaged parameters from the best optimization sets, 
ˆθ
p,d
mean,i.

Summary

From a pilot randomized controlled trial on self-monitoring of physical activity, blood 
pressure and echocardiography data for initially inactive adults were available. We 
implemented a closed- and open-loop model of the left ventricle and systemic circu-
lation in Python, and optimized these using local methods to paired data of pressure 
and flow waveforms, including SV . Pressure waveforms collected by non-invasive fin-
ger pressure measurement and carotid applanation tonometry were paired with aortic 
flow data and applied to parameter estimations for the trial participants. We computed 
the variability in estimates for each individual and the population as whole using our 
definition of the IQR and assessed how well the parameters of participants and possible 
parameter changes could be resolved from the population.

(8)˜Cao ≈

SVm

PPm
,

(9)˜Rsys ≈
MAPm

COm
,
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Results
The results in this section are based on analysis of parameter estimates for individuals 
over multiple measurement days (model personalization). We computed estimates for 
both a closed- and an open-loop model, but added an additional dimension in doing so 
for two different data sets including either the carotid or finger pressure waveforms.

Parameter estimate variability in individuals compared to the population

The IQR as defined by equation (7) was calculated for the variation in estimates for the 
population given either the finger pressure or carotid pressure waveform. Similarly, the 
IQR scores for all individuals across all measurement days were expressed by the median 
IQR and variation presented as the first and third quartiles. The IQR values were calcu-
lated for both the closed- and open-loop models and the results are shown in Figs. 2 and 
3, respectively. Figures 2–5 display the IQR for several model parameters and outputs. 
The IQR is unitless, but otherwise the units used are the same as in Table 1 for model 
parameters, only BSA indexed, and hence divided by m2 unless otherwise noted. Only 
tpeak is not BSA indexed.

The IQR was computed for different model outputs which are shown in Figs.  4, 5, 
for the closed- and open-loop models, respectively. All pressures Psys , Pdia , PP (pulse 

Fig. 2 The interquartile ratio (IQR) computed for the parameters of the closed-loop model. The “Single day 
IQR” which is based on the median IQR values for the estimates for single individuals on any measurement 
day are included. The whiskers indicate first and third quartiles. The variation in individuals over all 
measurement days are displayed as “Multiple day IQR”. The final parameter estimates for all individuals in the 
different data sets yield the “Population IQR”. “F” indicates the data set with finger pressure waveform, and “C” 
indicates the data set with the carotid pressure waveform. The IQR refers to the difference between the upper 
and lower quartiles divided by the mean parameter value. Emax is the maximal left-ventricular elastance, Cao is 
the systemic arterial compliance, Rsys is the total peripheral resistance, tpeak is the time of maximal ventricular 
elastance, Zao is the characteristic aortic impedance, Vtot is the total stressed blood volume, and Csv is the 
systemic venous compliance
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pressure), MAP (mean arterial pressure) and MVP (mean venous pressure) are measured 
in units of mmHg. Stroke volume SV is given in mL, while stroke work SW is expressed 
in mmHg·mL.

Parameter estimates compared between different data sources

The mean parameter values scaled by BSA were compared for the different pressure 
waveforms (finger and carotid) and for the closed- and open-loop models. The results 
are displayed as mean values with standard deviations in Fig. 6. There are minor differ-
ences between the estimate averages, especially between model formulations. The open-
loop models have on average a marginally lower Emax than the closed-loop model. The 
estimate differences are larger between the different waveforms, where for example the 
Cao estimates are on average higher for the finger pressure waveform than the carotid 
pressure waveform.

Figure 6 contains the results from the complete case analysis of both models and pres-
sure waveforms. We also picked the 47 paired samples where both pressure waveforms 
were available for the same participant and compared the means in Table 2. The func-
tion ttest() from the Pingouin Python library version 0.5.1 was used to perform a paired 
sample t-test and compute the mean difference and 95% confidence interval between 

Fig. 3 The interquartile ratio (IQR) computed for the parameters of the open-loop model. The “Single day 
IQR” which is based on the median IQR values for the estimates for single individuals on any measurement 
day are included. The whiskers indicate first and third quartiles. The variation in individual participants over 
all measurement days are displayed as “Multiple day IQR”. Final parameter estimates for all individuals in the 
different data sets yield the “Population IQR”. “F” indicates the data set with finger pressure waveform, and “C” 
indicates the data set with the carotid pressure waveform. The IQR refers to the difference between the upper 
and lower quartiles divided by the mean parameter value. Emax is the maximal left-ventricular elastance, Cao is 
the systemic arterial compliance, Rsys is the total peripheral resistance, tpeak is the time of maximal ventricular 
elastance, and Zao is the characteristic aortic impedance
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finger and carotid pressure [30]. The difference between sample means was found to 
be statistically significant for both models, see Table  2. The paired sample differences 
for arterial compliance Cao were computed and the 5th, 25th, 50th, 75th and 95th per-
centiles were presented to give an indication of the distribution of differences not being 
extremely asymmetrical. For the closed-loop model these percentiles were −0.005, 0.233, 
0.430, 0.575, and 0.771, respectively, while for the open-loop model they were 0.035, 
0.186, 0.380, 0.538, and 0.709 in units mL / (mmHg·m2 ). The paired samples mean Cao 
estimates were 1.275 and 0.876 for the closed-loop model with the finger pressure wave-
forms and carotid pressure waveforms, respectively. Similarly, for the open-loop model 
the finger pressure-based sample mean was 1.221, while the carotid pressure-based sam-
ple mean was 0.860. Paired t-tests for other parameters can be seen in the supplemen-
tary materials.

Comparison of arterial parameter estimates to other estimation methods

To assess the credibility of arterial parameter estimates, we compared model estimates 
to more conventional estimation techniques for Cao and Rsys as expressed by equations 

Fig. 4 The interquartile ratio (IQR) computed for model outputs generated by the closed-loop models, each 
model instance optimized for one individual. The “Single day IQR” is based on the median IQR values for the 
model outputs from the variation in parameter estimates for single individuals on any measurement day. 
The whiskers indicate first and third quartiles. The variation in the best optimized sets of model outputs from 
individuals over all measurement days are displayed as “Multiple day IQR”. The model outputs based on the 
final parameter estimates for all individuals in the different data sets yield the “Population IQR”. “F” indicates 
the data set with finger pressure waveform, and “C” indicates the data set with the carotid pressure waveform. 
The IQR refers to the difference between the upper and lower quartiles divided by the mean parameter value. 
Psys is the systolic aortic pressure, Pdia is the diastolic aortic pressure, SV is the stroke volume indexed by body 
surface, PP is the aortic pulse pressure, MAP is the mean arterial pressure, MVP is the mean venous pressure, 
and SW is the left-ventricular stroke work
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(8) and (9), respectively. Figs.  7–8 show the results for the parameter comparisons in 
scatter plots for the closed- and open-loop models, respectively. The Pearson correlation 
coefficient (r) was calculated for all comparisons as shown in Table 3. The correlation 
coefficient and confidence intervals were found by the corr() function in the Pingouin 
Python library. Estimates for Rsys had a high degree of correlation to the other estima-
tion method, while Cao showed a moderate amount of correlation. While both models 
yielded similar results, the measurement location for the pressure waveform does affect 
the results for Cao reducing the correlation.

Quality of optimization results

Closed‑loop model

The quality of model optimization was assessed by the unweighted percentage errors of 
the measurements in the cost function (equation (5)). The results are shown in Table 4, 
for estimates based on the carotid and finger pressure waveforms for all measure-
ment days separately and collectively. The upper and lower quartiles for the percent-
age errors along the data points of the pressure and flow waveforms were computed, 
and the median values for these quartiles across all participants at different choices of 

Fig. 5 The interquartile ratio (IQR) computed for model outputs generated by the open-loop models, each 
model instance optimized for one individual. The “Single day IQR” is based on the median IQR values for the 
model outputs from the variation in parameter estimates for single individuals on any measurement day. 
The whiskers indicate upper and lower quartiles. The variation in the best optimized sets of model outputs 
from individuals over all measurement days are displayed as “Multiple day IQR”. The model outputs based on 
the final parameter estimates for all individuals in the different data sets are used to compute bars labeled as 
the “Population IQR”. “F” indicates the data set with finger pressure waveform, and “C” indicates the data set 
with the carotid pressure waveform. The IQR refers to the difference between the upper and lower quartiles 
divided by the mean parameter value. Psys is the systolic aortic pressure, Pdia is the diastolic aortic pressure, 
SV is the stroke volume indexed by body surface, PP is the aortic pulse pressure, MAP is the mean arterial 
pressure, and SW is the left-ventricular stroke work
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measurement days are given in the table. Typical examples of the quality of waveform 
fits can be found in Figs. 9 and 10. The worst optimized samples according to cost func-
tion value can be found in Figs. 11 and 12.

Open‑loop model

The quality of model optimization were assessed by the unweighted residuals of the 
clinical indices in the cost function (equation [5)] in Table 5, for estimates based on 
the carotid and finger pressure waveforms for all measurement days separately and 
collectively. Waveform percentage error quartiles and their median value across all 
participants are given in the table, equivalently as for the closed-loop model. Typical 
examples of the quality of waveform fits can be found in Figs. 13 and 14. The worst 
optimized samples according to cost function value can be found in Figs. 15 and 16.

Fig. 6 The mean parameter estimates, and standard deviations, for all individuals in the different data 
sets. These results originate from estimates made for the closed-loop (“CL”) and open-loop (“OL”) models, 
respectively. “F” indicates the finger pressure waveform, and “C” indicates the data set with the carotid 
pressure waveform. The y-axis represents model parameters and units listed in Table 1 as BSA indexed values, 
with the exception of tpeak which is given in units seconds, s. Emax is the maximal left-ventricular elastance, 
Cao is the systemic arterial compliance, Rsys is the total peripheral resistance, tpeak is the time of maximal 
ventricular elastance, Zao is the characteristic aortic impedance, Vtot is the total stressed blood volume, and Csv 
is the systemic venous compliance
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Discussion
The variation in parameter estimates for individuals were consistently smaller than the 
variability in the same parameters for the whole study population, as shown in Figs. 2 
and 3. Consequently, this study shows that it is possible to estimate the model parame-
ters for individuals and separate them from parameters of other individuals in the popu-
lation for the presented estimation heuristic.

The estimates for Csv , and Vtot were subject to the most variability in the popula-
tion regardless of using the pressure waveform from the carotid or finger artery for the 
closed-loop model. However, for the open-loop model Emax , Cao , and Zao were the most 

Fig. 7 The scatter plots of closed-loop model parameter estimates for total peripheral resistance Rsys (top 
panels) and arterial compliance Cao (bottom panels), compared to estimates from conventional methods, 
using the data sets with the carotid (left panels) and the finger pressure (right panels) waveforms. Model 
estimates are on the x-axes, while conventional estimates are on the y-axes

Table 2 Mean arterial compliance Cao parameter values averaged over different samples of 
measurements for both model formulations and choice of data set. The p-value and 95% confidence 
interval (CI 95%) are obtained by a two-tailed t-test for paired data comparing the mean parameter 
values using the finger and carotid pressure waveforms, respectively, within the same model

Model Samples Mean Cao w/ Mean Cao w/ 95% CI for p‑value

finger pressure carotid pressure mean difference

[mL/(mmHg·m2)] [mL/(mmHg·m2)] [mL/(mmHg·m2)]

Closed-loop Mixed 1.28 0.91 – –

Closed-loop Paired 1.28 0.88 [0.33, 0.47] p < 1.0e − 14

Open-loop Mixed 1.23 0.90 – –

Open-loop Paired 1.22 0.86 [0.29, 0.43] p < 1.0e − 13
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variable parameters, but the variability was similar in all three parameters. This study 
indicates that the estimates using the carotid pressure waveform are more or equally sta-
ble for the individual than using the finger pressure waveform, as seen in Figs.  2 and 
3. This same pattern is not as apparent in the open-loop model, which may be due to 
either the parameter space having fewer dimensions or the altered model structure 
itself. Figures 4 and 5 show that the estimates for the individual had low variation, which 
was far smaller compared to the population IQR. This suggests that high variability in 
some model parameters, such as venous compliance, does not affect model outputs 

Fig. 8 The scatter plots of open-loop model parameter estimates for total peripheral resistance Rsys (top 
panels) and arterial compliance Cao (bottom panels), compared to estimates from conventional methods, 
using the data sets with the carotid (left panels) and the finger pressure (right panels) waveforms. Model 
estimates are on the x-axes, while conventional estimates are on the y-axes

Table 3 Correlation coefficients for parameters estimated by the local optimization approach 
compared to estimates from more conventional methods. Hence, the correlations are found 
between Cao and C̃ao for arterial compliance, while Rsys versus R̃sys yield the correlation for peripheral 
resistance. The p-value and 95% confidence interval (95% CI) was obtained by a two-tailed t-test

The scatter plots of these variables can be seen in Figs. 7 and 8

Parameter Model Pressure Correlation p‑value 95% CI
waveform coefficient, r

Rsys Closed-loop Finger 0.990 p < 1.0e − 41 [0.98, 0.99]

Rsys Closed-loop Carotid 0.994 p < 1.0e − 59 [0.99, 1.00]

Rsys Open-loop Finger 0.987 p < 1.0e − 39 [0.98, 0.99]

Rsys Open-loop Carotid 0.988 p < 1.0e − 50 [0.98, 0.99]

Cao Closed-loop Finger 0.601 p < 1.0e − 5 [0.39, 0.75]

Cao Closed-loop Carotid 0.864 p < 1.0e − 18 [0.78, 0.92]

Cao Open-loop Finger 0.647 p < 1.0e − 6 [0.45, 0.78]

Cao Open-loop Carotid 0.852 p < 1.0e − 17 [0.76,0.91]
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substantially. IQRs calculated for the closed-loop model using carotid pressure exhibits 
very little variability for the individual, indicating that in a majority of cases there is a 
well-defined local or global minimum which the optimization algorithm chooses. For 
the same results using finger pressure, there is a higher level of variability, which indi-
cates that a single minimum is harder to obtain in this case.

Examination of results presented in Figs. 2 and 3 shows that the majority of multiple 
day IQRs were smaller than the population IQR. The only case this was not true was for 
tpeak in the open-loop model using the finger pressure waveform. This parameter is heart 
rate dependent which changes from beat-to-beat, hence it is not surprising that this 

Fig. 9 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. The model predictions are 
based on the final averaged parameter estimate for each participant. This is an example of a typical waveform 
fit for the closed-loop model and the carotid pressure waveform

Fig. 10 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. This is an example of a typical 
waveform fit for the closed-loop model and the finger pressure waveform
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parameter could experience variation over all measurement days similar to the popula-
tion IQR. The tpeak is related to the heart rate of the signal as the length of systole varies 
with heart rate. Although measurements were performed in a state of rest, it is not guar-
anteed that everyone had reached their true resting heart rate on each measurement day. 
For the other parameters, we saw that due to the variability in the multiple-day IQR the 
standard deviations show that this variability will grow beyond the value of the popula-
tion IQR for some participants. This means that we potentially could calculate rather 
large changes from one measurement day to the next. Whether this is realistic remains 

Fig. 11 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. The sample shown is for 
the measurement sample with the highest cost function value when compared to other participants and 
measurement days. This is a waveform adapted to the closed-loop model with the carotid pressure waveform

Fig. 12 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. The sample shown is for 
the measurement sample with the highest cost function value when compared to other participants and 
measurement days. This is a waveform adapted to the closed-loop model with the finger pressure waveform
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to be examined, but it can be hypothesized that physical activity induced changes in 
model parameters larger than the population IQR are unrealistic during a 12-week clini-
cal trial. This would be unrealistic for most of the parameters, aside from tpeak . However, 
the variation in single-day IQR is far lower compared to the multiple-day IQR, in most 
cases. Exceptions can be noted for Cao , Vtot , and Zao based on finger pressure where the 
first and third quartiles overlap for the multi-day and the single-day IQR. This indicates 
that the single and multi-day IQR may be equally high in some participants, and that 
changes in these parameters may not in many cases be trusted to be changes caused by 
the data, and may be artifacts of the numerical uncertainties of the estimation method. 

Fig. 13 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. This is an example of a typical 
waveform fit for the open-loop model and the carotid pressure waveform

Fig. 14 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. This is an example of a typical 
waveform fit for the open-loop model and the finger pressure waveform
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This would especially be a challenge for detecting small changes in the individual com-
pared to the variation over the population.

The individual estimates were computed as the mean of the estimates with a cost func-
tion value lower than the mean of the final 20 parameter estimate sets, see Sect. Parame-
ter estimation. This allowed the amount of samples used in the computation of the mean 
parameter estimates to vary. Furthermore, there is a possibility that choosing only the 
best fitted parameter estimate provides better results in some cases. The averaging over 
different solutions was chosen to account for sensitivity of the exact location of the cost 

Fig. 15 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. The sample shown is for 
the measurement sample with the highest cost function value when compared to other participants and 
measurement days. This is a waveform adapted to the open-loop model with the carotid pressure waveform

Fig. 16 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. The sample shown is for 
the measurement sample with the highest cost function value when compared to other participants and 
measurement days. This is a waveform adapted to the open-loop model with the finger pressure waveform
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function minimum due to noise and model structure insufficiency. If, for example, noise 
causes multiple smaller minima, or a displacement of the local minimum compared to 
the unperturbed cost function minimum, having multiple estimates in this region and 
averaging them may mitigate these noise effects. However, using the averaging proce-
dure without bounds for the problem sometimes introduced much higher variability in 
the resulting solutions, and the averaging would yield parameter values which would not 
recreate the data well. In contrast, with bounds, we found that the averaged parameters 
provide acceptable solutions as seen in the table and figures of Sect. Quality of optimi-
zation results. The estimates for systolic and diastolic pressures are more accurate for 
the finger pressure-based estimates since they were more heavily weighted due to more 
data points since the finger pressure was sampled at a higher frequency than the carotid 
pressure. We cannot be certain that the algorithm has found the global minimum using 
this procedure, but it is also a possibility that the global minimum does not correspond 
the most physiologically accurate combination of parameters. The averaging of solutions 
around a local minimum gives some information about solutions that are almost as good 
as the local minimum itself and may be just as physiologically viable. Should the local 
minimum not be the global minimum, then it is still a minimum which provides a good 
description of the data as observed in Tables 4 and 5.

In Fig.  6, it is demonstrated that the mean estimates from for the two models only 
showed small differences based on choice of pressure waveform. A notable exception 
was found for Cao , for which the finger pressure-based estimates were statistically signifi-
cantly higher in both model formulations. This may be explained by the finger pressure 
waveform having a flatter slope during diastole. The tpeak was another notable exception, 
which was estimated with a small difference between waveforms. As previously noted, 
the corresponding heart rates of the two waveforms could be different. This could poten-
tially contribute to some variation in estimates. The paired sample t-tests between other 
combinations of model formulations and pressure waveforms are shown in the supple-
mentary materials. The finger pressure was not transformed into a more central pressure 

Table 4 Percentage errors between measurements and model outputs optimized using the closed-
loop model with carotid pressure waveforms. These residual statistics are computed across all 
individuals, i.e. they are not grouped by individual, but by measurement day. The mean and standard 
deviations of the absolute residuals are given. Psys is the systolic aortic pressure, Pdia is the diastolic 
aortic pressure, and SV is the stroke volume, and MVP is the mean venous pressure.  pWFx, and  qWFx 
indicates the median value across all measurements for the  xth percentile percentage error of the 
waveform residuals for a single measurement  (pWFx for pressure and  qWFx for flow)

Pressure Meas. day Psys Pdia SV MVP pWF75% pWF25% qWF75%
[%] [%] [%] [%] [%] [%] [%]

Carotid All 1.62± 1.71 1.38± 1.36 2.32± 2.38 6.71± 9.13 5.03 1.65 26.63

Carotid 1 1.82± 1.6 1.4± 1.34 2.4± 2.06 6.04± 7.74 4.94 1.71 22.69

Carotid 2 1.95± 2.09 1.63± 1.69 2.92± 2.81 8.7± 9.96 5.32 1.61 30.68

Carotid 3 0.84± 0.9 1.0± 0.69 1.34± 1.88 4.8± 9.76 4.52 1.56 25.52

Finger All 0.61± 0.79 0.72± 0.91 1.29± 1.54 3.4± 4.21 5.52 1.48 25.28

Finger 1 0.61± 0.72 0.74± 0.95 1.39± 1.63 4.15± 5.22 5.3 1.46 18.7

Finger 2 0.72± 1.01 0.83± 1.1 1.67± 1.82 3.74± 3.96 5.65 1.4 30.3

Finger 3 0.47± 0.54 0.56± 0.6 0.72± 0.85 2.15± 3.03 5.74 1.79 22.64



Page 25 of 35Bjørdalsbakke et al. BioMedical Engineering OnLine           (2023) 22:34  

by a transfer function, as it was seen as interesting to compare the distal measurement 
to the carotid waveform which is a more proximal measurement. A question for future 
work is to answer whether the change in the compliance estimated using the two pres-
sure signals, will change similarly given the same stimulus.

There are no other very large differences in mean parameter estimates between the 
two models. Therefore, the venous compartment in the closed-loop formulation does 
not seem to affect the other model estimates to a large extent. Also, it seems like the 
effect of adjusting the total stressed blood volume can be counteracted by appropriately 
tuning the venous compliance. Hence, there seems to be little gain of adding these com-
partments from a parameter estimation perspective.

Two models were applied in this study. Although the closed-loop model may give 
more insight into the physiology, ventricular filling and fluid distributions of different 
states and individuals, some parameters could have interacted and caused difficulty in 
reaching the correct minimum for the cost function in the parameter space. For exam-
ple, multiple parameters which were all influential on the ventricular filling properties 
in the model could have caused optimization challenges when adapting all of them to 
tune the filling properties according to the optimization data set which contained both 
noise and model discrepancy. One or both of the models may be practically unidentifi-
able for the data used in this analysis, which could result from such parameter interac-
tions. Specifically, the high variability of stressed volume and venous compliance in the 
closed-loop model may be the result of such a situation as a higher blood volume would 
increase the pressure of the closed-loop system, while an increased compliance would 
accommodate the increased volume and counteract the pressure increase. Similarly, pre-
vious work found that the aortic impedance parameter was among the least influential 
parameters of the aortic pressure waveform [22]. Insensitivity can lead to practical uni-
dentifiability and thus variability in estimates of Zao may only reflect this and not any 
meaningful changes in the hemodynamic state. For the remaining parameters, we have 
focused on comparing the variability in individual estimates to those of the whole group 

Table 5 Percentage errors between measurements and model outputs optimized using the 
open-loop model with carotid pressure waveforms. These residual statistics are computed across 
all individuals, i.e. they are not grouped by individual, but by measurement day. The mean and 
standard deviations of the absolute residuals are given. Psys is the systolic aortic pressure, Pdia is the 
diastolic aortic pressure, and SV is the stroke volume.  pWFx, and  qWFx indicates the median value 
across all measurements for the  xth percentile percentage error of the waveform residuals for a single 
measurement  (pWFx for pressure and  qWFx for flow)

Measurement Meas. day Psys Pdia SV pWF75% pWF25% qWF75%
[%] [%] [%] [%] [%] [%] [%]

Carotid All 0.99± 1.3 1.07± 0.87 2.82± 4.27 4.64 1.38 31.24

Carotid 1 1.03± 1.13 1.04± 0.6 2.47± 3.54 4.27 1.42 30.62

Carotid 2 1.13± 1.62 1.25± 1.16 3.37± 4.75 5.14 1.15 34.05

Carotid 3 0.71± 1.04 0.86± 0.69 2.51± 4.67 4.66 1.72 29.65

Finger All 0.56± 1.12 0.65± 1.33 1.44± 2.29 5.73 1.57 27.0

Finger 1 0.79± 1.3 0.88± 1.54 1.95± 2.55 5.86 1.68 31.9

Finger 2 0.65± 1.35 0.68± 1.62 1.73± 2.74 5.42 1.47 30.99

Finger 3 0.21± 0.13 0.35± 0.38 0.52± 0.67 5.46 1.78 23.68
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(Figs. 2, 3) and further compared estimated values to clinical indices to further investi-
gate the consistency of the estimates (Figs. 7, 8). A more formal practical identifiability 
analysis would be beneficial, but would require a good characterization of the expected 
variability in measurements and model discrepancy, and this would require same-day 
repeated measurements of individuals to characterize measurement variation. Further, 
a required level of precision must be specified for each parameter value. The multiple 
day IQR found in this study can be interpreted as a conservative estimate of the preci-
sion achievable as the repeated measurements included are expected to correspond to 
changed parameter values in many cases as the measurements are over 12 weeks while 
increasing physical activity.

The estimated parameter combinations were not assessed in terms of how credible 
they are to be found in real individuals aside from being bounded by values taken from 
the literature. By estimating Rsys as MAP/CO and Cao as SV/PP , we found high positive 
correlation between these estimates and the model-predicted resistance. However, this 
was not the case for Cao , as seen in Figs. 7, 8 where the correlation was lower but still 
moderately high. The Pearson correlation coefficients are shown in Table 3, and indicate 
high correlation for Rsys in all cases, even if the conventional method estimates are not 
used for sampling initial parameter guesses for the model optimization.

We focused on using single heart beat cycles of data. The data comprised either syn-
chronized waveforms as for the finger pressure waveform and LVOT flow, or as a sin-
gle averaged waveform as for pairing the carotid waveform with the LVOT flow data. 
Colebank et al. and Marquis et al. used an approach where optimization is performed 
for multiple consecutive cycles at the same anatomical locations which is a convinc-
ing approach for accounting for beat-to-beat variations  [6, 7], but this requires a large 
amount of continuous waveform data. We did not do any analysis on the impact of using 
more than one cycle of data, but previous examinations show that one cycle should be 
sufficient under ideal conditions for synthetic data [22].

By scaling the waveforms by ABPM systolic and diastolic values, some of the daily var-
iability of measurements should be accounted for. While the waveform shape itself was 
subject to noise, it may also have been subjected to other perturbations and daily vari-
ability through changes in, for example, respiration patterns and heart rate. These effects 
should be partially accounted for in the averaged carotid waveform. The finger pressure 
waveforms did not benefit from the same effect as they were not averaged, but were on 
the other hand synchronized to the simultaneously recorded flow cycles.

Even though the model captures the approximated aortic pressure values reasonably 
well, this is a highly simplified model of the cardiovascular system with some limita-
tions. Firstly, the model is geometryless, which means that it ignores all personalizable 
traits relying on spatial geometry more specific than a global compartment of vessels. 
Despite this, we still observe that the model is able to capture total peripheral resistance, 
extreme pressures and stroke volumes relatively well, at least when compared to con-
ventional estimation methods for the parameters and the raw data used in the cost func-
tion. Secondly, the model neglects the inertance of the vessels and combined with its 
0-dimensional nature it therefore ignores potential reversal of blood flow and reflected 
wave propagation. This makes the model unable to fully describe some features of cen-
tral pressure waveforms, such as the dicrotic and anacrotic notch. Thirdly, other relevant 
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physiological functions which affect and regulate the cardiovascular system, such as 
neural, respiratory, renal, metabolism, and gas exchange have been neglected. Any dis-
eases which are not detectable by changes in the systemic hemodynamics and the left 
ventricle will not be detectable by this model. The parameter ranges that bound the opti-
mization should allow for some types of heart disease and both normal and hypertensive 
ranges of blood pressure. Any disease or condition which is described by a combination 
of parameters which needs to exceed one or more of these ranges may not be possible to 
detect by this personalization algorithm. For the case of monitoring hypertension and 
possibly related heart remodeling and disease such as heart failure, the model may be 
able to capture this combined remodeling. However, this has not been investigated by 
the authors and is beyond the scope of this paper. The ejection fraction (EF) of the model 
is not necessarily realistic as the ventricular volume intercept is set to a volume of 0. 
Consequently, if heart failure is to be detected it would likely be more reliably detected 
by other measures than EF, such as cardiac output or contractility. Lastly, as the iner-
tance is neglected and valve resistances are not explicitly personalized, this model will 
not account for cardiac valve diseases or leakage.

Some of the synchronized finger pressure waveforms were subject to a high level of 
noise, while still retaining some characteristic waveform features. This was a drawback 
for the optimization as it made it more difficult to detect changes and probably contrib-
uted to increased variability in estimates. Despite this, we observed similar mean esti-
mates for most model parameters using both finger and carotid waveforms. The only 
major difference was found in Cao which can be partially be explained by the flatter dias-
tolic slope of the finger pressure waveforms. The finger pressure waveform does experi-
ence pressure amplification and distortion of the waveform compared to more central 
pressures such as the carotid pressure waveform. Therefore, we may have expected to 
see some differences in the mean parameters as well. In Eq.  5, the clinical indices get 
additional weighting to increase their priority in the optimization scheme. If the weights 
were removed the optimization procedure would be able to recreate the waveforms even 
closer, but also allow larger discrepancies in the remaining terms of the cost function. 
This could in turn have caused even larger discrepancies between results from the differ-
ent choices of pressure waveform, but for this investigation we chose a balance between 
adaption to waveform or more clinically relevant measures such as systolic and diastolic 
pressures.

Conclusion
Model personalization was performed for blood pressure and echocardiography data 
collected from 25 participants in an physical activity motivational study were used for 
model optimization.

Mean parameter estimates were practically equivalent across both model formulations 
and for both choices of waveforms, except for a few cases. The Cao parameter was found 
to have a higher value on average when estimated using the finger pressure waveform 
as compared to the carotid waveform, regardless of model choice. For both models, the 
estimates for arterial resistance and compliance were found to correlate at least moder-
ately well ( r > 0.60) with other conventional estimation methods (Additional files 1, 2).
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Changes in pressure and flow waveforms, as well as SV are reproduced reasonably well 
by both models for the estimated parameters. Using the closed-loop model did not prove 
to aid the ability to resolve single participants’ parameter estimates from the model pop-
ulation compared to the open-loop model. This supports using the open-loop model for-
mulation for further efforts in personalizing the ventricle and arterial compartments of a 
lumped parameter model.

Resolving parameter changes for individuals and distinguishing these changes from 
the population seems feasible given the IQR values, assuming the real changes are suf-
ficiently large to not be lost in the personal estimation variability. Questions for further 
research are whether or not these changes are realistic or a product of noise, insufficient 
data, or uncertainty introduced in the estimation procedure. Whether the data are suf-
ficient to detect cardiovascular remodeling given the recorded exercise stimulus remains 
to be investigated.

Appendix
Model equations

Closed‑loop model

This subsection is largely a repetition of details described in [22]. The closed-loop model 
comprised a system of non-linear ordinary differential equations (ODEs) describing the 
volume state variable of the three model compartments. The dynamic elastance function 
of the heart contributes a source term to the system of ODEs:

The two remaining state variables, pressure and flow, are mainly modeled by linear rela-
tionships as expressed below:

(10)

dVsa

dt
= Csa

dPsa

dt
= Qlvao − Qsys

dVsv

dt
= Csv

dPsv

dt
= Qsys − Qsvlv

dVlv

dt
= Qsvlv − Qlvao.

(11)

Vsa = CsaPsa

Vsv = CsvPsv

Plv = E(t)Vlv + Pth(t)

E(t) = (Emax − Emin)e(t)+ Emin

Pao = max [Psa,Plv]

Qlvao = I(Plv > Psa)
Plv − Psa

Zao

Qsvlv = I(Psv > Plv)
Psv − Plv

Rmv

Qsys =
Pao − Psv

Rsys
.
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The indicator function I(x) has the value 1 when the argument x is true and 0 when x is 
false. The activation function e(τ ) is defined as:

where τ is position in the cardiac cycle between the end of the last diastolic period and 
the end of the next diastolic period τ = 1 . The parameters a1 and n1 determine the shape 
of contraction and a2 and n2 determine the shape of relaxation of the elastance curve and 
the timing of peak elastance. The choice of values for these parameters are identical to 
those of Stergiopulos et al [24]. We wrote the parameter values for a1 and a2 in terms of 
the ratio of tpeakT  , and set α = 1.672 , to ensure normalization of the curve. tpeak describes 
the time of peak ventricular elastance, and therefore determines when the left-ventric-
ular elastance E(t) reaches Emax . The intrathoracic pressure function Pth describes the 
external pressure effects on the ventricular muscle aside from pressure gradients inside 
the blood vessels and is here modeled as a constant of Pth(t) = −4 mmHg. Otherwise, 
the parameters are defined as in Table 1.

The Vtot parameter describes total stressed volume and is enforced by setting ini-
tial compartment volumes and pressures such that the total stressed volume equals 
the parameter value. The model was demonstrated to conserve the volume and hence 
the total blood volume will not change. The initial volumes are set according to the 
equations:

where the initial aortic pressure is set to Pao,0 = 100 mmHg, and initial left-ventricular 
volume is set to Vlv,0 = 100 mL. The initial venous pressure is denoted by Psv,0.

Open‑loop model

The open-loop model describes two compartments, the left ventricle and arteries. The 
heart compartment is identical to the one described for the closed-loop model. The 
state equations describing the model are as follows:

The state variables pressure, flow and volume are mainly modeled by linear relationships 
as seen here:

(12)e(τ ) = α ×

(τ/a1)
n1

1+ (τ/a1)n1
×

1

1+ (τ/a2)n2
,

(13)
Vao,0 = Cao Pao,0, and

Psv,0 =
Vtot−Vao,0−Vlv,0

Csv
,

(14)

dVsa

dt
= Csa

dPsa

dt
= Qlvao − Qsys

dVlv

dt
= Qsvlv − Qlvao.
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where e(t) is as defined in Equation (12), while Psv = 6.0 mmHg is now a fixed quantity. 
Now the initial volumes are set as

where the initial aortic pressure is set to Pao,0 = 100 mmHg.

Optimization algorithm details

The Trust Region Reflective Algorithm (TRRA) as implemented in SciPy ver-
sion 1.7.1 was applied for the parameter optimization procedure [29]. In particu-
lar, the implementation of the algorithm as expressed through the function scipy.
optimize.least_squares() was used. We executed this function given the arguments 
below and a list of initial parameter guesses as sampled from Eq. (3). The function 
specific parameters passed to the TRRA to set the accuracy of the method were set to 
xtol = 2.3 · 10−16, ftol = 2.3 · 10−16, gtol = 2.3 · 10−16 and diff _step = 1.0 · 10−3.

The uniform distributions from which the first 30 initial parameter guesses are sam-
pled were bounded by the upper and lower bounds presented in 6. For the next 20 initial 
parameter guesses the sampling was made from the uniform distribution with bounds 
expressed as (4). In Eq. (4), θmin,i refers to the initial parameter guess form the first 30 
guesses which optimized the solution with the minimal cost function value from that 

(15)

Vsa = CsaPsa

Plv = E(t)Vlv + Pth(t)

E(t) = (Emax − Emin)e(t)+ Emin

Pao = max [Psa,Plv]

Qlvao = I(Plv > Psa)
Plv − Psa

Zao

Qsvlv = I(Psv > Plv)
Psv − Plv

Rmv

Qsys =
Pao − Psv

Rsys
,

(16)
Vao,0 = Cao Pao,0, and

Vlv,0 = 100 mL,

Table 6 All model parameters that were assigned to be personalizable are listed along with their 
upper and lower bounds. The bounds determine the uniform distributions from which the initial 
parameter guesses are sampled

Parameter Upper bounds Lower bounds Units

Cao 3.0 0.148 mL
mmHg

Csv 90.0 1.48 mL
mmHg

Emax
10.48
BSA

0.5 mmHg
mL

Rsys 2.963 0.917
BSA

mmHg s
mL

tpeak min(0.442, T ) min(0.15, 0.9T ) s

Vtot 1503. 150. mL

Zao 0.2 0.001 mmHg s
mL
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first set of guesses. The same bounds were upper and lower limits for parameters in both 
sampling distributions.

All parameters from Table 1 were sampled, except T which was always set to the heart 
beat period of the given waveform, as well as Emin and Rmv which were fixed to prede-
termined values. Mitral valve resistance should be a small resistance according to Ster-
giopulos et  al. [24], which we fixed it to 0.02 mmHg s/mL. The value of Emin was set 
according to apparent phenotype based on blood pressure. Segers et al. estimated values 
for minimal left-ventricular elastances as 0.03 mmHg/mL for normotensive people [12], 
while we calculated the same parameter to be 0.034 when taken as the weighted average 
over all hypertensive groups presented in their study. This value caused difficulties in 
estimating the left-ventricular elastance by constantly estimating it to the lowest bound 
for all participants. Therefore the value of 0.06 mmHg/mL as used by Stergiopulos was 
used instead, but separation was made according to if the systolic blood pressure was 
above or below 140 mmHg as was similar to the case for the estimates by Segers et al. 
[12]. For systolic blood pressure below 140 mmHg, Emin = 0.055 mmHg/mL was opted 
for, while we used for values above Emin = 0.06 mmHg/mL.

The bounds in Table 6 were set based on many different sources in literature. The study 
from Vardoulis et al. simulated a wide range of total arterial compliances [31], and we 
used a similar range for our concept of arterial compliance, but it was slightly widened as 
finger pressure estimates tend to have a low diastolic slope, which might indicate a high 
compliance. Central venous compliance is often estimated to be 30 times the value of 
arterial compliance [32, 33], and therefore, we used estimates of the venous compliance 
10–30 times the arterial compliance values to make the widest range possible. For Emax 
we used the body surface area (BSA) indexed results from a study by Bombardini et al. 
which estimated end-systolic elastances for patients in both disease and health to esti-
mate a wide range to use as bounds for sampled elastances [34]. For Rsys , Chantler et al. 
estimated vascular resistance in groups men and women with normo- or hypertension 
[35]. We considered all four groups, the group with the lowest mean value minus two 
standard deviations was taken as the lowest bound, and the group with the highest mean 
was used in the opposite direction to determine the highest bound. tpeak was bounded 
using results from studies by Weissler et  al. and Mertens et  al., which both measured 
systolic timing properties of the heart [36, 37]. Their measurements of the QS2 period of 
the heart ejection time determined by electromechanical considerations were taken as 
and indication of how large the allowed range for tpeak should be, and hence the bounds 
were determined by a technique similar to how it was done for Rsys . The lower bound 
was lowered further as to accommodate an even wider range. The total stressed blood 
volume bounds were estimated by taking the measurements of total blood volume from 
a paper by Feldschuh et al. and applying a formula as demonstrated by Colunga et al. to 
estimate the total blood volume [5, 38]. This was done by taking the total blood volume 
value and estimating the total stressed volume fraction by this formula:

where the total stressed blood volume Vtot is computed by assuming what fraction of the 
total blood volume (TBV) can be found in the left ventricle, systemic arteries, and sys-
temic veins, and what fractions of these volumes are assumed to be stressed. The mean 

(17)Vtot ≈ TBV · (0.13 · 0.27+ 0.64 · 0.18+ 0.035 · 0.5),
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blood volumes, of the study groups examined by Feldschuh et al. [38], with the highest 
and lowest mean values were adjusted by adding or subtracting 3–4 times the standard 
deviations to find the widest possible range based on these data. Two standard devia-
tions gave volumes which were larger than what was expected to give reasonable results 
with our model. Finally, the bounds for Zao were based on the values reported by Segers 
et al. [12], but we allowed a range 33 times wider as this was a small parameter com-
pared to the other arterial parameters. The upper range was set to ensure that it likely 
would be smaller than the total peripheral resistance. The resulting parameter range also 
corresponds reasonably well with the range found by Segers et al. when optimizing the 
parameter to multiple data sets for a three-element Windkessel model [39].

The scaling factors used to balance the different terms in the cost functions in (5) 
are listed in Table 7. The initialization for the random seed using the numpy.random.
seed() function from the NumPy libary [40], was set to be 112233 for sampling initial 
parameter guesses from the distributions defined by (3) and (4).

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12938- 023- 01086-y.

Additional file 1. Table S1. Two-tailed t-tests for parameter means using different models and pressure wave-
forms. Parameter values averaged over different samples of measurements for both model formulations and choices 
of data sets. Standard deviations are presented in parentheses. The p-value and 95% confidence interval (CI95%) are 
obtained by a two-tailed t-test for paired data comparing the mean parameter values using the finger and carotid 
pressure for the same model formulation, or using the same pressure waveform but different model formulations. 
“Group” indicates which combination of model and pressure waveform is used to generate the data for the group. 
“CL” indicates the closed-loop model, and “OL” signifies the open-loop model. “-C” indicates the carotid pressure 
waveform, and “-F” indicates the finger pressure waveform. The parameters included in the analysis are systemic 
arterial compliance (Cao), total peripheral resistance (Rsys), time of peak elastance in the left ventricle (tpeak), charac-
teristic aortic impedance (Zao), and maximal left-ventricular elastance (Emax). 

Additional file 2: Table S1. Two-tailed t-tests for parameter means using different models and pressure wave-
forms. Parameter values averaged over different samples of measurements for both model formulations and choices 
of data sets. Standard deviations are presented in parentheses. The p-value and 95% confidence interval (CI95%) are 
obtained by a two-tailed t-test for paired data comparing the mean parameter values using the finger and carotid 
pressure for the same model formulation, or using the same pressure waveform but different model formulations. 
“Group” indicates which combination of model and pressure waveform is used to generate the data for the group. 
“CL” indicates the closed-loop model, and “OL” signifies the open-loop model. “-C” indicates the carotid pressure 
waveform, and “-F” indicates the finger pressure waveform. The parameters included in the analysis are systemic 
arterial compliance (Cao), total peripheral resistance (Rsys), time of peak elastance in the left ventricle (tpeak), charac-
teristic aortic impedance (Zao), and maximal left-ventricular elastance (Emax).

Table 7 The scaling factors K, which are used to balance and approximately normalize the terms 
in the specified cost functions. MVP - mean venous pressure, p - aortic pressure waveform, pdia 
- diastolic brachial pressure, psys - systolic brachial pressure, q - aortic flow, and SV - stroke volume

Symbol Value Unit

KMVP 5.0 mmHg

Kp 100.0 mmHg

Kpdia 80.0 mmHg

Kpsys 120.0 mmHg

Kq 500.0 mL
s

KSV 100.0 mL
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Abstract

Background:
Clinical trials have repeatedly detected beneficial changes in blood pressure after physical activity and uncovered

changes in lower level phenotypes (such as stiffened or high resistance blood vessels). These phenotypes can be char-
acterized by parameters describing the mechanical properties of the circulatory system. These parameters may be
incorporated in and contextualized by physics-based cardiovascular models of the circulation, which in combination can
become tools for monitoring cardiovascular disease progression and management in the future. In this manuscript we
specifically target hypertension. The main aim of the study was to identify patterns in the data that could potentially
explain the estimated parameter changes. This includes investigating whether the parameters can be used to track the
effect of physical activity on high blood pressure.

Method:
Closed-loop and open-loop models of the left ventricle and systemic circulation were previously optimized to data

from a pilot study with a 12 week exercise intervention period. Basal characteristics and hemodynamic data such as blood
pressure in the carotid, brachial and finger arteries, as well as left-ventricular outflow tract flow traces were collected in
the trial. Model parameters estimated for measurements made on separate days during the trial were used to compute
parameter changes for total peripheral resistance, systemic arterial compliance, and maximal left-ventricular elastance.
We compared the changes in these cardiovascular model based estimates to changes from more conventional estimates
made without the use of physics-based models by correlation analysis. Additionally, ordinary linear regression and linear
mixed effects models were applied to determine the most informative measurements for the selected parameters. We
applied maximal aerobic capacity (measured by VO2,max) data to examine if exercise had any impact on parameters
through regression analysis and case studies.

Results and conclusion:
Parameter changes in arterial parameters estimated using the cardiovascular models correlated moderately well with

conventional estimates. Estimates based on carotid pressure waveforms as proved to give higher correlations than those
for finger arterial pressure. Parameter changes over the 12-week study duration were of similar magnitude when com-
pared to short term changes after a bout of intensive exercise in the same parameters. The short term changes were
computed from measurements made immediately before and 24h after a cardiopulmonary exercise test. Regression
analysis indicated that changes in VO2,max did not account for any substantial amount of variability in total peripheral
resistance, systemic arterial compliance, or maximal left-ventricular elastance. On the contrary, changes in stroke volume
contributed to far more explained variability.

1. Introduction

Cardiovascular disease is a leading cause of loss of qual-
ity of life and premature death worldwide [1]. Disease
progression is usually slow, and it may take years before
detectable symptoms appear. Although it is possible to
monitor biological and behavioral risk factors at regular
clinical visits, these measures may not provide sufficient

insight into the underlying mechanisms contributing to
the disease. In the case of essential hypertension, a per-
sistently elevated blood pressure without an identifiable
medical cause, we envision that monitoring the underlying
hemodynamics may improve early detection and interven-
tion in primary prevention of cardiovascular disease [2].
By hemodynamics we refer to for example measurements
of blood pressure and flow, such as systolic and diastolic



brachial pressure, and cardiac output (CO). Furthermore,
we believe that this can in part be achieved by application
of personalized physics-based cardiovascular models.

Physics-based cardiovascular models have already been
applied to predict the outcome of specific interventions
[3, 4, 5, 6]. Some of these studies focused on interven-
tions which can be made rapidly by invasive procedures or
medical treatments with changes expected to take effect
almost immediately. Other studies focused directly on the
post-intervention hemodynamics rather than the change
in parameters themselves. In such contexts the parame-
ter change can be prescribed according to what is altered
during an invasive procedure or treatment and its develop-
ment is not necessarily considered an interesting outcome
in itself. Some examples such as work by Audebert et al.
and by Gerringer et al. focused on a specific parameter
during disease progression [7, 8]. Personalized cardiovas-
cular models which predict the development of parame-
ters given different stimuli can be valuable clinical tools
and provide more detailed information about response to
treatment beyond the measurable hemodynamics alone.
For example, models could potentially give more insight
into disease aetiology than conventional parameter esti-
mates alone, by providing continuous updates about lower
level phenotypes normally not easily measurable. For this
to be useful, parameter estimates and their changes must
be reliable and interpretable in a clinical context. By con-
ventional estimates, we refer to estimates made by meth-
ods that are algebraic in nature and not dependent upon
models of the cardiovascular system. Here, we focus on
parameters estimated for two lumped-parameter models
and compare the results to their conventional estimates of
similar parameters from the same hemodynamic measure-
ments.

In this work, we treat the mechanical model parameters
as the quantities of interest and use these as proxies for ob-
serving changes in low-level phenotypes in the progression
of cardiovascular disease, such as arterial stiffening, change
in vascular tone and altered cardiac hemodynamics. Reg-
ular physical activity is recommended in prevention and
management of hypertension [9]. However, the effect de-
pends on the duration, frequency, and intensity of exercise.
Our hypothesis is that cardiovascular remodeling can be
sufficiently represented by mechanical parameters which
reflect the exercise-induced changes in hemodynamics.

Changes in habitual exercise have been observed to
produce changes throughout the cardiovascular systems.
A meta-analysis by Fagard et al. concluded that aero-
bic exercise lowers blood pressure and systemic vascular
resistance in a mixed population with both normal and
high blood pressure [10]. Molmen-Hansen et al. observed
a significant reduction of total peripheral resistance in pa-
tients with hypertension undergoing aerobic interval train-
ing [11]. Ashor et al. compared studies with exercise inter-

ventions lasting between 8-26 weeks in a meta-review and
reported reduced arterial stiffness estimated via pulse wave
velocity (PWV) in individuals with high normal blood-
pressure and hypertension after aerobic exercise [12]. In
contrast, Montero et al. found reduced arterial stiffness in
adults with high normal blood pressure and hypertension
only in studies with an exercise intervention longer than
12 weeks or where the change could be associated with a
large reduction in systolic blood pressure [13]. PWV is
not equivalent to the arterial compliance parameters of-
ten used in lumped parameter models, but is related to
the structural and material properties influencing arterial
compliance. Changes in PWV thus imply that exercise
can affect arterial wall properties. The resting ventricular
function is also affected by exercise. Molmen-Hansen also
found changes in multiple markers related to ventricular
contractility after aerobic interval training, such as ejec-
tion fraction (EF) and peak velocity of the tricuspid valve
annulus in systole [11]. By study of rats after periods of
training and detraining, Oláh et al. observed increase in
the end-systolic left-ventricular elastance after 12 weeks of
exercise [14]. Hence, we expect that vascular properties
can change as an effect of regular physical activity.

An exercise motivation trial conducted at the Norwe-
gian University of Science and Technology in 2019-2020
monitored the hemodynamics of participants three times
during the 12-week intervention period. The trial was
originally designed to examine the effect of using Personal
Activity Intelligence (PAI) score as an exercise motivator
and its effect on blood pressure. PAI score is the out-
put of a mathematical model considering an individual’s
heart rate history to compute an easily understandable
personalized metric of physical activity [15, 16]. Using
data from this trial, Bjørdalsbakke et al. personalized
two simple cardiovascular models of the systemic circu-
lation and analyzed the variability in parameter estimates
due to personalization method as well as variation in the
population [17]. The chosen personalization method was
an ensemble method based on local non-linear optimiza-
tion producing multiple parameter estimates to find an
averaged solution after filtering out the worst estimates.
Consequently, the choice of method introduced some vari-
ability to the parameter estimates themselves. Whether
changes in parameters were primarily caused by the op-
timization procedure, the exercise intervention, or simply
day-to-day variation in hemodynamics remained undeter-
mined. Hence, the parameter changes during the inter-
vention period and their explanation are the main focus
of this manuscript. The analysis was undertaken by fo-
cusing on the arterial parameters of total peripheral re-
sistance, systemic arterial compliance, as well as maximal
left-ventricular elastance. Additionally, we investigate if
there are differences between model formulations in esti-
mation of parameter changes, and if the pressure waveform
applied as a substitute for aortic hemodynamic measure-
ments is important in this regard.
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2. Method

2.1. Study Design, Setting, and Participants

The data originated from a pilot randomized controlled
trial for exercise motivation. The study participants were
randomly split into two groups. One group was asked
to achieve a score of of over a 100 weekly PAI points by
using a mobile application reading data from their wrist
worn heart-rate sensor. The second group was instructed
to follow the World Health Organization’s general recom-
mendations for physical activity [18]. A total of 26 adults
(13 females), 45-65 years of age, met the inclusion criteria
at screening: prehypertensive or hypertensive, currently
physically inactive (self-reported < 50 PAI per week), not
using antihypertensive medication and no history of car-
diovascular disease. Hypertensive is here defined as having
a systolic and diastolic blood pressure of ≥ 140/90 mmHg,
while prehypertensive is defined as values above ≥ 130/80
mmHg. One participant dropped out due to becoming
unable to perform exercise for a longer period during the
trial period. The the study period lasted for 12 weeks, and
hemodynamic measurements were made at the beginning,
after 6 weeks and at the end. We refer to these as measure-
ment days 1, 2, and 3. Parts of the trial have previously
been described by Øyen, and Bjørdalsbakke et al. [19, 20].
The characteristics of the study population can be found
in Table 1.

n = 25
Height 174.3±8.9 cm
Weight 85.9±14.2 kg
BSA 2.0±0.2 m2

BMI 28.2±3.6 kg/m2

Age 55.9±3.9 years
Sex M/F 13/12 -
SBP 138.5±12.6 mmHg
DBP 87.3±8.7 mmHg

VO2,max 36.4±6.8 mL/(kg min)
24h ABPM awake SBP 141.0±13.5 mmHg
24h ABPM awake DBP 85.4±9.1 mmHg

SV (4D) 85.5±20.0 mL
SV LVOT 79.7±20.2 mL

Table 1: Baseline characteristics of the study population. SBP and
DBP signifies systolic and diastolic office blood pressure measure-
ment. BSA: body surface area, BMI: body mass index, ABPM:
ambulatory blood pressure monitoring, SV: stroke volume, LVOT:
left-ventricular outflow tract. 4D refers to 3D measurement aver-
aged over time.

2.2. Data Collection

Varied hemodynamic data was recorded during the
course of the study in the form of blood pressure, aortic

flow, and pulse wave velocity. The cardiorespiratory fit-
ness (CRF) was also measured as VO2,max through a car-
diopulmonary exercise test (CPET) at measurement days
1 and 3 of the study period. Additionally, the activity lev-
els throughout the study period was monitored using wrist
worn heart rate monitors. Waveform data preprocessing
has been described previously by Bjørdalsbakke et al. [17].

2.2.1. Physical Activity Monitoring

Physical activity monitoring was made by wearable
wrist-worn heart rate monitors (LYNK2). The collected
heart rate data were aggregated into daily PAI scores rep-
resenting the physical activity level over the past week.
The study group which asked to achieve a 100 weekly PAI
were able to see their PAI scores during the study inter-
vention, while the other group asked to follow the current
recommendations were not able to monitor their PAI score.

2.2.2. Cardiopulmonary Exercise Test

A cardiopulmonary exercise test (CPET) was conducted
for participants on measurement days 1 and 3. The test
was performed using a treadmill (Woodway PPS 55) with
Metalyzer II (Cortex).

Participants warmed up for 15 minutes at approxi-
mately 70% of estimated maximal heart rate. After warm-
up workload was increased by 0.5-1 km/h and/or 1-2% in-
clination per minute until volitional exhaustion or VO2,max

criteria were met. VO2,max was defined as a plateau in
VO2 despite increase in workload and respiratory exchange
ratio >1.05. 22 of initially 26 participants reached this re-
quirement, and therefore when VO2,max is referred in this
text, we actually mean VO2,peak in some cases.

2.2.3. Blood Pressure Recordings

Ambulatory blood pressure monitoring (ABPM) of
brachial artery blood pressure over 24 hours was measured
using Oscar 2 model 250 (SunTech Medical Inc). Conven-
tional office blood pressure (OBP), which is also a brachial
artery measurement, was measured using a TangoM2 auto-
matic blood pressure monitor (SunTech Medical Inc). The
full pressure waveform was also measured non-invasively in
the carotid artery, and finger arteries.

Office blood pressure was recorded in both arms upon
screening, and the arm with the highest blood pressure
was chosen for all subsequent measurements on all mea-
surement days. Three measurements were taken, with
1.5 minute rest between each measurement. Participants
were seated throughout the procedure. OBP measure-
ments were taken for all measurements days. For 24h
ABPM, measurements were taken at 30 minute intervals
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at night, and 20 minute intervals by day. ABPM was per-
formed for all measurement days.

Digital artery pressure waveforms in the finger were
acquired by a Finometer PRO system (FinaPres) for 4
participants, while the remaining participants were mea-
sured by a Non-Invasive Blood Pressure Nano system (Fi-
naPres). We refer to this type of measurement as fin-
ger pressure in the following. Participants were placed
in the left lateral recumbent position during recordings,
and measurements were made in the right hand. Measure-
ments could be made in the index, middle or ring finger
depending on where a clear signal was found. The pressure
waveforms were subsequently calibrated to brachial blood
pressure values obtained by ABPM during participants’
waking hours.

We measured synchronized flow and finger pressure be-
fore performing the CPET test at both measurement day
1 and 3. Then the next day, and within 24 hours of con-
ducting the CPET, the measurements were repeated for
a subset of the participants. On these extra measurement
days OBP and 24h ABPM was also measured. These mea-
surements only exist for finger pressure waveform data, not
for the carotid wavefom.

A SphygmoCor (CvMS v9, AtCor Medica) system
traced the pressure waveform of the carotid artery by ap-
planation tonometry, while also estimating the carotid-
femoral pulse wave-velocity. We also calibrated these to
ABPM measurements.

2.2.4. Echocardiography

An echocardiographic examination was performed on
all measurement days. In particular the left-ventricular
outflow tract flow (LVOT) flow trace was synchronized to
finger pressure recordings during measurement. 4D record-
ings of stroke volume (SV) were also acquired.

Taking the traced carotid artery waveforms, we paired
them with the same aortic flow waveforms which the finger
pressure waveforms were synchronized to.

2.3. Inclusion Criteria

2.3.1. Inclusion Criteria for Correlation and Regression
Analysis

The requirement for inclusion was having blood pres-
sure measurements, LVOT flow and at least one type of
pressure waveforms, as well as body mass data for all three
measurement days. As a consequence, all drop-outs are ex-
cluded. Further, VO2,max estimates should exist for both
measurement day 1 and 3. Height data was also required
at measurement day 1.

For blood pressure, awake measurements from 24h
ABPMmeasurements, or alternatively OBPmeasurements
where ABPM data was missing were required. For blood
pressure waveforms, either finger pressure waveforms or
carotid pressure waveforms were acceptable. Finger pres-
sure also required synchronization data to LVOT flow in
the raw data files. In terms of SV data, 4D SV was pre-
ferred, but SV derived from LVOT flows was sufficient if
the former was missing.

Due to drop outs, missing data, or missing synchroniza-
tion data we selected 55 eligible sets of measurements for
synchronised finger pressure and LVOT flow. Among these
measurements 9 participants were identified with complete
records. Similarly, for the data sets with carotid pressure,
14 eligible participants had complete records. The char-
acteristics for the selected groups using differing pressure
waveforms are found in Appendix A.

These inclusion criteria applies for all subsequent anal-
yses as well.

2.3.2. Inclusion Criteria for Analysis of CPET Induced
Change

The CPET induces changes in hemodynamics, and bouts
of exercise have been observed to impact hemodynamics
and specifically blood pressure for up to 24 hours after-
wards [21]. This analysis was made to compare the change
observed over longer periods to the change after one bout
of strenuous exercise, or to daily variability if exercise ef-
fects have attenuated after 24 hours. This would indicate
whether the model would see any difference or resolve this
change similarly.

Inclusion criteria for the sub-analysis on changes after
the CPET we require the same blood pressure and echocar-
diography measurements as described in previous sections
on the days immediately following measurement day 1 and
3. By also requiring complete records for flow and finger
pressure alignment, this left 4 participants out of the 9
identified in the previous paragraph. Consequently, these
4 participants had complete pressure and flow measure-
ments within 24 hours after CPETs conducted at the be-
ginning and end of the intervention (day 1 and 3).

2.3.3. Inclusion Criteria for Individual Participant Case
Analysis

In this sub-analysis, we included the participants ex-
pected to have exercise-induced cardiovascular remodelling
based on the measured cardiorespiratory fitness. Individ-
ual cardiovascular response to physical activity over both
the short- and long-term is likely dependent upon proper-
ties in the individual which also causes challenges in pre-
dicting which type and amount of exercise is sufficient to
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expect measurable cardiovascular remodeling.

To investigate the parameter changes of those we ex-
pected to be most likely to experience cardiovascular re-
modelling, we selected participants based on change in
VO2,max. We set the inclusion criteria to be that the
participants should fall in the upper quartile of measured
changes in VO2,max. This left 4 participants.

2.4. Models

The models used have been presented in detail previ-
ously by Bjørdalsbakke et al. [20, 17]. The closed-loop
model is based on previous models by Smith et al., Segers
et al., and Bovendeerd et al. [22, 23, 24]. The open-loop
model is equivalent to the model presented by Stergiopu-
los et al. [25]. The models are depicted in Figure 1, and
the model parameters which are chosen for personalization
are given in Table 2. Both models are investigated in this
paper since they describe mainly the same hemodynamics
with exception of the venous compartment and ventricular
filling. They also have varying amounts of potentially per-
sonalizable, which may interact during optimization and
cause different parameter estimates between models.

Symbol Description Unit

Cao Systemic arterial mL
mmHg

compliance
Csv Systemic venous mL

mmHg

compliance

Emax Maximal left mmHg
mL

ventricular elastance

Emin Minimal left mmHg
mL

ventricular elastance

Rmv Mitral valve mmHg s
mL

resistance

Rsys Total mmHg s
mL

peripheral resistance
T Heart period s
tpeak Time of peak s

ventricular elastance
Vtot Total stressed mL

blood volume

Zao Characteristic mmHg s
mL

impedance of
the aorta

Table 2: The closed-loop model parameters are listed with their
corresponding symbols and units. The same parameters are used to
describe the open-loop model except for Csv and Vtot. Taken from
Bjørdalsbakke et al. [17] under a CC-BY-4.0 license.

2.4.1. Model Output and Parameter Estimation

The models were formulated as a set of differential
equations where a 4th order Runge-Kutta scheme imple-

Figure 1: a) The closed-loop, lumped parameter model of the left
ventricle, systemic arteries, and veins. b) The open-loop lumped
parameter model of the left ventricle and systemic arteries. The
circuit equivalent formulation of the models are depicted with the
pressures and most of the mechanical parameters used to describe
the systemic circulation. The venous compartment is volumeless and
only partially described in the open-loop model. Pressures P , denote
pressures in different parts of the cardiovascular system. Subscripts
are as indicated by the figure text. Elv indicates the left-ventricular
elastance function. Zao: characteristic aortic impedance, Cao: sys-
temic arterial compliance, Rsys: total peripheral resistance, Rmv:
mitral valve resistance. Taken from Bjørdalsbakke et al. [17] under
a CC-BY-4.0 License.
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mented in SciPy [26]. Model outputs are denoted as time-
dependent signals y(t,θ), where θ is a vector of mechanical
model parameters.

Parameters are estimated by an ensemble of local op-
timizations, where the aortic flow and pressure waveforms
with additional weight for systolic and diastolic values are
included in the cost function. Hence, the parameter esti-
mates have some inherent variability stemming from the
optimization method, in addition to the intra-individual
variability over time. The variability for parameters esti-
mated for a single participant at a given point in time was
found in previous work to be smaller than for the inter-
personal parameter variability for the study population,
and smaller than the intra-individual variability over all
measurement days in a majority of cases. Further details
on implementation, optimization and waveform processing
can be found in Bjørdalsbakke et al. [17]. The parameters
were normalized by body surface area (BSA), defined as

BSA =
√

height·weight
3600 [27]. BSA has units of m2. This is

to account for interindividual variation in parameters that
are known or can be assumed to be dependent upon such
factors.

2.5. Parameter and Statistical Analysis

In addition to the parameter estimates optimized to the
model itself, we computed estimates based on conventional
estimation methods for Cao and Rsys by the formulas

Cm
ao =

PP

SV
, (1)

and

Rm
sys =

MAP

CO
. (2)

For these equations PP denotes pulse pressure, SV is
stroke volume, CO is cardiac output, and MAP is the mean
arterial pressure as computed by averaging the carotid or
finger pressure waveform calibrated by brachial blood pres-
sure. Here, PP is defined as the difference between systolic
and diastolic brachial blood pressure.

The end-systolic pressure-volume relation (ESPVR) is
often approximated to be linear [28]. Estimation methods
based on single heart beats using ventricular data have
been proposed [29, 30]. However, we do not use ventricular
volumes in this investigation, so therefore we use another
simpler method to estimate the maximal left-ventricular
elastance by neglecting the volume axis intercept for the
ESPVR (Vd) as follows

Em
max ≈ ESP

ESV
≈ Pbr,sys

ESV
. (3)

Here, ESP denotes left-ventricular end-systolic pres-
sure, ESV is the left-ventricular end-systolic volume, and

Pbr,sys is the brachial systolic pressure. This estimate car-
ries some additional uncertainty due to this measure being
load dependent [28]. This means that the elastance esti-
mated in this way changes with changed afterload of the
heart, while the slope of the end-systolic pressure-volume
relation in the normal operating range is normally load
independent.

Equations (1), (2), and (3) allowed us to compute the
changes in these parameters for comparison to changes
estimated using model optimized parameters. Estimates
made by these equations will be referred to as “conven-
tional estimates”.

2.5.1. Regression Analysis

Ordinary Linear Regression analysis as implemented
in the Python library “statsmodels” [31], and correlation
analysis performed through by the “Pingouin” Python li-
brary were the main employed statistical tools for this ex-
ploratory analysis.

Ross et al. have suggested research designs and sta-
tistical methods to model exercise response variability to
changes in CRF for different study designs [32]. For our
analysis we instead include CRF as a predictor to explain
changes in model parameters. Ross et al. recommend us-
ing linear mixed effect models for trials with repeated mea-
surements over time, but without a control groups. We
consequently look at the personalized parameters where
the parameter for an individual i is given as

θi = µ+ αi + εi. (4)

Further, µ indicates the population average parameter,
including both the intercept, and common regressor coef-
ficients estimated for the population. Simultaneously, αi

is the personal deviation from the average, which includes
permanent effects such as sex, and transient effects such
as age and lifestyle (diet, activity level, etc.), and we only
allowed personal deviations in the model intercept for our
analysis. εi indicates all sources of random error, which in-
cludes measurement errors, and error from the estimation
procedure, but also short term day-to-day variation. Al-
though the model structure for the dynamic cardiovascular
model may be simple, the behaviour of state variables and
model parameters may be complex and depend on data
quality, noise, and the model structure itself. However,
we are interested to see whether the data holds patterns
which may be linked to how the parameters are influenced
by fitness level, as they change over the study period. In
order to understand some of these relationships better we
apply ordinary linear regression and linear mixed model-
ing in the context of equation (4). Ordinary regression
is also applied to investigate the explanatory variables of
the direct change in parameters. Our models are built in
various configurations using age, sex, BMI, SV, VO2,max,
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and changes in the last three. The letters A-D indicate
different models with different choices of the listed regres-
sors used to predict the chosen parameter value or change.
A is the baseline model (including age, sex, and BMI), B
includes VO2,max, C includes SV, and D includes all listed
predictors.

To investigate regression to the mean, we tested whether
the value on the last measurement day of an individual’s
parameters highly correlated to the deviation of the indi-
vidual’s average value (θpers,avg) from the population av-
erage parameter value over all measurement days (θpop).
The individual average was computed using only the first
two measurement days. A high adjusted r2 would indi-
cate how much variance is explained in the final param-
eter value by the personal average variability, and indi-
cate a clustering about a personal mean. The clinical
trial was uncontrolled in terms of parameter changes and
non-exercising participants. Therefore, we needed to test
whether it was likely that calculated changes were due to
extreme observations of random effects, or if they were
influenced by the exercise stimulus or other causes. Addi-
tionally, the change of the parameter value between mea-
surement day 1 and 3 was tested by whether it would corre-
late highly to the difference between the initial parameter
value and the population value. In this case a high nega-
tive correlation would indicate regression to the population
mean. We refer to these two investigations of regression
to the mean as the “regression to the mean analyses”.

Next, for the second part of the regression analysis fo-
cusing on other covariates than parameter values, we in-
vestigated whether the level of or change in CRF could ex-
plain variability in the parameters and parameter changes.
This was assessed by comparing unexplained (estimated
residual variance) and explained variance (adjusted r2) for
regression models. We designed models for determining
either the parameter change over all 12 weeks, or the pa-
rameter development over all 12 weeks including individual
variation. We would then assess whether any added pa-
rameters contributed to explaining more of the observed
variability. For prediction of changes, the changes from
day 1 to 3 were analysed for the parameters Emax, Cao,
and Rsys. The change between measurement day j and i
is denoted as ∆i,j . For all regression models the dependent
variables are Z-score standardized. The regressors for the
linear mixed effects models are grand mean centered for
the standardization.

3. Results

3.1. Comparison of Estimated Parameter Changes

For ease of readability, most of the closed-loop model
results are presented in Appendix B. We calculated the pa-
rameter changes between all measurement days. Changes

Parameter Wave- Estimation Maximal abs. Minimal abs. Maximal Minimal Mean Mean abs. Units
form method change change change change change change

Rsys C Model 0.208 0.001 0.208 -0.165 -0.008 0.074 mmHg s
mLm2

Cao C Model 0.583 0.002 0.583 -0.518 0.058 0.206 mL
mmHgm2

Emax C Model 0.497 0.006 0.429 -0.497 -0.043 0.177 mmHg
mLm2

Rsys C Conv. 0.213 0.000 0.213 -0.203 -0.011 0.091 mmHg s
mLm2

Cao C Conv. 0.324 0.001 0.265 -0.324 0.016 0.122 mL
mmHgm2

Emax C Conv. 0.793 0.004 0.504 -0.793 -0.074 0.188 mmHg
mLm2

Rsys F Model 0.151 0.002 0.151 -0.142 -0.011 0.045 mmHg s
mLm2

Cao F Model 0.740 0.000 0.740 -0.425 0.094 0.192 mL
mmHgm2

Emax F Model 1.444 0.006 1.444 -1.058 0.043 0.270 mmHg
mLm2

Rsys F Conv. 0.163 0.002 0.157 -0.163 -0.019 0.055 mmHg s
mLm2

Cao F Conv. 0.243 0.001 0.243 -0.113 0.065 0.098 mL
mmHgm2

Emax F Conv. 0.793 0.019 0.161 -0.793 -0.175 0.207 mmHg
mLm2

Table 3: Maximal, minimal, average and average absolute changes
for total peripheral resistance (Rsys), systemic arterial compliance
(Cao), and maximal left-ventricular elastance (Emax). Results are
given for parameter changes produced by open-loop model optimiza-
tion and by computation using conventional techniques, based on
both carotid (C) and finger (F) pressure waveforms. Maximal and
minimal changes are given unsigned, and can be any changes between
the first, second and third measurement days. The carotid measure-
ments describe 14 participants with carotid pressure measurements,
while the finger pressure includes 9 participants with synchronized
flow and pressure.

for parameters estimated using either carotid or finger
pressure waveforms were then compared to the conven-
tional estimates computed by equations (1) - (3). Ta-
bles 3 and B.13 show summary statistics for the parame-
ter changes between any of the three measurement days.
The mean absolute changes computed by conventional es-
timates are larger than for the model estimates except for
Cao regardless of model or data, and for Emax for the open-
loop model using finger pressure waveforms. Cao exhibits
the largest difference between means by a factor of approx-
imately 2.

Tables 4 and B.14 show the Pearson correlation (r) be-
tween parameter changes estimated by model parameter
optimization, and conventional estimates. The tables de-
scribe the correlation for changes in parameters Rsys, Cao,
and Emax using both choice of pressure waveforms and
models. Changes in Rsys are highly correlated in all sce-
narios. Cao is mainly moderately to highly correlated for
carotid pressure, but we cannot find significant correlation
when using finger pressure. Emax has no significant corre-
lation except for moderate negative correlation for carotid
pressure for the change from measurement day 1 to 3, and
for all changes collected when using the closed-loop model.

Figure 2 shows examples of the correlations between
parameter changes of different parts for the study period
and compares results for both models, as well as the differ-
ent choice of pressure waveforms. Firstly, the correlations
for the closed- and open-loop models are very similar in
all cases. Secondly, we observe that the correlations are
mainly consistent between model estimates and conven-
tional estimates by equations (2) - (3), except for Emax

where the equation based conventional estimates often ex-
hibit the opposite behaviour to the model estimates. There
is also a pattern revealing that changes over the first half
of the study period and over second half of the exercise
period are often correlated to a low or moderate degree
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Parameter Wave- Temporal change r p value CI95%
form (meas. days)

Rsys C 1-2 0.992 < 10−3 [0.97, 1.00]
Rsys C 1-3 0.988 < 10−310 [0.96, 1.00]
Rsys C 2-3 0.973 < 10−3 [0.91, 0.99]
Rsys C All 0.986 < 10−3 [0.97,0.99]
Cao C 1-2 0.649 0.012 [0.18, 0.88]
Cao C 1-3 0.672 0.009 [0.22, 0.89]
Cao C 2-3 0.496 0.071 [-0.05, 0.81]
Cao C All 0.618 < 10−3 [0.39, 0.78]
Emax C 1-2 -0.385 0.194 [-0.77, 0.21]
Emax C 1-3 -0.579 0.038 [-0.86, -0.04]
Emax C 2-3 -0.012 0.967 [-0.54, 0.52]
Emax C All -0.267 0.096 [-0.53, 0.05]
Rsys F 1-2 0.951 < 10−3 [0.78, 0.99]
Rsys F 1-3 0.990 < 10−3 [0.96, 1.00]
Rsys F 2-3 0.992 < 10−3 [0.96, 1.00]
Rsys F All 0.984 < 10−3 [0.96, 0.99]
Cao F 1-2 -0.105 0.789 [-0.72, 0.60]
Cao F 1-3 0.233 0.547 [-0.51, 0.78]
Cao F 2-3 0.369 0.329 [-0.39, 0.83]
Cao F All 0.181 0.365 [-0.21, 0.53]
Emax F 1-2 -0.206 0.625 [-0.80, 0.58]
Emax F 1-3 -0.126 0.767 [-0.76, 0.64]
Emax F 2-3 -0.466 0.206 [-0.86, 0.29]
Emax F All -0.356 0.081 [-0.66, 0.05]

Table 4: Correlation statistics for parameter changes from total
peripheral resistance (Rsys), systemic arterial compliance (Cao),
and maximal left-ventricular elastance (Emax). Results are given
for correlations between parameter changes produced by open-loop
model optimization and by computation using conventional equa-
tions, based on both carotid (C) and finger (F) pressure waveforms.

and with a negative sign.

3.2. Longitudinal and Post Exercise Parameter Variability

To assess whether changes monitored after 12 weeks
were different to the day to day variability and short-term
transient exercise effects of the hemodynamics, we com-
puted the parameter changes between measurements made
before the CPET and the day after. This was only pos-
sible for the finger pressure waveforms, since only these
were monitored before and after the CPET. The aver-
age parameter changes are presented in tables 5 and B.15.
The average change from measurements made before the
CPET to measurements made after the CPET are typi-
cally on the same order of magnitude as the change after
12 weeks. There are some notable exceptions especially
for conventional parameter estimates for left-ventricular
elastance and arterial compliance where changes over 12
weeks are two to four times larger than the average changes
computed directly before and after the CPET test. Com-
paring to tables 3 and B.13 we see that the range of com-
puted CPET changes are similar to these changes that are
computed over longer periods and over all participants.
Also according to this comparison the average short term
changes connected to a single CPET are very similar to the
average change for any of the longer term changes for most
parameters. The longer term changes for participants are
usually higher for Cao. It should also be noted that for the
changes following a single CPET session compared to the
change over all 12 weeks, the sign changes for Rsys.

1-2,1-3 1-2,2-3 2-3,1-3

CL-C
CL-F
OL-C
OL-F

Conv.-C
Conv.-F

r, 
[-]

0.70 -0.30 0.47
0.11 -0.46 0.84
0.73 -0.27 0.45
0.10 -0.45 0.85
0.70 -0.35 0.43
0.03 -0.49 0.85

Correlations of Rsys changes over varying
periods

1-2,1-3 1-2,2-3 2-3,1-3

CL-C
CL-F
OL-C
OL-F

Conv.-C
Conv.-F

r, 
[-]

0.53 -0.54 0.43
0.82 0.18 0.71
0.52 -0.45 0.53
0.68 0.11 0.80
0.57 -0.49 0.43
0.67 -0.12 0.66

Correlations of Cao changes over varying
periods

1-2,1-3 1-2,2-3 2-3,1-3
Compared periods, [Test days]

CL-C
CL-F
OL-C
OL-F

Conv.-C
Conv.-F

r, 
[-]

0.74 -0.39 0.33
0.21 -0.67 0.58
0.71 -0.81 -0.16
0.76 -0.96 -0.55
0.64 0.31 0.93
0.63 -0.06 0.73

Correlations of Emax changes over varying
periods
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Figure 2: Correlations between parameter changes over the first half,
second half and the entire study period for the closed-loop and open-
loop models. “F” indicates finger pressure waveform, while “C” in-
dicates carotid waveform. From top to bottom panel: Rsys, Cao,
Emax. The “Conventional” (Conv.) estimate correlations are based
on the the data with the carotid waveform. The Conv. estimates
of Rsys are slightly different for each of the waveforms as the mean
pressure is estimated from the calibrated waveform.
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Parameter Estimation Temporal Mean abs. Mean
change change change change

Rsys Model CPET week 0 0.043(0.040) 0.020(0.060)
Rsys Model CPET week 12 0.059(0.022) 0.030(0.060)
Rsys Model Pre CPET week 0-12 0.050(0.061) -0.042(0.069)
Rsys Conv. CPET week 0 0.052(0.043) 0.016(0.072)
Rsys Conv. CPET week 12 0.064(0.022) 0.035(0.066)
Rsys Conv. Pre CPET week 0-12 0.055(0.066) -0.053(0.068)
Cao Model CPET week 0 0.076(0.083) 0.076(0.083)
Cao Model CPET week 12 0.254(0.349) -0.190(0.400)
Cao Model Pre CPET week 0-12 0.327(0.359) 0.327(0.359)
Cao Conv. CPET week 0 0.072(0.071) 0.068(0.076)
Cao Conv. CPET week 12 0.031(0.024) -0.003(0.044)
Cao Conv. Pre CPET week 0-12 0.127(0.069) 0.127(0.069)
Emax Model CPET week 0 0.141(0.073) 0.037(0.173)
Emax Model CPET week 12 0.254(0.217) -0.030(0.364)
Emax Model Pre CPET week 0-12 0.102(0.081) 0.097(0.90)
Emax Conv. CPET week 0 0.082(0.090) -0.082(0.090)
Emax Conv. CPET week 12 0.070(0.040) 0.070(0.040)
Emax Conv. Pre CPET week 0-12 0.281(0.078) -0.281(0.078)

Table 5: Average and average absolute parameter changes over dif-
ferent periods throughout the study period, describing the parameter
change from measurements made before a CPET and the day after.
Pre CPET denotes parameter changes calculated between the first
and final measurement day based on measurements made prior to
the CPET. Results are given for parameter changes produced by
open-loop model optimization and by computation using conven-
tional techniques, based on the finger pressure waveforms.

3.3. Case Study

Based on the observation that the parameter changes
based on finger pressure lack clear correlation to the con-
ventional estimate changes in many instances, we drop
these in the case and regression analyses onwards. Four
participants who fulfilled the selection criteria as outlined
in 2.3.3 have their parameters throughout the study pe-
riod shown in Figures C.3 - C.4 in the appendix Appendix
C. The plots also show the pairwise relationships between
the variables incorporated in the regression analysis.

3.4. Regression Analysis

The results for the first two regression analyses to in-
vestigate regression to the mean are shown in tables 6
and B.16. These results indicate that the final param-
eter values are generally moderately to highly positively
correlated with the difference of personal and population
averages. The resistance and ventricular elastance param-
eters on the final parameter day are moderately to highly
correlated for either model, while compliance is approxi-
mately moderately correlated. For the correlation of the
parameter change to the difference between the initial pa-
rameter value and the population mean, the trend shows
that regression coefficients are negative, and with appar-
ently low to moderate values of correlation. The adjusted
r2 is highest in Rsys and this would also suggest a higher
level of regression to the mean compared to the other pa-
rameters.

For the second part of the regression analysis, we built
ordinary and linear mixed regression models for predic-
tion of parameter values or changes based on age, BMI,
and gender. We also considered the scatter plots of model

DV: Rsys,3 Cao,3 Emax,3 ∆1,3Rsys ∆1,3Cao ∆1,3Emax

Intercept 0.598* 0.969* 0.985* -0.012 0.088 -0.064
Rsys,avg-Rsys,pop 0.101*
Cao,avg-Cao,pop 0.166*
Emax,avg-Emax,pop 0.307*
Rsys,1-Rsys,pop -0.056*
Cao,1-Cao,pop -0.111
Emax,1-Emax,pop -0.045
Adj. r2 0.673 0.337 0.867 0.250 0.129 0.001
N 14 14 14 14 14 14
F-statistic 27.72 7.616 85.62 5.330 2.925 1.014
F-test p-value 0.000* 0.017* 0.000* 0.040* 0.113 0.334

Table 6: Ordinary linear regression models based on the difference
between the individual average parameter values over the two first
measurement days (subscript: avg) and the population average (sub-
script: pop). The model parameters are optimized for the open-loop
model using the carotid pressure waveform. Indices, 1-3 indicate
measurement day. DV: dependent variable.

parameters versus the measurements to investigate possi-
ble variable relationships. The scatter plots are shown in
Figures C.4 and C.3.

Linear mixed effects regression models are shown in ta-
bles 7 and 8. In the majority of cases, addition of SV to
the baseline model caused the highest level of explained
variance, as indicated by the unexplained variance mea-
sure (residual variance). Adding solely CRF (C) to the
baseline model (A) did not improve the level of explained
variance when compared to any of the models incorporat-
ing SV (B and D). For resistance, the the various models
performed similarly in terms of residual variance, and the
coefficients for sex, BMI, SV were consistently significant
across both models with sex being the most influential. For
arterial compliance only SV was a consistent explanatory
factor across models with Sex being the most influential.
Finally, for ventricular elastance, sex and SV explained
the larges amount of variation. While VO2,max was some-
times significant for Cao in model C the regression coeffi-
cient typically changed sign and/or magnitude in model D
for all parameters. Patterns in estimated coefficients and
unexplained variance are generally similar between both
the closed- and open-loop model. An exception of note is
that the models for ventricular elastance displays a higher
group variance and higher values for the significant coeffi-
cients for the open-loop derived parameters.
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Rsys: A B C D
Intercept 0.655* 0.635* 0.626* 0.649*

Age -0.016 -0.011 -0.022 -0.005
Sex -0.143* -0.097* -0.077 -0.129*
BMI -0.098* -0.093* -0.118* -0.085*
SV -0.076* -0.069*

VO2,max -0.035 0.023
Unex. Var. 0.005 0.002 0.006 0.003

N 42 42 28 28
Groups 14 14 14 14

Group size 3 3 2 2
Group variance 0.002 0.003 0.002 0.002

Cao: A B C D
Intercept 0.973* 1.021* 1.127* 1.055*

Age 0.016 0.006 0.103 0.047
Sex -0.013 -0.124* -0.424* -0.237
BMI 0.054 0.048 0.234* 0.120
SV 0.187* 0.218*

VO2,max 0.306* 0.107
Unex. Var. 0.035 0.023 0.028 0.008

N 42 42 28 28
Groups 14 14 14 14

Group size 3 3 2 2
Group variance 0.033 0.005 0.030 0.017

Emax: A B C D
Intercept 0.955* 0.977* 0.930* 0.905*

Age 0.021 0.015 0.004 -0.018
Sex 0.173* 0.121 0.178 0.246*
BMI -0.064 -0.074* -0.074 -0.124*
SV 0.087* 0.102*

VO2,max -0.014 -0.092
Unex. Var. 0.014 0.013 0.015 0.016

N 42 42 28 28
Groups 14 14 14 14

Group size 3 3 2 2
Group variance 0.019 0.009 0.022 0.008

Table 7: Linear mixed regression models for the model parameters for
total peripheral resistance, systemic arterial compliance, and maxi-
mal left-ventricular elastance. The models parameter are estimated
for closed-loop model using carotid pressure waveform data. “Unex.
Var.” is short for unexplained variance, while N is the number of
observations. The regression coefficients are normalized. Asterisks
indicate significant coefficients with a p-value less than 0.05.

The ordinary linear regression models for parameter
changes are shown in tables 9 and 10 indicate that trends
are similar in terms of patterns of by the adjusted r2 across
cardiovascular models. Further, SV is the most prominent
explanatory variable, and model B typically has the high-
est amount of explained variance. An exception of note
is that the change in ventricular elastance has a higher
degree of explained variance for the open-loop model com-
pared to the closed-loop formulation.

For Rsys, increases in CRF and SV correlated with neg-
ative change in (∆1,3Rsys), while increased BMI exhibited

Rsys: A B C D
Intercept 0.660* 0.643* 0.640* 0.656*

Age -0.010 -0.006 -0.011 0.003
Sex -0.134* -0.094* -0.089 -0.134*
BMI -0.096* -0.092* -0.110* -0.081*
SV -0.067* -0.061*

VO2,max -0.020 0.030
Scale 0.004 0.002 0.005 0.003
N 42 42 28 28

Groups 14 14 14 14
Group size 3 3 2 2

Group variance 0.002 0.003 0.001 0.002
Cao: A B C D

Intercept 0.937* 0.988* 1.065* 0.985*
Age 0.014 0.003 0.074 0.013
Sex 0.045 -0.074 -0.313 -0.107
BMI 0.069 0.062 0.225* 0.103
SV 0.199* 0.224*

VO2,max 0.243 0.028
Scale 0.034 0.022 0.036 0.013
N 42 42 28 28

Groups 14 14 14 14
Group size 3 3 2 2

Group variance 0.043 0.009 0.033 0.019
Emax: A B C D

Intercept 0.835* 0.890* 0.947* 0.873*
Age 0.036 0.023 0.057 -0.002
Sex 0.443* 0.315* 0.167 0.359*
BMI -0.012 -0.032 0.096 -0.034
SV 0.215* 0.214*

VO2,max 0.168 -0.033
Scale 0.024 0.010 0.015 0.011
N 42 42 28 28

Groups 14 14 14 14
Group size 3 3 2 2

Group variance 0.056 0.010 0.080 0.014

Table 8: Linear mixed regression models for the model parameters for
total peripheral resistance, systemic arterial compliance, and maxi-
mal left-ventricular elastance. The models parameter are estimated
for open-loop model using carotid pressure waveform data. “Unex.
Var.” is short for unexplained variance, while N is the number of
observations. The regression coefficients are normalized. Asterisks
indicate significant coefficients with a p-value less than 0.05.

the opposite pattern. Change in arterial compliance in-
creases with increased SV, and so does ventricular elas-
tance in both cardiovascular model formulations. Change
in maximal ventricular elastance is explained by increases
in SV, but also by age for the open-loop model, which is
not shown to affect this parameter when compared to the
linear mixed effects models.
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∆1,3Rsys: A B C D
Intercept -0.001 -0.004 0.004 0.005

Age -0.058 -0.021 -0.053 -0.020
Sex -0.028 -0.020 -0.039 -0.020

∆1,3BMI 0.009 0.006 -0.004 0.006
∆1,3SV -0.081* -0.082*

∆1,3VO2max -0.035 0.013
Adj. r2 0.073 0.615 0.100 0.567

N 14 14 14 14
F-statistic 1.343 6.192 1.361 4.405

F-test p-value 0.315 0.011* 0.321 0.032*
∆1,3Cao: A B C D
Intercept 0.053 0.062 0.038 0.060

Age 0.082 -0.024 0.066 -0.023
Sex -0.008 -0.013 0.044 -0.008

∆1,3BMI -0.004 -0.007 0.038 0.012
∆1,3SV 0.225* 0.218*

∆1,3VO2max 0.111 0.015
Adj. r2 -0.157 0.683 -0.027 0.647

N 14 14 14 14
F-statistic 0.414 8.997 0.9156 5.775

F-test p-value 0.747 0.005* 0.495 0.015*
∆1,3Emax: A B C D
Intercept -0.103 -0.102 -0.099 -0.096

Age 0.026 0.020 0.030 0.017
Sex 0.143 0.142 0.136 0.128

∆1,3BMI 0.042 0.043 0.033 0.030
∆1,3SV 0.015 0.033

∆1,3VO2max -0.024 -0.038
Adj. r2 0.189 0.108 0.124 0.055

N 14 14 14 14
F-statistic 2.009 1.393 1.461 1.153

F-test p-value 0.177 0.311 0.292 0.408

Table 9: Ordinary linear regression models for the model parame-
ters for total peripheral resistance, systemic arterial compliance, and
maximal left-ventricular elastance. The models parameter are esti-
mated for closed-loop model using carotid pressure waveform data.
“Adj. r2” is the adjusted r2, while N is the number of observations.
The regression coefficients are normalized. Asterisks indicate signif-
icant coefficients with a p-value less than 0.05.

4. Discussion

Total peripheral resistance has been reported to de-
crease after bouts of physical activity both in the short
and long term [33, 11]. The size of this decrease is also
dependent upon the baseline blood pressure, type of phys-
ical activity, and individual properties. As a consequence
the trend of marginally lowered systemic resistance seen in
these results on average (see tables 3, B.13, 5, and B.15) is
in agreement with previous findings. A trend of resistance
is also observed in several of the participants chosen for
the case analysis.

By comparing the computed changes between measure-
ment days and comparing to the changes pre- to post-
CPET, there did not seem to be any clear signal of sus-

∆1,3Rsys: A B C D
Intercept 0.002 -0.001 0.006 -0.002

Age -0.053 -0.018 -0.049 -0.017
Sex -0.032 -0.026 -0.042 -0.024

∆1,3BMI 0.012 0.008 0.001 0.010
∆1,3SV -0.075* -0.078*

∆1,3VO2max -0.029 -0.006
Adj. r2 0.061 0.588 0.055 0.540

N 14 14 14 14
F-statistic 1.280 5.638 1.189 4.058

F-test p-value 0.334 0.015* 0.379 0.039*
∆1,3Cao: A B C D
Intercept 0.069 0.077 0.061 0.082

Age 0.128 0.040 0.112 0.038
Sex 0.043 0.025 0.062 0.014

∆1,3BMI -0.021 -0.012 0.000 -0.023
∆1,3SV 0.187* 0.202*

∆1,3VO2max 0.058 -0.031
Adj. r2 0.020 0.548 -0.022 0.509

N 14 14 14 14
F-statistic 1.090 4.943 0.931 3.694

F-test p-value 0.398 0.022* 0.448 ¡0.050*
∆1,3Emax: A B C D
Intercept -0.049 -0.045 -0.053 -0.041

Age 0.139* 0.089* 0.135* 0.087*
Sex -0.035 -0.045 -0.026 -0.054

∆1,3BMI -0.052 -0.047* -0.042 -0.056*
∆1,3SV 0.106* 0.118*

∆1,3VO2max 0.026 -0.026
Adj. r2 0.432 0.856 0.402 0.867

N 14 14 14 14
F-statistic 4.294 20.38 3.182 23.16

F-test p-value 0.034* 0.000* 0.069 0.000*

Table 10: Ordinary linear regression models for the model parame-
ters for total peripheral resistance, systemic arterial compliance, and
maximal left-ventricular elastance. The models parameter are esti-
mated for open-loop model using carotid pressure waveform data.
“Adj. r2” is the adjusted r2, while N is the number of observations.
The regression coefficients are normalized. Asterisks indicate signif-
icant coefficients with a p-value less than 0.05.

tained exercise-induced remodeling in parameters over the
12 weeks which was consistently different than the tran-
sient short-term post CPET effects. This may have been
due to insufficient data, insufficient physical activity or
lack of response to exercise in these individuals, as only one
of the four participants with CPET measurements met the
criteria for and is included in the case study. One cannot
rule out that there are possible non-responders to exercise
in this study sample either.

Comparing the correlation of parameter changes be-
tween different parts of the study period (Figure 2), we
note that the changes in the first half of the study pe-
riod tend towards a negative and low correlation with the
changes of the second half usually. Although these corre-
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lations are not necessarily significant, this is a normally
recognized as a pattern which may indicate that the pa-
rameter values regress to a personal mean. This would
mean that the changes may be extreme observations by
chance, and not necessarily caused by the study inter-
vention. Additionally, the correlation patterns are more
similar between parameters changes estimated using the
same pressure waveforms than when using the same car-
diovascular model with different pressure waveforms. This
suggests that the pattern of changes are more dependent
upon measurement modality than the cardiovascular mod-
els themselves. Further, this would be a sign of no or little
effect of exercise on the parameter changes. The cardiovas-
cular model based changes for resistance and compliance
seem to correlate reasonably well with the data from con-
ventional estimates (See tables 4 and B.14). This suggests
that changes in parameter estimates made for the cardio-
vascular models are informed by changes in the data and
are not purely results of uncertainty or poor performance
by the estimation method. Even though the change in
hemodynamics may not be convincingly informed by ex-
ercise, the fact that the pattern of changes in many cases
agree based on different estimation approaches supports
that both methods produce similar week-to-week varia-
tions as expressed by the data. Ventricular elastance on
the other hand does not show the same behaviour in all
cases, and often has a negative relationship. The results
also indicate that the carotid pressure waveform more of-
ten produces estimates higher correlated with the conven-
tional parameter change estimates. The correlation pat-
terns identified here are similar for both cardiovascular
model formulations.

For the closed-loop model and case analysis we found
the following: Total peripheral resistance decreased com-
pared to baseline in two out of four participants. The ar-
terial compliance parameter increased in four out of four
participants. Maximal ventricular elastance increased in
one out of four participants. Only estimates for one par-
ticipant saw all of the listed changes simultaneously, which
indicates that these parameters saw changes expected to
lower blood pressure or improve cardiac function. For the
open-loop model, the case analysis gives the following ob-
servation: Total peripheral resistance decreased compared
to baseline in two out of four participants, while maxi-
mal ventricular elastance increased. Arterial compliance
increased in four out of four participants. The parameters
in two participants saw all of the listed changes simulta-
neously. Hence, the open loop-model seems to express a
pattern of consistent remodeling in more participants than
the closed-loop model, although this is very limited data
and possibly only marginal differences.

The regression analysis was subject to scarce data, and
regression coefficients were rarely significant, such that
these results cannot not reliably prove any influence and
the trial study was not designed for this. However, the

models may instead give an indication of whether phys-
ical activity or fitness did influence parameter estimates
and if trends support what is expected from the litera-
ture. Therefore, we try to interpret the trend from non-
significant coefficients as well.

In tables 6 and B.16, the difference of the personal
mean and population mean exhibits medium to high ad-
justed r2 for most parameters on the final measurement
day. This means that the more extreme the final value is,
the more extreme the personal average is likely to be. For
the relationship between parameter change and the pop-
ulation mean subtracted from the initial parameter value,
low to medium values of adjusted r2 were observed. For
the closed-loop model the arterial compliance exhibited
the highest r2 value, but the peripheral resistance was
similarly highest in the open-loop model. These two pa-
rameters could therefore be more likely to be expected to
regress to the population mean for their respective models
than the other parameters. As observed in 2 a pattern of
regression to a personal mean is also observed. Combined,
these two observations suggest that some of the changes
are caused by chance. These results and the observed cor-
relation between estimation methods could both at least
partially be explained by day-to-day variability in individ-
uals fluctuating about a personal mean.

For the linear mixed models we observed that trends
revealed in parameters for Rsys, practically all covariates
have a negative coefficient. This negative relationship is
consistent with prior studies and physiological understand-
ing of how improved fitness and vascular remodelling re-
sult in increased cardiac output through improved conduit
function of the vasculature. They would be expected to be
negative as increased SV, BMI and VO2,max is expected to
decrease the resistance value due to for example increased
cardiac output, and improved fitness. For Cao there are
mainly positive coefficients with the exception of sex. This
is in agreement with the expected effect of increased SV
(while maintaining blood pressure) and VO2,max. For in-
creased age and BMI, vessels are expected to stiffen, but
the age range of included participants may be insufficient
to detect this. Finally, for Emax, we find negative coef-
ficients for BMI and VO2,max. A full understanding of
the relationship between BMI and ventricular contractil-
ity has not been established from prior works. Manoliu et
al. estimated end-systolic elastance and found that con-
tractility slowly increased with BMI in middle-aged sub-
jects [34], but other studies suggest that obesity decreases
with other load-independent contractility indices in people
with hypertension [35]. Fernandes-Silva et al. observed in-
creased end-systolic elastance with increased BMI in the
elderly also when adjusting for age [36]. Similarly, some
findings have indicated contractility to increase in terms of
EF after exercise [11], so we would expect to find positive
coefficients for VO2,max if increased fitness has an effect.
While different notions for cardiac contractility are used
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to describe human hearts and can be contradictory, Oláh
et al. observed increased resting end-systolic elastance in
rats after 12 weeks of exercise [14]. Positive coefficients for
SV seem reasonable as increased contractility could lead
to a higher SV by ejecting more blood per heart beat by
for example an increased EF.

Increases in SV and VO2,max tend to correspond with
decreased∆1,3Rsys. It decreases when the change in SV
and VO2,max is positive, which is what is expected phys-
iologically. On the other hand, the change of resistance
seems to weakly increase with BMI. Change in arterial
compliance increases with increased SV, and so does ven-
tricular elastance in both cardiovascular model formula-
tions. Ventricular elastance change is explained mainly
by SV, and age, but is also an exception in that it has
a significantly higher level of explained variance for the
open-loop model parameters compared to the closed-loop
formulation parameters.

It should also be noted that a weak signal for remodel-
ing may be caused by low activity levels as only eight out
of initially twenty-six participants increased their average
weekly PAI from less than 50 PAI to over 100 PAI over the
course of the study period. Previous studies have shown
that reaching a 100 PAI weekly reduces risk of cardiovascu-
lar disease and extends lifespan as compared to those who
do not reach this target [15, 16]. We would therefore ex-
pect the individuals that achieved this to be more likely to
experience remodeling. However, VO2,max is the more well
established measure in the context of improved fitness, and
by extension cardiorespiratory remodeling, and therefore
preferred in the case analysis. All parameters for both
cardiovascular models seem to be best explained by the
addition of SV as an explanatory variable, and therefore
suggests that the model parameters captures the hemo-
dynamic changes from day to day or week to week, as
opposed to any influence of physical activity in this study.

Results from Bjørdalsbakke et al. indicate that the
closed-loop model does not have any advantage compared
to the open-loop model in terms of resolving parameter
changes [17]. Results from the current study suggest that
the open-loop model is better suited for detecting param-
eter changes. This is evidenced by higher correlations be-
tween parameters optimized to the model with conven-
tional estimates, but also in that maximal left-ventricular
elastance changes can be explained with higher confidence
using the open-loop framework. Therefore, analogously
to results by Itu et al. [37] an open-loop model with
only the adjacent vasculature could be sufficient to deter-
mine a selection of highly influential mechanical parame-
ters, describing the pressure-volume loop and global arte-
rial hemodynamics. However, Itu et al. did not explore if
this was sufficient to monitor a system in different states
of exercise or under cardiovascular disease, which remains
unknown and is likely problem dependent.

The comparison of the two cardiovascular models yields
information about whether different model complexities
impact what information is reflected by the parameter es-
timates given the chosen estimation method. The closed-
loop formulation is partially described by a stressed blood
volume parameter, which the open-loop does not as its
total blood volume can vary during each heart cycle. To-
tal stressed blood volume is highly influential on blood
pressure levels, but can add complexity to personaliza-
tion procedures as this parameter affects the state vari-
ables of all model compartments and can possibly interact
with several other parameters simultaneously. Therefore,
we investigated whether the personalization of each model
variant by a given personalization procedure captured the
same parameter dependencies or whether one of the mod-
els was better suited to track parameter changes which
were expected to come from for example exercise stimulus,
or other explainable causes. From the first regression anal-
ysis, it seems that both models yield parameters that may
to some degree regress towards a population mean, but
mainly Cao. Additionally, all parameters, exhibit some
signs that parameters for the individual may regress to-
wards a personal mean (see Figure 2). And neither model
exhibits any convincing evidence that the levels of fitness
changes in the trial explains any additional variance in
the parameters. But we cannot conclude whether this is
due to a low level of exercise remodeling in participants,
or whether the models are not able to detect these effects
on average. Case analysis shows that parameter for both
models can change in a manner expected to be benefits
after exercise. The models also seem to be able to track
changes in parameters similarly to other conventional tech-
niques given variations in the data within and between in-
dividuals, but to varying degrees of correlation.

For which waveform is most useful in the context of
computing changes, correlations between model changes
and conventional change estimates are higher for the carotid
pressure waveform, suggesting that carotid waveforms may
be more useful for computing changes (Tables 4 and B.14).
The changes are on average larger in absolute magnitude
for the arterial parameters using the carotid waveform, but
the opposite for Emax, where the finger pressure waveform
estimates higher changes (3 and B.13). We would initially
expect this as the waveform is closer to the arterial wave-
form in shape, but this study allowed us to investigate if
the estimated chnages using the different waveforms were
equally informative or useful. In summary, the changes
computed for estimates based on the carotid waveform
are more informative than the finger pressure derived es-
timates, when compared to conventional estimation meth-
ods.

13



5. Conclusion

The explanatory analysis shows that the cardiovascu-
lar model parameter changes correlate at least moderately
well to changes computed from more conventional estima-
tion techniques. This applies for arterial parameters using
the carotid pressure waveform. This result suggests that
the estimation method and model are able to at least par-
tially capture changes in the data from week to week. The
estimates of Emax are not often clearly correlated with con-
ventional estimates, and it is therefore harder to argue that
they are sensitive to the changes captured by the hemo-
dynamics. For participants included in the case study,
the arterial parameters for over half of participants experi-
enced changes in the direction expected from an increased
amount of exercise. However, by analyzing the study pop-
ulation using regression models we found no clear effect of
cardiorespiratory fitness influence on the model parame-
ters representing arterial compliance, resistance and max-
imal left-ventricular elastance. The model based mean ab-
solute changes over the study period were not consider-
ably larger or smaller than estimated changes from before
to after a CPET test within a span of 24 hours. To be
able to learn more about parameter changes we recom-
mend focusing on carotid or more central waveforms, as
parameters based on these correlate better with conven-
tional estimates than finger pressure based estimates, de-
spite their relative ease of collection. Additionally, aside
from better correlation of Emax estimates between esti-
mation methods, no results indicate that there is a con-
siderable benefit to using a closed-loop model in terms of
tracking parameter changes even though it describes more
details of the cardiovascular system. The open-loop model
produces estimates for maximal ventricular elastance that
yield a higher degree of explained variance in the regres-
sion analysis, and thereby detects more explanatory fac-
tors for the parameter. Regression models suggest that
adding information about VO2,max can not explain more
of the variability in parameter estimates in a majority of
cases. This suggests that the remodelling effect is either
too small, or the model and parametrization procedure is
unable to track the changes reliably. Then the majority
of the explanation of the computed parameter changes lies
in week-to-week or day-to-day changes, as changes in SV
is found to be better at explaining the parameter variabil-
ity, but uncertainty in the model optimization can not be
ruled out as an explanatory factor.
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Appendices
Appendix A. Participant Characteristics

Tables A.11 and A.12 give additional statistics about
the participants in the different subgroups based on differ-
ent blood pressure waveforms.

Appendix B. Closed-Loop Model Results

The appended tables show results for the closed-loop
cardiovascular model.

Appendix C. Pairplots

Figures C.4 and C.3 show the pairplots for scatterplots
between different variables applied in the regression anal-
ysis as well as the participants included in the case study.

n = 14
Height 174.1±8.9 cm
Weight 86.3±15.5 kg
BSA 2.0±0.2 m2

BMI 28.4±4.1 kg/m2

Age 56.5±3.7 years
Sex M/F 6/8 -
SBP 136.0±7.4 mmHg
DBP 84.8±6.0 mmHg

VO2max 36.4±6.8 mL/(kg min)
24h ABPM awake SBP 137.1±10.5 mmHg
24h ABPM awake DBP 82.9±7.0 mmHg

SV (4D) 88.7±21.5 mL
SV LVOT 85.7±20.1 mL

Table A.11: Baseline characteristics of the study population included
with carotid pressure waveforms. SBP and DBP signifies systolic
and diastolic office blood pressure measurement. BSA: body surface
area, BMI: body mass index, ABPM: ambulatory blood pressure
monitoring, SV: stroke volume, LVOT: left-ventricular outflow tract.
4D refers to 3D measurement averaged over time.

n = 9
Height 171.2±9.8 cm
Weight 79.2±11.6 kg
BSA 1.9±0.2 m2

BMI 27.0±3.4 kg/m2

Age 57.3±3.3 years
Sex M/F 3/6 -
SBP 138.6±9.0 mmHg
DBP 85.3±5.5 mmHg

VO2max 34.8±8.3 mL/(kg min)
24h ABPM awake SBP 133.7±7.3 mmHg
24h ABPM awake DBP 81.8±5.8 mmHg

SV (4D) 73.3±11.2 mL
SV LVOT 75.6±15.8 mL

Table A.12: Baseline characteristics of the study population included
with finger pressure waveforms. SBP and DBP signifies systolic and
diastolic office blood pressure measurement. BSA: body surface area,
BMI: body mass index, ABPM: ambulatory blood pressure monitor-
ing, SV: stroke volume, LVOT: left-ventricular outflow tract. 4D
refers to 3D measurement averaged over time.
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Parameter Wave- Estimation Maximal abs. Minimal abs. Maximal Minimal Mean Mean abs. Units
form method change change change change change change

Rsys C Model 0.211 0.001 0.211 -0.174 -0.009 0.081 mmHg s
mLm2

Cao C Model 0.660 0.004 0.473 -0.660 0.037 0.220 mL
mmHgm2

Emax C Model 0.465 0.007 0.362 -0.465 -0.027 0.133 mmHg
mLm2

Rsys C Conv. 0.213 0.000 0.213 -0.203 -0.011 0.091 mmHg s
mLm2

Cao C Conv. 0.324 0.001 0.265 -0.324 0.016 0.122 mL
mmHgm2

Emax C Conv. 0.793 0.004 0.504 -0.793 -0.074 0.188 mmHg
mLm2

Rsys F Model 0.144 0.003 0.144 -0.141 -0.010 0.050 mmHg s
mLm2

Cao F Model 0.625 0.001 0.624 -0.398 0.077 0.207 mL
mmHgm2

Emax F Model 0.631 0.006 0.628 -0.631 0.027 0.234 mmHg
mLm2

Rsys F Conv. 0.163 0.002 0.157 -0.163 -0.019 0.055 mmHg s
mLm2

Cao F Conv. 0.243 0.001 0.243 -0.113 0.065 0.098 mL
mmHgm2

Emax F Conv. 0.793 0.019 0.161 -0.793 -0.175 0.207 mmHg
mLm2

Table B.13: Maximal, minimal, average and average absolute
changes for total peripheral resistance (Rsys), systemic arterial
compliance (Cao), and maximal left-ventricular elastance (Emax).
Results are given for parameter changes produced by closed-loop
model optimization and by computation using conventional equa-
tions, based on both carotid (C) and finger (F) pressure waveforms.
Maximal and minimal changes are given unsigned, and can be any
changes between the first, second and third measurement days. The
carotid measurements describe 14 participants with carotid pressure
measurements, while the finger pressure includes 9 participants with
synchronized flow and pressure.

Parameter Wave- Temporal change r p value CI95%
form (meas. day)

Rsys C 1-2 0.994 < 10−3 [0.98, 1.00]
Rsys C 1-3 0.995 < 10−3 [0.98, 1.00]
Rsys C 2-3 0.990 < 10−3 [0.97, 1.00]
Rsys C All 0.993 < 10−3 [0.99, 1.00]
Cao C 1-2 0.594 0.025 [0.09, 0.86]
Cao C 1-3 0.816 < 10−3 [0.50, 0.94]
Cao C 2-3 0.594 0.025 [0.09, 0.85]
Cao C All 0.674 < 10−3 [0.47, 0.81]
Emax C 1-2 -0.286 0.343 [-0.72, 0.31]
Emax C 1-3 -0.631 0.021 [-0.88, -0.12]
Emax C 2-3 -0.222 0.446 [-0.67, 0.35]
Emax C All -0.391 0.013 [-0.63, -0.09]
Rsys F 1-2 0.978 < 10−3 [0.90, 1.00]
Rsys F 1-3 0.991 < 10−3 [0.95, 1.00]
Rsys F 2-3 0.995 < 10−3 [0.98, 1.00]
Rsys F All 0.990 < 10−3 [0.98, 1.00]
Cao F 1-2 -0.124 0.750 [-0.73, 0.59]
Cao F 1-3 0.320 0.402 [-0.44, 0.81]
Cao F 2-3 0.525 0.147 [-0.21, 0.88]
Cao F All 0.215 0.281 [-0.18, 0.55]
Emax F 1-2 -0.192 0.650 [-0.59, 0.79 ]
Emax F 1-3 -0.321 0.438 [-0.84, 0.50]
Emax F 2-3 -0.418 0.263 [-0.85, 0.34]
Emax F All -0.327 0.110 [-0.64, 0.08]

Table B.14: Correlation statistics for parameter changes from to-
tal peripheral resistance (Rsys), systemic arterial compliance (Cao),
and maximal left-ventricular elastance (Emax). Results are given
for correlations between parameter changes produced by closed-loop
model optimization and by computation using conventional tech-
niques, based on both carotid (C) and finger (F) pressure waveforms.

Parameter Estimation Temporal Mean abs. Mean
change change change change

Rsys Model CPET week 0 0.046(0.040) 0.018(0.063)
Rsys Model CPET week 12 0.059(0.020) 0.026(0.063)
Rsys Model Pre CPET week 0-12 0.047(0.063) -0.036(0.070)
Rsys Conv. CPET week 0 0.052(0.043) 0.016(0.072)
Rsys Conv. CPET week 12 0.064(0.022) 0.035(0.065)
Rsys Conv. Pre CPET week 0-12 0.055(0.066) -0.053(0.067)
Cao Model CPET week 0 0.121(0.167) 0.114(0.173)
Cao Model CPET week 12 0.183(0.356) -0.179(0.359)
Cao Model Pre CPET week 0-12 0.312(0.348) 0.312(0.348)
Cao Conv. CPET week 0 0.072(0.071) 0.068(0.076)
Cao Conv. CPET week 12 0.031(0.024) -0.003(0.044)
Cao Conv. Pre CPET week 0-12 0.127(0.069) 0.127(0.069)
Emax Model CPET week 0 0.126(0.071) 0.126(0.071)
Emax Model CPET week 12 0.177(0.116) -0.017(0.234)
Emax Model Pre CPET week 0-12 0.113(0.078) 0.113(0.078)
Emax Conv. CPET week 0 0.082(0.090) -0.082(-0.090)
Emax Conv. CPET week 12 0.070(0.040) 0.070(0.040)
Emax Conv. Pre CPET week 0-12 0.281(0.078) -0.281(0.078)

Table B.15: Average and average absolute parameter changes over
different periods throughout the study period, describing the param-
eter change from measurements made before a CPET and the day
after. Standard deviations are given in parentheses. Pre CPET
denotes parameter changes calculated between the first and final
measurement day based on measurements made prior to the CPET.
Results are given for parameter changes produced by closed-loop
model optimization and by computation using conventional tech-
niques, based on the finger pressure waveforms.

DV: Rsys,3 Cao,3 Emax,3 ∆1,3Rsys ∆1,3Cao ∆1,3Emax

Intercept 0.590* 0.967* 0.988* -0.013 0.056 -0.041
Rsys,avg-Rsys,pop 0.102*
Cao,avg-Cao,pop 0.112*
Emax,avg-Emax,pop 0.164*
Rsys,1-Rsys,pop -0.061*
Cao,1-Cao,pop -0.149*
Emax,1-Emax,pop -0.063
Adj. r2 0.637 0.231 0.644 0.265 0.319 0.076
N 14 14 14 14 14 14
F-statistic 23.81 4.911 24.47 5.682 7.095 2.067
F-test p-value 0.000* 0.047* 0.000* 0.035* 0.021* 0.176

Table B.16: Ordinary linear regression models based on the differ-
ence between the individual average parameter values over the two
first measurement days (subscript: avg) and the population aver-
age (subscript: pop). The model parameters are optimized for the
closed-loop model using the carotid pressure waveform. Indices, 1-3
indicate measurement day. DV: dependent variable.
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Figure C.3: Pairplots of variables used in the regression analysis.
The parameter values are optimized for the open-loop model. The
participants with VO2max changes in the top quartile are marked by
black markers. The final measurement day is marked by a diamond.
The colour encoding indicates sex.

18



0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R s
ys

0.6

0.8

1.0

1.2

1.4

C a
o

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

De
ns

ity

0.8

1.0

1.2

1.4

E m
ax

0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

22

24

26

28

30

32

34

36

38

BM
I

20 30 40
0.00

0.01

0.02

0.03

0.04

0.05

0.06

De
ns

ity

30

40

50

60

70

SV

20 40 60 80
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

De
ns

ity

0.4 0.6 0.8
Rsys

25

30

35

40

45

VO
2 m

ax

0.6 0.8 1.0 1.2 1.4
Cao

0.8 1.0 1.2 1.4
Emax

25 30 35
BMI

30 40 50 60 70
SV

20 30 40 50 60
VO2max

0.00

0.01

0.02

0.03

0.04

De
ns

ity Male
Female

Figure C.4: Pairplots of variables used in the regression analysis.
The parameter values are optimized for the closed-loop model. The
participants with VO2max changes in the top quartile are marked by
black markers. The final measurement day is marked by a diamond.
The colour encoding indicates sex.
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